QUALITY CONTROL SYSTEM FOR A BAKERY PRODUCT

USING FUZZY LOGIC TO PREDICT CONSUMER PREFERENCES

A Thesis
Presented to
The Faculty of Graduate Studies
of

The University of Guelph

TERRENCE B. CHU

In partial fulfillment of requirements
for the degree of
Master of Science

May, 1999

© Terrence Chu, 1999



i+l

National Library
of Canada du Canada
Acquisitions and Acquisitions et

Bibliographic Services
395 Weliington Street

Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliotheque nationale

services bibliographiques

385, rue Wellington
Ottawa ON K1A ON4

Your fhe Votre référence

Our fle Notre référence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronmique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-43151-7

Canada



ABSTRACT

QUALITY CONTROL SYSTEM FOR A BAKERY PRODUCT
USING FUZZY LOGIC TO PREDICT CONSUMER PREFERENCES

Terrence Chu Advisors:
University of Guelph, 1999 Professor V. Davidson
Professor O. Basir

Food manufacturing is an important business worldwide. Producers are turning to
automation to improve the rate and the quality of production, especially in the area of
quality assurance inspection. The objectives for this research were to identify the
behavior of the consumers in judging chocolate chip cookies, to develop a consumer
model based on the judgment data, and to gauge the success of a consumer-behavior
based automated inspection system.

Consumers rated chocolate chip cookies based on dough lightness, size, and
percentage of chips visible. Furthermore, interactions between dough lightness and size,
and percentage of chips and size were also significant influences on decision making.
The automated inspection system developed for this research used fuzzy logic to
successfully model consumer behavior as identified through integration theory. The

system correctly classified the acceptability of eighty percent of the cookies tested.
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1. Introduction

Food manufacturing is a major industry worldwide. @ For many food
manufacturers the global community has bécome accessible due to technological
advances in transportation and communication. Competition within the food industry has
grown because of these advances. To remain competitive, manufacturers are enhancing
production and processing techniques by introducing automated control and inspection as
solutions to increase production, and improve quality (Sarkar, 1991)-

In particular, manufacturers of baked goods have traditionally used manual
inspection to perform quality assurance. Manual inspection introduces bottlenecks into
the production process. Operators cannot work as fast as the machinery generating the
products. More importantly, manual inspection relies solely on the inspectors’ decision
making. Unfortunately, the judgment of these inspectors may not reflect consumer
opinions. For this reason, the process by which consumers judge food is of particular
interest.

With an understanding of consumer behavior, a model that reproduces consumer
decision-making can be developed. Quality assurance inspection can be automated by
integrating this model with a machine vision system. An automated solution such as this
improves production by allowing the manufacturer to assess product quality according to
consumer opinion. Ultimately, the model facilitates objective and consistent consumer-
based decision making during quality assurance.

Consumer behavior in product judgement is studied and quantified through
psychophysics. One of the goals of psychophysics is to develop methodologies through

which consumer judgement can be modeled. Specifically, through integration theory,



integration and scaling have been identified as concepts that describe the mechanics of
decision making (Lawless, 1990; Mcbride and Anderson, 1990).

Integration refers to the process by which people combine different food
characteristics to render a judgement pertaining to the quality of the food. Characteristics
such as size, shape, texture, color, taste, and odor are combined to produce an opinion
about a food product. Food judgement is also a function of scaling. Scaling quantifies
the influence each characteristic exerts on the final decision. In decision making, a
significant characteristic is given more weight than one that is less significant.

Human decision making patterns are identified and modeled through integration
theory. This model can be automated using fuzzy logic and then used to predict
consumer behavior. In other words, integration theory can be translated into a fuzzy
logic decision engine. Not all consumers will agree on the ideal combination of product
characteristics. Fuzzy logic can account for this inconsistency and is a good candidate
for consumer modeling because it can tolerate uncertainty and vagueness.

Machine vision is a general term that describes a system that uses both image
processing and a decision engine to perform a duty. In a machine vision system, image
processing identifies and quantifies characteristics such as the size and color of a product.
Digitally captured images of this product are analyzed through techniques such as edge
detection, perimeter following, and color analysis. These operations yield information
including the shape, size, and color composition of the product. A consumer model can
use these extracted features to assess this product’s quality. This consumer model can be
used in conjunction with image processing to produce an automated quality assurance

inspection station.



The objectives of this thesis are to:

e Describe consumer behavior in judging chocolate chip cookies

e Develop an algorithmic model of the consumer behavior through fuzzy logic

e Implement and evaluate the success of an automated inspection system for

chocolate chip cookies based on the consumer model

To accomplish these objectives, chocolate chip cookies with different physical
characteristics (e.g. color, size, and shape) were presented to a group of subjects. These
people represented a cross section of the consumer population. Each cookie’s relative
consumer appeal was expressed as a position along a line scale. The cookies’ ratings
were recorded as distances from the line scale’s origin. Statistical analyses of the
recorded distances provided insight into scaling and integration of the characteristics
presented during judgement. Based on the statistical findings, a consumer decision
model was developed and then tested against subsequent polls.

This thesis will present literature relevant to consumer modeling and automating
quality assurance. The materials and methods employed in the study are described and
explained. Then, experimental results are presented and analyzed. Finally, conclusions
are drawn from the results, and recommendations for further study and improvements are

presented.



2. Literature Review

Quality assurance is an important part of food manufacturing. Manufacturers
such as commercial bakeries or fisheries require quality control personnel to identify and
remove damaged or poor quality product. When judging the quality of a product, these
inspectors identify defects and then classify the product’s quality. This chapter will focus
on the techniques and technologies that are required to automate defect identification and
product classification.

In this literature review the characteristics of consumer behavior and the
experimental techniques used to identify this behavior are discussed. Research into the
effect of physical attributes on taste and apparent quality are presented. Then, basic
elements in fuzzy logic are explained. The review continues with an examination of
image-processing techniques that allow computers to quantify an object’s characteristics.
Research in combining image processing and artificial intelligence to automate food
quality assurance are presented. Finally, deficiencies in the literature in tying consumer

opinion to quality assurance are identified.

2.1. Consumer Behavior

When a -food product is first developed, a consumer market is targeted and the
product is developed to appeal to those consumers. Sensory evaluation helps the
manufacturer to design and to control the quality of the product. But the sentient nature
of perception and judgement makes understanding human behavior difficult. Through
psychophysics and information integration theory, several stages have been developed to

explain the decision making process (McBride and Anderson, 1990).



Valuation is the first stage in the decision making process. During this stage the
physical stimuli of a food product are translated into psychological sensations. The
stimuli are assembled and then scaled relative to one another according to importance.
These stimuli include visual characteristics, fragrance, texture, taste, and sound.

The second stage of decision making is integration. The sensations identified
during valuation are integrated into a single sensation. Other factors such as memory or
context effects are also integrated into this sensation (Lawless, 1990). The sensation
generated by integration is not observable, but it exists in integration theory as an
intermediary stage between the observable stimuli and the response.

Finally, during the response stage an assessment of the quality of the food product
is generated. The person identifies the acceptability or appeal of the food product.
Through these three stages in integration theory, the decision making process can be

systematically quantified and then modeled.

2.1.1. Types of integration

Integration theory provides us with the means to map stimuli to the physical
responses. Through integration theory, it is possible to develop an understanding of
consumer behavior. Statistical and graphical analysis of stimuli versus response are used
to identify these relationships. Additive interaction between stimuli is a common
relationship. An example of an additive relationship is the taste-odor integration between
sweetness and orange aroma as presented by McBride and Anderson (1990). The total
intensity of sensation was plotted versus nine combinations of taste and odor. The

experiment produced the relationship shown in Figure 2.1. The additive response can be



seen by the parallelism demonstrated by the three levels of sucrose and of orange aroma.
The difference in response to each change in stimulus is consistent. This parallelism

indicates an additive integration of the stimuli (McBride and Anderson, 1990).
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Figure 2.1: Total Intensity of Sensation versus Orange and Sucrose Levels

Other relationships that describe consumer behavior include subtractive,
multiplicative, and nonlinear. A full description of each type of integration relationship
is beyond the scope of this literature review but a more complete description can be

found in McBride and Anderson (1990) and Lawless (1990).

2.1.2. Experimental Techniques in Identifying Consumer Behavior

Through integration theory, the multidimensional character of a food product can
be examined. The influence of each characteristic on consumer appeal can be
determined, and the ideal value or range for each characteristic can be identified. But,
appropriate testing procedures need to be performed to acquire data that can be used for

consumer judgment analysis and, ultimately, consumer modeling. In order to elicit a
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proper response to the food product, two procedures must be performed. Firstly, the food
characteristics significant in decision making must be identified. Secondly, an
appropriate test to record the consumer response to the product must be designed using

those characteristics.

2.1.3. Identifying Significant Stimuli

The significant stimuli used for decision making can be identified through the
repertory grid procedure (McEwan and Thomson, 1988). During this testing three
examples are presented and the test subject chooses an outlier and then justifies the
choice. These trials are repeated for all the characteristics that are perceivable in the
food. Through this testing, the most influential characteristics, as well as the ranges of
noticeable difference for each characteristic can be identified (McEwan and Thomson
1988).

For example, the dominant characteristic of an orange is the color. Different
colors may generate different acceptability ratings and thus should be identified. For
oranges the ranges may be green, green-orange, orange, and brown. By determining that
the color is important and by identifying the different color ranges that are noticeable to

the consumer, a test for the acceptability of an orange based on color can be created.

2.14. Testing for consumer appeal

To properly test a product, a complete set of characteristics and range of values
within each characteristic need to be presented to the consumer. This set is generated

using the characteristics and ranges identified through the repertory grid procedure.



Through studies in consumer behavior, and specifically in product testing, line scale tests
used in conjunction with product rating methods have been shown to be the most
successful in generating useful characteristic relationship information (McBride and
Anderson, 1990).

The graphic line scale is essentially a line on a flat surface with markers along the
line to anchor the test. Test subjects are then asked to place test samples of the product
where they feel the sample fits best. For example, in a saltiness flavor test there would be
a marker that denotes the saltiest example of the product, and one that denotes a version
of the product with no salt. Testers may be asked to rate the saltiness of different samples
of the product relative to these markers. In this test, different recipes can be tested for
their apparent saltiness.

Another line test may be based on linguistic terms. Instead of using product
samples as anchors, linguistic terms that represent concepts in human judgment may be
used. This type of test is called an interval scale (Land and Shepherd, 1984). For
example, an interval scale may use the concepts unacceptable and acceptable as anchors.
In this case, the observers are asked to rate products in terms of their appeal. Presenting a
complete set of characteristics for judgement can identify the qualities that influence a
product’s consumer appeal. The results of these tests can be analyzed through statistical
means such as mean, standard deviation, and analysis of variance to identify consumer

behavior (Land and Shepherd, 1984).



2.1.5. Research into the Effect of Appearance on Product Appeal

Christensen (1983) performed research on the effect of food color on perceived
intensity, and quality of aroma and flavor. In the study, a group of testers were presented
with pairs of normally colored and inappropriately colored food wherein each sample was
rated for the quality of its aroma, flavor and texture. The foods tested included
margarine, gelatin, bacon strips, an orange drink, and cheese. The study found that
appropriately colored food was perceived as having more intense and superior aroma and
flavor. Two groups of testers judged the pairs of foods. One group was blindfolded
while the other was not. The sighted subjects judged the appropriately colored food as
having a stronger aroma while the blindfolded group generated no response pattern. The
research surmised that color influenced the anticipated oral and olfactory sensations
because of the memory of previous eating experiences.

Dubose et al., (1980) found that as the intensity of the color of the food increased,
the perceived flavor increased accordingly. Furthermore, the experiment showed that
specific colors induced flavors typically associated with those colors. The food stuffs
studied included fruit flavored beverages and cake. For example, flavorless cakes were
deemed to have increasingly acceptable lemon flavor when more yellow colorant was
added to the cake. Ultimately, Dubose et al., (1980) showed that memory effects are
associated with visual perception and affect the judgment of consumers.

The research done by Dubose ef al., (1980) and Christensen (1983) showed that
visual stimulus is a major factor that influences the consumer judgement of food. The
physical attributes of a food product generate memories of past eating experiences.

Ultimately, the overall quality of a food product can assessed based on visual features



alone. Therefore, a consumer model that can successfully relate the visual features of a
food product to the food’s quality will provide a realistic assessment of consumer

opinions.

2.2. Fuzzy Logic

Fuzzy logic is a diverse field of mathematics that has been applied in many areas
such as control systems and decision support systems. Fuzzy inference systems are
appropriate when the uncertainty of classification needs to be assessed, when the patterns
for each class are ambiguous, and when it is difficult to define boundaries between
classes (Cai and Kwan, 1998). In each circumstance, the domain of application has
dictated the type of fuzzy implementation that is most appropriate. For example, fuzzy
control systems are often developed with the help of an expert in the control
environment. In this situation a rule-based fuzzy logic model of the expert is often used.
On the other hand methods such as fuzzy-c means (Bezdek, 1981), or even fuzzy neural
networks (Kuo et al., 1993) are employed in circumstances where a fuzzy classifier needs
to be built on ill-defined data. For example automated visual signature verification is an
area where the data is ill defined. Each individual possesses unique hand writing
characteristics. Common features or invariants between different individuals’ signatures
are hard to find. Furthermore, there is significant variation in signatures generated by the
same individual. These challenges conspire to make personal signatures difficult to
separate (Scott, 1998).

The focﬁs in this section will be on fuzzy rule-based inference models. These

models are appropriate for mimicking the rules governing consumer behavior as

10



identified through integration theory. Fuzzy rule-based inference models generally
consist of three processes, fuzzification, inference operations, and defuzzification (Cai
and Kwan, 1998). During fuzzification crisp inputs are translated into the fuzzy domain
through membership functions. Each crisp value is assigned a membership value to a
fuzzy concept as defined by the membership functions. For example, the comfort level of
a room according to an average person may be described by the membership functions
shown in Figure 2.2

Ideally, people prefer the room to be warm. Temperatures below 16° C may seem
cool to most people, while temperatures above 24° C may seem hot to many people.
Rooms at 23° C are neither warm nor hot but somewhere in between. Fuzzification of a
23° C temperature would produce truth-values equal to 0.4 warm and 0.6 hot. After
fuzzification the room is no longer described as a crisp temperature of 23°C, rather the

room is described as being 0.4 warm and 0.6 hot.

23°C
l
Degree of f
Membership | cool warm hot
0 \
i6 19 21 24

Temperature (° C)

Figure 2.2: Fuzzy Membership Functions for the Temperature of a Room

These fuzzy values are then passed to “if...then” rules which combine and manipulate the

variables to produce one or more fuzzy outputs. These rules represent the cognitive

11



process that people perform when making decisions. Possible rules for a temperature

controller using the ventilation fan-speed as the manipulated variable are shown in Figure

23.

o If temperature is cool then fan-speed is Slower

o If temperature is warm then fan-speed is Unchanged
o If temperature is hot then fan-speed is Faster

Figure 2.3: Inference Rules for Fuzzy Temperature Controller

The antecedent in the rules is the temperature. The consequent, or the fuzzy
output, is the change in the speed of the ventilation fan. The consequent is clipped to the
same degree of membership as the antecedent. For a room temperature of 23° C these
inference rules recommend fuzzy changes in fan speed as 0.4 unchanged and 0.6 faster.

Finally, defuzzification produces crisp or linguistic outputs from the fuzzy-
consequences. In this case the crisp output is the change in revolutions per minute of the
fan. Membership functions are used to map fuzzy consequences back to the crisp
domain. The following example demonstrates a Sugeno-type defuzzification method that
can be found in Terano et al. (1987). The membership functions for this controller are
called singletons and are shown in Figure 2.4. The aggregation formula that generates
the crisp change in fan speed can be seen in equation ( 2.1 ). The defuzzified fan speed is

equal to +60 rpm.
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stower * YslowerRPM + Hunchanged *® YUnchangedRPM + MFaster * YFasteRPM (2.1

A =
Fan Speed Hslower + HUnchanged + HFaster

Where:
AFan speca = the defuzzified change in fan speed in rpm
Msiower = the degree of membership in “Slower”
HUnchanged = the degree of membership in “Unchanged”
HFaster = the degree of membership in “Faster”
YstowerkpM = the defuzz. singleton rpm for Slower
YunchangedRPM = the defuzz. singleton rpm for “Unchanged”
YrasterkPM = the defuzz. singleton rpm for “Faster”

This example has demonstrated a simple implementation of a min-max fuzzy
logic temperature controller that manipulates fan speed using human decision making as
a model. There are many ways to describe input and output membership functions.
There are also many ways to infer consequences and to aggregate these consequences.
These concepts in fuzzy logic theory, and their application, have already been studied in
detail and can be found in Terano et al. (1987), Zimmerman (1996), De Silva (1995),

Yen et al. (1995), and Pedrycz (1989).

SlowerRPM  UnchangedRPM FasterRPM

Degree of
Membership

-100 0 100
Change In Fan Speed (rpm)

Figure 2.4: Defuzzification Membership Functions for Fuzzy Temperature Controller
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2.3. Machine Vision Techniques

Machine vision is a general term that describes a syétem that processes images
and then renders a decision about the extracted information. Essentially, machine vision
combines both image processing and a decision engine to perform a duty. The role of
image processing is to provide the necessary information for the decision engine to
render a judgement.

Image processing refers to the quantification of information stored in a digital
image. The field of image processing is very broad and uses many different techniques to
extract and identify information in an image. These techniques include mathematical
methods such as Fourier analysis to extract image information, as well as artificial
intelligence techniques such as neural nets to categorize the extracted information. This
section will focus on methods for enhancing and extracting object features such as color
composition, shape, and size. Image processing techniques such as these will quantify an
object’s features in such a manner that they can be used by a decision engine.

Image processing can be categorized into several levels of complexity. Basic
operators that are used include contrast enhancement, edge detection, and transforming
color-spaces. These operators reduce noise in the image and identify the information
found in the image without consideration for the actual significance of the features.
Essentially these operators perform operations on properties that are consistent across all
images. Gunasekaran (1996) refers to this level of image processing as preprocessing. In
effect, the image is being conditioned so that application specific information can be

extracted from the image.
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Contrast enhancement and edge detection are but two examples of low level
image manipulation. Other operations include smoothing, converting to grayscale, and
brightening. These operators can be used to accentuate informaﬁon in the image in
preparation for a more detailed analysis of the image.

Colors in digital images are represented by three components, namely, red, green,
and blue. The standard RGB color representation in computers is difficult to manipulate
for color recognition but can be transformed to more useable representations of color
(Thomas and Connoly, 1986). The L*a*b* color space provides a baseline for describing
colors and has been used for measuring pigmented materials such as those of the food
industry (Volz, 1995). This color space provides a better description of color by
separating lightness and hue. In the RGB color space, the lightness and hue are coupled
to all three components.

The next stage in image processing is referred to as segmentation, representation
and description (Gunasekaran, 1996). These operations include perimeter following, area
classification, and color analysis. The information extracted by image processing
operators identifies an object in the image through shape, size, and color composition.
Ultimately, image processing extracts features that identify an object in a manner that can

be manipulated by a decision engine.

2.4. Automated Inspection of Food Products
Food manufacturers understand the value of automated inspection over purely
manual inspection. Research into automating basic processing tasks has produced

systems that perform both image processing and classification with varying degrees of
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success. These works exemplify image érocessing and decision engine techniques that
can be used for inspection research. Research has been performed to assess food quality
using achromatic, or grayscale images. Unklesbay ef al. (1983) assessed the nutritional
value of pizza shells versus the browning of the shells. Pizza shells were baked, scanned
by a monochrome camera, and then assessed for their nutritional value. The experiment
successfully linked degree of browning to lysine content in the pizza shell via a linear
mathematical model. The experiment showed that dough lightness could be used to
identify nutritional value. = Some inspection problems need more detail about the food
to facilitate classification thus, as color digital camera technology becomes more
commonplace, color features are being put to use in inspection research. McConnell et
al. (1995) used color classification to classify baked and roasted food products. This
research assessed the doneness of a food sample relative to a several reference examples
of the product. The experiment demonstrated that many food products have multiple
color attributes that need to be considered in inspection and judgment. The system
employed a histogram analysis that was similar to a Bayesian maximum likelihood
classification technique. Daley et al. (1995) studied poultry processing as a potential
candidate for automated inspection. Color histogram analysis, bixel—level color
categorization, and a mathematical filter were employed to identify defects. The goal of
the experiment was to identify defects such as bruises, skin tears, and tumors.
Ultimately, bruises and tumors were successfully identified by single pixel color analysis
through neural networks, while skin tears were only identifiable through a mathematical

filter.
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Bell peppers have been sorted based on color (Shearer ef al. 1990). Tao et al.
(1995) sorted apples and potatoes through color analysis. Both studies used discriminant
techniques to identify and classify the food. Other foods such as soybeans (Wigger et al.
1988), and peaches (Miller and Delwiche, 1989), have also been sorted based on color
using basic mathematical techniques.

Luzuriaga et al. (1997) graded shrimp using color. The shrimp were
differentiated based on amount of surface area demonstrating melanosis. A grade was
assigned to the shrimp using a linear model that related the percentage of area exhibiting
melanosis to the operator assigned shrimp grade.

Perrot et al. (1996) classified the color of cookies. Cookie color readings were
captured and a fuzzy logic decision engine mapped the three dimensional numerical color
reading to a linguistic color classification. The fuzzy engine modeled a human operator
and was compared to a Bayesian classifier. The success rates for both types of classifiers
were comparable, but the authors supported the fuzzy classifier because it more
appropriately modeled the deterministic nature of human decision-making, i.e. decisions
that are generated through rules. The fuzzy logic inference model is rule-based and
properly represents the deterministic nature of the human decision making process.

Beyond color other physical features such as shape and size that can be used to
identify an object. Howarth et al. (1992) quantified and classified carrot tip shapes using
a Bayes discrimination procedure. The curvature profile was used to quantify the shape
of the carrot tip. This profile was then passed to a discrimination procedure for

classification. Heinmann et al. (1996) developed a machine vision system that graded
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potatoes based on size and shape. No statistical or intelligent techniques were used to
grade the potatoes’ size, or shape..

Ding and Gunasekaran (1994) used shape indices to describe food products
including corn, crackers, and almonds. The system identified the quality of the shape of
the product by comparing the sample to templates. Ultimately, the system identified
misshapen or damaged products. The experiment successfully used both back-
propagation neural networks and minimum indeterminate zone classifiers to classify the
food products.

De Silva (1997) used physical features such as location of cut, length, smoothness
of contour, and surface texture to classify the quality of a processed fish. These inputs
were manipulated through fuzzy logic to generate accept or reject decisions. De Silva
(1997) also presented an experiment where skeins of herring roe were graded based on
visually quantified features including shape, size, and weight. The grading also
accounted for the roe’s ultrasound scanned firmness. The roe grading algorithm, based
on fuzzy logic, facilitated size and grade classification based on the four identified
features. In both experiments, the fuzzy logic algorithm modeled the expert online
inspector for decision making.

The bodies of work discussed in this section show that the physical features foods
can be identified and used to assess food quality. Furthermore, the papers show that the
assessment of the foods can become complex, and that simple methods of relating visual
attributes to food quality are needed. A fuzzy logic based consumer model can provide

this simple means of assessing food quality.
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2.5. Literature Deficiencies

The literature presented illustrates that there are several areas in automated
inspection research that requires more study. Firstly, the classifiers in research are not
informative about the product’s quality according to the consumer. The relationship
between product characteristics and consumer satisfaction should be investigated and
applied to a classifier. Secondly, the applicability of fuzzy logic for modeling integration
theory should be assessed. Finally, the applicability of fuzzy logic in automated
inspection should be investigated further. Specifically, the ability of fuzzy logic to accept
multiple mathematically unrelated inputs and generate multiple outputs should be
investigated in an automated inspection application. Product quality and consumer
behavior is seldom one dimensional therefore their multi-dimensional characters should

be incorporated into the decision-making algorithms employed by inspection systems.
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3. Methodology
3.1. Feature Extraction and Image Processing

The equipment used for capturing images was chosen for its functionality and
flexibility. The list of equipment can be found in Table 3.1. The digital camera was
chosen because it captured scenes more accurately than an average digital camera. It had
3 charge coupled device (ccd) sensors whereas most cameras only have one. Each ccd
sensed red, green, and blue colors, respectively. The effective resolution at which the
camera sensed the environment was triple that of most single ccd digital cameras. Many
digital cameras have the red green and blue pixel sensors on the same ccd. These single
ccd cameras do not reproduce the scene as accurately due to their lower effective sensing
resolution.

The lens for the camera was chosen because it provided a flexible field of view
and zoom. It was possible to adjust the amount of area sensed by the camera to suit
different applications.

The grabber board was chosen because it was fully compatible with the camera
and the video card in the computer. Furthermore, the grabber board was supplied with C
language libraries that were used to interface with the camera.

For lighting, fluorescent lights were used because, relative to incandescent bulbs,
the light produced was more consistent over the lifetime of the bulb. As well, the light
produced was whiter. The selected lights provided a consistent environment and better

color representation of objects for image capture.
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Computer

Dell Dimension XPS M200s PC, Dell Computer Corporation,
Round Rock, Texas, 78682.

Microsoft Windows 95 service release version 2 and Microsoft
Visual C++ 4.0, Microsoft, Redmond, WA, 98052-6399.

Matrox Millenium video card

Meteor RGB grabber board, Matrox Image Library Lite (MIL-Lite)
3.0, Forefront Graphics Corp, Downsview, ON, M3J 3K7.

Camera

JVC AA-P700 AC Adapter and JVC KY-F55BU 3ccd digital
Camera, JVC Professional Products Co., Elimwood Park, NJ, 07407.

Cosmicar/Pentax TV Zoom Lens, 8 mm - 48 mm, 1:1.0, Asahi
Precision Co. Ltd., Wako-Shi, Saitama-Ken, 351-01.

RGB cable

Calibration

Color Plates
e White Minolta Chroma-Meter CR-300 Colorimeter
calibration plate.
e brown paint color sample squares.

Lighting

2 Noma work lights

2 Sylvania 15 watt fluorescent bulbs, Danvers, MA, 01923.

Table 3.1 : Image Capture System

The physical setup of the system can be seen in Figure 3.1. The camera was

supported on a stand that fixed the camera’s position relative to the cookies. The lens

was used to control the size of the field of view and light transmission. Images were

captured using the program in appendix A. This program was developed in Microsoft

C++ 4.0 and used the MIL-Lite 3.0 library to interface with the grabber board. The

program displayed the field of view of the camera and allowed the user to capture the

image displayed.
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Figure 3.1 : Camera and Light Configuration
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Figure 3.2 : Grabber Board, D-Sub Connector (9 pin female, viewed from front)
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Figure 3.3 : Camera, D-Sub Connector (9 pin female, viewed from front)
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An RGB Cable connected the camera to the grabber board in the computer. The
configuration of the cable can be seen in Figure 3.2 and Figure 3.3.

The camera was aimed perpendicularly to the cookie surface to prevent from
distorting the shape of the cookie. Direct lighting generated shadows around the edge of
the cookie that interfered with the feature extraction. Therefore to minimize the shadows,
the two lights were placed on both sides of the cookie and high as feasible.

The lights, camera and computer were warmed up for one hour before capturing
images because the system’s color sensitivity was not consistent until some time had
passed. The source of this dynamic characteristic was not established.

The lights of the room were turned off and the work lights alone were used to
illuminate the cookies. Size, focus, and sensitivity to light of the system were calibrated
before each session of image capture. The field of view was adjusted so that 480 pixels
represented 14.25 cm in the field of view, as shown in Figure 3.4. The size was
calibrated by drawing two parallel lines exactly 14.25 cm apart on a sheet of paper. The
field of view was adjusted so that the lines were at the edge of the visible field of view
vertically. The focus was also adjusted so that the image sensed by the camera was
sharp. Finally, the camera’s sensitivity to lightness was calibrated by grabbing images of
the four brown plates similar in hue to cookie dough. The plates’ L* values were

extracted and then compared to previously captured baseline images of the plates.
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14.25 cm (480 Pixels)

!

Figure 3.4 : Camera Field Of View Calibration

Images of the cookies were grabbed after the calibration. Each image contained
only one cookie on a matte white background. Every cookie image was cropped and then
passed to the feature extraction program for processing. The grabbed images were saved
in “tiff” file format and were left uncompressed. Compressed images can generate color
and pixel distortion and can be difficult to manipulate. A 24-bit color depth was used to
provide a satisfactory color resolution for color analysis. This resolution provided

approximately 16 million different colors.

Computer SGI Indigo2 computer

Irix 6.2 Operating System

SGI Image Vision image processing toolkit

C Visual Developer (CVD)

cc (Unix ANSI C++ compiler)

Colorimeter Minolta Chroma Meter CR-300 Colorimeter, Minolta Canada
Inc., Mississauga, ON, L47-2H5

Table 3.2 : Image Processing System
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The feature extractor was developed in C++ in a UNIX based environment and
used the Image Vision library to facilitate the basic image processing functions. The
program quantified cookie features from captured images including average diameter,
major axis, minor axis, dough lightness excluding chocolate chips, and percentage of
chocolate chips visible. The source code for the feature extractor can be found in
appendix B.

The algorithms for identifying the average diameter as well as the major and
minor axes required definitions of the perimeter and the center of gravity of the cookie.
The areas in the image that were belonged to the cookie were used to calculate the center

of gravity of the cookie. This calculation is shown in equations ( 3.1 ) and (3.2).

Centroidy = Z:: xi/n (3.1)
Centroidy = Z:' yi/n (3.2)
Where i = a pixel considered to be part of the cookie.

n = the number of pixels that are considered to be part of the cookie
X = x co-ordinate for pixel i
y =y co-ordinate for pixel i

A perimeter description of the cookie was generated and used to find the mean
radius and the major and minor axes. The mean radius was found by taking the average
linear distance between each perimeter pixel and the center of gravity. Another algorithm
generated axes for the entire cookie. The longest axis was marked as the major axis,
while the shortest axis was marked as the minor axis. The percentage difference between
the major and minor axes was used to describe the shape of the cookie and was calculated

using equation ( 3.3 ).
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% Difference Of Axis = (Am.j—Amin)/Amj

(3.3)

Where Ag,j = the length of the major axis
Anmin = the length of the minor axis

Besides the linear dimensions of the cookie, the feature extractor also found the lightness

of the dough. The lightness measure was an approximation of the L* value as measured

by the Minolta colorimeter. The RGB values that described the image data were

transformed first to CIE XYZ color space, and then to the L*a*b* space. The

transformations from RGB to CIE XYZ are shown in equations ( 3.4),(3.5),and (3.6 ).

The transformations from CIE XYZ to L*a*b* are shown in equations ( 3.7 ) through (

3.12) (Ling et al., 1996).

X =0.4783*R +.2986*G + 0.1746*B
Y =0.30*R + 0.59*G + 0.11*B
Z=0.0197*R +.1601*G + 0.9077*B

(34)
(3.5)
(36)

Where X =CIE X value R = normalized Red value of pixel
Y =CIE Y value G = normalized Green value of pixel
Z =CIE Z value B = normalized Blue value of pixel
If Y>0.008856 then
L*=116.0*Y'?-16.0 (3.7)
IfY <=0.008856 then
L*=903.3*Y (3.8)
a* = 500*(F(X)-F(Y)) (3.9)
b* =200*(F(Y)-F(Z)) (3.10)
If 2 > 0.008856 then F() =A'" (3.11)
If A <=0.008856 then F(A) =7.787*A + 16/116 (3.12)

Where L* =L* value
a* = a* value
b* = b* value

A=CIE X,Y, or Z value



The equations for RGB to CIE XYZ color transformations were based on Ling et
al. (1996) but were modified to improve the color sensitivity of the system. The system
was calibrated by adjusting the coefficients in equations ( 3.4 ) through ( 3.6 ) so that L*
measurements sensed by the feature extractor agreed with the L* measurements sensed
by a standard colorimeter.

Identifying the percentage of chocolate chips visible on the cookies was a two
step process. First the average lightness of the non-chip area was calculated. To find the
average dough lightness, the average L* value of all the pixels in the cookie with an L*
value greater than 25 was calculated. Above this threshold every pixel was considered to
be cookie dough. Then, using the average dough L* value, the dough-lightness-adjusted
chip threshold was calculated using equation ( 3.13 ). All pixels below this threshold
were considered to be chocolate chip. The calculation for finding the percentage of

chocolate chips is shown in equation ( 3.14).

Chip threshold = 0.462(Aqq4 - 39.5)+16.0 (3.13)
Where Asd = average L* value of cookie dough

ChocolateChips = (TotalChipArea / TotalCookieArea)*100 (3.14)
Where TotalChipArea = total cookie area in cm? below chip-dough threshold

TotalCookieArea = total cookie area in cm?

A sample set of cookies was baked in a conventional oven at 325°F several times
and measured for dough lightness. With the chip/dough threshold adjustment, the

Feature Extractor correctly identified higher percentages of chocolate chips as the
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cookies’ dough became darker. The chip-threshold equation was found by changihg the
slope and intercept until the percentage chocolate chips sensed remained constant over all
the bake sessions. A total of five bake sessions were used. The resulting raxige of dough

lightnesses spanned the entire range of lightnesses used for polling.

3.2. Consumer Sensory Evaluation

The goal of the consumer evaluation was to identify and understand the behavior
of the general population in judging chocolate chip cookies. Four characteristics were
used to identify consumer behavior, including dough lightness, size, shape and amount of
chocolate chips visible.

Class ranges within each characteristic were defined based on differentiability.
Every attempt was made to separate classes as much as possible to provide the greatest
observable difference between classes. At the same time, the range of values within each
class was kept as narrow as possible so that cookies within each class appeared to be the
same.

The variability of the cookies also guided the development of the classes. The
cookies used for the experiment were produced at a commercial bakery. Only a small
range of dough lightness was available because the baking process was fairly consistent.
The size and shape of the cookie were also consistent because of the techniques used
during production. The raw cookie dough was extruded through a die and then wire-cut.
As a result, the raw cookie was a consistent flat disk. Inconsistencies in measuring and
mixing the ingredients were minor and thus the variability of chips in the cookies was

small. Compared to cookies that are hand made, the variability of the physical
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characteristics of the cookies used was low because the cookies were produced in a
commercial bakery.

The dough lightness for these cookies was extended beyond normal production
ranges manually to generate the desired observable differences between cookies. Dough
lightness was manipulated by baking cookies to the required lightness. Acquiring
different batches and brands of chocolate chip cookies also aided in extending the range
of sizes. The fuzzy classes were defined by observable differences and are shown in

Figure 3.5 through Figure 3.8.

medium

45.55 4720 4855 50.20
Lightness (L* value)

Figure 3.5 : Dough Lightness Membership Function

small large

5.35 size(cm) 5.60

Figure 3.6 : Cookie Size Membership Function
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Regular Irregular

0.035 Shape (% diff)) 0.065

Figure 3.7 : Cookie Shape Membership Function

few lots

0.060 % chips visible 0.085
Figure 3.8 : Percentage Chocolate Chips Visible Membership Function

The fuzzy classes chosen for the four characteristics resulted in a universe of
twenty-four cookies. Cookies with complete membership in one class for each of the
four characteristics were called archetypes. Cookies with intermediate values between
classes were considered partial members of multiple archetypes.

Twenty-four archetypes were used to identify consumer behavior. The archetypes
were separated into two blocks because there were too many cookies to present to the
consumer judges all at once. The blocking confounded the interaction between sizes,
shapes, and chip area. Each block was presented to the consumer sensory evaluation

panel to rate using the line scale shown in Figure 3.9. The linguistic descriptions of
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quality provided a natural and intuitive means for the test subjects to rate the cookies.
These panels consisted of untrained judges all of whom were selected to represent a cross
section of the Canadian population. Untrained judges were selected because training may
introduce biases into the decision making process of consumers. Without training, these
judges could generate an accurate representation of the behavior of an average consumer.
After the consumer judges evaluated the cookies, the ratings were recorded as
measurements of the cookies’ distances from the origin. The rating for each cookie was

recorded as an average distance between the left and right edge of the cookie relative to

the origin.
Unacceptable Marginal Acceptable Outstanding
i
| Origin ' I | B R L1 I | . 1 L
H i ] ! i
| i 50 cm i > i
“ ' =115cm >

Figure 3.9 : Polling Acceptability Scale Setup

Three polls were performed to acquire data for consumer modeling and model
validation. Each poll consisted of 30 consumer judges. Two different sets of cookies
were presented to the consumer judges. Both sets of cookies represented entire range of
permutations of characteristics for archetypes. The first set of cookies was used during
the first two repetitions of polling. Many of the same judges who participated in the first
repetition also participated in the second repetition. The consistency of consumer
judgement was recorded by using the same people and cookies in two separate polls.

The second set of cookies was used for the third poll repetition. The majority of

the judges who participated in the third poll did not participate in either of the first two
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polls. The cOnsisienc& of the consumer judgement between different test subjects was
recorded by the third repetition.

Upon completion of the three poll repetitions, an analysis of the mean ratings for
regular and irregular cookies showed that shape was not a significant influence on the
consumer ratings. For consumer modeling, the ratings for both regular and irregular
cookies were combined. As well, an error was found in the feature extractor after
completing the first three polls. This error affected the accuracy with which the cookies’
dough lightness and chips were sensed but size and shape were not affected. As a result,
40% of the cookies that were originally considered archetypes were actually outside of
the defined ranges for their classes. These cookies were discarded and a new set of
archetypes was established from the remaining archetype cookies. The discarded cookies
were used for validating the consumer models and were called Validation Set 1. The
universe of archetypes was reduced to twelve permutations by eliminating the shape
characteristic. The resulting twelve archetypes consisted of three classes of dough
lightness, two classes of size, and two classes of percentage of chocolate chips visible. A
list of the ratings for the twelve archetypes can be found in Appendix E.

A general linear model (GLM) procedure (SAS, 1998) was performed on the
cookie ratings for all three polls to identify the effect of the characteristics, and two-
factor combinations thereof, on the ratings. The analysis also identified the significance
of the poll repetitions, the individual panelists, and the effect of the blocking. The GLM
program can be found in Appendix C and was written for SAS. The results of the GLM

procedure were used to guide the development of the consumer models.
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3.3. Consumer Evaluation for Validation

A new set of cookies was established for validation and was called Validation Set
2. Three blocks of ten cookies were selected and can be found in Appendix D. Efforts
were made to create each set of cookies to represent a diverse set of characteristic
combinations. The cookies used were partial members of two or more archetypes.
During the first validation poll, the each set of cookies was presented to twenty people for

judgement. A second validation poll was performed where the sets were presented to

thirty people each.

3.4. Fuzzy Logic Decision Engines

Two different fuzzy logic engines were developed for comparison. The first
engine was a traditional fuzzy logic engine based on a Sugeno type fuzzy techniques
while the second was based on a weighted-average technique.

The membership functions for defuzzification were the same diagrams depicting
the characteristic classes, Figure 3.5 through Figure 3.8. Both the traditional, and the
weighted-average consumer models used the same membership functions to fuzzify the
cookie characteristics, however, the engines differed in how they manipulated and

combined the membership grades.

3.4.1. Traditional Fuzzy Engine
The membership grades for dough lightness, size, and percentage chips visible
were used by twelve rules. Each rule represented one permutation of characteristics in

the universe of archetypes. The truth-value for a rule was defined as the minimum
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membership of all the rule’s antecedents, lightness, size, and percentage chips and was
calculated by equation ( 3.15).
t; = Min (lightness;, size;, chips;) (3.15)
Where t; = the truth value for rule i

Lightness = the degree of membership in lightness characteristic for rule i

Size = the degree of membership in size characteristic for rule i

Chips = the degree of membership in chips characteristic for rule 7

i =the i rule in set of rules

The truth-values of the consequents were then clipped to the minimum truth-value

of the rule’s antecedents. The consequents for each rule were the mean rating and the

variance of the ratings from the associated archetype. The consequent mean values were

then aggregated to generate the prediction of the crisp mean as seen in equation ( 3.16 ).

Crisp-mean = (Z:: ti* M)+ (Z:: t) (3.16)

Where Crisp-mean = the predicted mean of the consumer ratings
n = the number of consequents in the fuzzy engine
i = the i consequent in set of consequents
t; = maximum truth value for consequent i
M; = mean rating of archetype i

The variance with the maximum truth-value was used as the predicted crisp
variance, as shown in equation ( 3.17 ). The predicted variance provided an assessment

of the variability of consumer ratings about the predicted mean.
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Crisp-variance = 8% of rule with greatest t; forall i in n (3.17)

Where Crisp-variance = the predicted variance of consumer ratings
8% = the variance for rule i

t; = the truth value for rule i
n = the number of rules in the fuzzy engine
i = the ™ rule in set of rules

3.4.2. Weighted Average Fuzzy Relation Engine

A cookie that was judged by the system was called a sample. To find the
predicted consumer opinion, the archetypes to which the sample had partial belonging
were found. These archetypes made up the decision space for the sample. This decision
space was called a context.

All of the archetypes in the context were then compared based on the mean and
variances of their polled consumer ratings. If any two archetypes had mean ratings that
were farther than 8 cm apart, or if their variances differed by more than 150 cm?, then
they were considered to be rated differently by the consumer. If the two archetypes were
considered to be different, then the physical characteristics that differentiated the
archetypes were given comparative weights. Each archetype in the context began with
weights equal to 1.0 for all characteristics. Then the weights of the characteristics were
changed based on the ratings of the archetypes.

For example, a sample X had partial belonging to archetypes A (light, large, lots
of chips: mean 80, variance 500), B (light, large, few chips: mean 70, variance 400), C
(medium, large, few chips: mean 40, variance 250) and D (medium, large, lots of chips:
mean 80, variance 450). These archetypes make up the context for sample X. Sample

X’s fuzzy description was light (Truthyign = 0.7), and a member medium (Truthmedium =
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0.3), large (Truthage = 1.0) and small (Truthgmy = 0.0), and finally, lots of chips
(Truthyoischips = 0.8), and few chips (Truthgewchips = 0.2).
To determine the characteristic weights for archetype A, A was compared to all

other archetypes in the context. The comparisons and resulting weights can be seen in

Table 3.3.
Archetypes for Comparison Results of Differing
Comparison Characteristics
A (light, large, lots of chips: mean 80, var. 500) Amean> 8 cm | chips (weight
Vs +1.0)
B (light, large, few chips: mean 70, var. 400) . rated
differently
A (light, large, lots of chips: mean 80, var. S00) A mean> 8 cm lightness
Vs & (weight +1.0)
C (medium, large, few chips: mean 40, var. 250) | A var. > 150 cm? &
chips
. rated (weight +1.0)
differently
A (light, large, lots of chips: mean 80, var. 500) A mean < 8 cm N/A
Vs &
D (medium, large, lots of chips: mean 80, var. 450) | A var. <150 cm?
... rated the same

Resulting attribute weights for Archetype A:

Lightness Weight= 2.0
Size Weight = 1.0
Chips Weight = 3.0

Table 3.3 : Technique for Setting Archetype Characteristic Weights for Weighted
Average Fuzzy Engine

This process was repeated for archetypes B, C and D. The characteristic weights
for B were 3.0 for lightness, 1.0 for size, and 3.0 for chips. The weights for C were 3.0
for lightness, 1.0 for size, and 3.0 for chips. Finally, the characteristic weights for

archetype D were 2.0 for lightness, 1.0 for size, and 3.0 for chips.
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Next, the weighted-average of the characteristics was used to determine the
degree of belonging of the sample to the archetypes in the context. The equation for

calculating the degree of belonging can be seen in equation ( 3.18 ).

Degree of Belonging to Archetype = (wpimp+ wamg+ wemg) + (Wit wst we) (3.18)
Where wi. = weight for lightness characteristic

ws = weight for size characteristic

w. = weight for %chip characteristic

my, = degree of membership in lightness characteristic

m; = degree of membership in size characteristic

m. = degree of membership in %chip characteristic

The degree of belonging to an archetype was used as a weight to produce the

predicted mean. The equation for calculating the predicted mean can be seen in equation
(3.19). The calculation for variance was similar to that of the traditional fuzzy engine.
The variance of the archetype to which the sample had the highest belonging was used as

the predicted variance. The calculation for the variance can be seen in equation ( 3.17 ).

Predicted Mean = (3 wap)+ (3o w) (3.19)

Where a = the first archetype in the current context
b = the last archetype in the current context
w; = the weight of archetype number i
p; = the mean of the consumer rating distribution for archetype i
i = the i rule in set of rules
To continue the example, the degree of belonging for X to each archetype was
calculated using equation ( 3.18 ). The degrees of belonging are 0.8 archetype A, 0.53

archetype B, 0.36 archetype C and 0.67 archetype D. Using equation ( 3.19 ), the final
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predicted crisp mean was calculated as 71.6. The final predicted variance was 500

because sample X belonged to archetype A the most.

3.4.3. Accept/Reject Decision Making

Both engines used a normal distribution that was fitted to the predicted mean and
variance to represent the predicted distribution of consumer ratings for a cookie. The
predicted distributions were used to make decisions about the acceptability of a product
sample.

These decisions were made by choosing a target rating, and by choosing a target
percentage of the population above that rating. If at least the target percentage of the
population judged the cookie equal to or greater than the target rating then the cookie was
accepted. For this experiment, the target rating was 50 cm and the target percentage of
population was 70%. S50 cm was approximately the mid-point between acceptable and
marginal. Cookies where 70% or more of the population rated the cookie to be 50 cm or
better were accepted. These criteria accept the risk that at most 30% of the population

may deem this cookie marginal or worse.

3.4.4. Tuning the Consumer Models Using the Outlook

To account for the variability of consumer decision making and to accommodate
different target consumers, both engines also allowed the predictions of consumer ratings
to be shifted up or down. The coefficient used to shift the predictions was called the
Outlook. Positive Outlooks shifted the prediction up, while negative ones shifted the

predictions down the rating scale. The calculation for shifting the means can be seen in
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equation ( 3.20 ). The confidence interval of the mean for each archetype was calculated

using the individual archetype means from each poll and can be found in Appendix G.

Archetype-mean; = py; + O *=C; foralliinn (3.20)
Where Archetype-mean; = the resulting shifted mean for archetype i

p;= the mean for archetype i before shifting

O = the outlook coefficient

C; = Confidence interval for archetype i

i = the archetype number

n = the entire universe of archetypes

The mean for each archetype was shifted before performing the rules or weight

assignments. The Outlook should vary between — 1.0 to + 1.0. At a value of 1.0 in either
direction, the archetype means are shifted to the limit of the confidence interval. In
effect, the shifting accounted for the degree of uncertainty in the consumer evaluation

data.

3.4.5. Validation of Consumer Models

The cookies in Validation Set 1 (Appendix E) and Validation Set 2 (Appendix D)
were used to perform validation testing on the consumer models. First the ratings for the
Set 1 were compared to the predicted ratings. Then the ratings generated by Set 2 were
compared to the models’ predicted ratings. The performances of the consumer models
were demonstrated by these tests. The cookies in Set 1 and Set 2 had characteristics that
were between the class ranges for archetypes. Therefore, the performances of the
consumer models in predicting consumer behavior for cookies between archetypes could

be displayed by comparing the actual versus the predicted ratings on these cookies.
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Furthermore, the efficacy of adjusting the outlook in fine tuning the acceptance of

cookies was also displayed during validation.

4. Results and Discussion
4.1. Feature Extraction and Image Processing

The feature extractor was evaluated for accuracy in quantifying dough lightness,
size, shape, and chocolate chips. Its ability to extract the lightness of the dough was
tested by comparing the lightness values of four brown plates as sensed by the system,
versus a colorimeter. The system’s ability to recognize average diameter, major and
minor axes, and percentage of chips visible were tested by viewing the locations of the
extracted features relative to the original image. In addition, the extracted percentage of
chips visible was also tested over a range of dough lightness values to ensure consistent
identification.

To establish the performance of the system in sensing dough lightness, the feature
extractor was tested against a colorimeter. The L* value for four brown plates of similar
lightness and hue to cookie dough were measured by both the feature extractor algorithm
and colorimeter, and then compared.

The performance of the system in extracting the lightness of different shades of
brown can be seen in Figure 4.1. The graph shows that the system did not reproduce
exactly the true L* values of the brown colored plates as sensed by the colorimeter.
However, the system was sensitive enough to adequately distinguish between different

lightness values in the light brown to dark brown color regions similar to cookie dough.
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Figure 4.1 : Graph of L* value Measurement for Feature Extractor versus Colorimeter

The accuracy of the feature extractor in identifying the average diameter and
major and minor axes was verified visually and manually by comparing the sensed
dimensions to those measured by hand. The visual inspection included viewing the
extracted perimeter of the system, and then comparing the found perimeter to the actual
cookie image.

The system’s ability to extract the physical dimensions of the cookies can be seen
in Figure 4.2, through to Figure 4.4. The original image of the cookie is shown in Figure
4.2 while the extracted perimeter in Figure 4.3. The perimeter image shows that the
feature extractor faithfully reproduced the edge of the cookie. In Figure 4.4, any pixel
considered outside tile cookie is colored dark gray. The processed image shows that the
feature extractor found the area and the center of gravity, labeled c.o.g, of the cookie

accurately.
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Figure 4.2 : Original Image of Cookie Before Processing

radius

Figure 4.4 : Image of Cookie with Mean Radius, Major and Minor Axis Extracted
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The average radius of the cookie is shown as the dark circlg overlaid on the
image. The major and minor axes are also labeled. The image shows that these features
were properly extracted. However, the accuracy of the feature extractor in measuring the
length of extracted features in centimeters depended on the calibration of the lens. The
system generated results that were consistent with the actual dimensions based on manual
measurements with a ruler. The accuracy of the pixel-to-distance and the square pixel-to- |
area translations were maintained by ensuring that the field of view displayed exactly
14.25 mm per 480 pixels.

Mean radius and axes confidence factors were used as indicators to show whether
or not a full search around the perimeter was achieved. Sporadically, there was noise in
the image to such a degree that the program could not identify the entire perimeter, and
thus some searches were terminated prematurely. Noise can be described as an area of
low contrast between the cookie edge and the background. Shadows or other
environmental phenomena generated these areas of low contrast. Failures to accurately
extract cookie features were resolved by re-capturing the cookie or by retouching the
image by hand. The images were retouched by replacing the low contrast background
areas and the shadows cast by the cookies with white space.

The success rate for complete searches for both the mean radius and axes was
about 80 % without retouching the images. However, when taking into account
retouched images, the success rate for complete mean radius and axis extraction
approached 95 %. The success rate including retouching is acceptable giveh the random

edge profiles of the cookies.
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Visual feedback was also used to vetify‘ that the chocolate chip areas were
properly extracted. Consistent chip extraction was tested over the entire spectrum of
dough lightness-values. The test was conducted by baking a cookie several times and
extracting the chocolate chips after each bake. The performance of the extractor in
finding the chip area can be seen in Figure 4.5. Extracted chip areas are idéntiﬁed in the
image as the gray areas covering the chocolate chips. Relative to the original cookie
image in Figure 4.2, the processed imaged shows that the chips were properly extracted

while very little dough was mistaken for being chocolate chip.

Figure 4.5 : Image of Extracted Chocolate Chips

The performance of the feature extractor in extracting chips from the cookie after
each bake can be seen in Figure 4.6. The graph shows that despite the cookie’s changing
dough-lightness, the percentage of chips identified was fairly consistent. The graph also
shows the performance of the chip threshold algorithm. Without the chip threshold
correction performed by the program, the amount of chips sensed by the system would

have been erroneous and would have increased as the cookie darkened.



0.12

0.1

0.06 .y

0.04

0.02

Percentage of Chocolate Chips Visible

35 40 45 50 55 60 65
Average L* Value of Cookie

| —— W ith Correction —— W ithout Correction |
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The graphs and images show that the feature extractor identified cookie features
accurately. The accuracy of the system depended on the calibration of the system.
Repeatability is important when calibrating this system given that the feature extractor is
very sensitive to improper calibration. Poor calibration of the size of the field of view
generates erroneous cookie size quantification by the feature extractor.  Errors in
adjusting the color sensitivity of the camera change the extracted lightness of the cookie
dough, and can affect the extracted percentage of chips. Careful attention was paid to
each calibration performed, but none the less, there existed a small degree of variability

in the measurements.

4.2. Consumer Sensory Evaluation
To evaluate consumer behavior, a line scale was used to display the judgement of

the consumers. The scale provided linguistic descriptions to which consumers could
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relate their jﬁdgemcnt. For analysis the scale also facilitated numerical measurements of
the consumer ratings. The relationship between the visual stimuli of a cookie and the
consumer responses could be identified using these measurements. |
Analysis of the consumer behavior for shape showed that the ratings for regularly
shaped cookies were similar to those for irregularly shaped cookies. Therefore, shape
was not a very important feature in consumer judgement of chocolate chip cookies. The
ratings for regular and irregular shaped cookies were combined resulting in twelve
archetypes. The general trend of consumer opinions for the archetypes was displayed by
combining and graphing the ratings from all three polls. These graphs can be seen in

Figure 4.7 and Figure 4.8.
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Figure 4.7 : Mean Archetype Ratings Versus Dough Lightness for Small Size Archetypes
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Figure 4.8 : Mean Archetype Ratings Versus Dough Lightness for Large Size Archetypes

The graphs showed that dark cookies were less desirable than light or medium
cookies. Furthermore, the graphs showed that a small size cookie was rated lower than a
large one. While size had a weaker influence on consumer judgement than lightness, it
was still important to the decision-making process. Finally, people had a preference for
lots of chips over cookies with few chips. A large difference between the mean ratings
for the classes of chocolate chips showed that chips were significant factors in decision-
making.

A more detailed analysis was needed to establish the significance of interactions
between characteristics, classes, and the ratings of the cookies. Information about the
effect of panelists, blocking and poll repetitions on the consumer ratings was also needed.
The results of a general-linear-model (GLM) analysis of variance on the data can be seen
in Table 4.1. The procedure was used to identify the significant influences on the

consume ratings. The analysis showed that dough lightness, size, and chips were directly
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related to the cookie rating. The analysis also showed that poll-repetitions, individual

panelists, and certain interactions were also related to the consumer ratings.

Total Degrees of Freedom : 1188
Mean Square Error : 488

Source DF Mean Square F Value
Main Poll Repetition 2 2433 4.98*
effects | Test Individual 29 2205 4.52*
Cookie Set 1 880 1.80
Dough Lightness 2 100714 206.31*
Cookie Size 1 31457 64.44*
% Chips Visible 1 209331 428.80*
Inter- | Lightness & Size 2 8252 16.90*
actions | Lightness & Chips 2 1452 297
Size & Chips 1 13957 28.59*

* significant at 95% confidence interval
Table 4.1 : GLM Analysis of Sensory Panel Data

The GLM analysis also indicated that the model had an R? of less than 0.5. The
low R® term shows that statistically, there is a weak correlation between image
characteristics and consumer ratings.

These results were used to guide further data analysis. Based on the graphs in
Figure 4.7, and Figure 4.8, integration rules were used to describe the trends exhibited by
the ratings for each characteristic. For example, the ratings for medium and dark cookies
exhibited an additive integration function for dough lightness in this range. The
consumer ratings increased from the dark cookie to the medium lightness cookie.
However, the light cookies were rated inconsistently. The graphs of consumer ratings
indicated that for the range of dough lightness used for this experiment, the consumers
did not deem light cookies to be better than medium lightness cookies.

The integration function for size was additive. Larger diameter cookies were

rated consistently higher than smaller cookies. The light, small, and few chips archetype
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was an exception to the rule. Consumer rating variability may have contributed to these
unique consumer ratings.

Finally, the relationship between consumer ratings and percentage of chips visible
was also additive. The ratings for cookies with lots of chips were higher than cookies
with few chips for all combinations of dough lightness and cookie size.

The graphs of archetype means displayed the trends of the consumer opinions, but
more information about the ratings was needed to understand consumer judgment. The
ratings for any given cookie were distributed along the line scale. Statistical analyses on
the ratings for each archetype can be found in Appendix F and G. A summary of the
analyses, including the mean, variance, and skewness can be seen in Table 4.2.

When assessing the consumer judgement for a cookie, it was important to
consider the variance of the ratings because many of the distributions spanned the entire
line scale from unacceptable to outstanding. The variance of the distributions ranged
from 204 cm” to 865 cm®. A small variance indicated that there was good agreement

between consumers when rating that particular cookie.

49



Archetype Rating Statistical Summa

light, small, few chips

light, small, lots of chips

Mean 5113
Sample Variance 503.92
Skewness 0.32

Mean 70.56
Sample Variance 496.26
Skewness -0.50

medium, small, few chips

medium, small, lots of chips

Mean 34.27 Mean 68.90
Sample Variance 35445 Sample Variance 475.89
Skewness 0.26 Skewness -1.18

dark, small, few chips dark, small, lots of chips

Mean 17.86 Mean 34.55
Sample Variance 204.27 Sample Variance 582.51
Skewness 0.94 Skewness 0.79

light, large, few chips light, large, lots of chips

Mean 41.83 Mean 79.00
Sample Variance 673.66 Sample Variance 559.11
Skewness 0.42 Skewness -1.03

medium, large, lots of chips

medium, large, few chips

Mean 48.05 Mean 82.57
Sample Variance 424.84 Sample Variance 366.53
Skewness -0.156 Skewness -1.21

dark, large, few chips dark, large, lots of chips

Mean 27.07 Mean 66.00
Sample Variance 370.16 Sample Variance 864.79
Skewness 1.01 Skewness -0.28

Table 4.2 : Summary of Statistical Analysis of Archetype Rating Distributions
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The skewness of the distributions ranged from approximately ~ 1.2 to + 1.0.
These values indicated that many of the distributions were asymmetric about their means.

The statistical analysis of the consumer evaluation ratings continued with an
investigation of the confidence intervals of the archetypes. The confidence intervals
assessed the reliability of the mean for an archetype based on the variation over the three
polls, each including 30 consumers.

The reliability of each overall archetype mean was measured as a 95 percent
confidence level on the mean rating from each poll for that archetype. The confidence
intervals can be seen in Table 4.3, and are quite high for some of the archetypes. The
light, large archetypes, and the medium, large, few chips archetype had large confidence
intervals because the variance of the means for these cookies was high given the amount
of data available. A confidence interval was not calculated for the medium, small, lots of
chips archetype because data from only a single poll represented the consumer opinion
for that archetype. When using these archetypes to evaluate consumer behavior, the
variability of their ratings needed to be taken into account. The large confidence
intervals for these archetypes indicated that the potential range of data for these
archetypes might be more diverse than for other archetypes.

However, in general the confidence intervals for most of the archetypes were
reasonably small, approximately 20 cm or less. These values therefore indicated that the
majority of the consumer data was an acceptable representation of consumer judgment.
Furthermore, these values also show that predictions of consumer behavior using this set

of data should be reasonably accurate.
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Cookie type 95% Conf.| lower mean upper
Interval bound bound
light, small, few chips 593 452 51.1 57.1
light, small, lots of chips 5.82 64.7 70.6 76.4
light, large, few chips 2012 21.7 418 62.0
light, large, lots of chips 58.13 209 79.0 137.1
medium, small, few chips 10.32 239 343 44.6
medium, small, lots of chips NA NA 68.9 NA
medium, large, few chips 53.26 -52 48.1 101.3
medium, large, lots of chips 4.24 78.3 826 86.8
dark, small, few chips 21.60 3.7 17.9 39.5
dark, small, lots of chips 22.47 12.1 345 57.0
dark, large, few chips 422 229 27.1 313
dark, large, lots of chips 822 57.8 66.0 742

Note: all measurements are in centimeters

Table 4.3 : Comparison of Confidence Intervals for Archetype Means

The graphs of the archetype-means showed the trend of consumer judgment for

dough lightness, size, and chips in detail. The GLM analysis identified dough lightness,

size, chips, poll repetitions, and panelists as significant influences on the ratings of the

cookies. A statistical analysis of the archetypes’ consumer data showed that the ratings

were distributions along the line scale. Finally, the confidence intervals showed that the

consumer judgement data provided an acceptable representation of consumer opinion.
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4.3. Fuzzy Logic Decision Engines

Two consumer models were developed based on the data acquired during sensory
evaluation. Both consumer models used fuzzy logic to imitate consumer responses to
dough lightness, size, and chocolate chips. Because the sensory evaluation and statistical
analysis showed that consumer responses were distributions along the line scale, normal
distributions were used to represent the predicted consumer behavior. The normal
distributions were constructed from predicted the means and variances generated by the
fuzzy engines.

The models also allowed the predicted ratings to be fine tuned. An analysis of the
confidence intervals for the ratings showed that there was some uncertainty in the
consumer data acquired. An adjustment called an “Outlook™ was used to tune the model
to account for this uncertainty when predicting consumer behavior. The predicted means
were shifted up or down the rating scale using this tuning variable.

The first consumer model developed was a traditional min-max, rule-based, fuzzy
logic decision engine. The second consumer model was a weighted-average, rule-based
fuzzy logic decision engine. The performances of the models are discussed in the

following sections.

4.3.1. Traditional Fuzzy Engine

The traditional fuzzy consumer model reproduced trends that were similar to
those identified in the sensory evaluation data in Figure 4.7 and Figure 4.8. In other

words, light and medium cookies were given higher ratings than dark cookies. Cookies
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with a lot of chips were rated higher than those without. Finally, large cookies were
given higher ratings than small cookies.

The predicted consumer ratings produced by the traditional fuzzy system can be
seen in Figure 4.9. The means for each archetype summarized in Table 4.2 were
reproduced by the archetype areas, seen as the flat regions in the decision space. Regions
of transition between the predicted archetype means were sloped surfaces. The predicted
mean ratings in the transitions were gradually interpolated between archetypes.

The variance in the ratings for cookies was not interpolated between archetypes,
rather the variance of the archetype with the greatest degree of truth was used as the
predicted variance. Figure 4.10 shows that the decision models reproduced the variances
in the archetype ratings as summarized in Table 4.2. The predictions of consumer
behavior variance were important when judging cookies on the borderline of rejection.
For example, if the predicted mean response for a cookie was acceptable and the
predicted variance was small, then most likely the cookie would have been accepted.
However, if the cookie’s ratings had the same predicted mean but a large variance, then

the likelihood of rejecting the cookie would have been higher.
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4.10 : Predicted Variances for the Traditional Fuzzy Engine
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4.32. Weighted-Average Fuzzy Engine

The performance of the weighted-average consumer model was similar to the
traditional fuzzy engine. Light and medium cookies were rated higher than dark cookies,
and large cookies were rated higher than small ones. As well, the model predicted that
cookies with lots of chips would be rated higher than cookies with few of chips. Figure
4.11 shows that the model predicted trends in the mean consumer rating that were similar
to those observed from the sensory evaluation data in Figure 4.7 and Figure 4.8.
Furthermore, the predicted means for archetypes matched the actual ratings in Table 4.2.

The difference between the traditional engine and the weighted-average engine
was in the treatment of the transitions between archetypes. The transitions for the
weighted-average fuzzy engine were a series of steps with different slopes. These
stepped transitions are in contrast to the traditional fuzzy engine, where the transitions
were gradual. Each transition plane in the weighted average consumer model represented
a different context where a cookie belonged to two or more archetypes.

The weighted-average fuzzy engine accentuated the differences between each
context. The transition contexts brought the predicted means closer to the average mean
for all the archetypes in that context. Essentially, the engine provided a compromise
between binary decision making and pure fuzzy interpolation between archetypes. The

engine classified cookies as either being a pure archetype or a transition cookie.
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The predictions of the variance for the weighted-average fuzzy engine were
generated in the same manner as the traditional engine and can be seen in Figure 4.12.
The variance was not interpoated, rather, the variance of the archetype with the greatest

degree of truth was used as the predicted variance.

4.3.3. Distributions of Predicted Consumer Responses

For both the traditional, and the weighted-average fuzzy engines, a normal
distribution was used to represent the predicted consumer opinions. The normal
distribution was constructed from the predicted mean and variance. Figure 4.13
compares the predicted distribution of consumer ratings for a light, large cookie with lots
of chips to actual ratings recorded during sensory evaluation. The skewness of the actual
ratings was approximately — 1.0. Although the skewness was high, the maximum point
of the predicted distribution was acceptably close to that of the actual distribution. This
archetype distribution, even with a high degree of skewness, had its maximum within 15
cm of the predicted maximum.

The error generated by approximating a skewed distribution with a symmetric
normal distribution was acceptable because the consumers’ rating for any given cookie
can change during a single day. For example, the consumer judgement of any cookie
may be affected by the hunger of a test subject. Christensen (1983) showed that hunger
affects peoples’ food choices. A cookie judged before a meal may have been considered
acceptable, while after a large meal, the cookie may have then been judged as only

marginally acceptable.
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Figure 4.13 : Actual and Predicted Ratings for Light, Large, and Lots of Chips Archetype

To fine-tune the predictions, both consumer models used the Outlook to shift the
predicted mean. Positive Outlooks shifted the predictions up the rating scale, while
negative Outlooks shifted the predicted distributions downward.

The Outlook shifted the means of the archetypes by using their archetypes’
confidence intervals. The uncertainty in the sensory evaluation data was incorporated
into the consumer models through the Outlook. Large confidence intervals represented
more uncertainty in the data, and thus generated large shifts in the mean. On the other
hand, archetypes with small confidence intervals were good representations of consumer
opinion and thus shifted only slightly with the Outlook. The graph in Figure 4.14 shows
how the Outlook can alter the leniency of the system. If a negative Outlook was used, the
system shifted the prediction down the rating scale. A shift up the scale was observed for

positive Outlooks.
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Figure 4.14 : The Effect of Diﬁ‘erent Outlooks on the Predicted Consumer Ratings for a
Light, Large, Lots of Chips Cookie (Traditional Fuzzy Engine)

The intended uses of the consumer models were for assessing the risk of
accepting or rejecting a cookie. To assess the risk of accepting a cookie, a manufacturer
would decide on a target rating to perform the risk assessment. In this example a target
rating of S0 cm was chosen. This rating represented approximately the halfway point
between acceptable, and marginally acceptable on the line scale.

The results of the system’s prediction for a Light, Large, Lots of Chips cookie can
be seen in numerically in Table 4.4 and graphically in Figure 4.14. The table shows the
effect of adjusting the Outlook. The risk of accepting this cookie using a 0.0 outlook was
that 12 percent of the population would consider the cookie marginal or worse. An
outlook of —0.25, generated a prediction that 27 percent of the population would consider

the cookie marginal. By tuning the engines using the Outlooks, the systems could be
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tailored to suit different target consumers. Negative Outlooks would cater to customers
that were very picky about their food. Conversely, positive Outlooks would cater to

customers that were less discriminating about the food they consumed.

QOutlook| Target Percentage of Population
Value |Rating (cm)
Above 50 cm Below 50 cm
-0.25 50 0.73 0.27
0.00 50 0.88 0.12
0.25 50 0.96 0.04

Table 4.4 : Predicted Rating Distribution for a Light, Large Cookie, with Lots of Chips
using the Traditional Fuzzy Engine

For example, if the cookies were being prepared for consumpticn as snacks on
long airline flights, the cookie manufacturer may use a more positive Outlook on the
judgement of the cookies. In this situation, the passengers on the plane may be less
critical of food quality therefore the manufacturer may include a wider range of cookies
than usual.

On the other hand, if the cookies were being presented for advertising or
promotion, the manufacturer may make the judgement of the system stricter by using a
negative outlook. In this situation ensuring high quality is necessary because the cookies
would be under close scrutiny. A negative Outlook is used to bias the predicted ratings to
represent a more critical consumer.

Care must be taken when adjusting the Outlook. If large Outlooks approaching +
1.0 are used, the predictions generated by the system may no longer be a good
representation of the consumer opinions. Although at the limit of the Outlooks the shifts
are still within the 95 percent confidence interval of the mean, the quality of the data

should be taken into account. If there is little data representation for an archetype, that
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archetype will have a large confidence interval. Therefore, a large shift in the mean
would result from any adjustments to the Outlook. These large shifts may produce poor

predictions in consumer opinion.

4.3.4. Consumer Modeling and Fuzzy Logic

Fuzzy rule-based models are very similar to human thinking and behavior. Terano
et al. (1987) refer to fuzzy logic as “human simulation”. In fact, the structure of fuzzy
logic as implemented in these models is very similar to the structure of decision-making
as defined by integration theory. First, crisp inputs are analogous to physical stimuli.
Secondly, membership functions mimic the translation of the stimuli into psychological
sensations. Thirdly, inference rules are similar to the integration stage of decision

making. Finally, defuzzification and crisp outputs are comparable to the response stage.

4.3.5. Validation of Consumer Models (Validation Set 1)

The consumer models were assessed for their accuracy in predicting consumer
ratings by comparing the predicted consumer ratings to the actual consumer ratings. The
first cookie set used for this assessment was Validation Set 1. These cookies were
presented to the consumers at the same time as the archetypes but were not used for
modeling. Many cookies were partial members of two or more archetypes. The
performance of the models in predicting cookies that were partial members of two or
more archetypes can be seen in the following analysis.

The predicted and actual ratings were compared by graphing the predicted
percentage versus the actual percentage of the population that was above a 50cm rating.

These graphs can be seen in Figure 4.15 and Figure 4.16. A cookie was acceptable if 70



percent or more of the population rated the cookie 50 cm or better. The graphs show that
the traditional and the weighted-average fuzzy engines performed well on the validation
cookies. The accept/reject error rate on the validation cookies for both engines was
approximately 27 percent. These graphs show that consumer behavior can be effectively

reproduced by predicting both the mean and variance.
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Figure 4.15 : Predicted Versus Actual Accepted and Rejected Validation Cookies for the
Traditional Fuzzy Engine Using 0.0 Outlook (Validation Set 1)
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Figure 4.16 : Predicted Versus Actual Accepted and Rejected Validation Cookies for the
Weighted-Average Fuzzy Engine Using 0.0 Outlook (Validation Set 1)

The graphs also show that the accept/reject condition was very strict. Very few
cookies were considered acceptable. The models only accepted about 20 percent of the
cookies. By changing the Outlook, the predictions can be tuned to provide a higher rate
of acceptance without changing the accept/reject conditions. The Outlook can be
adjusted to account for the uncertainty in the data upon which the model was built. A
positive outlook generated an optimistic prediction of the consumer behavior.

Figure 4.17 and Figure 4.18 demonstrate the effects of adjusting the Outlook. As
compared to the results shown in Figure 4.16 and Figure 4.17, the number of false
negatives was reduced significantly by changing the Outlook from 0.0 to 0.4. With an
Outlook of 0.4, the consumer models properly classified approximately 80 % of the
cookies while the number of false negative classifications were reduced by 40 % for the

traditional engine and 60 % for the weighted-average engine.
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Figure 4.17 : Predicted Versus Actual Accepted and Rejected Validation Cookies for
Traditional Fuzzy Engine Using 0.4 Outlook (Validation Set 1)
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Figure 4.18 : Predicted Versus Actual Accepted and Rejected Validation Cookies for
Weighted-Average Fuzzy Engine Using 0.4 Outlook (Validation Set 1)
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To further examine the performance of the consumer models, differences between
the predicted and the actual percentage of population above a 50cm rating were also
calculated and can be seen in Figure 4.19. If the models were perfect in predicting
consumer behavior then the difference would equal zero. If the differencé was negative,
then the fuzzy engines under-estimated the consumer rating. If the difference was

positive then the models over-estimated the actual rating.

% Difference

Cookie Number

|m Weight Avg. Fuzzy ® Traditional Fuzzy |

Figure 4.19 : Performance of the Consumer Models’ Predictions of Percentage
Population Above 50 cm Rating with 0.0 Outlook (Validation Set 1)

The graph shows that neither the traditional nor the weighted-average fuzzy
systems were perfect in predicting consumer ratings. The average of the absolute error
from zero was calculated for both consumer models. The traditional fuzzy engine
produced on average +16 % error while the weighted-average fuzzy engine produced +

20 % error. There were no discernable relationships between cookie characteristics and
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the errors generated by the system. The graph shows that there were no significant
differences in the performances of either consumer model.

Another measure of the accuracy of the consumer models is the average error. On
average, the traditional fuzzy engine under-predicted the consumer ratings by — 9.0%
while the weighted-average fuzzy engine under-predicted by -8.0%. The under
estimation of the systems can be attributed to the large variance used to describe the
ratings of the archetypes. The results from each of the three modeling polls generated
different ratings. Each archetype had a broad overall range of ratings because these
results were combined. These large variances generated predicted rating distributions
that were wider than the actual rating distributions for any single poll. A percentage of
the predicted distributions proportionate to the large variances fell below the 50 cm mark
because these predicted distributions were wider than the validation polls.

The criteria used for rejecting a cookie were very strict to demonstrate the
systems’ ability to classify the cookies. However, in a manufacturing environment the
producer would likely use more lenient accept/reject criteria. From a manufacturing
standpoint, rejecting cookies that are definitely acceptable to the consumer is a loss of
profit. However, manufacturers are likely to overlook selling a small percentage of
cookies that are marginally acceptable. Therefore, a manufacturer could use more lenient
rejection criteria to usefully classify the cookies. Further fine-tuning of the consumer
models can be accomplished with the Outlook. If necessary, a positive Outlook will
allow the consumer models to make fewer false negative errors while rejecting the

majority of the specimens that would be rated poor by the consumer.
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4.3.6. Vaﬁdaﬁon of Consumer Models (Validation Set 2)

In addition to the cookies in Validation Set 1, the predicted and actual consumer
ratings for the cookigc in Validation Set 2 were also compared. The results can be seen in
Figure 4.20 and Figure 4.21. The rate of successful classification for both fuzzy engines
was similar for both Validation Set 1 and Validation Set 2. For the cookies in Set 2, the

consumer models both correctly classified the cookies 80 percent of the time.
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Figure 4.20 : Predicted Versus Actual Accepted and Rejected Cookies for Traditional
Fuzzy Engine Using 0.0 Outlook (Validation Set 2)
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Figure 4.21 : Predicted Versus Actual Accepted and Rejected Cookies for Weighted-
Average Fuzzy Engine Using 0.0 Outlook (Validation Set 2)

The graph in Figure 4.22 shows the consumer models’ accuracy in predicting the
consumer rating for cookies used for Validation Set 2. The average absolute error for
both models was approximately + 18 percent. The average overall error for the models
was approximately +10 percent. In other words, on average, the consumer models
overestimated the consumer ratings for Validation cookies by 10 percent. The models
tended to overestimate the ratings for cookies that were judged to be poor by the panelist
judges. In contrast, average error for both fuzzy engines on Validation Set 1 was
approximately —9%. The different panelists and cookies used to gather data for

Validation Set 2 may have contributed to this difference in error.

The trend in errors did not affect the classification of the models for this

experiment because the target cutoff rating was 50 cm. However if a lower target rating
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was chosen, for example 25 cm, the models’ overestimation of poorly rated cookies may

adversely affect the performance of the consumer models.
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Figure 4.22 : Performance of the Consumer Models’ Predictions of Percentage
Population Above 50 cm Rating with 0.0 Outlook (Validation Set 2)

The results have shown that it was possible to predict consumer behavior for
chocolate chip cookies based on the ratings for 12 archetype cookies. Both models were
able to predict the range of consumer opinions for cookies. Finally, the systems were
also shown to be adaptable to different target consumers and different manufacturer’s
needs. The system was able to maintain an acceptable error rate while reducing false

negative decisions by manipulating the Outlook.
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5. Conclusions and Recommendations
Conclusions

Consumer Behavior

The sensory evaluation model successfully identified the behavior of consumers
in judging chocolate chip cookies. The study has shown that the significant that
consumers used to judge chocolate chip cookies were dough lightness, size, and percent
chocolate chips visible. Furthermore, interactions between dough lightness and size, and
chocolate chips and size were notable influences on decision making. Specifically, light
and medium lightness cookies were preferred over dark cookies. Large cookies were
preferred over small cookies, and finally, cookies with lots of chips were preferred over
those with few chips.

The sensory evaluation also showed that consumer decision making for any
particular cookie is a trend that is best described as a distribution of opinions. In
addition, the study showed that there were variations in the consumer ratings between
each poll. The study also showed that there was no discemable pattern to the variance of
the ratings for the archetypes. Ultimately, when characterizing consumer judgement for

cookies, the uncertainty of consumer behavior needed to be taken into account.

Fuzzy Logic Consumer Models

Fuzzy logic was successfully used to model consumer behavior and its
uncertainty by emulating the decision-making stages as identified by integration theory
research. The models have shown that crisp inputs into the fuzzy engine are similar to

physical stimuli as sensed by people. Furthermore, membership functions are analogous
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to the translation of the stimuli into psychological sensations. The fuzzy inference rules
represent the integration stage of decision making. Finally, defuzzification and the
resulting crisp outputs are congruous with the response stage of consumer behavior.

The research has also shown that, through fuzzy logic, it was possible to classify
the acceptability chocolate chip cookies based on the consumer ratings for 12 archetype
cookies. Both the traditional fuzzy engine and the weighted-average fuzzy engine
accounted for the variability of consumer judgement by representing the predicted ratings
as distributions. Fitting normal distributions to predicted mean ratings and variances for
cookies generated these rating distributions.

The traditional fuzzy engine gradually interpolated the mean rating for cookies
between archetypes. In contrast, the weighted-average fuzzy engine used a series of steps
to represent the mean ratings in transitions between archetypes. The two fuzzy models
predicted the variance of the ratings by using the variance of the archetype to which a
sample cookie was most similar. The predicted rating distributions were used to classify
the acceptability of cookies given a target rating and a target percentage of the population
above that rating.

The accuracy of the classification performed by the fuzzy consumer models was
good when compared to a statistical model of the consumer data. The statistical model
generated an R? of 0.48, which indicated that the mathematical model could only
establish a weak correlation between the cookie characteristics and the actual consumer
ratings. Furthermore, the nature of consumer judgement could was more appropriately
represented through fuzzy logic. The consumer evaluation indicated that the consumer

response was additive and deterministic. The behavior was deterministic because the
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responses to each individual archetype were best described by a rule specific to that

archetype. The mathematical model could not represent the deterministic behavior of

consumer judgement as appropriately as the fuzzy models.

Automated Inspection System

The results have shown that these fuzzy consumer models could be applied to an
inspection system to successfully identify and classify the quality of cookies according to
the consumer. The image-processing component of the system was able to quantify
cookie features important to decision making. The fuzzy consumer models were then
able to use these features to classify a cookie with acceptable accuracy. The inspection
systems correctly classified the acceptability of 80% of the cookies while only 7 percent
of decisions were false-negative misclassifications. The low percentage of false-negative
errors indicated that the systems could assist quality assurance in a manufacturing setting.

Manufacturers who may use this inspection system will also need to adjust the
predicted ratings to account for changing consumer behavior. In certain situations,
consumers may be critical about the products they buy, while at other times the consumer
may be less particular. It was possible to tune the performances of the inspection systems
using the Outlook variable. The tuning shifted the predicted ratings by taking into
account the variability of consumer ratings. Positive Outlooks shifted the predicted
ratings up for an optimistic prediction of consumer opinion, while negative Qutlooks
generated pessimistic predictions. The Outlook variable provided manufacturers with a

means to adjust the performance of the system to suit their needs.
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Recommendations

Currently the automated inspection system is specific to cookies. The system
extracts the physical features of chocolate chip cookies and then uses a consumer
decision model for these cookies to make a judgement. However, manufacturers,
especially those .in the food industry, seldom produce only a single product. For the
system to be viable for manufacturing, it should be able to recognize multiple products,
and render judgement based on consumer models specific to each product.

The real-time considerations of manufacturing also need to be addressed before
this system can be implemented in a factory setting. The system currently takes seven
seconds to process an image. The time to extract features from a cookie needs to be
reduced significantly before this automated quality assurance system can be implemented
in a factory.

Furthermore, the system as it stands is strictly a decision support system. In other
words, the system can only aid quality assurance to decide whether to accept or reject a
cookie, given a risk factor. The next step in developing the quality assurance system is to
incorporate solution recommendation. The system should be extended to keep track of
trends in dough-lightness, size, and chips, and recommend possible remedies for
deficiencies in the cookies.

Finally, the system should also be extended to close the control loop. In other
words, using the remedy recommendations, the system should be able to automatically
adjust the cookie mixture, oven temperature, or bake time. Therefore, the system would
not only monitor the quality of cookies, but it would also control the entire baking

process to maximize cookie quality according to the consumer, and minimize waste.
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7. Appendix A : Image Capture Program Source Code
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The source code for the image capture program can be found on the attached disk

under the directory “Appendix A : Image Capture Program Source Code”.
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8. Appendix B : Feature Extraction Program and Fuzzy Engine Source Code
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The source code for the feature extraction program and fuzzy engines can be
found on the attached disk under the directory “Appendix B : Feature Extraction Program

and Fuzzy Engine Source Code”.
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9. Appendix C : GLM Program and Data
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SAS Program for GLM analysis of cookie characteristic significance:
DATA dat; |

infile 'archrate.txt' ;
INPUT REPNUM PANELISTBLOCK LDCCODE$RIR2Y;
OPTIONS LINESIZE=80 PAGESIZE=66;
TITLE 'Archetype Analysis: (archrate.txt)';
PROC GLM;
CLASS REPNUM PANELIST BLOCK L D C;
MODEL Y = REPNUM PANELIST BLOCK L D CL*D L*C D*C;

86



GLM analysis of archetype data:

Archetype Analysis: (archrate.txt)
09:10 Wednesday, June 17, 1998
General Linar Models Procedure

Class Level Information

Class Levels Values

REPNUM 3 123

PANELIST 30 123456789 10 11 12 13 14 15 16 17 18 19 20 21 22
23 24 25 26 27 28 29 30

BLOCK 2 12

L 3 123

D 2 12

Cc 2 12

Archetype Analysis: {(archrate.txt)

09:10 Wednesday,

June 17, 1998

General Linear Models Procedure

Dependent Variable: Y

Source DF
Model 41
Error 1188
Corrected Total 1229
R-Square
0.484587
Source DF
REPNUM 2
PANELIST 29
BLOCK 1
L 2
D 1
lod 1
L*D 2
L*C 2
D*C 1
Source DF
REPNUM 2
PANELIST 29
BLOCK 1
L 2
D 1
(od 1
L*D 2
L*C 2
pD*C 1

Sum of
Squares
545266.55937
579952.68023

1125219.23960

c.v.
44.45562

Type I SS
4865.14550
63940.84326
880.27576
201427.90637
31457.40220
209331.28104
16503.78955
2903.34999
13956.56570

Type III SS
10227.56811
63940.8432¢6

207.52951
176572.39162
23318.64408
167809.97074
17364.02622

3136.59671
13956.56570

87

Mean
Square F Value
13299.18437 27.24
488.17566

Root MSE

22.094697
Mean Square F value
2432.57275 4.98
2204.85666 4.52
880.27576 1.80
100713.95319 206.31
31457.40220 64.44
209331.28104 428.80
8251.89478 16.90
1451.67500 2.97
13956.56570 28.5%
Mean Square F Value
5113.78405 10.48
2204.85666 4.52
207.52951 0.43
88286.19581 180.85
23318.64408 47.77
167809.97074 343.75
8682.01311 17.78
1568.29835 3.21
13956.56570 28.59

Pr > F
0.0001

Y Mean
49.700569

Pr > F
0.0070
0.0001
0.1796
0.0001
0.0001
0.0001
0.0001
0.0515
0.0001

Pr > F
0.0001
0.0001
0.5145
0.0001
0.0001
0.0001
0.0001
0.0406
0.0001



10. Appendix D : Selected Cookies for Polls 1, 2, 3, and Validation Polls



Cookie Set #1 for Consumer Poll 1 and 2

Cookie File
Code
1111

85c.tf
1112

84c.tif
1121

108c.tif
1122

119¢.tif
1211

158c.tf
1212

S5c.tif
1221

17c.tif
1222

Slctif
2111

89c.tif
2112

116¢c.tf
2121

98c.tif
2122

60c.tif
2211

176¢.tif
2212

140c.tif
2221

175c.tf
2222

S6c.uf

89

L* Value Diameter Shape

52.13
5044
50.47
49.87
51.84
49.96
50.47

49.49

47.01
48.25
47.88
48.09
46.73
44.97
46.73

47.37

(cm)
5.Il4
5.08
5.22
5.32
5.54
5.52

56
5.7

5.26
5.22

53

6.06
5.64
3.96

3.7

0.04
0.05
0.11
0.11
0.06
0.07
0.11

0.10

0.04
0.08
0.11
0.13
0.06
0.06
0.13

0.14

% chip

0.06
0.12
0.06
0.12
0.07
0.12
0.05

0.12

0.06
0.14
0.04
0.14
0.05
0.15
0.06

0.13



Cookie
Code
3111
3112
3121
3122
3211
3212
3221

3222

File

37c.uf
le.tif
83c.tif
63c.tif
172c.tif
128c.tif
174c.tif

130c.tif

90

L* Value Diameter Shape

41.61
39.6

43.64
40.46
38.96
41.35
39.6

38.58

(cm)
5.18
53

522
5.24
5.88
5.66
6.04

5.7

0.06
0.06
0.11
0.14
0.06
0.06
0.13

0.12

% chip

0.08
0.12
0.08
0.15
0.09
0.13
0.10

0.14



Cookie Set # 2 for Consumer Poll #3

Cookie
Code
1111
1112
1121
1122
1211
1212
1221

1222

2111
2112
2121
2122
2211
2212
2221

2222

File

233c.tif
245c.tif
223c.tif
242c.tif
199c.tif
288c.tif
186¢.tif

260c.tif

239c.tif
216c¢.tif
238c.tif
248c.tif
189c.tif
265c.tif
181c.tif
266¢.tif

L* Value

51.03
50.03
50.09
49.39
52.94
49.26
53.26

51.1

47.18

47.67

1 46.97

47.29
46.53
4731
45.89

46.22

91

Diameter Shape

5.38
5.29
5.08
5.29
5.96

6.09

5.93

5.16
5.36
5.36
5.34
6.08
6.19
6.06

5.94

0.061
0.065
0.137
0.118
0.062
0.052
0.151

0.106

0.067
0.062
0.107
0.112
0.060
0.07

0.119

0.12

% chip

0.076
0.116
0.076
0.119
0.055
0.083
0.034

0.097

0.075
0.144
0.073
0.134
0.047
0.119
0.051

0.108



Cookie
Code
3111
3112
3121
3122
3211
3212
3221

3222

File

210c tif
222c tif
250c.tif
206c¢.tif
185c.tif
286c¢.tif
179c.tif

280c.tif

L* Value

42.29
42.49
42.11
43.56
40.83
42.62
43.04

42.7

92

Diameter Shape

(cm)
516
526
5.1

4.81
5.89
5.91
5.63

5.97

0.049
0.038
0.171
0.189
0.052
0.05

0.185

0.142

% chip

0.087
0.124
0.103
0.147
0.085
0.143
0.063

0.154



Validation Set 2 :
Set # Cookie# L*value Diameter(cm) % Chips

1 504 44.48 5.72 0.097
1 505 - 44.76 5.73 0.095
1 507 46.19 5.71 0.135
1 509 49.72 5.13 0.058
1 508 50.10 524 0.073
1 506 50.46 542 0.116
1 291 51.27 6.26 0.062
1 503 52.87 535 0.059
1 240 56.98 541 0.087
1 223 5747 5.23 0.059
2 518 44.04 5.75 0.047
2 517 45.29 5.86 0.102
2 519 45.79 5.72 0.119
2 516 46.83 5.41 0.064
2 515 48.72 5.61 0.131
2 514 51.18 5.27 0.064
2 267 51.72 6.10 0.098
2 323 55.60 5.62 0.060
2 242 56.17 544 0.105
2 227 56.36 5.63 0.081
3 527 45.97 5.72 0.072
3 525 46.54 5.64 0.118
3 526 50.22 547 0.072
3 146 50.26 5.67 0.071
3 524 51.29 5.46 0.096
3 528 51.40 526 0.058
3 523 51.96 540 0.048
3 292 52.18 6.12 0.088
3 364 52.88 5.08 0.085
3 529 53.68 5.60 0.074
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11. Appendix E : Selected Archetypes for Modeling and Validation Cookies
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Archetypes Used For Consumer Modeling

Cookie Image #

Pics/Poll1/37c.tif
Pics/Poll2/210c.tif

Pics/Poll2/222¢.tif
Pics/Poll1/63c.tif
Pics/Poll2/206¢.tif

Pics/Poll2/179¢c.tif
Pics/Poll1/172c.tif
Pics/Poll1/174c.tif
Pics/Poll2/185¢.tif

Pics/Poll2/286¢.tif
Pics/Poll1/128c.tif
Pics/Poll2/280c¢.tf
Pics/Poll1/98c.tif

Pics/Poll2/248c.tif
Pics/Poll1/175c.tif
Pics/Poll2/265¢.tif
Pics/Poll1/140c.tif
Pics/Poll1/85c¢.tif

Pics/Poll1/108c.tif
Pics/Poll2/245¢.tif
Pics/Poll1/119c.tif

Pics/Poll2/242¢ tif
Pics/Poll1/84c.tif

Pics/Poll2/186¢.tif
Pics/Poll2/199c¢.tif

Pics/Polll/51c.tf

L* value
Dark
42.70
41.81
Dark
43.00
43.65
44 .02
Dark

42.43
39.03
39.85
40.36
Dark
43.65
4423
43.84

Medium
47.23
Medium
48.51
Medium
47.37
Medium
48.29
47.59

Light
52.02
50.85
Light
51.15
50.58
50.50
51.82

Light
52.84
52.95
Light
51.10

95

Diameter (cm)
Small
5.17
5.16
Small
5.26
523
481
Large

5.63
5.88
6.04
5.89
Large
591
5.66
597

Small
5.30
Small
5.34
Large
5.97
Large
6.19
5.64

Small
5.14
5.21

Small
5.29
5.33
5.29
5.08

Large
6.00
5.96

Large
5.70

% Chips
Few
0.045
0.057
lots
0.090
0.113
0.114
Few

0.039
0.041
0.048
0.049
Lots
0.102
0.104
0.115

Few
0.030
Lots
0.117
Few
0.042
Lots
0.092
0.131

Few
0.054
0.056
Lots
0.104
0.104
0.106
0.110

Few
0.030
0.047

Lots
0.108



Validation Set 1

Cookie Image # L*value Diameter(cm) % Chips
Pics/Poll1/83c.tif 45.09 5.14 0.060
Pics/Poll2/250c.tif 42.09 5.10 0.068
Pics/Polll/1c.tif 40.85 5.30 0.073
Pics/Poll1/89c.tif 46.39 5.26 0.049
Pics/Poll1/130c.tif 41.39 5.69 0.103
Pics/Pol12/238c.tif 47.07 5.36 0.060
Pics/Poll2/239c.tif 47.22 5.16 0.061
Pics/Pol12/189c.tif 4593 6.07 0.034
Pics/Poll1/176c¢.tif 46.62 6.06 0.038
Pics/Poll2/266¢.tif 46.70 5.94 0.068
Pics/Poll1/60c.tif 49.52 5.30 0.119
Pics/Poll2/216c tif 4924 5.36 0.128
Pics/Poll2/288c.tif 49.66 6.09 0.062
Pics/Poll1/56c.tif 49.27 5.70 0.115
Pics/Poll2/223c.tif 50.45 5.08 0.068
Pics/Poll1/17c.tif 51.16 5.55 0.042
Pics/Poll2/233c.tif 51.55 5.38 0.068
Pics/Poll1/158c.tif 51.71 5.54 0.069
Pics/Poll1/55c¢.tif 51.53 547 0.108
Pics/Poll2/260c.tif 51.83 5.93 0.081
Pics/Poll2/181c.tif 45.23 6.06 0.038
Pics/Poll1/116c.tif 50.22 522 0.127
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12. Appendix F : Archetype Rating Distribution Statistical Analysis
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Archetype Rating Statistical Summary

light, small, lots of chips

light, small, few chips

Mean 51.127083
Standard Error 2.0492364
Median 50

Mode 64.75
Standard Deviation 22.44826
Sample Variance 503.92437
Kurtosis -0.166228
Skewness 0.3170567
Range 105.5
Minimum 7.75
Maximum 113.25
Sum 6135.25
Count 120

Mean

Standard Error

Median
Mode

Standard Deviation
Sample Variance

Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count

70.558056
1.6604332
74.75

79
22.277049
496.2669
0.2071795
-0.502408
110.75

9

119.75
12700.45
180

medium, small, few chips

medium, small, lots of chips

Mean

Standard Error

Median
Mode

Standard Deviation
Sample Variance

Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count

34.270833
2.4305487
35.75

2.5
18.826949
354.45401
-0.253747
0.2601642
75.75

2.5

78.25
2056.25
60

Mean 68.9
Standard Error 3.9828223
Median 72.125
Mode 89
Standard Deviation 21.814816
Sample Variance 475.88621
Kurtosis 1.3137355
Skewness -1.184082
Range 87.75
Minimum 6
Maximum 93.75
Sum 2067
Count 30




dark, small, lots of chips

Mean

Standard Error

Median
Mode

Standard Deviation
Sample Variance

Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count

34.547917
2.2032378
32375
2.75
24.135261
582.51081
0.6421596
0.7937109
119.25
225

121.5
4145.75
120

light, large, lots of chips

dark, small, few chips

Mean 17.855556
Standard Error 1.5065296
Median 13.75
Mode 2.5
Standard Deviation 14.292194
Sample Variance 204.26682
Kurtosis 0.3133167
Skewness 0.9414982
Range 57.25
Minimum 2.25
Maximum 59.5

Sum 1607
Count 90

light, large, few chips

Mean 41.833333
Standard Error 3.3507613
Median 36.5
Mode 33
Standard Deviation 25.954885
Sample Variance 673.65607
Kurtosis -0.874213
Skewness 0.4235661
Range 94.25
Minimum 2.75
Maximum 97

Sum 2510
Count 60

Mean 79
Standard Error 3.0526281
Median 87

Mode 88.5
Standard Deviation 23.645555
Sample Variance 559.11229
Kurtosis 1.1263467
Skewness -1.0297
Range 118.25
Minimum 4.75
Maximum 123

Sum 4740
Count 60




medium, large, few chips

medium, large, lots of chips

Mean

Standard Error

Median
Mode

Standard Deviation
Sample Variance

Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count

82.572222
2.0180453
85.25

90
19.144859
366.52562
1.7680676
-1.21114
89.75
23.75
113.5
7431.5

90

dark, large, lots of chips

Mean 48.05
Standard Error 2.6609676
Median 50.875
Mode 23
Standard Deviation 20.611766
Sample Variance 424.84492
Kurtosis -0.268441
Skewness -0.155615
Range 95.75
Minimum 3
Maximum 98.75
Sum 2883
Count 60

dark, large, few chips

Mean 27.072222
Standard Error 1.434034
Median 22.875
Mode 3
Standard Deviation 19.239586
Sample Variance 370.16165
Kurtosis 0.6539948
Skewness 1.0118803
Range 85.5
Minimum 2.5
Maximum 88

Sum 4873
Count 180

Mean

Standard Error

Median
Mode

Standard Deviation
Sample Variance

Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count

65.989583
2.6845102
68.75
68.75
29.407336
864.79138
-0.686253
-0.275007
128.5

2.75
131.25
7918.75
120




13. Appendix G : Archetype Mean Confidence Interval Data
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Statistical Information for Archetype Means

light, small, few chips

mean of means
var of means
Confidence Level(95.0%)

medium, small, few chips

mean of mean
var of means
Confidence Level(95.0%)

dark, small, few chips

mean of means

var of means
Confidence Level(95.0%)

means
52.48
53.59
52.85

45.58

51.13
13.87

5.92648

means

35.08333
33.45833

34.27083

1.320313

10.32375

means

13.51667

12.18333

27.86667

17.85556
75.6112

21.60076

102

light, small, lots of chips

mean of means
var of means
Confidence Level(95.0%)

medium, small, lots of chips

mean of means
var of means
Confidence Level(95.0%)

dark, small, lots of chips

mean of means
var of means
Confidence Level(95.0%)

means

68.90833

74.55333
66.01667
79.90833
66.20833
67.75333

~ 70.55806

30.70446

5.815082

means
68.9
68.9

NA

means
29.53
25.68
27.38

3360

34.55
199.444

22.47201



light, large, few chips

mean of means
var of means
Confidence Level(95.0%)

medium, large, few chips

mean of mean
var of means
Confidence Level(95.0%)

dark, large, few chips

mean of means
var of means
Confidence Level(95.0%)

mean

40.25
43.41667

41.83333
5.013889

20.11807

means

52.24167
43.85833

48.05
35.14014

53.25995

means

27.83333

27.71667

24.65833

20.95833
28.25

33.01667

27.07222
16.18494

4.221926

light, large, lots of chips

mean of means
var of means
Confidence Level(95.0%)

medium, large, lots of chips

mean of means
var of means
Confidence Level(95.0%)

dark, large, lots of chips

mean of means
var of means
Confidence Level(95.0%)

means

83.575
74.425

79

41.86125

58.13064

means

" 80.60833

83.7
83.40833

T 8257222

2.913912

4.240472

means

67.075

65.125
72.125

59.63333

65.99

26.65696

8.215553





