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Abstract 

As prior knowlodge of mobile velocity has been found usefd in many applications 

of mobile communications, it is necessary to estimate the mobile veIocÏty at the 

mobile station (MS) based on the received fading signal. Rice et al. have derived a 

continuous-tirne fading signal modd, which can be used to obtain estimates of mobile 

velocity. The main emphasis of this thesis is on the development of level crossing rate 

( LCR) and autocorrelation fuoction ( ACF) methods for estimating mobile velocity 

using the discrete-time received fading signal comipted by the additive noise. While 

our results show that both methods produce close estimates to actud mobile velocity? 

the ACF method has superior performance in low SNR conditions. 

W e  then apply the estimated mobile velocity to the probiem of tracking moving 

mobiles by employing a Kalman filter. By adding the mobile velocity measurements 

into the mobile motion tradcing model, we found, through the simulation results, that 

the performance of the system can be improved significantly when the mobile velocity 

is relatively large. 
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Chapter 1 

Introduction 

Motivation 

Mobile velocity is an important parameter in a mobile communication system. There 

exist a variety of real-world applications that can use the mobile velocity to improve 

their performance. For example, handoff requests from rapidly moving mobiles in 

microcellular networks must be processed quicklyY Otherwise, excessive dropped calIs 

will occur. Velocity-adaptive handoff algorithm can solve this problem. They are 

hown to be robust to the severe propagation environments that are typical of urban 

minoceDular networks [2, 19, 20,401. 

In a mobile communication system, the signal received by the mobile station 

always consists of multiple components fkom different directions and with different 

delays, due to the reflection, scattering and *action of the incoming waves by the 

objects in the irnrnediate vicinity of the mobile. If there are small changes in the 

differential delays, large variations in the amplitude and phase of the received signal 

will occur. This is c d e d  multipath fading. The fading rate depends on the mobile 

veloci ty. The faster the mobile, the larger the fading rate. Therefore, statistical char- 

acterization of the fading signal model is fiindamental to mobile velocity estimation. 

Rice et al. developed a continuous-time fading signal model [l, 7, 22, 26, 31, 32, 391. 

Some mobile velocity estimation techniques have been developed based on Rice's 

model [33, 381. 

The focus of this thesis is on the development of a discretetime fading signal 

model and cowsponding mobile velociw estimation techniques. 



Contributions 

The main contribution of this thesis is the derivation of a discretetime fading signal 

model and level crossing rate (LCR) and autocorrelation function (ACF) estimation 

t ethniques for mobile velocity using a discrete-time fading signal corrupted by additive 

noise. Through the use of simulations, we show that both estimators can produce 

accurate estimates of mobile velocity. We then apply the mobile velocity estimators 

to the mobile position tracking application. We will find that, by a d h g  velocity 

measurements, the performance of mobile motion tracking is improved. 

The followirig chapters examine various aspects of mobile velocity estimation in multi- 

path fading channels. Chapter 2 introduces the m o d e h g  of multipath fading signals 

and discusses the previous work on mobile velocity estimation using continuous-time 

received fading signals. The discrete-the fading signal model is presented in Chapter 

3. and this chapter studies the derivation of a level crossing rate (LCR) estimation 

technique as weU. In Chapter 4, we present another estimation technique of mobile 

veloci ty, autocorrelation function ( ACF) estimation. Chap ter 5 applies mobile veloc- 

ity estimation to mobile motion tracking. We then present the conclusions in Chapter 

6, where suggestions for future research are dso given. 



Chapter 2 

Background 

2.1 Mobile Radio Propagation 

-4 mobile radio system typically consists of a set of base stations (BSs) whose antennas 

are usudly placed well above local terrain. Therefore, the BSs are relatively indepen- 

dent of local scatterers. Most of the time, there hardly exists a line-of-sight (LOS) 

path between the BS and mobile station (MS) antennas, because there are aiways 

many natural and man-made objects in the immediate vicinity of the MS. After the 

consequences of reflection, *dion, and scattering the transmitted waves. which 

are approximately planar at large distances, from the BS arrive at the MS from many 

different directions and with digerent delays, as shown in Figure 2.1. This property 

is cded  multipath propagation. The multiple plane waves combine vectonally at the 

MS antenna to produce a composite received signal. 

Since the cmier wavelength used in recent mobile radio systems is relatively s m d ,  

small changes in the differential delays introduced by the moving MS will cause large 

changes in the phases of the arriving plane waves. These phase differences cause 

constructive and destructive addition of the arriving plane waves which causes large 

variations in the envelope amplitude a d  phase of the composite received signal at the 

MS end. Since the MS is moving through space, the spatial Mnations in the envelope 

and phase of the composite received signal manifest t hemselves as time variations. 

This phenornenon is called envelope fading. 

In the urban area a MS is usually surrounded by local scatterers, so that there 



1 base station 
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Figure 2.1: Typical radio propagation in mobile radio system. 

exists no direct LOS path between the BS and the MS. All plane waves arrive at the 

MS from ail directions with nearly equd probability. Therefore, isotropie scattering 

is a reasonabie modelling assumption [6] and Rayleigh distnbuted envelope fading is 

assurned. While in the suburban area, there sometimes exists a LOS path between 

the MS and BS, and at other times there is no LOS component. The received signal 

will still experience fading. However, the scattering is u s u d y  non-isotropie and the 

envelope fading has a Ricean distribution. 

2.2 Cont inuous-Time Received Signal Model 

As stated in the previous section, the signal received by the MS antenna is made up 

a nurnber of horizontdy travelling plme waves with random amplitudes and angles 

of arriva1 for different locations. The phases of the waves are u n i f o d y  distributed 

over [-s, ir]. The amplitudes a d  phases are assumed to be statisticdy independent. 

Figure 2.2 depicts a horizontal z-y plane with a MS moving along the x-axis with 

velocity v. The MS motion introduces a Doppler shift, or fiequency variation, into 



the nth incident plane wave, given by 

where f, = v/Xc and Ac is the wavelength of the arriving pIane wave. is c d e d  

maximum Doppler fiequency, and B n ( t )  is the incident angle of the nth wave. 

mobile X 

Figure 2.2: A typical component wave incident on the MS receiver 

Assuming that the transmitted signal is vertically polaxized, the composite re- 

ceived signal can be written as 

where f, is the carrier fiequency, a n ( t )  is the amplitude of the nth wave, and #n(t) is 

the phase angle uniformly distributed over [-R, r] . 

Following Rice [31] [32], we can express bandpass signal r ( t )  in quadrature fom 

r(t ) = r I ( t )  cos 2a fct - rq ( t )  sin 2 ~ f . t  (2.3) 



w here 

are in-phase and quadrature components of r(t). respectivelyi According to the Cen- 

tral Limit Theorem. for large X .  the quadrature components r I ( t )  and r Q ( t )  can 

be approximated as independent Gaussian processes. Furthermore. we cm assume 

that these random processes are wide sense stationam \vit h constant - parameters 

fd.*(t) = fd.n: ~ n ( t )  = a,. &(t) = &. and assume that the received signai r(f) is 

wide sense stationary- Therehre, Equations (2.2)-(2.5) can be rewritten as 

and 

2.2.1 Received Signal Envelope Distribution 

wk denote r I  and TQ the 

t .  each having zero meaa 

random variables corresponding to rr( t ) and r~ ( t  ) for fixed 

and equal \miance: 

(2. IO) 

if there exists no LOS component between the BS and MS. By using a bivariate 

transformation, the received signal envelope r ( t )  = ,/- has a Rayleigh 

distribution at any tirne t ,  Le., 

This type of fading is called Rayleigh fading. 



If there is a LOS path or a speculax component fiom a strong (fixed) local scatterer. 

the amplitude of one incoming plane wave, ao, is significantly Iarger than other a,. 

Then. and r~ have non-zero mean and the received signal envelope has a Ricean 

distribution at any time t ,  i-e.. 

where 
2 s2 = cr; cos2 00 + a: sin2 Q = a, 

is the non-centrality parameter and l o ( x )  is the zereorder modified Bessel function 

of the first kind. This type of fading is cded  Ricean fading. 

2 -2 -2 Received Signal Correlation and Spectrum 

The autocorrelation function of r( t  ) is 

&(T)  = E{r( t )r ( t  + r )  ) 

= E{rr(t)rr(t  f T ) )  COS 2~ f c ~  - E{r& )rI(t  + r)) sin 2 r  fcr 

- - &Irr (7) COS Z r  fer - &,,(r) sin 2a fer 

Xote that in Equation (2.14) 

The autocorrelation function qjrIr, (r ) can be obtained from Equations (2.81, (2. IO), 

and ( T l ) ?  

where 



is the totd average received power from ail multipath components. 

Likewise. the crosscorrelation function Q,,,, ( T ) is 

In Rayleigh distributed fading channels, Equation (3.17) becomes 

where Jo (x )  is the zero-order Bessel hinction of the first kind. Likewise. Equa- 

tion ('1-19) becomes 

The power spectral density (PSD) of r r ( t )  and rQ( t )  is the Fourier transform of 

or,,, ( T ) or 0rQr4 ( r ) respect i v e .  i .e.* 

l O otherwise 

The PSD of the bandpass received signal r(t ) c m  be expressed in terms of the 

quadrature components as 

The normalized PSD Sr,( f )/(3R,/lr f,) is plotted against the nohalized difference 

( f - fc) / fm in Figure 2.3. Notice that Sr,( f ) is limited to the range of frequencies 

If - fcl 5 fm or twice the maximum Doppler fkequency. 



Figure 2.3: PSD of the received signal for a Rayleigh distributed fading channel 

2.3 Previous Work on Mobile Velocity Estimation 

2.3.1 Level Crossing Rate Estirnators 

From [38] the envelope level crossing rate ( LCR) is defined as the average number of 

positive-going crossings per second that a signd makes of a predetermined level R. 

Likemise. the zero crossing rate (ZCR) is defined as the average number of positive 

going zero crossings that a signal maks per second. 

Assuming the fading mode1 in Equation (2.3), Rice has derived the envelope LCR 

with respect to the level R as [32] 

1 b2 ZCR = --\/& 



where rnrl r n ~  are the means of rr( t ) .  rq(t) ,  respective1-: p(R.P) is the joint prob- 

ability densi-  function of the envelope r (evaluated at r = R )  and the dope of the 

envelope Po and B = b&2 - b:, where for integers n 2 O? 

with bo = aZI and f, is the maximum Doppler fkequency. Therefore. by using Equa- 

tion (2.26). Equations (2.24) and (2.25) become, respectively. 

and 

ZCR = &/A, (2.28) 

where p = R/Rms. where Rms = is the m s  signal level, h- is the Ricean 

factor and &(x) is the zeroorder rnodified Bessel fundion of the first kind. 

From [38]. the LCR around p = L is roughIy independent of K. and ZCR is not 

dected by I<. Therefore, the steps for using the LCR (or ZCR) of the envelope (or 

rr ( t )  or rQ(t)), for velocity estimation are [38]: 

1. Determine Rms (or mr or rnq ), 

* A 

2. Estimate the nurnber of crossings per second LR,, (or LZCR)- and 

3. Use Equation (2.27) to solve for a, with p = 1 and hp = O (or Equation ( 2 3 )  

for ZCR). 

2.3.2 Covariance Approximation Met hods 

Holzman and Sampath have proposed a velocity estimator that relies on an estimate 

of the autocovariance function of received faded sarnptes, which we denote as r[i] [19] 

[3:3]. With this method, referred to as the covariance method (COV), the statistic, 

is calculated. If N is large and ergodicity applies, then the time average Ci can be 

replaced by the sample mean 

E { V )  = &,-(O) - %prr(r) (2.30) 



where p&) denotes the autocovariance of r[k] .  Assuming squaxed-enveIope samples 

and that the channel is characterized by isotropic scattering. &r) is written as [l] 

Substituting Equation (2.31) into (2.30), 

QP 
2 

i- = E{V)  = 2 (-) ((1 + 2K) - (J: (2ar /Ac)  + ~ h - ~ ~ ( 2 i r r / & )  cos(2ir  cos O ) / & ) ) ]  
h + i  

which is dependent of h- and 0- If p,,(O) is known exactly. then 

to K can be eliminated for smdl r by the normalization [33] 

so that the estimated mobile velocity ûcov is written as [33] 

where 7, is the sample spacing in seconds/sample. 

2.4 Laboratory Simulation of Fading 

('LX 

the bias wit h respect 

It is desirable to use actual fading signds recorded at a MS antenna. However. a t  the 

present time we do not have this oppoaunity. Therefore. fading signal simulators are 

of interest that are derived from theoretical principles. 

2.4.1 Filt ered Gaussian Noise 

The simplest fading signai simulator is to use low-pas filtered white Gaussian noises 

as shown in Figure 2.4. If the Gaussian noise sources have zero-mean, this method 

produces a Rayleigh fading signal; otherwise a Ricean signal is produced. 

The two different noise sources must have the same PSD to produce a fading 

process that is stationary. The main limitation of this approach is that only rationd 

foms of the fading spectra can be produced, which is accomplished by using a high 

order pole-zero filter. However, using an infinite impulse response (UR) filter has 

stability priblems [8]. 



1 Gaussian 1 -1 10;~ess 1 56) , noise source 

Figure 2.4: Fading simulator that uses Low-pass filtered white Gaussian noise. The 

output signal rt(t)  is the law-pass signal equivalent to the desired bandpass signal. 

2.4.2 Jakes' Method 

Jakes has introduced a different fading simuiator. Assuming that dl processes are 

wide sense s ta t ion-  with equal strength mdtipath components (i-e.. û, = 1 ) where 

each of the N components are uniformiy distributed in angle (Le.. 8, = (2an)/AT. n = 

1.2. - - - . N ) ,  Jakes proposed that the in-phase and quadrature components be [22] 

w here 

27rn 
= kVm cos - 

N 
and 

w, = 2cv/X, 

The Jakes' fading simulator is constructed as shown in Figure 2.5. 



offset osciliators 

Figure 2.5: Jakes' fading simulator 

2.4.3 Inverse Discrete Fourier Tkansform Rayleigh Fading 

Simulat or 

Smith introduced a Rayleigh fading simulotor using inverse discrete Fourier trans- 

form of uncorrelated Gaussian processes [36]. To generate a desired Rayleigh fading 

sequence. a cornplex sequence { X [ k ] } ,  k = 0,1,  - . -N - 1 is farmed by adding in 

quadrature two uncorrelated sequences of Gaussian processes. t hat is 

where { F [ k ] )  are filter coefficients, {A[k ] )  and (B [k]) are i.i.d.. N(0.  a* j and {.4[k]) 

and {B [ I l ] )  are independent of aIl k. 



Taking the inverse DFT of X[k]. we have 

The red and imaginarq- parts 

l N - L  2 ~ k n  
= - C F [k] -4 [k] COS - 

N ,O !Y 

xR[?z] and xr[n] are composed of a weighted sum of W jointly Gaussian random 

variables; therefore they are also Gaussian distributed. In order to approximate x[n] 

as a Rayleigh fading signal. the filter coefficients { F [ Y )  must be appropriately chosen. 

Smith chose {F[k]) to approximate the spectnim 

where f, is the maximum Doppler frequency. and this choice of { F [ q )  corresponds 

to an approximation of the continuous-tirne autocorrelation r ( r )  = JO(% f,r ), and 

models fading due to isotropic scat tering. 

Smith chose the filter coeEcients { F [ k ] )  as 

O elsewhere 

where Is, = 1 fm/ f,J, and fp = f s / N ,  f, is the sarnpling rate. 

Young and Beaulieu modified the IDFT fading simulator by choosing a different 



set of filter coefficients { F [ k ] )  as [13] 

to reduce the computation time of the simdator. 



Chapter 3 

Level Crossing Rate Estimator 

3.1 Discrete-Time Propagation Mode1 

3.1.1 Received Signals 

From Equation ( 2 4 ,  the received continuous-time band-pass signal is given by 

where Rc and 0, are the continuous-time carrier fiequency and Doppler frequency 

caused by the nt" incoming wave? respectively, and 4, is the phase angle of the nth 

incoming wave. -4 band-pass continuous-time signal can be represented uniquely at 

the sampling rate of 2 8  5 Fs c 1B samples per second r29], where B is the bandwidth 

of the continuous-time signal. If we sampie x ( t )  at the rate Fs = 2B samples per 

second, we have 
N 

x(k) = an cos(w,k f u n k  + &) 
n=I 

w here w, = Oc/ Fs and un = On/ Fs are the discrete-time carrier and Doppler frequen- 

cies, respectively. 

The in-phase and quadrature components of the received signal can be written, 

respectively, as 



The low-pas equivalent signal is given by 

3.1.2 Received Signal Correlation and Spectrum 

Since these randorn processes of fading signals are assumed to be wide-sense station- 

q-- t heir aut ocorrelat ion funct ions can be direct ly derived fiom t heir cont inuous-t ime 

counterparts by sampling at the rate Fs sampies per second [Zr]. From Equations 

OP -Es{cos[2irf,m cos 8 ) )  
3 
Y 

QP -Ee{sin(Sii 3 fmm cos O)} 
d 

and from Equations (2.13) and (2.16) 

The autocorrelation funct ion for the low-pas equivalent signal is 

(m) = ArrI (m) + i&rQ (ml (3-10) 

The power spectral density (PSD ) of the discrete-time wide-sense stationary ( WSS) 

random process, S( f) ,  is the discrete Fourier transform of its autocorrelation d(m), 

Using the Poisson 

equals the sum of 

summation formula (%il ,  the PSD of a WSS discrete-time process 

the PSD of the continuous-time process and it s displacements. 

where S(w ) , S,(w) are PSD7s of discrete-time and continuous-time processes, respec- 

tively, and T, is the sampling period. For a discretetime signal to be bandlirnited, 

range of w E [-B,+B] where B < n, we can find that the PSD of discrete-the 



process is identical to the PSD of its continuous-time counterpart. which is the most 

interesting and useful. 

If the propagation channeis are Rayleigh distributed. fiom Equat ions (2.20) and 

(2.21). the autocorrelation functions cas be written as 

Gsing Equations (3.8)-(3.10) and (3.1 3)-(3.14) and taking the Fourier transfom. the 

power spectral density of the low-pass equivalent signal is given as 

3.1.3 Adjacent Signal Envelope Statistics 

In order to find the joint pdf of two adjacent envelope samples p(zk ;t. zk+i ) . the joint 

pdf of their in-phase and quadrature components. r l .  r ~ .  must be derived first. That 

is. the pdf. p(rr(k).  r&). rr (k  + l), rQ(k + 1)) should be found. We know. from 

Section 2.1 y t hat the in-phase and quadrature components are nonnally distri buted 

due to the Central Limit Theorem. For Rayleigh distributed charnels, t hey have zero 

mean and cornmon variance a2. That is 

E { ~ : ( R ) }  = E{rQ(k) )  = a2 

From Equations (3- 13)-(3.14): the following is derived 

From Equat ions (3.16)-(3.18), the comriance matrix of these four components is 



where the Bessel function Jo(Znf,)  is simplified to Jo for notational convenience, 

From [SI, the joint pdf of these four components is 

For notationd simplicity. we have .dmpped the dependence on time k due to the 

wide-sense stationarity assumption. 

Second. we tmsfonn this joint pdf to the joint pdf of the envelopes and phases 

of the two adjacent signals, p(rl, OIT zz7 d2) -  We define the signal envelope. at time k 

and k + It  as 

and the phase of a signal, at time k and k + 1. as 

T herefore, 

The Jacobian of the transformation is 

1-L -L 0 0 1-' azr se, 



where 1-41 denotes the determinant of matrix A- 

- - 

Using Equations (3.23) and (3.20). the joint pdf of the envelopes and phases is 

skB1 Z ~ C O S ~ ~  O O 

O O cos d2 -22 sin O2 

O O sin O2 z2 COS Ba 

Finally. as in [31]. the joint pdf of two adjacent envelope samples can be found 

by integrating the joint pdf of envelopes and phases with respect to the two adjacent 

phases. Integrating (3.24) with respect to BI and 02, the pdf of two adjacent envelope 

sampIes is given by 

where Io(-) is the modïfied Bessel function of the first kind of zero order. 

3.1.4 Effects of Additive Noise 

The received bandpass signal in the presence of additive noise is given by 

y ( t )  = z( t)  + n(t)  

where n(t ) is the additive white Gaussian noise ( AWGN) with zero mean and constant 

power spectral density over the entire fiequency range. It is mathematically conve- 

nient in problems concerned with narrow-band signais in noise to mode1 the additive 



noise process as white and to represent the noise in t e m s  of quadrature components. 

This c m  be accomplished by postulating that the signal and noise at the receiving 

terminal have passed thmugh an ideal bandpass fiiter, having a passband. B,. that 

includes the spectnun of the signds but is much wider. Such a filter will introduce 

negligible, if any. distortion on the signal but it does eliminate the noise frequency 

components outside of the passband[2SI. 

Figure 3.1: Power spectnim density of bandpass white noise 

The noise resulting from passing the white noise process through an ideal bandpass 

filter is termed bandpass white noise and has the power spectral density depicted in 

Figure 3.1. The power spectral density of the equivalent lowpass noise n r ( t )  is given 

b y 

and its autocorrelation function is 

where 8, is the bandwidth of the bandlimited noise. Since the bandlimited noise is 

a WSS process, we can obtain the autocorrelation fimction of the discrete-time noise 

by directly sampling the autocorrelation of the continuous-t ime bandlimited noise. 



which is 

where Ts is the sampling rate. 

The power spectral density for bandpass white noise is symmetric about f = 0, 

and the autocorrelation functions of quadrature components are given by 

where nr(k )  and n ~ ( k )  are the in-phase and quadrature components of the bandpss 

white noise. 

Sometimes the received signal is cormpted by inpulsive noise instead of white 

noise. Bere we adopt the two-term mixture Gaussian noise mode1 [41]. The pdf of 

t his noise has the form 

with v > 0, O 5 e 5 1, and tc 2 1. In Equation (3.31), the N(0.u2) term repre 

sents the nominal background noise, and the N(0, KG) term represents the impulsive 

component, with E is an indicator function. which represents the probability that the 

impulse occurs. It is assumed that values of the indicator function are independent 

over time. The variance of this noise is [41] 

By bandpass-filtering with bandwidth B, and sampling this noise at l/Ts samples 

per second, we obtain its discrete-time autocorrelation function as 

where No = (1 - c)v2 + er;u2. 

Adjacent Received Signal Envelope Statistics with Noise 

Wi th the presence of additive white noise, the in-phase and quadrature components 

of the received signal are written as 



where nr(k)  

white noise, 

and n4(k) are the in-phase and quadrature components of the bandpass 

respectiveIy. Therefore, 

and 

where is the average power of the bandpass noise, which can be equai to NoBn if 

the noise is white Gaussian noise, or NLB, if the noise is two-term mixture Gaussian 

noise. From Equations (3.35)-(3.371, the coMtiance matrix for these four components 

with noise is given by 

tat ional convenience. Sirnilar to the derivat ion procedure fiom Equation (3.20) to 

A =  

(3.25), we can obtain the pdf of two adjacent envelope samples written as 

- - 
a2 + i ~ r n  O u2 JO + fan O 

O O* + $4 O $JO + 
$&+$on O a2 + $0; O 

O @'A + 2.;: O 0' + - 

3.2 Envelope Level Crossing Rate for Discrete-Time 

Again, the Bessel hinction Jo(2rfm) in Equation (3.38) is simplified to JO for no- 

For the discrete-time propagation mode1 introduced in the previous section, a positive 

level-crossing at  time k of envelope r (k) at Ievel A occurs if z (k-  1) 5 A and z ( k )  > A. 

A negative level-crossing at time k of envelope z (k)  at  level A occurs if t(k - 1) > A 



and r ( k )  < A. That is, whenever one of two adjacent samples is lower than A and the 

other is higher than A, an envelope level crossing is recorded. One must notice that 

positive and negative crossing directions cannot be mked when counting the number 

of level crossings. Since the sample envelopes are random signals, the number of level 

crossings is a random variable. The level crossing rate over N given samples can 

be defined as the ratio of the expected number of level crossings to the number of 

samples. Let X denote the number of level crossings at the specified envelope level -4 

over N given samples, the envelope level crossing rate (LCR) is therefore written as. 

E W )  LCR = - 
N 

Let Xk denote the state between two adjacent samples: Xk = O when there is 

no level crossing between two adjacent samples, and Xk = 1 when there is a level 

crossing. Therefore, 

where n denotes an arbitrary starting time and N is the total number of envelope 

samples processed. Substituting Equation (3.41) into Equatioa (3.40), we can obtain 

where 

denote the probabilities of state O and 1, respectively. From the definition of envelope 

level crossing, Equation (3.42) can be written as 



where p ( ~ ~ - ~ ,  zk) is the joint pdf of two ajacent envelope sarnpies. WheIe it is dso 

assumed that there only one level crosshg occurs during the sampling perïod. In order 

to find the LCR, we must first evaluate the double integration in Equation (3.45). 

With the absence of the additive noise, fÎom Equation (3.25), Equation (3.45) can 

be written as, 

where zl and 22 denote zk-1 aad zt, respedively- Substituting m2 = u2(l - JO), 
x = z2/rn, and cr = (zr Jo)/m into Equation (3.46), we obtain 

where 

is the Marcum's Q function [17]. Substituting x = z l / n  into Equation (3.47), 

A/" I 
LCR = / (1 - ~ , ~ ) z e x p  {-?z2(1 - J:)} Q(J02, A /m)dz  

O L 

(3.48) 

The Marcum's Q function can be written in terms of the following series [17], 

Substituting Equation (3.49) into (3.48), 

LCR = (1 - ~i)e - r , r zm2,  5 (Jorn )  " iAim ,n+i,-1/2~ 
A n=O 

where 



Substituting v = .4/m into Equation (3.51), we obtain 

Expanding ë2/* into series, 

and substituting Equation (3.53) into (3.52), we obtain, 

The modified Bessel functions have the property [171, 

Using Equations (3.54) and (3-55), we obtain, 

Substituting Equation (3.56) into Equation (3.50), we obtain 
-- - -  

Joli' 
LCR = (1  - ~;)e-~' /" '  C C J:-'I~+~ [ x) 

- 
where p = Aj\/2a2, and is the rms value of the signai envelope amplitude. 

With the presence of noise, by using the derivation procedure shown fiom Equa- 

tions (3.45) to (3.57) and using Equation (3.39), we can obtain the LCR as 

9 - 2(1+ +j2p2 JO + L "-li 

LCR = (1 - & ) i l +  + - )E (L-Jo)(l+Jo+*) 2 5 ( 
F) 7s n=O k=f 1+, 



where 7, = (202)/< is the signal-tenoise ratio (SNR). 

We can solve for the estimated mobile velocity B by using a table-looking method, 

That is, we calculate LCR values accordïng to various mobile velocities using Equa- 

tion (3.57) or Equation (3.58) and construct a table, where the number of the sum- 

mations in these two equations can be set to 30. When we are estimating the mobile 

velocity, we c m  look up the calculated table in accordance with the calculated LCR 

value to obtain the estimate of the mobiIe velocity, 

3.3 Level Crossing Rate Estimation 

We have shown that the level crossing rztes of the envelope z(k) = ,/TF&) + r;(k) of 

a received signd in noise are functions of the mobile velocity as discussed in previous 

sections. The envelope level crosshg rate (LCR) is defùied as the average nurnber 

of level-crossings per envelope sample at an envelope amplitude level il. ahich is 

predeterminated by received signais. 

Therefore, the LCR of the received signals can be used to estimate the mobile 

velocity. The LCR as the function of mobile velocity is given by Equation (3.57) for 

the noiseless case, and Equation (3.58) for the case in the presence of additive noise. 

As long as we are given the LCR for the received signal. we can solve for the maximum 

Doppler frequency f, using the equations shown above. Once fm is calculated, using 

where Fs is the sampling rate, F, is the carrier frequency and c is the velocity of light, 

we can solve for the desired mobile velocity W. 

3.3.1 Level Crossing Rate Estimation Procedures 

In levei crossing rate estimation of mobile velocity, the fist step should be bandpasc 

filtering the received signd in additive noise to get rid of the out-of-band component 

of the signd. Then we can sample the output of the bandpass filter at Fs samples 

per second to obtain the discrete-time signal. In order to obtain the LCR, we need 

to convert the received discrete-time signal into an equivalent lowpass signal and 



calculate the LCR at a specified level A over N envelope sampies. From the obtained 

LCR and using Equations (3.57)-(3.59), we can calculate the desired mobile velocity. 

The procedure is shown in Figure 3.2. Before we go further, we must clarïfy some 

issues in parameter determination- We need to know how the bandwidth of the 

bandpass filter is specified; how to choose the sampling rate Fs; and how many 

envelope samples shouid be processed to obtah the LCR. 

lcr over 
N samples 

Figure 3.2: Procedure for obtaining LCR 

Bandpass Filter Bandwidth B, 

As described in Section 3.1.4, the passband of the bandpass filter must include the 

spectrum of the signal. For mobile velocity estimation, only the maximum Doppler 

frequency Fm introduced by the mobile mobility is needed; and fiom Figure 2.3, we 

can see that the spectrum of the fading signal is within the range of ( F,- Fm, F,+ Fm), 

where F' is the carrier frequency. Therefore, the bandwidth of the bandpass filter B,, 

should be Iarger than 2Fm- 

The maximum Doppler frequency Fm depends on the carrier fiequency Fc and 

mobile velocity v, as shown below, 



where c is the vdocity of Iight. For a specific mobile commUILication system, the 

carrier fkquency Fc is usually Exed, that is, F, is maidy affecteci by the mobile 

velocity, v. Therefore, as long as we set B, larger than twice of the maximum value 

of the expected maximum Doppler fiequency for a specific system, usefd information 

wilZ not be e h n a t e d  by the bandpass filter. 

Sarnpling Rate Fs 

The samphg rate Fs can be theoreticaIIy chosen as twice the upper bound of the 

bandpass signal due to the sampling theorem. In practice, it would be expensive 

in the case that the upper bound frequency is extremely high. Generally, the carrier 

frequency in mobile communication systems is very high. For example, about 2 GHz is 

used for recent personal coflll~lunications systems. We need to find another sampling 

method. It wouid be advantageous to perform a bandpass-to-lowpass conversion, and 

sample the equivdent lowpass signal [29]. Figure 3.2 is, therefore, modified as in 

Figure 3.3. The resulting equivalent lowpass signal has a bandwidth Bn/2; hence it 

can be represented uniquely by samples taken at the rate of B,, samples per second 

for each of the quadrature components. Thus the sampling can be performed on each 

of the lowpass filter outputs at the rate of B, samples per second. Therefore, the 

resulting rate is 2Bn samples per second. 

In Equations (3.57) and (3.58), we are using Z(2n f,), which is depicted in Fig- 

ure 3.4. From this figure, we cas find that J:(:(2rfm) descends monotonicdy from 

its maximum value until it reaches 0: then it goes upward. This implies that for 

one unique LCR, we may obtain more than one estimated f, by using these two 

equations. To guarantee a unique estimated fm , we must lirnit the maximum value of 

the expected fm for a specific mobile communication system to be less than 0.3827, 

which is the smdest positive solution of g(2~ f,) = O. This can be accomplished 

by choosing a large enough sampling rate. Fortunately, if we set the sampling rate 

Fs to be a t  least larger than 2Bn, which in turn is larger than 4Fm, the maximum 

value of the expected maximum Doppler fÎequency f, = Fm/Fs is always less than 

0.25. Therefore, a unique solution of the estimated f, is dways guaranteed. 



Figure 3.3: Modified procedure for obtaining Icr 
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Nurnber of Sarnples N 

In order to obtain an accurate estirnate of the actual LCR, it is necessary to process a 

sufficient number of envelope sarnples. This can be accomplished by determinhg the 

confidence interval for the observed LCR. By speciSing the desired width of interval, 

the necessary number of samples can be calculated. 

Letting bl denote the confidence interval, the observed LCR RL should fall into the 

range of (RI - 6[, Rl + J I ) ,  where Rr represents the actual LCR. If the received fading 

signal samples are independent, and Gaussian distributed, the interval boundaty & 
c m  be cdculated from the obsewed values as [IO] 

Caiculate 
lcrover 
N sampies 

where N is the total number of samples to be processed and the d u e  of Q depends 

on JI/& as shown in Table 3.1. 

As we know, the received fading signa samples are correlated, and not Gaussian 

distributed. Therefore, the interval boundary of the received fading signal samples are 

different from the one shown in Eqyation (3.61). However, for the sake of simplicity, 

we still use Equation (3.61) to calculate the confidence interval and determine the 

Icr Calculate 
MS 
velocity v 

-v 



Figure 3.4: Squared Bessel function 

necessary number of samples processed. 

Table 3.1: Standard deviation multipliers for various confidence intervals 

Solving for N fiom Equation (3.61), 

By specieing br, we can calculate the desired number of samples processed. Ta- 

ble 3.2 shows numbers of samples corresponding to various observed LCR, where Q 

is specified as O. 1 ~ 1 .  

Algorithm Summary 

The algorithm for estimation of mobile velocity using LCR method is summarized as 

below, 

a Design a bandpass filter with bandwidth B,. In all experiments, a Butterworth 

filter is used with upper cutoff frequency F, = F,+ B, 12, lower cutoff frequency 

Fd = F c  - BJ2, upper stopband fiequency F, = F, + BJ4, lower stopband 



Table 3-2: Total number of samples for various observed LCR 

frequency Fsl = Fcl - 8 4 4 ,  and 60 dB stopband attenuation, where Fc is the 

carrier frequency, 

Bandpass-filter the received fading signal through the bandpass filter. 

0 Convert the bandpass received signal into its lowpass equident  signal, 

Sarnple the lowpass equivalent signal at the sampling rate of Fs samples per 

second, 

0 Calculate the LCR at a specified level A over N envelope samples, and 

0 Calculate the desired mobile velocity from the obtained LCR using Equa- 

tions (3.57) or (3.58) and (3.59). 

3.3.2 Implement at ion and Simulation Results 

In the previous section, we have introduced a new algorithm and procedure of LCR 

estimation of mobile velocity, as weU as the parameter specifications for the LCR 

velocity estimator. We will represent the detailed simulation procedure and results 

in this section. 

Before we describe the results in detail, we have to first speciS the parameters for 

velocity estimation, As we have described in the previous section, both the bandwidth 

of the bandpass fdter B, and the sampling rate Fs depend on the maximum value 

of the expected Doppler frequency Fm, which in turn depends on the maximum 

expected mobile velocity vma and the carrier frequency Fc. If the mobile stations 

are automobiles, it is reasonable to assume that the maximum expected velocity 

v,, is 200 km/h. Assuming that the carrier fiequency is 2 GHz, we can, therefore, 



calcdate the other parameters using the methods described in previous section. These 

parameters are shown in Table 3.3. The curve of LCR against mobile velocity v is 

depicted in Figure 3.5, using Equations (3.57) and (3.59). 

Table 3.3: Parameters for simulation syst em 

F c  

2 GHz 

Figure 3.5: Level crossing rate against vehicle speed v 

The final parameter to be specified is the total number of samples processed. In 

an urban area, the vehicle speed usudy ranges from 20 to 70 km/h. This corre- 

sponds to a maximum Doppler frequency f,, within the range of (0.02316.0.08103), 

using parameters shown in Table 3.3 and Equation (3.60). From Figure 3.5 or using 

Equations (3.57), we obtain that the range of LCR is within (0.0141,0.1038). Using 

Equation (3.62) and setting the confidence interval to be 10% of observed LCR, we 

can calculate the total number of samples processed N to be within the range of 

(2.4 x 103,2.69 x IO4). To assure the accuracy of simulation, we choose the upper 

bound 2.69 x IO4 as the total number of samples processed, which corresponds to a 

vehicle speed of 20 b / h .  

Now that we have specified all the parameters used in the LCR method of mobile 

veloci ty estimation, we simulate the implementation of this estimator. As described 

v m ,  

200 km/h 

Fs 

1600 Hz 
Fm.mat 

370.4 Hz 
fm,mer 

0.2315 

Bn 
800 Hz 



in the previous section, we need to bandpass-filter the input fading signai, sample the 

output of the bandpass filter, calculate the LCR at a specified envelope amplitude 

level, then calculate the desired mobile velocily using Equations (3.59) and (3.57) 

or (3.58). 

Idedy, we would Like to test the estimator on real data with lmown mobile velocity 

Since we do not have the r ed  fading signal, we generate a fading signal using a fading 

signal generator described in Section 2.4. For the sake of simplicity, we use k h g  and 

Beaulieu's generator. First, we generate a sequence of fading signal samples according 

to a speùfic vehicle speed. Since, from Section 2.4.3, the generated signal is aheady 

discrete-time, we do not have to implement the sarnphg procedure. Second. we count 

the number of positive crossings through a specific envelope level over N envelope 

samples and cdculate the LCR. Findly, we calculate the estimated vehicIe speed 

using Equations (3.57) to (3.59) and the given LCR. If the estimated vehicle speed is 

close to the one specified to generate the fading signal, the LCR estimation method 

for the mobile velocity is justified. 

In order to simulate the implementation of the LCR method in the presence of 

noise, we also need to generate a bandlimited noise sequence with bandwidth B,, and 

add it onto the generated fading signal. We can find that Equation (3.58) tends to 

Equation (3.57) when the SNR tends to infinity. In high SNR conditions. we can, 

therefore, use Equation (3.57) to solve for the LCR in the presence of noise. Since 

the fading signal and additive noise are generated by computer, Monte-Carlo trials 

are used to smooth the fluctuation- 

The procedure is shown in Figure 3.6 and sumarized below, 

Generate a fading signal using Young and Beaulieu's generator according to a 

specific vehicle speed, 

a Generate bandlimited noise with bandwidth B, according to a SNR value and 

add it onto the generated fading signal to form the received signal at the mobile 

station, 

a Count positive crossings through a specified enveiope level over N envelope 

samples and calculate the LCR, and 



Calculate estimated vehicle speed uskg Equations (3.57) and (3.59), 

Repeat the above steps until the to td  number of Monte-Carlo trials is reached 

and calculate the average vehicle speeds obtained fiom the trails. 

Figure 3.6: Simulation procedure for LCR mobile velocity estimation 

Simulation Results without Noise 

Simulating the LCR estimation method of mobile velocity using a received fading 

signal that is not compted by noise is relatively straightforward. Assurning that 

the maximum vehicle speed is 200 km/h, the ca.rrier frequency is 2 GHz, then the 

maximum expected d u e  of the maximum Doppler fiequency is 37û.4 Hz. Following 

the previous section, we can set the sampling rate to be 1600 Hz. Letting the input to 

the fading signal generator corresponds to the desired vehicle speed. we can obtain the 

output of the generator is a sequence of discrete-time fading signal sarn~les, where 

the number of samples to be processed is set to 2.69 x 104. Simply following the 

estimation procedure described in Figure 3.6, we cm obtain the simulation results, 

using Equations (3.59) and (3.57), where p = 1, and the number of terms of both 

sumations is set to be 30. The number of Monte-Carlo trials is set to be 30. Table 3.4 

and Figure 3.8 show the simulation results corresponding to  various actual vehicle 

speeds. Figure 3.7 shows the theoretical results and simulation results of LCR against 

vehicle speed- 



Table 3.4: LCR estimation results without noise, maximum vehicle speed: 200 km/h, 

sampling rate: 1600 Hz, Monte-Carlo trials: 30 

From Figure 3.7, we can find that the estimated LCR obtained from the sequence 

of generated fading signals are significantly lower than the theoretical LCR value 

when the real vehicle speed exceeds 100 km/h. This codd result in underestimation 

of vehicle speed, which is shown in Table 3.4 and Figure 3.8. The possible reason 

for this problem could be a low sampling rate. Since the fading depends on vehicle 

speed, the faster the vehicle, the larger the fading rate. If the sampling rate is not 

large enough, level crossings would be missed by the sampling of the received analog 

signal. We were using a sampling rate of 1600 Hz. The simulation results, using a 

sampling rate of 3200 Hz, are shown in Table 3.5 and Figure 3.9. From the table 

and figure, we can find that when we increase the sampling rate, the estimates of 

vehicle speeds are closer to the actual values. Therefore, the sampling rate used in 

the LCR estimator is dependent on vehicle speed. The faster the vehicle, the larger 

the required sampling rate. In a practical system, we can set a threshold of the 

mobile speed due to the carrier frequency and maximum expected mobile speed. If 

the estimated vehicle speed crosses this threshold, we must increase the sampling rate 

and re-estimate the vehicle speed to obtain more accuracy. 



Figure 3.7: Level crossing rate against vehicle speed without noise, maximum vehicle 

speed: 200 km/h, sampling rate: 1600 Hz, Monte-Carlo trials: 30 

Figure 3.8: LCR estimation resuits without noise, maximum vehicle speed: 200 km/h, 

sampling rate: 1600 Hz, Monte-Carlo trials: 30 



Table 3.5: LCR estimation results without noise, maximum vehicle speed: 200 h / h .  

sampling rate: 3200 Hz, Monte-Carlo trails: 30 

Figure 3.9: LCR estimation results without noise, maximum vehicle speed: 200 km/h, 

sampling rate 3200 Hz, Monte-Carlo trials: 30 



Simulation Results in Additive White Gaussian Noise 

We now simulate the LCR estimation system of the mobile speed with received fading 

signal corrupted by additive white Gaussian noise. Equations (3.58) and (3.59) wiU 

be used. In practicd estimation system, however, since we do not exactk know the 

signal-to-noise ratio, therefore, the use of Equation (3.58) is inconvenient. It will be 

advantageous to use Equation (3.57) in the noisy case. This would imply that the use 

of Equation (3.57) is robust in the estimation of mobile speed using received fading 

signal regardless of additive noise. We WU demonstrate the robustness by using this 

equation in simulation of mobile speed in presence of additive noise. 

Assuming that the maximum vehicle speed is 200 kmjh, the carrier fsequency 

is 3 GHz, then the maximum expected value of the maximum Doppler fiequency 

is 370.4 Hz. Foilowing the previous section, the bandwidth of the bandpass filter 

could be set to be 800 then the sampling rate could be set to be 1600 Hz for the 

vehicle speeds lower than 100 km/h, and 3200 Hz for the vehicle speeds of 100 km/h 

and above. Letting the input to the fading signal generator correspond to the actual 

vehicle speed, we can obtain the output of the generator is a sequence of discrete-time 

fading signd samples. where the number of samples processed is set to be 2.69 x IO4. 

Simply foilowing the estimation procedure described in Figure 3.6.we can obtain 

the simulation resuits, using Equations (3.59) and (3.57). where p = 1. and the nurn- 

ber of the terms of the sumations is set to be 30. The signal-tenoise ratio for each 

speed is varied from 5 to 50 dl3. The simulation results are shown in Figures 3-10 

to 3.15. F'rom these figures, we can observe that the estimated vehide speeds are 

close to the actud values. When the signal-tenoise ratio exceeds 30 dB, the simu- 

lation results become quite accurate. Then, we can conclude that the robustness of 

Equation (3.57) in the presence of additive white Gaussian noise is justified in SNR's 

of at least 30 dB. 

Simulation Results in Impulsive Noise 

Ln the previous section, we have demostrated that the LCR mobile speed estimator 

is robust in the presence of additive Gaussian noise. However, as described in Sec- 

tion 3.1.4, impulsive noise is sometimes encountered in practical application of mobile 



Figure 3.10: Simulation results of actual vehicle speed of 30 km/h in presence of 

additive Gaussian noise 

Figure 3.11: Simulation results of actual vehicle speed of 50 km/h in presence of 

additive Gaussian noise 



Figure 3.12: Simulation results of actual vehide speed of 70 km/h in presence of 

additive Gaussian noise 

Figure 3.13: Simulation results of actual vehicle speed of 100 km/h in presence of 

additive Gaussian noise 



Figure 3.14: Simulation results of actual vehicle speed of 120 km/h in presence 

addit ive Gaussian noise 

Figure 3.15: Simulation results of actual vehicle speed of 150 km/h in presence of 

additive Gaussian noise 



communication systems. Thereiore, in this section, we will simulate the LCR mobile 

speed estimator in the presence of impulsive noise. Here we use the twc+term mixture 

Gaussian noise to represent impulsive noise as described in Section 3.1.4. 

Assuming that the maximum vehicle speed is 200 km/h, the carrier fiequency 

is 2 GHz, then the maximum expected value of the maximum Doppler frequency is 

370.4 Hz. Following the previous section, the bandwidth of the bandpass filter is 

set to be 800 Hz? then the sarnpling rate could be set to be 1600 Hz for the vehicle 

speeds lower than 100 km/h, and 3200 Hz for the vehicle speeds of 100 km/h and 

above. Letting the input to  the fading signal generator correspond to the actual 

vehicle speed, we obtain at the output of the generator, a sequence of dismetetirne 

fading signal samples, where the number of samples processed is set to be 2-69 x IO4. 

Simply following the estimation procedure described in Figure 3.6, we obtain the 

simulation results, using Equations (3.59) aod (3.57), where p = 1, and the number 

of the terms of the sumations is set to be 30. The signal-tenoise ratio for each speed 

is varied from 5 to 50 dB, e = 0.01, and K = 100. The simulation results are shown 

in Figures 3.16 to 3.21. The simulation results are close to the actual mobile speeds. 

Then, robustness of Equation (3.57) in the presence of two-term mixture Gaussian 

noise is justified. 

3.4 Summary 

We have derived the LCR mothod of the mobile velocity estimation and show the 

implementation procedure and simulation results of the LCR estimator in this chap- 

ter. The simulation results show that the estimates of the mobile velocity are dose to 

the actual values, in the presence of white additive noise or two-term mixture Gaus- 

sian noise. However, the sampling rate used in the LCR estimator depends on the 

vehicle speed. In a practicd system, a threshold may be set to adjust the sampling 

rate. When the estimated mobile velocity exceeds the threshold, the sampling rate 

should be increased and the mobile velocity shouid be re-estimated. 



Figure 3.16: Simulation results of actual vehicle speed of 30 kmjh in presence of 

t WCF term mixture Gaussian noise 

Figure 3.17: Simulation results of actual vehicle speed of 50 km/h in presence of 

two-term mixture Gaussian noise 



Figure 3.18: Simulation results of -actual vehicie speed of 70 km/h in presence of 

tweterm mixture Gaussian noise 

Figure 3.19: Simulation results of actuai vehicle speed of 100 km/h in presence of 

two-term mixture Gaussian noise 



Figure 3.20: Simulation results of actual vehicle speed of 120 h / h  in presence of 

two-term mixture Gaussian noise 

Figure 3.21: Simulation results of actual vehicle speed of 150 km/h in presence of 

two-term mi,uture Gaussian noise 



Chapter 4 

Autocorrelation Function Estimator 

We have described the level crossing rate (LCR) method of mobile velocity estimation 

and shown implemention and simulation results in the previous chapter. From that 

chapter, we noted that there is a drawback in using the LCR estimator. When the 

mobile speed is large, it will be underestimated if the smpling rate of the continuous- 

time received signal is relatively small. That is, the sampling rate must be either larger 

or cannot be fixed when we are using LCR estimation. In this chapter, we propose 

a new type of estimator using the autocorrelation function of discrete-time received 

fading signal with a fixed sampling rate of the continuous-time received signal, which 

is denoted as autocorrelation function (ACF) estimator for mobiIe velocity. 

In Section 4.1, we describe the algorithm for the new ACF estimator, and we will 

show implementation and simulation results in Section 4.2- 

4.1 ACF Est imator Algorit hm 

As we have described in Section 3.1.2, the autocorrelation function (ACF) of the 

in-phase and quadrature components of the dismetetirne fading signal is a function 

of the maximum Doppler fkequency, which is proportional to the mobile velocity- 

Therefore, the ACF is a function of the mobile velocity. From Equations (3.13) 

and (3.57) or (3.58), we find that the relationship between the ACF of the in-phase 

or quadrature components of the fading signal and the mobile velocity is much simpler 

than the relationship between the LCR and the mobile veIocity. It is therefore much 

easier to derive a mobile velocity estimator using the relationship between the ACF 



of the in-phase or quadrature components of the fading signal and mobile velocity. 

We wiIl derive the algorithm without assuming additive noise first, then later present 

an algorithm suitable in the presence of noise. 

4.1.1 ACF Estimator without Noise 

From Section 3.1.2, for Rayleigh distributed charnels, the autocorrelation funct ion of 

quadrature components of fading signal is a product of the average envelope power 

and a Bessel function, of which the marcimum Doppler fiequency f, is the variable. 

That is, 

h ( m )  = a* Jo(2afmm) (4-1 ) 

where o2 is the variance of the quadrature components of the fading signal. JO(-)  is 

the zereorder Bessel h c t i o n  of the hs t  kind. 

Letting rn in Equation (4.1) equal O and 1, respectively, we obtain 

Then the ratio drI (l)/drI(0) can be used to solve for 

where Jo1(-) is the inverse function of the zero-order Bessel function of the f is t  kind. 

We use the following maximum-likelihood estimators (MLE's) of cj51r(l) and drr(0) 

over N samples for the case of unstructured covariance matrices [%], 

where x r ( k )  is the quadrature component of the received fading signai. Substituting 

Equation (4.4) into Equation (4.31, we can obtain the estirnate of Doppler frequency 

jm. Using invariance [25], we note that f" is also a MLE of the Doppler frequency 

f m -  



As we know, the maximum Doppler frequency f, is appropriate to the moblie 

velocity v we are estimating, it is, therefore, straightfomrard to obtain the mobile 

velocity using the relationship formula befmeen these two quantities. Using Equa- 

tion (3.59), the estimated mobile velocity is derived as 

4.1.2 ACF Estimator with Noise 

In the previous section, we have derived the ideal ACF estimator for mobile velocity 

in the absence of noise. In fact, the received fading signal is always corrupted by 

noise in practical mobile communication systems. It is, therefom, necessary to derive 

an ACF estimator using the received fading signal corrupted by noise. 

Being corrupted by noise, the quadrature components of the received fading signal, 

y I ( k )  c m  be written as 

 YI(^) = XI@) -f- (4-6 

where n i ( k )  is the quadrature component of noise. Therefore, the autocorrelation 

function of the quadrature components of the received signal becomes ( s e  Sec- 

tion 3.1.4) 

for band-Lïmited white Gaussian noise, where No is the power of the noise. B, is the 

bandwidth of the noise, Ts is the sampling period. 

If the sampling period Ts is small, the second term of Equation (4.7) can be 

simplified as O and l/2(NoBn), when m equals O and 1, respectively. Thus, &1(0) 

and d r I ( l )  become 

where 0: = NoB,. Therefore, Equation (4.3) becomes 



where 
2 9  

7s = - 
un 

is the signal-tenoise ratio (SNR). 

If the recevied fading signal is corrupted by two-term mixture Gaussian noise. the 

autocorrelation function of quadrature components of fading signal is written as (see 

Section 3.1.4) 

1 sin TB~~T' 
4rr(na) = a2 Jo(27r fmm) + ? [ ( 1 -  Ou2 + acu2] 

?rrnT, 

where No = (1 - e)v2 + a u 2 .  

Similady, when the sampling period is srnail and letting m equal O and 1. we c m  

obtain 

No B,. Solve for the maximum Doppler fkequency using the ratio of 

where 

is the signal- to-noise ratio (SNR) . 
Given the signd-tenoise ratio and using Equation (4.4, where x I ( k )  is replaced 

by y r ( k ) ,  we can obtain the MLE of f,. Then we can solve for the mobile velocity 

estimate 6 

where y, is either the SNR in Equation (4.10) or in Equation (4 .14) .  

Compared to the M F  method in this chap ter, the covariance approximation 

(COV) rnethod [33] described in section 2.3.2 uses the squared-envelope of the re- 

ceived fading signal rather than the in-phase or quadrature components. Furthemore, 



the COV method assumes that the covariance p,(O) is kno~rm exactly for eliminating 

the bias with respect to K .  However, since p,(O) is always &om, it must be 

estimated. Therefore, the estimation erorr of ~ ~ ( 0 )  wiU introduce more bias to the 

mobile velocity estimates. 

4.2 Implemention and Simulation Result s 

We have described the dgorithms of the ACF estimators for mobile velocity in the 

previous section- We will deal with imptementation and simulation issues for the ACF 

estimators in this section. 

4.2.1 Implementation Procedures 

The implementation procedure of the ACF estimator is slightly different from that 

of the LCR estimator. We deal with the in-phase component of the received fading 

signal instead of the envelope of the signal. Figure 4.1 shows the implementation 

procedure of the mobile velocity using the received fading signal with the presence of 

noise, where the noise could be additive white Gaussian noise or tweterm mixture 

Gaussian noise described earlier. As described in Chapter 3. we need to h o w  how 

the bandwidth of the bandpass filter is specified; how to choose the sampling rate F,; 

and how many signal samples should be performed to obtain the mobile speed. 

Bandpass Filter Bandwidth B, 

Assuming that we pass the in-phase or quadrature component of the received signal 

through a lowpass filter with an impulse response h(k)  and bandwidth 84, we 

obtain the output t(k).  In Equation (4.16), rr (k)  denotes the in-phase or quadrature 

component of the fading signal and nr(k) is the in-phase or quadrature component 

of the additive noise. The variance of z(b) is given by 
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Figure 4.1: Implementation procedure for ACF estimator for mobile velocity 

where Sr,( f) is the power spectral density of r (k )  , and H( f )  represents the frequency 

response of the filter. It can be shown that if H(f) is an ideal lowpass filter? the 

variance of z ( k )  becomes 

where No is the variance of noise- 

We obtain the correlation of two adjacent output samples 

Again, if H( f )  is an ideal lowpass filter, we get 
f 

using the approximation 

No cos La f df 2 O 

From Equations (4.18) and (4.20), we can conclude that we require &/2 to be larger 

than Fm for aceurate estimation of #~~,,,(1). But we dso need 8, /2 to be as close 



to Fm as possible for accurate estimation of q5rIrI(0). This justifies our choice of 

B, i 2Fm as the bandwidth of the bandpass filter. 

As in Section 3 -3.1, the maximum Doppler fiequency Fm depends on the carrier 

frequency Fc and mobile velocity v,  However. the carrier fiequency is usudy fixed 

for a practical mobile communication system, the maximum Doppler fiequency is 

mainly dected by the mobile velocity v. Therefore, as  long as the bandwidth of the 

bandpass filter is set to be at Least 2Fm, useN information will not be eliminated by 

the bandpass filter. 

Sampling Rate Fs 

From Section 3.3.1, if the sarnpling rate Fs is set to be at least 2&, which in turn 

is Iarger than 4F,. This makes the discrete-time maximum Doppler frequency f, 

is always less than 025  and guarantees the mobile velocity and LCR are one-teone 

mapped. This is also true for the ACF estimation. When we limit f, to be Iess than 

0.25, the outocorrelation function of the received fading signal uniquely corresponds 

to the mobile velocity. 

Number of Samples N 

In order to obtain an accurate estimate of the actud f,, it is necessary to process 

a sufficient number of signal samples. This can be accomplished by determining 

the confidence interval for the f,. By specifying the desired width of interval, the 

necessaq number of samples can be calculated using Equation (3.62). 

Implementation Summary 

The algorithm for estimation of mobile velocity using ACF method is summarized as 

below , 

0 Design a bandpass filter with bandwidth B,, for example, the Butterworth filter 

descrïbed in Section 3.3.1, 

Bandpass-filter the received fading signal through the bandpass filter, 

Convert the bandpass received signal into its lowpass equivalent signal, 
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0 Sample the Iowpass quivalent signal at the sampling rate of F, sarnples per 

second, 

Calculate the desired mobile velocity fkom the obtained $ r r ( ~ )  and Qrr(0)  and 

Equations (4.5), or Equation (4.15) if we have known the SNR. 

4.2-2 Simulation Results 

In the previous section, we have introduced the algorithm and implementation pre- 

cedure of ACF mobile velocity estimator, we will study the de tded  simulation p r e  

cedure and results in this section- 

The simulation procedure is slightly different from the implementation procedure 

shown in Figure 4.1: because we do not have the actual fading signal. The simulation 

precedure is shown in Figure 4.2, where x I ( k )  and nI (k) are generated in-phase corn- 

ponent of fading signal and noise. Here we use Young and Beaulieu's fading signal 

generator described in Section 2.4.3 to produce a fading signal, whose autocorrela- 

tion fùnction matches the autocorrelation function of the actud fading signal very 

weU [43]. Because the output of the generator is kLeady discrete-time, we do not 

have to implement the sampling procedure 

Figure 4.2: Simulation procedure for ACF estimator for mobile velocity 

Before doing the simulation, we discuss the specification of the parameters. It is 

reasonable to assume that the maximum expected velocity v,,,., being 200 km/h if 

the mobile stations are automobiles. Assuming that the carrier frequency is 2 GHz, 



we can obtain the bandwidth of the bandpass filter B,, the sampling rate F,, which 

are shown in Table 3.3. We should aiso set the total number of samples processed to 

ob tain an accurate estimate of vehicle speed. Assuming that the minimum expected 

vehicle speed of 10 km/h, the digital maximum Doppler frequency f, is 0.01158. 

Using Equation (3.62) and setting the confidence interval to be 10% of estimated 

f,, we can cdculate the total number of samples processed N is 2.33 x IO4. The 

parameters calcuiated are shown in Table 4.1. 

1 2 GHz 1 800 Hz 1 1600 Hz 1 2.33 x IO4 1 
Table 4.1: Parameters of ACF estimator 

We will study the simulation resdts without noise, with additive white Gaussian 

noise and with tweterm mixture Gaussian noise. Since the fading signal and noise 

are generated by cornputer, Monte-Carlo trials are used to smooth the fluctuation. 

The simulation procedure is summarized as below, 

Generate in-phase component of fading signal using Young and Beaulieu's gen- 

erator according to a specific vehicle speed, 

a Generate in-phase component of bmdlimited noise with bandwidth B, accord- 

ing to a SNR value and add it onto the generated fading signal to create the 

in-phase component of received signal at the mobile station 

a Calculate the MLE's of $rr(0) and 4rr(l)  over N samples, and 

Calculate estimated vehicle speed using Equation (4.5), 

Repeat above steps until the total number of Monte-Carlo trials is reached and 

calculate the average vehicle speeds obtained from the trials. 

Simulation Results in the absence of noise 

FoUowing the simulation precedure depicted in Figure 4.2, except for the generation 

of noise, and using panmeters in Table 4.1, we obtain the simulation results in the 



absence of noise, which are shown in Table 4.2 and Figure 4.3. From the figure and 

Table 4.2: ACF estimation results without noise 

the table, we can find that the estimated vehicle speeds match the acutd ones very 

well. .4U errors introduced are less than 10%. This implies that the correctness of 

the ACF estimator is justified. ~ l s o ,  the use of a fixed sampling rate simplifies the 

implementation of the ACF estimator of the mobile speed. 

Simulation Results in the presence of AWGN 

Wë have illustrated the simulation results of ACF estimator in the absence of noise 

and found that the estirnates of the mobile velocity are close to the actual values. 

Now we will deal with issues of simulation in the presence of AWGN. Following the 

simulation procedure depicted in Figure 4.2 and using the parameters in Table 4-1, 

and letting the signal-tenoise ratio range fiom 5 to 50 dB, we obtain the simulation 

results shown in Figures 4.4 to 4.9, and estimated vehicle speed variances shovvn in 

Figure 4.10 to 4.15, where circlelines represent ACF estimates and star-lines represent 

LCR estimates. The sampling rates for both methods are 1600 Hz for the case of the 

mobile speeds are less than 100 h / h t  and 3200 Hz for the case of the mobile speeds 

are larger than 100 km/h. 

These figures show that ACF estimates of the mobile speeds obtained from the 

noisy signd are close to actual values for Mnous SNR's. Then, we can justify the 



Figure 4.3: ACF estimation results without noise 

correctness of ACF estimator in the presence of AWGN. From these figures. especially 

from the variance figures. we also find that ACF estimates are more accurate than 

LCR estimates in low SNR conditions. However, when the actud mobile speeds and 

the SNR are Iarge, LCR estimates are very close to ACF estimates. 

Simulation Results in the presence of Impulsive Noise 

For a practical mobile communication system, as described in Section 3.1.4, the re- 

ceived fading signal is often compted by impulsive noise. Therefore, it is necessary to 

simulate the ACF estimator in the presence of impulsive noise. Here we use twwterm 

mixture Gaussian noise to represent it. Following the simulation procedure depicted 

in Figure 4.2 and using the parameters in Table 4.1, and letting the signal-tenoise 

ratio range frorn 5 to 50 dB, e = 0.01, and K = 100, we obtain the simulation results 

shown in Figures 4.16 to 4.21, and the estimated vehicle speed variances shown in 



Figure 4.4: Simulation results of actual vehicle speed of 30 km/h in presence of 

additive Gaussian noise 

Figure 4.5: Simulation results of actuai vehicle speed of 50 km/h in presence of 

additive Gaussian noise 



Figure 4.6: Simulation results of actual vehicle speed of 70 km/h in presence of 

additive Gaussian noise 

Figure 4.7: Simulation results of actual vehicle speed of 100 km/h in presence of 

additive Gaussian noise 



Figure 4.8: Simulation results of actual vehicle speed of 120 km/h in presence of 

additive Gaussian noise 

Figure 4.9: Simulation results of actual vehicle speed of 150 km/h in presence of 

additive Gaussian noise 



Figure 4.10: Simulation results of actud vehicle speed of 30 km/h in presence of 

additive Gaussian noise, estimated vehicle speed variance 
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Figure 4.11: Simulation results of actual vehicle speed of 50 km/h in presence of 

additive Gaussian noise, estimated vehicle speed variance 



Figure 4.12: Simulation results of actual vehicle speed of 70 h / h  in presence of 

additive Gaussian noise, estimated vehicie speed variance 

Figure 4.13: Simulation results of actual vehicle speed of 100 km/h in presence of 

additive Gaussian noise, estimated vehicle speed variance 



Figure 4.14: Simulation results of actual vehicle speed of 120 h / h  in presence 

additive Gaussian noise, estimated vehicle speed variance 
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Figure 4.15: Simulation results of actual vehicle speed of 150 km/h in presence of 

additive Gaussian noise, estimated vehicle speed variance 



Figures 4.22 to 4.27, where circle-lines represent ACF est imates and st ar-lines repre- 

sent LCR estimates. The samphg rates for both methods are 1600 Hz for the case 

of the mobile speeds are less than 100 km/h, and 3200 Hz for the case of the mobile 

speeds are larger than 100 km/h. 

These figures show that ACF estimates of mobiIe speeds obtained fiom the signal 

compted by tw-term mixture Gaussian noise are close to the actual speeds for 

various SNR7s. Correctness of ACF estimator in the presence of two-tenn mixture 

Gaussian noise is then justified. Compared to the LCR estimates, the ACF estimator 

has much better performance in IOW'SNR. However, when the mobile speeds and SNR 

are large, LCR estimates are close to ACF estimates. 

In Section 4.1, we descnbed the algorithm of ACF method of mobile velocity. We 

also showed implementation procedure and simulation results of the ACF estimator 

in Section 4.2- From the simulation results, we learned that ACF estimates are 

accurate. Compared to the LCR mobile velocity estimator. the ACF estimator uses a 

single sampling rate of the continuous-time received signal for different mobile speeds, 

which simplifies the implement at ion of the mobile velocity estimation. Furt hermore, 

-4CF estimates of mobile speeds are more accurate than LCR estimates in low SNR 

condit ions. 



Figure 4.16: Simulation results of actual vehicle speed of 30 km/h in presence of 

tweterm mixture Gaussian noise 

Figure 4.17: Simulation results of actual vehicle speed of 50 hm/h in presence of 

two-term mixture Gaussian noise 



Figure 4.18: Simulation results of actual vehicle speed of 70 km/h in presence of 

two- t erm mixture Gaussian noise 

Figure 4.19: Simulation results of actual vehicie speed of 100 km/h in presence of 

two-term mixture Gaussian noise 



Figure 4.20: Simulation results of actual vehide speed of 120 km/h in presence of 

two-term mixture Gaussian noise 

Figure 4.21: Simulation results of actual vehicle speed of 150 km/h in presence of 

two-term mixture Gaussian noise . 



Figure 4.22: Simulation results of actual vehicle speed of 30 km/h in presence of 

twmterm mixture Gaussian noise, estimated vehicle speed variance 

Figure 4.23: Simulation results of actual vehicle speed of 50 km/h in presence of 

two-term mixture Gaussian noise, estimated vehicle speed variance 



Figure 1.24: Simulation results of actud vehicle speed of 70 h / h  in presence of 

two-term mixture Gaussian noise, estimated vehicle speed variance 

Figure 4.25: Simulation results of actual vehicle speed of 100 km/h in presence of 

two-term mixture Gaussian noise, estimated vehicle speed variance 



Figure 4.26: Simulation results of actud vehicle speed of 120 km/h in presence of 

two-term mixture Gaussian noise, estimated vehicle speed vaziance 

Figure 4.27: Simulation results of actual vehicle speed of 150 km/h in presence of 

twwterm mixture Gaussian noise, estimated vehicle speed variance 



Chapter 5 

Application t O Mobile Location Tracking 

5.1 Introduction to Mobile Geolocation 

Emergency services for cellular phone users have drawn signiticant attention over 

the past few years. In 1996, in order to achieve adequate provision of emergency 

services, the Federal Communications Commission (FCC) in the U.S . announced its 

mandate for enhanced emergency services (E911) for cellular phone users. The wire- 

less services providers, including cellular, personal communications services (PCS) 

and special mobile radio (SMR), are required to provide latitude and longitude es- 

timates of the 911 calIer7s position wittiin an accuracy of 125 m RMS in 67 percent 

of ail measurement by October, 2001[13]. Reçently, to conform the FCC requirement 

being concerned primarily with the ability to locate mobile telephones originating 

emergency phone calls is the main goal for implementing position location. 

Geolocation systems may be loosely separated into unilateral systems and multi- 

teral systems [30]. In a unilateral system, a mobile unit estimates its own position 

based on received signal fiom transmitters at known locations. The Global Position- 

ing System (GPS) is the dassic example of unilateral system. In a multilateral system, 

an estimate of the mobile location is based on a signal transmitted by the mobile and 

received at multiple fixed base stations. Most cellular geolocation systems are mul- 

tilateral, where the estimate of the mobile's position is made by the network: rather 

than by the mobile itself. In this section, we review some basic mobile positioning 

technologies that are a d a b l e  for accurate position loeation in recent years. 



5.1.1 Global Positionhg Systems 

A GPS receiver makes the appropriate signal rneasurements from signds transmitted 

from a network of 24 satellites and uses these measurements to determine its position 

1 15, 8 ,  1 These satellites with precise timing transmit Lband signals (cen- 

tered at 1575.42 MHz) to earth. The receiver measmes the time delay between the 

signals leaving the satellites and arriving at the receiver with a built-in clock. The 

exact distance from the receiver to each satellite is then calculated. A sphere about 

each satefite can be described by the ca lda ted  distance fiom each satellite to the 

receiver. If three satellites are visible to the receiver, the receiverk position lies at 

the intersection of t hese t hree spheres, providing coordinates in latitude. longitude. 

and altitude. In practice, signals £rom the fourth satellite are used to correct receiver 

clock errors, due to the lower-accuracy built-in clock of the receiver. 

Commercial GP S receivers that are available now acmately determine position to 

within approximately 50 m [18]. However, wireless services providers are not intending 

to use GPS as their principal geolocation technology. This may be due to cost. size, 

complexity, and power consurnption associated with integrating a GPS receiver into 

a handset and to the susceptibility to radio frequency interference. Furthemore, the 

reliability of GPS measurements is greatly reduced in urban environments, when one 

or more satellites are obscured by buildings, or when the mobile antema is located 

inside a vehicle. 

5.1.2 Cellular Geolocation Systems 

Cellular geolocation relies on the existing infrastructure of cellular base stations. Xt 

has some advantages over GPS since it does not need the extra GPS equipment at the 

mobile. Geolocation systems estimate the target mobile's position by monitoring the 

reverse signal channel transmissions from the mobile. Multiple base stations receive 

the mobile signal, and the mobile position can be detennined that are based on either 

angle of arrival (AOA) estimates from each base station, time of amial (TOA), or time 

difference of arrival (TDOA) measurements between multiple base stations, or their 

combinations. 



Angle of Arrival 

Angle of amival, also called direction of arriva1 (DOA), has been used widely in 

surveying, radar tracking, and vehide navigation systems [23, 3211. The position of 

the desired target mobile can be found by the intersection of two lines of bearing 

(LOBs), each formed by a radial h m  a base station to the target mobile. hstead of 

using the intersection of just two Iines, many pairs of LOBs are used in practice? and 

highly directional antennas are required, which makes AOA estimation difficult at the 

mobile end. Figure 5.1 shows an AOA method using three base stations located at 

points (A, B, C). This met hod may be solved using trigonometry or analytic geomet ry, 

or through table Iookup [BI. 

Figure 5.1: AOA method using three base stations. 

AOA is usually determined at a base station by electronically steering the main 

lobe of an adaptive phased array antenna in the direction of the arriving mobile 

signal. In practice, two closely spaced antenna arrays are used to determine the exact 

direction of peak incoming energy (Figure 5.2). In general, the antenna element 

spacing used in AOA measurement is on the order of half the wavelength of the 

signal carrier frequency. The relatively close spacing of the antenna elements allows 

the time delay seen by a signal as it propagates across the array to be modeled as a 

phase shift. This is referred to as the "narrowband modeln. 



Figure 5.2: Illustration of a plane wave incident on a linear equispaced array. 

For high SNR, the most straightforward AOA estimation approaches are phase 

interferometry and beamforming. However, they will fail for strong ccxhannel in- 

terference andior multipath [30]. Maximum Likelihood (ML) methods work well in 

multipath but implementation of these methods is very complicated [23, 34? 441. To 

simplify the implementation of the ML methods, Xu and Liu proposed subspace-based 

algonthms combiniog spatially smoothed covariance matrices [42]. 

For code-division multiple access (CDMA) signds where there exists a very large 

number of CO-channel signals, all of the AOA estimation algorithms proposed so far 

will fail. since they assume that the number of antennas in the array exceeds the 

number of CO-channel signals [3]. However, by assuming that the CDMA signal may 

be demodulated with low bit error rate (BER), an estimated waveform may be sub- 

stituted for the known waveform. One implementation of this approach uses the 

despread soft decisions from each antenna together with the hard decisions made by 

the existing CDMA demodulation process. Results presented in [3] show tbat accu- 

rate AOA estimates of CDMA waveforms can be obtained even in highly overloaded 

environment S. 



Time of Arrivai 

Time of arrival (TOA) is the second primary method for determining position 1- 

cation. Since electromagnetic waves propagate at the constant speed of Iight in a 

freespace medium, the distance from the mobile target to the receiving base station 

is directly proportional to the propagation the .  If the signal propagates in time ti 

from the target transmitter to the ith h e d  receiver, then the receiver lies on a sphere 

of radius R;, where 

R; = di (5.1) 

If T0.A measurements are made at a second base station at a second location, 

the target position can be determined to Lie on a circle. The position of a trans- 

mitter is then uniquely determined by the intersection of three spheres using TOA 

measurements fiom three base stations [12, 361. 

Time Difference of Arriva1 

In general, direct TOA requires all transmitters and receivers in the system have 

precisely synchronized docks. for example, just 1 ps of timing error could result in 

a 300 meter position location error. Furthemore, the transmitting signal must be 

labeied with a timestamp in order for the receiver to discern the distance the signal 

has t raveled. Therefore, time difference of arrival (TDOA) measurements are a more 

parctical means of position location for commercial systems [5]. 

The idea behind TDOA is to determine the relative position of the mobile trans- 

mitter by examinhg the diff'nce in time at which the signal arrives at multiple base 

station receivers, rather t han the absolute arriva1 time. Therefore, each TDO A mea- 

surement determines that the transmitter must Le on a hyperboloid with a constant 

range difference between the two receivers. The equation of this hyperboloid is given 

by 

where Rij is the length difference between two base stations to the mobile transmitter, 

the coordinates (Xi, x, 2;) and (Xi, k;., Zj) represent the fked receivers i and j ,  and 



determine the unknown coordinates (x, y, r )  of the target trammitter [Ml. A mobile 

location can be estimated fÎom the intersection of two or more hyperboloids generated 

from three or more TDOA measurements. Figure 5.3 Uustrates mobile position 

estimation using TDOA measurements from three base stations. 

mobile 

Figure 5.3: Mobile position location solution using TDOA measurements from three 

base stations, where Si, SÎ, and S3 represent the fixed base station locations. 

Using the TDOA measurements, the transmitted signal does not have to contain a 

timestamp, and only base stations are required to have precisely synchronized docks. 

This makes TDOA more realistic than TOA, which requires each mobile unit to have 

an accurate clock. 

A two-stage process is required to obtain position estimates from TDOA measure- 

ments. First, we must accuately compute the TDOA estimates from noisy signds, 

and then we determine the mobile position fiom the TDOA estimates and Equa- 

t ion (5 -2). Generalized cross-correlat ion met hods and filtering techniques are usually 

used in the fmt stage [30]. Once TDOA estimates are available, the position of the 

mobile may be located by substituting the corresponding range difference estimates 



Ri j  into the hyperbolic equations, Equation (5.2), and solving for the Cartesian co- 

ordinates of the mobile. There exist several methods to solve for the hyperbolic 

equations. which are summarized in [SOI. 

5.2 Mobile Motion Tracking Using Kalman Filter- 

ing 

We have introduced static mobile geolocation techniques in the previous section. In 

order to track to motion ofmobiles, a Elalman filter can be applied. In this section. 

we introduce the mobile motion tracking application in terms of Ka1ma.n filter. We 

then try to improve tracking performance through the use of mobile velocity estimates 

which were developed in previous chapters. 

Assuming that we axe estimating the motion trajectory of a mobile with a constant 

velocity v. Along the x- and zjauis,  we know that 

and 

where x(t) and y(t) are the position of the mobile at z- and yaxis, respectively. 

In practice, the velocities undergo at least slight changes. These can be modeled 

by the continuous-t ime white Gaussian noises &(t ) and Gy ( f ) , respectively. Therefore, 

and 

where 

and 



where &(t) and G y ( t )  are assumed muhiaIly independent, q, and q, are variances of 

ü,(t) and G J t ) ,  respectively. 

The state vector corresponding to Equations (5.5) and (5.6) is 

The continuous-time state equation is 

where 

and 

Using Equations (2-192)-(2-199) in [4], the discrete-time state equation with sam- 

pling period Ts is 

where 

and vk is a 4 x 1 process noise vector. For simplicity, we assume that vk is a white 

Gaussian noise vector with 



and the covariance matrix Q is 

5 -2.1 Mobile Motion Tiiacking without Velocity Measurement 

If we  only know xp and yk, the mobile position measurements at z- and y-axis. the 

measurement equation for mobile motion tradcuig can be written as 

where x k  is the state vector, y k  is t b  measurement vector 

and w k  is the measurement noise vector, 

with 

where 

variances of w , k  and wy,k, respectively, and w' is the transpose of vector 

To implement the K h a n  filter algorithm, we should first initialize the state 

vector x and its covariance matrix- P. Then we obtain the one-step prediction by 

taking expection of Equation (5.13) conditioned on yk 2 {y ( j )?  j = 1, . . . , k)? which 

results in 

kk++iii = Fkklc (5.22) 



and the one-step prediction covariance matrix is 

where F' is the transpose of matrix F- 

The predicted measurement follows similarly by taking the expected value of Equa- 

tion (5.17) at time k + 1. conditioned on Y": 

and thus 

gk+llk+i = f &+1[~k+l - E k + ~ ~ k ]  

Finally, the state covariance matrix at time k + 1 is 

The algorit hm implementation procedure is summarized as: 

1. Initialize the state vector jis and its covariance matrix Po; 

2. Obtain the time update using Equations (5.22) and (5.23); 

3. Obtain the measurement update using Equations (5.24) - (5.27); 

4. Go back to step 2 and repeat until a l l  samples have been processed. 

5.2.2 Mobile Motion Tkacking with Velocity Measurement 

If we have the position and velocity measurements, IL, yk and vh, of the mobile, the 

measurement equation can then be written as 



where 

and 

and the measurement noise vector 

is assumed as a white Guassian noise vector with 

where 

and ru is the variance of w,,k. 

Since the measurement equation (5.28) is nonlinear, we have to Lneaxize it be- 

fore we impiement the Kalman flto algorithm. It is done by replacing H in Equa- 

tions (5.24)-(5.27) by the Jacobian of h[-] with respect to the state vector: 

hx,k = 

Substituting Equation (5.30) into (5.34), we obtain 

Therefore, the implementation procedure is the same as the one in the previous 

section, but using hft rather than H in Equations (5.24)-(5.27). 



5.3 Simulation and Cornparison 

Wë have introduced two mobile motion tradcing models in the previous section. one is 

w i t hout mobile velocity measurement and another uses mobile velocity measurement. 

W e  wiU simulate these two motion traders and compare their performance in this 

section. At the very first, the measurement covarÏance matrlces for each tracker and 

the process noise covariance matrix should be determined. Then the initial state 

estimate is specified. 

5.3.1 Measurement Noise Covariance Matrices 

It is assumed that position errors on E and y k Y i s  are Gaussian and identically dis- 

tributed with zero mean and variances, r, and r,, which are listed in Table (5.1). 

Table 5.1 : Various position error variances 

From the previous two chapters, we know that both of the LCR and ACF estimates 

of mobile velocity have estimate errors within 10% of the actual mobile velocity. We 

t hen list mobile veIocity measurement error variances r, in Table (5.2). 

Table 5.2: Various velocity error variances 

(km/h) 
2 2 

r, (m /s ) 

pedestrian 

5 

0.0064 

slow moving 

vehicle 

20 

0.1029 

fast moving 

vehicle 

50 

0.6430 

faster moving 

vehicle 

100 

3.5720 



5.3.2 Process Noise Covariance Matrix 

The process noise covariance mat& Q in Equation (5.16) is reiated to sampling 

period Ts and q,, q,, the variances of acceleration error on z- and gaxk, respectively. 

Here we assume that 

Then Q is determined mainly by q, and q,. 

One must notice that the K a h m  gain is directly proportional to the process 

noise covariance matrix. Bowever, if the K h a n  gain is too small, the contribution 

of the curent measurement will beïgnored. On the other hand, if the K a h a n  gain 

is too large, s m d  residual errors wili be magnïfied, thus atfecting the accuracy of the 

updated state estimates. 

Unfortunately, there does not exist any sysematic procedure to determine the 

"proper amount" of the process noise covariance matrix. The following process noise 

covariance matrix will be used in al-l the simulations. 

5.3.3 Initial State Estimates 

A Khan filter needs to be initialized. Specificdy, inital values for the estimated 

state vector and error covariance matrix must be given. The following formula is used 

in specZying initial state estimates: 

where r is a random number uniformly distributed in the intenal (O, 1) and e is used 

to control the magnitude of the errors. By setting e = 0.2, for example, errors can be 

introduced in the range 20%-40%. e = 0.2 will be used for all  the simulations. 



The initial error covariance matrix is cornputed as 

5.3.4 Simulation Results 

We assume that the mobile is traveling along a line y = x on a z-y plane, and the 

initial position of the mobile is (1000,1000). Then we can obtain the estimated initial 

state vector and its error covariance matrix using Equation (5.38) and (5.39). Due to 

the correlation between cornputer-generated "pseudon white noise samples, we have 

to use Monte-Carlo method to get rid of the correlation. For all  the simulations, we 

set the number of Monte-Carlo trials be 50. 

According to Table 5.1 and 5.2, we simulate the mobile trackers with various ve- 

locities and position errors. Figure 5.4-5.51 depict the simulation results. In each 

figure, the solid Lne and dashed line represent simulation resdts of mobile motion 

tracker with and without mobile velocity measurement, respectively. From these fig- 

ures, we see that when the mobile is moving slowly (i-e., velocity at 5 or 20 km/h), the 

mobile velocity rneasurements do not improve the performance of the mobile motion 

tracker. On the other hand, when the mobile velocity is large (Le., velocity a t  50 or 

100 km/h), the performance of the mobile motion tracker is improved sigrilficantly 

wit h velocity measurement being taken into account - 

This phenornenon occurs becuase of the relatively large position measurement 

errors. Wi th relatively large position measurement errors, the mobile velocity mea- 

surements at 5 or 20 km/h will not change the Kalman gain in Equation (5.25) 

significantly- Therefore, the state estimates remain the same as those without veloc- 

ity measurements. Once the mobile velocity measurements are large (for example, 

50 or 100 km/h), the Kalman gain will be dected accordingly, then we obtain more 

accurate state estimates than those without velocity measurernents being considered. 



In this chapter, we have applied the mobile velocity estimates in mobile motion tradc- 

ing problem. Then we simuiated the mobile motion trackers and compaxed the per- 

formance of trackers 6 t h  and without velocity measurements. From the sinudation 

results, we found that when the mobile is moving slowly, the velocity measurements 

do not înaease the accuracy of the mobile position estimates. However, when the 

mobile velocity is large, the performance of mobile motion trader with velocity mea- 

surements being taken into account is improved significantly. 



Figure 5 -4: x position variance, mobile velocity : 5 km/h, position measurement error: 

Figure 5.5: x position bias, mobile velocity: 5 h / h ,  position measurement error: 20 



Figure 5.6: y position Mnance, mobile velocity: 5 km/h, position measurement error: 

Figure 5.7: y position bias, mobile velocity: 5 km/h, position measurement error: 20 



Figure 5.8: x position variance, mobile velocity: 5 km/h, position measurement error: 

40 m 

Figure 5.9: x position bias, mobile velocity: 5 km/h, position measurement error: 40 

m 



Figure 5.10: y position variance, mobile velocïty: 5 km/h, position measurement 

error: 40 m 

Figure 5.11: y position bias, mobile velocity: 5 h / h ,  position measurement error: 

40 m 



Figure 5.12: x position variance, mobile velocity: 5 km/h, position measurement 

error: 100 m 

Figure 5.13: x position bias, mobile velocity: 5 h / h ,  position measurement error: 



Figure 5.14: y position variance, mobile velocity: 5 km/h, position measurement 

error: 100 m 

Figure 5.15: y position bias, mobile velocity: 5 km/h, position measurement error: 

100 m 



Figure 5.16: x position variance, mobile velocity: 20 km/h, position measurement 

error: 20 m 

Figure 5.17: x position bias, mobile velocity: 20 h / h ,  position measurement error: 



Figure 5-18: y position variance, mobile velocity: 20 km/h, position measurement 

error: 20 m 

Figure 5.19: y position bias, mobile velocity: 20 km/h, position measurement error: 

20 m 



Figure 5.20: x position Milance, mobile velocity : 20 km/h, position measurement 

error: 40 m 

Figure 5.21: x position bias, mobile velocity: 20 h f h ,  position measurement error: 



Figure 5.22: y position miance, mobile velocity: 20 km/h, position measurement 

error: 40 m 

Figure 5.23: y position bias, mobile velocity: 20 W h ,  position measurement error: 

40 m 



Figure 5.24: x position variance, mobile velocity: 20 h / h ,  position measurement 

error: 100 m 
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Figure 5.25: x position bias, mobile velocity: 20 W h ,  position rneasurement error: 

100 m 



Figure 5.26: y position d a n c e ,  mobile veiocity : 20 h / h ,  position measurement 

error: 100 m 

Figure 5.27: y position bias, mobile velocity: 20 km/h, position measurement error: 

100 m 



Figure 5.28: x position variance, mobile velocity: 50 km/h, position measurement 

error: 20 m 

Figure 5.29: x position bias, mobile velocity: 50 km/h, position measurement error: 

20 m 



Figure 5.30: y position variance, mobile velocity: 50 km/h, position measurement 

error: 20 m 

Figure 5.31: y position bias, mobile velocity: 50 km/h, position measurement error: 



Figure 5.32: x position variance, mobile velociw: 50 km/h, position measurement 

error: 40 m 

Figure 5.33: x position bias, mobile velociQ: 50 km/h, position measurement error: 

40 m 



Figure 5.34: y position variance, mobile velocity: 50 km/h, position measurement 

error: 40 rn 

Figure 5.35: y position bias, mobile velocity: 50 kmjh, position measurement error: 



Figure 5.36: x position variance, mobile velocity: 50 km/h, position measurement 

error: 100 m 

Figure 5.37: x position bias, mobile velocity: 50 km/h, position measurement error: 



Figure 5.38: y position variance, mobile velociw : 50 km/ h, position measurement 

error: 100 rn 

Figure 5.39: y position bias, mobile velocity: 50 km/h, position measurement error: 

100 m 



Figure 5.40: x position variance, mobile velocity: 100 km/h, position measurement 

error: 20 m 

Figure 5.41: x position bias, mobile velocity: 100 km/h, position measurement error: 

20 m 



Figure 5.42: y position variance, mobile velocity: 100 h / h ,  position measurement 

error: 20 m 

Figure 5.43: y position bias, mobilekelocity: 100 km/h, position measurement error: 



Figure 5.44: x position mriance, mobile vdocity : 100 km/h, position measurement 

error: 40 m 

Figure 5.45: x position bias, mobile velocity: 100 h / h ,  position measurement error: 



Figure 5.46: y position variance, mobile velocity: 100 b / h ,  position measurement 

error: 40 m 

Figure 5.47: y position bias, mobile velocity: 100 krn/h, position measurement error: 

40 m 



Figure 5 -48: x position variance, mobile velocity : 100 kmfh, position measurement 

error: 100 m 

Figure 
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5.49: x position bias, mobile.velocity: 100 km/h, position measurement error: 



Figure 5.50: y position wiance, mobile velocity: 100 h / h ,  position measurement 

error: 100 m 
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Figure 5.51: y position bias, mobile velocity: 100 km/h, position measurement error: 



Chapter 6 

Conclusion and Future Work 

In a mobile radio system, the received signal at the mobile always consists of multiple 

components from different directions and with difFerent delays- S m d  changes in the 

differential delays introduced by the moving mobile will cause large d a t i o n s  in the 

envelope amplitude and phase of the composite received signal. This phenornenon 

is cded multipath fading. The fading depends on the mobile velocity. The faster 

the mobile, the larger the fading rate of received signal. Therefore, the statistical 

characteristics of the fading signal can be used for mobile velocity estimation. At the 

beginning of this thesis, we introduced the mathematical model for continuous-time 

fading signal derived by Rice et  al. and some mobile velocity estimation techniques 

based on it in the background chapter. 

The main contribution of this t hesis is the development of discrete-time fading sig- 

nal model and level crossing rate (LCR) and autocorrelation function (ACF) estima- 

tion techniques for mobile velocity using a discrete-time fading signal. In Chapter 3, 

we introduced the definition of level crossings for discrete-time model, and then de- 

h e d  the level crossing rate over N given samples as the ratio of the expected number 

of level crossings to the number of samples. From the statisticd characteristics of the 

discrete-time fading signal model, we obtained an expression for LCR as a function 

of the signal envelope and the mobile velocity. In Chapter 4, we derived the ACF 

met hod by exploit ing the feature that the autocorrelation function of the in-phase 

and/or quadrature components of fading signal are functions of mobile velociw. 

Based on our simulation results, we are able to conclude that both methods can 



obtain accurate estimates of mobiIe veIocity- We also carried out a cornparison b e  

tween these two methods. We found that by using the ACF method, we obtained 

more accurate results, especially when the SNR is smd.  Furthemore, if the sampiîng 

rate of the continuoustime fading signal is relatively s m d  and the actud mobile ve- 

locity is large, the CCR method would underestimate the actual values. However, 

when we increase the sarnpling rate, we s tU can obtain accurate results. While the 

ACF method overcomes this drawbacli of LCR method, it requires coherently received 

in-phase or quadrature signal components rather than the signal envelopes. 

In Chapter 5, we applied the estimates of mobile velocity into the mobile motion 

t r a c h g  application. We proposed a simple K a h a n  flter tracking rnodel taking into 

account the mobile position and velocity measurements. We then compared it with 

the tradùng model using only position measurements. From the simulation results, we 

found that when the mobile velocity is large, the pedormance of the velocity-based 

mobile motion tracker is significantly better than the tracker only using position 

measurernents- On the other hand, when the mobile is moving slowly, there is no 

obvious difference in the performance of these two mobile motion traders- 

Suggestions for Future Research 

In the future, the accuracy of the discrete-time mobile velocity estimation model 

needs to be investigated further. In particdar, the assumption in Section 3.2 that 

only one level crossing occurs per sample may be improved upon. The choice of the 

signal level, A, should be optimized in view of this assumption. 

The purpose of the introduction of the mobile tradùng model in Chapter 5 is to 

illustrate the advantages of employing the mobile velocity measurements in addition 

to the mobile position measurements. The simulation resuits show that we have ac- 

cornplished this purpose. However, this model shodd be further refined in order to be 

used in practical mobile motion tracking applications. For example, we assumed that 

the measurements are independent of each other and the measurernent noise matrix is 

time-invariant for the sake of simplicity. One shouid develop a real-world model which 

takes account of correlated measurements and timevarying measurement noise. 

We have observed that there is no improvement in adding mobile velocity estimates 



to  the tracker for the case of s m d  mobile velocity. This observation should be 

investigated in more detail. 



Bibliography 

[lJ T. A Modifid Mode1 for the Fading Signal at a Mobile Radio Channel. 

IEEE Trans. Veh. Technol., Vol. 28, pp. 182-203, Aug. 1979. 

[2] M. D. Austin, G.  L. Stuber, Velocity Adaptàue Handof Algorithm for Mirocel- 

Zular Systems, IEEE Trans. Veh- Technol., Vol. 43, pp. 549-562, Aug. 1994. 

[3] T. E. Biedka and J. H. R e d ,  Direction Finding Methods for CDMA wireless 

Systems, Virginia Tech-, MPRG-TR-96-20, May, 1996. 

[4] Y. Bar-Shalom and T. E. Fortmann, Tracking and Data Association. Academic 

Press, 1988. 

[5] Y. T. Chan and K. C .  Ho, A Simple and EBcient Estimator for Hype~bokic 

Location, IEEE Trans. Signal Processing, vol. 42, no. 8, Aug. 1994: pp. 1905- 

1915. 

[6] G.  C. Clark, J. B. Cain, Error-Correction Coding for Digital Communications, 

New York, Ny: Plenum, 1981. 

[ï] R. H. Clarke, A Statïstical Theory of Mobile Radio Reception, Bell Syst. Tech. 

J-, Vol 47, pp- 957-1000, July 1968. 

[8] G. Colman, S. D. Blostein, and N. C. Beaulieu, An ARMA Multipath Fading 

Simulator, in Advances in Wieless Communications, Chapter 4 in Wireless Per- 

sonal Communications: Improving Capacity, Services and Reliability, ed. T. S. 

Rappaport, B. D. Woerner, J. H. R e d  and W. H. Tranter, Kluwer Pub., pp. 

37-48, NY, 1997. 

113 



[9] W. B. Davenport Jr., W. L. Root, An Introduction to the Theory of Random 

Signais and Noise, McGraw-Hill, 1958, pp. 152. 

[IO] E- J. Dudewicz and S. N. Mishra Modern Mathematical Statistics, John Wiey 

& Sons, 1988- 

[Il] P. K. Enge, Global Positioning System: Signais, Measurements and Performance. 

Int'l. J. Wireless Mo. Networks, VoI. 1, NO. 2, Apr. 1994- 

[12] B. T. Fang, Simple Solutions for Hyperbolic and Related Position Fixes, IEEE 

Trans. Aerospace and Elect. Sys., vol. 29, no. 5, Sept. 1990, pp. 748-753. 

[13] FCC Docket No. 94-102, Revision of the Commission's Rules to Ensure Compat- 

ibility with Enhanced 911 Emergenq Calling Systems, RM-8143, July 26, 1996. 

[M] W. H. Foy, Position-Location Solutions by Taylor-Series Estimation, IEEE Trans. 

Aerospace and Eiect. Sys., vol. AES-13, no. 2, Mar. 1976, pp. 187-193. 

[15] The Global Positioning System, IEEE Specturm, Dec. 1993, pp. 36-47. 

1161 M. Hata, T. Nagatsu, Mobile Location Using Signal Strength Measurements in 

a Cellular System, IEEE Trans. Veh. Technol., Vol. 29, no. 2, pp. 245-252, May 

1980. 

[17] C. W. Helstrom, Statistical Theory o/Signal Detedion, 2nd Ed., Pergamon, 1968. 

[18] T- A. Herring, The Global Positioning System, Sci. Amer., Feb. 1996, pp. 4-4-50. 

[19] J. Holtzrnan, Adaptive Measurement Intervals for Handofls, IEEE Int. Cod. on 

Commun., Chicago, IL, pp. 1032-1036, June 1992. 

[20] J. Holtzman, A. Sarnpath, Adaptive Handofls through the Estimatzon of Fading 

Parameter, IEEE Int. C o d  on Commun., pp. 1131-1135, 1994. 

[21] E. D. Kaplan, ed., Understanding GPS: Principles and Applications, Boston: 

Artech House, 1996. 

[22] W. C. J h ,  Mierowave Mobile Communications, IEEE Press, 1974. 



[23] C .  D. McGillem and T. S. Rappaport, A Beucon Nauïgation Method for Au- 

tonornous Vehicles, IEEE Tranç. Vëhic. Tech., vol. 38, no. 3, Aug- 1989, pp. 

132-139. 

[24] R. Muhamed and T. S. Rappaport, Cornparison of Couentional Subspaced-Based 

DOA Estimation Algorithm m-th n o s e  Emplo ying Propert y-RestoraL Tech- 

niques: Simulation and Measuremenki, IEEE ICUPC, Cambridge. MA, Oct. 

2,  1996. 

[25] C .  T. M&s and L. L. Scharf, Quadrntic E s h a t o r s  of the Power Spectrum in 

-4dvances in Spectral Analysis and A m  y Processing, Vol. 1, S. Haykn (Editor), 

Prentice HalI, 1989- 

[26] J. F. Ossanna, Jr., A Mode1 for Mobile Radio Fading Due to Building Reflections: 

Theoretical and E'erimental Wauefonn Power Spectra, Beii. Syst. Tech. J., Vol 

43, pp. 2935-2971, Nov. 1964. 

[27] A. Popoulis, Probubilitiy, Random Variables, and Stochastic pro ces ses^ 2nd Ed., 

McGraw-HiIl, 1984 

[28] J . G .  Proakis, Digital Communicutions, 3rd Ed., McGraw-Hill, 1995. 

[29] J. G.  Proakis, D. G. ManoIakis, Digital Signal Processingr Principles. Algorithms 

and Applications, 2nd Ed., Macmillan, 1992, pp. 405-410. 

[30] T.  S. Rappaport, J .  H. Reed, and B. D. Woerner. Position Location Using W h -  

less Communications on Highways of the Future, E E E  Commun. Mag-, Oct. 

1996, pp. 33-41. 

[31] S .  O. Rice, Mathematical Analysis of Random Noise, Bell SystemTechnical Jour- 

nal, Vol. 23, July 1944, pp. 282-332, Vol. 24, Jan. 1945, pp. 46-156. 

[32] S. O. Rice, Stutistical Properties of a Sine Wave plus Noise, Bell System Tech- 

nical JoumaI, Vol. 27, J a n .  1948, pp. 109-157. 

[33] A. Sampath, J .  Holtzman, Estimation of Mozimum Doppler Frepuency for Hand- 

08 Decisions, IEEE Veh. Technol. C o d ,  Secaucus, NJ ,  pp. 859-862, May 1993. 



[34] S. V. ScheU and Gardner, High Resolution Direction Finding, Handbook o f  

S t atistics: Volume 10, EIsevier, 1993. 

[35] J. 1- Smith, A Cornputer Genemted Muitipath Fading Simulation for Mobile Ra- 

dio, IEEE Trans. Veh- Technol., Vol 24, Aug- 1975, pp. 39-40. 

[36] 0. J. Smith and J. S.  Abel, The Spherîcal Interpolation Method of Source Local- 

ization, IEEE J. Oceanic Eng., vol. OE-12, no. 1, Jan. 1987, pp. 246-252. 

[37] P. Stoica and A. Nehorai, MUSIC, M(~n.rnum Likelihood, 4Y Cramer-Rao Bound. 

Proc. IEEE, vol. 57, no. 8, Aug. 1969, pp. 1408-1418. 

[38] G. L. Stuber, Principles of Mobile Communication, Kluwer Acadernic Publishers. 

1996. 

[39] R. G. Vaughan, Signals in Mobile Communications: A Review. IEEE Trans. Veh. 

Technol., Vol 35, Nov- 1986. 

[40] R. Vijayan, J.  Boltzman, Foundations of Leuel Crossing Analysis of Handofl 

Algorithns, kit. Conf. on Commun., pp. 935-938, 1993. 

[41] X. Wang and H. V.  Poor, Blind Adaptiue hterference Suppression in DS-CDMA 

Communications with Impulsive Noise, Int. C o d  on Acoustics, Speech, and 

Signal Processing, 1998 

1421 G .  Xu and H. Liu, An Eflective Transmission Beamfoming Scheme for 

Frequeney-Division-Duplex Digital Wireless Communication Systems, Proc. 

IEEE ICASSP, 1995, pp. 1729-1732. 

[43] D. J. k%ung, N.  C. Beaulieu, On the Generation of Correlated Rayleigh Random 

Variates by h e r s e  Di smte  Fourier Tmnsform, IEEE, lnt. Conf. on Universal 

Personal Communkat ions, Cambridge, M A ,  1996. 

[U] 1. Zisbrind and M. Wax, Maximum Likelihood LocalirBtion of Multiple Sources by 

Alternating Projection, IEEE Tram. Acoustics, Speech, and Signal Processing, 

vol. 36, no. 10, Oct. 1988, pp. 1553-1560. 




