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~ o o d  manufactirring is an important business world~de. Producers are turning to 

automation to improve the rate and the quality of production, especially in the area of 

quality assurance inspection, The objectives for this research were to identify the 

behavior of the consumers in judging chocolate chip cookies, to develop a consumer 

model based on the judgment data, and to gauge the success of a consumer-behavior 

based automated inspection system. 

Consumers rated chocolate chip cookies based on dough lightness, sue, and 

percentage of chips visible. Furthemore, interactions between dough lightness and size, 

and percentage of chips and size were dso signifiant influences on decision making. 

The automated inspection system developed for this research used fuzzy logic to 

successfUy model consumer behavior as identified through integration theory. The 

system correctly classified the acceptability of eighty percent of the cookïes tested. 
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1. Iiitrodoction 

Food manufituring is a major industry worldwide. For many food 

manufâcturers the global comrnunity has become accessible due to technologid 

advances in transportation and communication. Cornpetition within the food industry has 

grown because of these advances. To remain cornpetitive, manufacturers are enhancing 

production and processing techniques by introducing automated control and inspection as 

soiutions to increase production, and improve @ty ( S e ,  199 1). 

In particular, manufacturers of baked goods have traditionally used manuai 

inspection to perform quality assurance. Manuai inspection introduces bottlenecks into 

the production process. Operators cannot work as fast as the machinery generating the 

products. More importantIyt manuaI inspection relies solely on the inspectors' decision 

making. Unfortunately, the judgment of these inspectors may not reflect consumer 

opinions. For this reason, the process by which consumers judge food is of particula. 

interest- 

With an understanding of consumer behavior, a model that reproduces consumer 

decision-making can be developed. Quality assurance inspection can be automated by 

integrating this model with a machine vision system. An automated solution such as this 

improves production by allowing the manufacturer to assess product quality accordhg to 

consumer opinion. Ultimately, the model facilitates objective and consistent consumer- 

based decision makuig during q d t y  assurance. 

Consumer behavior in product judgement is studied and quantifiecl through 

psychophysics. One of the goals of psychophysics is to develop methodologies through 

which consumer judgement can be modeled. Specincally, through integration theory, 



integration and scaling have been identifieci as concepts that describe the mechanics of 

decision making (Lawless, 1990; Mcbride and Anderson, 1990). 

Integration refers to the process by which people combine differrnt food 

characteristics to render a judgement pertaining to the quality of the food. Characteristics 

such as size, shape, texture' color, taste, and odor are combined to proâuce an opinion 

about a food product Food judgement is also a function of scaling. Scaling quantifies 

the influence each characteristic ex- on the final decision. In decision making, a 

signincant characteristic is given more weight than one that is less signincant. 

Human decision making patterns are identified and modeled through integration 

theory. This mode1 can be automated using fbzy logic and then used to predict 

consumer behavior. Tn other words, htegration theory can be translated into a fuzy 

logic decision engine. Not all consumers will agree on the ideal combination of product 

characteristics. Fuzzy logic cm account for this inconsistency and is a good candidate 

for consumer modehg because it can tolerate uncertainty and vagueness. 

Machine vision is a general tem that describes a system that uses both image 

processing and a decision enghe to perform a duty. In a machine vision system, image 

processing identifies and quantifies characteristics such as the size and color of a product. 

DigitaUy captured images of this product are SLIliflyzed through techniques such as edge 

detection, perimeter following, and color andysis. These operations yield information 

uicluding the shape, size, and color composition of the product. A consumer mode1 c m  

use these extracted features to assess this product's quality. This consumer mode1 can be 

used in conjunction with image processing to produce an automated quality assurance 

inspection station. 



The objectives of this thesis are to: 

Describe consumer behavior in judging chocolate chip cookies 

Develop an algorithmic model of the consumer behavior through fuzzy logic 

Implement and evaluate the success of an automatecl inspection system for 

chocolate chip cookies based on the consumer model 

To accomplish these objectives, chocolate chip cookies with different physical 

characteristics (e.g. color, sue, and shape) were presented to a group of subjects. These 

people represented a cross section of the consumer population. Each cookie's relative 

consumer appeal was expressed as a position dong a line scale. The cookies' ratings 

were recorded as distances fiom the line scale's origin. Statistical analyses of the 

recorded distances provided insight into scaling and integration of the characteristics 

presented during judgement. Based on the statistical hdings, a consumer decision 

model was developed and then tested against subsequent polls. 

This thesis will present fiterature relevant to consumer modeling and automating 

quality assurance. The materials and methods employed in the study are described and 

explained Then, experimental resuits are presented and analyzed Finally, conclusions 

are drawn nom the results, and recommendations for M e r  study and improvements are 

presented. 



2. LiteratrireReview 

Quaiity assurance is an important part of food nmnufacturing. M'imufâcturm 

such as commercial baiceries or fisheries r e q d  quaiity control persorne1 to identify and 

remove darnaged or poor quality product When judging the quality of a product, these 

inspectors iden- defects and then classi& the product's quaiity- This chapter will focus 

on the techniques and technologies that are requkd to automate defect idenfication and 

product ~Iassification- 

In this literature review the characteristics of consumer behavior and the 

experirnental techniques used to identify this behavior are discussed. Research into the 

effect of physicd attributes on taste and apparent quality are presented. Then, basic 

elements in fuzzy logic are explained, The review continues with aa examination of 

image-processing techniques that allow cornputers to qgnw an object's chanicteristics. 

Research in combining image processing and artificiai intelligence to automate food 

quality asmance are presented. Finally, deficiencies in the iiterature in tying consumer 

opinion to quality assurance are identified. 

2.1. Consumer Behavior 

When a food product is first developed, a consumer market is targeted and the 

product is developed to appeal to those collsumers. Sensory evaluation helps the 

manufacturer to design and to control the quaiity of the product But the sentient nature 

of perception and judgement makes understanding human behavior difEcuitt Through 

psychophysics and information integration theory, several stages have k e n  developed to 

explain the decision making process (McBride and Anderson, 1990). 



Valution is the first stage in the decision makhg process. During this stage the 

physical stimuli of a food product are translated into psychological sensations. The 

stimuli are assembled and then scaled relative to one another according to importance. 

These stimuli hclude visuaï charactentstics, fiagrance, texture, taste, and sound. 

The second stage of decision making is integration. The sensations identified 

during valuation are integrated into a single sensation. ûther factors such as memory or 

context effects are also integrated into this sensation (lawless, 1990). The sensation 

generated by integration is not observable, but it exists in integration theory as an 

intermediary stage between the observable stimuli and the response. 

Finaily, during the response stage an assessrnent of the quality of the food product 

is generated. The person identifies the acceptability or appeai of the food product. 

Through these three stages in integration theory, the decision making process can be 

systematically quantified and then modeled. 

2.1.1. Types of integration 

Integration theory provides us with the means to map stimuli to the physical 

responses. Through integration theory, it is possible to develop an understanding of 

consumer behavior. Statistical and graphical d y s i s  of stimuli versus response are used 

to iden- these relationships. Additive interaction between stimuli is a cornmon 

relationship. An example of an additive relatiomhip is the taste-odor integration between 

sweetness and orange aroma as presented by McBnde and Anderson (1990). The total 

intensity of sensation was plotted vernis nine combinations of taste and odor. The 

experiment produced the relationship shown in Figure 2.1. The additive response can be 



seen by the pardelism demonstrated by the three levels of sucrose and of orange aroma.. 

The difference in response to each change in Stimulus is consistent. This paraUeIism 

indicates an additive integration of the stimuli (McBride and Anderson, 1990). 

Figure 2.1: Total Intensity of Sensation vernis Orange and Sucrose Levels 

Other relationships that describe consumer behavior include subtractive, 

multiplicative, and nonlinear. A fidl description of each type of integration relationship 

is beyond the scope of this literature review but a more complete description can be 

fomd in McBride and Anderson (1 990) and Lawless (1 990). 

2.1.2. Experimental Techniques in I d e n m g  Consamer Behavior 

Through integration theory, the multidimensional character of a food product can 

be examined. The influence of each characteristic on consumer appeal can be 

deterrnined, and the ideal value or range for each characteristic c m  be identifïed. But, 

appropriate testing procedures need to be perfiomed to acquire data that can be used for 

consumer judgment analysis end, uitimately, consumer modeling. In order to elicit a 



proper response to the food product, two procedures must be @onne& Firstiy, the food 

characteristics si@cant in decision making must be identifid Secondly, an 

appropriate test to record the consumer response to the product must be designeci ushg 

those characteristics. 

The sipnincant stimuli used for decision making can be identifieci through the 

repertory grid procedure (McEwan and Thomson, 1988). During this testing three 

examples are presented and the test subject chooses an o d e r  and then justifies the 

choice. These trials are repeated for aU the charactenst&s that are perceivable in the 

food. Through this testing, the most influentid characteristics as weii as the ranges of 

noticeable Merence for each characteristic can be identifïed (McEwan and Thomson 

2 988). 

For example, the dominant characteristic of an orange is the color. Dinerent 

colors may generate different acceptability ratings and thus should be identifïed. For 

oranges the ranges may be green, green-orange, orange, and brown. By determinhg that 

the color is important and by i d e n m g  the different color ranges that are noticeable to 

the consumer, a test for the acceptability of an orange based on color can be created. 

2.1.4. Testing for consumer appeai 

To properly test a product, a complete set of characteristics and -range of values 

within each characteristic need to be presented to the consumer. This set is generated 

using the characteristics and ranges identified through the repertory grid procedure. 



T h u g h  d e s  in consumer behavior, and speciticaily in product testing, h e  sale tests 

used in conjunction with product rating methods have been shown to be the most 

successfid in generating wful characteristic relationship information (McBride and 

Anderson, 1990). 

The graphic line scale is essentialiy a line on a flat surfkce with markers dong the 

line to anchor the test. Test subjects are then asked to place test samples of the product 

where they feel the sample fi@ best For example, in a saltiness flavor test there wouid be 

a marker that denotes the saltiest example of the product, and one that denotes a version 

of the product with no salt. Testers may be asked to rate the saitiness of different samples 

of the product relative to these markers. in diis test, different recipes can be tested for 

thek apparent dtiness. 

Another line test may be based on linguistic tenns. Instead of using product 

samples as anchors, linguistic tenns that represent concepts in human judgment may be 

used. This type of test is called an interval scale (Land and Shepherd, 1984). For 

example, an interval sa le  may use the concepts unacceptable and acceptable as anchors. 

In this case, the observes are asked to rate products in terms oftheir appeal. Presenting a 

cornplete set of characteristics for judgement can identify the quaiities that innuence a 

product's consumer appeal. The results of these tests c m  be analyzed through statistical 

means such as mean, standard deviation, and analysis of variance to ident- consumer 

behavior (Land and Shepherd, 1984). 



2.1.5. Research into the Effbct of Apperu4ice on Produet Appeal 

Christensen (1983) performed research on the efféct of food color on perceived 

intensity, and quality of amma and flavor. In the study, a p u p  of testers were presented 

with pairs of nonnally colored and inappropriately colored food wherein each sampIe was 

rated for the quality of its arma, flavor and texture- The foods tested included 

margariney gelatin, bacon strips, an orange drink, and cheese. The shidy found that 

appropriately colored food was perceived as having more intense and superior aroma and 

flavor. Two groups of testers judged the pairs of foods. One group was bhdfolded 

while the other was not. The sighted subjects judged the appropriately colored food as 

having a stronger aroma while the blindfolded group generated no response pattern* The 

research surmised that color influenced the anticipated oral and olfactory sensations 

because of the memory of previous eating experiences. 

Dubose et aL , (1980) found that as the intensity of the color of the food increased, 

the perceived flavor increased accordingly. Furthennore, the experiment showed that 

specinc colors induced flavors typically associated with those colors. The food stuffs 

studied included f i t  flavored beverages and cake. For example, flavorless cakes were 

deemed to have increasingly acceptable lemon flavor when more yeflow colorant was 

added to the cake. Ultimately, Dubose et d ,  (1980) showed that memory effects are 

associated with visual perception and affect the judgment of consuners. 

The research done by Dubose et al, (1980) and Christensen (1983) showed that 

visual stimulus is a major factor that influences the consumer judgement of food. The 

physical atûibutes of a food product generate mernories of past eating experiences. 

Ultimately, the overd quaiity of a food product c m  assessed based on visual features 



alone. Therefore, a consumer mode1 that can successfully date  the visual features of a 

food product to the food's quaiity will provide a realistic assessrnent of consumer 

opinions. 

2.2. Fuzzy Logic 

Fuzy Iogic is a diverse field of mathematics that has been applied in m a .  areas 

such as control system and decision support systems. Fuzzy inference systems are 

appropriate when the uncertainty of ~Iassification needs to be assessed, when the patterns 

for each class are ambiguous, and when it is ~ c d t  to define boundaries between 

classes (Cai and Kwan, 1998). In each circumstance, the domain of application bas 

dictated the type of fuzy implementation that is most appropriate. For example, fuzy 

control systems are often developed with the help of an expert in the contrd 

environment. In this situation a de-based fuzy logic mode1 of the expert is often used. 

On the other hand methods such as hzy-c  means (Bezdek, 1981), or even fuzy neural 

networks (Kuo et al., 1993) are employed in circumstances where a fuzy classifier needs 

to be built on ill-defined data. For example automated visual signature verifkation is an 

area where the data is iU defked. Each individual possesses unique hand wrïting 

characteristics. Common features or invariants between different individuals' signatures 

are hard to find. Furthermore, there is significant variation in signatures generated by the 

same individuai. These challenges conspire to make personal signatures difficult to 

separate (Scott, 1998). 

The focus in this section wiil  be on h z y  de-based inference models. These 

models are appropriate for mimicking the d e s  governing consumer behavior as 



identined through integration theory. Fuzzy de-based inference models genedîy 

consist of three processes, fbdication, inference operations, and defùzûfication (Cai 

and Kwan, 1998). During fbzdication crkp inputs are translated into the fbzzy domain 

through membership hctions. Each crisp value is assigned a membership value to a 

i k z y  concept as defined by the membership hctions. For example, the codort  level of 

a room according to an average person rnay be described by the membership bctions 

shown in Figure 2.2 

IdeaUy, people prefer the room to be wami. Temperatures below 16" C may seem 

cool to most people, whiie temperatures above 24" C may seem hot to many people. 

Rooms at 2 3 O  C are neither wann nor hot but somewhere in between. Fii7nfication of a 

23" C temperature would produce truth-values equal to 0.4 warm and 0.6 hot. After 

fuaincation the room is no longer described as a crisp temperature of 23OC, rather the 

room is described as being 0.4 warm and 0.6 hot. 

warrn Vt 
16 19 21 24 

Temperature (O C) 

Figure 2.2: F u a y  Membership Functions for the Temperature of a Room 

These fuzy values are then passed to "if.. .then" d e s  which combine and manipulate the 

variables to produce one or more fuzy outputs. These d e s  represent the cognitive 



process that people pdorm when making decisions. Possible d e s  for a temperature 

controlier ushg the ventilation fan-speed as the manipulatecl variable are shown in Figure 

If temperature is cool then fan-med is SIower 

Iftem~erature is warm then fan-med is Unchanged 

Iftemperature is hot then fan-meed is Faster 

Figure 2.3: Inference Rules for Fuzzy Temperature Controiler 

The antecedent in the d e s  is the temperature. The consequent, or the fuzy 

output, is the change in the speed of the ventilation fan. The consequent is clipped to the 

same degree of membership as the antecedent- For a room temperature of 23" C these 

inference d e s  recommend fuzy changes in fan speed as 0.4 unchanged and 0.6 faster. 

F W y ,  defüzzifïcation produces crïsp or hguistic outputs fiom the fiizzy- 

consequences. In this case the crisp output is the change in revolutiom per minute of the 

fan. Membership fiinctions are used to map fbzzy consequences back to the crisp 

domain. The foilowing example demonstrates a Sugeno-type defuzzification method that 

can be found in Terano et al. (1987). The membership functions for this controllet are 

called singletons and are shown in Figure 2.4. The aggregation fornida that generates 

the crisp change in fan speed can be seen in equation ( 2.1 ). The defuzzified fan speed is 

e q d  to +60 rpm. 



Where: 
A F ~  = the defiizzlfied change in fan speed in rprn 
 SI^^= the degree of membership in "Slower" 
punCbriow = the degree of membership in 'Unchanged" 
p~-= the degree ofmembership in "Fastei' 
~ S I ~ R P M  = the defuzz. singleton rpm for Slower 
y ~ ~ h g c d ~ ~ ~  = the de-. singleton rprn for 'Vnchanged" 
YF-R~M = the de-- singleton rpm for 'Taster" 

This example has demonstmted a simple irnpfementation of a min-max fuzzy 

logic temperature controlier that manipulates fan speed using human decision making as 

a model. There are many ways to describe input and output membership fùnctions. 

There are also many ways to infer consequences and to aggregate these consequences. 

These concepts in fuzy logic theory, and th& application, have aiready been studied in 

detail and Ca. be found in Tenuio et al. (1987), Zimmennan (1996), De Silva (1995), 

Yen et al. (1995), and Pedrycz (1989). 

-1 00 O 100 
Change In Fan Speed (rpm) 

Figure 2.4: DefkzScation Membership Functions for Fuzzy Temperature Controuer 



23. Mnchiac Techniques 

Machine vision is a g e n d  temi that describes a system that processes images 

and then renders a decision about the extracted inforxnation. Essentiaily, machine vision 

combines both image processing and a decision engine to perfiorm a duty. The role of 

image processing is to provide the necessary information for the decision engine to 

render a judgement, 

Image processing refers to the qumîik&îon of information stored in a digital 

image. The field of image processing is very broad and uses many Merent techniques to 

extract and idenw idorxnation in an image. These techniques indude mathematical 

methods such as Fourier audysis to extract image information, as well as artincial 

intelligence techniques such as neural nets to categorize the extracted information. This 

section WU focus on methods for enhancing and extracthg object features nich as color 

composition, shape, and sUe. Image processing techniques such as these will quanti@ an 

object's features in nich a manner that they can be used by a decision engine. 

Image processing can be caîegorized into several levels of complexity. Basic 

operators that are used include contrast enhancement, edge detection, and transfomùng 

color-spaces. These operators reduce noise in the image and idenw the information 

found in the image without consideration for the actual signiiicance of the features. 

Essentiaily these operators pedonn operations on properties that are consistent across ai i  

images. Gunasekaran (1996) refers to this level of image processing as preprocessing. In 

effect, the image is being conditioned so that application specific information can be 

extracted fkom the image. 



Contrast enhancement and edge detedon are but two examples of Iow level 

image manipulation. 0th- operations include smoothing, converthg to grayscale, and 

brightening- These operators can be used to accentuate information in the image in 

preparation for a more detailed analysis ofthe image. 

Colors in digital images are represented by three components, namely, red, green, 

and blue. The standard RGB color representation in cornputers is diflicult to manipulate 

for color recognition but can be transformed to more useable representations of color 

(Thomas and Connoly, 1986). The L*a*b* color space provides a baseline for describing 

colors and has been used for measuring pigmented materials such as those of the food 

indwtry (Volz, 1995). This coior space provides a better description of color by 

separating lightness and hue. In the RGB color space, the lightness and hue are coupled 

to ail three components. 

The next stage in image processing is referred to as segmentation, representation 

and description (Gunacekaran, 1996). These operations include perimeter following, area 

classification, and color d y s i s .  The information extracted by image processing 

operators identifies an object in the image through shape, size, and color composition. 

Ultimately, image processing extracts features that ident* an object in a rnanner that c m  

be rnanipulated by a decision engine. 

2.4. Automated Inspection of Food Products 

Food mdacturers understand the value of automated inspection over prnely 

manual inspection. Research into automating basic processing tasks has produced 

systems that perform both image processing and classincetion with varying degrees of 



success These works exempli@ image pmcessing and decision engine techniques that 

can be used for inspection research, Research has been performed to assess food quality 

using achromatic, or grayscale images. Unklesbay et al. (1983) assessed the nutritional 

value of pizza sheils veMs the browning of the sheils. Piaa sheils were baked, scanned 

by a monochrome camera, and then essessed for their nutritional value. The experiment 

successfidly linked degree of browning to lysine content in the pizza shell via a ünear 

mathematical modeL The experhent showed that dough lightness could be used to 

i denw nutritional value. Some inspection problems need more detaii about the food 

to facilitate classification thus, as color digitaI camera technology becomes more 

cornmonplace, color features are king put to use in inspection research. McConneU er 

al. (1995) used color classification to class* baked and roasted food products. This 

research assessed the doneness of a food sample relative to a severai reference exampies 

of the product The experiment demonstrated that m a .  food products have multiple 

color attributes that need to be considered in inspection and judgment. The system 

employed a histogram d y s i s  that was similar to a Bayesian maximum likelihood 

classification technique. Daley et al. (1995) studied poultry processing as a potential 

candidate for automated inspection. Color histogram analysis, pixel-level color 

categorization, and a mathematical nIter were employed to idenfiSr defects. The goal of 

the experiment was to identify defects such as bruises, skin tears, and tumors. 

Ultimately, bbniises and tumors were successfûily identified by single pixel color analysis 

through neural networks, whüe skin tears were only identifiable through a mathematical 

filter. 



Bell peppers have been sorted based on color (Shearer et al. 1990). Tao et uL 

(1995) sorted apples and potatoes through color analysis. Both studies used discriminant 

techniques to identify and classif/ the food. M e r  foods such as soybeans (Wigger et uL 

1988), and peaches (Miller and Delwiche, 1989), have also been sorted based on color 

using basic mathematid techniques. 

Luniriaga et al. (1997) graded shrimp using color. The shrimp were 

differentiated based on amount of d a c e  area demonstrating melanosis. A grade was 

assigned to the shrimp ushg a iinear model that related the percentage of area exhr'biting 

melanosis to the operator assigned shrimp grade. 

Perrot et al. (1996) classined the color of cookies. Cookie color readings were 

captured and a fuzy logic decision engine mapped the three dimensional numerical color 

reading to a linguistic color classincation. The fiiw engine modeled a human operator 

and was compared to a Bayesian classifier. The success rates for both types of classifiers 

were comparable, but the authors supported the fuzy classifier because it more 

appropriately modeled the deterministic nature of human decision-making, i.e. decisions 

that are generated through d e s .  The f k z y  logic inference model is de-based and 

properly represents the deterministic nature of the human decision making process. 

Beyond color other physical features such as shape and size that can be used to 

idente an object. Howarth et d. (1992) quantified and classified carrot tip shapes using 

a Bayes discrimination procedure. The curvature profile was used to quanti@ the shape 

of the carrot tip. This profile was then passed to a discrimination procedure for 

classification. Heinmann et aL (1996) developed a machine vision system that graded 



potatoes based on size and shape. No statisticai or inteliigent techniques were used to 

grade the potatoes' size, or shape. 

Ding and Gunasekaran (1994) used shape indices to describe food products 

including corn, crackers, and almonds. The system identified the quality of the shape of 

the product by comparing the sample to templates. Ultimately, the system identined 

misshapen or damaged products. The experiment successfully used both back- 

propagation neural networks and minimum indetenninate zone classiners to classify the 

food products. 

De Silva (1997) used physicai features such as location of cut, length, smoothness 

of contour, and suffie texture to ciassify the quality of a processed fish. These inputs 

were manipulated through fuzy logic to generate accept or reject decisions. De Silva 

(1997) also presented an experiment where skeins of h e e g  roe were graded based on 

v i d y  quantified features includïng shape, size, and weight. The grading also 

accounted for the roe's uitrasound scanned b e s s .  The roe grading algorithm, based 

on fiiw logic, facilitated size and grade classincation based on the four ideatified 

features. In both experiments, the fuzy logic algorithm modeled the expert online 

inspecter for decision making. 

The bodies of work discussed in this section show that the physicai features foods 

c m  be identified and used to assess food quitlity. Furthemores the papers show that the 

assessment of the foods can become cornplex, and that simple methods of relating visual 

attributes to food quality are weded. A fùzzy logic based consumer mode1 can provide 

this simple means of assessiag food quality. 



2.5. Literatiue Deficiencia 

The literature presented illustrates that there are several areas in automated 

inspection research that requires more study. Firstly, the classifiers in research are not 

informative about the product7s quality acwrding to the consumer. The relationship 

between product characteristics and consumer satisfaction should be investigated and 

applied to a classifier. Secondly, the applicability of fuzty logic for modeling integratïon 

theory shouid be a s s e s d  F W y ,  the applicabiIity of f h q  logic in automated 

inspection shodd be investigated m e r .  Speciîicdy, the abiiîty of fuzy logic to accept 

multiple mathematically umelated inputs and generate multiple outputs should be 

investigated in an automated inspection application. Product quality and consumer 

behavior is seldom one dimensional therefore their multi-dimensional characters shodd 

be incorporated into the decision-making algorithms employed by inspection systems. 



3. Methodology 

3.1. Fei- Extraction and Image Processimg 

The equipment used for capturing images was chosen for its bctionality and 

flexibility. The Est of equipment can be fomd in Table 3.1. The digital carnera was 

chosen because it cap& scenes more accurately than an average digital camera. It had 

3 charge coupled device (ccd) sensors whereas most cameras o d y  have one. Each ccd 

sensed red, green, and blue colors, respectively. The effective resolution a -  which the 

camera sensed the environment was trïpIe that of most single ccd digital cameras. Many 

digital cameras have the red green and blue pixel sensors on the same ccd. These single 

ccd cameras do not reproduce the scene as accurately due to their lower effective sensing 

resolution. 

The lem for the camera was chosen because it provided a flexible field of view 

and zoom. It was possible to adjust the amount of area sensed by the camera to suit 

different applications. 

The grabber board was chosen because it was fully compatible with the camera 

and the vide0 card in the cornputer. Furthermore, the grabber board was supplied with C 

lauguage libraries that were used to interface with the camera. 

For lighting, fluorescent lights were used because, relative to incandescent bulbs, 

the light produced was more consistent over the lifetime of the bulb. As weil, the Light 

produced was whiter. The selected lights provided a consistent environment and better 

color representation of objects for image capture. 



Computer Deii Dimension XPS M2OOs PC, Deli Computer Corporation, 
Round Rock, Texas, 78682, 

- 
Microsof€ Wmdows 95 service reIease version 2 and Microsoft 
Visuai C++ 4.0, MicrosoA, Redmond, W& 98052-6399. 

Meteor ROB grabber board, Matrox Image Library Lite (MIL-Lite) 
3.0, Forehnt Graphics Coq, Downsview, ON, M3 J 3K7. 

WC AA-P700 AC Adapter and JVC KY-FS5BU 3ccd digital 
Camera, N C  Professional Products Co., Eimwood Park, NJ, 07407. 

Cosmicar/Pentax TV Zoom Lens, 8 mm - 48 mm, l:I.O, Asahi 
Precision Co. Ltd., Wako-Shi, Saitama-Ken, 3 5 1 -0 1 - 

RGB cable 

Color Rates 
White Mïnolta Chroma-Meter CR-3 00 Colorimeter 

calibration plate. 
brown paint color sample squares. 

2 Noma work lights 

2 Sylvania 15 watt fluorescent bulbs, Danvers, MA, 0 1923. 

Table 3.1 : Image Capture System 

The physicai setup of the system can be seen in Figure 3.1. The camera was 

supported on a stand that fked the camera's position relative to the cookies. The Iens 

was used to control the size of the field of view and light transmission. Images were 

captured using the program in appendix A. This program was developed in Microsofi 

C* 4.0 and used the MIL-Lite 3.0 library to interface with the grabber board. The 

program displayed the field of view of the camera and aliowed the user to capture the 

image displayed. 



Front View Side View 

Figure 3.1 : Camera and Light Configuration 

B G R Sync 

$'h*l Pin 5 O O O 

Figure 3.2 : Grabber Board, D-Sub Connector (9 pin female, viewed h m  fiont) 

Sync B G R 

Figure 3.3 : Camera, D-Sub Connector (9 pin f e d e ,  viewed fiom fiont) 



An RGB Cable co~~nected the camera to the grabber board in the cornputer. The 

configuration ofthe cable can be seen in Figure 3 1 and Figure 3 -3. 

The camera was aimed perpendiculady to the cookie surface to prevent h m  

distorthg the shape of the cookie. Direct üghting generated shadows around the edge of 

the cookie that interfered with the feature extraction. Therefore to minimize the shadows, 

the two lights were placed on both sides of the cookie and high as feasîble. 

The lights, camera and computer were warmed up for one hour before capturing 

images because the systemts color sensitivity was not consistent untii some tirne had 

passed. The source of this dynamic characteristic was not established. 

The lights of the rwm were turned off and the work lights alone were used to 

illuminate the cookies. Size, focus, and sensitivity to fight of the system were calibrated 

before each session of image capture. The field of view was adjusted so that 480 pixels 

represented 14.25 cm in the field of view, as shown in Figure 3.4. The size was 

calibrated by drawing two p d e l  lines exactly 14.25 cm apart on a sheet of paper. The 

field of view was adjusted so that the lines were at the edge of the visible field of view 

verticdy. The focus was also adjusted so that the image sensed by the camera was 

sharp. Finally, the camera's sensitivity to lightness was caiibrated by grabbing images of 

the four brown plates similar in hue to cookie dough. The plates' L* values were 

extracted and then compared to previously captured baseline images of the plates. 



1 14.25 cm (480 Pixels) 

Figure 3 -4 : Camera Field Of View Cabration 

Images of the cookies were grabbed after the calibration. Each image contained 

only one cookie on a matte white background. Every cookie image was cropped and then 

passed to the feature extraction program for processing. The grabbed images were saved 

in c'tB" file format and were left uncompresseci. Compressed images can generate color 

and pixel distortion and can be difficult to manipulate. A 24-bit color depth was used to 

provide a satisfactory color resolution for color analysis. This resolution provided 

approximately 16 million merent colors. 

I Cornputer I SGI Indigo2 cornputer 

Irix 6.2 Operating System 

SGI Image Vision image processing tookit 
L 

C Visual Developer (CVD) 

cc (vnix ANS1 C+t compiler) 

Table 3.2 : Image Processing System 

Colorimeter Minolta Chroma Meter CR-300 Colorimeter, Minolta Canada 
Inc., Mississauga, ON, L47-2H5 



The feature extractor was developed in C* in a UNIX b d  environment and 

used the Image Vision Iibrary to fkilitate the basic image processing hctions. The 

program quantified cookie features fiom captured images including average diameter, 

major axis, minor axis, dough Iightness excluding chocolate chips, and percentage of 

chocolate chips visible. The source code for the feature extractor can be found in 

appendix B. 

The algorithms for iden-g the average diameter as weil as the major and 

minor axes required definitions of the perimeter and the center of gravity of the cookie. 

The areas in the image that were belonged to the cookie were used to calculate the center 

of gravity of the cookie. This calculation is shown in equations ( 3.1 ) and ( 3 2  ). 

Centroid, = xz xi / n 

Centroid, = yi l n 
2-0 

Where i = a pixel considered to be part of the cookie. 
n = the number of pixels that are considered to be part of the cookie 
x = x co-ordinate for pixel i 
y = y CO-ordinate for pixel i 

A perimeter description of the cookie was generated and used to h d  the meau 

radius and the major and minor axes. The mean radius was found by taking the average 

linear distance between each perimeter pixel and the center of gravity. Another algorithm 

generated axes for the entire cookie. The longest axis was marked as the major axis, 

while the shortest axis was k k e d  as the minor axis. The percentage ciifference between 

the major and minor axes was used to describe the shape of the cookie and was calculated 

using equation ( 3.3 )- 



Where &@ = the length of the major axis 
%, = the length of the minor axis 

Besides the linear dimensions of  the cookie, the feature extractor also found the üghtness 

of the dough. The lightness measure was an approximation of the L* value as rnea~ufed 

by the Minolta colorimeter. The RGB values that desCnbed the image data were 

transformed to CIE XYZ color space, and then to the L*a*b* space. The 

transformations fiom RGB to CIE XYZ are shown in equations ( 3.4 ), ( 3.5 ), and ( 3.6 ). 

The transformations h m  CIE X Y Z  to L*a*b* are shown in equations ( 3.7 ) through ( 

3.12 ) (Ling et id, 1996). 

Where X = CIE X value R = normalized Red value of pixel 
Y = CIE Y value G = nomalized Green value of pixel 
Z = CIE Z value B = normalized Blue value of pixel 

Where L* = L* value 
a* = a* value 
b* = b* value 

h = CIE X,Y, or Z value 



The equations for RGB to C E  XYZ color transformations were based on Ling et 

al. (1996) but were modined to improve the color sensitivity of the system. The system 

was calibrated by adjusting the coeficients in equatlons ( 3.4 ) through ( 3.6 ) so that L* 

measurements sensed by the feature extractor agreed with the L* measurements sensed 

by a standard coIorimeter. 

Ident-g the percentage of chocolate chips visible on the cookies was a two 

step process. First the average iightness of the non-chip area was cdculated. To find the 

average dough Iightness, the average L* value of ail the pixels in the cookie with an L* 

value greater than 25 was calculated. Above this threshold every pixel was considered to 

be cookie dough. Then, using the average dough L* value, the dough-liawess-adjusted 

chip threshold was calculated using equation ( 3.13 ). All pixels below this threshold 

were considered to be chocolate chip. The calculation for finding the percentage of 

chocolate chips is shown in equation ( 3.14 ). 

Chip threshold = 0.462(h - 39.5)+16.0 

Where & = average L* value of cookie dough 

Where TotalChipArea = total cookie area in cm2 below chip-dough threshold 
TotalCookieArea = total cookie area in cm2 

A sample set of cookies was baked in a conventional oven at 32S°F several times 

and measured for dough iightness. With the chip/dough threshold adjustment, the 

Feature Extractor correctly identined higher percentages of chocolate chips as the 



cookies' dough became darker- The chip-threshold ecpation was found by changing the 

slope and intercept until the percentage chocolate chips sensed rrmained constant over ali  

the bake sessions. A total of five b&e sessions were used. The resulting range of dough 

lightnesses spanned the entire range oflightnesses used for polhg. 

3.2. Consumer Senso y Evduation 

The goal of the consumer evaluation was to ident@ and understand the behavior 

of the general population in judging chocolate chip cwkies. Four chtuacteristics were 

used to identify consumer behavior, including dough iightness, size, shape and amount of 

chocolate chips visible. 

Class ranges within each characteristic were dehed based on differentiability. 

Every attempt was made to separate classes as much as possible to provide the greatest 

observable merence between classes. At the same time, the range of values within each 

class was kept as narrow as possible so that cookies within each class appeared to be the 

same. 

The variabïiity of the coolcies aiso guided the development of the classes. The 

cookies used for the expriment were produced at a commercial bakery. Only a smali 

range of dough lightness was available because the baking process was fairly consistent. 

The size and shape of the cookie were also consistent because of the techniques used 

during production. The raw cookie dough was extruded through a die and then wire-cut. 

As a res* the raw cookie was a consistent flat disk. Inconsistencies in measuriag and 

mïxing the ingredients were minor and thus the variability of chips in the cookies was 

small. Compared to cookies that are hand made, the variabiiïty of the physical 



characteristics of the cookies used was low because the cookies were produced in a 

commercial bakery. 

The dough lightness for these cookies was extended beyond n o d  production 

ranges manualiy to genentte the desired observable diffierences between cookies. Dough 

lightness was manipulated by baking cookies to the required lightness. AcquUing 

different batches and b m â s  of chocolate chip cookies dso aided in extending the range 

of sizes. The fiw classes were defined by observable merences and are shown in 

Figure 3.5 through Figure 3.8. 

45.55 47.20 48.55 50.20 

Lightness (L* value) 

Figure 3.5 : Dough Lightness Membership Function 

Figure 3.6 : Cookie S i z e  Membership Function 



0.035 Shape (% diff.) 0.065 

Figure 3.7 : Cookie Shape Membership Function 

0.060 % chips visible 0.085 

Figure 3.8 : Percentage Chocolate Chips Visible Membership Function 

The fuzy classes chosen for the four characteristics resulted in a universe of 

twenty-four cookies. Cookies with complete membership in one class for each of the 

four characteristics were calied archetypes. Cookies with intermediate values between 

classes were considered partial members of multipie archetypes. 

Twenty-four archetypes were used to identify consumer behavior. The archetypes 

were separated into two blocks because there were too many cookies to present to the 

consumer judges ail at once. The blocking confounded the interaction between sizes, 

shapes, and chip area. Each block was presented to the coosumer sensory evaluation 

panel to rate using the line scale shown in Figure 3.9. The linguistic descriptions of 



quality provided a naturai and intuitive means for the test subjects to rate the cwkies. 

These panels consisted ofuntrained judges ai i  of whom were selected to represent a cross 

section of the Canadian population. Untrained judges were selected because training may 

introduce biases into the decision makuig process of consumers. Without training, these 

judges could generate an accurate representation of the behavior of an average consumer. 

M e r  the consumer judges evaluated the cookies, the ratings were recorded as 

measurements of the cookies' distances nom the ongin. The rating for each cookie was 

recorded as an average distance between the left and right edge of the cookie relative to 

the origin. 

Unacceptable Mar ginai Acceptable Outstanding 

I I 

1 1 1 i i i  1 I 1 1 1 I 
! 

7 5ocm j i 
i 

4 z l15cm - 
Figure 3 -9 : Polling Acceptability Scale Setup 

Three polls were perfonned to acquire data for consumer modeling and mode1 

validation. Each poll consisted of 30 consumer judges. Two difEerent sets of cookies 

were presented to the consumer judges. Bot .  sets of cookies represented entire range of 

permutations of characteristics for archetypes. The first set of cookies was used during 

the nrst two repetitions of polling. Many of the same judges who participated in the first 

repetition also participated in the second repetition. The consistency of consumer 

judgement was recorded by using the same people and cookies in two separate poils. 

The second set of cookies was used for the third poll repetition. The rnajority of 

the judges who participated in the third poli did not participate in either of the first two 



poils. The consistency of the consumer judgement between différent test subjects was 

recorded by the thud repetition. 

Upon completion of the three poll repetitions, an ansllysis of the mean ratugs for 

reguiar and irreguiar cookies showed that shape was not a significant influence on the 

consumer ratings. For consumer modelùig, the ratings for both regular and iwgular 

cookies were combined. As wen, an error was found in the feature extractor after 

compIeting the nrst three polis. This error affécted the accuracy with which the cwkies' 

dough lightness and chips were sensed but size and shape were not affécted. As a result, 

40% of the cookies that were originally considerd archetypes were actually outside of 

the deked ranges for thei. classes. These cookies were discarded and a new set of 

archetypes was established nom the remaining archetype cookies. The discarded cookies 

were used for validating the consumer models and were calied Validation Set 1. The 

universe of archetypes was reduced to twelve permutations by etiminating the shape 

characteristic. The resulting twelve archetypes consisted of three classes of dough 

Iightness, two classes of size, and two classes of percentage of chocolate chips visible. A 

Iist of the ratings for the twelve archetypes can be found in Appendix E. 

A general h e a r  mode1 (GLM) procedure (SAS, 1998) was performed on the 

cookie ratings for ail three poils to identify the effect of the characteristics, and two- 

factor combinations thereof, on the ratings. The analysis also identified the significance 

of the poil repetitions, the individual panelists, and the effect of the blocking. The GLM 

program can be found in Appendix C and was written for SAS. The results of the GLM 

procedure were used to guide the development of the consumer models. 



3.3, Consumer Evduation for Vriliàatioon 

A new set of cookies was established for validation and was cded Validation Set 

2. Three blocks of ten cookies were selected and can be found in Appendix D. Efforts 

were made to create each set of cookies to represent a diverse set of characteristic 

combinations. The cookies used were partial members of two or more archetypes. 

Dirring the nrst validation pou, the each set of cookies was presented to twenty people for 

judgement. A second validation poil was performed where the sets were presented to 

thirîy people each. 

3.4. Fuzzy Logic Decision Engines 

Two different fuzy logic engines were developed for cornparison. The first 

engine was a traditionai fuznl logic engine based on a Sugeno type fuzy techniques 

while the second was based on a weighted-average technique. 

The membership ~ c t i o n s  for defuzzification were the same diagmms depicting 

the characteristic classes, Figure 3.5 through Figure 3.8. Both the traditionai, and the 

weighted-average consumer models used the same membership f'unctions to fuzPfy the 

cookie characteristics, however, the engines Hered  in how they manipdated and 

combined the membership grades. 

3.4.1. Traditional Fu'lr~ly Engine 

The membership grades for dough lightness, sue, and percentage chips visible 

were used by twelve d e s .  Each d e  represented one permutation of characteristics in 

the universe of archetypes. The truth-value for a d e  was defined as the minimum 



membership of ai l  the de's antecedentsy lightness, size, and percentage chips and was 

calcuiated by equation ( 3.15 ). 

Where ti = the mth value for d e  i 
Lightness =the degree ofmembership in lightness characteristic for d e  i 
Size = the degree of membership in size characteristic for d e  i 
Chips = the degree of membership in chips characteristic for d e  i 
i =the f'rule in set of d e s  

The tnith-vdues of the consequents were then clipped to the minimum tnith-value 

of the d e ' s  antecedents. The consequents for each d e  were the mean rathg and the 

variance of the ratkgs h m  the associateci archetype. The consequent mean values were 

then aggregated to generate the prediction of the cnsp mean as seen in equation ( 3 -16 ). 

Where Cnsp-mean = the predicted rnean of the consumer ratings 
n = the number of consequents in the fuzzy engine 
i = the Ih consequent in set of consequents 
ti = maximum truth value for consequent i 
Mi = mea. rating of archetype i 

The variance with the maximum tnith-value was used as the predicted crkp 

variance, as  shown in equation ( 3.17 ). The predicted variance provided an assesment 

of the variability of consumer ratings about the predicted mean. 



Crisp-variance = of d e  with greatest ti for ai l  i in n 

Where Crisp-vatiance = the predicted variance of consumer ratuigs 
62i = the variance for nile i 
ti = the truth value for d e  i 
n = the number of rules in the fuzzy engine 
i = the rnde in set of d e s  

3.4.2. Weighted Average Fuzzy Reiatioa Engine 

A cookie that was judged by the system was c d e d  a sample. To find the 

predicted consumer opinion, the archetypes to which the sample had partiai belonging 

were found. These archetypes made up the decision space for the sample. This decision 

space was called a context, 

AU of the archetypes in the context were then compared based on the mean and 

variances of their polled consumer ratings. If any two archetypes had mean ratings that 

were farther than 8 cm apart, or if their variances differed by more than 150 cm2, then 

they were considered to be rated difTerently by the consumer. If the two archetypes were 

considered to be different, then the physical characteristics that differentiated the 

archetypes were given comparative weights. Each archetype in the context began with 

weights equal to 1.0 for dl characteristics. Then the weights of the characteristics were 

changed based on the ratings of the archetypes. 

For example, a sample X had partiai belonging to archetypes A (iight, large, lots 

of chips: mean 80, variance SOO), B (light, large, few chips: mean 70, variance 400), C 

(medium, large, few chips: mean 40, variance 250) and D (medium, large, lots of chips: 

mean 80, variance 450). These archetypes make up the context for sample X. Sample 

- X's fuzy description was light (Tmight = 0.7), and a member medium (TmthmediW - 



0.3), large (Tmi, = 1.0) and d = O.O), and £ïnallyy lots of chips 

(TruthIOts~-PS = OS), and few chips ~ruthftwChips = 0.2)- 

To determine the characteristic weights for archetype Ay A was compared to ali 

other archetypes in the context. The cornparisons and resuiting weights c m  be seen in 

Table 3 -3. 

Archetypes for Cornparison Results of Ditrering 
Comparison Characteristics 

A (light, large, lots ofchips: mean 80, var 500) 
vs 

B (iight, large, few chips: mean 70, var. 400) 

A (light, large, lots of chips: mean 80, var. 500) 
Vs 

C (medium, large, few chips: mean 40, var. 250) 

A mean > 8 cm 

.O. rateci 
difEierently 

A mean > 8 cm 

I differentl y 
A (light, large, lots of chips: mean 80, var. 500) 1 A mean < 8 cm 

1 .-. rated the same 1 

chips (weight 
+l .O) 

lightness 
& 

A v=. > 150 cm2 

:. rated 

N/A 
vs 

D (medium, large, lots of chips: mean 80, var 450) 

Resulting attribute weights for Archetype A: 

(weight +1 .O) 
& 

chips 
(weight +1 .O) 

& 
A var. < 150 cm2 

Lightness Weight = 2.0 
Size Weight = 1 .O 
Chips Weight = 3.0 

Table 3.3 : Technique for Setting Archetype Characteristic Weights for Weighted 
Average Fuzzy Engine 

This process was repeated for archetypes B, C and D. The characteristic weights 

for B were 3.0 for Lightness, 1.0 for size, and 3.0 for chips. The weights for C were 3.0 

for lightness, 1.0 for size, and 3.0 for chips. Finaliy, the characteristic weights for 

archetype D were 2.0 for lightness, 1 .O for size, and 3.0 for chips. 
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Next, the weighted-average of the characteristics was used to determine the 

degree of belonging of the sample to the archetypes in the context. The equation for 

cdculating the degree of belonging can be sem in m o n  ( 3.18 ). 

Degree of Belonging to Archetype = (wmL+ wmS+ wcm) + (WL+ ws+ w,) ( 3. 18 ) 

Where WL = weight for Ligbtness characteristic 
w, = weight for size characteristic 
w, = weight for %chip characteristic 
r n ~  = degree of membership in iïghtness characteristic 
rus = degree of membership in size characteristic 
m, = degree of membership in Yochip characteristic 

The degree of belonging to an archetype was used as a weight to produce the 

predicted mean. The equation for calculating the predicted mean can be seen in equation 

( 3.19 ). The calculation for variance was similar to that of the traditional fuzy engine. 

The variance of the archetype to which the sample had the highest belongïng was used as 

the predicted variance. The calculation for the variance can be seen in equation ( 3.17 ). 

Where a = the first archetype in the current context 
b = the last archetype in the current context 
wi= the weight of archetype number i 
pi = the mean ofthe consumer rating distribution for archetype i 
i = the ?rule in set ofrules 

To continue the example, the degree of belonging for X to each archetype was 

caiculated using equation ( 3.18 ). The degrees of belonghg are 0.8 archetype A, 0.53 

archetype B, 036 archetype C and 0.67 archetype D. Using equation ( 3.19 ), the nnal 



predicted crisp mean was calculated as 71.6. The nnal -cted variance was 500 

because sample X belonged to archetype A the most. 

3.4.3. AcceptlReject Decision MiLùig 

Both engines used a normal distribution that was fiaed to the predicted mean and 

variance to represent the predicted distribution of consumer ratings for a cookie. The 

predicted distributions were used to make decisions about the acceptability of a product 

sample. 

These decisions were made by choosing a target rating, and by choosing a target 

percentage of the population above that rating. If at l e s t  the target percentage of the 

population judged the cookie equal to or greater than the target rating then the cookie was 

accepted. For this experiment, the target rathg was 50 cm and the target percentage of 

population was 70%. 50 cm was approximately the mid-point between acceptable and 

marginal. Cookies where 70% or more of the population rated the cookie to be 50 cm or 

better were accepted. These criteria accept the risk that at most 30% of the population 

may deem this cookie marpinai or worse. 

34.4. Tuning the Consumer Models Using the Outlook 

To account for the vaiability of consumer decision making and to accommodate 

diffierent target consumers, both engines aiso aliowed the predictions of consumer ratings 

to be shifted up or down. The coefficient used to shift the predictions was cailed the 

Outlook. Positive Outiwh shifted the prediction up, while negative ones shifted the 

predictions d o m  the rating d e .  The calculation for shifting the means can be seen in 



equation ( 3.20 ). The conildence interval of the mean for each archetype was calculatecl 

using the individuai archetype means k m  each poil and can be found in Appendix G. 

Archetype-meani = pi + O * Cf for d i in n ( 3.20 ) 

Where Archetype-memi = the redting shifted mean for archetype i 
pi= the mean for archetype i before shifting 
O = the outIook coefficient 
Ci = Confidence interval for archetype i 
i = the archetype number 
n = the entire universe of archetypes 

The mean for each archetype was shified before perfiorming the des or weight 

assignrnents. The Outlook shodd vary between - 1 .O to + 1 .O. At a value of 1 -0 in either 

direction, the archetype means are shifted to the tirnit of the confidence interval. In 

effect, the shifting accounted for the degree of uncertainty in the consumer evaluation 

data. 

3.4.5, Validation of Consumer Models 

The cookies in Validation Set 1 (Appendix E) and Validation Set 2 (Appendix D) 

were used ta perform validation testing on the consumer models. First the ratings for the 

Set 1 were compared to the predicted ratings. nien the ratings generated by Set 2 were 

compared to the models' predicted ratings. The performances of the consumer models 

were demonstrated by these tests. The cookies in Set 1 and Set 2 had characteristics that 

were between the class ranges for archetypes. Therefore, the performances of the 

consumer rnodels in predîcting consumer behavior for cookies between archetypes couid 

be displayed by comparing the actual versus the predicted ratings on these cookies. 



Furthemore, the efficacy of adjusting the outlook in fine tunllig the acceptance of 

cookies was also displayed durhg validation. 

4. Resdts md Dhcussion 

4.1. Feahve Extraction and Image Processing 

The feature extractor was evaluated for accuracy in qyantifjhg dough iightness, 

size, shape, and chocolate chips. Its ability to extract the lightness of the dough was 

tested by comparing the lightness values of four brown plates as sensed by the system, 

versus a colorimeter. The system's ability to recognke average diameter, major and 

minor axes, and percentage of chips visible were tested by viewing the locations of the 

extracted features relative to the original image. In addition, the extracted percentage of 

chips visible was dso tested over a range of dough lightness values to ensure consistent 

identification. 

To establish the performance of the system in sensing dough lightness, the feature 

extractor was tested against a colorimeter. The L* value for four brown plates of similar 

lightness and hue to cookie dough were measured by both the f e e  extractor algorithm 

and colorimeter, and then compared. 

The performance of the system in extracthg the lightness of different shades of 

brown can be seen in Figure 4.1. The graph shows that the system did not reproduce 

exactly the tme L* values of the brown wlored plates as sensed by the colorimeter. 

However, the system was sensitive enough to adequately distinguish between dif5erent 

lightness values in the light brown to dark brown color regions similar to cookie dough. 



Figure 4.1 : Graph of L* value Measurement for Feature Extractor versus Colorimeter 
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The accuracy of the feature extractor in identifying the average diameter and 

major and minor axes was veriîïed visually and m a n d y  by comparing the sensed 

dimensions to those measured by hand The visual inspection included viewing the 

extracted perimeter of the system, and then comparing the found perimeter to the actual 

cookie image. 

The system's ability to extract the physical dimensions of the cookies can be seen 

in Figure 4.2, through to Figure 4.4. The original image of the cookie is shown in Figure 

4.2 while the extracted perimeter in Figure 4.3. The perimeter image shows that the 

feature extractor faiuifiilly reproduced the edge of the cookie. In Figure 4.4, any pixel 

considered outside the cookie is colored dark gray. The processed image shows that the 

feature extractor found the area and the center of gravity, labeled c.o.g, of the cookie 

accurately. 

* Extracted L* L 

Extracted L* 2 

A Extracted L* 3 

I Extracted L* 4 

C o l o r i m e t e r  L* 1 
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Figure 4.2 : Original Image of Cookie Before Processing 

I 
Figure 4.3 : Image of the Extracted p e h t e r  

Figure 4.4 : Image of Cookie with Mean Radius, Major and Minor e s  Extracted 



The average radius of the cookie is show11 as the da& circle ovedaid on the 

image. The major and minor axes are also labeled- The image shows tbt these feanires 

were properiy extracteci. However, the accuracy ofthe feature extractor in measurïng the 

Iength of extracted features in centimeters depended on the cal'bration of the lem. The 

system generated results that were consistent with the actuai dimensions based on manuai 

measurements with a d e r .  The accuracy of the pixel-to-distance and the square pixel-to- 

area translations were maintained by ensucing that the field of view dispiayed exactly 

14-25 mm per 480 pixels. 

Mean radius and axes confidence factors were used as indicators to show whether 

or not a fidl search around the perimeter was achieved Sporadicaily, there was noise in 

the image to such a degree that the program couid not identify the entire perimeter, and 

thus some searches were temiinated prematureIy* Noise can be described as an area of 

low contrast between the cookie edge and the background. Shadows or other 

environmental phenornena generated these areas of low contrast. Failures to accurately 

extract cookie features were resolved by re-capturing the cookie or by retouching the 

image by hand. The images were retouched by replacing the low contrast background 

areas and the shadows cast by the cookies with white space. 

The success rate for complete searches for both the mean radius and axes was 

about 80 % without retouching the images. However, when taking into account 

retouched images, the success rate for complete mean radius and axis extraction 

approached 95 %. The success rate including retouching is acceptable given the random 

edge profiles of the cookies. 



V i d  feedback was also used to verify that the chocolate chip areas were 

properly extracted. Consistent chip extraction was tested over the entire spectrum of 

dough lightness-values. The test was conducted by baking a cookie several times and 

extracthg the chocolate chips after each bake. The perfôrmiance of the extractor in 

finding the chip area can be seen in Figure 4.5. E2ctracted chip areas are identifieci in the 

image as the gray areas covering the chocolate chips. Relative to the original cookie 

"age in Figure 42, the processed imaged shows thaî the chips were properly extracted 

while very little dough was mistaken for being chocolate chip. 

Figure 4.5 : Image of Extracted Chocolate Chips 

The performance of the feature extractor in extracthg chips fiom the cookie d e r  

each bake can be seen in Figure 4.6. The graph shows that despite the cookie's changing 

dough-lightness, the percentage of chips identined was fairly consistent. The graph dso 

shows the performance of the chip threshold algorithm. Without the chip threshold 

correction performed by the program, the amount of chips sensed by the system would 

have been erroneous and would have increased as the cookie darkened. 
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Figure 4.6 : Percentage of Chocolate Chips Sensed vs Average Cookie L* Value 

The graphs and images show that the feature extractor identitïed cookie featues 

accurately. The accuracy of the system depended on the calibration of the system. 

Repeatability is important when caiibrating this system given that the feature extractor is 

very sensitive to improper calibration. Poor calibration of the size of the field of view 

generates erroneous cookie size quantification by the feature extractor. Errors in 

adjusting the color sensitivity of the camera change the extracted iightness of the cookie 

dough, and can affect the extracted percentage of chips. CareW attention was paid to 

each calibration performed, but none the less, there existed a smaii degree of variability 

in the measurements. 
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4.2. Consumer Sensory Evaluation 

---- 

To evaluate consumer behavior, a h e  scale was used to display the judgement of 
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L 

the consumers. The scale provided Linguistic descriptions to which consumers could 



relate their judgement For andysis the d e  also hilitated numericd measurements of 

the consumer ratings. The dationship between the visual stimuli of a cookie and the 

consumer responses wuld be identifid using these measurements. 

AnaIysis of the consumer beha-or for shape showed that the ratings fot regulady 

shaped cookies wae similas to those for ïrreguiarly shaped cookies. Therefore, shape 

was not a very important feature in consumer judgement of chocolate chip cookies. The 

ratings for regular and irregular shaped cookies wae combined resuiting in twelve 

archetypes. The generai trend of consumer opinions for the archetypes was displayed by 

combining and graphing the ratings fkom aU three poiis. These graphs can be seen in 

Figure 4.7 and Figure 4.8. 
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Figure 4.7 : Mean Archetype Ratings Versus Dough Lightness for S m d  Size Archetypa 



The graphs showed that dark cookies were less desirable than Light or medium 
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cookies. Furthemore, the graphs showed that a small size cookie was rated lower than a 
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Iarge one. Whiie size had a weaker influence on consumer judgement than lightness, it 
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Figure 4.8 : Mean Archetype Ratings Versus Dough Lightness for Large Size Archetypes 

was still important to the decision-makbg process. Finally, people had a preference for 

lots of chips over cookies with few chips. A large difference between the mean ratings 

for the classes of chocolate chips showed that chips were sipnincant factors in decision- 

A more detailed anaiysis was needed to establish the signincance of interactions 

between characteristics, classes, and the ratings of the cookies. Information about the 

effiect of panelists, blocking and poli repetitions on the consumer ratings was also needed. 

The results of a general-linear-mode1 (GLM) anaiysis of variance on the data can be seen 

in Table 4.1. The procedure wss used to identify the signincant influences on the 

consume ratings. The anaiysis showed that dough lightness, size, and chips were directly 



related to the cookie rating. The enalysis also showed that poii-repetitions, individual 

panelists, and certain interactions were also related to the consumer ratings. 

Total Degrees of Freedom : 1 188 
Mean Square Error : 488 

Source 
Main 1 Poll Repetition 
effects 

1 actions 1 Lightness & Chips 1 2 1 1452 1 2.97 

DF 
2 

Inter- 

1 Size & Chips 1 1 1  13957 1 28.59* 
* signifïcant at 95% confidence intervai 

 est Individual 
Cookie Set 
Dough Lightness 
Cookïe Size 

Table 4.1 : GLM Analysis of Sensory Panel Data 

Mean Square 
2433 

29 
1 
2 
1 

% Chips Vk'bie 
Lightness & Size 

The GLM analysis also indicated that the mode1 had an R~ of less than 0.5. The 

low R~ term shows that statisticaily, there is a weak correlation between image 

characteristics and consumer ratings. 

These results were used to guide M e r  data analysis. Based on the graphs in 

Figure 4.7, and Figure 4.8, integration d e s  were used to describe the trends exhiiited by 

the ratings for each characteristic. For example, the ratings for medium and dark cookies 

exhibited an additive integration fûnction for dough lightness in this range. The 

consumer ratings increased fiom the dark cookie to the medium lightness cookie. 

F Vaiue 
4.98* 

However, the iight cookies were rated inconsistently. The graphs of consumer ratings 

indicated that for the range of dough lightness used for this experiment, the consumers 

did not deem light cookies to be better than medium lightness cookies. 

The integration fiuiction for size was additive. Larger diameter cookies were 

rated consistentiy higher than smaller cookies. The light, smali, and few chips archetype 

1 
2 

20933 1 
8252 

428.80' 
16-90' 



was an exception to the d e C  Consumer rating variability may have contri'buted to these 

unique consumer ratings. 

FinalIy, the relationship between consumer ratings and percentage of chips ViSibIe 

was also additive. The ratings for cookies with lots of chips were higher than cookies 

with few chips for ail combinations of dough iightness and cookie size. 

The graphs of archetype meam displayed the trends of the consumer opinions, but 

more information about the ratine was needed to understand consumer judgment, The 

ratings for any given cookie were distributed dong the iine sale. Statistical analyses on 

the ratïngs for each archetype can be found in Appendix F and G. A nnnmary of the 

analyses, including the mean, variance, and skewness can be seen in Table 4.2. 

When assessing the consumer judgement for a cookie, it was important to 

consider the variance of the ratings because many of the distributions spanned the entire 

h e  scale nom unacceptable to outstanding. The variance of the distributions ranged 

h m  204 cm2 to 865 cm2. A srnail variance indicated that there was good agreement 

between consumers when rating that particular cookie. 



Archetype Rating Stafwt id  S u m n i ~  I 
light, mal t  fau chips 

51.13 
Sample Variance 503 -92 
Skewness 0.32 

medium, s d ,  few chips 

Sample Variance 3 54.45 
Slcewness 026 

small, fau chips 

Mean 17.86 
Sample Variance 204.27 
Skewness 0.94 

Mean 41 -83 
Sample Variance 673.66 
S kewness 0.42 

medium, largeJ few chips 

Mean 48 .O5 
Sample Variance 424.84 

&k, lurge, fau chips 

Mean 27.07 
Sample Variance 3 70.16 
Skewness 1.01 

70.56 
Sample Variance 496.26 

Imediurn, small. lots of  chbs 1 

Mean 68.90 
Sampie Variance 475.89 
Skewness -1.18 

&R smaII, lots of chips 

34.55 
Sample Variance 582.5 1 
Skewness Mun 0-79 1 

r 

Iighc Iarge, lots ofchips 

79.00 
Sample Variance 559.1 1 
Skewness -1 .O3 NI 
medium, largeJ lots of chips 

82.57 
Sample Variance 366.53 

i 
darR largeJ lots of chips 

Mean 66.00 
Sample Variance 864.79 
Skewness -0.28 

Table 4.2 : Summary o f  Statistical Analysis of Archetype Rating Distributions 



The skewness of the distributions ranged h m  approximately - 1.2 to + 1.0. 

These values indicated that many of the distributions were asymmetric about their mem.  

The statisticai analysis of the consumer evaluation ratings continued with an 

investigation of the confidence intervals of the archetypes. The confidence intervals 

assessed the reliabifity of the mean for an archetype based on the variation over the three 

polls, each including 30 consumers. 

The reliability of each overail archetype mean was measured as a 95 percent 

confidence level on the mean rating from each poll for that archetype- The coddence 

intervals can be seen in Table 4.3, and are quite high for some of the archetypes- The 

iight, large archetypes, and the medium, large, few chips archetype had large confidence 

intervals because the variance of the means for these cookies was high given the amount 

of data available. A confidence internai was not calculated for the medium, smali, lots of 

chips archetype because data fiom only a single poil represented the consumer opinion 

for that archetype. When using these archetypes to evaluate consumer behavior, the 

variability of their ratings needed to be taken into account. The large confidence 

intervals for these archetypes indicated that the potentiai range of data for these 

archetypes might be more diverse than for other archetypes. 

However, in general the confidence intemals for most of the archetypes were 

reasonably small, approximately 20 cm or less. These values therefore indicated that the 

majority of the consumer data was an acceptable representation of consumer judgment. 

Furthemore, these values also show that predictions of consumer behavior using this set 

of data shouid be rasonably accurate. 



Coolrie type 

light, s d ,  few chips 

light, s m d ,  lots of chips 

light, large, few chips 

tight, large* lots of chips 

medium, d, few chips 

medium, d, lots of chips 

medium, large, few chips 

medium, large, lots of chips 

M c ,  s d ,  few chips 

M c ,  small, lots of chips 

iark, large, few chips 

iark, large, lots of chips 

Iower mean "PPer 

Note: al1 measurements are in centimeters 

Table 4.3 : Cornparison of Confidence Intervals for Archetype Means 

The graphs of the archetyperneam showed the trend of consumer judgment for 

dough lightness, size, and chips in detail. The GLM analysis identined dough lightness, 

sue, chips, pou repetitions, and panelists as signincant innuences on the ratings of the 

cookies. A statisticd nnalysis of the archetypes' consumer data showed that the ratings 

were distributions dong the line scale. Finally, the confidence intervals showed that the 

consumer judgement data provided an acceptable representation of consumer opinion. 



43. Fuzzy Logic Decision Engines 

Two consumer modeIs were developed based on the data acquired during semory 

evaluation. Both consumer models used fuzzy logic to imitate consumer responses to 

dough iightness, size, and chocolate chips. Because the sensory evaluation and statisticd 

analysis showed that consumer responses were distributions dong the line scak, normal 

distributions were used to represent the predicted consumer behavior. The normal 

distributions were constructed fiom predicted the means and variances generated by the 

fuzzy engines. 

The models also allowed the predicted ratings to be fine tune6 An analysis of the 

confidence intervals for the ratings showed that there was some uncertainty in the 

consumer data acquired. An adjustment cailed an Wutiook" was used to tune the model 

to account for this uncertainty when predicting consumer behavior. The predicted means 

were shifted up or down the rathg scale using this tuning variable. 

The first consumer model developed was a traditionai min-max, rule-based, fuzy 

logic decision engine. The second consumer model was a weighted-average, rule-based 

fuzzy logic decision engine. The performances of the models are discussed in the 

following sections. 

43.1. Traditionai F v -  Engine 

The traditional fuzy consumer model reproduced trends that were similar to 

those identified in the sensory evaluation data in Figure 4.7 and Figure 4.8. In other 

words, light and medium cookies were given higher ratings than dark cookies. Cookies 



with a lot of chips were rated higher than those without, Finaiiy, large cookies were 

given higher ratings than smaii cookies. 

The predicted masumer ratings produced by the traditional fiizzy system can be 

seen in Figure 4.9. The means for each archetype summarkd in Table 4.2 were 

reproduced by the archetype areas, seen as the flat regions in the decision space. Regions 

of transition between the predicted archetype means were sloped daces .  The predicted 

mean ratings in the transitions were graddy  interpolated between archetypes. 

The variance in the ratings for cookies was not interpolated between archetypes, 

rather the variance of die archetype with the greatest degree of tnith was used as the 

predicted variance. Figure 4.10 shows that the decision models reproduced the variances 

in the archetype ratings as summarwd in Table 4.2. The predictions of consumer 

behavior vanarrance were important when judging cookies on the borderline of rejection. 

For example, if the predicted mean response for a cookie was acceptable and the 

predicted variance was srnail, then most likely the cookie would have been accepted. 

However, if the cookie's ratings had the same predicted mean but a large variance, then 

the likelihood of rejecting the cookie wodd have been higher. 



Predicted Mean Rating vs Lightness and 
Chips for Smaïl Cookies and 0.0 Oatlook 
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Figure 4.9 : Predicted Means for the Traditional Fuzzy Engine 



Predicted Variance vs Lightness and 
Chips for Smalï Cookies 

Variance 
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Figure 4.10 : M c t e d  Variances for the Traditional Fuzy Engine 



4.3.2. Weighted-Average F u ~ y  Engine 

The performance of the weighted-average consumer model was s i d a r  to the 

traditional fuPy engine. Light and medium cookies were rated higher than dark cookies, 

and large coolcies were rated hlgher than srnail ones. As weU, the model predicted that 

cookies with lots of chips wodd be rated higher than cookies with few of chips. Figure 

4.1 1 shows that the model predicted trends in the mean consumer rating that were similar 

to those obsemed fkom the sensory evduation data in Figure 4.7 and Figure 4.8. 

Furthemore, the predicted means for archetypes rnatched the actuai ratlligs in Table 4.2. 

The Merence between the traditional engine and the weighted-average engine 

was in the treatment of the trausitions between archetypes. The transitions for the 
I 

weighted-average fuzy engine were a series of steps with different slopes. These 

stepped transitions are in con- to the traditional fuzy engine, where the transitions 

were gradual. Each transition plane in the weighted average consumer model represented 

a different context where a cookie belonged to two or more archetypes. 

The weighted-average fuzy engine accentuated the differences between each 

context. The transition contexts brought the predicted means closer to the average mean 

for all  the archetypes in that context. Essentially, the engine provided a compromise 

between binary decision making and pure fuzzy interpolation between archetypes. The 

engine classified cookies as either king a pure archetype or a transition cookie. 



Predicted Mean Rathg vs Lightness and Chips for 
Smaîl Cookies and 0.0 Ontlook 

Predicted Mean Rating vs Lightness and Chips for 
Large Cookies and 0.0 Outlook 

Figure 4.1 1 : Predicted Means for the Weighted-Average Fuzzy Engine 



The predictions of the variance for the weighted-average Npy engine were 

generated in the same marner as the traditional engine and c m  be seen in Figure 4.12. 

The variance was not interpoated, mther, the variance of the archetype with the greatest 

degree of tndh was used as the predicted variance. 

4.33. Distributions of Preàîcteâ Consumer Responses 

For both the traditional, and the weighted-average fuzzy engînes, a normal 

distriibution was used to represent the predicted consumer opinions. The normal 

distribution was constructed fkom the predicted mean and variance. Figure 4.13 

compares the predicted distribution of consumer ratings for a light, large cookie with lots 

of chips to actual ratings recorded during sensory evduation. The skewness of the actual 

ratings was approximately - 1 .O. Although the skewness was hi&, the maximum point 

of the predicted distribution was acceptably close to that of the actuai distribution. This 

archetype distribution, even with a high degree of skewness, had its maximum within 15 

cm of the predicted maximum. 

The error generated by approximating a skewed distribution with a syrnmetric 

normal distribution was acceptable because the consumers' rathg for any given cookie 

can change during a single day. For example, the consumer judgement of any cookie 

may be affected by the hunger of a test subject. Christensen (1983) showed that hunger 

affects peoples' food choices. A cookie judged before a meai may have been considered 

acceptable, while after a large meal, the cookie rnay have then k e n  judged as ody 

marginally acceptable. 
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Figure 4.12 : Predicted Variances for the Weighted-Average F m  Engine 



Figure 4.13 : Actual and Predicted Ratings for Light, Large, and Lots of Chips Archetype 

To fine-hine the predictions, both consumer models used the Outlook to shift the 

predicted mean. Positive Outiooks shifted the predictiom up the rating scale, while 

negative Outlooks shifted the predicted distributions downward. 

The Outlook shifted the means of the archetypes by using their archetypes' 

confidence intervals. The uncertainty in the semory evaiuation data was incorporated 

into the consumer models through the Outlook. Large coddence intervals represented 

more uncertainty in the data, and thus generated large shifts in the mean. On the other 

hancl, archetypes with smali confidence intervals were good representations of consumer 

opinion and thus shifted ody slightiy with the Outlook The graph in Figure 4.14 shows 

how the Outlook can alter the leniency of the system. Ifa negative Outlook was used? the 

system shifted the prediction down the rating scaie. A shift up the scale was observed for 

positive Outlooks. 
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Figure 4.14 : The Effect of DBerent ûutiooks on the Predicted Consumer Ratings for a 
Light, Large, Lots of Chips Cookie ( T ' t i o n a l  Fuzzy Engine) 

The intended uses of the consumer models were for assessing the risk of 

accepting or rejecting a cookie. To assess the risk of accepting a cookie, a manufacturer 

wouid decide on a target rating to @ o r -  the ri& assessment. In this example a target 

rating of 50 cm was chosen. This rating represented approximately the halfway point 

between acceptable, and marginaUy acceptable on the line scale. 

The resuits of the system's prediction for a Light, Large, Lots of Chips cookie cm 

be seen in numerically in Table 4.4 and graphically in Figure 4.14. The table shows the 

effect of adjusting the Outlook. The risk of accepting this cookie usuig a 0.0 outiook was 

that 12 percent of the population wouid consider the cookie marginal or worse. An 

outiook of -0.25, generated a prediction that 27 percent of the population would consider 

the cookie marginai. By tuning the engines uskg the Outlooks, the systems could be 



tailored to suit different target consumers. Negative Outlooks would cater to customers 

that were very pic@ about their food Conversely, positive Outlwks would cater to 

customers that were less diScrimiDating about the food they consumed. 

Table 4.4 : Predicted Rating Distniution for a Light, Large Cookie, with Lots of Chips 
using the Traditional Fuzy Engine 

For example, if the cookies were king prepared for co~lsumption as snacks on 

long a irhe  flights, the cookie manufacturer may use a more positive Outlook on the 

judgement of the cookies. In this situation, the passengers on the plane may be less 

critical of food quality therefore the manufacturer may include a wider range of cookies 

than usual. 

On the other han4 if the cookies were being presented for advertising or 

promotion, the manufacturer may make the judgement of the system stricter by using a 

negative outiook. In this situation enniring high quality is necessary because the cookies 

wodd be under close scrutiny. A negative Outiook is used to bias the predicted ratings to 

represent a more critical consumer. 

Care must be taken when adjusting the Outlook. If large Outlooks approaching I 

Outlook 
Value 

-0.25 
0.00 
0.25 

1.0 are use& the predictions generated by the system may no longer be a good 

representation of the consumer opinions. Although at the Mt of the Outlooks the shifts 

Target 
Rating (cm) 

50 
50 
50 

are still within the 95 percent confidence interval of the mean, the quality of the data 

should be taken into account. If there is little data representation for an archetype, that 

i 

Percentage of Population 

Above 50 cm 
0-73 
0.88 
0.96 

Below 50 cm 
0.27 
0.12 
0.04 



archetype will have a large confidence interval. Therefore, a large shift in the mean 

would result h m  any adjustments to the Outiook- These Large shifts may produce poor 

predictions in consutnet opinion. 

43.4. Consumer Modeling and F q  Logic 

Fuzzg de-based models are very similar to human thinking and behavior. T m o  

et al. (1987) refer to fiuzy logic as C%uman simulation". in fact, the structure of fbzzy 

logic as implemented in these models is very similar to the structure of decisionmaking 

as defined by integration theory. FFirsf crisp inputs are analogous to physical stimuli. 

Secondly, membership functions mimic the translation of the stimuii ïnto psychological 

sensations. Thirdly, i.dinfece d e s  are similar to the integration stage of decision 

m a h g .  Finally, definification and crisp outputs are comparable to the response stage. 

43.5. Vaiidation of Consumer Modeîs (Validation Set 1) 

The consumer models were assessed for theK accuracy in predicting consumer 

ratings by comparing the predicted consumer ratings to the actuai consumer ratings. The 

first cookie set used for this assessment was Validation Set 1. These cookies were 

presented to the consumers at the same thne as the archetypes but were not used for 

modeling. Many cookies were partial members of two or more archetypes. The 

performance of the models in predicting cookies that were partial members of two or 

more archetypes can be seen in the foUowing analysis. 

The predicted and actual ratings were compared by graphing the predicted 

percentage versus the actud percentage of the population that was above a 50cm rating. 

These graphs can be seen in Figure 4.15 and Figure 4.16. A cookie was acceptable if 70 



percent or more of the population rated the cookie 50 cm or better. The graphs show that 

the traditional and the weighted-average fuzy engines performed weIi on the validation 

cookies. The acceptfreject error rate on the validation cookies for both engines was 

approximately 27 percent These graphs show that consumer behavior can be effectively 

reproduced by predicting both the mean and var*ance. 
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Figure 4.15 : hedicted Vernis Achial Accepted and Rejected Validation Cookies for the 
Traditional Fuzy Engine Using 0.0 Outlook (Vaüdation Set 1) 
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Figure 4.16 : Predicted Versus Achial Accepted and Rejected Validation Cookies for the 
Weighted-Average F u z y  Enghe Using 0.0 Outlook (Validation Set 1) 

The graphs also show that the acceptlreject condition was very strict. Very few 

cookies were considered acceptable. The models only accepted about 20 percent of the 

cookies. By changing the Outlook, the predictions can be tuned to provide a higher rate 

of acceptance without changing the acceptheject conditions. The Outlook can be 

adjusted to account for the uncettainty in the data upon which the mode1 was b d t .  A 

positive outlook generated an optimistic prediction of the consumer behavior. 

Figure 4.17 and Figure 4.18 demonstrate the effects of adjusting the Outlook. As 

compared to the results shown in Figure 4.16 and Figure 4.1 7, the number of false 

negatives was reduced significantly by changing the Outlook h m  0.0 to 0.4. With an 

Outlook of 0.4, the consumer models properly classined approximately 80 % of the 

cookies while the number of false negative classincations were reduced by 40 % for the 

traditional engine and 60 % for the weighted-average engine. 



Figure 4.17 : Predicted Versus Actuai Accepted and Rejected Validation Cookies for 
Traditionai Fwzy Engine Using 0.4 Outlook (Validation Set 1) 

Figure 4.18 : Predicted Vernis Actuai Accepted and Rejected Validation Cookies for 
Weighted-Average F u p y  Engine Using 0.4 Outlook (Validation Set 1) 



To M e r  examine the pediormance of the consumer modeis, dSierences betsveen 

the predicted and the actual percentage of population above a 50cm rating were also 

calculated and can be seen in Figure 4.19. If the models were perfect in predicting 

consumer behavior then the difference would equd zero. Ifthe difference was negative, 

then the fiiw engines rmder-estimated the consumer rating. If the difference was 

positive then the models over-estimated the actual rating. 

1 8 Weight Avg. Fuzzy . Traditional ~uzzy l  

Figure 4.19 : Performance of the Consumer Modeis' Predictions of Percentage 
Population Above 50 cm Rating with 0.0 Outlook (Validation Set 1) 

The graph shows that neither the traditional nor the weighted-average fuzzy 

systems were perfect in predicting consumer ratings. The average of the absolute error 

fiom zero was calculated for both consumer models. The traditionai fbzzy engine 

produced on average f 16 % error while the weighted-average f k z y  eaghe produced f 

20 % error. There were no discernable relationships between cookie characteristics and 



the errors generated by the system. The gmph shows that there were no signifïcant 

dinerences in the performances of either consumer model. 

Another measure of the accuracy of the consumer models is the average error. On 

average, the traditional fuPy engine under-predicted the consumer ratings by - 9.0% 

while the weighted-average fuzty engine under-predicted by -8.0%. The under 

estimation of the systems c m  be attributed to the large variance used to describe the 

ratings of the archetypes. The results fiom each of the three modehg p o h  generated 

different ratings. Each archetype had a broad overail range of ratings because these 

results were combined. These large variances generated prrdicted rating distributions 

that were wider than the acnial rating distributions for any single poU. A percentage of 

the predicted distributions pmportionate to the large variances feu below the 50 cm mark 

because these predicted distributions were wider than the validation polis. 

The criteria used for rejecting a cookie were very strict to demonstrate the 

systems' ability to classi@ the cookies. However, in a mdactur ing  environment the 

producer would likely use more lenient acceptlreject criteria From a manufacturing 

standpoint, rejecting cookies b t  are definitely acceptable to the consumer is a loss of 

profit. However, manufacturers are likely to overlook se lhg  a small percentage of 

cookies that are marginaiiy acceptable. Therefore, a manufacturer could use more lenient 

rejection criteria to usefblly classi@ the cookies. FUCther fine-timing of the consumer 

models can be accomplished with the Outlook. If necessary, a positive Outlook will 

allow the consumer models to make fewer fdse negative errors while rejecting the 

majority of the specimens that would be rated poor by the consumer. 



4.3.6. Validation of Consumer Modeb (Validation Set 2) 

In addition to the cookies in Validation Set 1, the predicted and actual consumer 

ratings for the cookies in Validation Set 2 were also compareci. The resuits can be seen in 

Figure 4.20 and Figure 4-21. The rate of successfhi classification for both fuzzy engines 

was similar for both Validation Set 1 and Validation Set 2. For the cookies in Set 2, the 

consumer modeIs both correctiy classified the cookies 80 percent of the tirne. 
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Figure 4.20 : Predicted Vernis Actual Accepted and Rejected Cookies for Traditional 
Fuzzy Engine Ushg 0.0 Outlook (Validation Set 2) 
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Figure 4.2 1 : Predicted Versus Actual Accepted and Rejected Cookies for Weighted- 
Average Fupy Engine Using 0.0 Outlook (Validation Set 2) 

The graph in Figure 4.22 shows the consumer models' accuracy in predicting the 

consumer rating for cookies used for Validation Set 2. The average absolute e m r  for 

both models was approximately t 18 percent. The average overaii error for the models 

was approximately +10 percent. In other words, on average, the consumer models 

overestimated the consumer ratings for Validation cookies by 10 percent. The models 

tended to overestimate the rathgs for cookies that were judged to be poor by the panelist 

judges. In contrast, average error for both fuzy engines on Validation Set 1 was 

approximately -9%. The different panelists and cookies used to gather data for 

Validation Set 2 may have contributed to this difference in error. 

The trend in errors did not affect the classification of the models for this 

experiment because the target cutoff rating was 50 cm. However if a lower target rating 



was chosen, for example 25 cm, the models' overestimation of p r 1 y  rated cmkies may 

adversely affect the performance of the consumer models. 

Cookic Nimber 

i Weig- Avg .t Traditional 1 

Figure 4.22 : Performance of the Consumer Models' Predictions of Percentage 
Population Above 50 cm Rating with 0.0 Outîook (Validation Set 2) 

The results have shown that it was possible to predict consumer behavior for 

chocolate chip cookies based on the ratings for 12 archetype cookies. Both models were 

able to predict the range of consumer opinions for cookies. FinaUy, the systems were 

also show to be adaptable to différent target consumers and Merent manufacturer's 

needs. The system was able to maintain an acceptable error rate while reducing false 

negative decisions by manipulathtg the Outlook. 



5. Conclusions and Recommendations 

ConcIusions 

Consumer Behavior 

The sensory evaluation model successfiilly identifieci the behavior of consumers 

in judging chocolate chip cookies. The study has shown that the signincant that 

consumers used to judge chocolate chip cookies were dough lightness, size, and percent 

chocolate chips visible. Furthennore, interactions between dough lightness and size, and 

chocolate chips and Sue were notable influences on decision making. Specincaily, light 

and medium lightness cookies were preferred over dark cookies. Large cookies were 

preferred over s m d  cookies, and W y ,  cookies with Iots of chips were preferred over 

those with few chips. 

The sensory evaluation ais0 showed that consumer decision making for any 

particular cookie is a trend that is best descnbed as a distribution of opinions. In 

addition, the study showed that there were variations in the consumer ratings between 

each poll. The study aiso showed that there was no discemable pattern to the variance of 

the ratings for the archetypes. Ultimately, when characterizhg consumer judgement for 

cookies, the uncertainty of consumer behavior needed to be taken into account. 

F i i ~ i y  Logic Consumer Models 

Fuzy logic was successfully used to model consumer behavior and its 

uncertainty by emuiating the decision-making stages as identified by integration theory 

research. The models have show that crisp inputs into the fuuy engine are simüar to 

physical stimuli as sensed by people. Furthemore, membership hctions are analogous 



to the translation of the stimuli into psychoiogical sensations. The fuzzy infince niles 

represent the integration stage of decision rnaking. Finally, defindication and the 

resulting crkp outputs are congruow with the response stage of consumer behavior. 

The research has aiso shown îhat, through £bzy logic, it was possible to cIassify 

the acceptability chocolate chip cookies based on the consumer ratings for 12 archetype 

cookies. Both the traditionai fuzzy engine and the weighted-average fuzy engine 

accounted for the variability of consumer judgement by representing the predicted ratings 

as distributions. Fitting nomal distriiutions to predicted mean ratings and variances for 

cookies generated these rating distributions. 

The traditional fuzy engine p a d d y  interpo1ated the mean rating for cookies 

between archetypes. In contrast, the weighted-average fuzy engine used a series of steps 

to represent the mean ratings in transitions between archetypes. The two fuzy models 

predicted the variance of the ratings by using the variance of the archetype to which a 

sample cookie was most similar. The predicted rating distributions were used to clas- 

the acceptability of cookies given a target rating and a target percentage of the population 

above that rating. 

The accuracy of the classii!ication perfionned by the fuzzy consumer models was 

good when compared to a statistical model of the consumer &ta The statisticai model 

generated an R' of 0.48, which indicated that the mathematical model could only 

establish a weak correlation between the cookie characteristics and the actual consumer 

ratuigs. Furthennore, the nature of consumer judgement could was more appropriately 

represented through fuzy logic. The consumer evaluaton indicated that the consumer 

response was additive and deteiministi~~ The behavior was determiaistic because the 



responses to each individuai archetype were best describeci by a d e  specinc to that 

archetype. The mathematid maiel could not represent the detemiinistic behavior of 

consumer judgement as approprïately as the fiizzy models. 

Automated Inspection System 

The results have shown that these fuzy consumer models couid be applied to an 

inspection system to successfully ide&@ and classe the of cookies according to 

the consumer. The image-processing component of the system was able to quantify 

cookie features important to decision making. The fuzy consumer models were then 

able to use these features to classify a cookie with acceptable accuracy. The inspection 

systems correctly classined the acceptabiiity of 80% of the cookies while only 7 percent 

of decisions were fiilse-negative misclassifications. The low percentage of fdse-negative 

errors indicated that the systems could assist quality assurance in a manufâcturing setting. 

Mdacturers who may use this inspection system will also need to adjust the 

predicted ratings to account for changing consumer behavior. In certain situations, 

consumers may be critical about the products they buy, while at other times the consumer 

may be less particular. It was possible to tune the performances of the inspection systems 

using the Outlook variable. The d g  shifted the predicted ratings by taking into 

account the variab'ility of consumer ratings. Positive Outlooks shifted the predicted 

ratings up for an optimistic prediction of consumer opinion, while negative Outlooks 

generated pessimistic predictiom. The Outlook variable provided mdacturers with a 

means to adjust the perfomauce of the system to suit their needs. 



Recommendatioiw 

Currently tbe automated inspectîon system is specinc to cookies. The system 

extracts the physical features of chocolate chip cookies and then uses a consumer 

decision mode1 for these cookies to make a judgement. However, mmufianunicturprs, 

especiaUy those-in the food industry, seldom produce only a single product For the 

system to be viable for manufacturing, it should be able to recognize multiple products, 

and render judgement based on consumer models specific to each product, 

The real-tirne considerations of man-g dso need to be adàressed before 

this system can be implemented in a factory setting. The system cutrently takes seven 

seconds to process an image. The time to extract features fiom a cookie needs to be 

reduced signincantiy before this automated quaiity assurance system can be implemented 

in a factory. 

Furthemore, the system as it stands is strictly a decision support system. In other 

words, the system can only aid quality asmance to decide whether to accept or reject a 

cookie, given a risk factor. The next step in developing the quality assurance system is to 

incorporate solution recommendatioa The system should be extended to keep ûack of 

trends in dough-lightness, size, and chips, and recornmend possible remedies for 

deficiencies in the cookies. 

Finally, the system should aiso be extended to close the control loop. In other 

words, using the remedy recommendations, the system should be able to automatically 

adjust the cookie mixture, oven temperature, or bake time. Therefore, the system would 

not only monitor the qualîty of cookies, but it would also control the entire baking 

process to maximize cookie quality according to the consumer, and m h h k  waste. 
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7. Appendir A : Image Capture Program Source Code 



The source code for the image capture program can be found on the attached disk 

under the dinctory "Appendix A : Image Capture Program Source Code''. 



8. Appendix B : Feature Extraction Program and Fiizy Engiue Source Code 



The source code for the feature extraction program and fuzy engines can be 

found on the attached disk under the directory "Appendix B : Feature Extraction Program 

and Fuzzy Engine Source Codey'. 



9. Appendir C : GLM Program and Data 



SAS Program for GLM anaiysis of cookie characteristic sigdïcance: 

DATA dat; 

infile 'archraktxt' ; 
INPUT REPNUM PANELIST BLOCK L D C CODE S R1 R2 Y; 
OPTIONS LINESIZE=80 PAGESIZE=66; 
TITLE 'Archetype Analysis: (archratetxt)'; 
PROC GLM; 
CLASS REPNUM PANELIST BLOCK L D C; 
MODEL Y = REPNUM PANELIST BLOCK L D C L*D L*C D*C; 



C l a s s  
REPNUM 
PANELIST 

BLOCK 
L 
D 
C 

Levels 
3 

30 

Archetype Analysis:(archrate,txtr) 
09: 10 Wednesday, June 17, 1998 
General Linar Models Procedure 

C l a s s  Level Information 

Values 
1 2 3  
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 L9 20 21 22 
23 24 25 26 27 28 29 30 
1 2  
1 2  3 
1 2  
1 2  

Archetype Analysis : (arckate. txt 1 
09:10 Wednesday, June 17, 1998 
General Linear Models Procedure 

Dependent Variable: Y 
Sum of Mean 

Source DF Squares Square F Value P r  > F 
Mode1 41 545266,55937 13299,18437 27.24 0,0001 
Error 1188 579952-68023 488,17566 

Corrected Total 1229 1125219.23960 

Source 
REPNUM 
PANELIST 
BLOCK 
L 
D 
C 
L*D 
LtC 
DtC 

Source 
REPNUM 
PANELIST 
BLOCK 
L 
D 
C 
L*D 
L* C 
D*C 

R-Square C.V. Root MSE 
0.484587 44,45562 22.094697 

Type 1 S S  
4865.14550 
63940.84326 
880.27576 

201427.90637 
31457.40220 

209331.28104 
16503.78955 
2903.34999 
13956.56570 

Type III SS 
10227.56811 
63940,84326 
207,52951 

176572.39162 
23318.64408 
167809.97074 
17364.02622 
3136.59671 
13956.56570 

Mean S q u a r e  
2432.57275 
2204.85666 
880.27576 

100713,95319 
31457.40220 
20933l.28104 
8251.89478 
1451.67500 
13956.56570 

Mean Square 
5113.78405 
2204.85666 
207.52951 

88286.lgS81 
23318.64408 
167809.97074 
8682-01311 
1568.29835 
13956.56570 

F Value 
4.98 
4.52 
1-80 

206.31 
64.44 

428.80 
16.90 
2.97 
28.59 

F Value 
10.48 
4.52 
0.43 

180.85 
47.77 

343 -75 
17.78 
3 -21 
28-59 



10. Appenàix D : Selected Cooldes for PoIls 1,2,3, and Vaiidation P o h  



Cookie Set #l for Consumer Poli 1 and 2 
Cookie File 
Code 
11 11 

L* Value 

52-13 

50.44 

50.47 

49.87 

51 -84 

49.96 

50-47 

49.49 

47.0 1 

48.25 

47-88 

48 .O9 

46-73 

44-97 

46.73 

47.37 

% chip 

0.06 

0.12 

0.06 

o. 12 

0.07 

0.12 

0.05 

0-12 

0.06 

O. 14 

0.04 

O. 14 

0.05 

0.15 

0.06 

0.13 



Cookie 
Code 
3111 

File L* Value Diameter Shape % chip 



Cookie Set # 2 for Consumer POE #3 

Cookie 
Code 
Il 11 

11 12 

1121 

1122 

121 1 

1212 

1221 

1222 

21 11 

21 12 

2121 

2122 

221 1 

2212 

222 1 

2222 

L* Value 

5 1-03 

50.03 

50.09 

49.39 

52.94 

49.26 

53.26 

51.1 

47.1 8 

47.67 

46.97 

47.29 

46.53 

47.3 1 

45.89 

46.22 

Diameter Shape % chip 



Cookie 
Code 
3111 

File L* Value 

42.29 

42.49 

42- 1 1 

43.56 

40.83 

42.62 

43 .O4 

42.7 

% chip 



Vaiidation Set 2 
Set # Cookie # 

1 504 
1 505 
1 507 
1 509 
1 508 
1 506 
1 291 
1 503 
1 240 
1 223 

Diameter (cm) 
5-72 
5-73 
5.71 
5-13 
5.24 
5.42 
6.26 
5-35 
5-41 
5.23 

'% Chips 
0.097 
0.095 
0.135 
0.058 
0,073 
0.1 16 
0.062 
0.059 
0.087 
0,059 



11. Appendix E : Sele!cted Archetypes for Modeling and Validation Cookies 



Archetypes Used For Consumer Modeling 
Cookie Image # 

PidoU l/Wc.tif 
PicS/PoW2 1 oc-tif 

L* value 
Dark 
42-70 
41.81 
Dark 
43 .O0 
43 -65 
44.02 
Dark 

42.43 
39.03 
39.85 
40.36 
Dark 
43 -65 
44.23 
43.84 

Medium 
47.23 

Medium 
48.5 1 

Medium 
47.37 

Medium 
48.29 
47.59 

Light 
52.02 
50.85 
Light 
51.15 
50.58 
50.50 
5 1.82 

Light 
52.84 
52.95 
Ligbt 
51-10 

95 

~irimeter (cm) % Chips 
Smdi 
5. 17 
S. 16 
Sm& 
5-26 
523 
4.8 1 

Large 

5.63 
5.88 
6.04 
5.89 

5.91 
5.66 
5.97 

Small 
5.30 

Srnail 
5.34 

Large 
5.97 

Large 
6.19 
5.64 

Smaiï 
5.14 
5.21 

Smaii 
5.29 
5.33 
5.29 
5.08 

Large 
6-00 
5.96 

Large 
5 -70 
. 

FCU- 
0.045 
0.057 
Iots 
0.090 
0-1 13 
0.1 14 
Few 

0.039 
0,041 
0.048 
0.049 
Lots 
0.102 
0.104 
0.1 15 

Few 
0.030 
Lots 
0.1 17 
Few 
0.042 
Lofs 
0.092 
0.13 1 

Few 
0.054 
0.056 
Lots 
O. 1 O4 
O. 104 
O. 106 
0.1 10 

Few 
0.030 
0.047 
Lots 
0.108 



Viilidation Set 1 
Cookie Image # 

Pics/Poill/83c.tif 
Pics/Po W2SOc.tif 
Pics/PoIll/lc.tif 
Pics/PoU 1/89c.tif 
Pics/Polil/l3Oc.tif 
PicdPo W23 8c.W 
Pics/Po W239c.tif 
Pics/PoiW189c.tif 
Pics/Po~l/17&~tif 
Pics/PoW266c.îif 
Pics/Poll l/OOc.tif 
Pics/PollU216c.tif 
Pics/PollU288cAf 
Pics/PoU l/S6c,tif 
PicslPollU223c.tif 
Pics/Poii l/l7c.tif 
Pics/PoW233c.tif 
Pics/PolIl/l58c.tif 
Pics/PoU1/5Sc.tif 
Pics/Poii2/260c,tif 
Pics/Poll2/18 lc.tif 
Pics/PoUl/I 16c.tif 

Diameter (cm) 
5-14 
5.10 
5.30 
526 
5.69 
5.36 
5.16 
6.07 
6.06 
5.94 
5.30 
5.36 
6.09 
5.70 
5-08 
5.55 
5.38 
5.54 
5.47 
5.93 
6.06 
5.22 

96 Chips 
0.060 
0.068 
0,073 
0,049 
O. 103 
0.060 
0.061 
0.034 
0.038 
0.068 
0.1 19 
0.128 
0.062 
0.1 15 
0.068 
0.042 
0.068 
0.069 
0.108 
0.08 1 
0.038 
0.127 



12. Appendix F : Archetype Rating Distribation Staüsticai Analysis 



Archetype Rathg Statistid Snmmpry 

Mean 51.127083 
Standard Error 2.0492364 
Median 50 
Mode 64-75 
Standard Deviation 22,44826 
Sample Variance 503.92437 
Kurîosis -0.166228 
Skewness 0.3 170567 
Range 105.5 
Minimum 7.75 
Maximum 11325 
Sum 6135.25 
Count 120 

medium, small, fav chips 

Mean 
Standard Error 
Median 
Mode 
Standard Deviation 
Sample Variance 
Kurîosis 
Skewness 
Range 
Minimum 
Maximm 
Sum 
Count 

lkht, smaZI, lots of chips 

Mean 70,558056 
Standard Error 1,66043 32 
Median 74.75 
Mode 79 
Standard Deviation 22.277049 
Sample Variance 496.2669 
Kurtosis 0.2071795 
Skewness -0.502408 
m g e  1 10-75 
Minimum 9 
Maximum 119.75 
Sum 12700.45 
Count 180 

-- - - - - 

medium, small, lots of chips 

Mean 
Standard Error 
Median 
Mode 
Standard Deviation 
Sample Variance 
Kurtosis 
Skewness 
Range 
Minimum 
Maximum 
Sum 
Count 



Mean 17.855556 
Standard Error 1 S065296 
Median 13.75 
Mode 2.5 
Standard Deviation 14.292194 
Sample Variance 204.26682 
Kurtosis 0.3 133 167 
S kewness 0-9414982 
Range 57.25 
Minùnum 2.25 
Maximum 59.5 
Sum 1607 
Count 90 

Mean 
Standard Error 
Median 
Mode 
Standard Deviation 
Sample Variance 
Kurtosis 
Skewness 
Range 
Minimum 
Maximum 
Sum 
count 

Zi& large, lors of chips 

Mean 
Standard Error 
Median 
Mode 
Standard Deviation 
Sample Variance 
Kurîosis 
Skewness 
Range 
Minimum 
Maximum 
Sum 
Count 

Mean 79 
Standard Error 3 -052628 1 
Median 87 
Mode 88.5 
Standard Deviation 23 -645555 
Sample Variance 559.1 1229 
Kurtosis 1.1263467 
Skewness -1 .O297 
h g e  118.25 
Minimum 4.75 
Maximum 123 
Sum 4740 
Count 60 



medium, large, fau chips m e d m  Iàrge, lots of ches 

Mean 48.05 
Standard Error 2.6609676 
Median 50.875 
Mode 23 
Standard Deviation 20.6 1 1766 
Sample Variance 424.84492 
Kurtosis -0.268441 
S kewness -0.155615 
Range 95.75 
Minimum 3 
Maximum 98.75 
Sum 2883 
Count 60 

Mean 27.072222 
Standard Error 1.434034 
Median 22.875 
Mode 3 
Standard Deviation 19.239586 
SampIe Variance 370.16165 
Kurtosis 0.6539948 
Skewness 1-01 18803 
Range 85.5 
Minimum 2.5 
Maximum 88 
Sum 4873 
Count 180 

Mean 
Standard Emr 
Median 
Mode 
Standard Deviation 
Sample Variance 
Kurtosis 
Skewness 
Range 
Minimum 
Mrurinium 
Sum 
count 

d& large, lots of chips 

Mean 
Standard Error 
Median 
Mode 
Standard Deviation 
Sample Variance 
Kurtosis 
Skewness 
Range 
Minimum 
Maximum 
Sum 
Count 



13. Appendix G : Archetype Mean Confidence Interval Data 



Statisticaï Monnation for Archetype Meam 

Zight, smaZ2, fm chips 
means 
52.48 
53 -59 
52.85 
45.58 

mean of means 51.13 
var of means 13 -87 
Confidence Level(95.0%) 5.92648 

Zig&? small, lots of chips 
meam 

68.90833 
74.55333 
66.0 1667 
79.90833 
66.20833 
67.753 3 3 

mean of means 70.55806 
var of means 30.70446 
Confidence Leve1(95.0%) 5.8 15082 

medium, small, fov chips medium, srnaIl? lots of chips 
means meam 

35.08333 68.9 
33,45833 mean of meam 68.9 

mean of mean 34.27083 var of means O 
var of means 1.3203 13 Confidence Level(95 .O%) NA 
Confidence Leve1(95.0%) 10.32375 

dark small. few chips d& small, Zots of chips 

mean of means 17.85556 55.60 
var of means 75.61 12 mean of means 34.55 
Confidence Leve1(95.0%) 2 1 -60076 var of means 199.444 

Confidence Leve1(95.0%) 22.4720 1 



40.25 
43.41667 

mean of means 41.83333 
var of means 5,013889 
Confidence Level(95.0%) 20.1 1807 

medium, large, fw chips 

var of means 35.14014 
Confidence Leve1(95.0%) 53.25995 

dmR, large, few chips 
means 

27.83333 
27.7 1667 
24.65833 
20.95833 

28.25 
33.0 1667 

mean of means 27,07222 
var of means 16.1 8494 
Confidence Leve1(95.0%) 4.221 926 

light, large. lots of ch@s 
means 
83.575 
74,425 

mean of means 79 
var of means 41.86125 
Confidence Leve1(95.0%) 58.13064 

medium, large. lots of chips 
means 

var of means 2,913912 
Confidence Leve1(95.0%) 4.240472 

<imk large, lots of chips 
meatlS 

67.075 
65.125 
72.125 

59.63333 
mean of means 65.99 
var of means 26.65696 
Confidence Level(95.0%) 8 8.1 5553 




