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Abstract 

The broad topic of statistical inference is examined, with a view to reliably esti- 
mating the uncertainty in functions of parameters of importance in process control. 
The method of pronling (Bates and Watts, 1988; Chen, 19991; Lam and Watts, 1991, 
Chen and Jennrich, 1996) is exarnined in detail, and is generalized so that it might 
be used in the contes* of controI-relevant statistics. 

The thesis is a compilation of manuscripts, all of mhich examine and =tend the 
idea of profiling in a chemical engineering context. Nonetheless; their subjects are 
quite diverse- The papers touch on issues of Inference, measurhg noniinearity and 
design of experiments. The models considered range from noalinear regression models 
to discrete dynamic transfer function models. Contributions have been made to the 
disciplines of apphed statistics, chemical engineering and control theory- 

The f is t  ttvo manuscripts are focused on consolidating the theory of generalized 
profiling. The fust paper is a tutorid on the use of profihg to estimate reliable 
likelihood intervals for functions of parameters, and illustrates the method using 
examples involving nonlinear regression models. In the second paper, the equivalence 
of two approaches to generalized profXng is shomn, and cases for mhich profiling fails 
are identified. alternative to profiliag is suggested for one of these cases. 

Dynamic models are introduced in the third manuscript. In this paper, a method 
cailed ezpected profiling is developed. E-xpected profilhg is a tool for predicting the 
uncertainty in functions of parameters of time series models, which does not require 
a set of data. It may be used to examine how quickly the uncertainty in a function 
of parameters is evpected to decrease as the length of the data set increases, and to 
estimate how much data is required for asymp totic properties to apply effectively. 

In the fourth paper, two new rneasures of nodinearity are introduced, one for 
time series models and one for nonluiear regression models. Measures of nonlinearity 
are intimately related to rneasurïng uncertainty in functions of parameters since it is 
the nonlinearity of the response surface that complicates the inference problem. The 
new measure of nonlineanty for aut oregressive movuig average (ARMA) time series 
models is based on the fact that the proxhity of the vector of parameter values 
to a stability/invertibility boundary largely influences the degree of nonhearity of 
the inference problem- Both new mesures of nonlulearity are "quick and easy" 
methods to predict when iterative inference methods, such as generealized profiling, 
are required- 

The final paper is devoted to exploring the use of generalized profilhg in the con- 
text of transfer function models for the purpose of measuring uncertainty in control- 
relevant statistics. The lessons learned in the earlier manuscripts are used to discuss 
the inference problems which provided the initial motivation for this thesis. 
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Chapter 1 

Introduction 

The use of nonlinear rnodels is widespread in chemical engineering, and indeed, in the 

naturd and applied sciences in general. Modeliag can serve a wide range of purposes, 

one of which is the prediction of response values at  specihc levels of the independent 

(or explanatory) variables. If these predictions are to be used appropriately for de- 

cision making, then reliable measures of the uncertainty in the predictions must be 

known. Mode1 predictions are but one example of functions of parameters of interest 

in engineering. Ln this thesis: numerical procedures for the estimation and predic- 

tion of reliable Likelihood intervals for functions of parameters of nonlinear models 

are developed. The work illustrates the application of these techniques to  chemical 

engineering problems, with an emphasis on statistics of interest in process control. 

Three main topics are considered: estimating likelihood intervals for functions of 

parameters, predicting the uncertainty in functions of parameters of time senes mod- 

els, and measuring the ex2ent to mhich inference problems will display noniinearity- 

Although, to some extent , each of these topics is distinct, they each stem from, or Lead 

to, the other. .At their core, they are all tied to the issue of measuring uncertainty in 

functions of parameters of nonlinear models. 

To make appropriate use of fitted models, whether they be deterministic or stochas- 



tic, mechanistic or empïrical, the uncertainty in the statistics must be k n m .  For 

models which are linear in the parameters, inference results for the  parameters and 

the predictions are exact and analytic. For models which are nonlinear in the param- 

eters, the inference results are cornplex functions of: the distribution of the random 

errors associated wïth the rneasured responses, the stmcture of the model, the pa- 

rameterkation of the model, and the design of the experiment (Bates and Watts, 

1988). Exact inference results are unavailable, except for special cases (see, for ex- 

ample: W i a m s ,  1962; Halperin, 1963; Roy, 1992). Typicdy, approximate inference 

results have been based on linear appro'amations to the nonlinear rnodel. This hea r  

approximation approach is attractive in that it provides quick andytic results. How- 

ever, Rates and Watts (1980), Donaidson and Schnabel (1987), Ratkowsky (l99O), 

and others, have shomn that the Lùiear approximations are often poor, and that either 

the intrinsic or parameter effects nonlinearïty (or both) are often severe enough to 

render the linea,rîzation results unreliable and possibly misleading. 

-4 more reliable approach to estimating inference results for the  statistics of a 

nonlinear model is profiling. ProfZng, as developed by Bates and Watts (1988), is a 

grap hical likelihood ratio approach to finding iikelihood intervals for the paramet ers 

of a nonlinear model. Subsequent work by Cook and Weisberg (1990), Lam and Watts 

(1991): Chen (1991) and Chen and Jennrich (1996) generalized the profiling algorithm 

to handfe the problem of finding likelihood intervals for functions of parameters of 

fitted models for which the distribution of the random errors is knotvn- 

In this thesis, the generaiized profihg algorithm will be examined in detail so as 

to elucidate and consolidate the theory underlying the method, and thereby to assess 

its power and limitations. Generalized profding can be used to solve extremely varied 

inference problems because many statistics of practical interest can be conceived of 

as being functions of parameters. 

(Le., the predictions £rom a model) 

For example, the expected responses of a model 

are functions of the parameters in the model. The 



usefulness of profilùig in the context of transfer-function models will be investigated, 

with the focus being on statistics used in process control. Although profiling is a 

pomemil approach to inference problems, the algorithm may fail in special cases. 

These limitations d l  be investigated, and alternative approaches will be suggested. 

While generalized profiling is a reliable means by which to estimate uncertninîy in 

functions of parameters once a set of data has been used to fit a model, in some cases 

it wodd be usefid and advisable to predict the uncertainty of estimated parameters 

and functions of parameters prior to data collection or experimentation. In the case 

of ARMA models, the model itseif defines how the process is expected to evolve over 

time, and it is possible to calculate expected values for some of the properties of 

the mode1 a priori to any data collection (Le., in the absence of a realization of the 

process) . An algorithm for computing "expected likelihood intervals" for hinctions 

of parameters of -AEtMA models was developed. Several useful mays of plotting the 

information obtained h-om the e-xpected profihg methodology are proposed, and 

are intended to emphasize the utility of expected profiling in designing eaqerîments. 

Especially when one has control over how much data can be collected, expected 

proiîling can be an important means for deciding how much data mil1 be "enough". 

Even for cases where there is little control over data collection, expected profding may 

be used as a means of deciding which approaches to computing inference results are 

appropriate, and for making qualitative judgrnents about the sources of any observed 

nonlinearit ies- 

Generalized profiling is a more reliable approach to estimating inference results 

for functions of parameters of proposed rnodels than the linearization appr~~ximation 

approach, but it is also more computationally intensive. When the nonlinearity of 

the inference problem is low, it is appropriate to use the linearization approach to 

est imat e uncertain@ Measures of nonlinearity are developed to indicate when it 

is appropriate to Save the computational burden of profihg by using the simpler 



linearization approach. Meanires of nonlineazity, then, are intimately tied to the 

issues of inference in the context of nonlinear models. In this work, two empirical 

measures of nonlinearity are developed - one for use with -4RLMA models, and one 

for use with nonhear regression models. Both of the measures are relativeLy easy to 

calculate and are reliable indicators of nonlinearity. 

The thesis is organized in 'bmuscript" format. The main body of the thesis 

comprises a collection of five journal-ready papers, the topics of mhich are those 

introduced above. Naturally, there exists some duplication of information from one 

paper to another because each paper is meant to be able to stand alone. StilI, each 

paper is distinct and emphasizes dBerent methods, different applications, and/or 

different approaches. Each paper makes its o m  unique contribution. 

The nomenclature used in each chapter is specific to that chapter and is dehed 

in the text and in a "Nomenclature" section at the end the chapter. The notation for 

each paper was chosen to be consistent with that used by the discipline to which it was 

aimed. Because the conventions used in statistics, control and chernical engineering 

differ, the notation is not consistent fiom chapter to chapter. 

The first paper is a general introduction to generalized profiling in the context 

of nonlinear regression models. It is a tutonal-type paper with an emphasis on the 

application of the methodology t O chemical engineering problems. 

The second paper is of a more academic nature. The main result is a proof of 

the equivalence of two different approaches to generalized profiling proposed in the 

literature. Together with the 6rst paper, cases are identified for mhich the profihg 

met hodology fails, and an alternative met hodology is proposed. 

The third paper introduces the concept of expected profiling. The methodology is 

developed and illustrated. The application of the algorithm is discussed, and the use 

of the delta parameterization is used as an example of expected profiling of functions 

of paramet ers. 



The fourth paper provides the development of two new meanires of nonlinearity 

- one for ARMA models, and one for nonlinear regression models. The advantages 

and uses of these methods are iliustrated. 

The fifth paper brings the focus back to application and chernical engineering 

problems. The paper examines in d e t d  the use of generalized profihg in the con- 

text of discrete transfer h c t i o n  models, and illustrates the methodology fUr severai 

functions of parameters of interest in process control. 

A chapter protfding a general literature review precedes the papers and is intended 

to provide a retiew of the topics fundamental to this work. Each paper provides a 

literat ure reviem specific to its topic. Therefore, Chapter 2 entitled Background and 

Literature Review, rernains quite general. The focus is on the geometrical aspects of 

the work. Appen&s -2 provides a sumrnary of the computational algorithrns used in 

the thesis, and other important details about computationai issues. The thesis ends 

with a summary of the main conclusions of each paper, and a discussion of directions 

for future work. 



Chapter 2 

Background and Literature Review 

Each manuscript contained in this thesis includes a "Background and Literature Re- 

vieni' section. It is not the intentiori to reproduce au of this information here. The 

focus of this chapter Mll be explorhg ideas comrnon to a11 of the manuscripts so as 

to motivate the individual topics and highlight the commonalities that unite them in 

a singIe thesis. 

The two themes common to aU five manuscripts are nonlinearity and inference. 

In many engineering applications, a nonlinear model is one which is nonlinear is the 

st ates, input variables, or regressor variables- However, in the statistical literature, 

a nonlinear model is one which is nonlinear in the parameters. It is parametric 

nonlinearity which influences inference results. In this work, nonlinear nrill dways be 

used in the statistical sense. 

A model is said to  be nonlineax if the vector of derivatives of the model with re- 

spect to its parameters is a function of one or more of these parameters. In the work 

that follows we consider several classes of models including nonlinear regression mod- 

els, autoregressive moving average (ARMA) time series models and transfer function 



modeIs. These, and other single response models, may be vnitten generaUy as: 

where the function f (x, O )  is the expected value of the response vaxïable y at speczed 

Levels of rn independent variables x = (xL, x2 - - - ; xm) and specified values of p 

parameters 8 = (OL, 02, . . . , 6JT . E is an additive randorn error term associated wïth 

y. At this point assume only that the error is independent- and identic* distributed 

(iid) without assuming the form of the distribution. We only consider models which 

af (=,O) are dserentiable to order 2 at least. Mode1 (2.1) is nonlinear if -ag = h(B), where 

h(0)  is a vector of derivatives, one or more of mhich is a function of B. 

Time senes models and transfer b c t i o n  models may be encompassed tvithin this 

generd fiamework by dowing x to include past values of y and E .  Consider for 

esample, the transfer function mode1 

mhere q-' is a backshift operator such that 

and &-') , B(q-') and C(q-') are polynomials having the fom: 



and d is the delay betnreen a change in the manipulated variable and its affect on y,. 

This model may be rewritten as: 

so that for this model 

and 

ARMA t h e  senes models are a special case of (2.2) where B(q-') = O. For an 

ARMA(p ,q) model, 

the espressions for the derivatives of et with respect to the parameters are (Ravis- 

hanker, 1994) : 

where in (2.12) and (2.12) & represents the kth parameter of the polynomial q5(q-L), 



and represents the lth parameter of the polynomial B (q- l ) .  Note that the derivatives 

are functions of O; therefore, general -WU models are nonlinear in the parameters. 

By extension, the transfer function model given in (2.2) is dso  noaluiear in the 

parameters, as are more general forms of transfer function models. The exception is 

the ARX model having the form ;1(9-L)yt = B(q-L)ut-d + and any model which 

is contained .Nithin this Famework, These models can be s h o m  to be linear in the 

parameters. Refer to Chapter 7 and the book by Soderstrom and Stoica (1989) for 

details. 

Donaldson and Schnabel (1987) found that inference results for the parameters of 

regression models were significantly affected by the noniïnearïty of the model. Others, 

including Bates and Watts (1988) and Ross (1990) have documenteà similar evidence. 

It is common in engineering to base all inference results on b e a r  approximations 

to the model. This is an attractive option because inference results for Linear models 

have analytic expressions, making h e a r  approximation inference computationally 

simple. However, the experience of Donôldson and Schnabel suggests that this is 

an unreliable approach to inference. Watts (1994) showed that the parameters used 

routinely in chernical engineering may show severe nonlinearity, but that reliable 

Iikelihood intervals for those parameters can be obtained by profiling. Profiling is 

an iterative approach to inference (Bates and Watts, 1988). Bates and Watts (1991) 

showed how to use profile t pIots in model building and model discrimination. Data 

sets from chemical engineering were used to illustrate the value of profiling in this 

conte*. The work by Watts (1994) and Bates and Watts (1991) motivated the 

research that follows, and served as a starting point for exploring other inference 

pro blems of importance in chemicd engineering. 



2.1 Functions of Parameters 

Watts (1994) considered the problem of estimating the uncertainty in the parameters 

of steady-state rate equations. His work suggested a need for a reliable approach to 

estimating the uncertaiaty in functions of parameters of noalinear models, including 

time series models and discrete transfer function models. Often in chemical engineer- 

ing, it is not the parameters of an estimated model which are of primary interest, but 

rat her, st atistics derived t herefkom- For example, model predict ions, measures of con- 

trouer performance, and the cross-over kequencp are three functions of parameters 

which are important statistics used for decision-making by chemicd engineers. The 

examples considered in this work are taken from the area of process control, although 

examples abound in ot her areas of chernical engineering, and indeed, t hroughout en- 

gineering in general. 

2.2 Uncertainty, Likelihood and Confidence 

If decisions are to be based on the estimated value of a hnction of parameters g ( 0 ) :  

then not only is the point estimate oEg(8) important, but so too is a measure of the 

uncertainty of that estimate. We seek an algorithm by mhich to obtain a IikeIihood 

interval for g (O) .  A nominal 1 - a likelihood interval for g (0) is the set of al1 values 

of g ( 0 )  which are plausible in light of the available data. From standard asymptotic 

arguments (Cm and Hinkley, 1974) 

where L I ( g ( 0 ) )  is the likelihood interval for g ( 0 )  , L(0)  is the Likelihood function for 

0, xP( l )  is the upper ru quantile for the X2 distribution mith 1 degree of freedorn, O is 

the vector of maximum likelihood estimates of the parameters, and 0 is any allowable 



vector of parameter values (Chen and Jenech ,  1996). Note that the iîkelihood ratio 

statistic follows asynptoticdy a x2 distribution (Cordeiro et al., 1994; Edwards, 

1972), except in special cases for which it is exact. The expression in (2.14) states 

that the Lkelihood interval for g(0) inchdes alI values of g(0) for which -2 In - (::n > 
is less than or equal to a critical value of the chi-squared distribution mith one degree 

of freedorn. In order to aiso account for uncertainty in the value of the variance of 

the random error a2, ive compute Likelihood intervals based on 

where F(1, n - p; a) is the upper a quantile for the F distribution Nith 1 and n - p 

degrees of fieedom (Cook and Weisberg, 1990), and n is the number of observations 

of the response variable used to compute L(0) .  In other words, a 1 - a likelihood 

interval for g(0) is the set of ail g(B) for which 

where t(n - p, a/2) is the upper a / 2  quantile for the student t distribution with n - p  

degrees of freedom (Bates and Watts, 1988). The Likelihood intervai is similar to 

the confidence interval, the fiducial interval (Fisher, 1935) and the Bayesian interval 

(Jeffreys, 1948) in that ail attempt to identify the plausible values of a random variable 

g(0). In this work, me restrict our attention to likelihood intenals and approxhate 

confidence intervals. The term "confidence interval" has a precise stat ist ical definition 

rooted in the fiequency theory of probability (Kendall and Stuart, 1967). To construct 

a (1-a) 100% confidence interval for g ( 0 )  we choose upper and lower confidence limits, 



where the probability is based on the sampling distribution of some function of a 

randorn sample of values fiom a population- -4 confidence interval is one way to report 

the results of a test of hypothesis. The Principle of bfauimum Likelihood states that, 

when confi-onted wïth a choice of hypotheses, choose the one which ma,.cimizes the 

Likelihood (Kendall and Stuart, 1967). This iç to Say, choose the hypothesis which 

gives the greatest probability to the set of observations. This is not the same as 

choosing the hypothesis with the greatest probability (Kendall and Stuart, 1967). 

Bates and Watts (1988) discussed the dinerence between the frequency theory results 

and the likelihood results from a geometrical perspective. The frequency approach 

to constructing inference regions focuses on the possible values of f (x, O )  and the 

angle that the residual vector e = y - f (2, O )  makes mith the surface traced out by 

f (x, O) in n-dimensional space (see Section 2.3.1 for a discussion of this surface). The 

likelihood approach is centered around the vector of observed values y and its position 

relative to the expectation surface traced out by f (x, 0) .  The limits of the likelihood 

interval are determined by comparing the length of the shortest distance £rom y to 

f (2, O) and the distance kom y to al1 other points f (x7 O ) .  In other words, when 

constructing confidence intervals, we consider the intersection of a sphere centered at 

f (q0) with the expectation surface, but when constructing likelihood intervals, me 

consider the intersection of a sphere centered at  y with the expectation surface. Mso, 

note that we base likelihood intervals on the fact that -2 ln(LR) is asymptotically 

distributed as a X 2  randorn variable. It is possible to constmct cases for mhich it is 

inadvisable to assume t his distribution and for which a likelihood interval approach 

t O constructing inference intervais Nill give misleadùig or spurious results. Freund 



and Walpole (1987, p. 407) work through such an example. 

For linear modeIs, the iïkeihood interval and the confidence interval are equal and 

exact. For nonlinear models, the two intemals may not be equal. Because the tenn 

"confidence interval" is sometimes used quite loosely in the literature, we WU use 

the more appropriate terms "likelihood interval" and "Likelihood region" to  describe 

inference intends and regions based on profihg. 

Mthough the coverage probability (the value of the confidence coefficient 1 -a) for 

a likelihood interval is not exact (in most cases), the true coverage probabilities are 

general!~ much closer to the nominal values than are those for inference intervals based 

on a Linear approximation to the mode1 (Cook and Weisberg, 1990). The coverage 

pro babilities for likelihood intervals are independent of parameter-effects nonlinearity 

(see Section 2.3.1). -41~0, these intervals are exact in shape *ce they are based on 

the function f (x, 8) .  Wlereas in the linear approximation interval the function is 

evaluated at only one point 8, and ail inferences are based on this and the slope of 

f (2, O )  at  this point, likelihood intervals are formed by computing the value of the 

likelihood h c t i o n  over a range of values of 8. -4s a consequence, the function f (x, 0) 

is evaluated over a range of values of 0 and the Likelihood intervals are thereby based 

on the true nonlinear surface traced out by f (x, O ) .  

2.3 The Basics of Profiling 

The work reported in this thesis has been carried out using the method of generalized 

profiling. In its most general form, p r o f i g  involves the solution of the following 

const rained op tirnizat ion pro blem: 

hIaximize: 



subject to: 

This optimization problem is solved for a series of values of c greater than and less 

than the maximum lilrelihood estimate of g(8). %y the invariance of the likelihood 

hinction under reparameterization (Kendall and Stua,rt, 1967): the mâ,xÏmum likeli- 

hood estimate of g(0 )  is g(@. Let the Location of the solution to the constrained 

optimization probIem in (2.18) be 8: and define 

Then the profile t plot for g(9) can be constructed as a plot of ~ ( ~ ( 8 ) )  versus g(6)) 

for a range of values of c. Often it is of interest to judge the relative nonlinearity of 

a parameter, or function of parameters, so as to know how reliable the linearization 

inference results wodd be. A reference h e ,  d(t~(8)) versus g(@, is typically included 

on profile t plots, where 

This reference line may be used to obtain the linearization confidence intervaIs for 

g(B), and to judge its relative curvature (Chen, 1991). By (2.16), the likelihood 

interval includes al1 values of g(@ for which 

To obtain a (1 - a) likelihood interval for g(0) from the profile t plot, one simply 

finds the values of g(0) on the prose t curve at  which r = It(n - p; cr/2). 



One purpose of this thesis is to provide a comprehensive analysis of generalized 

p r o f i g .  The idea of extending p r o m g  to compute inference resdts for Eunctions of 

model parameters has been suggested by Clarke (1987) - Bates and Watts (l988), Cook 

and Weisberg (NgO), Ross (1990), Chen (1991), and Chen and Jennrich (1996). A p  

propriate theory and computationai methods have been developed by CIaxke (1987), 

Chen (1991), and Chen and Jennrich (1996)- Two apparently different approaches 

have been proposed: one is based on a reparameterization of the model, and the other 

involves the constrained optimization formulation given in (2.18). Both methods, al- 

though equivdent (see Chapter 4), are conceptually and computationally different- 

The intent of this work is to elucidate and consoüdate the theory underlying both 

methods, to assess the relative advantages and limitations of each method, and to 

indicate the usefulness of the methods for several chernical engineering problems. 

2.3.1 The Expectation Surface and Nonlinearity 

XIthough the lineaxization approach provides a computationally simple means of 

finding inference intervals, i t can be misleading (Donaldson and Schnabel, 1987; 

Ratkowsky, 1983; Bates and Watts, 1980). To appreciate why and how the non- 

linearity- of a model impacts the inference resdts, it is necessary to understand the 

geometry of nonlinear regression, 

Bates and Watts (1980, 1988) have provided a detailed anaiysis of the geometry 

of the nonlinear regression problem. The discussion which follows relies heaviiy on 

these works. Consider a regression problem in which a model having p parameters is 

fitted to a data set of length n. In an n-dimensional space, where each of the axes 

represents one of the observations in the data set, the vector y, representing the set 

of observed response values, is a single point in the n-dimensional space. As the p 

parameters are allowed to vary over their allowable values, the expectation fuoction 

f(X, 0) traces out a pdimensionai surface in the n-dimensional space, where X is 



an (m x n) mat& of the set of n levels of each of m regressor variables at which the 

observations mere taken. This surface is called the expectation surface or the solution 

surface- The maximum Likelihood estirnate of 8 is the value of 0 which defines the 

point on the edxpectation surface closest to the point representing the observed values. 

The projection of y onto the surface is @, and the value of 8 which defines this point 

consists of the least squares estimates of the parameters 9 . Merences about 8 are 

also straightfomd, and uncertain@ can be represented in the n-bensional  space 

as a sphere centered at y. The size of the sphere is a function of the distance fiom y 

to the point f (z, 9); the number of degrees of freedom of the estimate of the variance 

of the random error in the data, and the degree of confidence (1 -a). The intersection 

of the sphere and the surface defines a likelihood region. These ideas are illustrated in 

Figure 2.1 for the case of a linear model and three observations. For h e a r  models, the 

e-xpect ation surface is planar, making projections and intersections readilq- calculable. 

The geometry of regression can also be Memed within a pdimensional parameter 

Figure 2.1: The Geometry of Linear Regression (Bates and Watts, 1988). 

space. When the model is linear, the circular inference region on the solution surface 

maps to  an elliptical region in a rectangular coordinate region for the parameters. The 

geometry in these cases is neat in that a l  of the inference regions are well defined 



Figure 2.2: A Typical EUiptic Joint Confidence Region for Two Parameters of a Lhear 
Model. 

conic structures. This d o m  for exact, analytic results for both the point estimates 

of parameters and the inferences. 

For nonluiear models, the solution surface is not planar, and the mapping of the 

likelihood inference region from the suâace to  the rectangular parameter space is non- 

linear. For irregular solution surfaces and highly nonlinear mappings, the likelihood 

regions for the parameters may be q m m e t r i c  and even discontinuous. Therein Lies 

the difficulty in the nonlinear estimation problem. These issues are Uustrated by the 

following example. 

Consider an esperirnent for which ody tmo measurements of y were made, and 

the measurements are to be used to estimate the single parameter in the follonring 

model 

The data are given in Table 2.1. This estimation problem is displayed graphicdy in 

Figure 2.3. The vector of observations yT = (7950,8050) is shown on the figure as x, 

and the location of the vector of best model predictions (in the least squares sense) is 

the point on the expectation surface (the curved line) closest to x. This point is labeled 



Table 2.1: Data for IlIustrative Example I 
Time t ( Pressure y 1 

o. The value of the parameter which defines this point is 6, = 0.7835, the maximum 

Likelihood estimate of the parameter. A Likelihood interval for BI includes all values of 

QI mhich d e h e  points on the expectation curve mithin a specified distance of y. This 

distance is a function of the level of confidence a: the va,.rïance of the randorn error in 

the data, and the nurnber of degrees of fieedom associated mith the estimate of that 

variance. On Figure 2.3 the lïmits of the likelihood intervai for Ol are d e h e d  by the 

points of intersection of the circle centered a t  x and the espectation curve- Notice that 

the  upper Limit extends beyond the b i t  of the expectation curve. For this model, the 

expectation surface has a finite upper bound because as BI approaches idinity, the 

value of the expectation hinction approaches an upper limit of 9500. The fact that 

the circle, which serves to define the likelihood i n t e d ,  e-xtends beyond the upper 

Iimit of the expectation curve implies that the upper bound of the likelihood interval 

for O1 is infinity. The + signs on the expectation curve represent equally spaced values 

of the parameter O1. Notice that the ticks are not equally spaced on the expectation 

curve. This is a result of the nonluiearity of the rnapping from the expectation 

surface to the parameter space and vice versa. Bates and Watts (1980) c d e d  this 

type of nonlinearity parameter-effects curvature. Intrinsic curvature refers to the 

nonlioearity of the expectation surface itseif- For nonlinear rnodeling problems, both 

the parameter-effects curvature and the intrinsic curvature complicate estimation and 

inference. 

For the current example, the linearization confidence interval would be misleading. 

The linearization resdts mould be based on a line tangent to the expectation curve 



Figure 2.3: A Geometricd Representation of the Estimation Problem in Example 1. - 

expectation curve; - - Linear approximation line; O y; x y; points d e m g  the 
limits of the likelihood interval. 

at y. This is s h o m  in Figure 2.3 as the dashed straight line. Note that the linear 

approximation to the mode1 also linearizes the mapping fiom the parameter space 

to the space of the observations so that equally spaced values of BI in the parameter 

space appear as equally spaced ticks on the linear approximation to the expectation 

line. Based on the h e a r  approximation, the confidence interval for O1 has a h i t e  

upper bound of 4.105, and the linear approximation interval gives no hint of the tme 

amount of uncertainty in the estimate of Bi. 

The linear inference results can be interpreted hom a iinear aigebra perspective 

in terms of eigenvectors and eigenvalues. First, identify the values of al1 parameters 



when one parameter 8, is at one of the E t s  of its confidence interval as determined 

using the Zinearization approach- The bound;trv of the joint confidence region for the 

parameters is defined by: 

This expression defines an ellipse whose principal axes are defined by the eigenvectors 

of V ~ V .  From the geometry, the locations of the limits of the h e a r  confidence inter- 

vais for each parameter Lie along one of these eigenvectors. Note that when individual 

confidence intervals: as opposed to joint regions, are of interest, the appropriate scd- 

ing of the contours is s2Fa(1, n-p) and not ~ S ~ F , ( ~ ,  n -p )  (Donaldson and Schnabel, 

1987) . -4ls0, for an individual parameter O,, the Limit of its (1 - a) confidence interval 

can be obtained bom 

a0 
where u = $ = [O,. . . ; 0,1,0,. . . , 0IT and the 1 is in row q, and X is a constant which 

defines the confidence level. For a linear function of the parameters, g ( 0 )  = aTO, 

(2.24) can still be used to define the locations of the limits of a confidence interval 

for g (9). 

Substituting (2.24) into (2.23): 



The geometrïcai discussion has so far focused on parameter estimation and in- 

ference about the parameters. However, the primary focus of this thesis is inference 

about functions of parameters. Now consider a function of parameters g(6) in the 

geometrical framework. 

Since g(0) is often not a hinction of the measured data (although it codd be), 

consider the geometry of the inference probIem in the space of the parameters B. 

In maximum likelihood estimation of 8, we solve the unconstrained optimization 

problem: ma;lo'mize L(8). In h d i n g  a ILkelihood intervd for g ( 0 )  by the method of 

generalized profihg, we solve the conçtrained optimization problem given in (2.18) - 

In generalized profiling, we then compute r(g(8)). If Ir( < t(n - p; cu/2), we increase 

c, and revisit the optimization problem in (2.18). This iterative process is continued 

until T = t(n - p; 4 2 )  . At this point, g ( 0 )  = c = ij + A is one Limit of the likelihood 

interval. The other limit is found by considering a series of negative increments in c 

beginning at c = g(6). Figure 2.4 illustrates the procedure geometrïcaIIy. Contours 

Figure 2.4: A Geometrical Representation of Profiling g ( 8 ) .  

of L(0)  and g(0) are shom on the figure. The maximum Likelihood estimate of g is 

equal to the level of the contour of g mhich passes through the point of maximum 



Likelihood of 8,  Le., CJ(@. The first step in profiling g(0 )  is to move away $om the 

g(@ contour onto the contour of g having the value ij t A. A search for the ma,ximum 

of L(9) along this contour of g is then c e e d  out. The upper Limit of the Likelihood 

interval for g is g,,, and is the largest value of g ( 0 )  that stiil lies on or Nithin the 

Likelihood region for 8. The Likelihood region for 8 in this case is dehed  by 

When f (x. 9) and g(0) are both Linear in 0: the likelihood region for 8 is an ellipse 

and the contours of g(8) are pardel straight lines (see Figure 2.5 (a)). The M t s  of 

the likelihood interval for g(0)  are those values of the contours of g(8 )  which are 

tangent to the appropriate Likelihood region for 8. 

The confidence interval for any h e a r  h c t i o n  of the parameters g ( 0 )  = aT8 is: 

where a is a p x 1 vector of constants. Note that the e-qected value of a prediction 

at xk fiom a linear model is a linear function of the parameters uTB = xkO. 

Inference about g(0) becomes significantly more complicated when g(8) or f (x, O ) ,  

or both, are nonlinear. Some examples of such situations are illustrated in Figure 2.3 

(b), (c)  and (d). Figure 2.3 (d) illustrates the case for which g(0) is not monotonie, 

and for which g(0) reaches an unconstrained optimum at 8. This is an interesthg 

example because for such cases the profiling algorithm fails. This topic is considered 

in detail in Chapters 3 and 4. 

It is obvious that nonlinearity complicates the matter of finding inference results 

for g(0). However, it should be emphasized that even if a model is highly noniinear 

in the parameters, it does not necessady follow that a l l  functions of these paxame- 

ters will also behave nonlinearly. For example, it has been held (Clarke, 1987) that 



Figure 2.5: Graphical representations of inferences for various functions g(8 ) -  Key: - like- 
Wood region; - - contours of g ( 8 ) .  

likelihood intervals for model predictions are aiways well approximated by heariza- 

tion results even when the parameters of the model behave nonlinearly- It is easy 

to demonstrate that this is not true in general (see Chapter 3). There is no k n o m  

reliable nray to predict a prion' whether or not a function g(B)  NiIl behave nonlinearly. 

We postulate that nodinearity in the behavior of g(8) depends on the cunature of 

the contours of g ( 8 )  relative to the curvature of the contours of the solution surface. 

For example, although the problem illustrateci in Figure 2.6 is clearly nonlinear, it 

is likely that the h e a r  approximation results w o d d  provide a good approximation 

to the true likelihood interval for g ( 8 )  because the curvature of g(8) is aligned with 

the curvature of f ( x ,  0) .  There is stiil work to be done to explore this idea further. 

It may be possible to predict nodinearity in g(0) based on an a prion' geometrical 

analysis of both g(8) and f (x, 8).  



Figure 2.6: A Case of Nonlinear g ( B )  and NonIinear f (x; 8) .  

2.4 Alternatives to Profiling 

The most cornmon approach to determinhg likelihood intervals for functions of pa- 

rameters of nonlinear models is the linearization approach. This method is based on 

approsïrnating the nonlinear mode1 and the function of parameters g(8) using a first 

order Taylor Series approximation centered a t  6. Then, the well-knom linear infer- 

ence results are applied. u'çing his approach, the Likelihood interval for any function 

de) is 

mhere V is an n x p matrk 1~6th elements defined bj- Vij  = af(xils) 7 le=o' and s is an 

estimate of the variance of the randorn error- 

Halperin (1963), Rao (1973) and Khorasani and Milliken (1982) proposed that 

if a 100(1 - a)% confidence region for the parameters is available, then one may to 

obtain confidence limits for a function of these parameters is to find the maximum and 

minimum of the fuaction Nith respect to the parameters over the confidence region of 

the parameters. The geometrical representation of this is the same as that for profüing 

(see Figure 2.4). This results in confidence limits for g ( 0 )  which are consenative 



because the confidence regions are ~ p i c d y  based on the cntical value F(p,n - 

p; a), whereas confidence intemais are more appropriately based on J F ( ~ ,  n - p; a) 

(Donaldson and Schnabel, 1987). 

Mode1 predictions are the most cornmon examples of b c t i o n s  of parameters, and 

have received the most attention. Several papers have focused on assessing uncertain- 

ties in model predictions, and rnany algorithms for computing confidence bands have 

been proposed. Khorasani and MLlilliken (1979) derived conservat ive confidence bands 

for Lnear rnodels based on a 1 - o! confidence region for the parameters. Later, Kho- 

rasani (1982) considered the problem of computing simultaneous confidence bands 

for nonhear regession rnodels. -4 coddence band is the band produced around 

the response function f (x, O)  by considering simultaneously the uncertainty in the 

model predictions at  all values of x.  Clarke (1987) used many of the ideas underlying 

profiling to constmct approxhate confidence limits for a function of the parame- 

ters of a nonlinear model. The method involves reparameterizing the model so that 

the function of interest becomes a parameter of the model. This is what is done in 

the reparametenzation approach to generdized profiling (see Figure -4.2). Homever, 

Clarke then advocated the use of a series of approximations which simpii& the cal- 

culations. Given the speed of modem cornputers, such simplification is no longer 

necessary and we advocate a full likelihood approach to estimating uncertainty. More 

recent work on confidence bands has focused on asymptotic and large svnple proper- 

ties (Cox and Ma, 1995; et al., 1997). The reliability of these results for srnail 

and moderately-sized samples is UnkIlown. 

For some of the functions of parameters considered in this work, profling is not 

an appropriate algonthrn by which to compute the likelihood intenmls (see Chap- 

ters 3, 4 and 7). For these cases, we have used a modified version of the minimiza- 

tionlmiuomization approach. We choose to rnaximize and minimize the function g ( 0 )  

over a likelihood region for 0 dehed based on quantiles of the student t distribution; 



that is, the upper limit of the likelihood interval for g ( 0 )  is the value of g(0 )  a t  the 

solution of the following optimization problem: 

Maximize 

subject to 

The lower limit of the likelihood interval for g ( 8 )  is obtained by minimizing g(8) 

subject to the constraint in (2.31). This approach to Gnding Likelihood intervals 

for g ( 9 )  produces results equivalent to those obtained using p r o f i g .  However, me 

favor the profiling algorithm because it provides information which, when displayed 

graphically, provides evidence of the nonlineady of the problem. Also, for highly 

nonlinear L(8)  or g(B),  convergence problems may be encountered when using the 

rnini~zation/ma.ximization approach. These convergence problems can be avoided 

in profiling by choosing smdl step sizes, and using the Location of the solution to the 

optimization problem in the current iteration as the starting guess for the optimization 

problem in the next itetation. 

Chen (1991) also considered the minimization/mauimization approach. However, 

he chose to assume that the maximum and minimum of g(B) usuaily lie on the bound- 

ary of the likelihood region for 8, and not Nithin it. Therefore, he considered the 

constraint in (2.31) to be an equaiity constraint. In our work, we have carried out 

the search over the entire iikelihood region for 8. 

The linear approximation approach to inference fails to account for the intrinsic 

and parameter effects curvature. Hamilton et al. (1982) developed appro.ximate 

inference regions based on a quadratic approximation to the solution surface. By the 



use of a quadratic appro,uimation, some account is taken of the intrinsic curvature; 

however, aiI parameter-effects nonlineaïties are still neglected. Likelihood intends 

account for both of these types of nonlineariw 

Resampling methods have been used to obtain likelihood intervals for parameters 

in nonlinear models (Alpen and Gelb 1990; Bolviken and Skovlund, 1996). These 

methods are based on finding empirical appro.ximations to the distribution of the 

statistic of interest by repeatedly simulating the systern and estimating the statistic. 

Such methods include: Monte Carlo simdation, and the Jackknife and Bootstrap pro- 

cedures (Davison and Kinkiey, 1997; Jun and Tu, 1995). These methods are attractive 

because they require no a prion' knowledge or assumptions about the distribution of 

the statistic. Only knowledge of the distribution of the random error entering the sys- 

tem is required. However, these methods are not appropriate for everyday use since 

they are computationaIIy intensive and the results are specific to the given model (and 

to the assumptions made about the disturbance), and therefore cannot be generalized 

to other systems. These resampling methods often find use in the validation of other 

statistical estimation procedures- 

Some of the same cntisisms can be made of profihg. Prof ihg requires knomledge 

of the distribution of the random error entering the system, and the results of profiling 

are speciflc to the given model. However, P r o f i g  is typically not so computationdy 

intensive as resampling methods because very good starting values for the parameters 

are available for each optimization problem that is solved as part of the profihg 

algorithm- 

An alternative approach, closely related to the Likelihood ratio approach, is that 

of Hartley (1964) (also knonm as the lack-of-fit method). This rnethod provides exact 

confidence regions for the complete complement of parameters in a nonlinear model. 

For subsets of the parameters and functions thereof, the method is only approximate 

(Donaldson and Schabel, 1987). It is based on a ratio of two independent quadratic 



forms which follows an F distribution- Let 

where V(0) is the n x p rnatrix of derivatives of the model mith respect to the 

parameter. This notation is used to emphasize that in the method V is evduated at  

any set of parameter values O, and is not necessarily evaluated only at 8  ̂ as in the 

Iuiearization approach. Now consider the quadratic forms Q, and Q, 

where e(0) = y - f (x, O )  is the residual vector. When O = O*, where 8' is the vector 

of true values of the parameters, Q, and Q2 are independent x2 random variables 

with p and n - p degrees of fieedom, respectively. Sherefore 

and an exact 100(1- a)% confidence region for 0 is: 

(Hamilton et al., 1982). The Lack-of-fit method requires that V(8) be evaluated at  

a s ac i en t  number of points O to produce a contour. Since, in the case of nonlinear 

regression models, likelihood ratio methods such as profiling require on l y  that f (z, 8) 

be evaluated at  each point, the Iack-of-fit method is more computationally intensive 

than profiling (Donaldson and Schnabel, 1987). This rnethod does have an instructive 

geometrical interpretation. P(0) is the matrix of projection of e(B) onto the plane 



tangent to f (x, O )  at 8. Therefore, eT(B) P(B) e(B) is the projection of the residual 

vector onto the tangent plane at 0 and eT(8) (1 - P(O))e(O) is the projection of the 

residual vector onto a subspace orthogonal to the tangent plane at 8. At the true 

value of 8, these ttvo projections are independent, and it is on this basis that their 

ratio follows an F distribution (Hamilton et al., 1982). 

Pnor to the work of Chen (1991) and Chen and Jennrïch (1996), others had 

considered the problem of inference about tiinctions of parameters in nonhear re- 

gression. Some of the earliest work was done by Halperin and Mante1 (1963) and 

Halperin (1964, 1965). In this series of papers, the problem of likelihood intenmls 

was considered for a function g(pL, pl), where pl and pz are unlmomn means of a 

bivariate normal distribution estimated fiom observations XI and xz- The interval 

was based on mauimizing and minimizing the function over a likelihood region for 

(pl pz). Different approaches to detennining the likeiihood region for (pl, p2) were 

investigated, but the focus was on calibrating the value k so that the intervals based 

on -2 ln(LR) 2 k would have coverage probabilities close to the nominal values. 

Cook and Weisberg (1990) proposed a graphical approach to determinhg iikeli- 

hood intends for individual parameters in nonlinear regression. The proposed rep- 

resentation was simply the profile t plot with the r statistic plotted along the x-axïs 

and the parameter values plotted along the y-axis. The original work of Bates and 

Watts (1988) had the r statistic plotted along the y-axis and the b statistic (see (2.20) 

plotted along the x-axïs. Of course the 6 statistic is a h e a r  function of the parameter 

values and so the profile t plot and the graph of Cook and Weisberg are eguivalent. 

In this thesis, the profile t pplots are shonm as functions of the parameter values since 

this is deemed desirable when the intent is to obtain likelih~od intervals far the pa- 

rameters or functions of the parameters. Cook and Weisberg noted that such plots 

may be used to obtain likelihood intervais fur model predictions if the model is repa- 

rameterized such that one of the parameters in the reparameterized model is defmed - 



to be the prediction of interest; however they did not demonstrate this application- 

Some nonlinear models are classified as partiauy linear (Knowels et al., 1991). 

These models have oniy one parameter that enters the model in a nonlinear way. Sev- 

eral inference results for such models have been reported in the Literature. Williams 

(1962) developed an expression for an exact likelihood interval for the nonlinear pa- 

rameter of a partially hear model. Later, Halperin (1963) extended this resuIt to 

obtain an exact joint iikelihood region for al l  of the parameters. Others, including: 

El-SaarrawÏ and Shah (1980) and Knowles et al. (1991) have fuaher extended these 

early results. However, a l l  of the inference results quoted in these works are rele- 

vant only to a very specid class of models and are not generally relevant to inference 

problems in process control. 

2.4.1 Robust Control Approaches to Uncertainty 

There is a vast literature on robust control theory. The methods and theory in 

this area assume knowledge of the system model, complete wïth error bounds. In 

practice, the f o m  of the model, the parameter values and the uncertainty bounds 

are d l  unlüiown and only estimates of these, based on available process data, can 

be obtained. -4lthough the field of system identification has provided reliable tools 

and procedures for fit ting and validating appropriate system models, there remains 

significant work to be done in the area of uncertainty estimation. 

In system identification for robust control there are two competing philosophies. 

The first ad\-ocates a worst case approach to uncertain@ These so called hard bound- 

ing methods reject the traditional probabilistic approach to uncertainty in favor of 

bounds which are sure to be satisfied (Le., which are hard). Common hard bounding 

algorit hms include: the Lcunknown-but-bounded noisey7 algorit hm, the "ellipsoidal" 

algorit hm and "set membership" algorithms (Goodnrin et al., 1992). Wahlbeq and 

Ljung (1992) used set membership theory with a geometrical justification to develop 



hard error bounds for linear transfer function models with bounded noise. The contri- 

butions to the error bounds by: noise, transient effects due to unmodeled disturbances 

and modeling error due to model/system mismatch, were all  eAxplicitly identified. 

Other work on developing dgorithms for hard error bounds include contributions 

by Canale et al. (1998), Giarre et al. (1998), Gunnarson (1993) and Zhu (1989), 

among others. Regardless of the method, the hard bounding approaches result io 

error bounds mhich are highly conservative. They are necessarily so to ensure that 

even the worst case is enclosed by the bounds- Often, the bounds axe unnecessady 

conservative because conservative parameter space bounds can become even more 

consemative when transfonned to  transfer h c t i o n  space if the transformations are 

based on an approximation to the true eupectation surface defùied by f (x, 8).  

The hard bounding approaches are often advocated on the basis that robust con- 

troI theory requires strictly true and knom error bounds. However, for real systems, 

t here is always uncertainty about the mode1 and the disturbances entering the system. 

Therefore, it is unrealistic to propose methods to determine certain error bounds. To 

achieve near certain@, hard bounding methods overestimate the uncertainty and re- 

sult in error bounds which are inappropriately mide. Goodwin et al. (1992) argued 

that hard error bounds are inappropriate because pnor assumptions about noise, 

disturbances and control actions can never be knom absolutely, and so the idea 

of certain limits is misguided. By this argument, a probabilistic approach is more 

consistent with the realities of system identification. 

The second p hilosophy for estirnat ing uncertainty in t ransfer function models is 

that of soft error bounds. It is based on a classical probabilistic approach. The soft 

bounds are not guaranteed to contain the system performance, but rather, are said to 

have a specified probability of containing the system performance. A soft approach 

to estimating error bounds for transfer function models mas developed by Goodmin 

et al. (1992). They considered error due to bias fiom model/system mismatch, and 



error due to noise in the measured data. The bias error was estimated by assuming 

a stochastic pnor model for the distribution of the unmodeled dynamics- This model 

was embedded into the system estimation problem so that its parameters were esti- 

mated dong with the parameters of the systern model. These ideas were extended by 

Schoukens and Pintelon (1994) to d o w  for the case of colored noise io continuous- 

time systems e4xpIored in the kequency domain. Like most work to date in this area, 

the method is restricted to modeIs whîch are h e a r  in the parameters- Goodwin et 

al. (1992) did apply their method to an autoregressive moving average mode1 wïth 

emgenous input vanables (&R&IALY) model by 61st linearïzing the model. The au- 

thors claimed that their method performed well even for this case; however, there is 

obvious room for improvement in the case of nonlinear models. 

DeVries and Van den Hof (1995) adopted a e e d  de terministic/pro babilist ic a p  

proach to detennining error bounds accounting for three sources of uncertainty: un- 

derrnodeling, noise disturbance and unknown initial conditions. The model error due 

to unmodeled dpamics and unknom past input signais were considered determinis- 

tic worst-case quantities, and the noise disturbance was considered to be stochastic. 

Their algorithm was a two-step approach whereby the bias was estimated first, and 

the noise uncertainty nras estimated second. Again, only h e a r  fbite impulse response 

(FIR) models were considered. 

Ninness and Goodnrin (1995a) examined the relationship betvveen bounded-error 

and stochastic estimation theory, and showed that for many problems, the two ap- 

proaches are equivalent mhen a Bayesian framework is used. A good o v e ~ e m  of 

estimating uncertainty in models used for control is given by Ninness and Goodwin 

(1995). 



-4 topic intimately related to reliable inference about g ( 8 )  is the idea of measures of 

nonlinearity. A measure of nonlineaxity is intended to be an indicator of the degree 

of nonlinearity of the problem, and is used to judge whether or not Linearization 

inference results are iikely to be reliable- 

Most of the work in this area has focused on measuring the "average" or maximum 

curvature of the e-xpectation surface (Bede, 1960; Bates and Watts, 1980). However, 

some work has been done on q u a n t m g  the nonlinearïty- of subsets of parameters 

(Cook and Goldberg, 1986; Clarke, 1987b), and recently, of functions of parameters 

(Kang and Rawlings, 1998). The measures of nonlinearïty of Bates and Watts were 

developed for use with nonlinear regession models. Since then, Ravishanker (1994) 

has extended these ideas to the domah of time series andysis- 

The measures of nonlineaxity previously proposed in the Literature have compli- 

cated expressions, and require that second derivatives of f ( x ,  8)  and g(B) Nith respect 

to the parameters be found. Furthemore, the measures of Bates and Watts (1980) 

have been found to be unreliable in some cases ( Cook and Witmer, 1985; van Ewijk 

and Hoekstra, 1994). Shere is a need for a simple yet reliable indicator of nonlinearity 

for time series models. Detailed background on the measures of nonlinearity proposed 

by Bates and Watts (1980) and Kang and Rawlings (1998) is given in Chapter 6. Here 

we simply note that these measures use a quadratic approximation of the mode1 to 

compute an average nonlinearity and a maximum nonlinearity The methods separate 

intrinsic nonlinearity fkom parameter-effects noniinearity on the basis of the quadratic 

approximation to the expectation surface. 

-4 new measure of nonlinearity for ARMA time series models is defùied in Chapter 

6.  It is based on the fact that the nonlinearity of the parameters of these models is a 

function of the proximity of the parameter vector to the nearest stability/invertibility 

boundary. 



2.6 Expected Profiling 

Chapter 5 outlines a new methodology called expected p r o f i g .  Whereas generalized 

profiling and the rneasures of nonlinea.rity discussed so far  are data driven (Le., their 

values depend on a set of measured data), expected profihg is a tool for use in the 

absence of data (Le., it does not depend on a specific set of data). Expected profihg 

is particularly appropriate for -ARMA models, and has applications in predicting 

nonlinearity and designing experiments. 

In the case of  VIA models, the model itself dehnes how the observations are 

likely to evolve over tirne. This feature d o w s  us to derive an e-xpected value for T*, 

which depends on the form of the model, the values of the parameters, and n, the 

length of the time series- Mre e,uploit the dependence on n to deveiop a methodology 

for use in determining how many observations mil1 be required to achieve acceptable 

precision in the parameters in a proposed model. 

Prior work on designing dynamic experirnents has focused on the issue of choosing 

an input signal having optimal frequency characteristics for the estimation of transfer 

function models (Zarrop, 1979; Ljung, 1987; Shirt et al., 1994). The tength of the 

input sequence must also be chosen, but little guidance has been provided concerning 

how much data must be collected in order to estimate a dynamic model reliably. 

These ideas also raise the issue of how much data is required for asymptotic results 

to apply. There is an abundance of literature on the asymptotic properties of ARMA 

models and their parameters (Taniguchi, 1986; Frydman, 1980; Ljung, 1985; Zhu, 

1989). These results apply when n is "large", but few authors state how large n 

should be. In Chapter 5, expected profiling is used to generate an n-plot, which 

shows how the likelihood Limits for g ( 8 )  are expected to change as the value of n 

changes. For cornparison, the expected confidence intervals based on the Cramer Rao 

Iower bounds are also shown on the same graph. The degree of agreement between the 

Iirnits of the intervals based on expected profiling and those based on the Cramer Rao 



lower bounds provides a qualitative measure of honr reliable the asymptotic results 

are likely to be for a given value of n. 

E-xpected profiling may also be used to plot expected profile plots, which are 

analogous to profile t plots but not based on a specific data set. When a realization 

of a process becomes available, the expected profile can be compared to the profile 

t plot, and the Merence between the two may be used a s  a measure the extent to 

which pecuiiarities of that  particular data set are contributhg to the uncertainty and 

nonlinearÏty of the estimation problem. Bates and Watts (1980), along with others, 

developed measures of nonhearÏty to separate nonlùiearïty due to parameterization 

from nonlinearity due to the form of the model. E.xpected profihg rnay be used 

as a tool to separate nonlinearity due to the data itseff kom noniinearity due to a 

proposed model and its parameterization. 

Mthough the manuscript in each of the succeeding chapters is a complete paper, 

and includes discussion of relevant computationai analyses, Appendiu A provides 

explicit details about the algonthms that are used. 

The manuscripts which make up this thesis all have at their core the idea of profil- 

ing. Nonetheless, their subject areas are quite diverse. The papers touch on issues of 

inference, meaçuring nonlinearity and design of experirnents. The models considered 

range from nonlinear regression models to discret e dpamic tr ansfer function models. 

Contributions are made to the disciplines of applied statistics, chernical engineering 

and control t heory 



2.7 Nomenclature 

na, nb, nc 

= white noise sequence 

= coefficients of the polynomial 

= p x 1 vector of constants 

= polynomial in the backshift operator q-L 

= coefficients of the B (q-L) polynomial 

= polynomid in the backshift operator qdL 

= a constant 

= coeEcients of the C(q-L) polynomial 

= polynomial in the backshift operator q-L 

= delay betrveen a change in ut and its effect on y, 

= n x 1 coltimn vector of estimated random errors 

= upper a! quantile for the F distribution with p 

and n - p degrees of freedom 

a function of parameters 

= likelihood function evaluated a t  O 

= likelihood interval for g(B) 

= likelihood region 

= number of observations 

= orders of the polynomials A(q-'), 

B (q-' ) , C (P-I), respect ively 

= number of estimated parameters 

= estimated standard deviation of the random errors 

= sum of squared errors 

= standard error 



Greek letters 

= upper t 2 / 2  quantile of the t distribution mith 

n - p degrees of freedom 

= input to the process at  time t 

= n x p mat& of elements TI, representing the first 

derivative of f (xi, O )  with respect to the jth parameter 

= 1 x m row vector of m independent variables 

= n x p matrÏx of elements xij representing the level 

of the jth independent variable for observation i 

= response variable 

= n x 1 column vector of values of the response variable 

= significance level 

= studentized value of g ( 8 )  

= a scalar constant 

= additive random error 

= n x 1  col^ vector of random errors 

= 2'h parameter of a model 

= the lth parameter of the polynomiat B(q - l )  

= p x 1 vector of parameters 

= p x 1 vector of maximum likelihood estimates of the 

parameters 

= location of a constrained maximum of L(8)  

= moving average polynomial of a time senes model 

= a constant which defines the confidence level 



Superscripts 

Abbreviations 

ARMA 

ARM-LY 

ARY 

FIR 

iid 

ML 

MLE 

= standard deviation 

= profile t statistic for g ( 0 )  

= the kth parameter of the polynornial @(q-') 

= autoregressive polynornid of a time series mode1 

= the chi-squared distribution mith 1 degree of fieedom 

= a true value 

= a maximum likelihood estimate 

= a constrained estimate 

autoregressive moving average 

autoregressive moving average wïth exogenous inputs 

autoregressive Nith =ogenous inputs 

finite impulse response 

independently and identically dist rïbuted 

maximum likelihood 

maximum likelihood estimate 



Chapter 3 

Assessing the Precision of Model 

Predict ions and Ot her Funct ions of 

Model Parameters 

3.1 Abstract 

Models fitted to data are used extensively in chemical engineering for a variety of 

purposes, including simulation, design and control. In any of these conte-xts it is im- 

portant to assess the uncertainties in the estimated parameters and in any functions of 

t hese parameters, including predictions from the fitted model. Profiling is a Likelihood 

ratio approach to estimating uncertainties in parameters and functions of pararneters. 

A cornparison is made between the optimization and reparameterization approaches 

to determining Likelihood intervals for hinctions of parameters. The merits and limi- 

tations of generalized profiling are discussed in relation to the linearization approach 

commonly used in engineering. The benefits of generalized profihg are illustrated 

Mth two examples. A geometric interpretation of profiling is used to elucidate its 

value, and cases are identified for which the numerical algorithm fails. 



3.2 Introduction 

Models are used extensively in chemical engineering for simulation, design, control and 

testing of hypotheses of underlying phenornena. A model is usually Lccaiibrated'7 by 

fitting it to experirnental or process data. Before using a fitted model it is important 

to evaluate the uncertainty in any statistics of interest derived from the modeL Such 

statistics may include the parameters themselves or functions of parameters, such as 

model predictions of yields and compositions. Occasionally, a model may be used to 

estimate some quanti- or process characteristic which cannot be directly measured. 

For example, in process control the cross-over fkequency may be of interest. 

For the purpose of Uustration, consider the series reaction 

A S I B B ? C  

where chernical species A is consumed to produce species B which is subsequently 

consumed in a reaction producing species C. Let y ~ ,  y2 and y3 be the molar concen- 

trations of chemical species -4, B and C, respectively, present at t h e  t. Given the 

initial conditions: y1 = 1 and y2 = y3 = O at t = 0, and assuming fust order kïnetics, 

the model for the molar concentration of species B can be m i t  ten as 

It may be important to knom the time 

at mhich the concentration of B reaches a m~ximurn. Note that t,, is a b c t i o n  of 

the parameters of the mode1 (3.1). But to make judicious use of the estimates of the 

parameters (64, O*) or of this function of parameters (t,,) , the uncertainty in each 



of those estimates must dso be quantified, for it is this uncertninty which prescnbes 

how much trust should be placed in the estimate- 

For models mhich are h e m  in the parameters, and for mhich the random er- 

rors in the observations are normally and independent- distributed (the usual Ieast 

squares assurnptions), uncertainty in the parameters or in any Iinear combination of 

the parameters can be readily cdculated- The resdts are andytic and exact. This 

uncertainty may be evpressed via confidence intervals or confidence regions for the Pa- 

rameters and confidence intervals for iinear functions of the parameters. (The term 

"inference result" mill be used to refer to confidence intervals, confidence regions, 

Likelihood intervals or likeIihood regions). For models which axe noalinear in the pa- 

rameters, hereafter c d e d  non1inea.r models, inference results for the parameters, or 

for any hnction of the parameters, are complex h c t i o n s  of: the distribution of the 

random errors associated nrith the measued responses, the stmcture of the model, 

the parameterization of the model, and the design of the experiment (Donaldson and 

Schnabel, 1987; Bates and Watts, 1988). Exact inference results axe generally un- 

available for nonlinear models, evcept for special cases (see for example: Williams, 

1962; Halperin, 1963; Roy, 1993). Typically, approximate inference results for non- 

linear models have been based on linear approximations to the models. This linear 

approximation approach is attractive in that it provides computationRUy simple re- 

sults. However, Bates and Watts (1980), Ratkowsky (1983), Donaldson and Schnabel 

(1987), and others have shom that Linear approximations are often poor, rendering 

results that are unreliable and possibly misleading. 

More reliable inference resuits for the parameters of a nonlinear model can be 

obtained using a technique cailed profiling (Bates and Watts, 1988; Lam and Watts, 

1991; Chen, 1991; Severini and Stanismalis, 1994; Chen and Jenkch, 1996). This 

technique, pioneered by Bates and Watts (1988), is a graphical method for displaying 

inference results. Chernical engineering eaamples are discussed extensively in Bates 



and Watts (1988); a tutorial on the method is given in Watts (1994). 

The idea of extendhg profihg to compute inference results for functions of model 

parameters has been suggested by Bates and Watts (1988), Ratkowsky (1983), Clarke 

(1987), Ross (1990), and Chen (1991)). However, only recently have the appropriate 

theory and computational methods been developed (Clarke, 1987; Chen, 1991; Chen 

and Jennrich, 1956). Tmo apparently different approaches have been proposed: one is 

based on a reparameterization of the model and the other involves a constrained o p  

timization. Both methods, though equivalent , are conceptudy and computationally 

different . 

The purpose of this paper is to provide a comprehensive and-s i s  of these methods 

and the computational procedures for profihg functions of parameters- Our intent 

is to elucidate and consolidate the theory underlying both methods, to assess the 

relative advantages and limitations of each method, and to indicate the useEulness of 

these methods for two chernical engineering examples- 

The paper proceeds as follows. We begin by briefly reviewing the use of likelihood 

met hods to constmct inference regions for parameters and h c t i o n s  of paramet ers. 

This is followed by a discussion of profiling approaches for inference. -4 cornparison is 

then made betmeen the optimization approach and the reparameterization approach 

for determining likelihood i n t e d s  for functions of parameters. Two chemicd engi- 

neering examples are then used to illustrate the methods. FoUonring this section, me 

discuss a number of specialized cases mhere profiling may fail. The paper concludes 

with a discussion of some outstanding issues. 

3.3 Likelihood intervals and regions 

In this paper we restrict our attention to observations which can be modeled as: 



where the function f ( x ,  0 )  is the expected value of the response variable y at specified 

levels of m independent vaxiables ç = (xl, 22,. . . , xm) and specsed values of p 

parameters 0 = (Ol, 02, - . - , op)= . E is a n  additive random error term associated 

with y. Many models can be manipuiated so that they can be e4qressed in this form 

including t h e  series modeIs and models having multiplicative error. Equation (3 -3) 

can be generalized for a vector of n observed vdues y = (yl, y ~ ,  - - - , of the 

response variable: 

where X is nom an n x p mat& of elements xi,j representing the level of the ith 

independent variable for observation i. Steady state, dynamic and time series models 

c m  be included in this fkamemork. The protiling methods described in this paper 

can be applied to any situation where the joint distribution of the observations c m  

be specified. In most cases, it is assumed that the random errors E of the measured 

response variable are independently and identically normally distributed with mean 

zero and variance a2. 

Estimates of the parameters in model (3.3) are often chosen to minimize the sum of 

squares of residuais, mhich are the deviations of the observations from the predictions: 

where eT = (el, e2, . . . , en) is the vector of residuals. The values of the parameters 

which minimize (3.5) is denoted by 6. When the model is nonlinear, a numerical 

optimization method must be used to h d  ê. The choice of the sum of squares 



objective function can be justsed Mthout regard to the distribution of the randorn 

errors. Homever, to make inferences about the parameters or any hinction of the 

parameters, such as a prediction, it is necessary to specîijr the distribution of the 

random errors. -4s s h o m  Later, for the error distribution assumed in this paper, 

rninimizing the objective function (3.5) yields maximum likelihood estimates of the 

parameters- 

For models which are h e a r  in the parameters, Le., f (X, 8 )  = Xe, and in which 

the random errors E of the measured response are assumed to be independentiy and 

identically normdy distributed mith mean zero and variance 3, andytic expressions 

for confidence intemals and confidence regions for the parameters and any h e a r  

combination of the parameters are well hmom and reaclïly available. 'ïo summarize 

(Bates and Watts, 1988): 

1. The joint confidence region for 0 is defined by the eUipsoid: 

where s = is an estimate of the standard deviation of the randam errors, 

(1 - a) is the level of confidence, and F(p ,  n - p, a) is the upper a quantile of 

the F distribution mith p and n - p degrees of fkeedom. 

2. The marginal or individual confidence interval for the parameter O, (the qth 

parameter in the model) is: 

where 8, is the least squares estimate of O,, t(n - p, a / 2 )  is the upper a/2 

quantile of the t distribution mith n - p degrees of keedom, and [(xTx)-'1, 
is the qth diagonal entry in the inverse of X~X. 



3. The confidence interval for any linear function of the parameters g(0 )  = are 

is: 

Note that the expected value of a prediction at xk from a linear model is a linear 

function of the parameters aTO = xkB. Equation 3.8 provides a confidence 

interval for the e-qected (mean) d u e  of y at xk. TO obtain a confidence 

interval for a new observation of y at xk, the expression 

is used. This expression takes into account the variance of the random error that 

is expected to affect a new observation. These ideas are discussed in detail in 

Chapter 7- In this chapter, "a prediction" is dways used to mean the e-pected 

value of y at a point. 

When models are nodinear in the parameters, approximate confidence intervals 

can be obtained by using a quaciratic approximation to the sum of squares function 

at the least squares estimate. This is equivalent to using a h e a r  approximation to 

the model; hence me refer to this approach to constructing inference results as the 

linear approximation approach. The corresponding inference approximations are: 

1. The approximate joint confidence region for û is defîned by the eilipsoid: 

a f ( s , g )  where V is an n x p rnatriv mith elements defined by VG = - ad, - .  



2. The marginal or individual confidence interval for the parameter 0, is: 

3. The confidence interval for any function of the parameters g ( 0 )  is: 

mhere g = lé. 

iUthough this approach provides a computationaliy simple means of hding in- 

ference intervals, it can be misleading for some nonlinear models because it  does 

not account for the cwature  of the e'rpectation surface nor the nonlinearity of the 

mapping of 0 h-om the observation space to the parameter space (Ratkomsky, 1983; 

Donaldson and Schnabel, 1987; Bates and Watts, 1980). 

To develop more accurate inference regions for nonlinear models, or for any mode1 

in rvhich constraints on the parameters may apply, it is helpN to resort to a likelihood 

interpretation of the parameters (Box and Tiao, 1973). When the random errors of the 

measured response variable are assumed to be independently and identically normally 

distributed with mean zero and variance a2, the likelihood function of the parameters 

is (Eliason, 1993): 

where e is the vector of residuals (y - y,,asure,) resulting fiom the values 8 for the 

parameters. Eviaximizing (3.14) is equivaient to minirnizing S ( 0 )  and therefore the 

rnêxïrnurn likelihood estimates of 8 are equal to the least squares estimates. 



A (1 - a) likelihood intemal for 8, is the set of alI values of 8, for which f (x, 8) 

lies nrithin a fked distance of y, with the values of the remaining parameters in the 

fitted model Exed at those values which m W z e  the conditional likelihood h c t i o n  

(Chen and Jennrich, 1996). This is equivaient to saying that the Likeühood interval 

for 0, includes all values of 0, such that L(0) 5 k, where L(0)  is the conditional 

likelihood hinction of the parameters using s2 = , s(') as an estimate of oz, and k is a 

constant mhose value depends on the distribution of e, the confidence level (1 - a), 

and the number of degrees of freedom, n - p associated mith s2. 

.in exact Likelihood region is defhed by the boundary of a contour of L ( 0 ) ;  this 

region need not be closed. For the model form and the random error assumptions 

considered in this paper, this contour is defined by those combinations of parameter 

values which satis- S(B) = constant. Mathematicdy, a nominal (1 - ru) likelihood 

region for the parameters is defined by the region for which: 

It is important to note that, for linear models, the Lkelihood region defined by this 

equation is exact both in terms of the shape of the region and the probability or 

confidence level. Homever, for nonlinear models, dthough the shape of the region dl 

be exact, the confidence lewl d l  only be approxïmate (Draper and Smith, 1981). 

Statisticians speak of the coverage probability of the interval or region. This is a 

measure of the tme confidence level of the inference and may be estimated by means 

of Monte Carlo simulations. This can require a very large computational effort before 

the estimated confidence level c m  be deemed acceptable. 

Typicdy, the likelihood interval is based on a iikelihood ratio approach to in- 

ference (Lehmann, 1959). Consider the null hypothesis 0, = c wrsus the alternate 



8, # c. The lücelihood ratio for testing this null hypothesis is: 

where LR(c) is the likelihood ratio for the nul1 hypothesis, ~ ( 0 )  is the likelihood 

function evaluated at 9, the unconditional maximum 1ikeLhood estimates of ail pa- 

rameters in the model, L (8) is the conditional maximum likelihood given that 0, = c, 

and 6 is the set of maximum likelihood estimates of the parameters conditional on 

0, = C. 

For the case of ordinary regression, where the errors are independently and iden- 

tically normally distributed wïth mean zero and variance 02, the likelihood ratio is: 

where ~ ( 8 )  is the minimum sum of squared residuals conditional on 8, = c. It can 

be show that 

where X2(1) is the chi-squaed distribution mith one degree of fkeedom. For linear 

models, expression (3.18) can be rnanipulated to obtain the confidence interval given 

in (3.11). 

Profiling was first developed as a numerical method to estimate reliable likeiihood 

intervals for parameters of steady-state nonlinear models in which the random error 

entering the process is assumed to be normally distributed. The focus of this paper is 

irference about functions of paramet ers rather than inference about the parameters 

themselves. The following sections describe the development of the profiling algorithm 

in a very general framework so that it can be used to solve the inference problem of 



h d i n g  likelihood intenmls for a general b c t i o n  of parameters g(B). 

The profiling algorithm mas first proposed by Bates and Watts (1988) as a means of 

finding Likelihood intervals for individual parameters of nonluiear models. Because 

the algorithm was derïved for this specific purpose, it was developed in terms of sums 

of squares of residuds. The motivation for the onginal algonthm can be demon- 

strated by looking a t  the h e a r  likelihood interVal given in (3.7). This interva1 can 

be equivdentl y e-xpressed as: 

(Bates and Watts, 1988). That is, an exact (1 - a) likelihood interval for the qth 

parameter includes all values of 8, that satisfy (3.19). D e m g  

(3.19) can be renrritten as: 

~ ( 0 , )  can also be d e h e d  as 

(Bates and Watts, 1988). 

Equations (3.20) and (3.22) are equivalent for linear models, but not for nonlinear 

models. Linearization inference results for nonlinear models are based on (3.20). 



Profiling inference resdts are based on (3.22). The definition for ~(0,) given in (3.22) 

does consider the curvature of the expectation surface. 

In the profiling algorithm, as &st proposed by Bates and Wktts (1988), each 

parameter in tuni is incremented in a series of srnail steps away from its le& squares 

estimate. Conditional upon each new value of O,, the sum of squares of the residuals is 

minirnized wïth respect to the remaining parameters. This determines s(@, and kom 

the results of this optimization the ~ ( 0 , )  statistic is calcdated. Teypicaliy, profiling 

results are presented in a profile t plot, which is a plot of T versus 6,. From Equation 

(3.20) it is obvious that the profile t plot for a h e a r  model is always Linear. For 

nonlinear models the profile t plot WU be curved. The amount of cwa tu re  can 

be used as a qualitative means of assessing the degree of nonlinearity of the model 

with respect to the given parameter over the region of interest (Chen and Jennrich, 

1996). The information accurnulated through the profihg process can dso be used 

to generate joint nominal Iikelihood regions for pairs of parameters in a way that is 

more computationdy efficient than generating standard pairmise contour plots of the 

sum of squared residuals surface (Bates and Watts, 1988). 

Equation (3.22) defines the T statistic for any parameter of the model. However, 

the primary interest in this paper is in deriving profiling results for an arbitrary 

function g of the parameters, where 

Since the profiling technique of Bates and Watts has its basis in likelihood ratio 

testing, the likelihood ratio fomalism is an obvious starting point for extending the 

algorithm to a function of parameters g(8). Chen and Jemrich (1996) defined the 



statistics: 

and 

where D2(0) is called the deviance and z*(c) is c d e d  the signed root deviance (SRD), 

which is used as the basis for a profile plot called the signed root deviance profile 

(SRDP). Barndorff-Nielson (1986) defined a sirnilar statistic. The SRDP has its basis 

in (3.17) and is therefore a generalization of the profde t plot of Bates and Watts. 

In this paper the likelihood ratio intervals and plots n4.U be referred to as profXe t 

plots to be consistent mith that early work. The term generalized profiling e l 1  be 

used to denote the use of profile plots in a broader sense than originaiiy descrïbed- 

Two approaches to generalized profiling have been proposed and they are developed 

in the following tnro sections. 

3.5 Reparameterization 

The first approach to generalizing the pro6hg algonthm is based on reparameterizing 

the model. This approach has been mentioned by several authors including Bates 

and Watts (1988), Ross (1990), and Watts (1994); however, no development of the 

theory was given. Clarke (1987) used reparameterization to develop an approximate 

algorithm for estbating confidence intervals. In this section we d l  present in detail 

the reparameterization approach to generalized profilîng- 

A new set of parameters + = (&, 42i . * , &)* is defined such that one of the new 

parameters is the function g of interest. In this way the standard profiling results can 



be used directly. For example, the new parameters may be defined as: 

where g(8) is the function of interest. 

This reparameterization proceeds by solving the set of equations given in (3.26) 

for 8: such that 

where g-L is the inverse hinction of g. These results are then substituted into (3.3), 

and the model becomes 

The profile t plot for each 

Y =h@) + E  

of the new param ers 

(3.28) 

can be found by computing 

the r statistic, as defined in (3.22) for the case where E - N(0 ,  O*), or as defined in 

(3.25) for the general case, for each of the parameters in the reparameterized model. 

Because the parameter & was defined to be the function of interest, the profile t plot 

for 41 is the profile t plot for g, and the task at hand has been accomplished. The T 



statistic for the function g is given by: 

for the case of independently normdy distnbuted errors, where g, is the specified 

value of & and s(#) is the minimum çum of squared residuals, conditional on g = g,. 

As in the original dgorithm, the profile t plot for g is produced by incrementing g 

in a series of s m d  steps above and below its Least squares estimate; and calculating 

the conditional sum of squared residuals, s(&, at each step. In developing Equation 

(3.29): use was  made of the result that 

so that 

and, t herefore, s is inva.rïant under reparameterization (C hen, 199 1). 

For the general case, 



In profiling, a reference hne is constructed against which the nonlinearity of the 

model with respect to the given parameter can be evaluated. For the case where E 

is normally distributed this reference line is based on (3.20), and it represents the 

profile t plot for the lineaz approximation to the model. When profiliog a function g; 

the reference line is: 

The standard error of 0, se(ij), is given by: 

where Vf(4) is the n x p mat& with elements defined by V - af(xil4) - 
f(+>.ij a" 

The subçcript f (6) is used to emphasize that V represents the matrix of fisst deriva- 

t ives of the reparameterized model. 

A step-by-step algorithm for the reparameterization approach to generalized pro- 

filing is given in Figure (3.1). 



1, Using a nodinear optimization package, h d  the maximum LkeIihood estirnate (MLE) of 
0. 

2- Compute the MLE of 9(8), and define = CJ(~^). 

3- Compute an estimate of the variance of the measurement error ( i e ,  cornpute s2)- 

4- Compute COU(@. 

6- Reparameterïze the model such that  the  first new parameter #r is & = g(8). 

7- Set the index i to L, and let go[d = ghat 

8. Move the d u e  of 41 away from g by a srnail amount A (Le,, gi = g,rd -t- 4) - 

9. Create a nenr vector of p - 1 parameters which does not indude di - Let the nem vector 
be ercduccd- 

10- Use an unconstrained optimization package to solve the (p - L)-dimensionai optimization 
problem- The location of the optimum is 

-T 
11- In pdimensional space, the location of the optimum is 6 = [g;, t$,educedJ. 

13. Cs Iri( 2 t(n - p~,a/2)? If yes, continue. If no, set g,ld = g;, set i = i -i- L, and return to- 
Step 8- 

14. is A negative? IF yes, continue- Lf no, set g,rd = 3, set i = i + L, let h = -4 and return 
to Step 8- 

15- Fit a smooth curve through gi versus ri and use this to find the values of g(0)  at  r = 
I t ( n  - p, 4 2 ) -  These are the limits of the likelihood interval. 

16. Compute the Iimits of the tinearization confidence interval using 

L7- Conçtruct the profile t plot by plotting, on one figure, ri versus gi, and bi versus gi. 

Figure 3.1: A step-by-step aigorithm for the reparameterization approach to generalized 
profiling. 



3.6 The constrained optimization approach 

Chen (1991) also developed a method for obtaining profiling results for an arbitrary 

function g(0) .  He began by noting that when profihg a parameter O,, the following 

constrained optimization problem is being solved a t  each iteration of the algorïthm: 

iMaximize 

subject to the constraint 

where c is a constant. The maximum is ~ ( 8 ) .  Chen then asserted that the constraint 

in this mauimization problem need not involve only one parameter. Rather, the 

constraint codd be chosen to involve a function of the parameters. Profilhg results 

for a function of the parameters, g, may then be obtained by solving the folloming 

constrahed optimization problem: 

subject to the constraint 

for a series of values of c above and below the least squares estimate of g. 

Furthermore, Chen (1991) showed that the linearization likelihood intemal for g 



where 

and Vf(ê, is the n x p matriu mith elements defined by Vf(ê),ij  = - 

A step-by-step algorithm for the optimization approach to generalized profiling is 

@-en in Figure (3.2). 

Although the two approaches are equivalent (Quinn et al., 1999b; Chapter 4), the 

performance of the profihg a lgor i th ,  in t ems  of computation tirne and conver- 

gence, may depend on which approach is used in the implementation. Our experience 

with a number of examples indicates that neither approach is consistently better than 

the other in terms of performance. For example, the reparametenzation method a p  

pears to perform better in cases where the parameter effects cunature (Bates and 

Watts, 1980) of the reparameterized model is lower than that of the original model. 

It should be noted that, for some applications, g(9) may be a sufficiently complicated 

function of the parameters that it is difEcult or impossible to find an aaalytic solution 

to the reparameterization of f (x, 9). In such cases Chen's optimization approach is 

recommended. Although it is possible to use the reparameterization approach by per- 

forming the reparameterization nurnericdy, our experience 6 t h  the hro algorithms 

has shom Chen's a lgo f i th  to converge faster and more consistently in such cases. 

These observations on the performances of the two pro6ling algorithms are strictly 

empirical. Further work to establish the topology of the solution surface for which 

one approach outperforms the O t her is required. 



1- Using a noniinear optimization package, find the ma-mum likelihood es tka te  (MLE) of 
8. 

2. Compute the hfLE of g(8), and defùie tj = g(ê), 

3- Compute an estimate OF the varÏance of the measurement error (Le-, cornpute s2). 

4. Compute ~ w ( 6 ) .  

6- Set the index. i to 1, and [et go[d = @. 

7- Move the value of g(8) away from g by a srnall amount A (Le., gi = g,ld + 4)- 

8. Use a constrained nonlinear optimization package to solve the constrained optimization 
problem, maximize L(8) subject to g ( 8 )  = g;, The location OF the constrained optimum 
is ë* 

9- Compute 

LO. is [ri.[ 2 t(n - p, a /2 )?  If p, continue, if no, set g O u  = gi , set i = i f 1, and returu to 
Step 7- 

LI. 1s 4 negative? if yes, continue- IF no, set gord = 3, set i = i f 1, let P = -A and return 
to Step 7. 

L2. Fit a smooth curve through gî versus ri and use this to find the d u e s  of g ( 8 )  at r = 
&t(n - p,m/2). These are the limits of the likelihood intenral, 

L3. Compute the Limits of the tinearization confidence interval wing 

L4. Construct the profile t plot by plotting, on one figure, ri versus g;, and Ji versus gi- 

Figure 3.2: A step-by-step algorithm for the optimization approach to generalized profilùig. 



3.7 Geometric interpretation of profiling 

A geometric interpretation of protiling is also possible. By definition, the nominal 

(1-0) lïkelihood intervai for g(9 )  contains all values of g ( 0 )  such that: 

Geometricdy, the limits of the interval correspond to  the ma.Einium and minimum 

values of g ( 8 )  on or wïtithin the contour of 8 satk&ïng: 

When both the model and g(8) are linear, the solution to this constrained optirniza- 

tion problem is the analytic expression given in (M), and the confidence level is 

exact. We note that the contour satisfyuig (3.39) is always contained Nithin the con- 

tour defined in (3.15) (i.e., the joint confidence region for the parameters) since it can 

be verified empirically that 

These ideas are illustrated in Figure 3.3 for the case of a two parameter linear model. 

In this case the maximum and minimum values of g occur at the points where the 

the contours of g are tangent to the ellipse definhg the appropriate likelihood region 

for 8. When g and/or the model are nonlinear, there are several possible cases: 

1. g,, and gmin occur on the boundq-  of the appropriate likelihood region for 

8, as for the linear case. 

2. gmm and/or g,, are/is located in the interior of the appropriate ükeiihood 

region for 8. 



Figure 3.3: An illustration of the geometry of LikeLihood intervals for g ( 8 )  when g ( 6 )  and 
the model are linear h c t i o n s  of 8 (solid line: likelihood region; dashed lines: 
contours of g ( 6 ) ) .  

3. g intersects the appropriate likelihood region for 8 at only a single point, and 

so the likelihood interval is a single point (Le., there is only a single pIausible 

value for g at the given level of confidence). Usually this implies that g(0) is 

undefined and that g is dehed  o d y  at a single point which lies on the boundary 

of the likelihood region for 0. 

4. g does not intersect with the appropriate likelihood region for O. This case can 

occur if the parameters of the fitted model are not appropriately constrained 

dunng the fitting of the model. For euample, a rate equation fit to noisy data 

fiom a poorly designed experiment may result in parameter estimates mhich are 

negative and Likelihood regions mhich include oniy negative values. If, for ex- 

ample, the function g ( 8 )  = In(&) is of interest, then g cannot be estimated. Of 

course, a negative rate constant is nonsensical, and the model should have been 

appropriately constrained before the fitting was performed. This constraining 



can be accomplished by an appropriate reparameterization of the model. 

5. g has multiple local optima which fa11 on or within the boundary of the Likelihood 

region for 8. This rnay result in confidence intervals which are not continuous. 

(Quinn et al., 1999b; Chapter 4) 

T t  is clear that nonlinearity significantly cornplicates the inference results. Often 

the iikelihood intervals for a nonlinear g(B)  Nill be asymmetric about g(8), and for 

Case 5 the likelihood intervals rnay be disjoint (Donaldson and Schnabel, 1987). 

3.8 Illustrative examples 

3.8.1 Example 1 

The isomerization example of Bates and FVatts (1988) (based on the data of Carr, 

1960) is used to illustrate the two approaches to generahzed p r o f i g .  The data 

consist of 24 observations of the reaction rate of the catalytic isomerization of n- 

pentane to isopentane at known partial pressures of the reactants and products (Le., 

of n-pentane, hydrogen and isopentane). The data are tabulated in Table 3.1. The 

model proposed by Carr for the reaction rate was a Hougen-Watson mode1 of the 

f o m  

where xl is the partial pressure of hydrogen, x2 is the partial pressure of n-pentane, 

and 2 3  is the partial pressure of isopentane. Note that the labeling of the parameters 

in this example M e r s  slightly fiom that used by Bates and Watts (1988). The pa- 

rameters and 83 have been interchanged so that 01 in this illustration is equal to 

83 in the Rates and Watts parameterization, and O3 here is equal to BI in Bates and 

Watts. Al1 subsequent references to the parameters in this emmple are consistent 



with the parameterkation used in (3.41). The parameters of this model have physical 

significance. Parameters Oi , Oz and 84 are equilibrium adsorption constantsl and & 

is a rate constant. It is important to keep in mind the physical significance of the 

parameters mhen interpreting the statistical resuits. Bates and Watts (1988) showed 

that the profile t plots for the parameters of this model (Figure 3.4) are drastically 

nonlinear and that there are nearly perfect correIations between the parameters el, 

B2 and &. However, Bates and Watts (1988) produced residua. plots which do not 

indicate any significant Iack of fit. The high degree of correlation among the parame- 

ters and much of the nonlinearity is Likely due to the mode1 being overparameterized 

relative to the information in the data. Because of the overpârameterization not al1 

of the parametes can be estimated; instead, only iinear functions of B I ,  O2 and 04 

may be estimated. 

NOW consider the case where the specific values of the parameters are not of 

interest, but the model is to be used for predictive purposes only. In this case the 

important profile t plot is that for the prediction of the expected value of the rate of 

reaction at specified partial pressures of n-pentane, isopentane and hydrogen. Suppose 

that the rate of reaction at x = (2069,990.8,621.9) is of special interest. Then: 

Profile t plots for the parameters of the model and for g(0) are s h o m  in Figures 

3.4 and 3.5, respectively. These plots were generated using the optimization approach 

to generalized profiling. A step-by-step algorithm for the optimization algorithm is 

given in Figure 3.2. .Al1 profiling results were generated using hL4TLAB 4 . 2 ~  (The 

MathWorks, 1994). To profile the function of parameters given in (3.42) required 

that the form of the model and of the function of parameters be specified dong, 

the maximum likelihood estimates of the parameters. The maximum likelihood 



Table 3-1: Lsomerization Data (Example 1). 

Hydrogen 

&Pa) x  IO-^ 

XL x2 x3 

n-Pentaoe 

&Pa) x 10-~ 

Y 
Isopentane 

@Pa) x 10-3 
Reaction Rate 

WL) 



estimates for the parameters and the predictions, and the corresponding inference 

results, are given in Table 3.2. The constrained optimization routine provided in the 

"Optimization Toolbox" for MATLAB M vas used to solve the constrained opthization 

probIem which is the basis of each iteration of the profihg algorithm. 

To profüe g(B)  by reparameterïzation, d e h e  a new set of parameters q5 for the 

model such that 4L is equai to g (B) :  

Solving the set of equations in (3.43) for O, 

The model is now written in terms of the new parameters: 

The profile t plots for the (b parameters are equal to the profile t plots generated 



Figure 3-4: Profile t plots for the parameters of the isomerization model, generated using 
C hen's op t imization algorit hm (solid line: profile; dashed line: reference line; 
dot ted lines: Luies indicating critical values of r and limits of infkrence intervals). 



Fiogure 3.5: Profile t plot for the predicted reaction rate at x = (2069,990.8,621.9) boom the 
isomerization model, generated using the reparameterization algorit hm (solid 
he: profile; dashed line: reference luie; dotted lines: Iines indicating critical 
values of T and Iimits of inference intervais). 

Table 3.2: Point Estirnates and Inference Results for Example 1- 

L.B. ( U.B. U.B. 1 



by the optimization algorithm. 

To obtain a (1 - or) likelihood interval for g(8)  from the profile t plot, one must 

simply find the values of g(9 )  on the profile t curve at mhich T = f t (n - p; cu/2). 

For this example, the critical value of the t statistic is 2.086. Horizontal lines a t  

312.086 are drawn fkom the y-axis across to the profile t curve and then vertical Lines 

are dropped d o m  to the x-axis (see Figure 3.5). The values at  which these vertical 

lines ïntersect the x-axÏs define the Limits of the Likelihood interval for g(0). Note 

that all of the proflle t plots shomn in this work show values of r ranging between 

&4. This is a relative- wide range for r given that confidence levels of 95% and 99% 

are most cornmonly used and, depending on the number of degrees of keedom, those 

confidence levels correspond to T values of approlvimately i ~ 2  and f 3, respectively 

The value of g ( 8 )  at T = O is the maximum Likelihood estimate of g(0). The profile 

t curve is tangent to the h e a r  approximation reference line shomn as a dashed line in 

these examples- -4lthough it is easy to compute the limits of the linear appro.xïmation 

confidence interval using (3.12), these Limits can also be read dîrectly fiom the profile 

t plots. This is done in the same way as for the likeiihood i n t e d  descrîbed above; 

homever, for the h e a r  approximation intervai limits we consider values of g ( 8 )  based 

on the dashed straight line. In this way, the profile t plots can be effective in illustrat- 

ing the differences between the limits of a linear approximation coniidence interval 

and the corresponding pro fiiïng likelihood interval. 

From this example, it is important to appreciate that although the estimates 

of the parameters are drastically nonlinear, the prediction at x = (2069,990.8,621.9) 

behaves relatively hear ly  over the region of interest, and that aithough the parameter 

estimates have Likelihood intervals of infinite lengths, the uncertainty in the prediction 

is b i t e .  Therefore, it is important to judge the value of a mode1 based on inference 

results for the funetions of interest, which may not necessarily be the parameters 

t hemselves. 



The results for Example 1 can be rationalized in an intuitive and qualitative may. 

When a mode1 is overparameterized mith respect to the information contained in the 

set of data to which it was fit, only h e a r  relationships between pairs of parameters 

can be effectiveb estimated, and so the uncertainties in the values of individual 

parameters may be high. However, the fitted model rnay still be able to describe the 

overall behavior of the data so that good predictions are possible. For example, it 

may be that there is not enough information in the data to estimate both BI and O2 

because these tFVO paramet ers are appro,Tamately related as 

where c is a constant- In this case, the individual uncertainties in and B2 nill 

be high since any combination of O1 and & satis6ing (3.46) ndl result in the same 

vector of predictions. However, the model expressed in terms of ordy O1 or o d y  82 

may adequately represent the data and therefore good predictions may be obtained. 

There are no strict rules by which to judge the relative linearity / noniinearity of a 

function of parameters a priori. The prediction at x = (2069,990.8,621.9) conforms 

with the clairn of Clarke (1987) that model predictions tend to behave linearly even 

in cases where the parameters in the model show severe nonlinearity; however, a 

prediction a t  a different point for this same example shows why one should not place 

too much faith in that claim. 

The profile t plot for the prediction a t  x = (734.98,470.91,72.39) does not behave 

linearly (see Figure 3.6). This point is one of the eight e-xtreme points of the space 

spanned by the experimental data, Although not shown here, profile t plots for 

the other seven extreme points were also generated. Oniy points (3247, 2030, 1083), 

(3247, 2030, 72.39) and (734.98,470.91, 72.39) showed severe noniinearïty. The profile 

t plots for the remaining data points were similai- to that for the prediction a t  x = 



(2069,990.8; 621.9) shown in Figure 3.5. Note that the estimates of the predictions 

at x = (3247,470.91,1083) and x = (734.98,470.91,1083) are negative. Neither 

the likelihood int ervals nor the Linearization intervals for these predictions included 

positive values. Cleariy the mode1 is inadequate for these combinations of pressures. 

To interpret the nonlinearity observed in the prediction at x = (734.98,470.91,72.39), 

Figure 3.6: Profile t plot for the prediction at x = (734.98,470.91,72.39) kom the isomeriza- 
tion model generated using the reparameterization algorithm (solid h e :  profile; 
dashed line: reference Line; dotted h e s :  lines indicating critical values of r and 
limits of inference intervals) - 

it is helpful to look to the data and the model structure. From the plots of y versus 

each of the euplanatory variables (Figure 3.7), it is clear that at low values of XI, the 

measured rate of reaction y is high, and a t  Low values of x3, y takes on intermediate 

to high values. However, at low values of x*? the measured reaction rate is low. 

For a prediction at low values of al1 three explanatory variables, there is a codic t  

among the effects of the three variables. The optimal prediction at this point is 5.91 

which is a compromise between the high rates of reaction observed a t  lom values of 

x, and x3 and the low rates observed a t  Low values of x2. Perhaps because it was 

unrealistic to collect data a t  Low concentratiûris of ail three reactants, the data set 



does not contain information at these concentrations. m e n  a data set does not 

contain enough information to estirnate a parameter or function of parameters, the 

likelihood intervals tend to become wide and this oRen manifests itseif on profile t 

plots as a curve which is highly nonlinear. The nodinearity is a result of the lack of 

information. 

If more information were obtained by performing additional espenments, the es- 

timates of the parameters could be improved, and their nonlinearity mould Likely 

be decreased. Ideaily, if the interest really was in hd ing  estimates of the parame 

ters, further esperimentation based on nonlinear design of evperiments could be done. 

Bat es and Watts (1988) used the isomerization example to discuss D-op timal designs. 

Profihg is a good way of i d e n t m g  unacceptable levels of uncertainty in parameter 

estimates. Subset e-xperimental designs can then be used to collect information about 

specific subsets of parameters which were identined as having been poorly estimated 

(Bates and Watts, 1988). 

At this time, we are aware of no existing method for assessing the nonlinearity of 

a prediction prior to protiling. Although this example supports the conjecture that 

predictions at points meIl inside the experirnental region tend to behave lineady, it 

also suggests that promiling is a prudent alternative to using linearization Likelihood 

int ewals . 

We use this example to illustrate a geometric interpretation of profiling inference 

results, and to explore further the use of profiling to obtain inference results for 

functions of the parameters of a fitted model. This example mas taken fkom Draper 

and Smith (1981) (based on data reported by Smith and Dubey, 1964). Product .4 

is produced with an initial fraction of available chlorine. Over tirne, this haction of 



Figure 3.7: Plot of y versus each Explanatory Variable for Example 1. 



available chlorine decreases according t O the model: 

mhere y is the fraction of available chlorine in Product A at tirne t. The data are iisted 

in Table 3.3 and the maximum likelihood estimates of the parameters and associated 

inference results appear in Table 3.4. A plot of the data is s h o w  in Figure 3.8. Profiie 

t plots for the parameters are shown in Figure 3.9. The parameters behave relatively 

linearly as does the profile t plot for the predicted amount of a\-ailable chiorine in 

Product A after 35 weeks (Figure 3.10). The hear  approximation confidence intervals 

for these statistics therefore provide good approximations to the Likelihood intervals. 

0.381 , 1 1 1 .b r i -  , 
5 

- * 
10 15 20 25 30 35 40 45 

Time 

Figure 3.8: Plot of fiaction of available chlorine versus time (in weeks) for Example 2. 

However, even though Linear approximation inference results are appropriate for 

the estimates of the parameters of a model, it does not folIow that h e a r  approxima- 

tion will also provide reliable inference results for functions of the parameters. For 

the purpose of illustration, consider the prediction of the time at  which the fraction 



Figure 3.9: Profile t plots for the parameters of Example 2 (solid h e :  protile; dashed line: 
reference h e ;  dotted lines: lines indicating critical values of T and limits of 
inference intervals). 



Table 3.3: Chlorine Data (Example 2)- 

1 Time t 1 Fraction of Avdabie 

1 (weeks) 1 Chlorine in Product A 1 

Table 3.4: Point Estimates and Inference Results for Example 2. 

L.B. 1 U.B. 1 



of avdable chlorine remaining in Product A is 0.40. Then, 

The profile t plot for this Eunction of the parameters is shown in Figure 3.11. It can 

be seen that g ( 0 )  is very nonlùiear, with an upper Limit of approxhately 45.2. 

Figure 3.10: Profile t plot for the prediction at t = 35 for Example 2 (solid hne: profile; 
dashed line: reference h e ;  dotted lines: lines indicating critical vaIues of T 
and b i t s  of inference intervals) - 

To interpret this result we again look to the data and the model structure. In this 

case, the parameters of the model have physicd meaning. Parameter O1 represents 

the fiaction of chlorine available in Product A a long time after the product mas 

produced. Based on the structure of the model, the minimum fraction of available 

chlorine is approached asymptotically. Fitting the model to the data tells us that the 

ma,uimum kelihood estimate of that minimum fraction of chlorine is 0.39. However, 

t here is scatter in the data so this estimate is uncertain. The fact that the upper limit 

of the likelihood interval for the tirne a t  which the fraction of available chlorine=0.40 



is very large reflects the statisticd possibility that the minimum fraction of available 

chlorine may a c t u d y  be 0.40 and therefore a large amount of time wouid have to 

elapse to achieve this level of available cldorine. 

I L I L 1 1 l k I 

Tirne at which the % chlorine in ProductA is 40 % 

Figure 3-11: Profde t plot for the time at which the fkaction of avaiIable chlorine =0.40 for 
Example 2 (solid he: prome; dashed he: reference line; dotted lines: lines 
indicating critical values of T and limits of inference intervals). 

Because the mode1 for this example has only tnro parameters, it is possible to 

generate contour plots of the sum of squares surface and of the tmo functions of the 

parameters of interest. These contour plots are shonm in Figures 3.12 and 3.13. The 

levels of the contours of the sums of squares surface are defined in terrns of the nominal 

confidence level as determined by (3.39). 

These plots help to illustrate the geometrical interpretation of profiling. The 

profiles identiS the maximum and minimum values of g ( 8 )  on or within the likelihood 

region for the parameters. In this case, g ( 8 )  is a monotonic function of the parameters 

and the maximum and minimum values of a 95% Likelihood interval for g ( 0 )  occur at 

the points where the contours of g(8) are tangent to the contour of S(8) corresponding 



Figure 3.12: Contour plots of the sum of squares surface (solid lines) and the predicted 
fraction of available chlorine at t = 35 (dashed lines) for ExampIe 2- 

to the 95% confidence level. For this example neither the model nor g ( 0 )  are linear 

and consequently the contours of S(0) are not elliptical, as they wodd  be for a model 

that is linear in the parameters. For the prediction of the time at which the fraction 

of available chlorine is 0.40, the contours of g ( 8 )  become very closely spaced near the 

limit of its 95% Likeiihood interval: defined by the curves of g ( 6 )  which are tangent 

to the likelihood region for the parameters. This representation reveals clearly why 

the upper limit of the 95% likelihood interval for g ( 0 )  is nearly unbounded. 

Empirically we have found that the nonlinearity of a function g ( 8 )  d l  iikely 

be high if its values approach an asyrnptotic limit, or its values are influenced by 

an asyrnptotic h i t .  This is the case for g ( 6 )  = &ln ( ~ : ~ ~ 1 ~ : )  + 8 in Example 2. 

Nonlinearity is d so  to be espected if the model is being used to make predictions 

outside of the region of values mithin which the observations were made or in a region 

of values which is physicaliy unrealistic. This is the case for the prediction of an 

extreme point discussed in Ewample 1. 

In both examples we have wsumed that the additive random error is indepen- 



Figure 3.13: Contour plots of the s u m  of squares surface (solid Lines) and the time at which 
the predicted kaction of availabte chlorine = 0.40 (dotted lines) for Example 
2- 

Figure 3.14: Contour plots of g(0) and L(0) for the case g(B)  = kL(8) .  



dently and identicdy normdy distributed. However, we emphasize that because 

profiling can be expressed in terms of a likelihood ratio, it is flexible enough to 

handle non-normal distributions. .Uternatively, a transformation could be used to 

induce norrnality; for example, when the random error is proportional to the Ievel of 

the response, a loga,rïthmic transformation can be used to make the error appear iid 

normal. 

3.9 Comment s on computational issues 

The choice of approach to generaLized profihg is obviously at the discretion of the 

user. It has been our experience that neither the reparameterization approach nor 

the constrained optimization approach is consistently "bettei' than the ot her. Wit h 

respect to computation tirne? the reparameterization approach often outperforms the 

constrained optimization approach because the unconstrained optimization of ( p  - 1) 

variables requires femer hinction evaluations than the optimization of p variables sub- 

ject to one constraint. For example, the CPU time required to construct the protile 

t plot for the prediction at x = (2069,990.8,621.9) in Example 1 was 427.76 sec- 

onds using the optimization approach, whereas it was only 23.68 seconds using the 

reparameterization approach. These cdculations were done using a SUN Ultra-l 

workstation. It should be noted t hat a high-level programming Language (MATLAB) 

was used, and no effort was made to make the code computationaily effient. It is 

likely that the computation time could be reduced significantly by using an efficient 

code mitten in a low-Ievel Ianguage. Nonetheless, both approaches typicdly perform 

well since good start ing guesses for all of the optimization subproblems are almost 

always available. The starting guesses used in both algorithms are the same. The 

maximum LikeIihood estimates of the parameters are used as the starting guesses in 

the first iteration of the generalized profiling algorithm. These are likelcely to be good 



guesses since, for any individual parameter or hinction of parameters, the algorithm 

proceeds away fiom the maximum iikelihood estimate only in s m d  steps. In subse- 

quent iterations of the profiling algorithm, the location of the constrained optimum 

from the previous iteration is used as the starting guess. 

The reparameterization approach to generalized profiling has been found to be 

preferable in cases in which the parameter effects nonlinearïty is reduced by the repa- 

rameterization (Clarke, 1987). Such a reduction in nonlinearity can be quantsed 

using measures of nonlinearity (e-g. Bates and Watts (1980)). However, it may be  

argued that the computational effort requked to cornpute these measures of nonlin- 

earity cannot be justified; it might be preferable to begin with the repararneterization 

approach to p r o f i g  £kom the outset. The reparameterization approach is advanta- 

geous only if the reparameterization can be done andytically. We have found that 

ivhen numerical reparameterization of the model is required for a particular function 

g(B), the constrained optimization approach consistently outp erforms the reparame- 

terization approach in terms of computation time. 

tUthough the reparameterization approach may often prove to be the faster algo- 

rithm, we have found that the constrained optimization approach is easier to imple- 

ment, and this may j u s t e  the added computational burden. The reparameterization 

approach involves finding analytical expressions for the new parameters in terms of 

the old parameters and g(8),  and subsequently expressing the model in terms of the 

new parameters. This can be readdy accomplished using software for symbolic corn- 

putation; however, in the  absence of such software, the task can be time consuming 

and tedious. The reparameterization approach also appears to require a deeper un- 

derstanding of the generalized profilhg a lgo f i t h  because appropriate manipulations 

of the model and f he function of parameters is required before profiling can begin. 

This rnay inhibit its use. 

Overall, the information coilected throughout the profiling process is the same 



regardless of the algorithm used. Bates and Watts (1988) have developed a means 

of sketchïng joint likelihood regions for parameters based on the results of prof ihg 

Sketches of joint confidence regions for parameters and functions of parameters can 

be created from the results of either of the ttvo approaches discussed in this paper- 

3.10 When profiling fails 

There evists a specid class of hinctions g(8) for which p r o f i g  is not an appropriate 

method for computing iikelihood intervals. T5is class was discussed in Quinn et al. 

(1999b) (Chapter 4) and is examïned here briefly. 

When an unconstrained optimum of g(8) is located at the same point as the 

unconstrained maximum of L(O),  the p r o f i g  algorithm d l  fail. When the least 

squares estimate of 8 is also the location of the unconstrained optimum of g(B) ,  then 

and 

where se@) is the standard error of &. The profiling algorithm fails since its step 

sizes are based on multiples of se@). Furthemore, the reference Line can not be 

plotted since it is defined by 

These problems associated with the profiling algorithm do not imply that a likeli- 



hood interval for g(0) cannot be found. They simply suggest that an alternate method 

is required. 

It is instructive to consider a particular case in more detail. Consider 

where k is a scalar and 6 = (O1, &)=- 

In this case the contours of g(0 )  will be coincident with the contours of L(B), 

although the levels associated with the contours of the two functions mill be different. 

If L(9)  is a quadratic function, then the contours of g ( 8 )  and L(8)  wiil be a series 

of concentric ellipses. This is illustrated in Figure 3.14 for the case of n o m d y  

distributed random errors, where maxhizing L(8)  is equivalent to minimizing S(8)- 

Note that Figure 3.14 iilustrates a case where the parameters are uncorrelated, but 

this need not be so in generai. 

The upper limit of a likeiihood interval for g ( 0 )  is defined to be the maximum 

value of g(0)  over the likelihood region for 8,  which is defined by the function Sie). 

The lower limit is the minimum of g ( 0 )  over the likelihood region. Consequently, one 

limit of the likelihood interval for g ( 8 )  is equal to the value of the contour of g ( 0 )  

which is coincident with the contour for S(0)  having the 

Sm-t is that value of S(8)  which satisfies 

critical value S&, where 

(3.53) 

These ideas can be stated in the f o m  of an optimization problem as followsr 

Optimize g (O) 

Subject to S(O) 5 S,-t 



For this case the location of one optimum of g ( 0 )  is the locus of points d e w g  the 

ellipsoid S(8) = Smri or equivalently, g (8) = kLmit- 

Note that this M t  of the Likelihood interval for g(0)  is uniquely dehed despite 

the fact that the optimum of g ( B )  occurs at an innnite number of points. That is, 

although the location of the optimum of g(B)  is not unique, the optimum itself is, 

and so the b i t  for the Ucelihood interval for g ( 8 )  is also uniquely defined. When 

only the likelihood interval for g ( O )  is of interest, the non-uniqueness of the location 

of the optimum is of Iittle consequence. Homever, determining joint Likebod regions 

for gi(û) and g j ( B ) ,  or for gi ( O )  and O,, mhere gi (8)  and g j ( B )  axe any two funetions 

of parameters of interest, would be a problem. 

The other Limit of the likelihood interval of g ( 8 )  is &; it is independent of 

o! and requires no optimization. Measures of system performance commonly used 

in engineering are examples of functions g(B)  which have their minima at 6. For 

example, the measure of controller performance APer f used by Shirt et al. (1994) is 

one elvample of a g ( 0 )  which can have a minimum at 8. 

3.11 Conclusion 

Bates and Watts (1988) proposed a profiling algorithm as a means of finding reliable 

likelihood intervals for parameters in nonlinear models. Theoretical development of 

the generalization of this aigorithm for hinctions of parameters has been presented 

in detail in this paper. The generalized profiling dgonthm is appropriate for finding 

likelihood intervals for functions of parameters for several classes of models, so long 

as the likelihood ratios for those functions of parameters can be determined. Two 

different approaches to the generalization have been discussed, and both approaches 

have been used to elucidate the merits and limitations of the generaiized algorithm. 

The profiling algorithm provides likelihood intervals which account for the non- 



linearity of a mode1 and the profile t plots provide qualitative information about the 

nonlinearity of the solution surface. This is helpfid in judging the behaviour of the 

estimates of interest. 

There is much to recornmend the p r o f i g  dgorithm; however, the algonthm does 

fail mhen the location of the unconstrained minimum of g(8) is Iocated at 8. In this 

case, is the location of the lomer limit of the likelihood interval. The upper lunit 

can be found by rnâximizing g ( 0 )  subject to L(8) 2 L,,. 

Both the reparameterization and the constrained optimization approaches to gen- 

eralizing the profiling aigorithm are helpful in understanding the algorithm. However, 

several related issues rem& to be investigated further. These include: sketching joint 

confidence regions, measuring coverage probabilities and applying rneasures of noniin- 

earity. Some work has been done in the area of diagnostics of nonlinearity (Linssen. 

1975; Bates and Watts, 1980; Cook and Goldberg, 1986: among others). Use of such 

diagnostic tools may deviate the need for profiling in cases where nonline&@ is 

low; however, it may be argued that in many cases the effort required to compute the 

diagnostics is comparable to that required to compute the profile t plots. 
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3.13 Nomenclature 

= p x 1 vector of constants 

= a constant 

= deviance 

= n x 1 column vector of estimated random errors 

= upper a! quantile for the F distribution &th p 

and n - p degrees of fieedom 

a function of parameters 

= likelihood h c t i o n  et-aluated a t  t9 

= likelihood region 

= number of regressor variables 

= number of observations 

= nurnber of estimated parameters 

= estimated standard deviation of the random errors 

= sum of squared errors 

= standard error 

= time 

= upper 4 2  quantile of the t distribution with 

n - p degrees of freedom 

= time at which the concentration of Species B 

reaches a maximum (in weeks) 

= n x p matrix of elements u~ representing the ks t  

derivative of f (xi, 8)  with respect to the jth parameter 

= 1 x m row vector of rn independent variables 

= n x p matrix of elements xij representing the level 

of the jth independent variable for observation i 



Greek letters 

Superscripts 

= response vaxiable 

= n x I column vector of values of the response variable 

= signed root deviame 

= a@cmce levei 

= studentized \dalue of g ( 0 )  

= additive random error 

= n x I column vector of random errors 

= qth parameter of a model 

= p x 1 column vector of parameters of a model 

= standard deviation 

= profile t statistic for g ( 8 )  

= qth parameter of a reparameterized model 

= p x I column vector of an alternate set 

of parameters of a model 

= the chi-squared distribution Mth 1 degree of freedom 

= a true value 

= a maximum Uelihood estirnate 

= a constrained estimate 



Abbreviations 

iid 

L.B. 

U-B. 

MLE 

independently and identicaUy- distributed 

Iower bound 

upper bound 

maximum Likelihood estimate 



Chapter 4 

A Note on Likelihood Intervals and 

Profiling 

4.1 Abstract 

In many applications, decisions are made on the basis of a function of parameters 

g(8). When the value of g ( 8 )  is calculated using estimated values for the parameters, 

it is important to have a measure of the uncertainty associated Mth that value of 

g ( 0 ) .  Likelihood ratio approaches to fînding likelihood intervds for functions of pa- 

rameters have been shom to be more reliable, in tems of coverage probability, than 

the linearization approach. Two approaches to the generdization of the profihg 

algorithm have been proposed in the titerature to enable construction of Iikelihood 

intervals for a function of parameters (Chen and Jennrich, 1996; Bates and Watts, 

1988). In this paper we show the equivalence of these trvo methods. We aIso provide 

an anaiysis of cases in which neither profiling algorithm is appropriate. For one of 

these cases an alternate approach is suggested. Whereas generalized profiling is based 

on rnaximizing the Iikelihood function given a constraint on the value of g(B), the 

alternative algorithm is based on optimizing g(8 )  over a likelihood region. 



4.2 Introduction 

The use of iikeIihood ratios to make inference staternents about parameters and func- 

tions of parameters in proposed models has a long his to-  that can be traced back 

to Fisher (l939). However, it mas not until the eariy 1980's that the benefits of this 

approach, relative to the computationaliy simpler linearization approach, were high- 

lighted. Pronle t plots and profihg were discussed by Bates and Watts (1988) for the 

special case of making inferences about parameters of nonlinear regression models. 

The idea of extendkg profikg-type algonthms to deal mith inferences about hinctions 

of parameters has been proposed often in the literature (Chen and Jenuich, 1996; 

Chen, 1991; Ross, 1990; Bates and Watts, 1988; Clarke, 1987; Ratkowsky, 1983). 

However, in many cases, the theory was neither developed nor used. Chen (1991) 

provided a comprehensive e,uplanation of his approach; however his conceptualization 

of the problem differed Erom that of the others. Whereas Chen approached the prob- 

lem from an optimization perspective, most others perceived the generalization to be 

a reparameterization problem. 

In this paper, both approaches are exarnined and their equivalence is shom. Some 

limitations of the profiling algorithm are discussed in iight of the insights gained 

through the consolidation of the theory, 

4.3 Background on Profiling 

When developed in t e m s  of likelihood ratios, the profiling algorithm is applicable 

to several classes of models. Here we consider a general model for a single response 

variable: 



where the h c t i o n  f (x, 0) is the expected value of the response d a b l e  y a t  specsed 

levels of m independent variables x = (xl, x2:. - . , xm)= , and specined d u e s  of p 

parameters 9 = (O1, 02, . . . , Op)* , and E is an additive random error term associated 

with y. We assume everywhere that the random error is independently and identically 

distributed, but we make no assumptions about the distribution of E. Note that in 

the case of discrete dynarnic modek, y may represent an observed value in a time 

series and x may represent a vector of variables which couid include Iagged values of 

the response y, and past and present values of other regressor (Le.. input) variables. 

The vector x may also include Iagged values of E so as to account for seria1 correlation 

in the data. 

Profiling is based on testing the hypothesis that g(0) = c versus the alternative 

that g ( 8 )  # c, where g ( 8 )  is a function of the parameters in a proposed modei, and 

c is a constant. The likelihood ratio for testing the nul1 hypothesis is: 

where ~ ( ê )  is the likeiihood function evduated at ê, the unconditional maximum 

likelihood estirnates of al1 parameters in the model, ~ ( 8 )  is the conditional likelihood 

given that g(8) = cc, and 0 is the location of the conditional maximum. The expression 

for L ( 0 )  depends on the assumptions about E .  It can be s h o m  that, under the nuil 

hypothesis, the asyrnptotic distribution of -2 In(LR) is X2(1), where ~ ~ ( 1 )  is the chi- 

squared distribution nith one degree of fieedom (Lindgren, 1976). \men the random 

errors E are iid normal, f ( x ,  8 )  is h e a r  in 8 and the variance of the random error is 

known, then -2 ln(LR) follows exactly the x2 (1) distribution. In generalized profiling 

it is assumed that only an estimate of the variance of the random error is available, 

and therefore the b i t s  of the likelihood intervals are based on critical values of 

F(1, n - p; a) so a s  to account for the uncertainty in the estimate of 02. 



Chen and Jennrich (1996) defined the statistics: 

and 

mhere D2(8) is cailed the demance, and z'(c) is c d e d  the signed root deviuice (SRD) 

which is used as the basis for a profile plot called the signed root deviance profüe 

(SRDP). Barndorf-Nielson (1986) dehed a statistic similar to the SRD. The SRD is 

a generalization of the r statistic of Bates and Watts (1988) and the SRDP is a gen- 

eralization of their profile t plot. When the random errors are iid normal and critical 

values of the student t distribution are used to account for uncertainty in the estimate 

of the pure error variance, the SRDP and the profile t plot are equivalent. In this 

paper, the likelihood ratio piots will be referred to as profile t plots to be consistent 

with the early work. The term generalized profiling mill be used to emphasize the use 

of profile plots in a broader sense than origînally proposed, for predicted values of 

the response variable or functions of the parameters, for example. The emphasis in 

this paper is on the use of profiling for an arbitras. hnction of the parameters of a 

proposed model, noting that profiling an individual parameter 19, is the special case 

where g(0) = 6,. 



4.4 The Optimization Approach 

Chen (1991) developed a method for obtaining profihg results for an arbitrary 

hinction g(8) by posing the problem in terms of a constrained optimization: 

Maximize 

subject to  the constraznt 

To profile g(8) is to solve a series of these optimization problems for a range of values 

of c above and below the maximum likeiihood estimate of g ( 0 ) .  We assume that L(8) 

and g(8) are tnice differentiable mith respect to 8. 

For a rnodel with p parameters fitted to a set of n data, the commonly used 

100(1 - a) percent Linearization interval for g (assuming c - i id  N(0,  02)) is: 

where 

and V is the n x p matrix with elements defined by Vij  = àO;-10=6y and s2 = 

x:=i {% - f (@}* /(n - p )  is an estirnate of o2 with (n - p )  degrees of heedorn (Chen, 

1991). 



4.5 An Equivalent Alternative 

Finding Ekelihood intervals for hc t ions  of parameters has most often been posed 

as a reparameterization problem(Ross, 1990; Bates and Watts, 1988; Clarke, 1987; 

Ratkomsky, 1983). In t6is appcoach, a new set of parameters 4 is defined for the 

model such that g(0)  is one of the new parameters. Shen, the algorithm for profihg 

parameters can be used directly- For exampie, the new parameters may be dehed 

as: 

where g ( 8 )  is the hinction of interest. 

The reparameterization proceeds by solving the set of equations given in (4.8) for 

O,  such that 

ere gr is the f ist  comp onent of the inverse of the reparameterization d e h e d  by 

(4.8). N e c e s s q  assumptions about this inverse are discussed in Section 4.6. Shese 

results are then substituted into (4.1), and the model becomes 



Profile t plots are based on the r statistic (or the z* (c) statistic), and the quantity 

which defines this statistic is the conditionai maximum of the likelihood function, 

L(&) = z. The fundamentd ciifference between the reparameterïzation approach and 

the optimization approach is the way in which is computed. 

Note that a mâ,xïmization probiem must be solved in both approaches. In Chen's 

approach, the optimization problem c m  be expressed as in (4.5). In the repararne- 

terization approach, the optimization problem can be expressed as: 

Maximzze 

subject t o  the constraint 

where L(q5) is the likelihood function for the reparameterized model. 

To show the equivalence of the two approaches, the equivalence of the solutions to 

the two optimization problems is nom demonstrated. Using the method of Lagrange 

multipliers (Edgar and Himmelblau, 1988), the solution to ChenL optirni-zation prob- 

lem is the solution to the set of equations: 

Similarly, the solution to the reparameterization problem is the solution to the set of 



equations: 

By the chain d e ,  

Also, it can be shom that 



Substituting (4.16) into (4.14): 

Therefore the set of equations given in (4.13) becomes 

[ +  ae, ae, = O 

For the two approaches to be equivalent, the syçtems of equations given in (4.12) 

and (4.17) must be equal. Multiplyïng the first equation of set (4.17) by g, 

which is equal to the first equation of set (4.12). .!Usa, rearranging (418), 

Using (4.19) to express the set of equations (4.17) in terms of Xîi 



which is equivalent to the corresponciing set of equations in (4.12) with XI = AZ- Thus, 

it has been shomn that any solution to the constrained optimization problem in (4.5) 

is also a solution to the reparameterization problem in (4.11). However, the Lagrange 

method employed for the proof represents o d y  a necessary condition for an e.xtremum. 

Therefore, a solution to (4.1 1) could be a local minimum or saddle point. &%en the 

reparameterization approach is employed, care should be taken to ensure that the 

optimum is in fact a maximum. In practice, the solutions to the reparameterization 

pro blem and the constrained op timization problem are solved numerically, and t here 

is risk that a local ma-uimum, rather than the global maximum, wil i  be found. See 

Mangasarïan (1994) for assumptions n e c e s s q  to ensure that the global maximum is 

found. 

Chen (1991) asserted that for functions g(O) ,  the slope of the profilet plot at 

g(ê) is not necessarily equal to the dope of the linear approximation result. This 

is not consistent svith the fact that Chen7s approach to profiling is equivalent to the 

reparameterization approach. By the reparameterization method, the slope of the 

linear approximation is necessarily equal to the dope of the profile t plot at the least 

squares estimate, since it has been s h o m  by Watts (1993) (in Agrawal, 1993) that 

for the case of a linear function of the parameters of a h e a r  model, the ~ ( 9 )  statistic 

is equal to 

which is the basis for the linearïzation in tends  and the reference line on the profile 

t plot. The basis for Chen's assertion was the result that the slope of the profile t 

func tion for g(0)  at  r = O is given by: 



where S(0)  = xy=L=,(yi - iji)* is the sum of squared residuals, but the slope of the 

linear approxkation profile plot is: 

However, Chen and Jennrich (1996) Iater showed that for the more generd case 

where the additive noise is not assumed to be normdy distributed (i-e where the 

results are denved in terms of the likelihood function L(B)) ,  the slope of the SRDP 

at g(8) iç equd to l/se(ij), where se(@) is computed horn the observed information 

matrix. The seemingly contradictory results of Chen (1991) and Chen and J e W c h  

(1996) stem f?om the assumptions made about the estimation of se@). 

For large samples, the variance-covaziance mat& for 8, denoted by 52 is a-p e7 
toticdy equal to fieo, where 

mhere Bo denotes the tme d u e  of O (Ljung, 1987). For the specific case of indepen- 

dently and identically normally distnbuted error, it can readily be shown that 

so that for large samples, (4.22) and (4.23) are equivalent and are both equal to 

l/se(ij). However, in practice, the small sample estimate of the standard error of g 

may be poor, and the value of the estimate rnay depend on whether it is computed 



which in the case of iid nomal  additive error are: 

respectively- Although theoretically, the second term in (4.29) is zero, when the true 

values of the parameters are unknown and the sample is s m d ,  the second term rnay 

contribute to the estimate of se@) such that the values of the observed variance- 

covariance rnatrix do depend on which of (4.28) or (4.29) is used. We have found that 

when (4.28) is used as the basis for computing se@), and when the derivatives are 

computed numerically, the error in the estirnate of se@) may be significant enougb 

tri cause the linear approximation reference line to appear to not be tangent to the 

profile t curve. Our experience is supported by that of Donaldson and Schnabel(1987) 

who investigated how iinearization confidence intervals are affected by the marner 

in which the variance-covariance mat* is computed. They found that when the 

variance-covariance computations were based on analytic expressions for the required 

derivatives, Little difference existed between the approximations; however, t hey noted 



that using numerical methods to approximate the derivatives sometimes resdted in 

a serious degradation of the estimates. 

4.6 Limitations of Profilhg 

Although profiling is a powerful method for h d i n g  LikeLihood intervals for h c -  

tions of parmeters, there are cases for mhich the method, mhether bâsed on optimiza- 

tion or reparametenzation, is not appropriate. To appreciate the limitations of the 

algorithm, it is helpful to consider the method kom both the optimization perspective 

and the reparameterization perspective. 

-4 likelihood interval for a function g ( 8 )  requües finding the maximum and mini- 

mum values of g over the iikelihood region for 8, where the level of the critical contour 

is based on F(1, n - p; a). When g is iinear and the likelihood region for 8 is a convex 

function, the maximum and minimum of g nril1 lie on the boundary of the region. In 

this case the mâ,.xï.mum and minimum values of g occur at the points where the the 

contours of g are tangent to the ellipse defining the confidence region for O. 

When g and/or the mode1 are nonlinear, there are several possibie cases: 

1. g,,, and gmin occur on the boundaxy of the likelihood region for O, as for the 

linear case 

2- g,, and/or g~ is/are located in the interior of the likelihood region for 9 

3. g intersects the likelihood region for 8 at on- a single point, and so the Ue- 

lihood interval is a single point (i.e., there is only a single plausible value for 

g at the given Ievel of confidence. Usuaily this unplies that g(8) is undefined 

and that g is defined only at a single point which lies on the boundary of the 

likelihood region for O. 

4. g does not intersect with the likelihood region for O. This case c m  occur if 



the parameters of the fitted model are not appropriately constrained during the 

fitting of the model. 

5. g has multiple local optima mhich f d  on or within the ükelihood region for B. 

These cases are illustrateci in Figure 4.1 for a model involving hvo parameters. 

It is clear that nonlioearity significantly complicates the  inference results. Often the 

likelihood intervals for a nonlinear g(8) dl be asymmetric about g(8),  and for Case 

5: the likehhood regions may be disjoint (Donaidson and Schnabel, 1987). 

Consider nom the mathematical implications of these various cases. For the repa- 

rametenzation met hod, the equation set (4.9) requires the inverse of g ( 0 )  to exist. 

That is, it must be possible to solve for O1 in tenns of the vector of transformed 

variables 4. However, the solution for need not necessarily be explicit . Typicdy, 

a numencal search scheme d l  easily produce a solution for &. When O1 is left as 

an implicit function of t#, there mây be multiple solutions. The non-uniqueness of 

the solution is not an issue if the likelihood interval for 8 includes only one of the 

solutions- 

Computing a likelihood interval for g(9)  by the reparameterization method gen- 

erally requires computing the derivatives of the likelihood function with respect to 

the new parameters. By (4.14), the inverse of 3 must exist over the appropriate 

likelihood region for 9. This means that no two parameters can be defined such that 

they affect the h c t i o n  f (= ,O)  in exactly the same way. 

The limits irnposed on g(O) ,  as determined by the reparameterization approach, 

can also be motivated from the optimization perspective. As shown above, the opti- 

mization problem may be solved by the method of Lagrange multipliers. The neces- 

sary and sufficient conditions for 8 to be an optimum can be found in most textbooks 

on optimization (see, for euample, Edgar and Himmelblau, 1988). The first necessary 

condition is that f ( ~ ~ 9 )  and g(8) be twice dzerentiable at 8 for all c, mhere 8 is 

a solution of g(B) = c. Thus, f (x, 8)  and g(B), as well as their derivatives, must 



Figure AE illustration of various inference scenarios in two dimensions, The figures are 
plotted in the space of the parameters. KEY: - - contours of g ( 8 ) ;  - contours 
of L (8) .  



exist a t  6. Therefore, profiling dl fail for Cases 3 and 4 above because the profiling 

algorithm begias a t  where g ( 8 )  and/or f (0) do not euist. 

The other necessaxy and sufficient conditions are either implied by the first, or 

deal with issues of inequdity constraints, of which there are none in the p r o f i g  

optimization problern. However, there is one further d c i e n t  condition worthy of 

mentioning, nameIy that the Hessian matnx of the augmented Lagrangian equation 

be positive definite. Prof ihg rnay fail for Case 5 since the Hessian may not be 

positive dehite.  A ~ o ,  note that for Case 5, profihg may Fail to take account of 

multiple optima: basing a continuous likeühood region on one local optimum only. 

We have discussed theoretical cases For which p r o f i g  is inappropriate. In our ex- 

perience, these situations anse infrequently and are usually the result of data whkh 

contain insufIicient information to estimate the parameters of the model, a model 

which does not adequately represent the system from which the data were sampled, 

or a poorly chosen parameterization of the model (for example, mhen the parame- 

terization does not implicitly constrain the parameters to remain within a physically 

meaningful domain). In such cases, fitting the model to the data is inadvisable and 

a failure of the profihg algorithm is a signal that additionai data and/or model 

reformulation are required. 

The conditions described in this section, both from op timization and reparameter- 

ization perspectives, determine whet her a solution exists. However, t here is a special 

class of g ( 0 )  for which a solution exists, but for which the prof ihg algorithm is not 

appropriate. Although profiling may be inappropriate for Cases 3 and 4, one might 

argue that the occurrence of these situations is not interesting (although important to 

document). Homever, there are practical and interesting cases related to the situation 

in Figure 4.1, Panel 2 which present problems for the profling algorithm. 



4.6.1 When the Likelihood Interval Exists but Profiling Fails 

There exists a special class of functions g ( 0 )  for which protiling is not an appropriate 

method for computing iikelihood intervals. When g ( 0 )  is not a monotonie function 

of 8,  and when an unconstrained optimum of g(@) is located at the same point as the 

unconstrained maixïmum of L(0) ;  the p r o f h g  aIgorithm mill fail. In this case, the 

least squares estirnate of 9 is also the location of the unconstrained optimum of g ( 0 )  : 

and consequently 

and 

where se@) is the standard error of g(8). The profiling algorithm fails since its step 

sizes are based on multiples of se@). It is also not possible to determine the reference 

Line since this is based on 

When se(ij) is zero, this statistic can not be computed. Furthemore, the optimization 

algorithm proposed by Chen (1996) requires the calculation of the inverse of the 



where a dot overstrike represents the derivative mith respect to 8 and a double dot 

overstrike represents the second derivative. When j(8) = %/* = O, this matrix is 

singular and the algorithm fails (Quinn et al., 1999a; Chapter 3). 

To Uustrate these ideas we c o n s t ~ c t  a simple euample. Suppose we had a ttvo- 

parameter model for mhich eT = (1; 2). If g(8) = (OI - 2), then it is straightfonvard 

to ven& that the standard error of g ( 8 )  is zero and profiling miLi fail. Nthough this 

is a constmcted example, there are practical cases in mhich g ( 8 )  and f (x, 8)  reach 

an optimum at the same location. In control engineering, a measure of controller 

performance is 

Xote that yactua, is fked for a given realization of the system and does not depend 

on the estimated parameters of the system. In many applications, ytarg,, is based on 

a model of the system such that 

If h(-) is a monotonie function and if the same set of observations y,,,, is used to 

estimate B as is used to compute performance, then profiling will fail because the 

location of the unconstrained minimum of g(B) MU. be at  ê. 



-4s another example, consider the Coefficient of Determination, R2, where 

where & represents the value of y computed on the basis of a mode1 with parameter 

values 8. For regression models wïth additive error whkh is iid normal, the rnaxirnum 

likelihood estimates of the parameters are those which minimize the sum of squared 

residuals, Le-, those which minimize: 

From (4.36), R2 depends only on the sum of squared residuds and that sample vari- 

ance of y. Since the sample variance does not depend on the estimated parameters 

and is a Lued quantity for a given set of data, the values of the parameters which 

minimize the s u  of squared residuds are also those which maxirnize R2. In this 

way, 0 is the location of an unconstrained optimum of R2 and the protiling algorithm 

would fail for g ( 8 )  = R2 - 

The problerns created for the profilhg algonthm do not imply that a likelihood 

interval for g(0)  camot be found. They sirnply suggest that an aitemate method is 

required. To solve the problem, consider solving the alternate optimization problem: 

MaximÏze g(B) 

Subject to L(8) > Lmil 

Using any constrained optimization algorithm the upper limit of the likelihood interval 

for g ( 0 )  is the constrained maximum found in (4.38). The lower limit of the likelihood 

interval for g ( 8 )  is the minimum of g ( 0 )  on or rvithin the joint likelihood region for 

B. For this special case, the unconstrained minimum of g ( 8 )  lies within the likelihood 



region for 6; therefore this must be the value of the lower Limit of the ükelihood 

interval for g(0 ) .  It is independent of the value of the confidence level and requires 

no optimization. Note that while a likelihood interval can be found for these cases, 

joint Likelihood regions can not. 

Returning to the example of the Coefficient of Determination, a likelihood interval 

can be constructed using the rninimization/ma~zation approach. Because the 

unconstrained optimum of R2 occurs at e, it lies within all likelihood regions for the 

parameters. Therefore, R21 - is the opper lllnit of the likeiihood interval for R2. TO 
8 

find the lower limit of R2, solve the constrained optirnization problem: 

1 
Subject to ln (L(8) )  2 h ( ~ ( 8 ) )  - -F(1, n - p; a) 

2 

The constrained minimum of R2 is the lower limit of the likeIihood interval, For 

general nonlinear models, there is no anaIytic solution to the constrained optimization 

problem, and typically, numericd methods are employed. 

4.7 Conclusion 

When making decisions on the basis of a function of parameters g ( 0 )  it is im- 

portant to have a reliable measure of the uncertainty for any point estimate of g(8). 

Generalized profiling provides a more reliable means of estimating iikelihood intervais 

for functions of parameters than the cornmonly used linearization approach. 

There are two approaches to generalizing the profihg algorithm. One is based on 

constrained optimization (Chen, 1991; Chen and Jennrich, l996), and the other on 

reparameterization (Clarke, 1987; Bates and Watts, 1988; Ross, IWO). The equiva- 

lence of the two approaches has been shown. 

By considering generalized profding hom both perspectives, the merïts and Limita- 



tions of the profiling algorithm have been discussed, and cases for which the algorîthm 

fails have been identified. An alternative approach based on minimïzing and maxi- 

mizing g ( 0 )  over a likelihood region, has been proposed for one of these cases. 
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4.9 Nomenclature 

= a constant 

= the deviance 

= n x I column vector of estïmated random errors 

= upper a! quantile for the F distribution Mth  p 

and n - p degrees of fÏeedom 

= a function of parameters 

= the kst  element of the inverse of the reparameterïzation 

invo Iving g  (O)  

= vector of derivative of g ( 8 )  with respect to 0 

evaluated a t  6 

= likelihood function evaluated a t  0 

= mat& of second derivatives of the likelihood function 

with respect to 8 evaluated a t  8 

= likeiihood ratio for testing the nuii hypothesis that 

de) = c 



Greek letters 

= number of observations 

= number of estimated parameters 

= estimated standard deviation of the random errors 

= s u m  of squared errors 

= standard error 

= upper a / 2  quantile of the t distribiition with 

n - p degrees of freedom 

= 1 x m row vector of rn independent variables 

= n x p rnatrk of elements xij representing the level 

of the jth independent variable for observation i 

= response variable 

= n x 1 column vector of values of the response variable 

= n x p matrix of elements v, representing the first 

derivative of f (xi3  8) mith respect to the jth parameter 

= signed root deviance (SRD) 

= significance level 

= additive random error 

= n x 1 column vector of random errors 

= qth parameter of a mode1 

= p x 1 column vector of parameters of a mode1 

= ith Lagrange multiplier 

= standard deviation 

= profile t statistic for g ( 8 )  

= qth parameter of a repararneterized mode1 



Superscripts 

Abbreviations 

iid 

BILE 

= p x Z column vector of an alternate set of parameters 

of a mode1 

= the chi-squared distribution with 1 degree of freedom 
A 

= variance-covariance matrïx for O 

= a true value 

= a mâ.uimum likelihood estimate 

= a constrained estimate 

independently and identically distributed 

maximum Iikelihood estimate 



Chapter 5 

Use of Expected Profiling for 

Likelihood Interval Prediction in 

Time Series Models 

5.1 Abstract 

CVhen collecting data for the purpose of fitting a tirne senes model, it is of interest 

to know how much data nrill be "enough" to sati* the estimation objectives. We 

develop a tool called an n-plot which indicates how the Likelihood limits for individual 

parameters (or fùnctions of parameters) of .ARkI.A rnodels are e-qected to change as 

the length of the times series data set increases. The n-plots are based on expected 

profiles which, in themselves, provide useful information pnor to data collection. The 

basis for the e-xpected profiles is an expression for the expected value of the likelihood 

ratio function. The use and value of expected profing and n-plots are illustrated with 

two examples. The n-plot can be used to design the length of a dynamic experïment 

and to estimate how long a time series needs to be in order to obtain ''reiiable" 

estimates of the parameters or functions of parameters of a time series model. 



5.2 Introduction 

The asymptotic statistical properties of estimates of parameters and forecasts boom 

fitted time series models have received considerable attention (Rao, 1962; Yamamoto, 

1976; Ljung: 1985; Taaiguchi, 2986). .hymptotic expressions are applicable when 

the number of observations n in a realization of a time series is "large"; however: 

the issue of how large n must be to satisfy estimation objectives is rarely addressed 

(Eliason, 1993). We show that a value of n which is "large enough;' depends on the 

model form, its parameterkation, and the values of the parameters themselves, mhere 

"large enough" means that the Cramer-Rao lower bounds are espected to provide a 

close approsimation to the likelihood limits. 

The issue of how much data should be collected in order to obtain a useful fitted 

process model is an important topic in dynamic design of e-xperiments (Isermann, 

1980). Astrom (1980) noted that although it is well knorvn that maximum Likelihood 

estimates have good asymptotic properties, the extent to which these properties are 

achieved when small data sets are used is unclear. This paper addresses these issues 

by developing expressions for ezpected profiles. An expected profîle is analogous to 

the profile t plot introduced by Bates and Watts (1988), but do not depend on 

the availability of a set of data. E-qected profiles protide useful information to 

experimenters prior to data collection about how much data mil1 be needed to provide 

useful estimates of parameters and functions of parameters in time series models. 

Profiling (Bates and Watts, 1988; Chen, 1991; Chen and Jennrich, 1996) is a 

likelihood ratio approach to estimating uncertainties in parameters and functions of 

parameters in proposed models. It has been used to estimate likeIihood intervals for 

parameters in steady-state models (Bates and Watts, 1988; Chen, 1991; Watts, 1994) 

and in ARMA models (Lam and W-atts, 1991; Chen and Jennrich, 1996). Because 

profiling is a likelihood-based method, its results are specific to the particular model 

and data set under consideration. However, in the case of AFWA models, the model 



itseJf defines how the process is expected to evohe over time and it is possible to 

calculate expected values for some of the properties of the mode1 a priori to aay data 

collection (Le., in the absence of a realization of the process) . This is also possible 

with other classes of models, but we M11 focus on time series models. 

We derive an expression for the expected value of the likelihood ratio for the 

hypothesis g ( 8 )  = c, relative to any specified alternative hypothesis, where 0 is the 

vector of parameters in a proposed t h e  series model, g ( 0 )  is a function of those 

parameters, and c is a constant- Based on this e4qression, expected profles for 

individual parameters or a function of parameters g(B) are constmcted and used to 

judge how long a tirne series needs to be in order to obtain "diable" estimates of the 

parameters 0 or a function of parameters g ( 8 ) .  

Profile t plots for individual parameters, or hinctions of the parameters, in a 

proposed rnodel depend on the form of the model, its parameterization, and the data 

themselves. Anomalies in the data may manifest themselves as a n  increase or decrease 

in observed nonlinear behatior of parameters or functions of parameters. Expected 

profiles are computed in the absence of data, and therefore do not capture m y  of 

the uncertainty and nonlinearity associated with a particular data set. However, the 

expected profiles do provide important informat ion about the inherent uncertainty 

and nonlinearity associated with the model and its parameterization- Note that the 

uncertainty and nonlinearit-y associated with a model are functions of the true values 

of the parameters; therefore expected profiles require assump tions about the values 

of the parameters, as weU as about the form of the model. The usefulness of an 

expected profile is in the information it provides about the behaviour of the level of 

uncertainty associated with a parameter or function of parameters to be expected as 

n, the length of the tüne series, changes. 

The paper proceeds as follows. We begin by reviewing the theory of profihg. 

Then, an expression for the expected value of the profiling statistic r2 is developed 



for the case of AiEUK4 models. To illustrate the use of this result, profiie t plots for 

the parameters in two fitted models are shown and compared to the expected profiles 

for those parameters. We examine how the expected likelihood intervals for these two 

examples change as a function of n. Next, an example of computing e-xpecteci pronles 

for a hinction of parameters is presented. We conclude with some ideas for future 

work. 

Profiling 

Profilhg (Bates and Watts, 1988; Chen, 199I; Lam and Watts: 1991; Severini and 

Staniswalis, 1994; Chen and Jemrich, 1996, Quinn et al., 1999a; Chapter 3) is a 

graphical means for displaying inference results for parameters, and functions of pa- 

rarneters, of proposed models. Bates and Watts (1988) developed the algorithm 

sp ecifically t O summarize inferential result s for parameters of nonLinear regression 

rnodels. The method is based on the fact that, for regression models which are Iinear 

in the parameters and for mhich the additive errors are independently and identically 

normally distrïbuted (Gd N(0, a*)), 

and the left and right hand sides have a t distribution nith (n - p )  degrees of fkeedom, 

where Bi is the parameter being investigated, & is the maximum Likelihood (least 

squares) estimate of Bi, se(&) is the standard error of Bi, ~ ( 9 )  is the minimum sum 

of squares of residuals, ~ ( 8 )  is the sum of squares of residuals mhen the vector of 

unknonm parameters 8 is equal to 6: and 8 is the vector of parameter values which 

rninimizes the sum of squares of residuals &en the constraint that Bi = c, where c is 



a constant. 

n - k  

is an estimate of O* with (n - k) degrees of freedom. A (1 - a)100 % confidence 

interval for di is 

and t(n - k;  0 1 2 )  denotes the upper a / 2  quantile of the t distribution with n - k 

degrees of freedom, n is the number of observations to which the proposed model 

has been fitted, and k is the number of estimated parameters in the proposed modei. 

For nonlinear models, it is cornmon to see nominal (1 - a)100 % confidence i n t e d s  

for the parameters approximated by (5.3). -4lthough t his 1inea.rization approach is 

computationally simple, it has been s h o m  to be unreiiable for some models (including 

time series rnodels) that are nonlinear in the parameters (Ansley and Newbold, 1979; 

Donaldson and Schnabel, 1987; Bates and Watts, 1988; Lam and Watts, 1991). The 

idea underlying profiling is that inferences about the parameters of nonlinear models 

would be more accurate if they tvere based on 

because this expression takes account of the nonlinearïty of the sums of squares sur- 

face. Indeed, Donaldson aod Schnabel (1987) and Chen (1991) have s h o m  that, for 



the case of nonlinear regrwion models, the coverage probabiliw of likelihood intervals 

baçed on (5.5), Le., based on profiling, is consistently closer to the nominal confidence 

level than that of lineaxization intervals- 

Lam and Watts (1991) extended the theory of pro-g to encompass time series 

models using a modified sum of squares appropriate for such models. Chen (1991) 

and Chen and J e b c h  (1996) developed a theory of profiling in terms of likelihood 

ratios and constrained optimization. This formulation of the profiling algonthm is 

very general and may be used for several classes of models, including time series 

models. F u t  hermore, the constrained optimization approach facilitates computing 

inference resdts For functions of parameters. 

In Section 5.4 the theory of expected profiling is developed in t e m s  of the likeli- 

hood function for LAFUMA models. In this section we focus on the profiling algorithm 

as it was developed by Chen (1991) and Chen and Jennrich (1996). 

Note that T(&)  may be written, equivalently but more generally, in terms of a 

function of the Likelihood ratio: 

where L(0)  is the iikelihood function for the parameters of a specified model. This 

expression for r ( B i )  is very general in that it may be used to obtain inferences about 

individual parameters of any mode1 so long as an e.upression for the likelihood function 

can be found. Note that to cornpute ~ ( 0 ~ )  the solution 8 to the following constrained 

optimization problem must first be obtained: 

&Ia~uirnize: 



Subject to: 

To construct a profile t plot for an individual parameter Oi, the optimization problem 

in (5.7) is solved for a series of values of c greater than and Less than the maximum 

likelihood estimate of Bi, and the correspondhg values of ~ ( 0 ~ )  are plot ted against the 

values of Bi. A marginal (1 - a)% likelihood interval for Bi then includes d values of 

Bi such that: 

The limits of the intemai can be obtained directly from the profiie t plot by finding 

the values of Bi at which horizontal lines extending fiom T = f t ( n  - k; 0112) intersect 

with the profile c w e .  This follows from the fact that, under the nuU hypothesis, 

Bi = c, the log likelihood ratio: 

has an asyrnptotic X2 distribution with one degree of freedorn (Ravishanker et al., 

1990). Thus, is asyrnptotically normally distributed. We use the student 

t distribution in place of the normal distribution to account for the estimation of the 

noise variance. 

In many cases, a proposed model wil l  be used to compute the value of a function of 

parameters g ( 9 ) .  For example, a proposed mode1 might be used to make predictions 

which are simply functions of the parameters of the proposed model. Likelihood 

intervals for a function of parameters g(8 )  can be obtained by foiiowing the procedure 

outlined above, but in this case the constrained optirnization problem becomes: 



subject to: 

and the expression for r is: 

The profile t plots are then plots of r ( g ( 8 ) )  versus g ( 8 ) .  Profiliog an individuai 

parameter Bi is simply the special case where g ( 8 )  = Bi. 

Often it is of interest to judge the relative nonlinearity of a parameter, or function 

of parameters, so as to know how reliable the linearization inference results would 

be. A reference h e ,  b ( g ( 8 ) )  versus g(B) ,  is typicdy included on profile t plots. This 

reference line may be used to obtain the linearization confidence intervals for g ( 8 )  

and to judge the relative curvature of the function of parameters (Chen, 1991) .  

5.4 Expected Profiling 

Consider an ARMA(p,q) mode1 of the form: 

where 4(B)  = ( 1  + 41B + . . . + q&BP), û(B) = ( 1  + ûiB + - - - + BqBq), B is the 

backshift operator defined as Byt = { y t )  is an observed stationary stochastic 

process with mean zero, and (a t )  is a normally distributed white noise process such 



that ail elements of at are independently and identicdly n o r m d y  distributed (Le., 

{a t )  is a sequence of iid N(O,4)  random variables). For a time series model, O* = 

(&, . . . , $,, el,. . . , O,). Nthough cz is usually unknom, me can estimate it Erom the 

residuais of the fitted model and we do not inchde it in 0- Note that a nonstationary 

time series or one having a non-zero mean may be transformed to conform to the above 

model by first appropnately Merencing or mean centering the data, respectively- 

Building on the work of Chen (1991), Chen and Jennrich (1996), and Lam and 

Watts (1991) for protiling times series models, we develop a theory for conçtructÎng 

espected profdes, which are profile t plots for functions of the parameters of .A.R&iA 

models constructed in the absence of data- 

To create expected profile t plots we fkst develop an expression for: 

where L(0) is the natural logacithm of the likeiihood hinction of B. Therefore, we 

require expressions for the expected values of ~ ( 0 )  and ~ ( 8 ) .  
Since ive assume that the ai's are iid N(O ,4 ) ,  the Likelihood hnction for 8 given 

the data y, = {yl, - - - , l/li) is 

L(0 1 y,) = ( 2 7 4 3  -"12p, 1 q, ( -~rL'n,~yr& 
2 4  1 

where L(0l y,) is the likelihood Functio~ for the unknom parameters of the model, 

and o:O, denotes the n x n vaxiance-covariance matLu for y, as specified by the 

model (Box and Jenkins, 1976). The use of the subscript n follows the notation of 

Box and Jenkins (1976) and is used to emphasize the dependence of the Likelihood 



function on the length of the time series. Hereafter, the abbreviated notation L(0) 

d l  be used since the focus of this work is on the dependency of the LikeLihood on the 

unknonrn parameters- Substituting S(8) = y,'S1~'y, into (LM), and taking natural 

logarithms, 

E.+xpressionç for ~ ( ê )  and ~ ( 8 )  are then as folloms: 

and 

Both S(0) and n, are functions of 8 and we explicitly distinguish them as being 

calculated based on 8 or B.  The natural logarithm of the likelihood ratio is: 

Therefore, 

We are interested in computing E{T'). This amounts to finding expressions for 

E { ~ ( ë ) )  and E(s(@). Note t hat the values of the elements of the covariance matri- 

ces are fully defined by the mode1 and the d u e s  of the parameters. If e = O*, where 

8' is the tme value of 8, and if the starting values for the time series are knom, then 



it can be shomn (Box and Jenkùis, 1976) that: 

Therefore, under this assumption 

However, when 8 # O*, 

It is therefore necessary to develop an expression for ~ ( 8 )  whkh will take into account 

the increase in variance of the error terms when 6 # 0'- 

-Assume the true process can be represented by the -ARMA model: 

mhere the superscript * represents true values of the parameters. If a fitted model 

for the process based on a realization { y t )  has parameter estimates 6, the residuals 

from that fitted model are: 

et = at and the expected value of the log Iikelihood hinction is: When - - - 
$(B) - 4-(Wy 



Io developing an expression for E{L(&)}, we pcesume that the process can be modeled 

as 

But because y, is actually a realization of (5.22): 

- -1 
E(s(@} = E{ynrnn Y,) (5  -27) 

-1 
= tr ( f i n  E { ~ , ~ , ~ } )  (Mathai and Provost, 1992)) 

= CTZtr (an-Lf2;) 

Finally, me can mite, for an unbiased model, 

It is interesting to note that the expected value of .r2 is independent of the &ance 

of the white noise driving force 02. The vector 8 represents the conditional masimum 

likelihood estimates of the parameters given the constraint g ( 0 )  = c. When a data 

set is available, 8 is found by çolving the conçtrained optimization problem given in 

(5.10 ). When computing E{r2) we find 8 by minimizing E(L(8))  subject to the 

constraint g ( 9 )  = c. 

Now we have an expression for the expect ed value of .r? based on the full likelihood 



ratio. To find the expected profile t plot of a function of parameters of an ~~4 

model for any value of n, we compute 

The development of the expression for E{r2) is based on determinhg the values of 

8. These values, in tum, are determined by the vectgor of true values O*, the form 

of the model and the constra.int g(0) = c. .U of the standard assurnptions about the 

random error driving force mere made. Sherefore, we assume the distribution of E { f  ) 

is F(1, n - p ;  a),  as is the case for .r' based on observed data. A (1 -a)100% expected 

likelihood interval for g(0) includes ail values of g ( 0 )  such that F(1, n - p; a/2) 5 

E{r2) 5 F(1, n - p; 1 - 4 2 ) .  Eq~ivalentIy~ the evpected likelihood interval can be 

computed based on T,, since JF(I, n - p; a) = t(n - p; a / 2 ) .  .ln expected profile 

plot of a function of parameters g ( 8 )  is a plot of r,, versus g ( 0 )  or b(g), where 

and 

where [ ~ r n ( ê ) ] ~ ~  denotes the ith diagonal elernent of the variance-covariance matriv 

for 8 (Wei, 1990). This va.riance-covariance rnatriu is cornputed boom the Cramer-Rao 

lower bound (Ljung, 1987) : 



where Z is the information matnu with elements: 

and 

Linearization Likelihood limits for g ( 8 )  axe given by: 

For a Eued value of n, it is convenient to plot profile t plots as T versus g(8) .  

However, when plotting multiple profiles corresponding to changing values of n on 

one plot, it is more informative to plot ~ ( g )  versus b(g)  in order that al1 profiles may 

be cornpared against the same reference line. When plotting r versus g(B),  the dope 

of the reference line, l / ~ e ( ~ ( @ ) ;  Nill change as n changes since se (@))  is a fwction 

of n. By plotting ~ ( g )  versus 6(g),  the dependency on n is removed since 6(g) is scaled 

by se(g(ê)) and the reference line is almays a straight line with uait slope passing 

through the origin (Bates and Watts, 1988). 

By computing expected likeIihood intervals for individual parameters Bi (or for 

any function g(6)) over a range of values of n; we can then construct an n-plot, which 

is a plot of n versus the lirnits of the expected likelihood intervals- The intervals based 

on the Cramer-Rao Iower bounds can also be shown on an n-plot for cornparison. The 

n-plot provides a clear indication of how the uncertninty in an estirnate of interest (& 

or g(0) )  can be expected to change as the length of the observed time senes changes. 

. In order to compute values for T,, indeed to develop the methodology of expected 

profiling itelf, several assurnptions are required. One must choose a form for the mode1 



and assume that it c m  represent the behaviour of the tme system. Furthemore, one 

must choose ralues for the parameters and assume that they are equal to the " tme" 

values of the parameters of the systern. -Nthough it seems unreasonable to think that 

al of these things can be knomn a priori to e-qerimentation, good guesses can be 

made on the basis of work reported in the literature or engineering e-xperience. The 

catch 22 of having to know the mode1 and the values of its parameters in order to 

design an experiment to estimate the parametes is a feature of dl nonlineu design 

of experiments mork. Despite this, many nodinea.  designs have proven useM and 

valuable. In fact, the Cramer-Rao bounds have been used for decades and these 

require the same guesses and assumptions as does expected profiling. 

5 .4.1 Computational Issues 

For an ARMA(p,q) model, the expressions for the derivatives of at mith respect to 

the parameters are (Ravishanker, 1994) 

Let 

aar aat+u dat aat 
.(a) = m (=, -) = C m ,  (-, a4 -) agi,, 



Note that 

but 

 me (4 = ~ e m  (-4 (5 -43) 

Then, in order to calculate the lonier bound for COU(@ based on (5.33) so as to obtain 

a value for se (g(6)), we develop the expression: 



We conpute the elernents of this covariance rnatrix by k t  computing the impulçe 

reçponses of the 2 and . For =ample, to compute the covariance between: afb 

and 

first cornpute the impulse response of each system: 

Although the expressions (5.49) and (5.48) are not exact unless the infinite sum is 

computed in each case, in practice, the error incurred by truncating the surn at an 

appropriately high lag is negligible unless a series is virtuaily divergent. 

When there exist common roots in the polynomials @(B) and B(B), the variance- 

covariance matrix for the parameters is singular. For cases where there are very sirniiar 

roots in #(B) and B(B), the variance-cova.riance matrix will be ill conditioned, the 

parameter estimates wîll be highly correlated wîth each other, and the uncertainty in 



the individuaI parameters mill be Iarge. 
- -L 

Evaluating tr (0, 0;) in (5.28) involves computing the values of the elernents 

of two n x n matrices, hding the inverse of one of these matrices; and then taking the 

product of that inverse matrix mith the other mat*. For large n, this may involve a 

prohibitively large nurnber of calculations. Therefore, there is a need for an efficient 

algorithm by which to cornpute tr fi,-Lt21). ( 
One approach is to exploit efficiency of Levinson recursion. Let 

Then, 6 , ~  = Sin. Because we are interested in the trace of A, we need not compute 

al1 of the elements of A but only the diagonal elernents. Let 

FVe need to solve for the first element of al, the second element of a2, and so on- 

Using Cramer's d e ,  

mhere a&) is the ith element of ai and CZ;(') is the mat& having its ith column 

replaced by wf. Since nz is a Toeplitz mat&, its determinant can be evaluated 

quickly using Levinson recursion. 

Lam and Watts (1991) based their p r o f i g  calculations on an expression for the 

exact likelihood function of an ARMA mode1 develop by Ansley (1979). Homver, 

many other expressions and algorithms for computing the exact likelihood have been 



proposed, including those by Newbold (1974), Ali (1977), and Ljung and Box (1979). 

Harvey and Phillips (1979); and -ktrorn (1980), among others, have developed al- 

gorithms based on the Kalman filter. Expressions for the exact likelihood hrnction 

for vector -M.MA(p,q) processes have been developed by Osborn (1977), Phadke and 

Kedem (1978), Hillrner and Tiao (1979), and Nichoils and HaiI (1979). These, of 

course: can also be used for the special case of univariate ARbfA models. 

To be consistent mith the work of Lam and Watts (1991): we have based our 

calculationç on the transformation of .Andey. The expressions for fi, and are 

develo p ed below . 

A.nsley's algorithm is based on transforming a time series as  follows: 

where m = max(p, q). Let 

The series ut is autocorrelated only up to Iag q. Shen, the covariance matrk for zt 

has a maximum bandwidth of m for the first rn rom and a bandwidth of q thereafter 

(Andey, 1979), where the bandwidth is the number of nonzero elements in the rom 

Let ~ ( i )  be the autocovarÏance of yt at lag i, be the autocovariance of ut ôt lag 



i, and %(i) be the cross-covasiance of y, and ut at lag i. Then, 

(5.56) 

n x n  

\Ve c o m p t e  6, and on the basis of the transformed series 2, aad r;; respec- 

tively. These series are defhed below. Let fi,,* and C l : ,  Y- be the MI-iance-covdance 

matrices for the transformed series. When computing R n ,  we assume that the rnodel 

for yt is: 

Then, the transformed series is: 



and fi,,= is a banded rnatriv of the fora shown in (5.56)- 

The variance-covariance matrk R;, is equal to ~ { r ~ s , ) .  When data are used to 

compute profile t plots the observed variance-covariance matrtv is computed. In that 

case, the values of z, would be values of y, generated by the tme process transformed 

using &B). Therefore, mhen computing f i n ,  for evpected profiling me employ the 

true process mode1 

Then, Ive apply the same transformation as used to compute finTZ. That is to Say we 

compute Ci;, based on the transformed series: 

Whereas the polpomial operators &B) and $(B) cancel in the case of ut, they do 



not cancel in (5.63). The expression for a:, is: 

r5,(n) - - -  yu,(n-m) - / c (n -m+l )  - - -  7~ (0) 

- -L 
Note that while fi,, is banded, in general, 00. is not. iUso, an, is not, in general, 

a banded matrk;  however, Ma (1997) has proposed an  expression for the efficient 

computation of this inverse. 

-4s previously noted, hding values of the exact Uelihood fimction or the expected 

value of the exact likelihood function can be computationaJly intensive. For large n, 

it may be prohibitively expensive to do the number of calculations required to solve 

the sequence of optimization problems involved in profiling. The expression (Box and 

Jenkins, 1976) 

is esact. The variance-covariance matrix a, disappears because of the Jacobian of 

the transformation kom y, to a. Homever, to compute a, it is often necessary to 

make assumptions about the initial conditions of the system. Then, in practice, 

the values of the likelihood function computed based on (5.65) are approximate in 

that they are conditional upon the assumptions about the intial conditions of the 



system. Evaluation of (5.65) requires a sipificantly smaller computational effort than 

evaluation of the exact 1iMhood given in (5.14). -4ithough all evpected profiles and n- 

plots shom in this paper were computed on the basis of the exact likelihood function, 

we recommend the use of the conditional likelihood b c t i o n  when appropriate. 

5.5 Illust rat ive Examples 

TWO data sets from the literature are used to illustrate the concepts developed in the 

preceding sections. Tabuiated information about the data sets, the fitted modeis and 

the inference results are given in Section 5.10. 

For Example 1, an .JJtIMA(2,0,2) rnodel was fitted to the mean centered "Hous- 

ing Permits" data used by Pankratz (1983). The profile t plots for the estimated 

parameters are shonm in Figure 5.1. The corresponding expected profiles are shown 

in Figure 5.2. The shapes of the e+xpected profiles are remarkably similar to those 

of the profile t plots based on the observed data. The expected profile plots reliably 

capture the information about the degree of noniineaxity to be expected. However; 

notice that the likelihood intervals based on the profiie t plots are wider than the cor- 

responding expected likelihood intervals. This is a natural consequence of that fact 

that peculiarities (eg. outliers) in a measured data set beyond the behavior dictated 

by the rnodel, may M a t e  the uncertainties in the estimates of the parameters in a 

proposed model; since expected profiles are computed in the absence of data, they 

FViII not reflect such contributions to the uncertainty- 

Esample 2 is based on an .UtI~I\/IA(2,0~3) model fitted to the "Coal Production" 

data used by Pankratz (1983). Profile t plots for the estimated parameters are s h o m  

in Figure 5.3. The corresponding expected profiles are shown in Figure 5.4. The 

location of the MLE estimates of the autoregressive parameters of Example 2 relative 

to the stability boudaries is shown in Figure 5.6. Example 2 is particularly inter- 



Figure 5.1: Profile t plots for the parameters of Example 1. - - - reference Lue; - Profde 
t plot; - - maximum Likelihood estimates and b i t s  of the 95 % linearization 
and likelihood intervals. 



Figure 5.2: Expected profile t plots for the parameters of Example 1. - - - reference line; 
- Profile t plot; - -  - maximum likelihood estimates and Limits of  the 95 % 
linearizat ion and likelihoo d intervals. 



esting in that the peculiar shapes of the profle t plots for the parameters & and 0, 

are weil approximated by the corresponding expected profles, although the same is 

not true for the other three parameters. Overall, the expected profiles appropriately 

wani of the large uncertainties and nonlinearities associated Nith the estimates of the 

parameters. The " c W  which is a feature of the profile t c w e  for b2 is typical of 

the behaviour of these plots when the vector of parameter values cornes very close to 

a stabilityf invertibility boundaq 

The profile t pIot for parameter qi2 differs most noticeably fiom the expected 

profile. A small scaIe simulation study  ras done to detennine whether this m s  

simply the result of an anomaly in the data or whether the evpected proHe was 

failing to idente  an important nonlinearity of the model. Ten data sets, each of 

96 observations (since there were 96 observations in the observed data set), were 

generated based on the fitted model for Example 2 (Le., based on the maximum 

likelihood estimates for the parameters given in Appendk A). Three of the ten data 

sets resulted in profile t plots for q52 which corresponded well to the expected profile. 

The other seven data sets resulted in profile t plots for 42 which resembled that based 

on the original data set. Therefore, we concluded that the lack of agreement between 

the profile t plot for 42 for the original data and the corresponding expected profile 

is a manifestation of a peculiaxïty in the data generated by this process. Anomalies 

in data can have a dramatic affect on both the ma,.xÏmum likelhood estimates of 

parameters and the uncertainties in the estimates. Clearly, expected proming can 

never inform about data-related anomalies. However, in most cases that me have 

examined, the expected profiles have been successfd in predicting the major features 

observed in the corresponding profile t plots. 

The profile t plots and the expected profile t plots can assume a wïde range of 

shapes. That is, the degree of noniinearity cm Vary dramatically from parameter to 

parameter and from example to euample. The profile t plots for a l l  of the parameters 



Figure 5.3: Prome t plots for the parameters of Example 2. - - - reference h e ;  - Profile 
t plot; - - - maximum likeiihood estimates and iimits of the 95 % iïnearization 
and likelihood int ervals. 



Figure 5-4: Expected profile t plots for the parameters of Example 2. - - - reference line; 
- expected profile; maximum likelihood estimates and Limits of the 95 96 
linearization and iikelihood intervals. 



of Example 1, as meU as the expected profiies for these parameters, behave approxi- 

mat ely Linearly, and likelihood intervals for these parameters are well approximated 

by linearization conf?dence intervats. In contrastl the profile t plots for some parame- 

ters of Example 2 are drastically nonlinear, and hearization confidence intervals for 

these parameters are misleading. 

The nonlinearities displayed in Examples 1 and 2 are consistent with the work 

of Lam and Watts ( lggl) ,  which showed that profile t plots for parameters in t h e  

series models tend to behave noniineady when the parameters are close to a stabil- 

ity/invertibility boundaq- The estimates of the parameters for the mode1 in Example 

1 are well within the stability region (see Figure 5.5), and the profile t plots are rel- 

atively linear, whereas the vector of parameter estimates ia Esample 2 is close to a 

st ability/invertibility boundary and the profile t plots are drastically nonlinear. Note 

that it is not necessarily the pro'cimity of individual parameters to their respectit-e 

individual stability/invertibility limits, but rather the proximity of the vector of -Mt 

parameters in pspace to the closest joint stability boundary, and/or the proxjmity 

of the q-dimensional vector of M.4 parameters to the nearest invertibility boundas: 

that is the determinhg factor. This point is made clear in Example 2, where none of 

the five parameters is '%exfY close to its indiuidual stabiliv/invertibili~ Limits, but 

the vector of AR parameters in 2-dimensional space is close to a stability limit (see 

Figure 5.6). This pro'omity causes several of the parameters to display nonlinearity- 

Espected profiles can be used to obtain reasonable estimates of likelihood inter- 

vals for the parameters of a mode1 a priori  to data collection. Figure 5.7 shows how 

the limits of the likelihood intervals for the parameters of Example 2 are expected to 

change as n increases, At n = 100, the likelihood limits axe very nride, indicating that 

a high degee of uncertainty in the parameter estimates should be expected if the 

estimates are based on less than 100 observations. Indeed, the estimates based on the 

96 observations of coal production were highly uncertain. As n increases, the intervals 



Figure 5.5: The location of the ML estimates of the AR and MA parameters of Example 
1 relative to the stability boundaries. Key: - stability/invertibiLity boundary; 
* 4 vector of ML estimates of the 4(B) parameters; * B vector of ML estimates 
of the 8(B) parameters. 

Figure 5.6: The location of the ML estimates of the autoregressive parameters of Example 
2 relative to the stability boundaries. 



becorne narrower, indicatïng that Iess uncertauity can be e-xpected in the parameter 

estimates. This is a reflection of the increase in the amount of information available 

about the process. The dashed h e s  on these plots represent the h e a r  approximation 

i n t e d s  (Le., the intervals based on the Cramer Rao Iower bounds). The value of 

n at which the espected likelihood intervals coïncide wïth the hearization intervals 

provides an indication of how much data would be required before asymptotic re- 

sults muid be approp~ate.  The n-plots for Example 2 show that for n < 200, the 

luiearizat io n confidence int ervals would be very misleading. 

Figure 5.8 shows the expected profiles for the parameters at  n = 100 and n = 500. 

AS anticipated, the expected profiles based on 500 observations behave more linearly 

than those based on 100 observations, consistent with the asymptotic theory Rrhich 

states that as n approaches infini@ the distribution of the uncertain@ in the param- 

eter estimates approaches a spherical normal distribution. Note that the expected 

profiles in these Bgures are plots of r(g) versus Plots of n versus the iikelihood 

limits also convey information about the increase in linearïty of the estimates a s  n 

increases, as the likelihood intervals approach the Iinearization confidence intervals 

with increasing n. 

Plots of n versus g(B) provide information to e.xperimenters about the relative 

value of acquiring additional data from a process. For example, Figure 5.8 indicates 

that for this iWM-4(2,0,3) rnodel, considerable improvement in the quality of the 

parameter estimates would be expected by increasing the number of observations 

from 100 to 200. However, the gain from increasing the number of observations £rom 

400 to 300 would be minimal. Thus, evpected profiling is a tool which can be used 

to judge the cost/benefit ratio of increasing the length of a data set. 

The comparisons between the expected profiles and the profile t for these two 

examples were done knorving the MLEs of the parameters. However, we propose 

expected profüing as a means for making judgments about acceptable lengths of data 



Figure 5.7: Plot of n versus the uncertainty Lunits for the parameters of Example 2. - - - 95 
% linearization intenmls; - 95 % Iikelihood limits fkom expected profiles; .. - 
maximum Likelihood est imate- 



Figure 5.8: Expected profile plots for the parameters of Example 2. - - - reference line; - - 
- expected profile for n = 500; - expected profile for n = 100; - -  maximum 
likelihood estimates and limits of the 95 % heatization and likelihood intervals- 



sets pnor to experimentation. This reqtxires that guesses be made about the d u e s  of 

the parameters and the form of the model. It is important to appreciate how sensitive 

the expected profiles are to the values of the parameters. It has been our experience 

that the shapes of the expected profiles and n-plots are insensitive to srnall changes 

in the values of the parameters. The shape depends pr imady on how close the vector 

of parameters is to a stability or invertibility boundary- Typically, a data analyst 

will have a good idea about whether a t h e  series is close to being non-stationaq, 

and c m  thereby make a reasonably reliable a prion' judgement about hom close the 

parameter vector is to a stability boundary. 

Because expected profile plots are relatively insensitive to the vaiues of the param- 

eters, we propose that a library of expected profile plots for common AR-;LL4 rnodels, 

over a range of parameter values, be established. This would serve as a quick refer- 

ence for data analysts and would Save the considerable computational effort required 

to generate the n-plots based on the exact likelihood function. 

5.5.1 Full Likelihood Estimation versus Conditional Likeli- 

hoo d Estimation 

As discussed previously in Section 5.4.1, Gnding values of the exact likelihood func- 

tion or the expected value of the exact likelihood function can be computationally 

intensive. For large n, it may be prohibitive- edxpensive to do the nurnber of such 

calculations required to solve the sequence of optimization problems involved in pro- 

filing. The e.qression given in (5.65) requires a si@cantIy smaller computational 

effort than evaluation of the exact iikelihood given in (5.14). Homever, the expected 

profiles obtained based on (5.65) may be significantly different than those based on 

the hl1 likelihood function if the vector of parameter estimates is close to a stabil- 

ity /invertibility boundary. 

Figures 5.9 and 5.10 show the expected profiles for dl based on both the full and 



approximate likelihood functions for Examples 1 and 2, respectively- The computa- 

tional times required to generate these expected profiles axe listed in Table 5.1. For 

Example 1, the promes based on the fidl and appro'cimate likelihood functions are 

almost indistinguishable fiom each other; however, there was an order of magnitude 

difference in the computational time required to produce the profles. For this ex- 

ample, because the vector of parameter d u e s  is far fiom ail stability/invertibility 

boundaries, we recommend the use of the appro.uimate likelihood function. For Exam- 

ple 2 mhere the vector of parameter values is close to a stability/invertibility b o u n d q  

the e.xpected profile based on the approximate 1ikeLihood function ciiffers signincantly 

from that based on the fklI likelihood function. In this case, the extra computational 

time should be expended to obtain expected profles which are reliable. To appreciate 

the magnitude of the difference in computational effort between the full iikelihood and 

the approximate likelihood approaches, consider that the tirne to compute the n-plot 

for Example 1 based on the approximate iikelihood function was 2.6 hours, mhile the 

t h e  to cornpute the same based on the eAqression for the exact iikelihood rvas 173 

hours. CLearly, work is stili required to make the algorithm more efficient in terms of 

computation time so that it can be used routinely- 

Table 5.1: Cornparison of the Computational Times Required for Expected ProfiIing Based 

1 1 (seconds) 1 (seconds) 1 

on the FuU and Approximate Expressions for the Likelihood Function 

Time using Approx. Likelihood Time using Approx. Likelihood 

- 

1 Example 1 

Example 2 

- --  -- - - - - 

1.612 x 103 

5-117 x 103 

- -- - 

1-144 x lo4 
4.134 x lo4 



Figure 5.9: The expected profiles for q5i based on both the full and approximate likelihood 
functions for Examples 1 with n = 84. Key: - - reference h e ;  - - - expected 
prome based on the approximate Iikelihood function, - expected prome based 
on the full likelihood function. 
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Figure 5.10: The expected profles for di based on both the fidl and approximate likelihood 
functions for Examples 2 with n = 96. Key: - - reference h e ;  - - expected 
profile based on the approximate likelihood b c t i o n ,  - expected profile based 
on the fidl Likelihood function. 
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5.6 The Delta Parameterization 

The previous sections focussed on using expected profihg to investigate the expected 

behavior of estimates of individual parameters of -R&/IA modeIs. In this section me 

give an example of using expected profihg to study a hnction of parameters g ( 0 ) .  

Middleton and Goodmin (1990) have proposed the use of the 6 operator (not to 

be confused mith the function b(g))  instead of the backshift operator B. They have 

found t hat t h e  series models and discrete transfer function models are more na turdy  

e-upressed using this operator since the link to the continuous time representation is 

more obt-ious, and the numerical properties of cdcdations based on the 6 operator 

are superior to those using the backshift operator (Middleton and Goodwin, 1986). 

The 6 operator is defined by: 

so that 

where A is the sampling penod, and z is the fornard shift operator. To express an 

ARMA model in terms of 6, m simpiy make the substitution given by (5.67). Shen, 

we express the new model as: 

where #: and 0; are the puameters of the 6 model. Equivalently, 



1+Olf ---+O d e r e  b = ,+o l,---,;, a; = bat, and e* = b2q$ For the time senes models discussed 

in this mrk,  A = 1, 

The new vector of parameters tId can be shom to be a fimction of the parameters 

of the original model. For example, the model: 

may be vnïtten equivalently as: 

Subs :tituting (5.67) into (S.T1), 

Therefore, with A = 1, 

and so on. 

We wish to compare the behavior of the estimates of the parameters of the delta 

model with that of the estimates of the parameters of an equivalent ..ARMA model 

e-upressed using the traditional backshift operator. Figure 5.11 shows the expected 

profile plots for the od pararneters of the model of Example 1 eqressed in terms of the 

6 operator. The expected profile plots for the 6 parameters are much more nonlinear 

than the e-qected profile plots for the ori,ghal parameters. The expected profiles 

suggest that the values of the parameters in the delta model can not be negative. 



Indeed thiç is the case because for stability, 1 + gi + #2 and I f 81 + O2 must be 

greater than 0.25, and + 2 and 81 t 2 must be greater than 1. The Iocations 

of the vectors of parameter estimates for the +d(b) and Od(b) parameters are shown 

in Figure 5.12. Whereas the stabiLiv/invertibiIity region is a closed triangle in the 

space of the original parameters, in the space of the delta-mode1 parameters, the 

stability/invertibim region is infinite with boundaries dehed  by: 

The vector of qjd(b) parameters is closer to a stabili~/invertibility b o u n d q  than is 

the vector of -AR. parameters for the model e-xpressed in terms of B. Therefore, the 

parameters of the model e-qressed in tems  of the b operator display significantly 

more nonlinearity. 

5.7 Expect ed Profiling and Nonlinear Regression 

Models 

VVe have focwsed on expected profiluig of functions of parameters in ARM-4 time 

series models. However, expected profihg can also be used in the context of other 

classes of models uicluding nonlinear regression models. 

Recall that expected profüing is based on the expression 



Figure 5.11: Expected profile t plots for the parameters of the "delta model" of Example 
1. - - - reference h e ;  - expected profile; - maximum likelihood estimates 
and limits of the 95 % hearization and likelihood intervals. 



Figure 5.12: The location of the ML estimates of the parameters of the modd for ExampIe 
1 expressed in terms of the d operator, reIative to  the stability boundaries- 
Key: - stability/invertibiLity boundary; * q5 vector of ML estimates of the 
$(B)  parameters; * 19 vector of ML estimates of the 0(B)  parameters. 

Therefore, expected profiling can be used +th any class of model so long as the 

variance-covariance matrices fi, and 0: can be computed. For nonhear  regression 

models of the form: 

where E is independently and identically distributed additive random error with vari- 

ance 02. When profiling, we presume that the set of parameter I-dues, 6 being 

considered at any iteration of the algorithm represents the vector of true values of 

the parameters, and that the proposed form of the model can adequately describe the 

true process. Under this assumption, Rn = In, where 1, is the n x n identity matrix. 

The elernents of the the s2: rnatrk under the assumption that the 6 represents the 

true values of the parameters are 



Note that to use e,upected profihg in the context of regression models, the complete 

edxperimentd design must be knom. That is, the set of conditions a t  mhich observa- 

tions of y are to be taken must be specged a p r i o r i  In the case of expected profihg 

of a t h e  series model, only the amount of data, n must be specified- 

5.8 Conclusions 

Expected profiles can s e m  as useful appro.xïmations to the profle t plots obtained 

hom a realization of a process. They can capture the significant nonlinearity uiher- 

ent in parameter estirnates for models whose parameter vector is close to a stabil- 

ity/invertibility boundary. n-plots provide useful information about how much data 

rnay be required to obtain acceptable estimates of the parameters (or hnctions of 

parameters) of a model. 

The theory of expected p r o f i g  has been developed and illustrated here using two 

examples. More work is needed to study how mell these methods perforrn over a large 

number of data sets. Several useful ways of plotting the information obtained from 

the expected profiling methodology are proposed, and are intended to emphasize the 

utility of expected profiling in designing experiments. Especially when one has control 

over how much data can be collected, expected profihg can be an important tool for 

deciding how much data wïlvill be "enough". Even for cases where there is little control 

over data collection, expected profiling may be used as a means of deciding mhich 

approaches to computing inference results are appropriate, and for making qualitative 

judgments about the sources of any observed nonlinearities. Bat es and Watts (1980), 

along Mth others, developed measures of nonlineariv to separate nonlinearity due to 

parameterization bom nonlinearity due to the form of the model. Expected profüing 

may be used as a tool to separate nonlinea.rïty due to the data itself fkom nonlinearity 



due t O the mode1 and its parameterization. 

We exploit the dependence of E{?) on n to develop a methodology for use in 

designing the length of an experirnent to collect time series data. We have also used 

expected profXng to address the issue of how much data is required for asymptotic 

results to apply. The n-plot shows how the Likelihood limits for g ( 0 )  are expected to 

change as the vdue of n changes. On the same graph, the expected confidence inter- 

vals based on the Cramer Rao lower bounds are also shown. The distance betsveen the 

limits of the intervals based on expected pronling and those based on the Cramer Rao 

lower bounds provides a qualitative mesure of hom reliable the asymptotic results 

are likely to be for a given value of n. 
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5.10 Appendix 

Table 5-2: Data and Modeis Used in the Examples 
1 Example 1 1 k-ple 2 

1 

Source Pankratz ( 1983) Pankratz (1983) 

Table 5.3: TabIe of Resdts for Example 1 

housing pe&ts data 
n 1 84 

coai product'ion data 
96 

Table 5.4: Table of Results for Example 2 

p(B) 1 YLE / se 
-1-8508 0.07 

Profiling Linearization 

-1-9569 -0-3666 -1.9908 -1,7108 

f 
g ( 8 )  

* 

(6r 

Linearization 
se 

0.22 
MLE 

-1.3027 -1.7322 
0.2602 
-0.5919 
0.1040 

-0.8732 
0.9555 
0.4041 
0.6857 

-1.5916 

#2 ,. 
..- 

A 

O2 

-0,7438 
0.1184 
-0.4710 
0.1193 

0.8554 
0-4950 
0.6780 

0.6079 1 0.17 
-0.0939 0.25 
0.3949 , 0.15 



5.11 Nomenclature 

= white noise sequence 

= backshift operator 

= a constant 

= variance covaxïance matrku of 9 

= sequence of correlated residuds £tom an estimated mode1 

= expected d u e  operator 

= upper a quantile for the F distribution with p 

and n - p degrees of Ereedom 

a function of parameters 

= information matrk 

= iikelihood function evaluated at 0 

= natural logarithm of the likelihood function of B 

= iikelihood ratio 

= oatural logarithm of the iikeiïhood ratio 

= number of observations 

= number of estimated parameters 

= estimated standard deviation of the random errors 

= ~n'n;'~, 
= standard error 

= upper 4 2  quantile of the t distribution mith 

n - p degrees of freedom 

= time at which the concentration of Species A reaches 

a maximum , (weeks) 

= cova.riance at lag u 



Greek letters 

= n x p matrkx of elements vij representing the first 

derivative of f  (xi, O )  wïth respect to the jth parameter 

= a thne series 

= a time series 

= 1 x rn row vector of m independent variables 

= n x p r u a t e  of elements xij representing the level 

of the jth independent varÏabIe for observation i 

= response variable 

= n x I c01um.n vector of values of the response variable 

= fornard shift operator 

= a t ime series transformed using Andey's transformation 

= si@cance Ievel 

= the delta operator 

= studentized value of Bi 

= studentized value of g ( 0 )  

= time delay 

= additive random error 

= n x i column vector of random errors 

- ith - parameter of a mode1 

= rnoving average polynomial of a time series mode1 

= p x 1 column vector of parameters of a mode1 

= covariance a t  lag u 

= covariance a t  lag u 

= variance of the white noise sequence at 



Superscripts 

Abbreviations 

= profile t statistic for Oi 

= prome t statistic for g (B) 

= e-qected value of Z 

= autoregressive polynornial of a time series model 

= the chi-squared distribution with 1 degree of freedom 

= p x I vector of derivatives of at with respect to 8 

= variance covariance matriv for zt 

= n x n covariance rnatrk for y, 

= a true value 

= a maximum likelihood estimate 

= a constrained estimate 

= a parameter of a delta model 

autoregressive 

autoregressive moving average 

autoregressive integrated molkg average 

independently and identically distributed 

moving average 

maximum Likelihood estimate 

partial autocorrelation function 



Chapter 6 

Two New Empirical Measures of 

Nonlinearity 

6.1 Abstract 

Several measures of nonlinearity have been proposed in the literature (Beale, 1960; 

Bates and Watts, 1980; Cook and Goldberg 1986; Clarke, 1987; Kang and Rawlings, 

1998). The drawbacks of these measures include the computational complexity of 

the expressions, and their potential unreliability (Cook and Witrner, 1985; van Ewijk 

and Hoekstra, 1994). We propose a quick and easy measure of nonlinearity for au- 

toregressive moving average (ARM-4) models which is based on the proximity of the 

vector of parameters to a stability/invertibility boundaxy. For nonlinear regression 

models, we propose a pseudo-profig algorithm as a means by- which to estimate 

qualitatively the noniinearity of a function of the parameters of a proposed model. 

Both of these approaches are computationally sirnpler than the measures proposed 

previously, yet they reliably indicate the degree of nonlinearity to be e-qected in a 

function of parameters. 



6.2 Introduction 

For nonlinear models it is common to compute inference results for any function of the 

parameters in the model using linear approximations to the model and to the function 

of parameters of interest. This approach is appealing because it is computationally 

simple; however, inference results based on this method c m  be misleading (Bates 

and Watts, 1988; Donaldson and Schnabel, 1987; Ross, 1990; Lam and Watts, 1991). 

Measures of nonlinearity can indicate mhen it is appropriate to use linearïzation infer- 

ence resdts. The motbation for these measures is a desire to avoid the computational 

burden of iterative approaches to computing inference intervals. However, comput- 

ing power t o d q  is such that, in many cases, the t h e  required to compute iterative 

inference results is insignificant in terms of the overall modeling and analysis effort. 

Profihg (Bates and Watts, 1988; Chen, 1991; Chen and Jennrich, 1996; Quinn et al., 

1999a; Chapter 3), is an iterative approach to computing inference intemals, which 

provides bot h reliable lïkelihood intervals and graphieal displays of the nonlinearity 

of the inference results (Chen and Jennrich, 1996). ÇVe favor the use of profiling 

whenever possible. Nonetheless, there may be cases in which profiIing would be an 

espensive undertaking; one such case would be a time series having thousands of data 

points. Ln these cases there is a need for measures of noniinearity which are readily 

and easily computed. 

The measures of nonlinearity previously proposed in the literature are complicated 

and require expressions for the second derivatives of both the model and the function 

of parameters of interest. For very long time series the Bates and Watts measures 

require the manipulation of large three-dimensional arrays. -41~0, the Bates and Watts 

measures require an iterative search procedure for the ma..ùmum curvature- The 

barriers to the use of these measures are therefore relatit-ely high. Thus, a simple yet 

reliable indicator of nonlinearity is an attractive alternative. 

The paper proceeds as follows. First we review some of the relevant theory and 



literature. 'ïhen we develop a measure of n o d i n e a m  specXcaUy for use in time 

serïes modeling. The measure Ïs based on the proximïty of the parameter vector 

to a stability/invertibilîty boundary. This distance has previously been found to be 

a leading contributor to the nonlinearity of the parameters of time series models 

(Lam and Watts, 1991; QU~M et al., 1999~; Chapter 5 ) .  Subsequently, we propose 

a graphical alternative to profiling which avoids the burden of solving a serïes of 

optimization problems. -Ait hough the Exact statistical interpretation of the results of 

this method is not as readily identified as for profiling, the qualitative information 

provided is a reliable indication of the nonline&ty to be expected. This method is 

proposed for use with nonhear regression models, although it may also be used Nith 

other classes of models, including tirne series models. The paper concludes with a 

review of the ments and limitations of the newly proposed measures of non1inea.rit-y. 

6.3 Some Background on Measures of Nonlinear- 

ity 

The Bates and Watts (1980) measures of nonlinearity were developed for nonlinear 

regression models having the form 

where y is a response variable, x is a vector of regressor variables: 8 is a vector of 

al1 unknonll parameters, and E is an additive random error term which is assumed to 

be independently and identically normally distributed with zero mean and constant 

variance for dl observations. These measures of nonlinearity are based on a geomet- 

ric concept of curvature. Underlying the method is a decomposition of the matrk of 

second derivatives of the mode1 with respect to the parameters. Bates and Watts dis- 



tinguished between two types of curvature: intrinsic curvature and parameter-effects 

curvature. As the vector of parameters 6 is changed, the model function f (x, 8) 

traces out an r-dimensional surface cdled an expectation surface (Bates and Watts, 

1980), also called a solution surface, mhere r is the total niimber of parameters to 

be estimated. When f (x, O )  is Linear, the solution surface is planar. When f (x, O )  

is nonlinear, the solution surface has curvature- Intrinsic nonlinearky is the extent 

to mhich the solution locus deviates from a plane tangent to its sudace at the max- 

imum likelihood estimate of the vector of parameters, 8. This m e  of c-ture is 

independent of the parameterization of the model. Homever, the pararneterization of 

the model does affect the rnapping of points on the solution surface to points in the 

parameter space. For Iinear models, curves of constant Bi trace out straight pa rde l  

lines on the solution plane (Le., the mapping fiom the parameter space is uniform). 

For nonlinear models, the mapping is not uniform and therefore the curves of con- 

st ant Bi are not st raight , nor parallel, nor equi-spaced. Parameter-effects nonlinearïty 

refers to the nonlineady of the mapping of coordinates from the solution surface to 

the space of the parameters. 

To quantifi each type of nonlinearity, Bates and Watts decomposed the acceler- 

ation vector, defined by the Hessian matriu, into three components. To d e h e  the 

acceleration vector, define the following arbitrary straight line in the space of the 

parameters passing through the point Bo: 

mhere h is any nonzero r x 1 vector (Bates and Watts, 1980). The matriv of the 

velocity vectors is 



and the Hessian is 

where H is an n x r x r array. Then, a tangent vector to the solution surface at b = O 

is: 

and the acceleration of line (6.2) is: 

Since H is an array me follow the conventions for denoting the tnro possible types of 

rnatriv multiplication used by Bates and Watts (1980,1988). Square brackets indicate 

that the summation is over the first index of the array. &lultiplication of mays not 

contained within square brackets is such that if A = BC, and B is an a x b x c array, 

then C MI1 multiply each of the (b x c) faces of the array (see Bates and Watts (1988) 

for further details). The decomposition of the acceleration vector can be nrritten as: 

where iif is normal to the tangent plane, 7: is parailel to eh, and jihC is parallel to the 

tangent plane normal to eh (Bates and Watts, 1980). Then the intrinsic nonlineaxity 

is defined to be: 



and the parameter effects curvature is defbed to be: 

To judge the degree of nonluiearity, Bates and Watts recommended that the scaled 

curvature be compared to 1/ JF(T, n - r, a). If y: and y: are both Less than this 

cntical value the nonlinearity is deemed minor or insiflcant- 

The intrinsic cwa tu re  and the parameter-effects curvature are dehed  in terms 

of a directed h e .  Then, Bates and Watts dehned two global measures of n~nlinearity~ 

namely maximum intrinsic and parameter-effects cwatures, where 

and 

and the root mean square intnnsic and parameter-effects curvatures, where 

and 

where dS is an element of the surface area (Ravishanker, 1994). The relationship 

between these measures and Beale's (1960) measures of nonlinearïty and Box's (1971) 

measure o f  bias have been established (Bates and Watts, 1980). 

These global measures of nonlinearity proposed by Bates and Watts indicate the 



maximum and average curvatures of the solution surface in a region about the max- 

imum likelihood estimates (MLE) of the parameters. However, interest in curvature 

is often associated mith particular parameters or functions of parameters. In such 

cases, the interest is not in the overail curvature, but in the c w a t u r e  dong directions 

specified by the hinction of parameters. Cook and GoIdberg (1986), Clarke (1987), 

and Kang and Rawlings (1998) have developed expressions for marginal cwature  

rneasures which indicate the nonlinearity associated mith a parameter or function of 

parameters of interest. 

The marginal measure developed by Kang and Rawlings (1998) can be shom to 

be a generalization of the rneasures of Cook and Goldberg (1986) and Clarke (1987), 

and so o d y  the most general expression nrill be  given here. Some notation is needed 

for the development. The m a t r k  V is subjected to a QR decomposition such that: 

where Q, is an n x p matn'c of orthogonal columnsr and R1 is a p x p upper triangular 

matrk. In terms of the QR decomposition of V, the parameter-effects curvature m a y  

of Bates and Watts (1980) is: 

(Kang and Rawlings, 1998). The m a y  of marginal cwatures proposed by Clarke 

(1987) is defined by: 



and the marginal curvature is: 

where vii is the iith element of (vTv)-l7 yi is the iiith element of I', and s2 is the 

estimat ed variance of the additive noise- 

Kang and Rawlings generalized this resdt to apply to any function of parameters 

= g ( 0 )  as foiiows. Let 

and 

- a24F where D'= %  and^'= ~ h e n  let D @ =  3, 23'- 
adj a@@ aûaû 

0 2 -  6 ce = ((V ) v )-l 

and 



Therefore, the marginal curvature for di is: 

where y! = rmz (Kang and Rawlings, 1998). 

Cook and Witmer (1985) and van Ewijk and Hoekstra (1994) did not h d  a 

strong relationship between the rnaxginal curvatures for the individual parameters of 

the logistic regession mode1 and the reliability of the linear approximation confidence 

intervals for those parameters. Given the sometimes poor performance of measures of 

nonlinearity, together with the complesity of their expressions and the computational 

time required for their evaluation, there is a need for a "quick and easy" measure of 

nonlinearity. 

Xnother graphical means of displaying the nonlinearity associated mith a function 

of parameters g ( 0 )  is the profile t plot (Bates and Watts, 1988; Chen, 1991; Lam and 

Watts, 1991; Severini and Staniswalis, 1994; Chen and Jennrïch, 1996, Qu- et al., 

1999a; Chapter 3; Quinn et al., 1999b; Chapter 4). Chen (1991) developed a method 

for obtaining profiling results for an arbitrary hnction g ( 0 )  by posing the problem in 

terms of a constrained optimization: 

Maximize 



subject t o  the constraint 

where L ( 8 )  is the Likelihood function, and c is a constant. To profile g ( 8 )  is to solve 

a series of these optimization problems for a range of values of c greater than and less 

then the maximum likelihood estimate of g ( 8 ) .  -2 profile t plot is then a plot of 

versus g(ë), where e is the maximum likeühood estimate of 0, and 8 is the location 

of the soiution of the optimîzation problem (6.25) for a specific value of c. Pro&g 

an individual parameter is simply a special case where g ( 8 )  = Bi- Profle t plots are 

also sometimes constructed as plots of ~ ( ~ ( 6 ) )  versus 6 ( - (8 ) ) ,  where 

is the standard error of g(9), and is computed using the expression 

where is the r x 1 vector of partial derivatives of g ( 8 )  Nith respect to the parameters, - 
V=V is the observed Fisher information mat*, s = TL-r is an estimate of the 

standard deviation of the random errors, and 



where eT = (el, e l , .  . . , en) is the vector of residuals. 

When the model and the function g ( 8 )  are Linear in the parameters, the profile t 

plot for g ( 8 )  tviU be a straight line. When either the model or the function of param- 

eters, or both, are nonlinear, then the profile t plot wîU be cm-ed. The departure 

of the profile t plot boom a straight line is an indicator of nonlineaxity (Chen and 

Jennrich, 1996). 

The profile t plot is an attractive way to judge noniinearity qualitatively. How- 

ever, because it involves solving a series of constrained optimization problems, it can 

be computationdy intensive. Whereas likelihood intervals are based on (6.26), lin- 

earization intemals are based on (6.27). The Limits of the linearization confidence 

interval for g ( 0 )  are 

mhere t(n - p, a/S) is the upper a / 2  quantile of the t distribution with n - p degrees 

of freedom. The hearization confidence interval is a popular means of expressing 

uncertainty because the analytic expression for the Limits makes the computational 

effort minimal. However, these inference intervals can be unreliable and even mislead- 

ing mhen the model and/or the hinction of parameters is highly nonlinear. Measures 

of nonlinearïty can be used to decide whether linearization inference results d l  be 

adequate. 



6.4 A Measure of Nonlinearity for ARMA models 

Here, we propose an altemate measure of nonlinearity specificaliy for t h e  series 

models. Our measure is based on the fact that the nonlinearity of the parameters 

of time series models has been found to be closely related to the pro'amity of the 

parameter vector to the nearest stability/invertibility boundary (Lam and Watts, 

1991). The new measure also has the  advantage that its expected value is easily 

obtained in the absence of data- 

Consider an .ARA&4(p1q) mode1 of the fom: 

where $(B)  = ( l+&B+.  . .+QpBP): B(B) = (1 +OIB+. . .+B,B'), B is the backshift 

operator defined as By, = y t - ~ ,  {y,} is an observed stationary stochastic process rvith 

mean zero, and {a t )  is a normally distnbuted white noise process such that aU a, 

are independently and identicdy normdy distnbuted (Le., {a t }  is a sequence of iid 

N(0. O:) random variables). For a time series model, oT = (&, . . . 4p7 4, . . - Bq). 

The total number of parameters to be ekimated is r = p + q, where p and q are 

the number of parameters in the autoregressive (AR) and rnoving average (MA) 

pol~omials ,  respectively. -Uthough 0: is usually unknonm, we estimate it based on 

the modsed residuals of the fitted model (see Lam and Watts, 1991) and we do 

not inchde it in O. Note that a nonstationary or non-zero mean time series may 

be transformed to conform to  the above mode1 by first appropriately differencing or 

mean centering the data, respectively. 

Figure 6.1 illustrates the stabilityfinvertibility region for the parameters of an 

AR(2) or an bIA(2) model. These stability limits are well defined and easily shonm 



for the Zdimensiond case (Box and Jenkircs, 1976; Wei, 1990); homever, in higher 

dimensions, the stabïIity/invertib%ty boundaries are not so readily identifiable nor 

are they easily illustrated. To define a rneasure of nonlineaxîty, we f i s t  transform the 

Figure 6.1: The stability/invertibility region for the parameters of an AR(2) or MA(2) poly- 
nomial is the interior of the triangle. 

parameters of the AR polynornial and then the parameters of the MA polynomial 

using the definition of the partial autocorrelation function (PACF) for AR processes. 



The PACF function is defined by 

where cjkk is the kth partial autocorrelation and pc is the kth autocorrelation (\Vei, 

1990). PACF values may be computed efficient- using the Levinson algorithm (Abra- 

ham and Ledolter, 1983). We apply the definition of the partial autocorrelation hnc- 

tion for an -AFL process separately to the AR. and MA components of the ARhLA mode1 

such that the resulting kth parameter of the MA or .Ut polynomial will be equal to 

6 k k  (as defined for -AR processes). Shat is, we treat each pobomial  as if it were a 

polynomial defining an AR process, and then h d  the values of the PACF on this ba- 

sis. The parameter vector 6 consists of a l l  r PACF values computed in this way- The 

advant age of t his transformation is that the individual st ability/invert ibility limits 

for the new parameters are I l ,  and the r-dimensional stability region is a hypercube 

with sides located at & l  (Astrom and Wittenmark, 1990). This rnakes it easy to corn- 

pute the distance of a vector of parameters q5 from the closest stability/invertibiüty 

boundary. Nso, Zdimensional projections of the stability region can be easily used 

to visualize the position of the r-dimensional vector 4. 



Define q59,,i,, to be the vector of conditional maximum likelihood estimates of aii 

of the parameters (in PACF space) when the parameter Bi is at the upper Lùnit of 

its 95 % Linearization confidence interval, Iet 4,, T I  i, be the vector of values of all of 

the parameters (in PACF space) when the parameter Bi is at the lomer Limit of its 95 

% lineaxization confidence uitenal, and Let 6 represent the vector of unconditionai 

maximum likelihood esthnates of the parameters in P-4CF space. Let &,,, represent 

either 4g, , i , ,  or @g5,i,2. The expressions for the values of the parameters at the limits 

of the linearization confidence interval for Bi are given Iater in (6.38) and (6.39). 

Assume that the vector joining 49,,ij and # provides a good indication of the direction 

in which the parameter vector moves as the parameter Bi is profiled. Ewperience 

has çhom that this assumption is excellent when # and 4g5,ij are 'Ta?' from the 

stability/invertibility boundaries. The assumption breaks down when 4g5,ij is outside 

(or just witithin) the stability/invertibility region. We propose that the distance from 

6 to the nearest stability boundary in the direction # - &s,- j, scded by the distance 

kom 6 to #95c,j, is a usefd measure of nonlinearïty. -An expression for this rneasure 

is developed below- 

First, identie the conditionai maximum likelihood estimates of the r - 1 pa- 

rameters when one parameter Bi is at one of the limits of its confidence interval as 

determined using the iinearization approach. The boundary of the joint (1 - a)100 

% linearization confidence region for the parameten is defined by: 

where F(1,  n - r; a) is the upper a quantile of the F distribution mith 1 and n - r 

degrees of freedom. This expression defines an ellipse whose principal axes are the 

eigenvectors of V*V. The locations of the Limits of the iinearization confidence inter- 

val for each parameter lie along one of these eigenvectors. Note that when individual 



confidence intervaisS as opposed to joint confidence regions, are of interest, the appm- 

priate scaling of the contours is s2F(1, n - r; a)  and not rs2F(r, n - r; a)  (Donaldson 

and Schnabel, 1987) . Also, the Limit of a (1 - a) 100 % confidence interval for an 

individual parameter Bi can be obtained kom 

a9 - where a = aQ = [O,. . . ,O, 1,0,. . . J I T  and the 1 is in row a', and X is a constant 

mhich defines the confidence level. Expression (6.34) can dso be used to locate the 

limits of a hearization confidence interval for a function of the parameters, g ( B ) ,  by 

letting a = g. Substituting (6.34) into (6.33): 

Therefore, 

where = s is the standard error of g(@. 

It has been our experience that the profile t plot for an individuai parameter will 

be significantly nonlinear if, during the profiling process, the vector of parameters 

approaches a stability/invertibility boundary. This is consistent with the work of 

Lam and Watts (1991). As a parameter Bi is profled, the values of the remaining 

(r  - 1) parameters adjust so as to compensate for the change in the value of ûi If, 

upon this adjustment, the vector of the (r - 1) remaining parameters approaches its 



stability/invertibiIity boundary, then the profile t plot for Bi will become nonlinear. 

We illustrate the concepts discussed above by considering a constmcted exampIe 

in nrhich an bLA(2) model has parameter estimates 8 = (-1.2, 0.3). Firçt, repa- 

rameterizing the model using the PACE' transformation defined in (6.32) yields the 
-T 

corresponding estimates @ = (0.9231, -0.3). Then, the upper limit of the 95 % 

linearization confidence interval for is: 

where aT = (1, O), and the location of the lower limit is: 

Note that (6.38) and (6.39) provide the conditional maximum likelihood values of 

the parameters when & is at the limits of its linearization coddence interval. Then, 

let @,,,,,, and @g5,1,2 represent the corresponding lirnits in PACF space. The limits 

of the 95 % lineaxization confidence intervals for the parameters of this constructed 

example are given in Table 6.1. Figure 6.2 shows that tnro of the linear approximation 

Limits Lie outside of the stabili~/invertibility boundary. This would not be the case 

for the correspondhg likelihood limits since these limits remain true to the stabil- 

ity/invertibility boundaries because the Likelihood function decreases sharply as the 

parameter vector approaches a stability boundary, and a penalty is imposed if the 

parameters of the MA function move outside of the invertibility region. 

In general, it is not sirnply the distance of the parameter being profiled fiom its 

individual stability/invertibili@ boundary which is ultimately important in determin- 

ing the nonlinearity of that parameter, but rather, it is the directed distance of 6 from 

a stabiliw boundary dong the vector joining 6 and &5,ij. Let &,ij be the location 



where the the vector from 6, passing through 4g5, i3 ,  crosses a stabilitylinvertibility 

boundary. Referrhg to  Figure 6.2, the distances hom 6 to each of the 4&s may 

be used as a measure of nonlinearïty. The t#Jbrij are found as follows. 

Let 

TabIe 6-1: The Locations of the Expected Confidencc Limits for IUustration 1. 

8 

- 6 

Since RiiU have an element at kl, we look for the parameter (in P-4CF space) 

which first crosses a stability/invertibility boundary in the direction of the vector 

6 - Let 

(-1.2 0.3) 

(0.9231 -0.3) 

q6 - k 
t = min {abs ( .. ) } # - 495$,j 

eg5 ,1 ,L  

& j i 3  

& s , ~ , r  

& J ~ J ~  
4 b ~ , 1  

4 b J , 2  

095,2,L 

095,2,2 

#95,2,1 

&95,272 

4b,2,2 

(-0.1632 -0.6571) 

(-2.2368 1.2571) 

(0.4758 0.657l) 

(0.9910 -1 -2571) 

(0.3156 1.0) 

(0.9728 -1.0) 

(-2.1571 1.3368) 

(-0.2429 -0.7368) 

(0.9231 -1.3368) 

(0-923 1 0.7368) 

(0.9231 -1.0) 

(0.9231 1.0) 
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Figure 6.2: An Illustration of the use of the PACF space to estimate nonhearim Key: * 
represents & o represents c$9s,i,iy represents 495,2,i7 x represents 4bb,i,i7 and 
+ represents c$b,2,i. 

where k is a column of ones and minus ones such that 

Then, 

The distance to the boundary is 116 - # b , i j l l  - CVe propose that the distances from 

4 to each of the can be used as indicators of the anticipated nonlinearity. The 

measure of nonlinearity Ci is defined by: 

There are two values of C for each parameter in the model, one for each of the 

1'76 



two h i t s  of the Iikelihood interval for that parameter. W-e define CT,, to be the 

minimum value of the 27- values of C. When C m  > 1, all of the # b , i  and qb9,,, 

are Nithin the stability limits. When <,, < 1, a t  least one # j g 5 ,  fds outside the 

stability/invertibility region. The closer Cmin is to zero, the more nonlinearity we 

anticipate. 

Note that the concepts have been iuustrated using a 2-dimensionai case for ease of 

display. However, the results readily generalize to higher dimensions since the PACF 

parametenzation is such that the stability region in P-CF space mil1 always be an 

r-dimensional hypercube centered at zero with sides at itl. 

The evpected value of cm, may be computed in the absence of data. The ex- 

pected nonlinearity, &,,,, is computed based on (6.44), the only difference being 

that the locations of the Iimits of the individual linearization confidence intervals are 

estimated based on the Cramer-Rao expression for the variance-covariance matriv for 

the parameter estirnates- The expression is developed as follows. 

where Z is the information rnatriv mith elements: 

and 

For an ARMA(p,q) model, the expressions for the derivatives of a, with respect to 



the paramet ers are (Ravishanker, 1994) : 

Let 

(Astrorn, 1980) and 

Note that 

but 

edd (4 = ee4 ( -4 (6.56) 

Then, in order to calculate ~ o u ( 9 )  based on (6.46) so as to obtain a value for 



we develop the expression: 

6.4.1 Interpreting Cm, 

For an AR process, the derivatives of the model (in terms of the noise at ) with respect 

to the parameters are: 

When rneasured values of y, are available, then E {Yt) = yt and = 0; therefore, 

except for the unknomn initial conditions, the .AR model is linear in the parameters 

(Box and Jenbrins, 1976). Shen, for .4R models, we expect the starting values to have 

a negligible impact on mhen the time series is rnoderately long. The Iinearization 

confidence intervals should be almost exact; except when the vector of parameter 



values approaches a stability boundary. For a pure moving average process: 

and the mode1 is aIways nonlinear in the parameters (Box and Jenklns, 1976). For bf-4 

models, we eAxpect to observe nonlinearity in most cases except when n is large enough 

t hat asymp t O t ic results aie appropriate. However, in our experience, the nonlinearity 

displayed by MA parameters which are not close to an invertibility boundary tend 

to be moderate. It is o d y  when the parameter values approach an invertibility limit 

t hat significant nonlinearity is O bserved. For mived models (Le., ARMiIA(p,q) models) 

the derivatives of a, Mth respect to the parameters are given by (6.49) and (6.50); 

therefore, like the -Xk(q) model, the .A.EtM14(p,q) model is always nonlinear in the 

parameters except when q = O. It is of interest to know how the presence of AR 

parameters affects the nonlineaxity of the kL4 parameters and vice versa. The above 

observations and generaiizations indicate a need for a different set of rules by mhich 

to judge the nonlinearity indicated by Lin and Lin,,? depending on whether the 

model is AR, hl-4 or -4m1-4- 

Illustrative Examples 

Ravishanker (1994) computed the Bates and Watts measures of nonIinearïty for 16 

time series. Data sets 1 to 6 considered by Ravishanker are used here as Examples 

I to 6, respectively, These represent the data sets which were available to us, and 

mhich did not involve seasonal effects. We compare the measure of nonlinearity Cmin 

to the measures of nonlineanty computed by Ravishanker. The results are given 

in Table 6.2, where it can be seen that the indications of nonlinearity provided by 

Lin do not agree nrith those provided by Ravishanker's the indicators. For example, 

the relative curvatures and Y.,, and the root mean square curvatures 



and Y&fs, which are considered to indkate signi6cant nonlineaxïty only when their 

values are greater than 0.3 (Ravishanker, 1994), suggest that Example 6 has relatively 

low nonlinearity- Note that the measures of Bates and Watts indicate significant 

nonlinearity mhen the values of curvature are large (> 0.3), mhereas the measure cmm 
indicates sigdicant nonlineariw when its values are srnall (< 1). Since in Example 

6 Ç,, = 0.2984 is significantly less than 1: severe nonlineaxity is indicated. Indeed, 

the profile t plots for this esample shom severe nonlinearity (see Figure 6.3). Others, 

including Cook and Witmer (1984) and van Emijk and Hoekstra (l994), have also 

found that the Bates and Watts (1980) measures sometimes fail to shom nonlinearity. 

Table 6.2: Measures of Nonlinearity for Published Data Sets 

The most s i b e c a n t  nonlineaxity identified by Ravishanker was for Example 1. 

The value of Cmin for this example is 1.0435. Because this value of cd is only 

marginally greater than 1, it therefore warns of only moderate n~n l inea r i t~  The 

profile t plots for this example (see Figure 6.4) dso show only minor nonhearities. 

The advantage of using cmin as a measure of nonlineaxity is that, in addition to 

using information about the location of the least squares estimates of the parameters, 

it also uses information about the path that the parameter vector is Likely to follow 

as the value of an individual parameter or function of pararneters is changed. This 



Figure 6.3: Profile t plots for the parameters of Example 6 .  Reference line: dashed line; 
Profüe t plot: solid line; Dotted lines indicate the maximum likelihood estimates 
and the limits of the 95 % linearization and likelihood intervals. 



Phi 1 

Figure 6.4: Profile t plots for the parameters of Example 1. Reference line: dashed h e ;  
Profile t plot: solid h e ;  Dotted lines indicate the maximum likelihoodestimates 
and the limits of the 95 % iinearization and likeiihood intervals. 



information is important in determining the nonlinearity observed in the parameters 

of tirne series models because nonhearity in these cases is intimately related to the 

proAxÎmity of the parameter vector to a stability/hvertibiiity boundaryi We empha- 

size that Cm, is a local measure of nonlinearity in that the s c a h g  of the measure, 

and the directions dong  which distances are rneasured, are based on a linear approxi- 

mation of the expectation surface centered at  8. Likewise, the measures of Bates and 

Watts (1980) are also local measures in that they use quadratic information about the 

expectation surface centered a t  0, and the curvature of the hearization confidence 

region in the space of the parameters is often used to interpret the results. 

Table 6.2 also provides values for the expected nonlinearity, Cmk,,, for the six 

esamples. The expected nonlinearity predicts the observ-ed nonlinearity weI1. Plots 

of the locations of the Linearization confidence interval Iimits for individual parameters 

in examples I and 6 are s h o m  in Figures 6.5 and 6.6, respectively. Mso, the Iocations 

where the vectors 4 - 4g,,ja cross the nearest boundary are indicated. Some of the 

values fall well outside the stability/invertibility region for Example 6, whereas 

al1 4,, values for Example 1 are Mthin the stabilitylinvertibility region; although 

tmo are very close to the boundary. Shese graphical displays are simply another 

way of presenting the information delivered by cd. The plots help to reinforce the 

geometrical concepts that form the ba i s  for this measure of nonlinearity. 

Note that some of the discrepancy between the indications of nonlinearity provided 

by Cmin and the measures used by Ravishanker for Example 6 may be due to the fact 

that the likelihood h c t i o n  for this data set bas a t  least two local maxima. If the 

MLEs of the parameters obtained by Ravishanker were bâsed on an alternate local 

maximum, then there could be marked differences in the estimates of nonlinearity. 

The presence of multiple Local optima contributes to the high degree of nonlinearity 

observed in this Example. The maximum likelihood estirnates of the parameters e 
and the constrained likelihood estimates 6 reported in this paper were computed 
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Figure 6.5: Two-dimensional projection plots of the points used to compute cmin in the 
PACF space for Example 1. Key: * represents 6, 0 represent & J ,  represent 
&5,2, x represent &a,i, and + represent &Q- 
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Figure 6.6: Two-dimensional projection plots of the points used to compute Ck in the 
PACF space for Example 6. Key: + represents 6, o represent @95,L, represent 
(b95,27 x represent &,i, and + represent &,,2- 



using an exact likehhood algorithm proposed by Ansley (1979). 

6.6 An alternate measure of nonlinearity for re- 

gression models 

Profile t plots provide a qualitative measure of nonlinearïty for functions of param- 

eters (Chen and Jennrich, 1996). For profile t plots of r versus g(0 ) ,  the deviation 

of the profile from a straight Line having dope l / ~ e ( ~ ( ê ) )  and passing through the 

point (g (0) , O) is indicative of the nonlinearity of the solution surface in the direc- 

tion associated nrith changes in g ( 6 ) .  This deviation incorporates both intrinsic and 

parameter-effects nonlinearity. 

Homever, as noted previously, profiling may be computationally intensive because 

it requires the solution of an optimization problem before the value of T can be 

computed for a specïiied value of g(0) .  That is, at each iteration of the profiüng 

algorithm, a search is done for the values 6 which rnaximize L ( 6 )  given a constra.int 

on g ( B )  . Then, the profile t plot for g ( 8 )  indicates the nonlinearity of the solution 

surface in the direction along the locus traced by 6. For linear rnodels wïth additive 

independently and identically normally distributed (üd N(0,  O*) )  noise, the contours 

of L(8)  are a series of concentrïc ellipses, and the path traced by 8 will be a straight 

line if g(B) is also linear. For the case of an individual parameter of the model, 

the line will be defined by an eigenvector of the (v*v)-L rnatrix. For nonlinear 

models the contours of L(B) d not be perfect ellipses, the contours of g ( 0 )  ndl not 

necessarily be straight Lines, and the path traced by 8 will not be straight. However, 

in a region about 8, the model and the function g(0) nrill behave hea r ly  and the 

path followed by 8 may be appro-ximated by (6.34)- Like the measures developed for 

ARMA models, much of the work here is based on  the geometry and algebra of the 

linear case as developed in Section 6.4. 



To overcome the computational intensiw of profiling, we suggest a pseudo-profig 

algorithm mhich eliminates the optimization problem. Instead of cornputing T based 

on 8, we compute r on the bais  of d u e s  of 0 dong the straight Luie defined by 

(6.34). At each iteration of the dgorithm, we compute 

The resulting pseudo-profile t plot is based on the tnie 1ikeIihood function and there- 

fore provides reliable information about the intrinsic nonlinearity of the solution sur- 

face in the direction defined by ( v ~ v ) - ~ ~ .  
We propose trvo plots to display the information gathered during pseudo-profiling. 

These are presented here for the case mhere the additive error is iid N(0, a2). For a 

. series of values of a, compute 8amm. Then cornpute s(ëam,) when dealing with 

a nonlinear regression mode1 having iid N(0,o;) additive random error; othernrise 

cornpute L(&,,). Note that 

for nonlinear regression models, and 



O themise- Therefore, compute 

and compare this vahe to 

where fi,., is the value of the F statistic that modd be obtained if the mode1 and 

the function g(0 )  were both t d y  Linear. Then, plot ASSE = ~(8~,,,) - s(@ 
versus Fiinear. -4itematively, or additionally, plot ASSE versus 

where X iç a rneasure of distance horn &,, to ê. On our plots we also indicate 

the levels of F- corresponding to ASSE. A step-by-step algorithm for constructing 8 
a pseudo-profile plot is given in Figure 6.7. The form and interpretation of this plot 

is similar to one proposed by Cook and Weisberg (1990). However, they computed 

their resultç using optimized values of 6. 
Examples of such plots are shown in Figure 6.8. These were generated for the 

Puromycin example of Bates and Watts (1988) and may be compared to the profile 

t plots for this example which are given in Figure 6.9. 

Plots (a) and (c) in Figure 6.8 represent two different mays of displaying the 

pseudo-profihg information for di, while plots (b) and (d) display the information 



1. Select a value for a (me begin mith a = 0.5 and end Nith a! = 0.05; 
Le., we begin inth a 50 % confidence level and end mith a 93 % 
confidence level) . 

S. Compute 

3- Locate 

4. Evaluate ~ ( 6 ~ ~ ~ ) .  

5- Compute ASSE = s(&,,) - ~(6). 

6. Calculate F8 = S* 

7. Repeat Steps 3-6 for 

8. Repeat Steps 2-7 for several values of a. 

9. Plot ASSE versus A- 

IO. Plot ASSE versus Fa. 

Figure 6.7: A stepby-step algorithm for computing pseudo-profiles for nonlinear regression 
models. 



for O?. The solid b e s  represent the pseudo-profiles while the dashed h e s  are ref- 

erence lines representing the resuits for hear appr~~ximations to the model- These 

linearization reference lines are equivalent to those displayed on profile t plots, and as 

such, they can be used to obtain linearization confidence intervals for the parameters- 

The amount by which a pseudo-profile deviates &om the linearization reference 

line is a qualitative mesure of nonlùiearity- Considering the plots in Figure 6.8, the 

branch of the pseudo-profile for B1 representing values of O, less than 0, deviates only 

slightly Erom the reference Iine, indicating that the nonlinearity is very mail, and that 

the linearization resdt for the iower b i t  of the confidence internai for Br would be 

an escellent approximation of the lomer LUnit of a profiling-based likelihood interval 

for this parameter. The nonlinearity displayed for values of BI greater than 6 1  is more 

pronounced but is still moderate, and depending on the application, the linearization 

approximation result may be adequate. 

The pseudo-profiles for B2 (panels (b) and (d) in Figure 6.8) show that this param- 

eter behaves more nonlinearly than 0,. The dotted horizontal Lines help to identify 

the values on the ordinate axïs that correspond to various Levels of confidence. These 

lines make it easy to see how rapidly the nonlinearity of the problem increases as the 

level of confidence increases (Le. as the value of a decreases). 

Although these plots do not provide a single number by which to quant* the 

nonlinea&y, the graphitai displays are easy to interpret and provide the user with 

much more information about the nature of the solution surface than would a single 

number. The plots also allow the user to decide whether or not the nonlinearity is 

"severe" in the conte*t of the application. 

Figure 6.9 shows the pseudo-profihg information superimposed on the tmo profile 

t plots. For this example, the pseudo-profiles are almost coïncident with the tme 

profile t plots. Only at values of T above tmo do the pseudo-profiles deviate siightly 

from the profile t plots. 
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Figure 6.8: Pseudo-Profile plots for the parameters of the Puromycin Example. KEY: - 
pseudo-profile plots; - - reference Ene. 



Figure 6.9: Profile t plots and pseudo-profiles for the parameters of the Puromyci. Example. 
KEY: - profile t plots; .- pseudo-profües; - - reference line. 



Figure 6.10: A sketch of a profile t plot for which the likeiihood interval is shorter than the 
linearization interval- 

It is possible to predict the direction in which a pseudo-profile wili deviate from 

the corresponding profle-t plot. When the true profile t plot shows nonlinearity 

of the form s h o m  in the sketch in Figure 6.10 (Le. when the Likelihood interval is 

narrower than the linearization confidence interval), pseudo-profiles overestimate the 

nonlinearity because they are not based on optirnized values of 8. At any point on 

the pseudo-profile, s(&,,) Nill always have a value greater than or equal to s(& 
where ~ ( 8 )  is the sum of squares of residuals used to construct the true profile t 

plots. In this way, the pseudo-profile Nill lie on or above the profile t plot for values 

of g ( 8 )  greater than g(8), and on or below the profile t cuve  for values of g ( 0 )  

less than &. Conversely, when the tme profile displays nonlinearity that  has the 

general shape shown in Figure 6-11: the pseudo-profile Riil1 tend to underestirnate the 

nonlinearity because s ( & ~ ~ , )  will again be equai to or greater than ~(6); but in 

this case the increase in the surn of squares of residuals wili tend to place the pseudo- 

profile closer to the the linearization confidence interval. However, we have found in 

practice that pseudo-profiles are good approximations to the true profile t plots and 

that they capture the nonlineariv of the problem. 



Figure 6.11: A sketch of an 'S7 type profile t plot. 

Conclusions 

A new measure of nonlinearity for time series models has been proposed. For the 

examples considered here, and in other cases we have studied, the indications of 

nonlinearity provided by the measure Cmin correlates mell with the observed nonlin- 

earities. However, more work is required to see how Lin pecforms for a broader range 

of examples. FVe have found that significant nonlinearity can be e-qected mhen cm, 
is less than one. -4s a measure of nonlinearity, cm, has the added advantage that 

its expected value c m  be computed in the absence of data. <min,, may be used to 

provide important information about hom much nonlineariv to expect in the results 

of a proposed application. This could influence the amount of data collected, and 

ultimately, the statistical tools required to analyze the data. 

For the case of nonlinear regression models, a pseudo-profiling algorithm has been 

proposed for judging qualitatively the amount of nonlinearity to expect in a b c t i o n  

g ( 0 ) .  This algorithm is more attractive than the true promng algorithm because it 

does not involve any numerical optimizations. It also does not require the cornputa- 

tion of Hessian matrices as do the measures of nonlinearity previously proposed in 

the literature. Alt hough this methodology has been illustrated and discussed in the 



context of nonlinear regression models, it can aIso be used with any class of modeIs 

as long as a Likelihood h c t i o n  for the parameters of the mode1 c m  be specïiied. 

The two approaches to measurïng nonlinearity proposed in this paper are meant to 

be "quick and ea@ indicators of the degree of nonluieaxïty of individual parameters 

and functions of parameters of proposed models. They are memt to be reliable, 

yet it avoid the cornplexïty and computational intensity of measures of nonlinearity 

proposed to date- 
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6.9 Nomenclature 

=p x 1 vector of partial derivatives of g ( 9 )  

1~6th respect to 9 

= a constant 

= a constant 

= n x 1 column vector of residuals 

= upper cr quantile for the F distribution with p 

and n - p degrees of fi-eedom 

= a function of parameters 

= any nonzero p x 1 vector 

= n x p x q Hessian array of second derivatives of 

t(x, 8 )  with respect to 0 



= p x 1 vector of ones and minus ones given by 

s m  (6 - 4%) 
= a rneasure of the distance fiom 4 to the 

nearest stability/invertibility boundaxy 

= likelihood function evaluated at 0 

= marginal cwa tu re  for & 

= number of observations 

= order of an ,4R po1ynomial 

= order of an hI-4 polynomlal 

= total number of estimated parameters 

= estimated standard deviation of the random errors 

= sum of squared errors 

= standard error 

= upper cr/2 quantile of the t distribution with 

n - p degrees of fkeedom 

= n x p matrïx of elements U c j  representing the 6rst 

derivative of j(xi, O )  with respect to the jth parameter 

= 1 x rn row vector of m independent variables 

= n x p matriu of elements x, representing the Level 

of the jth independent variable for observation i 

= response variable 

= n x 1 column vector of values of the response variable 



Greek letters 

Cmin 

= sipificance IeveI 

= intrinsic nonlinearity 

= parameter-effects curvature 

= ma,xïmum intrinsic cwature 

= rna,xhnum parameter-effects curvature 

= root mean square intrinsic cwature  

= root mean square parameter-effects curvature 

= studentized value of Oi 

= studentized value of g ( 0 )  

= additive random error 

= n x 1 column vector of random errors 

= mesure of nonlinearïty for AR-bIA models 

= minimum value of the 2p vitlues of C 

= tangent vector to the solution surface at b = O 

= acceleration of an a r b i t r a l  straight line 

in the space of the parameters 

= acceleration normal to the tangent line 

= acceleration paralle1 to Qh 

= acceleration parallel to the tangent plane and normal to 

- - i th  parameter of a mode1 

= rnoving average polynomial of a time series model 

= p x 1 column vector of parameters of a model 

= point in the parameter space 

= location of a k t  of a linearization confidence interval 



Superscripts 

= constant mhich defines the confidence level 

= covariance at Iag 24 

= ratio of the distance fiom 6 to eb to the 

distance fiom 6 to 4,,, 

= correlation at lag u 

= variance of the white noise sequence at 

= profile t statistic for Bi 

= prome t statistic for g(B) 

= expected value of Z 

= p x 1 vector of parameters defined by the partial 

autocorrelation transformation 

= point where the vector joining 6 and 4jsjIij 

crosses a stability/invertibility boundary 

= upper Limit of the approximate 95 % 

confidence interval for & 

= lower limit of the approxïmate 95 % 

confidence interval for q5i 

= autoregressive polynomial of a time series model 

= the chi-squared distribution wîth 1 degree of fieedom 

= p x 1 vector of derivatives of at with respect to 0 

= n x n covariance mat ri^ for y, 

= a true value 

= a maximum likelihood estimate 

= a constrained estimate 



Abbreviations 

autoregressive 

autoregressive moving average 

independently and identicdy distrïbuted 

moving average 

maximum likelihood estimate 

partial autocorrelation hioction 



Chapter 7 

Measuring Uncertainty in 

Control-Relevant Statistics 

7.1 Abstract 

To make appropriate decisions based on comrnon indices used in control, both the 

point estimates and their uncertainties must be known. Furthemore, the burgeoning 

field of robust control requires that bounds on the model uncertainty be specified. We 

present generalized profiling as a means by which to reliably estimate the pararnetric 

uncertainty in b c t i o n s  of parameters of transfer hinction models. Many control- 

relevant statistics, such as model predictions and gain margins, can be conceived of 

as being functions of parameters of proposed process models. Generalized profiling 

is a flesible tool for measuring uncertain@ due to estimated parameters, and there- 

fore: can sa t ise  the demands of robust control. For mdti-step-ahead predictions, me 

develop a methodology for computing likelihood intemals which accounts for both 

parameter uncertainty and uncertainty due to unknown future noise. 

When more than one function of parameters is being considered simultaneously, 

it is appropriate to quant@ the joint uncertainty by specifying a likelihood region. 



We adapt the profile pair algorithm of Bates and Watts (1988) to efficiently sketch 

joint likelihood regions for tnio or more functions of parameters. To illustrate the 

method, likelihood regions are sketched around several points on Nyquist plots- The 

likelihood approach preserves the important engineering characteristics of the prob- 

lem, including the fact that the uncertainty in the imaginary component goes to zero 

at steady state. 

7.2 Introduction 

In the design and tuning of controilers, there is almost dways a need for a process 

model. Early approaches to control assumed that the model described the process 

exactly; âne tuning of the controlIer after design and implementation mas used to 

adjust for any discrepancies between the model and the true plant. Later, those in 

the field of robust control embraced the premise that ai l  models are wrong, and a 

plethora of design strategies were put fornrard which took account of known mode1 

uncertainty at the design stage (Morari and Zafiriou, 1989). Despite the incompat- 

ibility of the notion that a model can not be knom exactly, with the notion that 

the limits on the uncertainty can be specified exactly, those in the field of system 

identification responded to the dernands of robust control and proposed algorithms 

for i d e n t w g  hard error bounds for process models (Gunnarson, 1993; Zhu, 1989). 

Hard error bounds are guaranteed upper bounds on model uncertainty. This concept 

is at odds with traditional statistical uncertainty (confidence) bounds mhich have a 

specific probability of enclosing the true value of the statistic. S tatistical uncertainty 

bounds, also called soft error bounds, have been developed in the area of system iden- 

tification, and these now seem to be in favor (Goodwin et al., 1992; Schoukens and 

Pintelon, 1994; DeVries and Van den Hof, 1995, Canale et al., 1998). In this paper we 

present in detail a statistical algorithm for estimating uncertainty in model parame- 



ters, model predictions, and any other hinction of the parameters. We suggest that 

this "soft" approach to quantifjing uncertainty is consistent with sound statistical 

practice, and indeed, the philosophy underlying the field of robust control. 

There are three main factors which contribute to uncertainty in models fitted to 

data: 

noise in the data 

changing plant dynamics 

a choice of model form mhich can not capture the true process dynamics (Zhou 

and Kimura, 1994). 

In this work, we assume that plant dynamics are constant, and that the "true" process 

can be adequately described by a mode[ of the proposed form. StiU, the noise inherent 

in al1 experimental data causes modeIs fitted to data to be approxïmate. They are 

approximate in that there is uncertainty in the estimates of the pararneters. This 

uncertainty in the parameters propagates to any other quanti@- calculated on the 

basis of the proposed model. How "good" a model is deemed to be depends on the 

purpose for which the mode1 is being used. For esample, it may be that the estimates 

of the parameters of a proposed rnodel are highly uncertain, but this same model rnay 

be able to give predictions which are close to the true d u e s .  In that case, the model 

would be "bad" if the values of the parameters themselves were of interest, but would 

be "good" if the mode1 were to be used for predictive purposes. 

The field of robust control has had a positive influence on system identification in 

that it has brought to the forefiont issues about model uncertainty. Kowever, it has 

also rneant that most of the attention has been focused on uncertaïnty in the rnodel 

predictions or frequency response. There are many other quantities (control-relevant 

statistics) which are calculated and used routinely in control. Many of these can be 

looked upon as being functions of the parameters of the proposed model. For example, 



the gain margin is an important control-relevant datistic which is a Eunction of the 

parameters of a proposed model. The gain margin can be defhed as the inverse of 

the amplitude ratio at the crossover fiequency, where the crossover frequency is any 

frequency at  which the phase shift is -180°. The gain mit~~gin, then, depends ody 

on the form of the mode1 and the values of its parameters. If the parameters of the 

rnodel are only estimates of the true parameters, and are therefore uncertain, then 

the gain margin, or any other h c t i o n  of the parameters, calculated on the basis of 

the proposed model, is also uncertain. Other evampIes of functions of parameters 

used in process control include: model predictions, crossover frequencies, and many 

measures of controller performance (Shirt, 1997). Generalized profiling is presented 

here as a means of computing reliable likelihood intenmls for functions of parameters. 

The importance of generalized proâling extends beyond the realm of robust con- 

trol. In al1 aspects of engineering it is as important to quant* the uncertainty in 

ao estimated value as it is to quanti@ the vaiue itself. TypicaUy, those who have 

recognized the need for uncertainty estimates have reported the uncertainties as con- 

fidence intervals based on h e a r  approximations to the model and to the function of 

parameters of interest. These linearization confidence intervals have been shonm to 

be often unreliable, and sometimes misleading mhen used in conjunction with regres- 

sion models (Donaldson and Schnabel, 1987). In this paper me discuss nonlineaxïty 

observed in control-relevant statistics, and we compare linearization confidence in- 

tenmls to likelihood intervals obtained using generalized profiling. Comments are 

made about the adequacy of the linearization results in the context of functions of 

psrameters of transfer function models. We demonstrate the application of profiling 

to individual functions of parameters, including the gain rnargia and multi-step-ahead 

predictions, and to multiple functions of parameters considered simultaneously, such 

as points on a Nyquist plot. Shirt (1997) examined generalized profiling for estimat- 

ing uncertainty in measures of controuer performance. The profihg algonthm failed 



in this case (Quinn et al., 1999a; Chapter 3), and an altemate method was proposed. 

We also discuss issues related to  the use of profiluig in cases where a fitting criterion 

other than maximum likelibood is used- 

This paper is structured as follonrs. In this section, some examples of functions of 

parameters of interest in control have been introduced; subsequently, these examples 

serve illustrative and investigative purposes t hroughout the paper. In Section 7.3, 

generalized profiling is introduced dong Nith some alternative approaches, including 

the iïnearization approach. Section 7.4 provides details regarding computational i s  

sues. Section 7.6 contains severd examples used to illustrate generalized profiling, 

and to identiS. its merits and limitations. The focus is on demonstrating the use of 

generalized profihg in control applications, and on comecting generaüzed profiling 

to issues in system identification, d ~ a m i c  design of e>cperiments, and robust control. 

Uncertainty Intervals 

7.3.1 The Linearization Approach to Confidence Intervals 

In this paper the tenn "linear model" is being used in the statistical sense to mean 

a model which is linear in the parameters. Accordingly, the term "nonlinear model" 

used in the st  at istical sense should be dist inguished £Yom the corresponding tenn 

used in the engineering sense, which refers to models which are nonlinear in the state 

variables or regressor variables. 

For a single input single output (SISO) model, a general discrete transfer function 

model can be nrritten as (Ljung, 1987) 

where q-' is a backshift operator such that q-'yt = y,-' and A(q- l ) ,  B(q-'), C(*-'), 



D(q-') and F(q-') are polynomiaIs having the form: 

A(q-') = 1 f aLqdL + . . . f an,q"" 

and d is the delay between a change in the manipulated input variable ut and its effect 

on the output variable yt. Note that this general model includes within its structure 

specific model types such as the autoregressive moving average (ARMA) model, the 

autoregressive moving average behavior with exogenous inputs (-WI-LX) model and 

the Box-Jenkins model (Ljung, 1987). It can be verified that a general transfer 

function model is nodinear in the parameters. That is, the partial derivative of yt with 

respect to at ieast one of the parameters is, itself, a function of the parameters. The 

exception is the .W( model (ARM-LX model with no moving average component) 

which is linear in the parameters since it can be nriitten as: 



and in difference form as: 

From the difference equation we can see that yt is a h e m  function of past inputs 

and outputs wïth additive normal white noise. It has been s h o m  that linear least 

squares inference results are exact for this case (Soderstrorn and Stoica, 1989). Note 

that a finite impulse response (FIR) model is a Iinear model included w i t b  the -RY 

structure. 

Aithough confidence intervals are wïdely quoted in the system identification lit- 

erature, it is important to understand that they are almost invariably approxïmate 

confidence intervals based on first hearizing the nonünear model and any nonlin- 

ear function of the parameters. This linear approximation approach is attractive in 

that it provides computationdy simple results. However, Bates and Watts (l98O), 

Donaldson and Schnabei (198'7), and others have shom that, in the case of nonlinear 

regression models, Iinear approximations are often unreiiable and possibly misleading. 

For all types of models (eg. mechanistic, empincal, steady-state, dynamic, etc.) 

which are nodinear in the parameters it is cornmon to estimate confidence i n t e d s  for 

individual parameters by first taking a linear approximation to the nonlinear mode1 

and then applyïng the linearïzation inference results. The following is an o v e ~ e n r  

of the Iinearization approach to confidence intervals, based on Quinn et al. (1999a) 

(Chapter 3). 

Consider a general model of the form: 

where the function f (xt, O )  is the expected value of the response variable y, , xt is a 

vector of the levels of rn independent variables x = (xl, xl, . . . , xm) at tirne t, 0 is 



a vector of p parameters, and at is the additive random error term associated with 

y,. The terminology used to refer to this mode1 and its variables changes depending 

on the context. The independent variables x are also referred to as input variables 

or manipulated variables. y, is also c d e d  an output vazïable or a controued variable. 

Equation 7.9 can be mïtten in terms of a vector of n observed response values 

Y = (YI, Y27 - .  - ? f 

where X is an nxm matLu of x values or functions of x Nith element zi j representing 

the level of the jth x variable for observation i, and a is the n x 1 vector of at values- 

A Linear model is a special case of (7.9) where 

and X is an n x p mat- of functions of the x values. When the model is linear 

and the noise is additive and identicdy and independently normally distributed (i-e., 

i id  N ( 0 ,  u2)) ,  then 

where xT is a pelement row vector of functions of the x values, and the exact analflic 

confidence interval for the ith parameter is: 

where ii is the least squares estimate of the P parameter, t(n - p, a/2) is the upper 



4 2  quantile for the t distribution with n - p degrees of fkeedom, 

is the standard error of the ith parameter estimates, s = is an estimate of the 
n-P 

standard deviation of the randorn error: ~ ( 9 )  = eTe is the minimum sum of squared 

residuals foc the fitted model, e = y - $j is the vector of residuals, = f (X, 0) is 

a vector of fitted response values, and [ ( x ~ x ) - ~ ] ,  is the ith diagonal e n t q  in the 

inverse of the information matrix- 

A (1 - n)100% confidence interval for a parameter is the set of values of that 

parameter mhich has a probability of at least (1 - a)100% of including the true value 

of the parameter. The confidence interval for any linear h c t i o n  of the parameters 

g ( 8 )  = hT8 is: 

where h is a p x 1 vector of constants. Note that the expected value of a prediction 

at xk from a linear mode1 is a linear function of the parameters where hT@ = ztO.  

There are no such exact analytic results for the confidence intervals when the 

model is nonlineu. To use the linearization results in the case of a general nonlinear 

model, the nonlinear model and the function of parameters g ( 0 )  can each be linearized 

using first order Taylor Series approsimations centered at 6. Then, the well-known 

linear inference results can be applied. That is, the likelihood interval for any function 

9 ( 8 )  is 



the values of some of the elements of V depend on the initial conditions of the {a t )  

series. We exploit the fact that 

to compute the derivatives numerically- using the prediction errors obtained using 

Kalman filtering (see Section 7.4). In this may, we appropriately account for the 

unknom initial conditions in the cdculation of V. 1s also possible to estimate the 

initial conditions usuig backcasting (Box and Jenkins, 1976) and to then use these 

estimates to compute the elements of V. 

The linear appr~~ximation to the general traasfer function is 

where 

and oT = (aL,. - -  ,ana,bo, 61, - - -  > b n b , ~ ~ ,  - - -  , ~ ~ ~ , d l ,  - - - ,&d, f i ,  .-. ,fnf) (i-e-, 0 is the 

vector of ail paxameters to be estimated) *th 

and 

Linear inference results for any nonlinear function of the parameters, g(O), can be 



obtained by linearizing the h c t i o n  as 

In system identification, it is often argued that such a linearization approach is justi- 

fied on the basis that the Iinear inference results are the asymptotic result as n + oo, 

and large amounts of data are common. However, there has been little evidence to 

support these daims, and the amount of data which constitutes a "large amount" is 

seldom quantified. 

Although the linearization approach provides a quick analytic means of finding 

confidence intervals, it can be misleading because it does not account for the curvature 

of the expectation surface nor the nodineaxity of the mapping of 8 from the obser- 

vation space to the parameter space (Donddson and Schnabel, 1987; Ratkowsky, 

1983; Bates and Watts, 1980). Taking account of these shortcomings is the moti- 

vation for profilingr which, being an opt imization-based numerical met hod, is more 

computationally intensive- 

7.3.2 Profiling 

Profiling (Bates and Watts, 1988; Chen, 1991; Lam and Watts, 1991; Severini and 

Staniswalis, 1994; Chen and Jennrich, 1996, Quinn et al., 1999a; Chapter 3) is a 

graphical means by which to display inference results for parameters, and functions 

of parameters, of proposed models. Bates and Watts (1988) developed the algorithm 

specifically to summarize inferentiai results for parameters of noniinear regession 

models. Lam and Watts (1991) extended the theory of profilhg to encornpass time 

series models using a modified sum of squares appropriate for time series models. 

Chen (1991), and Chen and Jennrich (1996) developed the theory of profihg in 

terms of likelihood ratios and constrained optimization. This formulation of the 



profihg algorithm is very generd and may be used wïth several classes of models, 

including thne series models. Furthemore, the constrained optimîzation approach 

readily accommodates the computation of inference resdts for functions of parameters 

(Quinn et al., 1999a; Chapter 3). 

Profiling is based on the r statistic 

This esqxession for r is general in that it may be used to  make inferences about 

functions of parameters of any model so long a s  an e-pression for the likelihood 

function can be found- 

It is cornmon to e-press uncertainty in an individual estimated value by a confi- 

dence interval. .Uthough often abused, the term 'tonfidence intemal" has a precise 

statistical definition rooted in the fiequency theorj- of probability (Kendall and Stu- 

art, 1967). We d l  use the term "likelihood interval" to describe an uncertainty 

interval obtained using generalized profihg so as to respect the statistical dehition 

of confidence interval. A nominal (1 -a) 100% likelihood interval for g ( 0 )  is the set of 

all values of g ( 0 )  mhich are plausible +th probability (1 -a) 100% aven the available 

data. From standard asyrnptotic arguments (Cox and Hinkley, 1974), 

where LI(g(8) )  is the ( 1  - a)100% likelihood interval for g(t?), L(0)  is the iikelihood 

function for 8, and Xa(l) is the upper a quantile for the x2 distribution with 1 degree 

of freedom, & is the vector of masïmum likelihood estimates of the parameters, and 

0 is any allowable vector of parameter values (Chen and Jennrich, 1996). Equation 

(7.24) states that a (1 -a) 100% likelihood intemal for g ( 0 )  includes al1 possible values 



of g(0) over the region in the parameter space defined by -2 In 

Note that the iïkelihood ratio statistic foilows asymptotically the X2(1) distribution 

(Cordeiro et al., 1994), except in special cases where it is exact. In order to account 

for uncertaïnty in the value of the variance of the randorn error a*, we compute 

(1 - a) 100% iikelihood intervals based on 

where F(1, n - p; a / 2 )  is the upper a quantile for the F distribution with 1 and 

n - p degrees of freedom (Cook and Weisberg, 1990). In other words, a (1 - a)100% 

likelihood interval for g(8) is the set of all  g(8) for wbch 

where t(n - p ,  4 2 )  is the upper a/2 quantile for the student t distribution with n - p  

degrees of freedom (Bates and Watts: 1988). 

To find a Likelihood interval for g(0), we solve a series of constrained optimization 

problems of the form: 

Maximize: 

subject to: 

Let the location of the solution to this problern be 8. Then, a profile t plot is a plot of 

~ ( ~ ( 8 ) )  versus g(8)) for a range of values of c. The Limits of a (1 - a)100% likelihood 



interval for g(0) can be read from the profile t plot by hding those values of g ( 8 )  

which define the points on the profile at r = *t(n - p, a/2). ORen it is of interest 

to judge the relative noniinearity of a parameter, or fimction of parameters, so as  

to know hom reiiable the linearization inference results would be- A reference line, 

6(g(B)) versus g(O),  is typically included 

W 0 ) )  = 

on prome t plots, where 

This reference h e  may be used to obtain the linearization confidence intervals for 

g(O),  and to judge the relative curvature of the parameter or function or parameters 

(Chen, 1991). The generalized profiling algorithm is aven in Figure 7.1. 

7.3.3 Other Approaches to Estimating Uncertainty 

As an alternative to the graphical profiling approach, the upper limit of a likelihood 

interval for g ( 8 )  may be found by reformulating the optimization problem as follows: 

Mauimize g(0) 

Subject to S(0) 5 7 

where y is a constant chosen based on the desired level of confidence, and the variance 

of the additive white noise. In this work we use 

Similarly, the lower b i t  of the likelihood interval may be found by minirnizing g(0) 

subject to the same constraint. This procedure amounts to locating the maximum 

and minimum of the function g(8) over the joint confidence region for 8. Chen 

(1991), and Khorasani and Milliken (1982) proposed approximations of this minimiza- 



L- Using a noniïnear optimization package, find the maximum Iiketihood estimate (MX) of 
9- 

2- Compute the LfLE of g(8), and define g = 9(ê), 

3- Compute an estimate of the variance OF the additive random ermr (Le., compute s2)- 

4- Cornpute ~ o v ( @ ,  the covariance of the estimated parameters. 

6- Set the index i to L, and let gotd = 9- 

7- Move the value of g ( 8 )  away frorn by a m a i l  amount A (i-e., gi = gold f A)- A good 
starting value for 4 is se(j)/5, 

8- Use a constrained nonlinear optimization package to soive the constrained optimization 
problem, rnauimize L(8) subject CO g ( 8 )  = gi -  The Location of the constrained optimum 
is 8- 

9. Compute 

10- 1s ]rit 2 t ( n  - p , a / 2 ) ?  If yes, continue, if no, set g,rd = gi, set i = i 4- 1, and retum to 
Step 7, 

LL. 1s A negative? If yes, continue- if no, set g,rd = 9, set i = i + L, let A = -A and return 
to Step 7. 

12- Fit a srnooth curve through gi versus r i  and use this to End the d u e s  of g(9)  at T = 
*t(n - p,  4 2 ) .  These are the Iimits of the (1 - a) 100% IikeIihood interval- 

13. Compute the limits of the (1 - a) 100% linearization confidence interval using 

L4. Constmct the profiIe t plot by plotting, on one figure, ri versus gi, and Ji versus gi. 

Figure 7.1: A stepby-step algorithm for profiling a function of parameters g ( 9 ) .  



tion/mâ.ximization procedure. Although the minimization/ma.vimization procedure 

results in the same uncertainty intervals as  those obtained by profihg, profihg is 

considered superiur because: 

1. the optimization problern solved during each iteration of the profihg algorithm 

is more iikely to converge than the optimization problem in (7.29). 

2. the graphical presentation of the information gathered when protiling is useful 

for assessing the overall behavior of the solution surface. 

Cook and Weisberg (1990) and Clarke (1987) proposed methods for estimating un- 

certainty which are closely related to profil@ 

ResampLing methods have been used to obtain likelihood intervais for parameters 

of nonlinear models (Alpen and Gelb 1990; Bolviken and Skovlund, 1996). Shese 

methods are based on finding empirical approximations to the distribution of the 

statistic of interest by repeatedly simdating the system and estimating the statistic. 

Such methods include: Monte Car10 simulation, the Jackknife procedure, and the 

Bootstrap procedure. These methods are attractive because they require no a priori  

knowledge or assurnptions about the distribution of the statistic. 

The demands of robust control theory have motivated recent work on q u a n t m g  

uncertainty in proposed process models. Cornmon hard bounding algorithms include: 

the "unknom-but-bounded noise'' dgorithm, the "eilipsoidal" algori thm and "set 

membership" algonthms (Goodwin et al., 1992). Wahiberg and Ljung (1992) used 

set membership theory with a geornetrical justification to develop hard error bounds 

for linear transfer function modek Mth bounded noise- The contributions to the er- 

ror bounds by noise, transient effec ts due to unmodeled disturbances, and rnodeling 

error due to model/system mismatch were aJl  eaxplicitly identified. Other work on 

developing algorithms for hard error bounds includes contributions by Giarre et al. 

(1997), Gunnarson (1993) and Zhu (1989), among others. Ackay and Ninness (1998) 



quantified bounds in different noms for modeIs developed using rational basis h c -  

tions. Worst-cases system identification has been studied by Chen et al. (1995) and 

Dahleh et al. (1993). Regardless of the method, the hard bounding approaches result 

in error bounds nihich are highLy conservative. They are necessarily so to ensure that 

even the worst case is enclosed by the bounds. Often, the bounds are unnecessarily 

conservative because conservative parameter space bounds can becorne even more 

conservat ive mhen transformed to transfer func tion space if the transformations are 

based on approximations to the true e-xpectation s h c e  defined by f (x, 8).  

Hard bounding approaches are often advocated on the basis that robust control 

theory requires strictly true and knonm error bomds. Homever, for real systems, 

there is always uncertainty about the mode1 and the disturbances entering the sys- 

tem- Therefore, we believe it is unrealistic to propose methods to determine certain 

error bounds. To achieve near certainty, hard bounding methods overestimate the 

uncertainty and produce error bounds ~ ~ h i c h  are inappropriately wide. Goodwin et 

al. (1992) argued that hard error bounds are inappropriate because prïor assumptions 

about noise, disturbances and control actions can never be knom absoiutely, and so 

the idea of certain limits is misguided. By this argument, a probabilistic approach is 

more consistent nrith the realities of system identifxation. 

Soft error bounds are not guaranteed to contain the system performance, but 

rather are said to have a specified probability of containing the system performance. 

-2 soft approach to estimating error bounds for transfer hinction models mas developed 

by Goodwin et al. (1992). They considered error due to bias fiom modeI/system 

mismatch and error due to noise in the measured data. The b i s  error tvas estimated 

by assuming a stochastic prier rnodel for the distribution of the unmodeled dynamics. 

This mode1 was embedded h to  the system estimation problem so that its parameters 

were estimated dong with the parameters of the system model. These ideas were 

extended by Schoukens and Pintelon (1994) to ailow for the case of colored noise in 



continuous-time systerns explored in the fkequency domain. Like most work to date 

in this area, the method is restrïcted to models mhich are linear in the parameters- 

Goodmin et al. (1992) did apply their met hod to an -4RR,LAX model by &st linearizing 

the model. The authors claimed that theii- method performed weU even for this case- 

The methods proposed in this paper can be used mith a broad range of models, 

including nonlioear models. 

DeVrîes and Van den Hof (1995) adopted a mixed deterministic/probabilistic a p  

proach to determining error bounds, accounting for three sources of nncertainty: un- 

dermodeling, noise disturbance and unknown initial conditions. The model error due 

to unmodeled dynamics and unknown past input signals were considered determinis- 

tic worst-case quantities, and the noise disturbance was considered to be stochastic. 

Their algorithm was a two-step approach mhereby the bias was estimated first, and 

the noise uncertninw was estirnated second. Again, only hea r  finite impulse response 

(FIR) models were considered. 

Ninness and Goodwin (1995a) examineci the relationship between bounded-error 

and stochastic estimation theory, and showed that for many problems, the two ap- 

proaches are equivdent when a Baysian framework is used. A good overview of 

estimating uncertainty in models used for control is given by Ninness and Goodwin 

(1995b). 

In this work, we adopt the belief that if a proposed model can not be rejected on 

the basis of graphical and numerical validation tests (Box and Jenkins, 1972; Ljung, 

1987), then there is no basis for assuming a deficiency in the form of the model 

nor significant bias in the model estimates. The methods me propose account for 

parameter uncertainty only (except in the case of k-stepahead predictions), implyïng 

that the form of the proposed model is sufficiently general to capture the dynamics 

of the true system. 



7.4 The Likelihood Function and Estimation 

If it is assumed that each random shock at is independently and identically normally 

distributed Nith zero mean and variance a:, then the Likelihood hinction L(O) for the 

unknonm parameters 8 is 

where y, is given by (7.1) and 032 denotes the n x n covariance matriv for y. 

There are several possible approaches to estimating the parameters of a transfer 

fimction of the form given in (7.1). However, since generalized profiling is a likelihood- 

based approach to estimating uncertainty? aJI parameter estimation for the purposes 

of profiling has been done on the b a i s  of maximum likelihood. In Section 7.5 we 

discuss profiling in the context of alternative estimation criteria (Le. criteria other 

t han maximum likelihood) . 

Several algorithms for computing the value of the Likelihood function for transfer 

function models have been proposed. Lam and Watts (1991) based their profiling 

calculations on the expression for the exact likelihood iùnction of an AR&L4 mode1 

develop by Ansley (1979). Homever, many others have proposed expressions and 

algonthms for computing the exact iikelihood. Some of these include those oE New- 

bold (1974), Ali (1977), and Ljung and Box (1979). Harvey and Phillips (1979), 

and Astrom (1980), among others, have developed algorithms based on the Kalman 

filter. Expressions for the exact likelihood function for vector MLMA(p,q) processes 

have been developed by: Osbom (1977), Phadke and Kedern (1978), Hillmer and 

Tiao (1979), and Nicholls and Hall (1979). These, of course, can also be used for the 

special case of univariate ARMA models. 

We have considered four Merent  algorithms to compute Likelihood intervals. Two 

of the algorithms are exact maximum Iikelihood methods. One is based on the al- 



gorithm proposed by Ansley (1979), and the other uses time-vaqing Kaiman fil- 

tering (Astrorn,19~0). The other two dgorithms are pseudo-maximum likelihood 

approaches. The " a p p r o ~ a t e  Likelihoodn rnethod is based on the optimization of 

an approximate likelihood h c t i o n  wïth respect to the pzameters and the unknown 

st arting values. The "conditional iîkeliho~d'~ aigorit hm uses backcasting to compute 

unknomn starting values (Box and Jenkinç, 1976). 

Ansley 's aigorithm is based on a clever transformation of an AFUMA-type model. 

The procedure for using h l e y ' s  aIgorithm in the context of transfer h c t i o n  mod- 

els is given in Figure 7.2. However, me have found that fidl maximum likelihood 

estimation using K h a n  filtering is more cornputationally efficient. Both met ho& 

produce the same estimates and are interchangeable. The results reported here have 

been cornputed using time-varying Kalman filtering. Only a very brief o v e ~ e w  of 

Kalman filtering be given here. For further details refer to Ljung (1987) and 

Astrom (1980). 

To use time-v-g Kalman filtering, the transfer h c t i o n  must be expressed in 

state-space form. We consider a state-space mode1 having the form: 

Let 



L- Wi5te the transfer function mode1 in the form 

2. Assume that  al1 ut are known, even for t < 0. Alternatively, assume that the process was 
operating a t  steady state prior to the experïment, i.a., ut = O, t c O, where ut is expressed 
in terms of dedations Erom set point, 

3- Then, using initial estimates of the parameters, compute the filtered senes 

4- Compute 

5. Xow write t he  mode1 as  a time series 

4(q-')wt = fl(q-')ae 

where b(q-L) = , l(q-')D(q-') and ~ ( q - ~ )  = C(q- l ) -  

6- Xnsley's transformation k 

where m = rnm(na x nd,nc), and na, nb, nc and nd are the degrees of the poIynomials 
A(q-'), ~ ( q - ' ) ,  C(q-') and D(q-L) ,  respectivdy. Let: 

The series ut is autocorreIated onIy up to Iag q. Then, the covariance rnatrix for tt has a 
ma.ximum bandwidth of m for the 6rst m rows and a bandwidth of nc thereafter (Ansley, 
1979). See &dey (1979) for an efficient way to cornpute the LikeLihood based on the 
tcansformed senes Zr .  

Figure 7.2: A step-by-step algorithm for maximum likelihood estimation of a SIS0 transfer 
function mode1 (rnodified fiom Ansley, 1979). 



Then, the time-varying Kalman filter is (Ljung, 1987) : 

Because K (t) and P (t f 1) are tirne varying, th& formulation of the Kalman filter is 

able to deal with the transient properties of the estimation problem rvhich are intro- 

duced when the state of the systern prior to t = O is u n h o m .  When implementing 

the Kalman filter, numerical problems can arise. There are several recommended ap- 

proaches called factorization (Chui and Chen, 1987) methods which should be used in 

such cases. However, for the examples considered here, no numerical difliculties were 

encountered. In this work, Kalman filtering is used to compute an unconditional 

estimate of e which is then used to cornpute the value of the likelihood function. 

-&strorn (1980) gives a thorough discussion of the use of Kalman fltering to compute 

maximum likelihood estimates for parameters in a transfer function model. 

The approximate likelihood algorithm is based on augmenting the number of pa- 

rameters to be estimated. If the starting values for the series at and yt were knom, 

then the likelihood function codd be mitten as: 

where e = y - @ is the n x 1 vector of residuals. Then, the maximum likelihood esti- 

mates would be equal to the least squares estimates. We compute approximate MLEs 

by mawirnizing (7.41) Rrith respect to the parameters and the initial conditions for 

at. The resulting estimates are not the tme m ~ u m  likelihood estimates and they 



c m  be severely biased when only a short data set is available (Thiçted, 1988). The 

rneasures of nonlinearity introduced in Chapter 6 can be used to decide mhether the 

vector of parameters is "close" to a stability/invertibility boundary. The conditional 

likelihood algorithm is also based on (7-41). In t h  algorithm, the initial conditions 

for a, are estimated using backcasting (Box and Jenkins, 1976) and then the value of 

the likelihood function is computed using (7.41). 

Ali calcdation and visualization mas done in ~ L ~ T L B ~ " .  PL~TLAB~'' 's sim- 

plex algorithm used to soIve aLi unconstrained optimization problems, wMe 

MATLN~~' '  's sequential quadratic programming (SQP) algorithm was used to solve 

dl constrained optimization pro blems. 

7.5 Alternate Estimation Criteria 

Profiling is based on the T statistic, mhich in tuni is based on the likelihood hinction 

for the parameters. Estimation based on the principle of maximum likelihood can 

be jus tified using st atis tical arguments; however, t here are many O t her estimation 

criteria that can be justified by the intended end use of the model. For example, if 

a model is being developed for a process with dead time d, and this model is to be 

used to design a controIIer, then it may be appropriate to choose parameters which 

minimize the d-step-ahead predictions. 

Here we attempt to identify some of the issues involved in using profiling in the 

context of models fitted using a multi-step-ahead prediction error criterion. The 

development of an explicit methodoiogy for using profiling with other than mas ïmun 

likelihood estimation is Ieft for future work. When prediction errors are independently 

and identically normally distributed (for euample, in the case of nonlinear regession 

models), the r statistic can be rvritten in terms of sums of squares of residuals as 



follows: 

In this case, S(0)  - s(@ can be shown to be independent of s2 (Freund and Walpole, 
* 

1987), and consequentiy, the ratio s ( 8 ) ~ s ( 8 )  can be shown to follom an F distribution 

with one and n - p degrees of freedom. 
- -  - 

When es t imahg parameters on the basis of k-step-ahead predictions, we ir;;r;?;nize 

where &t-k is the optimal k-stepahead prediction of y, given information up to and 

including tirne t - k. One approach to using profiling in this 

compute 

context woufd be to 

(7.44) 

where eal, is the vector of parameter values mhich minimizes S(B). As above, s2 is an 

estimate of the variance of the white noise process. However, d e n  using an alternate 

estimation criterion, it may be appropriate to use an alternate estimate for s2, for 

example s2 = S(9) /(n - p) . To use .f to compute uncertainty intervals wodd require 

that its sampling distribution be knom. The task of deriving an expression for the 

distribution of 7 is complicated by the fact that the residuals Et = y, - ijtIt-k are 

autocorrelated, and S(B) - S(eal t )  and s2 are not necessady independent. 

The key to deriving the distribution of F may lie in the fact that to minimize S(9) 

is to solve the weighted least squares problem 



where W is a square matrk  of weights. The weights may also be functions of the pa- 

rameters. Mat hai and Provost (1992) discussed the distribution of ratios of quadratic 

forms in random variables. It is by evploiting the properties of quadratic forms that 

we foresee the use of profihg in the context of alternate estimation criteria. 

Illustrative Examples 

-411 examples considered in this section are based on a second-order discrete system 

mhich is described by the mode1 

We will refer to (7.46) as Mode1 1. As noted by Shirt et al. (1994), the parameters 

of Mode1 1 are close to the stability boundaries for a second-order system. In PACF 

space (see Chapter 6) the vector of parameters is qjT = [0.0172, 0.90; 0.9901, -0-74081. 

With this parameterization it is easy to see that the vector of parameters is close to 

one side of the stability/invertibility region which is a hypercube wïth sides at f 1. 

Lam and FVatts (1989) showed that, for ARMA models, paraneters near the stabil- 

ity/invertibility boundaries tend to show significant nonlinearïty. One purpose of the 

current study is to i d e n t e  whether linearïzation confidence intervals are reliable for 

control-relevant statistics for this system. It is useful, then, to consider a system for 

which they might reasonably be expected to be poor- The variance of the white noise 

input a: was chosen to be equal to 0.0361. This results in the disturbance l-o&l at 

having a variance of 0-19. The total variance of the simulated yt series was 0.51. The 

system, then, h a  a high signal to noise ratio. We dl show that despite this high 

ratio, the parametric uncertainty and nonlinearity are significant for the several of 

the functions of parameters we consider. 

In examples where a controller is considered, we employ one of tnio controllers. 



Controller 1 is a Dahlin controiler (Seborg, 1989) designed such that, in the absence 

of disturbances, the closed loop dynarnics of the systern are expected to follow a 

first-order-plus-dead-time model. This controuer has the fonn 

where is a tuning constant which is related to the discrete time constant of the 

desired closed loop system, and 

is the true process model. For our example we choose y = 0.5. Mthough selecting 

y = 0.5 results in a very aggressive controller, the controiler is useful for illustrative 

purposes. In practice, values of y in the range 0.95-0.98 would be more reasonable 

since they would result in a controller which mouId cal1 for moderate changes in the 

manipulated variable. With y = 0.5 

Note that the controller has a pole at q-' = 1, causing it to have integral action* 

In practice, G;(q-')is never hem exactly, but rather is estimated by G~(~- ' ) ,  

where G , ( ~ - ~ )  is assumed to have a fom such that it can capture the true process 

djmmics, even though the parameter values are only estirnates of the true parameters 

values. Therefore, the controiler is implernented as 



In the section on prediction (Section 7.6.4) we consider a multi-stepahead control 

algorithm (Ydstie et al., 1985) and we refer to it as Controuer 2. 

-4 generalized binary noise (GBN) test signal (Tulleken, 1990) was used for iIlus- 

trative purposes. GBN test signals are sequences of inputs alternating between two 

levels, where the switching of the signal from the lonr level to the high level or vice 

versa is governed by a probability ps,itding- The parameter psw*tding is the probabil- 

ity at any sampling point that the signal mill remain a t  the same level. The value 

of pswitching mas chosen to 0.9, and the levels K t c h e d  between plus and minus one. 

The length of the data set used for identification can have a profound affect on the 

quality of the estimates of parameters and functions of parameters, as can the spec- 

trum of the input sequence. For the purposes of identification and inference, me used 

a simulated data set consisting of 500 observations of the process- 

7.6.1 The Parameters 

The first example of a function of parameters we d l  consider is the individual pa- 

rameter fi in the model 

That is, ive choose 

The profile t plot for fi  is shown in Figure 7.3. See Table 7.1 for the estimation 

results for al1 of the parameters of the fitted model- 

Although a reasonably long data set was used for identification, the profile t plot 

is significantly nonlinear and the 95% linearization confidence interval [-1.92 -1.441 

differs from the 95% likelihood interval [-1.85 -1.31j- The difference betmeen the 



hvo intervals becomes more pronounced as the level of coiifidence increases (Le. as 

a decreases). To rely on the lineazization approximations for this example wodd be 

to underestimate the uncekainv in the estimate of fi with regard to vdues greater 

than the maximum likelihood estimate, and to overestimate the uncertainty for values 

of fi less than the MLE. For this example Ce (see Chapter 6) was equal to 1.5, 

indicating moderate nonlinearity. The parameter fi was dso nonlinear, having a 

95% Linearization interval [0.48 0.911 which differed fkom the 95% Likelihood interval 

[0.34 0.871. -As stated above, the signal to noise ratio was relativelp high in this 

example. The lower the ratio, the more uncertainty Mil be present in the estimate of 

a function of parameters. This uncertainty translates into Rrider likelihood intervals. 

Often, the nonlinearity increases as the signal to noise ratio decreases, although this 

is not necessady so, and me advocate the use of profihg to ensure 

nonlinearïty is accounted for in a q *  case. 

that signXcant 

Table 7-1: Table of Maximum Likeiihood Estimation Results- 

In the statisticai literature the emphasis has been on quantifying uncertainty in 

estimates of parameters of models, and on designing experiments to improve those 

estimates. Control specialists have long recognized that this emphasis is not always 

consistent with their needs. Most often in control applications, the values of the 

parameters themselves are of little interest. Usually the objective is to develop a 

mode1 which captures some aspect of the behavior of the true system. A flexible 

control-relevant approach to designing experiments was presented in Ljung (198'7)- 

Mode1 

1 

Input 

1 

MLE 
0-0199 

-0.8878 

-1.6783 

O -6989 

s2 1 Parameter 1 Tme Value 

0.0172 0-036 b L 

dl -0.9 

f i  -1.7236 

f2 1 0- 7408 



In the work for this paper, the emphasis is on illustrating the use of generalized 

pro Wng for control-relevant h c t  ions of parameters. In cont rol, decisions are based 

on functions of parameters and not on the parameters themselves; therefore it is more 

important to identiSr reliable Iikelihood intervals for the functions of parameters of 

interest rather than for the parameters thernselves. This is especially true since the 

uncertainty and nonlinearity of individual parameters is not necessarily reflected in a 

hnction of those parameters- 

Figure 7.3: Profile t plot for parameter fi. 

7.6.2 Steady-State Gain 

A11 three of the parameters in the process model (7.52) showed some noniïnearity. 

However, it does not follow that al1 hinctions of these parameters d l  also be non- 

linear. The value of the steady-state gain of the process described by this model is 



given by the e,upression 

gain = bo 
1 + f l  +f2 

Therefore, the gain is a function of the model parameten. The profile t plot for the 

gain of this model is shown in Figure 7.4. Mthough the individual parameters axe 

nonlinear, the gain behaves relatively hearly and the lineaxization confidence interval 

for this h c t i o n  of parameters is a good approximation of the corresponding Uelihood 

interval. This suggests that the noniinearïty of this estimation and inference problem 

could be reduced by choosing to fit a model of the fom: 

instead of the model given in (7.52). T t  is not uncornmon for a function of parameters 

to behave Linearly when one or more of the individual parameters behave nonlinearly, 

or conversely, for a function of parameters to behave noalinearly mhen al1 of the 

parameters behave Iinearly (Quinn et al., 1999a; Chapter 3). We hope that this work 

highlights the need to consider each model and function of parameters individually, 

and that it emphasizes the need to exercise caution when making assumptions about 

the appropriateness of Linearization confidence intervals. 

7.6.3 Gain Margin 

The gain margin was defined in Section 7.2. It is an important control-relevant statis- 

tic used to measure robustness and stability (Palmor and Shinnar, 1981). Typically, 

Bode plots are constmcted for the plant-plus-controuer system as operated in open 

loop. That is, the transfer function 



Figure 7.4: Profile t plot for the steady-state gain. 
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is of primary interest, where GC(q-') and G, are defined in (7.49) and (7.48), respec- 
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For this example we consider model (7.52) and Controller 1, so that 

0.7 O. 8 0.9 1 1.1 1.2 1.3 1.4 
Steady-State Gain 

In practice, a controller is designed based on the "best" process model G , ( ~ - ~ ) .  Once 

designed and irnplernented, me assume that G,(*-~) is fixed (Le., the controiler is 

not adaptive). Go&-') is computed based on the maximum Likelihood estimates of 

the model parameters; therefore, when the controUer is implemented, Rie e.xpect that 

GoL (q-') may not behave exactly as plamed because G~ (q-L) is only an estimate of 

the true process ( P h o r  and Shimar, 1979). 

To profiie the gain margin of Go&-') we consider the controller to be fived 

and examine only the idluence of the uncertainty in GP(q-') on the gain rnargin. 



We are interested in knowing what values of the gain margin are plausible once a 

given controller with fked parameter values is implemented on the real procesç. Our 

emphasis is on the fact that we know exactly what controller is to be implemented on 

the process, but we donTt know the process e x a c t -  Although we assume the process 

to be "fi~ed'~ in so far as Rie assume that the true system does not change over time, 

we do not have an exact model for the process. Tt is the uncertainty in the process 

mode1 that contributes to the uncertainty in the estimate of the gain margin. 

A profile t pIot of the gain margin of GoL(q-') is shom in Figure 7.5. For this 

example, the 95% hearization confidence interval [O38 5 -121 includes values less t han 

one, which indicates that at the 95% confidence level, there is statistical evidence to 

suggest that the closed hop process may be unstable. However, the lower Limit of 

the 95% likelihood interval is 1.37, leading to the conclusion that the closed-loop 

system d be stable. The upper iimÏt of this interval is 6.64. The controller plus the 

true process is stable with a gain margin of 3.50. Especially when safety is a critical 

issue, it is important to have reliable estimates of the uncertainties of any statistics 

of interest. 

So far we have considered one case, the case in which the parameters of the 

controller are fiued, and uncertainty in the observed data propagates to the estimate 

of the gain rnargin through the parameters of the process model. There are two other 

cases that may be of interest in some applications. 

In Case 2, the values of the parameters in the process model are "fked", and the 

uncertainty in the gain margui arises fiom uncertainty in the values of the parameters 

in the controller. In Case 3, the values of the parameters in both the model of the 

process and the model of the controller are considered to be uncertain. 

The inference results obtained in Case 2 d, in generd, not be the same as 

those that would be obtained by £k ing the values of the parameters in the controller 

but considering the parameters of the process model to be uncertain (Case 1). To 



Fi,aure 7.5: Profile t plot for the gain rnargin of the Model 1 based a Drrhlin controIler. 

illustrate that dsererent results can be obtained, me constructed a profile t plot for 

Case 2. The 95% likelihood interval for GoL (q-') for this case was [1.32 5-94]? which 

is quite different from the interval found for Case 1. 

In some cases, it may be of interest at the design stage to consider the full range 

of plausible values of the gain margin in light of uncertainties in both the parameters 

in the controller transfer function and the parameters in the model (i-e. to consider 

Case 3). That is, we may be interested in the question: given a set of plausible 

controllers and a set of plausible models, mhat is the range of plausible values for the 

gain margin? 

Conceptually, we are irnagining the following scenario. If me were to perform a 

sequence of identifxation experiments, me mould i d e n t e  a set of estirnates for the 

parameters from each e-qeriment- From each set of parameter estimates 0' we would 

design a controller wïth parameter values B2. In this way me mould i d e n t e  a set 

of plausible values for the parameters of the process model and a corresponding set 

of plausible values for the parameters in the controlier. In the case of the Dahlin 



controller, the two sets are the  same since the pararneters that enter the process 

mode1 are the same as those that enter the controiler tramfer frrnction- These ideas 

are illustrated in Figure 7.6. Here me show that if we identify the set of values 

represented by point A in the set of process pararneters, then me would design a 

controller having values represented by point A' in the set of controller parameters. 

Set 1 

Process Mode1 Parameters 

Set 3 

Contro iler Parame ters 

Figure 7.6: An Ïllustration of the mapping of values in the set of process parameters to 
resulting values in the set of controUer parameters- 

It is possible, homever, that a controller having parameter values represented by 

point A' would actually be implemented on a tme process process that has parameters 

with values actually represented by point C. CVe are interested in knowing the range 

of possible values values for the gain rnargin, given that any combination of process 

paramet ers and controlier parameters from mit hin t heir respective allowable sets is 

possible. This is a fundamentally dBerent problem than Case 1 where the values of 

the controller pararneters were &ed. 

For the problem involving a set of controller transfer functions and a set of models, 

profiling in its standard form can not be used. Difficuities arise ftom the constraint 



imposed by the controlIer design algorithm. If we attempt to profile the gain margin 

using the standard a igo r i th ,  then me End that the vaiue of the gain margùi Rrill 

always be equd to its maximum likelihood estimate. This is because no matter what 

values of the parameters we may consider for the process, me wiII design a controller 

to produce the desired closed-loop behavior, the behavior that is characterized by the 

maximum likelihood estimate of the gain margin. 

Case 3 is a combinatorid problem in which we are loolûng for all possible values 

of the gain rnargin arising from all possible combinations of dowable values of the 

process parameters and controller parameters- Such probIems are better solved using 

resampling met hods- 

7.6.4 Prediction 

In al1 areas of chernical engineering, models are fitted to data and subsequently used 

to make predictions . When dynamic models are being used, several scenarios can 

arise: 

1. -1 pure time series model or transfer function model is identified. The data used 

in the identification are dso used in making the predictions. 

2. -4s in Scenario 1, a dynamic model is identsed, but in this case, the prediction 

is made using a set of input/output data other than the one used to fit the 

model. 

3. An input/output model is developed for the purposes of control. In this case, 

there may be several additional computational steps required before making a 

prediction, and it is possible that the fonn of the disturbance model will be 

changed to design the controller and make predictions. Controi problerns c m  

be furt her sub-classified as: 



(a) regdation problems, whereby the objective is to reject disturbances enter- 

ing the system 

(b) tracking problerns, mhereby the objective is to follow changes in the set- 

point. 

Especiaily in model-based control, the accuracy and precision of the rnodel pre- 

dictions have direct influence on controuer performance- Therefore, it is important 

to know the uncertain@ in predictions- IdeaUy, this information should be avdable 

at the design stage. Profilhg may be used to estirnate uncertainty in k-stepahead 

predictions made in any of the cases o u t h e d  above; homever, it is important to first 

cIearly define the problem and decide which sources of uncertain@ are important. 

There are several ways to formulate an expression for a k-stepahead prediction 

(.kstrorn and Wittenmark, 1990). Using the Diophantine identity, an expression for 

the k-step-ahead prediction can be developed as foIIows. Rearrange the general tram- 

fer function equation given in (7.1) so that it is mitten as (Ljung, 1987) 

where 

and 



Then, use the Diophanthe identity 

mhere P(q-L) is a polynomial of degree k - 1, to decompose N ( Q - ~ )  into past, present 

and future terms (.htrom and Wittenrnark; 1990). The kstepahead prediction is 

For t - d + k < O assume ut-d+k = O. IL1 other words, since ut is a deviation variable, 

we are assuming that the input to the system was constant prior to t = 1. For 

k - d > 0, use the values of ut+t-d Chosen by the multi-step-ahead mode1 predictive 

cmtroller described later in this section. 

The "prediction errai"' is 

which is a weighted sum of the sequence of future random errors. The expression in 

(7.65) is based on the assumption that the parameters are k n o m  perfectly- In other 

words, uncertainty in the parameters does not contribute to the uncertainty in the 

prediction. 

We want to use profihg to estimate likelihood intervals for &+k,t that d l  take 

into account parameter uncertainty. Pnor work in this area (Reinsel, 1980; Reimers, 

1995) has been limited to models which are linear in the parameters. We propose 

the use of profiling to account for parameter uncertainty mhen the mode1 of interest 

is nonlinear in the parameten. To foilow the profiling procedure given in Figure 7.1, 

and to compute the profiling statistic T in the usual way (Le., using Equation 7-23)] 

is to cornpute likelihood intervals for the mean or expected value of the k-step-ahead 



prediction. By this approach we are accounting for parameter uncertainty in the  

prediction but we are neglecting the uncertninty due to the unknom future random 

errors. That is, we are neglecting P(q-L)at+k. 

To establish a means by which to account for both the  uncertainq due to param- 

eter estimation and the uncertainty due to unknomn values of future random shocks, 

we look to the theory on inference about predictions fiom h e a r  regression models. 

For linear regression models, a (1 - a)100% confidence interval for the prediction of 

the mean value of the model fs 

where xo is a vector of values for the regressor variables detennined by the conditions 

for which the prediction is required. This expression does not account for the unknown 

future random shock a t c ~ ,  just as standard profiling of &+kit would not account for 

the future error P ( q A L ) a t , k .  However, a ( 1  - a) 100% confidence interval for a specific 

future value of a steady-state linear system is given by 

This expression accounts for the uncertainty due to the unknown future random 

shock at+l by adding to the square of the standard error of P the term s2 which is 

the variance of a,,~. When the model and the function of parameters are both linear 

in the parameters 



and 

Then, add the e-pression for the variance of the future random error to both sides so 

that 

where 0; is the variance of the term accounting for the contribution of the unknom 

future errors to the prediction. For regression models, og - s2, and for transfer 

function modeIs 

where pi represents the ith coefficient of the polynomial P(q-'). Therefore, 

Likelihood intervals based on r,.d do account for both parameter uncertainty and 

uncertainty due to unknown future errors. When 0: = O (Le., the variance of the 

error due to unknown Future noise is zero), then (7.72) reduces to the expression for r 

given in (7.23). Both T and .rved can be appropriate for use mhen profiling multi-step 

ahead predictions, depending on the sources of error that are of interest. For example, 

when the disturbances are expected to have a significant affect on the process, then 

Tpred would be appropriate. Conversely, in the case where we are using control to track 

setpoint changes, it may be reasonable to assume that the effects of the disturbances 

are negligible relative to the magnitudes of the effects of setpoint changes. Shen, we 



would not be interested in uncertainty due to future random errors and would oniy 

be concerned mith parametrïc uncertainW In this case it would be appropriate to 

use the standard profihg algorithm based on r. The standard profiling algorithm is 

also appropriate for use any time one is interested in the expected (mean) value of a 

rnultf stepahead prediction. 

To illustrate the use of profiling to compute likelihood intervals for predictions, we 

consider an example of a prediction made in the context of regulatol control. The 

other scenarios descnbed at the beginning of this section are all subsets or dations 

of this problem. Especiaily in this case, it is important to outline the problem and 

the assumptions being made, because different disturbance rnodels are ofken used 

at Merent stages of the identification-design-prediction problem, and the variance of 

the white noise inputs may also change from stage to stage. -4 stepby-step procedure 

for our example is given in Figure '7.7. 

We considered a system described by Model 1. Using this mode1 and the GBN 

input sequence, 500 observations of the system were generated. The input and output 

data are shom in Figure 7-8. The simulated data were used to estimate the param- 

eters of a model having the same form as the '%rue" rnodel. The results of the full 

maximum likelihood identification were given earlier in Table 7.1. 

The next step in this case study was the design of a controller. For the purposes 

of designing the controller we assumed that the disturbances would follow a random 

walk model. That is, we use the transfer b c t i o n  

to design the controller. The fitted disturbance model was replaced by a random walk 

model to ensure that the controller would have integral action, and consequently, zero 

offset. 



Generate a GBN input sequence of Iength 500, aiternating between values of 3=1. 

Generate an iid N(O,0.036) white noise sequence of Iength 500. 

Using the data generated in Steps L and 2, and the model 

simulate 500 values of yt- Equatioa 7.73 is referred to as the ?rue" model. 

Using the sirnulateci data, estimate the parameters of a mode1 having the f o m r  

Let 

be the %ttedn process model, and 

be the "ütted" disturbance rnodel, 

Using the fitted process rnodel and a random nmlk mode1 for the disturbance, design a controuer wing the 
algorithm described in Ydstie et al- (1985). 

Generate an iid N(0, 0.0038) white noise sequence of Iength LOO called acL,,,d- 

Iising the rnodel 

the white noise sequence generated in Step 6, and the controller designed in Step 5, simulate the ciosed-Ioop 
system for LOO sampling i n t e d .  Ca11 the output series YcLosed and the input sequence u , t o S e ~ .  

make a k-step-ahead prediction. 

Use the standard profiLing aigorithm to compute likelihood intervals for the k-step-ahead prediction. The 
data set used to  estimate the parameters, and a rnodel of the form given in (7.74), were used to cornpute 
the vaiues of the likelihood b c t i o n  during profiling. 

Use a profiling algorithm based on ~, , ,d  to compute a iiketihood i n t e r d  for a new k-stepahead prediction. 
Note that when computing a;, the variance of the white noise refers to the d a n c e  of the white noise used 
to generate the data being used for prediction. In this case s: = 0.0038- 

Figure 7.7: The st ep- by-step procedure for simulating the dosed loop system and measuring 
uncer t ainty in k-st ep-ahead predict ions- 



Figure 7.8: SimuIated data used for identification purposes. 



There are many ways to design a model predictive controIler (Seborg et ai., 1989)- 

For the purposes of illustrating the profiling methodology, we consider one of the 

controllers proposed by Ydstie et al. (1985). This mdti-step-ahead model predictive 

controller chooses the constant control action u = ut = - - - = ut+e-d such that the 

!-step-ahead prediction mill be equal to ytarget. 

Using the e?cpression for the prediction given in (7.64) and the model given in 

(7.79), the input u which results in Y,+[ = ytargetI and which minimizes the variance 

of the inputs, is 

where 

Q ( q - L )  and pi is the P impulse 00 = 1, ai is the ith impulse response coefficient of 

p ( q - L ) w q - L )  response coefficient of 
N ( ~ - ~ )  

(Ydstie et al., 1985). Note that ht+[ = ijt+qt with 

- ut = utC1 = . -. - = O. In all cases, we choose ytaTget = O (Le. we arc consider- 

ing regdation, not setpoint tracking). The prediction horizon t changes from example 

- to example. Once me compute Ur = ut,l = . . . - ut+[-d for control purposes, we use 

t hese same values in the caiculation and pro filing of m d t  i-st ep-ahead predict ions. 

Once the parameters of the model mere identified and the controLler designed, we 

turned our attention to making predictions and rneasuring the uncertainty in those 

predictions. We consider that the system is operating in closed-loop, and at  some 

point in the future we wish to mabe a mdti-step-ahead prediction and estimate its 

uncertain* The closed-loop system was simulated for a period of 100 sampling 

intervals. For this simulation we empIoyed the true process model but we continued 

to assume that the disturbances followed a random wallc model- However, we chose 



to use a disturbance model which was close to being a random ma& but which was 

stable so that its statistical properties wouid be known- We based our simulation on 

the t ransfer fuiction 

Note that the variance of the white noise process { a t )  used to generate the data 

used for the identification was chosen to be 0.0361 so that the variance of the distur- 

bance process would be approximately 0.19. Because the disturbance model changed 

over the course of the case study, the vanance of the white noise process mas also 

changed as appropriate. For the closed-loop simulation: we employed an { a t )  se- 

quence having a vaxïance of 0.0038 so that the vaxiance of the disturbance descnbed 

by 

would have a vanance of O.19,the same as the variance of the disturbance used in the 

identification step. 

Given the information kom the closed-loop system up to and including t = 100, 

we made severd multi-step-ahead predictions. iUthough the closed-loop system w s  

simulated based on ('7.82), the tme description of the process, in practice, would not 

be known and the prediction would be made based on the fitted process model. For 

the purposes of computing multi-stepahead predictions for our closed-loop system 

we employed the system model used to design the controller which is given in (7.79). 

The profihg of multi-stepahead predictions can be based on r or rmd ,  depending 

on which sources of uncertainty are of interest. We have computed likelihood intervals 

based on both. When profilllig, the likelihood function is computed based on the data 

used to estimate the parameters, and a model of the form given in (7.52). When using 



a profilkg algorithm based on r,.d, the value of < must be computed. We used the 

e.xpression 

which mas developed earlier from (7.65) and (7.71). Care shodd be taken when 

computing s2. In the context of $, sZ represents an estimate of the variance of the 

white noise process which generated the data being used to make the prediction. In 

our esample, we used the model in (7.82), together mith the ciosed-loop data, to 

compute a vector of residuak, and subsequently to estimate the variance. We used 

s2 = 0.0039 to compute 6, mhich is different than the vanance of the white noise 

used to generate the data for the identification step. 

The case study nrâs camed out ttvice for tmo different control horizons: t = 4 and 

l = 8. The closed-loop input and output data for the two cases are shown in Figures 

7.9 and 7.10. 

For the controiler based on t = 8, the values of the 2 to 8-step-ahead predictions 

given information up to t = 100 (i-e., ~1021100, yt031100,- - . , Y ~ ~ ~ ~ ~ ~ ~ )  are shomn in Figure 

7.11. -4lso shown in Figure 7.11 are the LikeIihood intervals based on ~,,d and intervals 

based on the "prediction erroij', where these iimits are: 

The likelihood intervals based on the standard expression for r (ive. the likelihood 

intervals for the mean values of the k-stepahead predictions) are not shown on this 

figure. A cornparison of the lïkelihood intenmls based on r and r,,d is given in the 

discussion relating to Figures 7.13 and 7.14, the profile t plots for the mean value and 

a new observation of the 2-step-ahead prediction for the case where t = 4. 
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Figure 7.9: Closed-loop simulated data for the case where t = 4. Key: - the tme system; 
- - the system simulated based on the MLEs of the parameters. 



Figure 7.10: Closed-loop simdated data for the case where k' = 8. Key: - the true system; 
- - the system simulated based on the MLEs of the parameters. 



Figure 7.11: Simulated system based l = 8. Key: - the true system; - - the system simdated 
based on the MLEs of the parameters; + muIti-step-ahead predictions from 
t = 100; x limits of the "prediction erro?' intenmls; * Limits of the likelihood 
intervals for a new prediction. 
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predictions on the disturbance model ut; therefore, a slight bias riras intro- 
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duced in the predictions. This is why the 8-stepahead prediction for the case mhere 

t' = 8 and the 4stepahead prediction for the case mhere .4! = 4 are not equal to 

zero. For most of the multi-stepahead predictions, the "prediction error" bounds 

are alinost coïncident with the likelihood intervals, indicating that the uncertainty 

due to &own future error dominates the total uncertainty. T*vpically: the closer 

a closed-loop system is to being unstable, the larger the discrepancy betiveen the 

limits of the likelihood intervals and the limits of the "prediction error" limits. The 

measure of nodinearity can be used to judge the relative distance of a system 

to a stability invertibility boundary. Figure 7.12 shows the results of a simulation of 

the same system, but with l = 8. In the tnro cases considered here both the predic- 

tion error Limits and the likelihood limits (those that account for uncertainty due to 



future random errors) enclose the values of yt. For cases in which the variance of the 

disturbance relative to the variance of the input signal is larger than in the current 

example, the contribution of the parameter uncertainty to the likelihood intervals wii l  

be more signïficant. 

Figure 7.12: Simulated system based = 4. Key: - the true system; - - the system simulated 
based on the MLEs of the pasameters; + multi-step-ahead predictions £rom 
t = 100; x ümits of the "prediction erroF intervals; * Limits of the Likelihood 
intermis for a new prediction. 

The profile t plot for the mean value (Le., the profile t plot based on (7.23)) of 

the 2-stepahead prediction yio2liao for the case where t = 4 is s h o m  in Figure 7.13. 

This prediction shows signïficant nonlinearity. The profile t plot for a future value 

of ylO,lloo is shown in Figure 7.14. The Likelihood Limits at t = 102 on Figure 7.12 

were obtained fiom Figure 7.14. Note that the likelihood interval for a future value is 

significantly wider than the likelihood interval for the mean value and shows almost 

no nonlinearity. The significance of this is that the error due to unknown future 

random error is much larger than the error due to parameter uncertainty in this case. 

Reimer (1995) found that for time series models it is important to consider parameter 



uncertainty when the amount of data is very smal (n 5 50). We have found that 

for transfer function models, the nonlinearity of the prediction is strongly affected 

not only by the amount of data but &O by the signal-to-noise ratio, the form of the 

model and the data themselves. Even when n = 500, there are cases for mhich new 

multi-step-ahead predictions d show nonlinearïty. We advise caution when using 

Figure 7.13: Profile t plot for the mean value of the Zstep-ahead prediction given informa- 
tion up to and including t = 100 for the case where t = 4. 

lineaxization confidence intervals even when g ( B )  is a prediction. Especially when the 

mean value of a future prediction is of interest, it is our opinion that the nonlinearity 

of the inference problem should not be neglected. 

7.6.5 Profile Pair Sketching and its Application to Nyquist 

A Nyquist plot is a plot of the imaginary component of the frequency response of a 

dynamic model, Im[f ( e w ) ]  , versus the real component, Re[f (e")] . The Nyquist plot 



Figure 7.14: Profile t plot for a new observation of the Zstep-ahead prediction given infor- 
mation up to and including t = 100 for the case where l =  4. 

is an important tool for evamining the behavior and stability of processes (Seborg 

et al., 1999). In practice, Nyquist plots are based on estimated process models and, 

therefore, are themsehes uncertain. In this section we propose a method for sketching 

likelihood regions about points on an estimated Nyquist curve. 

Up to this point in the paper we have considered only Likelihood intervals for single 

functions of parameters. In the case of a Nyquist plot, we consider jaint likelihood 

regions for tmo functions of parameters, g@) and g2(8) ,  where g, (0)  = Re[f (ew)] 

and g 2 ( 0 )  = ~ m [  f (eh)]. 

Bates and Watts (1988) proposed a means of using the information gathered 

throughout the process of profihg to sketch joint likelihood regions for pairs of pa- 

rameters in nonlinear regression models. We have adapted this method in order to 

sketch pseudo-ellipses around points on Nyquist plots. 

When profiiing, it is important to store not only the values of g ( 0 )  and their 

associated values of 7, but also the results of the constrained optimization problems 



8. A profile trace plot for g1(8) and g2(0) is a plot of ij2 vernis g@), and g2(0) 

versus ijL, where g1 is the value of gL(B) a t  the Location of the constrained optimum 

for each iteration of the profihg of g2(B), and Q2 is the value of g2(6) at the con- 

strained optima found over the course of profiling gl(0). If r different b c t i o n s  of 

parameters are being considered, then profile pair sketches may be generated as gj(û) 

versus gk(0), for j, k = 1. . . r ,  j # k (Sufieman, 1998). A prose trace plot provides 

information about the nonhearity of gj(8) with respect to gk(û)- For a Linear mode1 

and linear hinctions of parameters, the profile traces are straight h e s ,  and the angle 

of intersection represents the correlation betnreen gj(6) and gk(0)- Profile traces are 

perpendicular to each other when the parameters or fiinctions of parameters are un- 

correlated. For nonlinear models, the profile traces are not n e c e s s u  straight lines, 

and the degree of curvature indicates the degree of nonlinearity of the solution surface 

in the directions defined bj- changes in g(9). 

Profile traces are the basis for producing profile pair sketches. Profile pair sketches 

are a computationally economical way of representing pairwise joint likelihood re- 

gions using the information obtained through profüing (Bates and Watts, 1988)- It is 

straightfornrard to identï@ the points on the traces for which r = d z J r ~ ( r ,  n - p, a / 2 ) ,  

where r is the number of functions of parameters of interest (Donddson and Schn- 

abel, 1987). There are four such points (two on each profile trace). It is known that 

a tangent line to the joint confidence region must be vertical at the points located 

on the trace of ij2 versus gl, and horizontal at  the critical points located on the trace 

of g2 versus ijL (Murdoch, 1995). Based on this information alone, and using the 

parametric description of an ellipse, it is possible to sketch joint likelihood regions. 

See Figure 7.15 for an e'cplicit algorithm. 

The algorithm is based on the fact that after transforming the four points from the 

parameter space to the T space, a plot of cos-'(q) versus ( T ~ )  is approximately 

a straight line, where TI represents the ikst coordinate of the four tangent points, and 



~2 represents the second coordinate. To obtain asymmetrical regions which capture 

the nonlinearÏty of the inference problem, a cubic s p h e  is fitted through the pairs of 

points and used to generate a whole series of points mhich, mhen transformed back 

to the parameter space, rvill o u t h e  a pseudo-ellipse- 

Figure 7.16 shows the Nyquist plot for model (7.52) based on both the true values 

of the parameters and the estimated values of the parameters. The regions sketched in 

Figure 7.16 are easier to generate, in terms of computational effort, than those based 

on resarnpling rnethods and those based on grid-wise contouring methods ( S m  et 

al., 1994). Despite being based on o d y  four points, these sketches provide good 

qualitative evidence of the degree of joint uncertainty and the degree of nonlinearity 

of this example. Note that for this example, the essential features of the uncertainty 

regions around points on the Nyquist plot are captured by the Linearïzation regions. 

The important features of the sketching algorithm are reflected in Figure 7.16. 

The sketched regions are based on the true nonlinear model and the regions remain 

true to any implicit constraints on the bc t ions  of parameters. For example, when 

w = O, Im[f ( e w ]  alwap equals zero. Therefore, as w approaches zero, the uncertainty 

in g2(û) should continue to decrease until at w = O the uncertaïnty region reduces 

to an interval. This trend c m  be seen on Figure 7.16. Also, notice that the overall 

degree of uncertainty in the estimates of Re[f(eW)l  and Im[f (e"")] decreases when 

w gets large, as mould be expected, since the frequency response becomes almost 

independent of the parameter values at large W .  



Over the course of profilhg gr(@, constnict the rnatrix IM, where each row of ' M  
contains the results of the constrained optimization problern solved at  each iteration of 
the profiling aigorit hm, Each column of the matriv contains vaiues of one of the functions 
of parameters, one of the parameters, o r  rt at each iteration. in tabfe form, 'M is 

where gk(û) is the kth function of parameters of interest, 8; is the ith parameter of the 
vector of parameter vdues 8, Ih is the number of iterationç needed to profile gr(@), and 
l m i ,  is the i j th  elernent of LM 

Over the course of profiling CJ~(O)~ constntct the rnatrix 2~ as for ' M  in Step 2. 

Using the data in M, fit a spline cuve ggr.1 to r as a hnction of gL(0)- AISO fit a çpline 
gre,r to g ~ ( 9 )  as a function of r, 

Using the data in ' M ,  fit a spline curve ge,-,a to r as a funaion of g2(0). &O fit a spline 
grg,2 to g?(O) as a function of T. 

Use ger, 1 to convert the gr (8) colurnn of M to a vector of T vaiues caIled r i z -  

Fit a spiine g,,,~ to 7 1 2  as a lunction of the T data frorn 'M. 

Use ggr.z to convert the 92(ë) column of 'M to a vector of T d u e s  called 721- 

Fit a spline gr,,i to r2 t  as a hnction of the r data from 

Use gtr,t to cornpute qL, the d u e  of the spline at  J r ~ ( r , p  - r;cy), where r is the number 
of Functions of parameters being considered jointly- 

Use gr,, L to compute 92, the vaiue of the spline at - J r ~ ( r , p  - r; ct). 

Use grr,2 to compute pL, the value of the spline at JrF(rTp - r; a)- 

Use grr3 to cornpute p2,  the vaiue of the spline at - J r ~ ( r ,  - r; a). CONTINUED ON 
XEXT PAGE 

Figure 7.15: A step-by-step algorithm for sketdung a profile pair plot for gi (O)  and g2 (8)  
(CONTINUED ON NEXT PAGE). 



Let 

16, Let 

Let a =  v. 
Let d = sp f s q .  

If any element of d is negative, change the sign of tha t  elexnent and the  sign of the 
correspondhg element of a- 

Let aT = [a= - 2r, aT, aT i 2~1- 

Let dT = [dT, dT, dT]- 

Let S1= a + d/2- 

Let S2 = a - d/2, 

Fit a spline gsl,sr t o  S2 as a function of SI. 

Choose a series of LOO equaily spaced values from O to  Zr. Let this vector of values be 
8p8. 

Use g s ? , ~ ~  to compute the vector s q s  which corresponds t o  the values in 8ps .  

Let r - 1  = C O S ( S ~ S ) J ~ F ( ~ , ~  - r,ck). 

Let r.2 = ws(sqs) J P F ( P , ~  - r,a)- 

Use gre,l to  convert r , , ~  to the vector 8,,1- 

Use g,e,2 to  convert 7- ,2  to  the vector 84- 

Plot 7.g venus r . , i .  

Figure 7.15: -4 step-by-step algorithm for sketching a prome pair plot for g1(8) and 
g2(9)  (adapted from Bates and Watts (1988)). 



Figure 7.16: Nyquist plot for model (7.52)- The pseudo-ellipses were sketched on the basis 
of profiling data. Key: - tme Nyquist curve; - - -  Nyquist curve based on the 
estimated process model; - - joint LikeLihood regions; .- linearization confidence 
regions. 

7.7 Exact versus Approximat e Likelihood Estima- 

tion 

-411 of the results reported so far were computed using the algorithm for exact likeli- 

hood estimation giveii in Figure 7.2. Earlier, we introduced algorithms for computing 

approxirnate likelihood values. The est imates of the paramet ers of model (7.52) using 

the approximate lïkelihood algorithm are shown in Table 7.2. The profile t plot for 

fi based on these estimation results is shown in Figure 7.17. 



Table 7-2: Table of Estimation Results Based on Three DiEerent Estimation Aigorithms. 

( Parameter 1 Tme Value 1 MLE 1 Approx. MLE / Conditional NfLE 1 

Cornparing these results to those presented in Table 7.1 and Figure 7.3, it can 

be seen that results based on the approxïmate iikelihood algorithm agree quite weil 

with those based on the exact likelihood- The savings, in terms of computation time, 

using the approxirnate iïkelîhood algorithm are considerable. Using a Sun Sparc 

Ultra 1 workstation and MATL-~B*" v. 3.1 (Mathworks, l996), the t h e  required to 

obtain converged estimates of the parameters of the model and to constmct profile t 

plots for d l  four parameters using the exact likelihood algorithm was 2.2 hours. TO 

perform the same task using the approximate Likelihood algorithm required only 6.4 

minutes, and using the the conditional algorithms the results were obtained in 17.2 

minutes. However, when a system is expected to be signiftcantly nonlinear, we also 

e-xpect the differences among the inference results generated by the three algorithms 

to be more significant. The nonlinearity of a parameter or hinction of parameters is 

a complicated function of the model, its parameterization, the amount of data and 

the data themselves. We recommend computing the measure of nonlinearïty Cm, 

(see Chapter 6 )  to predict the nonlinearity of g ( B ) .  Only when the nonlinearity is 

expected to be high is it necessary to use the computationally e-xpensive full maximum 

likelihood algorithm- 



Figure 7.17: Profile t plots for parameter fi based on the exact, approximate and condi- 
tional maximum likeiihood algorith,  respectively. 

7.8 Conclusions 

Profiling has been employed to estimate Likelihood intervals for functions of parame- 

ters commonly used in controi. Nthough some hinctions of parameters behaved quite 

linearly, and some linearization confidence i n t e d s  were good approximations of the 

correspondhg likelihood intervals, others were not. The purpose of this work was to 

demonstrate the methodology and assess its merits and limitations. The cases con- 

sidered here suggest that care shodd be taken when employing linearization inference 



results, and that there is a place for more computationdy intensive but more reliable 

approaches to inference. A broad simulation study would be worthwhile to coofirm 

this conjecture- 

It is important to keep in mind that the nonlinearïty of a function of parameters 

is influenced by a range of factors, including the f o m  of the model, its parameteriza- 

tion, the proximity of the parameter vector to a stability/invertibility boundary, the 

amount of data, and the data themselves- In many control applications, data sets 

of more that 300 obsemations are cornmon, and the sheer quantity of data has been 

used as reason enough to assume heari ty since the linearization inference results are 

asymptotically exact as n approaches infiniv (Ljung, 1987). However, the amount 

of data required for the asymptotic results to be reliable is poorly knomn. Nso, the 

amount of data needed depends on the model, its parameterization, the values of the 

parameters and the signal-to-noise ratio. In the face of all of these factors, we rec- 

ommend generdized profiling, together *th the mesure of nonlinearity introduced 

in Chapter 6, as  means by which to ensure reliable inference results. We see that 

generdized profiling has application in design of experiments where it could be used 

in determining the length of an e-xperiment, or in comparative evaluations of compet- 

ing experimental designs (see Chapter 5 and Shirt, 1997). There are also important 

issues related to the use of profiling in adaptive control applications which have not 

yet been addressed. It may be interesting to track hom error propagates dEerently 

depending on whether direct or indirect synthesis of the controller is used. 

The theory and methods presented here have been illustrated for cases for whïch 

there was no model uncertainty; however, in its most general form, profiling is a 

likelihood ratio method and there is no lnherent restriction that the form of the 

model defining the likelihood for the numerator of the ratio be the same as that 

for the denominator. This implies that the extension of the method to cases of 

undermodeling or ovemodehg would be straightfomard. 
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Nomenclature 

= white noise sequence 

= coefficients of the .A(q-l) poiynomiai 

= poiynomial in the backshift operator q-l 

= coefficients of the B ( Q - ~ )  polynomial 

= polynomial in the backshift operator qVL 

= a constant 

= coefficients of the C(Q-') polynomial 

= variance covariance matrix of 9 

= polynomial in the backshift operator q-l 

= delay betmeen a chanse in ut and its effect on yt 

= coefficients of the D(q-L) polynomial 

= polynomial in the backshift operator q-L 

= prediction error due to unknown future random errors 

= coefficients of the F(qeL) polynomial 

= upper a quantile for the F distributien with p 

and n - p degrees of fieedom 

= polynornial in the backshift operator q-' 



na; nb, nc, n d ,  n f 

= a function of parameters 

= steady state gain of the process 

= process transfer b c t i o n  

= controUer transfer function 

= open loop t r a d e r  function 

= process transfer function 

= p x 1 vector of constants 

= disturbance transfer h c t i o n  

= imaginary component of the frequency response of the 

mode1 

= the number of sampling intervals into the future for 

which a prediction of y, is to be made 

= prediction horizon 

= polynomial in the backshift operator q-' 

= likelihood function evaluated at 8 

= naturd logarithm of the likelihood function of 0 

= Likelihood interval for g (O)  

= likelihood ratio 

= naturd logarithm of the likelihood ratio 

= polynomial in the backshift operator q-' 

= number of observations 

= orders of the polynornials A(q-l) ,  B ( Q - ~ ) ,  C(q-l) , D (q-L)7  

and F(q-') ,  respectively 

= polynomial in the backshift operator q-' 

= number of estimated parameters 

= p o l ~ o m i a l  of degree k - 1 resulting from the 

Diophantine decomposition 



Greek letters 

= backshift operator 

= polynomial resulting fkom the 

Diophantine decomposition 

= real component of the fiequency response of the mode1 

= estimated standard deviation of the random errors 

= Y,'WY, 
= standard error 

= upper <r/2 quantile of the t distribution mith 

n - p degrees of freedom 

= vector of inputs 

= filtered inputs 

= input to the process a t  time t 

= x p matnx of elements uij representing the first deriv- 

ative of f (xi, 8)  wïth respect to the jth parameter 

= 1 x m row vector of m independent variables 

= n x p rnatrk of elements xij representing the level 

of the jth independent variable for observation i 

= response variable 

= predicted value of &k given information up to time t 

= n x 1 column vector of values of the response variable 

= a time series transformed using -bsley's transformation 

= sigdicance level 

= constant chosen based on the desired level of confidence 

and the variance of the additive white noise 



Superscripts 

Abbreviations 

= studentized value of g ( 0 )  

= backwaxd ciifference operator 

= n x 1 column vector of randorn errors 

- i th - parameter of a mode1 

= p x 1 vector of parameters 

= p x 1 vector of maximum Likelihood estimates 

of the parameters 

= Location of a constrained maxÎmum of L(0)  

= variance of the white noise sequence at 

= variance of the prediction error el+klt 

= profile t statistic for g ( 0 )  

= profile t statistic for nem predictions 

= the chi-squared distribution Nith 1 degree of freedom 

= n x n covariance matriv for y 

= a true value 

= a ma,ximum likelihood estimate 

= a constrained estimate 

autoregressive 

autoregressive moving average 

autoregressive moving average with esogenous inputs 

autoregressive wit h exogenous inputs 

h i t e  impulse response 



iid 

MLE 

SIS0 

independent ly and ident ically dist ributed 

maximum likelihood estimate 

single input single output 



Chapter 8 

Conclusion 

In this chapter, a summary is made of the conclusions reached in each of the five 

manuscnpts. The focus is on clearly identifjring the contributions made to chemi- 

cal engineering and statistical theory and practice. III general, we made theoretical 

contributions by: 

1. developing a geometrical treatment of inference about a function of parameters 

g ( 8 )  and identi-ng cases for which profiling fails (Chap ters 3 and 4); 

2. showing the equivalence of tmo approaches to generalized profiling (Chapters 3 

and 4) ; 

3. developing a n  expression for the expected value of the Ekelihood ratio function 

for time series models (Chapter 5 ) ;  

4. extending the generalized algorithm to discrete t r a d e r  hnctions - a class of 

models often used in control applications (Chapter 7), and 

3. deriving an expression for the r profihg statistic which takes into account both 

parameter uncertainty and uncertainty due to unknonli future errors (Chapter 

7) - 



In general, me made practicd contributions by: 

1. identiwng cases in control for which profihg is not appropriate, and proposing 

an altemate method for one such case(Chapters 3 and 4); 

2. showhg that functions of parameters of interest in control may sometimes be- 

have nonlinearly, and that generalized profiling is a valuable tool by which to 

obtain likelïhood intervals in these cases (Chapter 7); 

3. developing a technique for judging a priori the expected nonlinearity of the 

parameters and hinctions of parameters of ARMA models, and demonstrating 

the usehlness of this tool in designing the Length of an e-qeeriment (Chapter 5); 

4. developing a new empirical measure of nonlineaxity for ~ ~ ~ I A  models (Chapter 

S. developing a pseudo-profiling technique for quickly judging, in a qualitative way> 

the nonlinearity of a function of parameters (Chapter 6), and 

6 .  adapting a computationaily efficient rnethodology for sketching iikeiihood re- 

gions for use in sketching uncertainty regions around points on Nyquist plots 

(Chapter 7). 

8.1 Contributions to Theory 

Explicit developrnent of the generalized profiling algorithm from both reparameteri- 

zation and optimization perspectives, and a proof of their equivalence, has helped to 

elucidate the merits and limitations of this method. This enhanced understanding of 

generalized profiling has helped to identiSi the scope of its applicability and useful- 

ness. One important finding was that if g(B) reaches an unconstrained optimum a t  8, 

the generalized profiling algorithm fails. An expression for the expected value of the 



square of the profiling statistic T mas developed for the case of an .4RMA model. This 

is an important contribution because it can be used to gage the expected nodinearity 

of a function of parameters as a function of n- Furthemore, the lùnits of the expected 

likelihood intervals can be compared to the Iinearization results to draw conch.xsions 

about how much data is needed for asymptotic inference results to apply. -hother 

important consequence of this development is that it may provide a ba i s  upon which 

to judge the contribution of anomalies in a data set to the overall nonlinearity- of a 

fimction of parameters, 

Extension of the work of Bates and Watts (1988), Lam and Watts (1991); Chen 

(1991), and Chen and J e d c h  (1996) to utilize the profihg algorithm for functions 

of parameters of transfer function modek was straightfomard. From a theoretical 

perspective, the interest h g  aspects of using profihg in the conte.xt of transfer function 

modeIs are related to special issues involving some of the functions of parameters we 

have considered, namely multi-stepahead predictions and gain margins. For the 

case of predictions, a modified expression for the T statistic was developed so that 

profiling could be used to constmct likelihood intervals that would account for both 

parametnc uncertainty and uncertainty due to unknown future random errors. For 

profiling the gain margin, it was found to be important to define the problem and 

identify what information is desired. Associated issues were discussed, and three cases 

were examined. The case for which the d u e s  of the parameters in the controuer 

are fixed mts discussed in detail. Consideration of these functions of parameters 

motivated new extensions of the profiLing algorithm. The issues involved in profiling 

multi-step-ahead predictions and gain margins are common to many other functions 

of parameters. From our look at two specific examples comes a methodology for 

solving similar problems. 



8.2 Contributions to Practice 

Much of the value in the development of both the theory and application of the 

generalized profiling algorithm is in making this statistical method understandable 

and available to engineers. To some extent, the statistical iiterature is impenetrable 

to engineers, thereby presenting a barrïer to the use of new statisticai methods, and 

creating a gap between theory and practice. Kopefully, this thesis has helped to 

bridge the gap betnreen theory and application of likelihood intervals. 

The andysis of the reparameterization and optimization approaches to generalized 

profiling allowed us to i d e n t e  the limitations of profiling. From a practicd point 

of view, this is important since some functions of interest, such as the measure of 

controller performance hmf, may reach an optimum at 8. Ln these cases profiling 

fails, but the minimization/may.nmization approach to hding likelihood intervals can 

be used. 

There is a growing body of literature on measuring uncertainty in transfer function 

models which has been motivated by the needs and demands of robust control theory- 

The focus has been on developing hard error bounds, although there have been sev- 

eral papers advocating a shift in paradigm towards soft (probabilistic) error bounds 

(Goodwin et al., 1992; DeVries and van den Hof, 1994; Pintelon, 1994). We have 

showx~ that functions of parameters used by control engineers may behave nonlin- 

early. In light of this, generalized profihg is a more reliable and appropriate method 

for making inferences about fllnctions of parameters than the lineanzation method. 

For cases involving two functions of parameters considered jointly, it is appropriate to 

construct likelihood regions. The algorithm for sketching likelihood regions proposed 

by Bates and Watts (1988) has been adapted for use with fuoctions of parameters of 

transfer function models. The algorithm was then used to construct likelihood regions 

around points on Nyquist plots in a way that is more computationally efficient than 

other methods proposed in the literature. 



Eqected profihg has been developed for use in designing the length of an exper- 

iment when the purpose of that experhent is to estimate a time series model- This 

611s a gap in the practice of designhg dparnic experiments. Nso, for cases in which 

the data have already been collected, expected profihg is an important rneans of 

evaluating whether commonly used asymptotic resdts are appropriate for the given 

model and information content of the avadable data- 

The new measure of nonlùiearity proposed for ARMA models is a "quick and 

easy" measure intended to be easy to implement and easy to interpret- The measure 

developed by Ravishanker (1994): based on the work of Bates and Watts (1980), 

requires expressions for the fUst and second derivatives of the model with respect 

to the parameters, and involves performing operations on three-dimensional arrays. 

The effort involved in computing this measure of curvature is a barrier to its use. 

The measure developed in this thesis is intended to be computationally accessible to 

chernical engineers so that it may be more attractive for use in practice. Similarly, 

a pseudo-profiling alg0nth.m has been proposed for use mith a broad class of models 

as a rneans to quickly and easily judge, in a qualitative may, the nonlinearity of a 

function of parameters. 

It may be said that any model, and any statistic derived therefiom, is virtually 

useless without an associated measure of uncertainty (adapted from CVahlberg and 

Ljung, 1992). In this thesis me provide reliable means for estimating and predicting 

uncertain@ in control-relevant statistics. 



Chapter 9 

Recomrnendat ions 

In dl of the work reported here, it has been assumed that the proposed model is 

sufficiently complex to capture the true behavior of the systern. There is important 

work Ieft to be done to incorporate model mismatch into the uncertainty method- 

ologies developed in this thesis. As discussed in the Literature review, a significant 

amount of work related to model mismatch has been reported in the literature on 

robust control, However, most of this work takes a "hard bound" approach to uncer- 

tainty. There are important contributions yet to be made in the area of developing 

statisticd uncertninty bounds mhich are reliable and account for both paranieter and 

mode1 uncertainty- 

A superficial review of the rnethodoIogies discussed in this thesis suggests that 

including model uncertainty in generdized profiling and expected pro&g would 

be straightfomard. Incorporating mode1 mismatch would amount to solving the 

optimization problems over a set of possible model forms rather than searching for 

an optimum based on one "tme7' form of the model. 

The relationship between the curvature oEg(B) and the curvature off (x, O )  should 

be investigated furt her, mit h a view towards developing a methodology for predicting 

the nonlinearïty of g ( 0 )  given f (x, 8) .  This idea was uispired by the fact that g ( 0 )  



rnay be lùiear even when one or more of the parameters is nonlïnear, or g(0) may be 

nonlinear when aIl of the parameters are iïnear- It should be possibleS by studying the 

geometry of f (x, 0) and g(B) , to predict the nonlinearity of g(8). The recent work of 

Kang and Rawlings (1998) provides a methodology by mhich to compute a measure 

of nonIinearity for a function of parameters. This marginal measure of nonlinearity 

is based on the Bates and Watts measures and is derived from the perspective of a 

reparameterization of the model such that g ( 0 )  becomes a parameter of the model. 

This approach could serve as a starting point from which to Ïnterpret the geometry. 

We now propose an hypothesis for why a function of parameters (e-g. a mode1 

prediction) is often found to behave hearly even when the joint confidence region 

for 8 is significantly nodinem. We build on the linearization results presented in 

Chapter 6. 

Recall that for a h e a r  model and a h e a r  function of the parameters g(0 )  = are, 

a (1 - a,) 100 % confidence intemal for g(B) includes alI values of g ( 0 )  defined over 

the values of 8 satisS.ing 

where BLs = (xTx)-'xTy. Homever, a (1 - a2)100 % confidence region for 0 is 

defined based on 

The limits of a (1 - ai)lOO % confidence interval for g(8) occur a t  the point where 

a contour of g(8) is tangent to the contour defined by (9.1). While this contour is 

used to define a (1 -cul) 100 % confidence interval for g(B), it also defines a confidence 

region for 8 with a different level of confidence. For example, if al = 0.01, n = 500 

and p = 2, a 99 % confidence interval for g ( 8 )  Ml1 be tangent to the 95 % confidence 



region for 9 since F(1,48; 0.01) rr 2 F(2,48; 0.05). Since contours of S(B) behave 

more Iinearly as the vaiue of a! increases, even though a (1 - rr)100 % confidence 

region for the parameters behaves nonlinearly, a (1 - (u)100 % internai for g ( 0 )  may 

behave linearly because it is based on a confidence region for B mhich has a larger 

value of a- 

We have not pursued these ideas further except to note that they do not provide 

the whole anstver. For example, it is cornmon to observe profile t plots for individual 

parameters which are highly nonluiear and profile t plots for mode1 predictions based 

on those parameters mhich are linear. In such cases, the effective value of a! for the 

contour of S(8) which is used to compute inferences for the individual parameters and 

the predictions is the same. In these cases we suspect that the reasons for the linearity 

of the predictions involves the orientation of the contours of g(0) Mth respect to the 

contours of S(6 ) .  

With respect to the new tools developed, namely expected p r o f i g  and the mea- 

sures of nonlinearity, there remains work to be done to see how these methods perform 

over a Large number of examples. Specificdly for expected profiling, there is impor- 

tant work to be done to generalize the method so that one may consider the case 

where O* # 9 (Le the vector of estimated parameters is not equal to the tme values 

of the parameters), and the case where there is model mismatch. ;UL of the new 

met hods should be extended to include transfer h c t i o n  models. 

The work reported here has demonstrated that generalized profiiing is a viable 

and reliable means by mhich to make inferences about g(0). The use of profiling 

to study the effect of design of experiment on the ultimate uncertainty of various 

control-relevant statistics could constitute an important contribution. This work was 

begun by Shirt (1997). 

tVhen n is large and an exact likelihood algorithm is used to profile functions of 

parameters of time series or transfer function models, the computation time can be 



prohibitively large. There is work to be done to improve the computational efficiency 

of the aIgorithrn. For the special case of a linear model and a nonlinear function of 

parameters, we propose the following algorithm for constrained optimization as  one 

may to improve the cornputational efficiency. 

For this special case, the optimization problem to be solved at  each iteration of 

the profiling algorithm is 

T T  h n i m i z e  J = (y - X O)  (y - xTO) 

Subject to g ( 8 )  = c  

FVe develop the optimization algorithm by hearizing the function g(8)  around a 

series of values of 8. The linear appro-ximation to g ( 0 )  is g = g(8) + a T M ,  where 

and A0 = 0 - 8. Then the location of the solution to the linear 
e=ë 

optimization problem is: 

mhere 

The idea for the new optimization algorithm is based on iteratively updating the 

value of X based on linearizations of g ( 0 )  a t  a succession of points. Define 



and 

where 

At each iteration of the aIgorïthm we update A(') using 

Continue to compute values of A(') and O(') until g(O(") = c. This algorithm reduces 

the constrained p-dimensional optimization to a one-dimensional search for A, thereby 

making the solution procedure very quick and easy. \Ve note that it is possible 

to construct an example involving a highly nonlinear function g ( 8 )  for which this 

algorithm mil1 converge to  a value of O(') which satisfies the c0nstra.int but does not 

give the lowest possible value of S(0) .  However, for most foms of g(O), this algorithm 

d l  give reliable results o r  mil1 at least provide good starting guesses to  feed into a 

more general constrained optimization package. 

There remain many interesting applications of profiling to issues in control which 

have not been addressed. In Chapter 7 we identified that a modified p ro f ihg  algo- 

rithrn would have to be employed to profile GoL (Q-') = Gp ( Q - ' ) G = ( ~ - ~ )  if uncertainty 

in bot h G, (q-') and Gc(q-l) mere to be taken into account . A similar modification to 



the algorithm would likely be required if an adaptive controlIer were to be considered. 

It may also be interesting to study Merences in the way error propagates hom data 

to model predictions depending on whether a direct or indirect approach to controuer 

design is used (Goodmin and Sin, 1984). 

Sulieman (1998) used profiling as the basis for a new approach to sensitivity 

andysis. Her ideas, dong mith those presented here, codd be used to develop a 

methodology for i d e n t w g  which parameters of a model have the greatest d e c t  on 

the b c t i o n  of parameters of interest- This codd  have important application in the 

area of adaptive control, where decisions are made about whÏch parameters to update 

on-line. 

We anticipate that as model-based control strategies become more and more preva- 

lent in ùidustry, statistical analyses will become an integral part of evaluating the 

rnerits and limitations of proposed strategies. Generalized profiling has the potential 

to play an important role in ma-g process monitoring schemes with automatic 

control schemes to achieve a truiy integrated approach to process optimization. 

There is much work to be done to r e h e  and generalize the statistical algorithms 

developed in this thesis, and there is potentiai for further application of these aigo- 

nthms in almost every sector of chernical engineering. 
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Appendix A 

Appendix Out lining 
Comput at ional Issues 

The purpose of this appendix is to provide any details about the computational 
methods which were omitted from the manuscripts or which are so important as to be 
worth repeating here. -Ml computation and visualization was done using ~ I A T L A B ~ ~  
version 4 . 2 ~  or 5.1. 

A. 1 Generalized Profiling 
Two different algonthms for generalized profiling are given in Figures A.1 and -4.2. 
The first algorithm (-4.1) is based on an optimization approach to generalized pro- 
filing, and the second (A.2) is based on reparameterkation. M-4TLAB7s version 
of the Sirnplex Algorithm of Welder and Mead (Edgar and Himmelblau, 1988) was 
used to solve all unconstrained optimization problems. constrained optimiza- 
tion problems were solved using a Sequential Quadratic Programming routine (Edgar 
and Himmelblau, 1988). The value of A (see Figures -4.1 and A.2) was, in most 

s d 9 )  cases, set to d=T. Bates and Watts (1988) suggested that the value of A be ad- 
justed at each iteration based on the dope of the profile t curve in the previous 
iteration. We have found that performance of the algorithms is best if A is left 
constant unless convergence probiems axe encountered, at mhich point we reassign 
h = sign(4) (max[A/2, se(9)  /24]). 

A cubic spline was fitted to calcdated values of g(0 )  versus r for the purpose 
of obtaining the limits of the Likelihood interval. This proved satisfactory, although 
other methods of interpolation would likely also perform well in most cases. 

In this m r k ,  the variance of the random error was computed as: 

(A. 1) 

m-here S(0) is the sum of squared residuals; however, any other available estimate of 
s2 could be used, with the appropnate change in the number f degrees of freedom. 
For dynarnic models (Le., time series models and SIS0 transfer function models) the 



2. Using a nonlinear optimization package, find the maximum likeiihood estimate (i\iItE) of 
8. 

2- Compute the MLE of g ( 8 ) ,  and define tj = g ( 6 ) d  

- 
3- Compute an estirnate of the --ance of the -dom error (Le., cornpute s2 = wïth 

n - p degrees of thedom)- 

4- Compute ~ou(6) -  

6. Set the index i to 1, and let gOld = 4. 

7. Move the d u e  of g ( 8 )  away from 3 by a s m d  amount A (Le-, gi = gow + A). 

8- Use a constrained nonlinear optimization package to salve the constrained optimization 
probIem: man'mize L(0) subject to g ( 8 )  = gi- The location of the constrained optimum 
is 8. 

9. Compute 

10. Is I r i l  2 t(n - p, a /2 )?  if YS, continue- if no, set gocd = g i ,  set i = i f 1, and return to  
Step 7. 

L1. 1s A negative? Lf yes, continue- If no, set gold = 9, set i = i f 1, let A = -A and return 
to Step 7. 

L2. Fit a smooth curve through the values of ri and use this cume to find the values of g ( 8 )  
at r  = i t ( n  - p, a / 2 ) .  These are the tirnits of the Iikelihood interval for g ( 8 ) .  

L3. Compute the lirnits of the Iinearization confidence in tend for g ( 8 )  using 

L4. Constmct the ~rof i le  t plot by plotting, on one figure, ri versus g i ,  and Ji versus gi- 

I 

Fi,we A. 1: A step-by-step algorit hm for the optimixation approach to generalized profiling- 



1- Using a noniinear optimization package, h d  the maximum likeliiood estirnate ('UlLE) of 
8 - 

2. Compute the %!LE of 9(8), and define ij = g(é). 

3. Compute an estirnate of the of the -dom error (Le.. compute s2 = with 
n-P 

n - p degrees of freedom), 

4. Compute ~ov(8). 

6, Reparameterize the mode1 such that the nrst new parameter is 41 = g(8). 

7. Set the index i to L, and Iet g,[d = Q 

8- Move the d u e  of 91 away from by a smaii amount A (Le-, gi =gotd +A)  - 
9. Create a new vector of p - L parameters which does not indude @L. Let the new vector 

be &,,du,,d, where the parameters in &,d,ced are functions of 8. 

LO* Use an unconstrained optimization p a e g e  to locate the conditional maximum Iikelihood 
estimate of This estimate is &cduccd- 

11. In pdimensional space, the Iocation of the conditionai maximum iikelihood estimate is 
-T 6 = hi* @reducedj- 

12. Compute 

L3. k 1.t; ( 2 t(n - p, a / 2 ) ?  If yes, continue. if no, set gord = gi, set i = i + 1, and return to 
Step 8- 

14. Cs A negative? If yes, continue- Cf no, set gora = i ,  set i = i + LT [et A = -4 and return 
to  Step 8. 

15. Fit a smooth c u v e  through the values of ri and use this cume to find the vaIues of g(8) 
a t  r = I t ( n  - pTa/2). These are the Iirnits of the iikelihood intervai for g(8). 

16. Compute the Limits of the Linearïzation confidence intervai For g(8) using 

L7. Construct the profile t plot by plotting, on one figure, ri versus giT and Ji versus gi. 

Figure A.2: A stepby-step algorit hm for the reparameterization approach to generalized 
pro &g- 



variance of the white noise innovation was estimated by 

where s'(O) is the modified sum of squares (Ansley, 1979). It  is computed as follows. 
Let R be the variance-covaxiance matrïx for 2,. The ChoIesky decomposition of fi is 

where L is a lower tnmgular band matrk. Then, 

where z is an n x 1 vector of vaiues of q. Then, the modified sum of squared residuals 

For al1 models, the cova.riance matrk for 0 waç calculated using: 

af (Ge) where V = 

Donaldson and Schnabel(1987) identified three different ways by which the covari- 
ance matn'r of the estimated parameters of regression models can be approximated: 

where H is the Hessian matrix of S(0) evaluated at 0 = 8, with elernents 

For use Riith a more general class of models, S ( 8 )  can be replaced bq- In L(8) .  Donald- 
son and Schnabel found little difference between these three estimates of the covari- 
ance matriu, and so we have chosen to use the simplest and most comrnon expression 
(A.7). 

For dynamic models, the covariance matrix of 0 can be based on the expected 
covariance matrix which is a function of the mode1 and any exogenous inputs, and does 
not depend on the data. This is the method we use in expected protiling where me are 
not considering a specific realization of data. The ezpected Fisher Information rnatrix 



1- is used to compute the expected variance-covariance mat* of the parameter 
0 

estimates, where 

and O0 represents the true values of the parameters. In practice, the variance- 
covariance rnatriv for can be based on the Cramer-Rao lomer bound (Ljung, 1987): 

where 

(A. 15) 

In the case where a realization of data is available, we estimate the Fisher Infor- 
mation matrk on the basis of the data. That is, we compute the obserued Fisher 
information rnatrkx 1 - using 

8 

Efron and Hinkley (1978) provided evidence that Iê should be preferred over for 

computing cou(@. 
Other methods for computing the c o v ~ c e  matrices for parameter estimates in 

various models have been proposed. Uany of these alternative methods are resamphg 
methods (see, for example, Spall, 1998): and are computationally intensive. These 
were not used in the work being presented here. 

In this work, we computed the obsemed Fisher Information rnatrk 1- in all cases e 
where data is involved. However, we have found that for time series modets and 
transfer function models, the variance approximations for individual parameter esti- 
mates based on I -  may be poor if the vector of parameters ê is close to a stability or 

0 
invertibility boundary- The error in the variance estimate manifests itself on a profile 
t plot as a reference h e  which is not tangent to the profile at 8. It has been proven 
(see Chapter 4) that the linear approximation reference line should be tangent to the 
profile t plot at 6; therefore, we have adjusted the linear approximation reference 
lines appropriately so that they are tangent to thek associated profiles. 

For an ARMA(p,q) mode1 Q>(q-=) y, = 19(q-~)a~, the e4qressions for the derivatives 
of at with respect to the parameters are (Ravishanker, 1994): 



Let 

(h t rom,  1980) and 

Note that 

eme(4 # ~ e e  (4 (A.22) 

but 

e ~ e  (4 = ~ e 4  (-4 (-4.23) 

Then, in order to calculate the lower bound for COU(@ based on (A.14) so as to 
obtain a d u e  for se(g), ive develop the expression: 

(A. 2 4) 

We compute the elements of this covarîance matrix by first computing the unpuise 
responses of the 2 and 3 . For example, to compute the covaxiance between: 

and 



fkst compute the impulse response of each system. That is: 

Although the expressions (A.29) and (-4.28) are not exact unless the infinite s u m  is 
cornputed, in practice, the error incurred by truncating tbc sum at an appropriately 
high lag is negligible unless one or more of the series is \-irtual?y unstable. In such 
cases, the variances should be computed using an exact analytical method. -4str6rn 
(1970) showed that the variance at  Lag O can be calculated by 

where P ( z )  is the moving average polynomial and Q ( z )  is the autoregressive polyno- 
mial. Crowe (1976) (as reported in Hams, 1977) extended this rnethod to autoco- 
variances at  lag k by developing the expression 

where z is the z-transform operator, 

P1(z) = P(z )  (cos (;r) zk + cos @)) 
and 

&(z) = p,z) (sin (Zn) ik +sin (:s)) 

This c m  also be written as 



Ljung (1987) presents an eficient aigorithm for computing A.36 based on an algonthm 
derived by h r o m  (lg?O). Ljung's algorithm is as folloms. Given the mode1 

where Q(z)  = q o ~ r + q l z r - L + - - . + q r  and P(z )  = p o t r  +plzr-L + - - - + p r ,  let pt = p i  
and q,i = qi, and define p f  and qf recursively by 

r-k+L r-kf  l  - r - k f  L r - k f l  
r-k , q0 Pi P r - k t ~ q r - k + l - i  

Pi - 

r-k+L r-kfL - r-ki- L r -k f  1  
r - k - q ~  qi qr -k f  L%-ki-L-i 

qi - 

tben 

Cross covariances at lag k are not readily computed by these methods (Harris, 1977). 

A. 2 Reparamet erizat ion 
In some cases, it is straightforward to End an algebraic solution to the reparameter- 
ization when using the reparameterization algorit hm given in Figure A.2. However, 
in other cases, it is dïflicult, or even impossible, to h d  an explicit expression for 
the model in terms of the vector of new parameters 4. In such cases, the repa- 
rameterization may be carried out numerically using a nonhea r  equation solver, or 
a constrained optimization package. In t his work, all reparamet erization was done 
using MATLAB's equation solver. 

Even when using the optimization approach to generalized profiling, a reparame- 
te~zation of the model was sometimes used to implicitly constrain parameters to lie 
within a feasible region. For example, the parameters of the Michaelis-Menton mode1 

must d l  be positive. By reparameterizing the model such that 

and performing a l l  optimizations in terms of q51 and &, we can implicitly ensure 
that both O1 and e2 remain positive while still using an unconstrained optimization 
algorit hm. 



Similady, when profihg parameters and functions of parameters of time series 
and transfer function models, the partial autocorrelation function (P-CF) transfor- 
mation was used to ensure that aJl parameter vectors remained within the stabg- 
ity/invertibility region. For the generai transfer hnction model 

we reparameterize each of the polynomials A ( Q - ~ ) ,  C(q-L) ,  D(q-l) and F(q-L) in- 
dividually usuig the definition of the PACF for autoregresçive (-=) processes. The 
P-4CF function is defined by 

where q5kk is the kth paftial autocorrelation and pk is the kth autocorrelation (Wei? 
1990). Cryer (1986) provides the following recursive algorithm for cornputing Qkk 

where 9 k v j  = $k-lj - 6 k k @ k - ~ ~ k - ~ -  

That is, we treat each individual polynomial as if it were the polynomial defùung 
an AR process, and then h d  the values of the PACF on this basis. The param- 
eter vector consists of d p PACF d u e s  computed in this svay. The advantage of 
this transformation is that the individual stability/invertibîLty lirnits for the new 
parameters are f 1: and the pdimensional stability region is a hypercube with sides 
located at f 1 (h t rom and Wittenmark, 1990). This property allows the nem param- 
eters to be easily constraioed to remain mithin the stability/invertibility region since 
most constrained optimization packages accept bounds on individual parameters as 
inputs to the routine. The PACF transformation is also used in Chapter 6 as the 
basis for a measure of nonlinearity for -miA models. It has been our experience 
that evplicitly constraining the parameters of dynamic models to remain within the 
stability/invertibility boundary si&cantly irnproves the chance of converging to an 
optimum, and also improves the rate at which that convergence is achieved. 

Two reparameterizations were used to constrain the parameters. The h s t  is the 
PACF transformation which has already been discussed- In cases where the solution 



to an ot henvise unconstrained optimization problem was required, the paramet ers 
were t ransformed as follows- 

Let Bi represent any one parameter of an A41ù\-4(p,q) model and be the 
upper stabiIity bound for that parameter, i-e- 

and, 

Let Plv(x 5 u) be the probability that a Nomally distributed random variable x mith 
mean zero and unit variance is Less than u. u rnay range over al1 real numbers but 
the range of PN(x 5 u) is [O, 11- 

Let the set of new parameters followïng reparameterization of the model be y = 
(71,. . . ?y,) such that 

where u satisfies PN(x 5 u )  = 24:ial +O.% When profiling an individual parameter of 
a model, the optimization problem solved during each iteration of the profihg algo- 
rit hm is carried out in p - I dimensions (see Figure A.2). Therefore, the optimization 
for y is carried out over the set of real numbers in p - 1 directions and the solution 
is inversely transformed to obtain the results in t e m s  of the original parameters B. 
That is, the profiling is done in terms of yi and then for each yi, Bi is found as follows: 

Parame ters so transformed do no t have individual upper or lower limits. However, the 
stability/invertibility region is still a subset of 92, and therefore convergence problems 
may anse due to the vector of parameters mandering outside the acceptable region. 
For our calculations, a penalty function was always used in conjunction with the 
transformation given in (A.50). 

A 3  S tationarity, Stability and Invertibility 
The likelihood functions for parameters in time series and transfer function models 
approach negative infinity açymptotically as a stability boundary is approached, and 
therefore, the nature of the Likelihood function irnplicitly constrains the solutions 
of modeling and inference problems to rem& mithin the stable (stationary) region. 



However, the moving average parameters are not implicitly constrained by the likeli- 
hood function- Therefore, ail optimization routines were implemented such that the 
moving average parameters were eqlicitly constrained to lie Mthin the UivertibiIïty 
boundaries. In some cases this was achieved through reparametenzation as discussed 
above. In other cases, a penalty function approach was taken. In these cases, the 
likelihood function mas forced to  take on very large negative values mhenever the 
parameter vector moved outside of the stability/invertibiLty region. 

A.4 Transfer Function Models 
There have been many approaches used to estimate transfer functions from data. 
Some of the more common cIasses of methods include: prediction error methods 
(Soderstrom et al., 1991; Ljung, 1987 - k r 6 m 7  1980): fkequency domain methods 
(Ljung, 1987), and maximum likelihood methods (.kstrlim, 1980; Ljung, 1987). .41so, 
there is a large body of Literature devoted to e-xplorïng the special issues involved in 
estimating process models from closed-loop data, and establishing explicit algonthms 
for this estimation situation (van den Hof and Schrama, 1995; Gustavsson et al., 
1977). 

Recently, attention has been focused on control-relevant identification (van den 
Hof and Schrama, 1995; Ljung, 1987; Rivera et al., 1976). With this approach the 
criteria and cost function which are optimized to obtain a "best" mode1 are based on 
control-relevant indices. 

The focus of this thesis is generalized pro&g - a likelihood ratio approach to 
est imating uncertainty in functions of parameters. Therefore, model identification is 
focused cm the method of maximum likelihood and approximate likelihood methods. 
Because alternative estimation criteria (any criterion other than maximum Iikelihood) 
are widely used in control, the use of profiling in this context is considered briefly in 
Chapter 7. 

Ansley and Newbold (1980) analyzed, via simulation, the properties of three com- 
monly used estimation methods for fitting dynamic models to data: maximum like- 
lihood, exact least squares, and a conditional likelihood method (which is described 
later in this chapter). Although no one method performed best in al1 cases, the 
method of maximum Iikehhood resulted in estimates with low bias and models with 
high predictive power. 

Full maximum Likelihood estimates are often based on Kalman filtering (Astrom, 
1980; Gustavsson et al., 1977). However, we have used a maximum likelihood ap- 
proach described in the time series literature (Ansley, 1979). Ansley's algorithm is 
based on a clever transformation of an -4RkI.A-type model. The procedure for using 
.4nsley1s algorithm in the context of transfer h c t i o n  models is given in Figure A.3. 
The description given in Figure -4.3 was used so as to be consistent with the work 
done on expected profihg (see Chapter 5), mhich was also based on this method. 
However, the .4nsley7s approach is very computationally intensive. 

The approximate likeiihood method is based on an approximation to the likelihood 
function. If starting values for the series al and yt were knorvn, then, for a known 



1- CVrïte the  transfer function model in the form 

2, .&urne that  aii ut are known, even for t < O. Alternativeiy, assume that the process \vas 
operating at steady state pcïor to the euperïment, Le., ut = O, t < 0, where ut is expresçed 
in terms of devïations Gom set point. 

3. Then, using initiai estimates of the parameters, cornpute the  EiItered series 

4. Compute 

5. Xow &te the mode1 as  a tirne senes 

where q5(q-L) = ~ ( q - l ) D ( ~ - ~ )  and 6(qhL)  = c ( ~ - ~ ) -  

6. .bIey 'ç  transformation is 

where m = m a z ( n a  x nd,  nc) ,  and na, nb, nc and nd are the degrees of the polynomiak 
A(q-' ), B ( q - L ) y  C(q- ' )  and ~ ( q - ' ) ,  respectively. Lecr 

The series ut is autocorreIated oniy up to lag q. Then, the covariance matrix for zt has a 
maximum bandwidth of m for the first rn rom and a bandwidth of nc thereafter ( h I e y ,  
1979)- See -4-nsIey (1979) for an efficient way to cornpute the likelihood based on the 
transformed series zt. 

Figure A.3: A stepby-step algorithm for maximum likelihood estimation of a SIS0 traosfer 
fimction model (modified fiom Ansley, 1979). 



variance a:, the likelihood function of the model parameters 0 could be mritten as: 

and the mit.uimum likelihood estimates would be equd to the Ieast squares estimates- 
Using this resuit, conditional ma.Omum Iikelihood estimates can be calculated by 
setting the starting values of at and y, to their expected values, and then choosing 
0 such that it mùiimizes aTa (-MrtshuIer, 1983). Box and J e n h s  (1976) argue that 
the determinant of the covariance mat& is dominated by the e'cponential term and 
therefore the determinant may be disregarded when n is large- However, this approach 
may lead to iderior estimators (Dent and Min, 1978). Box and Jenkins (1976) also 
proposed an approximation based on backforecasting. However, if the parameters of 
the model are close to a stabiüty/invertibiiiiy boundarv~ then this method may be 
poor or require numerous iterations. 

We compute approximate MLE by rnaxhizing (-4.58) with respect to the param- 
eters and the starting conditions. -4lthough the resulting estimates are not the true 
maximum Uelihood estimates (Thisted, 1988), they are excellent appr~~ximations. 

For both the full and approximate Iikelihood algorithms, convergence problems 
may be encountered if the rnodel is overparameterized. A model having common roots 
in its polynomials in q-l d l  have a covariance matrîx 0 which is singular. When 
trying to estimate a model which is overparameterized, or which has a numerator and 
denominator with similar roots, convergence problems rnay occur because CZ dl be 
ilLconditioned. 

A.5 Expected Profiling 
A stepwise procedure for expected profiling is given in Figure X.4. The expression 
for E{r2)  is 

Note chat to compute the first term of this expression, the two n x n covariance 
matrices fi, and s2: must be found. Then, the inverse of fi, must be taken, and 
the product of fi,-' and computed. For large n, this rnay involve a prohibitively 
large number of calculations. Therefore, there is a need for an eEcient algonthm by 

-1 
which to cornpute tr ( f i ,  n:). The models and the values of the parameters d e h e  
the values of the elernents in the matrices fi, and a:. These values are not based on 
measured data, but are computed on the basis of the expected covariance structure 
defined by the model (see Equation A.16). 

Lam and Watts (1991) based their profiling calculations on the expression devel- 
oped by Ansley (1979) for the exact likelihood function of an ARMA model. Homever, 
many others (e.g. Newbold, 1974;, Ali, 1977; and Ljung and BOX, 1979) have proposed 



L- Define the form of the m o d d  and &ose values for ir parameters- Set 9 = O', where O' is 
the vector oE ?me" d u e s  of the paramecers, 

2. Chooçe a value for n, the  proposed Iength of the time series- 

3. Compute the =pected m-ance-covariance rnatrix ~ m ( @  for 9 based on (A.L4). This is 
defineci by the mode1 and the values of its parameters- 

6. Set the index i to 1, and let ga[d = 9- 

7. Move the vdue of g(8) away From g by a srnail amount A (Le-, gi = gord f A). 

8. Use a constrained nonIinear optimization package to s o l e  the constraÎned optimization 
probiem: maviaize 

subject to g ( 8 )  = g;- The location of the constrained optimum ïs 6. 

9. Compute 

10. is 2 t (n - p,  42)? ff yes, continue. if no, set g,rd = g;, set i = i + L, and return to 
Step 7. 

12- Fit a smooth curve through the values ri and use this curve to find the values of g(8) at  
r = I t ( n  - p , a / 2 ) .  These are the limits of the Iikelihood interval Lfn for g(0) .  

13. Compute the limits of the Iinearïzation confidence intenal for g ( 8 )  using 

14. Construct the profile t  piot by plottiag, oa one figure, ri versus gi, and Ji veversus g;, 

15. Repeat From Step 2 for a different value of n. If ai1 values of n of interest have been 
profil&, proceed to Step 16- 

16. Construct the n-plot by ptotting C f n  versus n  and LIa versus n- 

Figure A.4: A stepby-step algorithm for expected profiling. 



expressions and algonthrns for cornputing the exact likelihood. Harvey and Phi11ips 
(1979), and Astrom (1980), among others have developed algorithms based on the 
Kalman filter- Expressions for the exact Belihood function for vector ARMA(p,q) 
processes have been developed by Osborn (1977), Phadke and Kedem (19781, Hillmer 
and Tiao (1979): and Nicholls and Hall (1979). These, of course, can dso be used for 
the special case of univariate AFt&lA models. 

To be consistent wïth the previous work, we have based our calculations on the 
foLlowing transformation proposed by h d e y  (1979). The expressions for 6, and Cl:, 
which are ob t ained fkom the transformation, are developed below- 

-hsleyTs algorithm is based on trançfonning an .4EUNfA(p,q) time series yt as 
foLlows: 

mhere m = max(p, q). Let: 

The series ut is autocorrelated only up to lag q. Then, the covarÏance mat& for zt 
has a maximum bandwidth of m for the first m rows and a bandwïdth of q thereafter 
(Ansley? 1979), where the bandwidth is the number of nonzero elernents in the row. 

Let y&) be the autocovariance of y, at lag i: be the autocovariance of ut at 
lag i, and y&) be the cross-covdance of y, and vt at lag i. Then, 

ru (O) nxn 

Here we assume that O* (B) = B ( B ) ,  since this is part of the hypothesis we are testing. 
However, to calculate an, we consider the covariance structure which would result 
from transforming a realization of the true process by a moving average polynornial 
which is not equal to the true moving average hinction. Define: 



Whereas the 0(B) polynomials ui the numerator and denominator cancel in the case 
of ut, we are no longer mdtiplying by the correct moving average fuoction in (A.64), 
and therefore the cancellation does not occur. The expression for an, is: 

yu,(n) - - -  ( -  -tc(n-rn+l) - - -  7i-j (0) 

(A.65) 

- -L 
Note that while finlZ is banded, Cl;, is notl in general. .Mso, a,, is not a banded 
matrix; however, Ma (1997) has proposed an expression for efficient cornputation of 
t his inverse. 

A.6 Profile Pair Sketches and Profile Traces 
The information gathered over the course of proi3ing can be used to sketch nonlinear 
confidence regions for parameters or functions of parameters. To sketch a profile pair 
plot for two functions of parameters gi (O)  and g2(8) ,  follow the steps given in Figure 
A 5  



2. Over the course OF profiiling gi(8), construct the mat* LM, where each row of ' M  
contains the resdts of the constrained optunizatioo probtem solved a t  each iteration of 
the profiting dgonthm- Each column of the mat* contains values of one of the b c t i o n s  
of parameters, one of the parameters, or  r, a t  each iteration- In table form, LM ïs 

where gk (9) is the kth hnction of parameters of interest, & is the ith parameter of the 
vector of parameter values 6, 'h is the number of iterations needed to pro6ie g1(8), and 
'mivj is the i j th element of ' M  

3. ProfiIeg2(9). 

4. Over the course of profiling g2(8) ,  construct the mat* ' M as for LM in Step 2. 

5. Using the data in ' M  , ht a spline curve gg,,~ to r as a function of gt(8). Ako fit a spline 
gre,l to gi(8) as a function of rr 

6- Using the data in " M ,  ht a spline curve gor.. to r as a function ofg2(8). -!&O 6t a spline 
gre,2 to g2(8) as a function of T. 

7. Use gare' to convert the g ~ ( 8 )  column of 'M to a vector of T d u e s  cailed r ~ z -  

8. Fit a spIine gr,,2 to  r ~ s  as a function of the T data from -M - 

9- Use ger,z to convert the 92(6) c01umn of ' M  to a vector of r values cailed r 2 ~ .  

10. Fit a spIine grr,r to  r 2 ~  as a function of the r data from 'M - 

LL. Use g , , ~  to compute ql ,  the d u e  of the spline at J I - F ( ~ , ~  - r; a), where r is the number 
of hnctions of panmeters being considered jointly, 

12. Use g r , '  to cornpute q2, the d u e  of the spline at - , / r ~ ( r , ~  - r;a).  

13- Use g-,z to compute PL, the d u e  of the spline a t  d r ~ ( r , ~  - r; a). 

14. Use grr.2 to compute p2, the value of the spline at - J r ~ ( r ,  p - r; a). CONTmUED ON 
NEXT PAGE 

Figure A.5: A stepby-step algorithm for sketching a profile pair plot for gi(8) and g2(8)  
(CONTINUED ON NEXT PAGE). 



L5. Let 

L6. Let 

LT. Let 

L8. Let d = s p  + sq. 

19. If any eIement of d is negative, change the sign of that element and the sign of the 
corresponding eIement of a- 

20. Let aT = [aT - 27r, aT, aT + 2 4 .  

21. Let dT =[dT,dT,dT]- 

22. Let S1 = a i- d/2. 

23. Let S2  =a-d/2. 

24- Fit a spiine gs2,s1 to S2 as a function of S1- 

25. Choose a series of LOO equally spaced d u e s  from O to 2îr. Let this vector of vaIues be 
eps- 

26- Use g s 2 - s ~  to compute the vector sqs which corresponds to the vaIues in sps- 

27. Let r, 1 = cos(sps) , / r~(r ,  - r, a). 

28. Let 7 . 2  = cos(sqs) , / r ~ ( r , ~  - r, a). 

29- Use g,e,l to convert r . , r  to the vector B..r. 

30. Use g,e-l to convert r , , 2  to the vector 8..2- 

Figure A.5: -4 stepby-step algorithm for sketching a profile pair plot for g1(8) and 
g2(0)  (adapted £rom Bates and Watts (1988)). 



A. 7 Nomenclature 

nu, nb, nc 

= white noise sequence 
= p x 1 vector of constants 
= polynomial in the backshift operator q-L 
= polynomial in the backshift operator q-' 
= a constant 
= variance covariance matrk of 6 
= polynomial in the backshift operator q-' 
= n x I column vector of estimated random errors 
= upper a quantile for the F distribution with p 

and n - p degrees of fieedom 
a function of parameters 
= vector of derivative of g(8) with respect to 0 

evaluated at 0 
= Hessian ma t rk  of S(8)  
= likelihood function evaluated at 8 
= natural logarïthm of the Likelihood b c t i o n  of 0 
= likelihood ratio 
= natural Iogarithm of the likelihood ratio 
= Likelihood interval for g ( 0 )  
= number of observations 
= orders of the polynornials A(q-'), 

B(q-L) ,  C(q-L)7 respective- 
= number of estimated parameters 
= estimated standard deviation of the random errors 
= sum of squared errors 
= sum of squared errors 
= standard error 
= upper 4 2  quantile of the t distribution with 

n - p degrees of fieedom 
= covariance at Iag u 
= n x p matrk of elements uîj representing the first 
= a time series 
= a time series 
= I x m row vector of m independent variables 
= n x p matrix of elements xij representing the level 

of the jth independent variable for observation i 
= response variable 
= n x I column vector of values of the response variable 
= forward shift operator 
= a time series transformed using ..4nsiey7s transformation 

derivative of f (xi, 0) with respect to the jth parameter 



Greek letters 

Superscripts 

Abbreviations 

AR 
-4RM-4 
-4RM-AX 
iid 
MLE 
PACF 
SIS0 

= sigdicance Level 
= additive random error 
= n x 1 column vector of random errors 
- it" - parameter of a mode1 
= p x 1 vector of parameters 
= p x 1 vector of maximum LkeIihood estimates of the 

parameters 
= location of a constrained maximum of L(8)  
= a constant mhich defines the confidence level 
= covariance at  lag u 
= p x 1 vector of derivatives of at with respect to 0 
= covariance at  lag u 
= standard deviation 
= profile t statistic for g ( 8 )  
= expected value of Z 
= kfh partial autocorrelation 
= upper stability/invertibility bound for the ith parameter 
= the chi-squared distribution with 1 degree of fieedom 
= variance covariance m a t r k  for zt 

= a true value 
= a maximum likelihood estimate 
= a constrained estirnate 

aut oregressive 
aut oregressive moving average 
autoregressive moving average with exogenous inputs 
independently and identicdy distributed 
maximum likelihood estirnate 
partial autocorrelation hnction 
single input single output 




