
University of Alberta 

Sundwielr : A Persod Web Assistant Framework 

Wenciy Liew O 

A thesis submitted to the Faculty of Graduate Studies and Research in panial Wù1ment of the 

requirements for the degee Master of Science. 

Department of Computing Science 

Edmonton Alberta 

Fall 1999 



National Library 1+1 dm,,  

Acquisitions and 
Bibliographie Services 
395 Wellington Street 
OttawaON KlAON4 
canada 

Bibliothèque nationale 
du Canada 

Acquisitions et 
services bibliographiques 
395. rue Weîlingtori 
OitawaON KlAûN4 
canada 

The author has granted a non- L'auteur a accordé une licence non 
exclusive licence allowing the exciusive permettant à la 
National Library of Canada to Bibliothèque nationale du Canada de 
reproduce, loan, distribute or seii reproduire, prêter, distribuer ou 
copies of this thesis in microfonn, vendre des copies de cette thèse sous 
paper or electronic formats. la forme de microfichelfilm, de 

reproduction sur papier ou sur format 
électronique. 

The author retains ownership of the L'auteur conserve la propriété du 
copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. 
thesis nor substantial extracts fkom it Ni la thèse ni des extraits substantiels 
may be printed or othewise de celle-ci ne doivent être imprimés 
reproduced without the author's ou autrement reproduits sans son 
permission. autorisation. 





The plethora of information available on the Internet, coupied with its high degree of infomal 

interconnectedness, makes it difficult to perform advanced web browsing. Exarnples are the 

reIatively poor support for managing browsing history and the delegating of simple, reactive web- 

processing tasks, This thesis explores ways to  mitigate this probiem through the use of a Java- 

based personal web proxy server. This proxy server is granted the privilege to snoop into and 

keep track of a user's daily web activities. Assuming this basic capability, an application 

frarnework (Sandwich) is developed to operate as a rudirnentary web proxy server that can be 

enhanced to support advanced web activities for a user. 

An application framework embodies a genenc design for a family of applications in a given 

domain. At present, there is much academic and industry interest in application frameworks 

because of their high potential for software reuse. Sandwich, the application framewo-rk 

developed in support of personal web assistants, provides basic functions and hooks for plugging 

in assistants in support of advanced web browsing. in particular, based on the thesis research. 

two categories of assistants are identified and supporced: observing and delegating assistants. An 

observing assistant monitors, masures, and reports on the user's browsing activities. An 

example is a advanced history assistant that tracks al1 sites a user has visited and the time these 

sites were last visited, and then produces a statistical report of this history. A delegating assistant 

monitors and acts on the user's behalf. An example is an auto posting assistant that monitors 

regular stock quote requests and acts on the user's behalf upon next request. 



The major contributions of this work are 

the identification of the key (or basic) functionality that a personal web assistant should have, 

the encapsulation of this hnctionality in an extendible framework known as Sandwich, 

the demonstration of the power of this approach by implementing several personal assistants 

based on the hooks for extending the Sandwich framework, and 

the provision of hook documentation for the framework in order to enhance the usability and 

evolution of Sandwich and to assist in exercising and further validating the hooks mode1 as 

deveioped by G. Froehlich in his Ph-D. thesis 



Acknowledgments 

The list of people 1 want to thank and acknowledge is a long one. and 1 would like to apologue to 

those 1 have missed- First and foremost. 1 wish to rbank Professors Jim Hoover and Paul 

Sorenson as my supervisors. They inspired my interest and guided me through this dissertation, 

even during their sabbatical period. 1 would also like to thank Eleni Stroulia Michael Barrett. 

and Ehab Elmailah for having served on my cornmittee. 

Next special thanks go to Garry Frothlich. whose Ph-D. thesis gave me a hcad start. I am grateful 

to al1 other members of the Software Engineering Research Lab (SERL) for their interest in my 

work, for their useN suggestions and for making the lab such a great place. in particular, thank 

you to Professor Eleni Strouiia for her advice on the M'kial Intelligent area that 1 touched on. 

Also, thank you to Tony Oleksky for taking time aff his busy schedule to attend some of my 

initial brainstorming meetings. 

Thank you again to Professor Jirn Hoover and Paul Sorenson for giving me the flcxibility to 

pursue my MSc studies wMe working part-tirne. 1 an; also very thankful to my managers and 

colleagues at work During the course of my MSc snidies. 1 was working as a Java Consultant on 

two projects. 1 would like to thank from the Reflective Systems Group Inc. (RSG) John deHaan. 

who supervised me in the TELUS Multimedia project. and Teny Butt. who supervised me in the 

IBM Global Services project. 1 especially appreciate RSG for the flexible work schedule. Both 

of these projects have coincidentaily strengthened my technical skills. which provcd very helpful 

Lastly, 1 would also like to thank my boyfkiend Ernest Siu. and al1 of my family members for 

their constant support, endurance. and patience. 



Table of Contents 

............................................ 2 . BACKGROUND. RELATED WORK AND THESIS APPROACH 4 

2.1. S Y ~  WIDE ASSIS~A..STS .......................................................................................................... 4 

2.2 PERSON AL ASSISTA\TS ..................... .. ..................................-................................................... 7 
2.2.1 Client Side ......................................................................................................................... 7 

22.2 Server Skie ......................................................................................................................... 7 

2 2 3  In-Berneen .................... .. ............................................................................................... -7 

............................................................................................................ 22.4 Apprmch Summry 8 

2.3. AGENT S Y ~ U S  ........... .......... ................................................................................................ -9 

................................................................................................................. . 2 3  1 Agenr Definizion 9 

............................................................................................................. 2 3 2  Agent Cazegories 10 

2 3 3  Agenr Sysrem Proficrs ......................................,.............................................. I i 

........................................................................................................................... 23.4 Assisranz 13 

2.4. KITP ........................................................................................................................................ 13 

.......................................................................................................................... 2.4.1 Example -14 

......................................................................................................... 2.4.2 Apprwch S m v ~ r y  -15 

............................................................... . 3 HOOKLNG LNTO APPLICATION FRAMEWORKS 16 

.............................................................................................. 3.1 . OBJEC~ TECHSOLOGY ASD REUSE 16 

................................................................................. 3.1.1 Types of Framenvrks and Eramples 17 

........................................................................................ 3 Curreni Szaze of Reuse Pracrice 17 

......................................................................................................... 3.13 Apprmch Summary -18 

...................................................................................................... 3.2 APPLICATION FRAMEWORKS 18 

.................................................................. 3.2.1 Applicarim Framenorkr versus Applications 19 

............................................................... 3.2.2 llre Pros and Cats of AppIicatim Framen'orks 20 

.............................................................................................. 3.23 Framework Docrrmmtation 21 

.................................................................................................................... 3.3. THE HOOK MODEL -22 

4 . SANDWICH ................... " .............. ................................................................. ZS 



42.1 F r m o r k  Designers/Developers ......... .,. ................................................................... 2 7 

.......................................................................... 4.2.2 Framework Users {Assistant Developers) 27 

4 2 3  Framework Maimainers ................................................................................................... 27 

4.2.4 Endusers ........................................................................................................................ 27 

4.3. USE CASES ................................................................................................................................ 28 

43.1 Origin and rtre Currenr &are-of-the-Art ..................... ... .............................................. 28 

4 3 2  Inrrducrion ..................................................................................................................... 28 

4 3 3  Applying Use Cases .......................................................................................................... 29 

43.4 Applicatian Fmiiy Use Cases .......................................................................................... 30 

............................................................................... ..................... 4 3  5 ~ u f c h  Use Cases ,, 43 

4.4. WDWICH S ~ ' s s u s r z !  . DESIGS . HOOKS ~ . . m  RATIOSALE ....................................................... - 3 1  

4.4.1 Sandwich Stortup .......................................................................................................... 3 4  

............................................................................. 4.42 HTTPProxy ................................ ,..... 57 

..................... ...................*............................................*........... 4.43 Obsewing Assistant ,,.. 63 

......................................................................................................... 4.4.4 Delegating Assisrmir 75 

4.43 Administrarive Appiicatiaa (Sandwich InterJiace) ............................................................... % 

................................................................................................................... 4.4.6 Persistence 1 0 2  

......................................................................................................................... 4.4.7 Logging 1 0 8  

....................................................................................................... 4.4.8 Reg ular &pression -1 IO 

............................................................................................................... 4.4.9 HïTP Support 1 12 

...................................................................... 4.5. STEPS IS CREA~SG NEW SAWDWICH ASSISTAX~ 114 

......................................................................................................... 4.6. ~ H E R  COSSIDERATIOSS 115 

..................................................................... 4.6.1 Assistaru rhar is Obsen*ing and Delegoring 115 

............................................... ...................... 4.6.2 Requesr and Response Delegares Pair ... -1 16 

5 . EVALUATION .m...................m......m.........m...m........................m..m.~m.m......m.m............ ................... 117 

. APPENDIX B : META TACS ...mm.............~~~..~~~.~~m~~.~~.~~~~~~~~~~~Cm.~~~m~~.~~~.~~~~tC~*~~~~~mm~~~~~~~m~ma~m~m~e~~m~~mnn 147 

APPENDIX C : TOOLS AND STANDARDS DEPLOYED ..................... .. 148 



APPENDIX D : UML NOTA'MON ..........,,,...... .....M.U.....-........H ......... 149 

APPENDïX E : SANDWICH PROPERTES FILES ......... ....... ..... .......... .....O.. 152 



List of Tables 

....................................................................... ............ Table 1 : Proxy Categories and Examples .. 6 

................................................................................................ Table 2: Agent Related Projects 1 2  

........................................................................................................... Table 3: Hook Tcmplate 22 

Table 4: Sandwich and Webby .................. .. .......................................................................... 127 



List of Figures 
Figure 1: Before and After View of an End User Browsing the WWW with a Pool of Personal 

........................................................................................ Assistants ........... ,... ........... .. 2 

Figure 2: A Primitive W e b  Infrastructure ...................................................................................~ .5 

Figure 3: Web Infrastructure That Deploys System Wide Proxy ............................................. ,. .... 5 

............................................................................................... Figure 4: Sandwich Infrastructure -9 

Figure 5: HTTP Rcquest and Response ...................................................................................... 13 

Figure 6: Reuse Fonns and Levtls ..................................,........................................................ 16 

Figure 7: Hooks and Hot Spots ......................................,.... 19 

................................................................................. Figure 8: Groups and Types of Assistants 26 

............................................................... Figure 9: Example of a Use Case Diagram ............ .. 28 

Figure 10: Sandwich Use Cases ................................................................................................. 43 

............................................................................ Figure I 1: Sandwich Subsystem Architecture 51 

Figure 12: Sanhich Int crface, the Administrative Application ................................................. -52 

..................................................................................... Figure 13: UML S taeotypes Deploycà -54 

Figure 14 Samtivich Startup Dynamic View .............................................................................. 55 

................. ...... ........................................... Figure 15: Sandwich S t m p  Static View ......,. ,.... -56 

............................................................................ Figure 16: HttpProxy Stamp Dynamic View -59 

................................................................................. Figure 17: HttpProxy Startup Static View -6û 

............................................................ Figure 18: HttpProxy Servicing Request Dynamic View 62 

................................................................. Figure 19: HttpProxy Servicing Request Static View 63 

................................................................................... Figure 20: Data for Obscrving Assistants 64 

Figure 21: Observing Assistant Initia3ization ............................................................................. 66 

...................................................... Figure 22: Observing Assistant Notifjcation Dynamic View 68 

.............................................................................. Figure 23: Observing Assistants Static View 71 

............. ................................................................. Figure 24: R q u m  Ddegating Assistant .. 76 

................................................................................. Figure 25: Response DeIegating Assistant 76 

Figure 26: Request Dclegate Initialkation .............................. .. .............................................. 77 

Figure 27: Response Deiegate Initialization .............................................................................. -78 

Figure 28: Ddault DirtctHttpDelegate wigh Lcvel) .................................................................. 79 

.............................................................. Figure 29: Default DirectHnpDelegare (Objcct Level) 1 

................................................................................. Figure 30: Multiple Delegating Assistants 82 

.......................................................................................... Figure 3 1: Delegate Priority Queues 83 



Figure 32: Multiple Request Delegates ...................................................................................... 84 

Figure 33: Multiple Response Delegates ........................ .. .......... .... ........ 86 

Fi,w e 3 4  Delegating Assistant Static View .......................... .. .............................................. 87 

Figure 35: Admùiistrative Application and HttpProxy .............................................................. -95 

Figure 36: Administrative Application and Assistants ............................................................ - 3 7  

Figure 37: Administrative Component Static View .................................................................... 99 

......................... Figure 38: Enhanced History Assistant Result Window ................................ ,., 102 

.............................................................................................. Figure 39: Persistence ............ .. 103 

Figu : 40: Logging Support ..................................................................................................... 108 

................................................................................................. Figure 41 : Regular Expression 111 

........................................................................................................ Figure 42: H T ï P  Support 112 

Figure 43: Assistant that is boul Observing and Delegating ............... .., ................................... 115 

..................................................................... Figure 4 4  Rqucst and Response Delegates Pair 116 

.................................................................. Figure 45: Hook Dependencies and Optional Paths 120 



List 

Hook 

of Hooks 

Hook 2: 

Hook 3: 

Hook 4: 

Hook 5: 

Hook 6: 

Hook 7: 

Hook 8: 

Hook 9: 

New Observing Assistant Hook .................. ......... ..................................................... 7 3  

New Request Delegating Assistant Hoo k .................................................................. -89 

New Response Delegating Assistant Hook ................................................................... 93 

New Administrative Application Hook ............... ... ................................................ 100 

New Assistant Resuit Window Hook ...................................................................... 1 0 1  

Reading Fropaty File Hook .............................. .... .............................................. 1 0 6  

New Line File Data Hook .......................................................................................... 107 

Reading Line File Hook ........................................................................................... 108 

New Logger Hook .............................................. 110 

Hook 10: New Regular Expression Adapter Hook ............................ .. .................................. 112 

H w k  I l :  New HiTF Heada Hook .................... ....... ........................................................... 113 



1 Introduction 

1.1. Motivation 
In the past five years, the Internet has gained trernendous popularity. and the volume of 

information avaiIable on the web is now becoming ovexwhe1ming for an average person to make 

optimal and effective use of. As the web continues to grow, there is a need to add advanced and 

specialized capabilities to web browsing. Personal web assistants can help to tmck and manage 

this vast stae of information. The following descrl'bes two examples whcre pcrsod wcb 

assistantship can be useful- 

Example 1: 

On &y one Alice. an assistant epidemiologist. browses the web for health-related news. She 

encounters a few sites that provide statistical information on the discase Hepatitis C and rads 

them through briefly. On day two, coincidcntaily, Aiicc's boss asks her to give an updatcd report 

on Hepatitis C. She recalls that she has read some useful information on âay one. but. 

unfortunately, she bas forgotten to boolanark the sites. Because of insufficient information 

tracking. Alice is unable to r d 1  ai l  the information that she read and the sites she visited. 

If she had had an enhanced history assistant working with her on day one. she would have been 

fine. This assistant observes ail  pages she has browsed, remembers the URts and allows Alice 

navigate to a visited URL. 

Example 2: 

Another commonly encountered mistration of web users is the process of fiUuig out a form. For 

exarnple. Michael visits the Check Free Quote Server page at least once a day to get the final 

quotes on the twcnty stocks that he is interesteci in. Everyday, he routinely d o s  the foilowing: 

1. Uses his bookmark to rcach the Check Free Quote Serva site. 

2. Enters five stock symbols and then presses the "submit" button. 

3. Gets the response back e.g. closing prices and traded volume of the stocks. 

Check Fret restricts eacb request to five stock symbols; thus, to obtain the twenty stock quotes 

Michael has to repeat the above stcps 2 and 3 four mes .  



Having an auto post assistant can reduce this aggravation. Specifically. the assistant reciuces the 

above steps to a "select and go" delegation sep. To elabrate. Michael will f m  be prompteci by 

an auto post assistant with a iist of four entries, with each entry containing five stock quotes. He 

confîirms the delegation process by selecting one of the entries and then clicking the ''conf'inm" 

butîon. 

The foilowing figure illustrates a before and after view when personal web assistantship is in 

place to control web brows ing activit ies. 

Web Server 1 
www.ualberta.ca 

End User 

Before 
Web Server 2 
javamn .corn 

www.ualberîa.ca 
lnlerne! 

End User 

Web Server 2 
java.sun.com 

At : Assistant 1 
After 

Figure 1: Before and ARer View of an End User Browsing the WWW with a Pool of 

Personal Assistants 

This thesis explores the possibility of adding personal wcb assistantship capabilities ernbeddcd 

into a rudimentary personal proxy server that has been granted the privilege to snoop into a 



person's browsing activity. There are many different persona1 assistants. such as those descri'bed 

in the examples above. and while they ail provide different services, they al l  share basic 

functionality. This thesis introduces an application framework as a technical approach m building 

and deploying these assistants. This application framework provides a generic and reusable 

architecture. design. and implementation method for constnicting personal assistants. 

The thesis presents the requirements, design, and important elernents of the implementation of 

Sandwich - an application framework that contains a set of extensible classes tbat provide the 

basic savices uscd by these personai assistants. In dcmonstrating ~OIlCIwicIt. two pasonai 

assistants are prototyped. The hook model is deployed in documeating how to use S d w i c h .  

1.2. Thesb Roadmap 
We begin each chapter with an overview of the cbapter's focus, followed by an outline of the 

chapter's sections. Chapter 2 covcrs background infomation, related work and the cumnt state 

of the art in adding assistantship into today's World Wide Web 0 architeme. This 

chapter provides the contutt for t .  thesis. Chaptu 3 mtroduces and justif~es the technid 

solution explorcd by this thesis - object-oriented (00) application framcwarks and the hook 

model. Chaptcf 4 discusses Sandwich. in the context of its undal;-hg architecture. design. 

design rationale. and extensibility through the use of the book model. Chapter 5 evaîuatcs on the 

hook model and the Unified Modeling Language (UML) notation standard. Both of these are 

used in documenthg the framework. Chapter 5 also includes a detailcd comparison between 

Sandwich and a closely related work Webby. Finally. Chapter 6 concludes and outlines future 

directions. 



2. Background, Related Work and Thesis Approach 
When the WWW btcame generally known in 1994. the architecture deployed was relatively 

simple: the Mosaic or Netscape web clients simply made a request for resources (e-g. turt files, 

GIF images and executables) to the desired web server. The web server then responded with the 

resources. if available. This communication was carried out with the H T ï T  protocol, specified 

by the World Wide Web Consortium [W3C]. As the Internet contmued to grow, the number of 

web servers and clients increased. The average number of pages visiteci by an active web surfer 

iricrtascd dramatically. 'Inere has b e n  on gomg effort to add application-specific capabilitics 

thmugh some form of assistantship to the web architecture. 

Section 2.1 and 2.2 discuss two catcgorics of assistantship: system-wide versus personal. A 

system-wide assistant focuses on a group of people. often belonging to the same Intranet; a 

personai assistant focuses on helping an individual in a certain way. Section 2.3 described another 

related domain arca: agent systems. The simihrities anci differences betwttn pasonal 

assistaatship and this area of study arc reviewed. This section closcs with an elaboration on why 

the word "assistant" is used rather uian "agent" and a working definition for "assistant*' uscd in 

thk thesis. The fhmework developed in dis thesis relies on the H T ï P  protocol. Szction 2.4 is 

dedicated to providing some H ï T P  background. 

2.1. Systern Wide Assistants 
Figure 2 shows the cment primitive web architecture. which is inadequate in many ways as the 

web continues to grow. A common shortcornhg is that a corporation is unable to restrict its 

access availability to selected parties. Figure 3 shows an enhanced version- Here, system-wide 

assistant is added thrwgh the use of a system-wide proxy. Specifically. the kind of assistantship 

in this example is a proxy that plays the role of a fuewall. 



Web Server 1 Web Server 2 

Client 1 Client 2 

Figure 2: A Primitive Web Infrastructure 

Web Server 1 Web Ssrvsr 2 

Figure 3: Web Infrastnicture That Deploys System Wide Proxy 

There are many different forms of proxies. but usuaUy they are categorized according to which 

level they operate at &uotonen98). Three levels of proxies are cornmonly identifiai and briefly 

descrïbed below. Roxies from any of the three levels can be uscd to provide assistantsbip. 

Currently. systcm-wide proxies are already widely dcploycd by major frrms. Table 1 gives a 

summary of these three levels dong with some common examples that give system-wide 

assistantship. 



1 1 

Packet Level 1 Malces use of TCPllP packet 1 Router 

Table 1: Proxy Categories and Examples 

Connection 

(Circuit) Level 

Application Level 

1. Packet Level: Proxies at this Ievel use packet information to perform their tasks. An 

example is a router that pcrfoms simple packet filtering based on the TCP/IP header 

data in the network packets. 

2. Connedion (Circuit) Levd: Proxies belonging to this le~el  are software program 

that act at the comection Ievel, ive. during comection establishment and are d e n  

based on port numbers. A proxy operating at this Ievel bas no prior knowledge of the 

communkation protocol. It simply forwards data in both directions in the 

connection. The most widely used example here is SOCKS [Socks]. SOCKS 

enables hosts on one side of the SOCKS semer to gain full access to hosts on the 

other side of the SOCKS server without requiring direct IP reachability. Thus. a 

SOCKS server is often used in supporthg network fnewalls. enabling hosts behind a 

SOCKS server to gain full access to the Intemet. while preventing unauthorized 

access fiom the Intmet to the internai hosts. 

information. 

Makes use of co~ect ion 

establishment information. such as 

port numbers. 

Makes use of application protoc01 

knowltdge 

3. Application Lwel: A proxy at this level understands certain application protocols. 

such as H T P ,  NNTP and F ï P  and uses this knowledge to accomplish its tasks. 

Evcry application proxy scrver has some embedded functionality. For example, a 

load-balancing proxy dynamically ailocates rcquests to different servers based on the 

ovtrall load of the system, ensuring that loads are distributed equally. A caching 

proxy such as Squid Intemet Ob ject Cache [Squid] and CacheFlow [CacheFlow] 

Socks (firewdl role) 

Intemet caching and l ad -  

balancing softwatc as well 

as Sandwich. 



specializes in caching resources that it captures in order to reduce network congestion 

or improve speed. 

2.2. Personal Assistants 
Personal assistants attempt to provide assistantship to an individual rather than a group as do 

system-wide assistants. With respect to the widely deployed web architecture shown in Figure 2, 

personal assistantship can be added on (a) the client side. with web browsers (b) the server side. 

or (c) in-between, Each of these will be briefly described with respect to current state-of-the-art 

technologies deployed in adding persod assistantship. W e  conclu& by indicathg that 

Sandwich uses the in-between approach. 

On the client side. plug-in technology is the most mature methoâ of irnplementing personal 

assistants. Some examples of popular multimedia plug-ins are RcaiPlayer, QuicKTirne. and 

Shockwave. Another emerging method is on Extensible Markup Language (XML); W3C is in 

the process of defining this that can be prescnted witb Extensible Style Language (XSL) andlor 

Cascading Style Sheets (CSS). 

On the server side. many extensions to web m e r s  are already in use in providing personalited 

page that may assist the user. For example. most of today 's non-static pages or forms are 

generated dynamically. The most popular and widely deployed web server extension on the web 

m e r  to allow such dynamic generation is the Common Gateway Interface (CGI) script. which 

can be written in any language, Perl being the most popular. The main drawback of this 

approach is that each tirne a request is made to a CG1 script. a new process is started to interpret 

the script that manipulates the request. Java Servlet [Sun Hunter981 is the other more rccently 

supportai web srver extension that is gaining po?ularity. A scrvlct provides the same 

capabilities as a CG1 script without the aforementioned drawback. A strvla is initiaiized and 

loaded to the Java Virtual Machine (JVM) only once, and thus the overhead of starting a new 

process is eliminated. 

2.2.3 In-Betwsen 
"In-between" proxies provide system-wide assistantship through firewalls. caching and WIC 

monitoring. Because most of today's proxies are system-wide assistants that are designed to act 



on behalf of the servers. they are often placed close to the server. Le. the proxy server is installed 

on the same machine as the server or anotha machine in tbe same I n m e t  as the semer. There 

has been a limited amount of research in using a personal proxy that a m  on behaif of an 

individual (Le. proxies playing the role of a personal assistant). 

2.2.4 App-h Summmy 
This thesis mvestigata the third or the in-between approach Le. the use of a proxy to provide 

personal web assistantship. This approach has the advantage over the client side and sema side 

approaches because it is independent of botb the browser and the web s e r v a .  We consider the 

simplest architecture as illustrated in Figure 4. 

According to the proxy classifiication given previously, the proxy server developeâ in this thesis 

is an application level one that understands the H T ï P  protoc01 uscd on the WWW. Other 

protocol examples are FTP, Gopher and NNTP. Usmg this fmn of proxy as the basis. we 

develop an application framework for pasonal web assistants - Sudnich. SIudwich provides 

extensible areas that allow users to constmct and attach thcir desircd web assistants. 



Web Serverl Web Server 2 

System Wide Pror Firsrraii roie 7: 

Client 1 Personal Assist t Proxy + 

Client 2 
I 

Figure 4 Sandwich Infrastructure 

2.3. Agent Systems 
The word "agent" has corne to mean rnany things in the ara of information technology. We 

include a discussion of agents in this thesis to address questions about the similanties and 

differences of agents and assistants in this thesis. We fvst provide the background of related 

work by (1) quoting fiorn a commonly refmed to papa on agent tcchnology. (2) categarizing 

agents based on their fuactions. and (3) summarizing several major projects on agent systems. 

We conclude this section witb the similanties and differences between dinecent focuses of agents 

and this work 

2.3.1 Agent Definition 
Agent technology is becoming a popular and important rtsearcb topic and is being applied in 

diverse domains in different communities. such as aftifiiaI intelligence (AI), distributeci 
9 



computing. networking and software engineering. Each communiry is interesteci in slightiy 

different aspects of agents and the word "agent" is being used widely in rnany articles without a 

real definition. A commonly referenced paper entitled "1s it an Agent. or just a Program? A 

Taxonomy for Autonomous Agents" -1 contains a widely acceptai definition of an 

autonomous agent: 

"An auionomous agent is a system s i t w e d  within and a part of an environment that 

semes that environment and acts on it. orFer tirne. in pursuit of its m n  agenda and so as 

to &ect what it senres in the future." 

This paper also makes a distinction between software pro- and agents. Ail sofnkrare agents 

are programs, but the converse is not truc an ordinary program that simply talus its input, acts on 

it and gives an output is not an agent. The paper breaks down autoaomous agents mto different 

types; a software agent is an ünmediate type of autonomous agent. The paper, unfortmtely. 

laves as an open issue on fiutber sub-classification of software agents. 

2.3.2 Agent Csfegories 
For simplicity, we have classified software agents by their functions. The following is a brief 

description of popular agent types appcaring in current agent-related literature. 

Intelligent agents are probably the most primitive type of agents on which Al communities 

have conducted research. This type of agents contains AI algorithm for reasoning, planning. 

and learning in order to adapt to an environment and solve a certain set of problerns in a 

changing environment. 

Internet agents are one of the m a t  widely studied phenornena today due to the rapid growth 

and intaest in the Internet. Information fitering agents. search engines. and negotiating 

agents are examples of this category. 

Communicative agents are software systems that are able to communicate with other agents. 

whetha they be a human or another software agent. There is still no agreement on a standard 

protocol for agent-teagent communication. Some of the uristing communicative agents have 

no support for standard protocol for agent-teagent communication. thcy simply use direct 



method calls as the technique. Other more sophisticated agents use Knowledge Query 

Manipulating Language (KQML) as the Agent Communication Language (ACL). 

Mobile agents are able to transport thernselves from one machine to aaother. This new type 

of agent has arisen because of recent interest and emphasis on distrîuted technology such as 

CORBA from OMG. DCOM fiom Microsoft and Java RMI from Sun. 

2.3.3 Agent S'stem Pro/ects 
Tabl, 2 summarb major on-going agent-related projeas. From the table, we sce chat m m  

focus on mobile and communicative agent ttchnoiogy. with only a few duected towards the 

Internet or Intelligent agents. 

Project Name 

Ajanta 

[Ajantal 

AgIets 

[Agi.%] 

Concordia 

[Concordia] 

Instihaiolls or 

Company 

D'Agent ( ~ g e i t  

TcL) 

IDAgentl 

, InfoSleuth 
1 

[InfoSleuth] 

JACK 

intelligent 

Agents 

[JACK1 

JATLite 

[JATLite] 

Emphasis 

University of 

Minnesota 

IBM 

Mitsubishi 

Infrastnicture f a  mobile agents: security and 

robustness. 

Mobile and rnulti-agent framework. use of Agent 

Transfer Rotocol (ATP) for distributhg and 

transfening agents. 

Mobile agents for network management (reliabilit y and 

security ) 

Dartmouth 

College 

MCC 

Agent Oriented 

Software Pty. Ltd 

(Ausualia) 

University of 

S tanford 

Mobile agent systems for information renieval. 

presentation. integration and distribution. 

A mixture of distributeâ mobile agents. KQML 

support, and knowledge-based management systems 

(CLIPS). 

Framework to create agent-teagent systems using 

component-bascd approach. Agents range fkom simple 

&ta retrieval to those that understand Belief Desire 

htent @DI). 

Templates for creating agents. Agents communicate to 

each otha usmg KQML. 



hinerative computing (site-tesite computations 

required by mobile agents). 

Transportable agents that can perform certain task at a 

Java-TeGo 

[JavaToGo] 
v 

Odyssey 

(Telescript) 

[Odyssey 1 
RESTINA 

[ResWI 

UC Berkeley 

General Ma@c 

TACOMA 

1 WebeW 1 Authentech inc. Helps users to effectively browse and search the web. I I 

CMU 

and California 

University 

mobile host and r m  the results. 

Gd-directed agents using a task-centered appraach. 

Tormso. Corne11 

tolerance aspects. 

Operating support for mobile agents, espcciall y fadt- 

CWebeWI 

I WebMate 

1 [Webb~l 1 1 known as plug-in on the Web. 1 

[WebMate] 

Webby V I )  

Table 2: Agent Related hjects 

CMU 

Nthough most of the projects in Table 2 focus on mobile and a multi-agent system each has a 

different emphsis on the software modalit ies (e.g . security. performance. fault tolerance. etc) 

imposed by  distributeci technologies. and each focuses on a different domain. We aiso see that 

only a few support intelligent agents. 

, 
Provides personalized web system. 

IBM 

The three most relevant projects to Sandwich are WebeW, WebMate and Webby. all of which are 

personal agent systems. Theu cornmonalties with Sundwich lie in the following factors: 

They are targeted towards internet agents, accordhg to the above categories. 

They are written in Java. and 

They use an HTïP application levtl proxy 

Provides a flexible API for pogramming intermediaries 

WebeW and WebMatt are diffaent from Sandwich in that they both have assistantship built into 

their proxy already and their documentation does not indicate how the u s a  can adâ in ncw 

assistants or remove an existing one. WebeW and WebMate might have been constnicted from 



an application framework but the use of the framework is not visible to the user. Webby is closer 

to Sandwich, and a detailed compatison with it is deferred to Section 5.3. 

2.3.4 Assistant 
The question why we have chosen to use the word "assistant" instead of "agent" needs to be 

answered. As we see from the above, agents cover a broad area of studies and cany many 

different defuiitions. One chatacteristic tbat people ofttn associate with an "agent" is the ability 

to Iearn and to act accordingly to the knowledge acquired. This is not m e  for assistant. In 

additioa Sundwicb's assismnts are neitha inhcrentiy intelligent nor mobile, and thcreforc the 

word "agent" seems inappropriate. The foiiowing working definition clcarly describes the type of 

"assistant" that is used in this thesis. 

A n  assistant is a s o f t w a r e  program t h a t  s u p p o r t s  p e r s o n a l  u s e  o f  t h e  

I n t e r n e t  v i a  a  b r o w s e r .  The  t w o  t y p e s  of a s s i s t a n t s  t h a t  we f o c u s  i n  t h i s  

t h e s i s  are o b s e r v i n g  and d e l e g a t i n g  a s s i s t a n t .  A n  o b s e r v i n g  a s s i s t a n t  

m o n i t o r s ,  measu re s ,  a n d  r e p o r t s  on t h e  u s e r ' s  browsed c o n t e n t  and  a 

d c l c g a t i n g  a s s i s t a n t  m o n i t o r s  and acts on t h e  user's b e h a l f  f o r  p o s t a b l c  

p a g e s .  

2.4. HITP 
This thesis makes extensive use of the Hypertext Transfer Protocol (HTTP) application protocol 

that is widely used on today's WWW. Even though H T ï P  is a well-known protocol. its intemals 

are not well understd by most people. The purpose of this section is to provide the necessary 

background knowledge on this protocol to understand the design of Sandwich. 

HTTP protocol is used as the communication protocol between web clients (Le. browsers) and 

web servers. Sce Figure 5. In short, wben the user requests resources such as images, text or 

appiications, from a web server, the browser sen& an HTTP rcquest to the remote server or 

intermediate proxy. if such a proxy exists. The answa to the rcquest is referred as the H ' ï ï P  

response. 
n 

Http Rdquest---.--) 

e-Http Response 

U U  Web Server 

Figure 5: HTTP Request md Response 



An HTTP request is comprised of several lines of string in the foIiowing order: 

1. The first lme gives the request method (GET. POST. etc). the Uniform Resource Locator 

m), and the browser's supported HTW version- 

2. Several lines of headers and their values. each line containing of a particular H l T P  

header name. foLiowed by a colon and then the value. 

3. An optional request body. This contains the uame-value pairs for the POST method' 

An HTTP respoase is comprised of s e v d  Ihes of string or b h r y  data in the foiiowing orda: 

1. The first line gives the numeric response code. the string response message. and the web 

server supported H T ï P  version. 

2. Several lines of headers and their values. each line containing a particular H T ï P  h d e r  

name. followcd by a colon and then the hcadcr value. 

3. An optional response body that contains the H ï T P  content itself. This can be in ASCII 

or binary data. For example, an HTML page would be in ASCn and a GIF file wodd be 

in binary fom. 

F c a  identified types of HTTP heoders are generai. request. response and entity. Gencral and 

entity types of headers are meaningful m any H ï T P  request or H?TP response. Request type 

headers are only meanin@ in H T ï P  requests: response type headers are only meaningfhl in 

Hî'TP responses. Given the structure of HTïP ,  we will now analyze an actual example. 

The following is a basic H T ï P  request and response example from a user who wants to go to the 

home page of the University of Al berta. located at URL http://www .cs.ual bertaxa/. To initiate 

this request. the following command is sent !tom the user's web browscr to the univasity's web 

m e r .  

CE? h',rp://uru.ualher=ddc'~/:%aex.Scn:1 iiSTP/:.:<crxlf> 

Proxy-Connection:  K e e p - A l i v e < c r > c l f ~  

Cser-Agent  : H o z i l l a / 4  - 0 5  ( e n ]  (WinhT; 1 ; S a v ) < c r x l f  > 

H O S ~  : ~ ~ . U a l b e m . ~ a c c ~ x l  f >  

Accept :  i a a g e / g i f ,  i m g e / x - x b i t m a p .  image/jpeg,  image/png, - / * < c r x l f >  

Accept  -Languaqe : e n < c r x l f >  

A c c e p t - C h a r s c t  : iso-81359-1, . u t f  - B w r x l f  z 



When the university's web server on www-ualbertaca receives this command it checks whetha 

the requested resource (Le. index-html) exists or not. If it does. then the web server retums an 

H T ï P  response with the OK status. such as the foilowing. 

Date: Sed. 07 kpr 1999  21:32:04 GlT <co<lf> 

S e m e r :  ApacheIl. 3 -3 { C n i x )  <cr><lf > 

Last-nodrf ied: wed. 07 Apr 1999 21:22:36 tKT <crxlf> 

ETag: '14df9-lO2d-370bct9c' < c r x l f ~  

Accept -Ranges : bytes  icrxlf z 

Content-Length: 4141 <crxlf > 

Keep-~lrve: t~meout-15, max-100 <crxlE> 

Connectlon : Keep-Al ive ccrxlf > 

Content-Type : texr/html <crs<lf > 

Ccr><lf 

(The content itself rs here, i .e. the inde 

We WU not explain each header in detail here. Appendix A lis& alphabetically on alJ headcr 

fields defmed by the H T P  1.1 specifiition [W3C). Note that ccr> stands for miage r e m  

and df> stanâs for lincfeed. 

2.4.2 Approach Summmy 
The underlying architecture of Sund~ich is based on H T P  application-level proxy architecture. 

Since over 8Wi of Intemet communications are accomplished through H m .  it makes perfect 

sense to tackie the problem by having Sandwich understand the H'ïTP pmtocol. The other 

protocols that occupy the rest of the Internet traffic include NNTP for newsgroup. SMTP for e- 

mail, and FïT for file transfers. 



3. Hooking into Application Frameworks 
in this chapter, we cover the background information on the technical approach used in this 

thesis. Section 3.1 introduces and reviews the present research status of object techoIogy, 

different forms of reuse and frameworks in general. Section 3.2 elaborates on application 

frameworks, the type of framework explored in this thesis. This section provides an overview on 

application frameworks and hooks. the ciifferences between application fiameworks and 

applications, the pros and cons of dcpioying application frameworks, and the documentation 

techniques for frameworks that exist today. Section 3.3 provicies backpxmd information on the 

hook mode1 proposed by Garry Frochlich Froe96j and experimented with in this thesis. 

3.1. Object Technology and Reuse 
Software development approaches have changed significantly over the ycars. Their evolution has 

k e n  motivatai by the netd to produce high quality software that is easy to maintain and tbat cm 
evolve at a fast pace. Producing software that can easily be reused is a sfep towards this goal. 

CuntbtJy, object technology is the most promising way of improving the software development 

process and providing for software reuse bat. m the long run. can reduce dtvelopment h e .  

implementation 4 b design 

highest level frameworks frameworks 

speclfic impl. of a pattern design pattern 

ADT, algorithm 
import of libraries. API de9criptians 

lowest level 

Figure 6: Reuse Forrns and Levels 

There are rnany ways to accomplish software reuse and Figure 6 illustrates the major forms of 

software reuse and their levels of support. The evolution of software development has gradually 

shifted from oni y reusing code through Application Programming interfaces (APIS), design reuse 

through panmis [GW95] to both design and code r a s e  through the use of framewaks. Befae 

we pr&eed to the discussion on the current status of rase  praclice using these major fams. we 

provide an overview the different framework types t b t  exist today. 



3.1. i Types of Fmmeworks and Examples 
There is no one panicular way to classify the ''type'' of a given kmework. Two popular means 

for classîfying frameworks are summarized below. 

1. Based on the nature of the domain of a framework, frameworks can be roughly classified in 

to the following two types. 

a) Foundation fkameworks contain supports for functionality that can be applied in various 

domains. They often have a very flexible. interconnection mechankm for hooking 

application-specific cude to the framework Examples are the Graphical User Interface 

(GUI) frameworks such as Microsoft Foundation Class (MFC). [FS97] refers to this 

group of frameworks as the middle-ware integration frameworks. 

b) Application fkameworks contain supports for a particular domain. They often have a 

restricted number of hot spots and more constraints in using them. Examples are Speech 

Recognition Framework [Srinivasan99]. IBM San Francisco for the dornain of E- 

Commerce (httD:!/www.ibm.corill~v~Sardranciscd). and ET++ Swaps Manager in the 

Financial Engineering Domain EggGarn921. [FS97] refers to this group of frameworks 

as the enterprise application fkameworks. 

2. Based on the techniques used to extend frameworks. Le. their adaption mechanisms, 

frameworks can be roughly categorized into the following two major (rather exueme) types. 

a) White box ikameworks are extended through object-oriented (00) language features 

such as inheritance and dynamic binding. IFS971 describe a white box framework as one 

that can be extended either by (a) inheriting an abstract class andlor (b) oveniding pre- 

defmed hook methods that are predcfined by the framework when a pattern such as 

template (GHJV951 is deployed. 

b) Black box ikameworks are extended via the plug and play approach. spccifidly via 

object composition or changing component properties. It resembles the notion of 

components and beans development. 

It is important to note that an application framework is often a mixture of these two extensions 

rather than only one approach. 

The current state of reuse practice lies mostly on the lowest level (APIS). with design patterns 

[GHN95] gaining popularity in the past couple of years. The rnaturity of reuse in the form of 
17 



frameworks di f fas  depending on the type of frameworks in discussion. Foundation frameworks 

are reasonably mature; for instance MFC is extensively deployed in today's on-going software 

development effort. On the other band, application frameworks are a less mature reuse practice 

and are still emerging. There is a strong belief in the community that application frameworks are 

promising in terms of delivering sipificant levels of reuse by leveraging the existing design and 

irnplementation common to all application in the same domain. Thus. application frameworks 

provide reuse in many facets, from system architecture, design. and implementation to conceptual 

reuse that includes set of common terminology and view on the problem domain in discussion. 

Nonetheless. several research proôlems rernain to be solved Ïn this arca. Same examples arc the 

assessment or evaluation of frameworks. weak justification for using ftameworks (due to stcep 

Iearning cwve). process for developing frameworks. integration of multiple fiameworks. and 

documentation strategy for frameworks. 

3.1.3 A p ~ m a c h  Summmy 
B a d  on the nature of the domain. the framcwork proposcd in this thesis work, Sundwàch. is an 

application framework that focuses on the domain of personal web assistants. It is important to 

note that other sub-frameworks, such as the pasistence framework. that are used in SondwïcR 

may still be considered as a foundation framewor:, Based on the adaption mtchanism 

classification scheme, Scudwich is mïinly a white box framework that deploys several black box 

components such as free third-party beans that are downloaded. 

Among the listed outstanding research problems for frameworks at the end of Section 3.1.2, this 

thesis provides a case study for using the hook mode1 as the strategy in documenting frarneworks. 

3.2. Application Frameworks 
An object-oriented application framework is a set of classes and their collaborations that provide 

a generic and reusable architecture. design. and implemzntation rnethod for a given family of 

applications. An application framework consists of extensible area known as hot spots. To mate 

an application from a framework. one or more hooks are enacted to generate application code that 

is attached to one or more hot spots of the framework. See Figure 7. Frorn here onwards, the use 

of the word 'Yhmework" implies application framework 

A framework sometimes comes with a set of default application code already generated by 

enacting some of the hooks for some of the hot spots. Framework users can replace these default 

18 



features with their desired one easily. sirnply by re-enacting the set of hooks based on their needs. 

Frozen spots of a framework are areas where framework implementations are already f i y  in 

place. Developers are strongly encourageci not to change these frozen spots. or otberwise. be 

involved in the framework evolution. 

application 

enactment of hook(s) hook into 

Hook 2 

(Ho,-.7'\ m l Framework '-1 

hot spots / 

Figure 7: Hodrs and Hot Spots 

3-2- 1 Applicbti~rr Fmmeworks v @ m s  A p p l k ~ t i ~ t ~  
An application framework is different from an application. An application framework can be 

used to develop multiple applications belonging to the sarne domain. An application, on the other 

han4 can be iieveloped from scratch or from a framework In the latter case. the application is 

said to be an instance of the framework that it is consuucted fkom. The two aspects of their 

differences are WLS98bJ: 

(1 ) LRvel of abstraction. Frameworks are more abstract than applications. The design of a 

framework must be flexible and abstract cnough to support a family of applications, and 

(2) Frameworks are, by their nature, incomplete; applications are typically self-containeci and 

thus complete by themselves. 

A framework carries al1 the benefits of developing 00 applications. In the context of reuse. 

frameworks promise to deliva the benefits to a greatcr extent. A typical application reuse is 

oftcn in the form of implernentation such as using some third party APIS. An application 

framework provides for code r a s e  as well as design and domain-specific muse such as cornmon 

terminology and view of the problem domain. 



Due to the differences between frameworks and applications. the methodology in developing 

fkameworks is also different fiom that used in developing object-oriented applications. The m m  

important ciifference is the notion of invmed control. Wben developing an 00 application, 

developers have full control over the main control Ioop of the application- This is not true when 

developing an application framework or creating an application fiom an application framework 

By its very nature, much of the design for an application is aïready completed before 

development commences when using an application frarnework Therefore a developer mut be 

wiUing to reuse someone else's code and design. As an example, the developer may not be able 

to alter the application's main control because it is directeci by the framework's ernbeddcd flow of 

control. This is also known as the "Holiywood Principle" or the "Don't c .  us. we'll cal1 you" 

approach. A generally accepted principle in framework use is that a fi-amework developer has to 

make sure that the flow of control cmbeddcd in the fhnework can support the domain of 

applications targeted by the fkamework. 

3.2.2 fhe Pros and Cons of AppIication Fmmewo&s 
The decision to buiid any type of framework requires the consideration of many issues, most 

irnportantly is whctha or not a framework is needed. Aithough frameworks are promising in 

terrns of delivering a high degree of software reuse, thcre are also drawbacks in s ing  it. In this 

section, we sumrnarize the pros and cons in building application frameworks. 

Pros: - 
1. Reuse. As we have seen in Section 3.1, fiameworks provide not only the code reuse but also 

design and architecture. 

2. Maintenance. Ali applications constnicted fiom the framework share the cornmon design 

and code base and thus make the maintenance of these applications easier. 

3. Quality. In addition to providing design reuse, the h e w o r k  is also a tested design proven 

to work and thus forming a quality base for developing new applications fFHLS99bI 

Cons: - 
1. Steep learning curve. There is Men a steep leamhg cuve for devclopérs who nced to 

familiarize themselves witb the fiamtworks chosen for building applications from. Often, 

sorne level of object knowledge is rquired for framework users who are not the original 

fmmework developers to use a framework effectively. 



Knowledge Transfer Challenges. Framework developers &en face challenges when the 

knowledge accnied in constnicting the framework needs to be transferred to other developers 

or maintainers. 

Integration Challenges. Two main W~cultics can be encountered when multiple 

fiameworks are involved in crcating an application. m 9 9 c ]  describes these challcrrges 

further from the hook perspective. 

(a) A framework gap when services expected by a fiamework are aot available from 

any other framcworks deployed in the systcm. and 

(b) A framework ovcrlap when two a mort framewaks provide the same savice 

through different means. 

Scope. The breath of a framework is hard to determine when designing a framework. The 

brader the area a framework covers. the l a s  focus it has. On tbe other han4 if the 

framework is too facused then its reuse may be limited. 

Design Authority. To effectively use a framework, the application developers must yield 

design authority. For example, their applications must confarm to the overall architecture 

and control loop of the fhmework chosen. R d  the "Hollywood Prmciple" descri'bed in 

Section 3.2.1. 

3.2.3 Fmmework Documentation 
A good set of documentation is indispensable in order for fiameworks to deliver their promises 

and potential. Good documentation helps in various ways. For the framework users. goad 

documentation eases the process of hooking in new applications: fw the framework developers, 

documentation promotes communication, understanding of framework's dynamics and intemal 

design, and f a l y  for fiamework maintainers, documentation helps them to cornprehend objects. 

modules, and subsystem dependencies. 

But what coristitutes a good set of documentation for frameworks is still an open issue. There 

have been several frarnework documentation techniques proposcd such as patterns from 

[Johnson92], a cookbook from [KP88], formal specifications contract fkom @IHG90], uremplars 

from [GM95], motifs from &Kg41 and hooks fkom Froc%]. In this thesis, the hook model 

proposed by [Froe96] is experimentad witb aad uscd as the documentation technique for 

Sandwich. Experience based on this rnethod will be coUected and summarized. The following 

section reviews some background lcnowlcdge on the book model. 



3.3. The Hook Model 
An important aspect of a framework's classes is that they are adaptable; more specifically a 

framework provides some mechanisms by which its classes can be extended Sub-classmg and 

registeririg callbacks are examples of hooks. These extensions need to be well documented so 

that developers who use the framework to develop an application lcnow exactly where to look for 

help. The hook mode1 proposed by Gany Froehlich is a documentation technique that strives to 

provide an answer to this. A typical hook for a framework is organized and written using the 

following template [FHLS98a]. 

Name 1 A unique name* within the context of the fnmework that identifies the book 1 
1 

Requirement 1 A textual description of the problem the hook is intended to help solve. The 

1 framework builder anticipates the requiremeats tbit an application will bave I 

l 1 support provided for the problem within the framework 
Tm' 

1 1 The parts of the framewak that are affectcd by the hook 

and describes hooks for those requirements 

An ordered pair consisting of the method of adaption and the amount of 

1 

Uses 1 The other hooks rquired for using this hmk Ru use of a single book may 

I 1 not be enough to completely Wili a rquirernent that bas severai aspects to 

I 1 i t  so this section States the other hooks that are needed to help Wrl) the 

Participants 

requirement 

The components that participate in the hook. There are both existing and new 

Precondiüons' 

Table 3: Ho& Template 

components 

Consaaints that must be tme before applying the hook 

Changes 

~ost-conditions' 

Cornments 

1 These orchxi pairs are &rived From the hook cypes that are elaborated in the following paragraphs. 

' Older vasion of the hook mode1 included a field knom as "Cmstraints". This has been replaced by 

"Recondi tions" and "P~oscondi ti ons". 

The main section of the hook that outlines the changes to the interfaces. 

associations, and control flow amongst the components given in the 

participants section 

Consnaints that must be m e  after applying the hook 

Any additional description netdeci. 



The type of hooks is dctermined using a two dimensional system: the mabod of adaption and the 

level of support. The method of adaption dimension is bascd on how the ftamework is affected 

(method of adapting) when the hook is applied; in panicular whether the framework's features are 

king enableci, disabled. replaced, augmented or added. The level of support dimension is the 

opaqueness of the hooks. 

Under the method of adaption dimension we have five types of hooks: 

(a) Enabling a Feature. M e n  hooks of thh type are uscû. a particular faturc of ttie f k n e w a k  

(that is not on by default) is tumed on, often through a black box approacb. 

(b) Disabling a Feaîure. This is similar to the above type. except here the feature of the 

framework is turned off and may involve the disruption of otha features. 

(c) Repladng a Feature. When hooks of this type are usai. a particular fcatwe of the 

framework is bemg replaced with a new fcatwe that satisFits the same interface and 

behavioral obligations as beforc. 

(d) Augmenting a Feature. Wben books of tbis type arc use& the cxisting flow of control of the 

framework is intercepteci with additional needcd actions and then control is retumed back to 

the framework. Unlike replacing a feature, augmenthg a feature adds to tbe bebavior without 

redefining the feature. 

(e) Adding a Featwe. When hooks of this type are use& a new capability that did not exist 

before is added to the framework. 

Under the level of support dimension. we have thrce types of hmks: 

(a) Option. Hooks hae are the easiest to use; pre-built components are often attached to the 

framework using the plug and play approach. However. they are less flexible. men, a black 

box framework contains more hooks at this level than any other levels. 

(b) Pattern. Hooks here are more flexible than those at the option level. Supplying parameters 

to a class and sub-classing are the commoniy uscd hook techniques. Stcps rtquired to enact 

the hmk(s) in fulfiiling a requirement are outlincd but details of the codes are dcfened as 
they depend on the application king developed. Often. a white box framework contains 

more books at this IeveI. When more than one class is mvolved in the hmk. the levet of 

support is alsa known as collaboration pattern. 



(c) Open-Ended. Hooks here are the most flexible ones and are more likely to be used by users 

who are evolving and extending the framework itself. A deeper understanding of the 

framework's internais is required. 

The value of the4Type" field for a given hook is the method of adaption type followed by the 

level of support type. Some examples are enabling patterns, addiag options. and so on. 

Sadnich will use the hook model as the technique to describe its extensions. This experience 

wiIl . -der evaluate the hook model developed by Gany Froehlich in his Ph-D. dissertation. 



4. Sandwich 
This chapter focuses on the architecture. design. prototypes and hooks of Sandwich. Section 4.1 

gives an overview on S d w i c h .  Section 4.2 describes the actors mvolved in Sandwich. Section 

4.3 discusses Sandwich requirements that have been captured with use cases. Section 4.4 details 

Sandwich m terms of its subsystem architecture, design and its rationale, and hooks. Section 4.5 

outlines the detail steps in creating new assistant in Sadwich and finally in Section 4.6 discusses 

other considerations such as assistant that plays two roles and assistant-twissistant collaboration. 

4.1. Ovenriew 
The name Sandwich was chosen mainly because of the underlying architecture of the framework 

Sandwich is essentially built from the notion of a poxy m e r ,  an mtermediary that lies between 

a semer and its clients, or is "sandwiched". 

As the WWW continues to grow, the question of what is the best strategy for an Intemet user to 

manage and confrol the pages that he or she bas visited or wants to visit becomes more and more 

important. Currcntly, thae is no universal solution to this problem of data management. 

Nonetheless, an altractive and viable answer would appear to involve personal assistantship add- 

ins. We intend to explore this in this thesis. 

Many assistant programs have been identified and built; however. almost al] of them solve a 

particular poblem in a separate application domain. Also. each of these encompasses their own 

architecture, design. and set of codes. However, because of their commonality, rnany of these 

applications could share the same architecture and design in a proxy. For example. [SYW] also 

tried to achieve additional or specific application fwictionality Shrough the use of an intemediate 

proxy. It is the goal of this thesis to identq these comrnon services, and to design and develop 

the corresponding building blocks. An application solves a particular problcrn; a framework 

provides the solution basis to a set of common problems. Assistant programs are customited, 

extended and buiit from the Sdwich h m  the documented hmks. Sandwich is intended to be 

small and very focused. 

Based on the techniques used by assistants to accomplish th& objectives, we have identified two 

groups of assistants. The fmt group is compriscd of standaione assistants that are independent of 

the user's browsing activities. The second group is comprised of assistants that are dependent on 

25 



the user's browsing activities and can be furcher broken down mto two types: observmg and 

delegating assistants, based on their interactions with the end-users. The followmg figure depicts 

this taxonomy. 

Independen t of 
User's Browsing 

Activities 

Stand Alone 
Assistant 

Dependent on 
User's Browsing 

Activities 

Figure 8: Gnnips ruid Types of Assfstaots 

I 

This thesis explores a framework that supports the construction of the second grwp of assistants, 

i.e. those that depend on the user's browsing activities. Thus. oniy observing and delegating 

assistants are explored and elaborated on in this thesis. 

Observing 
Assi st an1 

Although obse~ing and delegating assistants belong to the same group. üiey arc slightly 

different. The services provided by observing assistants can be accomplished by watching the 

user's web activities and involve almost no dynamic user interaction during this observation 

process. The output of this observation is ohen a meaningful output, in the form of a report. The 

end user explicitly asks the assistant to prtsent ais meaningful output. The services provided by 

delegating assistants are more dynarnic and mvolve a lot more user interaction. A delegate 

monitors and dctccts the right time for delegation. When an opportunity aists, it wiil prompt the 

user for confmnation before proceeding with ddegation. If the user agrces. then the delegation 

process continues. Otherwise, the delegation is abortcd. 

Delegating 
Assistant 

Request 
Deiegating 
Assistant 

Response 
Delegating 
Assistant 

i 



4.2. Sandwich Actors 
Actor is a term used in the UML mGB99. Fowler971 requirement analysis phase for describing a 

system's end-user role. Like any other software system, Sandwich has many actors at diffcrent 

levels of usage. [FHLSWb) describes three different roles (framework designers, h e w o r k  

users. and framework maintainers) associateci with the development and use of an application 

fkamework Al1 these roies as well as an additionai one, end-user role, apply to Sundwich. Each 

is briefly described in this section. 

Different individwls do not necessarily fill these different roles. For iusîance. the framework 

designers rnay also play the role of framework maintainers. Also, the end-users may acnia)ly 

download the Sandwich source code and start developing assistants (Le. play dual roles of 

assistant devclopa and end-user). 

4.2.1 F ~ a i ~ w o r k  ~gneIS/DeveIopem 
These actors develop the original framcwofk - Sandwich. They possess the broadest knowltdge 

of the inttnial structure and wderlying architecture of Sondw+ch. They defme and write the 

hooks for extending the framework 

4.2.2 Framework Users (Assistant Developers) 
These actors identify new assistant programs and develop them through the hooks defined and 

documented by the framework designers. By doing so. large portions of the framework 

architecture. design and irnplementation are being reused. 

4.2.3 Framework MainMners 
These actors evolve and refiie Sandwich. For example. they would enswe that Sandwich is 

using the latest HTïP sptcification recognïzed by W3C. 

4.2.4 End Users 
These actors use S d w i c b  to facilitate and have more conuol ovcr their daily web sdmg 

capabilities. When thcy fmt use Sandwich. tbey downioaâ, instaii and use Sadwich "as is" 

(Sdwich  packaging cornes with a pool of personal assistants). Lat-. thcse end users may 

purchase or even devtlop new pasonal assistants and aM thcm into Sundwich. They may also 

assist in d e f i ï g  new assistant programs together with assistant developers. 



4.3. Use Cases 
In this section. we wiü fvst provide an introduction to '-use case." including its origin, a 

description of the current state-of-the-art and defkitions of the terminology involved. We then 

summarize how use cases are applied during the analysis phase of Sumiwich. Use cases are used 

to capture rcquirements for the family of applications that Sandwich targets (i.e. a few assistant 

examples) and to generalize requirements for the framework itself. 

4.3.7 Origin and the Curmnt Stattwf-theArt 

Ivar Jacobson first introduced the concept of use cases in object-oricnted software engineering 

(OOSE) methodology. The basic idea is that the functionality of a software system can be 

captured as a number of different use cases. Use case bas gained popularity since then and bas 

become the standard in UML for capturmg user requiranents. There is common agreement 

among software cngineers that use cases are useful. However. people are still vcry confused 

about the protocol in written use cases. in particular what to include and how to structure them. 

4.3.2 Intm&ctim 

A use case. denoted as an oval. is a collection of possible sequenccs of interactions bctween the 

system under discussion and its extenial actor(s). Figure 9 below is an urample of a use case 

diagram. An actor represents a role that entities (sorneone or something) in the e x t d  

environment can play in relation to the system. An actor is denoted as a person, however. the 

actor is not the actuaï person but raîher the role the person or thing plays. The relationship 

between an actor and a use case is denoted with an anow. 

= - s e s - , !  

p A u s e  case 

Use Case 3 

Use Case 2 Use Case 4 

Figure 9: Example of a Use Case Diagram 

28 



In addition to the finks baween actors and use cases, there are two other types of links: uses and 

extends. Both represent the relationship between two use cases and is denoted wiui an arrow and 

a text label (uses or extend). They imply factoring out common behavior fiom multiple use cases 

to a single use case; however. their mtents are different- An extend relationship is used when one 

use case is similar to another use case but does a litüe bit more. The rule of thumb to use extend 

is to do so for cases which are variations on normal behavior. A uses rclationstiip occurs when a 

particular behavior is similar aaoss more than one use case and thus can be factored out and be 

reused by ail the applicable use cases. 

A scenario. sornetimes referred to as a transaction. is a terrn commonly confused with use case 

and is being used inconsistently. For instance, a scenario sornetimes is used as a synonym for use 

case. In UML and this thesis. a scenario rcfers to a single path through a use case. that is. like a 

use case instance. Thus, a particular use case can be reaiized in one or more scenarios or has 

many realizations. 

4.3.3 AppIying Use a&??$ 
App!ying use cases to funework developmcnt is a little dinacnt than for application 

development. When use cases are applied to framework development, the use cases analysis 

becomes complicated. because of the difierences between a framework and an application as 

discussed in Section 3.2.1. Recall that a framework is the skeleton that allows multiple 

applications in a certain domain to be built from. Thus. the use cases of a framework are not 

targeted towards one application but multiple related applications. often referred to as a family of 

applications. In contrast. when use cases are applied to application development. the use cases 

are simply the set of capabilities that the system needs to support to fd f i i  the one application's 

requirements. 

We tackle this challenge by applying use cases to framework development in two stages: 

1. Applying use cases to zhe ultimate farnily of applications that the framework is built for. 

and 

2. Applying use cases to the framewolk itself. 

Although they can be conccptually viewed as two distinct stcps. they are highly correlated. For 

Sandwich. during the analysis of the use cases of the farnily of applications, we capture and 

29 



deduce the requirernent pattern that would apply to group of personal assistants. These patterns 

allow us to factor out the common. ireusable and extensible use cases sharcd by one or more 

assistants. These use cases are, in essence. the use cases of the framework They are tbe basic 

services that Sandwich should provide to support its targetcd famlly of persona1 assistant 

applications. This then leads to the reapplication of use case analysis. but this tirne to the 

framework itself. 

4.3.4 Application Famiiy Use Cases 
In this section use cases is prescntcd for a reprcstatative family of personal assis tan^ application. 

The foliowing assistants were chosen for analysis purpose: 

- Auto POST Assistant 

- Search Summary Assistant 

- PICS Filtering Assistant 

- Simple Filtering Assistant 

- Change Monitor Assistant 

- Defer/Batch POST Assistant 

- Enhanced History Assistant 

- TimeKee;>er 

- RFAMailtoAssistant 

- Image Downloader 

Each of the above assistants is described using the following template: 

As necessary, a background section that provides the knowledge to understand the 

assistant itsclf. 

Actor(s) involved 

Brief description of what the objectives and benefits of the assistant are 

Pre-condit ions of the assistant in accomplishing its objective 

Main flow of the assistant in accomplishing its objective 

Additional information 



4.3.4.1 Auto POST Assistant 

Abor: End user 

Description: An auto POST assistant detects an o p p m i t y  to autornatically perform an HïTP 

POST using values that a user has posted before. This assistant can Save a user significant time in 

entering tbe same POST values o v a  and o v a  again. A specific a m p l e  is the stock quote 

obtainer example described in the introduction chapter. 

Pre-condit ions: 

None 

Main Fiow: 

1.  The assistant remembers all POST rquests: requcstcd ü R L s  and the posteci name-value 

pairs. 

2. The assistant rnonitors and detects delegation oppcltunity based on previously visittd URLs. 

i-e. remembered in the above step. 

3. Assistant prompts the actor whether or not to proceed with the delegation and lets the actor 

picks from a Iist containing previously postal narne-value pairs, sorted according to the date 

the requests were made. 

4. If the actor decides to go with a previously posted set of name-vahe pairs, this assistant 

generates a new request based on the one the user has picked from the list explicitly. The 

actor may choose to ignore the list and create a new set of narne-value pairs. 

Additionai Information: None 



4.3.4.2 Search Sumrnary Assistant 

Ador: End user 

Descript ion: 

When the actor performs a search on a search engine, say Yahoo, this assistant wiil ask the user 

whether the same search is to be performed on the other popular search engines. If the actar 

agrees. the assistant gives a summary of al1 the URLs returned on the fust page of ail the search 

engines' results. This assistant aïiows web searching on different search engins concurrent1 y 

and presents the search results in a consistent and perhaps personaiized manner. 

Pre-Conditions: 

The assistant contains a list of popular search engines URLs and aïlows the user to 

addhemove them. 

Main Flow: 

The assistant monitors and dams the delegation opportunity, specifically when the actor- 

requested URL is one of the above search-engine W s  that the assistant is aware of (see pre- 

conditions). 

The assistant asks the actor whether or not to procecd with the delegation and lets the actor 

pick fkom the list of search-engine URLs. 

If the actor decides to use the search surnmary assistant. this assistant will gather the search 

results Rom ail the selected search engines. The assistant will then integrate the information 

and present it to the actor in a consistent rnanner. Even better. this assistant can allow the 

actor to specify the template for consuvcting the summary of al1 the search results. 

Additional Information: WebCrawler is an existing site that provides such functionality with the 

exception that the user is not able to personalize the retuni pages. 



4.3.4.3 PICS FiIteting Assistant 

Background: 

PICS stands for Platfmm for Intemet Content Selection and is an Intemet ratings standard 

designed by W3C to aUow internet content selections. The idea is basically that PICS gives web 

publishers a standard way to describe the content of web sites or web pages. In short. 

The web site will be registered with a labeling scheme, such as Recreational Software 

Advisory Council on the Internet (RSACi at http://www.rsac.or~omepage.asp) and 

SafeSurf at http://www.safesurf.com/classify/ùidex. han]. 

Al1 web pages of the web site will be attached and associatcd with labels. and labels contain a 

set of ratings. 

Labels can be generated eithcr by the author of the web pages or through third party rating 

systems. 

Labels can reside in the head section of the web pages using HTTP META tag (see Appendix 

B), or within a label database or bureau accessible through the Internet. 

In essence. the label notion introduced hae  classifies Internet information and thus provides a 

scheme that aUows content fdteringhelection. Clearly, this infrasuucture provides 

capabilities that are far beyond and on a larger scale than simple fdtering based on a k t  of 

URLs. However, this system requires that ail web pages be rated. W3CJ contains link to the 

full IETF specification for PICS. 



PICS Filtering Assistant (Con* r ) 

Ador: End user 

Description: 

This assistant allows the actor to perforrn content selection based on the ratings tagged to it using 

the PICS infrastnicture. With the labels and ratings notion, this assistant ensures that only 

suitable material is prcsented to the actor. Inappropriate niatcrials can bc easiiy scrctlled out for 

children. 

Pte-conditions: 

The actor has specified which ratings are not allowed. 

The assistant is interested in knowing the META headers of ail pages requested as weU as the 

full requestcd URL. 

Main Flow: 

1. The assistant monitors and daects delegatioa spccfically if the rcsponse to the actofs 

request contains ratines that are included in the actor's disallowcd ratings (se pre- 

conditions). 

2. if so (i.e. a response contains rating included in the actor's disallowed ratings). then this 

assistant rcsponds that the content is inappropriate to be viewed. Otherwise, the request is 

simply relaya!. 

Additionai 1 nformat ion: [SY97] describes a technical solution (sirnilar to Sandwich 's approach) 

that w il1 support this particular assistant. 



4.3.4.4 Simple Fitering Assistant 

Ador: End user 

Description : 

This assistant is the same as the PICS fdtering assistant with the exception that it does not use the 

PICS infrastructure. This assistant dows the actm to p e r f m  content selection based on a iisf of 

URLs or wildcard URLs such as httv::'!*.xxx.*. Like the PICS filtering assistant. this assistant 

ensures that on1 y suitable material is presented to the actor. Inappropriate materials can be easily 

screened out for children. 

Preamditions: 

The actor i n f m  the assistant of the Ut of disallowed URLs. 

Main Flow: 

1. The assistant monitors and detects the delegation opportunity, specirically when an actor 

requests a URL that is one of the dWowed URLs (se pre-conditions). 

2. When the opportunity cxists. without prompting the actor. this assistant responds that the 

content is inappropriate to be viewed. Otherwise. the request is simply relayed. 

Additional Information: None 



4.3.4.5 Change Monitor Ass&tanf 

Ador: End user 

Description: 

Upon visiting a page that has been visited before. tbis assistant compares the previous page with 

the fresh pull page (from the rcmote web s a v a ) .  If the pages have changed this assistant 

responds with a different page that shows the differences between the previously visited and the 

new page. This assistant can tell the actor right away whether or not a fhvorite page has changed 

since the last visit. It can also show the differences to the actor. 

Preconditions: 

The assistant saves ail pages that the actor visits. In ordcr to Mit  the volume. the user might 

want to sa a threshold on the number of pages or the amount of memory that can saved for 

this purpose. Alternative. the user can indicate to the assistant that only the top 10 favorite 

sites of hidher are to be saved for this purpose. 

Main Flow: 

1. When the actor revisits one of the pages that was saved according to the pre-condition. this 

assistant would prompt the actor if the actor wants to vicw the diffcrences report. 

2. If the actor agrees. then this assistant will go and fetch the new page, compare them and 

renders the difference report. 

3. If the actor declines, then this assistant will simply relay the original rquest. 

Addit iond 1 n formation: None 



4.3.4.6 De fermatch POS T Assistant 

Ador: End user 

Description: 

This assistant allows an actor to defer a POST or batching up POST requests to remote web 

servd(s). This is accompfished by having the capability to let the actm p a f m  POST to tbc 

assistant only. This will defer the POST and thus batch POST becomes possible. Batch POST 

allows an actor to perform POST to multiple sites concurrently and to manage transactions with 

an aii or nothing approach. For example, when making rcservation for airline ticket and hotels, 

an actor might wam to hang on to the hotel reservation until an airline ticket for the trip is 

confimeci. Currentfy. an actor has to open up multiple browsers to accomplish th&. 

Re-conditious: 

The assistant monitors aU POST requests by the actor. 

Main Flow: 

1 .  For each POST request. this assistant will ask the actor whether the POST should be deferred. 

2. If the actor agrees. then the assistant saves the POST request parameters. The assistant then 

informs the actor that the POST request has been saved as a deferred rcquest. 

3. If the actor disapproves. this assistant simply relays the original request. 

4. This assistant provides a separate interface that aiiows the actor to perfonn the batch POST 

request. 

Additionai Information: 

Implementation of this assistant will require furthcr in-depth investigation. For example. 

curent a web transaction cannot undo itself, what is the strategy of this assistant. The 

implementation of this assistant wiil depend on how the scrver-side compouents manage end 

user sessions. in addition, this assistant might oniy be feasible when ail web transactions 

conform to a standard. 



4.3.4.7 Enhanced History Assistant 

Ador: End user 

Description: 

This assistant saves al1 the URLs of pages (along with statistics such as baw pages are obtained 

and the nurnber  ri" failed requests and so on) that the actor bas visited and ailows the actor to 

navigate to them easily. This assistant gives an enhanced version of current browser's history 

Iist. It is an enhanced version since this assistant now remembers ail URLs visited (on al1 

sessions) pcrsistently, unlike a browser history Iist îhat remembers only a limitcd number of 

m u s .  

Re-conditions: 

The assistant monitors all URLs that a user bas visited. 

Main Flow: 

1 .  The assistant provides an interface that presents to the actor URLs of aU pages visited (along 

with certain statistics) and allows the actor to go to the page again easny. 

Additional Information: None 



4.3.4.8 Time Keeper 

Ador: End user 

Description: 

This assistant kteps track of the actor's on-line elapsed time so that an alert is triggered when an 

actor's on-line (assuming the tser oniy uses a browser wben online) time bas reached a cerrain 

threshold. Some Interna service providcrs (ISPs) today still impose a limited amount of web- 

tirne for a certain discount price. Whcn this iimited tirne is used up. the actor will be charged a 

higher price. We set that a time keepcr assistant behaves like a reminder and can be very handy 

in this respect. 

Preconditions: 

The assistant needs to lmow the start and end Umestamp of the user king on-line and off- 

line. 

The assistant allows the ac:of to set the threshold that triggers the alm. This threstiold is the 

limited minutes offered by the actor's ISP. 

Main Flow: 

1 .  The assistant saves up and accumulates the elapsed tirne (the difference between end 

timestamp and the start timestamp of the user's king online). 

2. The assistant pops up an alert message when the accumulated elapsed t h e  is about to reach 

the threshold that is set in the pre-condition. 

Additiond infbrmation: This assistant use case assumes that the user's online t h e  involves 

only the user's web browsing activities, i.e. not including tclnet and fip. 



4.3.4.9 RFA Maitto Assistant 

Ador: End user 

Description: 

This assistant allows the actor to spece a rcquest for an answer (RFA) to al1 mailing 

addresses fmnd on web pages brmsed ay the actor. if the actor is unable to fmd an answer 

to a question after browsing ail related sites. this assistant allows the u s a  to send a (the same) 

question to al1 of these related sites that contains a valid e-mail address that is not the 

webmaster's one. 

Preconditioas: 

This assistant nec& to track all the contents of web pages. 

Main Flow: 

I .  The assistant provides an interface that allows the actor to specify the RFA to be sent out. 

2. The assistant informs the actor whether the action is successful or not. 

Additional Information: None 



Ador: End user 

Description: 

This assistant automatically schedules itself to go to sites chat the actor has browsed for the day 

and &wnIœds images ont0 the actor's desktop. This irssistant can save the actor time if the 

image downioading activity is done regulariy. 

Re-condi tions: 

The assistant needs to know the sites visited by the user for the day. Altematively, this 

assistant cm aUow the actor to spccify spccific URLs. 

Main Flow: 

1 .  The assistant provides an interface that allows the actof to specify whcre to downioad the 

images froa, whether a certain URLs or all sites browsed for a certain &YS. 

2. The assistant schedules it-self to go to the designateci URLs and download images. 

3. The assistant notifies the actor when step 2 finishes. 



Image Dowlauder (Cont'd) 

Additionai Information: 

The requirement of this assistant is derived from an acnral question posted by Damon 

d a m o n e  mv-deianews.com on ApriI 14, 1999 on the comp.lang.&1ta.progr4mmer 

newsgroup. 

"1 fmd rnyself going to the same w& sites everyciay to dowasd images for work and I 

would Iike to fully automate the task and possibly use a tuner so the images can be 

waiting for me when 1 get to work. 

Can Java read the URL locations of numerous GIDIIPG images. retrieve them. and 

write them to one directory. or does its security restrictions cause problems?" 



4.3.5 Sandwich Use Ccrses 
After going through the use cases of the application families. we now discuss the use cases of the 

framework itseif. Each of the use cavs below is described in decaü using a sirnilar but simplsed 

template as above. 

Figure 10: Sandwich Use Cases 



4.3.5.1 Identifying an Assistant 

Ador: End user, Assistant Developer 

Main Flow: 

1. The end user describes the desired assistantship to the assistant developer. 

2. The assistant developer conFnms the requirernents by writing down the use case of this 

desired assistant using the template used above. 

3. The end user accepts or rtfines the use case. 

4. The assistant developer decides whether the ncw desircd assistant is a candidate for 

Sandwich's pool of assistants. 

Post-conditions: 

A conclusion on whether a new kind of assistantship can be created by either using an 

ex isting one or developing a new assistant for Sundwich. 



4.3.5.2 Creating a New Assistant 

Ador: Assistant Developer 

Pre-conditions: 

The assistant is cunently not in SundwîcR's assistant pool- 

The actcw applied the use case Identifvuig an Assistant and the conclusion is tnie in that the 

assistant is a candidate of Sandwàch. 

Main Flow: 

1.  Theactor definesthefunctionalityofthisnewassistant. 

2. The actor crcates the new assistant with the use case Customizing Sandwich with Hooks. 

3. The actor documents the parameters to be configurcd for adding thh new assistant to 

Sandwich. 

Post-conditions: 

The new assistant can be added to Sandwich's pool of assistants using the parameters 

documented. 



4.3.5.3 A Wing a New Assistant 

Ador: End user 

Re-condit ions: 

The actor applied the use case Creating a New Assistant. 

Main Flow: 

1. The actor edits the property file to include this new assistant, using parameters documented 

down in the use case Crcating a New Assistant. 

2. The actor applies the use case Setting an Assistant to be Act ivt/Inactive. 

3. The actor restarts S d w i c h  and the new assistant will be initialized. 

Post-conditions: 

Sandwich initiaiizes this new assistant during start up. 



Ador: End user 

Re-condi tions: 

The assistant is currentiy registcred with Sandwich. 

Main Fiow: 

1 .  According to the ne& the actor changes the flag that indicates whether an assistant is active 

or not in a propay file. 

2. The actor restarts S d w î c h  to make the changes effective. 

Post-conditions: 

The assistant becomcs active or inactive depending on the ncw flag set. 



4.3.5.5 Phrit&ing An Assistant 

Ador: End user 

Re-condit ions: 

The assistant is currently registered with Sundwich. 

The assistant acts on behalf of the uset. Le. dtlegating the usa. for "postable" pages. 

Main Flow: 

1. According to the requirement, the actor changes the priority value for the assistant m a 

property fde. 

2. The actor r e m r t s  Sandwich to make the changes effective. 

Post-conditions: 

Priorities of aii active delegating assistants are unique. 



4.3.5.6 Integrating an Assistant with Sanhich Interface (Admin Applbtfon) 

Ador: Assistant DeveIoper or Frarnework Maintainer 

Pre-conditions: 

The assistant is added to Sundwich or is king created 

Main Flow: 

1 .  The actor decides that the assistant has a GUI interface that can be intepted into the default 

Sadwiih interface. the administrative application. 

2. The actor enacts hooks that allow this assistant to integrate with the default SCMdwich 

Interface. 

3. The actor r e m  Scuid~+ch for tcsting and for changes to be effective. 

Post-conditions: 

End user may now view the result of the assistant through this default S d w i c h  interface. 

the administrative application. 



4.3.5.7 Customriing Sandwich with Hooks 

Pre-condit ions: 

Hot spots of Sandwich tbat can be customized are documented with hooks. 

Main Fiow: 

1. The actor determines which hot spot of Sadwich needs to be customized. 

2. The actor foliows the hook in customizing the hot spot. i.e. addingkemoving capabilities or 

enabling/replacing default implementation. 

3. The actor restarts Sandn6ch to test the new customUation. 

Post-conditions: 

Some capabilities are addediremovcd or default implernentation is enabled/repIaced. 



4.4. Sandwich Subsystem, Design, Hooks and Rationale 
Section 4.4 and its subsections descrifie the framework subsystem, design and its design rationale 

as well as the hook documentation for using the framework Each sub-section encapsulates a core 

functioaality of Sundwkh. Appendix D contains a summary on the UML notation that is used in 

this thesis, especialiy this section. We begin this section with an overview of the subsystem 

architecture of Sruiddch. as show in Figure 1 1. 

The two main components of Sandwich are the H T f P  proxy and the pool of assistants. The 

proxy is responsible for taking an end-user request and fulfilling it using the pool of active 

assistants. The HTP proxy initially loaded all registered assistant into memory by rcadiag in the 

assistanî.prciperties fde using the persistence framework Note that an assistant can be registered 

and not be active in Sundwich. The Sandwich mtaface. refencd as the administrative 

application, is secondary and provides an integrattd GUI for mteracting with the proxy (such as 

notifying the H l ' T P  proxy when user bas indicate shut down on the Sandwich Interface) and 

viewing any result of the assistants. The persistence fhmework is uscd in Sumùwich for reading 

and updating the persistent storage such as the following property files. 

sandHtich.properties that contains all configurable property of S d w i c h  in gencral. 

arsistant.proyierties that contains al1 assistants in the pool. and 

othcr assistant-specific property fdes that are used by the assistants 

The content of the sandwich.properties and assisrant.properties fdes is included in Appendix E. 

1 Administrative 1 1 

Persistence Framework 

properties 

Figure 11: Sadwkh Subsystem Architecture 



Thus. the SundwWIch environment is essentially comprised of 

a set of classes that made up the H T ï P  proxy, Sandwich interface (Admin Application), 

persistent framework. registered and active assistants, and a set of property mes, and 

the support to m a t e  new assistants 

In order to deploy Sandwich, the end user f m  configures Wher web browser such that all 

browsing activities go through Sundn6ch's HTïP  proxy. For example, in Netscape this can be 

easily accomplished through the Edit/Preference/Advanced/Proxy screcn. The end user then 

invokes the conunand to stan Sandwich. where the HTIP proxy starts as a dacmon and the 

administrative application starts as a GUI appiication. The latter will bring up a small window 

that shows all registered assistants by their names, see Figure 12. The persistent framework is 

loaded into memory and used by both the proxy and the administrative application to r a d  any 

property files. Registered assistants are instantiated; the H'lTP proxy uses only assistants that are 

set to be active when fuWiUing the usa's X l T P  requcsts. 

CheckFree AutoPost Assistant 
Direct Http Assistant 

Figure 12: Sanàwich Interface, the Administrative Application 

Another important facet of Sandwich is the support for crcating new assistants. Sandwich 

contains a set of hooks in creating new personal web assistant. The initial step of this process 

focuses on identehg the assistant and c o n f i i g  whether or not Sdwich can support it. 

During this stcp, Sandwich might be used (as is) to monitor the usa's browshg activities and to 

provide an in-depth analysis on the data transmission that arc happening for a particular site. 

When this assistant's rcquirement gathcring and analysis phase is fmished. a conclusion is made 

as to whtther or not Sandwich can support this ncw assistant. If so, the next step is to crtatt the 

new assistant usmg the docwnented hooks of Sandwich. First. &termine the type of this new 

assistant. The two types that are currcntly considered m Sandwich are observing and delegating 

assistants. If the new assistant simply monitors and provides a specific output based on the user's 
52 



browsing activities. then the new assistant is an observmg assistant. If the new assistant monitors 

and delegates on the user's behalf for "postable" pages (e-g. forms that have a "submit" button). 

then the new assistant is a delegating assistant. Based on the type of this new assistant. one or 

more docurnented hooks of S d w i c h  should be enacted to mate  this new assistant. After the 

deveioprnent of the assistant is finished. registered the new assistant with Sandwich by aMing 

new entries to the assistanî.properties me. Finally. restart Sandwich such that this new assistant 

is now a candidate in the pool of assistants. Section 4.5 includes the details on the steps in 

creating new assistant. 

Subsvstem Kevwords 

From the subsystem architecture. we have chosen the foilowing keywords to represent the main 

components of Sunîiwich. These keywords will be used in the "Area" field of hook 

documentation. 

keyword proxy covers the H ï T P  proxy component 

keyword personal assistant covas the p l  of assistant component 

keyword idministrative covers the administrative application component 

keyword utiiities covers the persistence framework as well as other support of Sandwich 

such as logging and the regular expression 

UML Stereotw 

One of the features of UML is the ability to attach stereotype to classes. A stereotype is a type of 

rnodel element defined in the rnodel itself. The basic information content and forrn of a 

stereotype are the sarne as an existing base mode1 element but with an extended meaning and 

different usage [RJB99]. We have included this brief section on stereotype because the 

documentation of Sandwich has used the following three stereotypes. Figure 13 illustrated the 

notation for these. 

(1) The pmtorype stereotype is used through out this thesis ta indicate classes h t  have been 

created for prototypes of this thesis, 

(2)  The h& stereotype bas teen used to indicate the hot spot of the framework where thae is a 

hook documentation (sec rematks below), 

(3) The def& stamtype has k e n  used to indicate the default implementation of a certain hook 

of the framework 



Figure 13: UML Stereotypes Deployed 

Rernarks: 

Luyuan Liu's Master Thesis [Liu991 at SERL. which is currently in preparation, is investigate 

using UML project notation to mode1 ho&- For simplicity. we have chosen to use UML 

srereotype to diagrammatically show where the books are. 

4.4.1 Sandwich Startup 
When Scudwich fitst starts up, it creates and staris tbe proxy and the default administrative 

application. Both of them are registered as observers of each other. This approach aiiows them 

to communicate to each otha via the observer paam [GHJV95]. We describe the approach by 

first givmg a dynamic view of how S d w i c h  starts, followed by a static view of the major 

classes involvcd and the& relationships. We conclude this section with a discussion of the design 

rationale. 

4.4.1.1 Dynamjc View 

The program begins execution in the public static void main rnethod of the class Sanhÿich 

according to the following scenario. Please refer to Figure 14 and Figure 15 when going through 

the follow ing. 

Load the main propcrties fie: saruhich.properties into a SwProperries object using the 

persistence framework. 

Crcate the administrative application (a hot spot of Sandwich). This is accomplished by 

invoking the createAdminAppln factory methoci of the class AdminApplnFactory. pssing in 

the administrative class name obtained from the SwProperties object created in step 1. This 
- .  administrative class name is a configurable parameter m the sandwich.properties file. 

Using dynamic class loading and instantiation. AdminApplnFactory creates the appropriate 

administrative application or oôject. 



Invoke the srarts0 method of the administrative application. 

Create the HtrpProxy (a frozen spot of S d w i c h ) .  passmg in the co6fgurable port number 

and the assistant properties fde name, both of which are obtaincd from the SwProperties 

object and thus are configwable parameters in the sanhr.ich.properties file. 

Get the SwAdmin mode1 object from the administrative object created in step 3. 

Register this S~Admin object as an observer of the HnpPraxy object m t e d  in stcp 5. 

Register the HnpProxy object created in step 5 as an observer of the SwAdmin abject- 

Invoke the srarts () method of the HttpProxy. 

Note: Step 1 will be elaborated in Section 4.4.6; steps 2. 3, 4 and 6 in the Section 4-45; steps 5 

and 9 in Section 4.4.2. 

Figure 14: Suadwich Startup Dynamic View 



4.4.1.2 Statjc View 

Figure 15 shows a static view of the major classes that were involved during start up. Sandwich 

is the class that contains the static public void main method where the program begins execution. 

The HttpProxy and SwAdmin classes implement the JDK Observer interface and extend the Java 

Developer's Kit (JDK) Observer class in order for them to be observer as weU as observable 

objects. Classes on the right hand side are part of the administrative component and w y  be 

further elaborated in Section 4.4.5; classes on the left-hand side are part of the proxy component 

and will be further elaborated in Section 4.4.2. 

Figure 15: Sandwich Startup Static View 

4.4.1.3 Design Ratanale 

Whv does the class Sandwich exist? 

Recail that the class Sandwich consists of the static public void main(). where the program 

execution begins. Initially. this main method existed in the class HttpProxy and there was no 

Sandwich class. This approach has implieb however. that Sundwich is the proxy itself. To 

reduce this misconception, the class Sandwich is inimduced and in its main method a HnpProxy 

object is created and started. The administrative application is anothcr object created and startcd 

by Sandwich in its mam method. Tbis dclivcrs the clcar message that Sandwich is compriscd of 

the proxy and an administrative application. In addition, having adding this Sandwich class 

facilitates the future nced to add new proxies support for mer protocols such as FTP, NNTP and 

S m .  



Whv must the administrative a~~lication be re~istered as an observer of the proxy before the 

proxv is started? 

R d 1  stcp 7 of the sceaario above that the administrative application is registered as an observer 

of the proxy before the proxy is started in step 9. These steps must occur in this particuiar order 

because the administrative application ne& to be notified in order that its interface can be 

updated when the proxy finishes loading all active assistants in its srart() method. 

This component of Sandwich is rcsponsible for setting up the pool of assistants. In this section 

we will elaborate m e r  on the dynamic and static view for two scenarios: one for starting up and 

one for fulfiiling an H ï T P  request. 

HapProxy Startup Dyoamic View 

In conjunction with Figure 16 and Figure 17 the following section elabmates on the start up 

scenario of HttpProxy by Sandwich. 

The main program uracution in class Sandwich crcates (i.e. instantiatcs) the HrtpProxy 

object. Recail that the port number and the assistants' configuration fde narne are passed in 

during îhis instantiation. 

The main program execution then invokes the stan() method of the HnpProxy. 

With the given assistants' configuration fde name. Le. assistant.propeies, NttpProxy loads 

the content of this file into a SwPropenies object using the persistence framework 

Using this SwProperties object. ail assistants (Le. those with class names indicated in the 

assistant.pruperries file) wiiï be instantiated using dynamic class loading. 

For all active observing assistants, i.e. tbose that implement the ObservinglF, H t t p P I o ~  wiil 

registcrs them to be observers of the HtrpHeader objects of interest, Al1 the class names of 

interested H'ïTP headers by each observing assistant can be obtained fiom the above 

SwProperties ob ject. 



For aU active delegating assistants, HnpProq creates them and thcn puts them into priority 

queue. 

Once ladecl, HttpProxy fnes the ASSISTANTS-UPDATE event so that observer such as the 

administrative application can refresh Ïts interface to show al1 active assistants. 

With the given port number. HtipProxy crtates a JDK ServerSuckt object. 

HnpProxy invokes the accept0 method of the ServerSucket object and this will continuousty 

listen for mcoming connections. 

Note: Step 5 will bt elaborated in Section 4.4.3; step 6 m Section 4.4.4. 



/ 1 3. load (apFIeUam e) , I I 1 I 
3 1 j I 

1 I 
4. croates asrstants 

t I I 
I 

5. registers obserung assistants 
I I 

t 1 I I 
I I I 

6. queue op +elegating assistants 1 I I I 
la I I I 1 

7.  firss ASSISTANTS-UPDATE evant I I I I Li I I I I 
1 8. c r e a t e ~ e m r ~ o c k e ( p o n )  1 1 
1 1 I 

9. accepto 
! 1 1 

1 
r 

1 1 I 
I I 1 I 

I I I I I 
I I 1 1 I 

I I 1 1 

Figure 16: HttpProxy Startup Dynamic View 

HttpProxy S m u p  Stdc New 

This section presents a static view of the above scenario. Each collaboration show in 

Figure 17 will be briefly described below dong with the step number of the above scenario where 

the collaboration occws. 

HtrpProxy and Assistant 

HztpProxy is responsible to dynamjcaiiy uistantiate al1 registaed assistants of Saidwich, i.e. 

those whose class names appcar m the assistant.properties file. (Stcp 4) 



HttpProxy and ObservinglF 

HrtpProxy asks each assistant if it is an instance of ObservingIF. I f  so. then HitpProxy asks 

for its interested )I?TP headers îist and registers the assistant as an observer of each of these 

headers, (Step 5) 

HttpProxy and HîîpHeadet 

When registering an observing assistant as an observer of the header it is interested in. 

HrtpProxy collaborates with each of the HttpHeader objects that are of interest to the 

observing assistant- (Stcp 5) 

HttpProey and DelegatinglF 

HttpPrary asks each assistant if it is an instance of DelegatingIF. if so, then the assistant 

object is put Uito a queue, the order of which is based on the assistant's priority set. (Step 6) 

Figure 17: HttpProxy Startup Static View 

4.4.2.2 HttpPmxy Sefficing a Requ8st 

HftpProxy Servidng a Request Dynamic View 

In conjwiction with Figure 18 and Figure 19, the foUowing section describes how the HtrpPro~y 

WiUs an HTTP rcquest. 



1. When an incoming H T ï P  request is made by the end user. a new socket connection to the 

proxy is made. The proxy then instantiates a new HnpSeniceThread object respoasible for 

Willing this request. 

2. The HnpServiceThread object constructs a HtrpReqrrest object from the socka connection. 

3. The HnpServiceThreud object traverses through the queue of request delegating assistants. 

4. When the dject  rctumed from step 3 traversa1 is of type HnpResponre. then the 

HrtpSenvkeThread object proceeds to step 5 -  

5. The HttpServiceThread objcct proceeds to traverse the HtîpReqvest object through the queue 

of response delegating assistants. 

6. The HttpServiceThread object M i s  the request by invoking the original HttpReqvest 

object's receiveResponse method, passmg in the f î  HnpRespunre object from the step 4 a 

5. 

Note: Step 3.4, and 5 wiU be elaborated in Section 4.4.4. î h e  scenario for which observing 

assistants collaborates for each H?TP Stream will be described m Section 4.4.3 



Figure 18: HttpProxy Servicing Request Dynamic View 

I 1. instontiste I I I 
2. constructs , I I 

HiîpProxy Servicing a Request Staîic View 

This section includes a static view of the above scenario. Each collaboration shown in Figure 19 

is briefly described dong with the step number of the above scenario where the collaboration 

Occurs. 

3. o=transwrbe 

HttpProxy and HnpServiceThread 

For each iacoming H m  request. the HnpProw crcates a new thread, i.e. a 

HttpServiceThread object, to handle it. (Step 1)  

I 
mquest delagates I I 

L j I I 
I 

4. o==HttpResponse, resp=o 
I 

I 1 \ l  

HrrpSeniceThread and HnpRequest 

Each HttpSeniceThread object has a handle to the socket comection that contains the end 

user's HTTP rcquest. The HttpServiceThread object reads the content of the socket and 

constnicts a HttpRequest object from it (Step 2). Another collaboration occurs when the 

HîtpServiceThread fniishes the rtquest by invoking the receiveResponse method of 

HttpRequest (Step 6). 

62 

I 1 / f 
5. o!=HttpResponse, mi~=tronswrse nsponse delegates 1 1 

I l 
I > "r: ..em.-.~.p, I I 

! i 
l I 

I I I 
I 1 I 
I I I 
l I I 



HttpSeniceThread and DelegaringlF 

When the HrtpProxy creates a HttpSeniceThread, object rcferences to the queues of 

delegating assistants. i,e. those that hplemented the DelegatinglF. are passed in. The 

HrtpSen?iceThread object traverses through these queues of delegating assistants with its 

constnicted JYtrpRequest object. (Step 3 .4 ,  and 5 )  

HtrpServiceThread and HttpResponse 

After the HttpSmiceThread object traverses through the pool of delegating assistants. the 

final HttpResponse object is created and retumed to the HnpServiceThread. (Step 5) 

Figure 19: HttpProxy Serviang Request Staîic View 

4.4.3 Obsenring AssIstsnt 

Observing assistant functions as an observer by recording required data from a user's browsing 

activities and producing spccific output ftom it. The three main data eiements that urist in an 

H T ï P  request and response pair are (1) H T ï P  Headers. (2) HTTP Content (i.e. the resources 

itself - gif and htrnl pages) and (3) HTTP META Tags that appear in the head portion of the 

HTML content itself. Both the content and META tags appear only in the H T î P  response 

Stream; H T ï P  Headas appear in both the request and response Stream. Appendix A contains a 

Iist of aU valid H?TP Headers, whiïe Appendix B elabontes on HTTP META Tags. 

63 



Content 0, r nolify 

1 register interest in 1 

regisîer interest in 1 

Headers 
interest in 

Figure 20: Data fm Observing Assistants 

Ln this stctioa we 

(1) present a dynamic view of how HtrpProxy creates and initializts observing assistants. 

(2) present a dymnic vicw of how observing assistants gct its event notif~cation whcn one of its 

registered headers contain interesting content appears m a H T I T  stream 

(3) provide a sta;ic view of major ciasses that are involved here and their collaborations. 

(4) outline the New Observing Assistant Hook. 

(5) describe an implementation example of the New Obsewing Assistant Hook, the Enhanced 

History Assistant prototype, 

(6) discuss any relevant points of the design rationale 

4.4.3.1 Oûsewing Assistant Initialira tbn 
The foilowing scenario, in conjunction with Figure 21. describes the dynamk view of how 

observing assistants are initialized by HrtpPtoxy during startup. Thus, it elaboratm on step 5 of 

Figure 16 whcre the proxy component of Sandwich registers observing assistants to be observas 

of their interested H'ïTP headcrs. Givcn an obscrving assistant. its initiaiiation is successful 

when the registerObservingAssistant method of ail the interestcd HTTP headers of the assistant 

are invoked, i.e. the f a  step 6. Howeva, m order to accomplish this, several steps (from 2 to 5) 

arc requircd to create JDK CIass and M e t M  objects using the JDK rdlection API. Using this 

approach rnakes the coding very generic and can handle the registration of aU observing assistants 

to their mtaested H T ï P  headers in only a few lines of code. 



1. For each assinant created the HnpPIoxy checks Î î  the assistant is an observing assistant by 

a s h g  if the assistant is an instance of ObservinglF. if so. tben the following steps proceed. 

Otherwise. the HrrpProxy proceeds with the next assistant. 

2. The HtrpProxy mates a JDK C h s  object for ObservinglF using the static forName rnethod 

of the class Class. 

3. The HttpProxy creates a JDK Clars object for each of the interesteci HTïP headcrs of the 

assiçtant- The class names for t h e  headcrs arc oblamed fkom the Assistant itseIf, through its 

AssistantSpecification containment. 

4. For each class object of the assistant's mterested H'ïTP headers creatcd in stcp 3. get the JDK 

M W  object with the rnethod name as registerObse~ingAssistant and argument type as 

ObservingIF. 

5.  For each class objcct of the assistant's interested HTïT headers. mate a new instance. 

6. For each interested H T I T  header object. mvokes the registerObservingAssistant rnethod 

dynamically. passing in the corresponding assistant object. 



Figure 21 : Obsemng Assistant Initialization 

4.4.3.2 Obsewing Assistant Notificatbn 

The following scenario. in conjunction with Figure 22. describes how an observing assistant is 

notified when one of its interesteci HTTP headers. the HttpRequesrURL, exists in an H?TP 

request stream. The same scenario is applicable to al1 other supportai headers as well as the 

HTT'P response Stream. Both HrtpRequesr and HttpRespome objects wntain a set of HttpHeader 

objects. 

Recall that the setvicing thrcad for each incoming H T ï P  rquest stream creates and 

constructs a HttpRequest object ftom the socktt connection. 

During the construction of the H77'PRequest objem al1 hcaders (that appear in the request 

Stream) will have a mesponding object created. 

A more specific example of stcp 2 is that a m P R e q u e s r U R L  object is created and set to 

have the URL that the user bas rcquested, e.g. htt~:/iwww.cs.ualberta~cal. Note that 

66 



HtfpReqvestURL object is also considered to be of type HTTPHeader because 

HTTPRequestURL is a subclass of H7TPHeuder. 

4. The HTTPRequestURL object thcn go through its List of observing assistant. chccking if its 

current data element. i.e. htt~://www.cs.ualberta.ca in this example, matches the fdter 

expression of the assistant for the class name mPRequestURL. This latter is accomplished 

through the regular expression API descniied in Section 4.4.8. 

5. If so. then the assistant's update() mcthob is invoke6- It is now up to the assistant to bandle 

this notification inside its update() irnplementation. Tbe data available to the assistant in this 

updateo method includes the thread number of the HttpSeniceThread responsible for this 

request and the HttpWeader object. 

So, gencrally speaking. each HttpHeader objcct will go through its list of obscrving assistants 

asking each assistant if the header's curent data element is interestcd by the assistant (i.e. 

matches the assistant's regular expression). if so. tben the assistant's @te() method is invoked. 

Thus, Sandwich pre-defimes the flow of control for natifying observing assistants and the actual 

implementatiw in handling these notifications is deferred to the assistant dcveloper. set the 

tempiate pattern by [GHJVgS]. 



i , l 
6. update 

Figure 22: Observing Assistant Notification D ynamic View 

4.4.3.3 Obsenfing Assistant Sta tic View 

Figure 23 illustrates a static view of the major and stereotyped classes that are involved in 

supporting obsming assistants. 

Stereotyped classes here can be broken down into the following two groups: 

Ciass N~ObservingAssistan~ shows where the hoolts are for the New Observing 

Assistant Hook 

Class EnhancedHisto~yAssistant is a class m t e d  for the prototype of an observing 

assistant. 

Major classes and thtir collaboration are included in the following: 

HtrpProxy and HttpHeader 

See Section 4.4.2. 



HrtpProxy and Assistant 

Recall that HnpProxy creates al1 assistant objects from the assistant.properties file during 

-P. 

HttpHeader and ObsenringlF 

Each HttpHeader contains a data element that represents the value of the header, e.g. 

htt~://ww w .cs.uaibena.ca for the requested URL header. When the data element changes 

state, îhe HtrpHeader will traverse through its list of registered observing assistant (i.e. those 

that irnplements the ObservingIF), The observing assistant will be nmcd when the new 

state of the data element is of intcrested to the assistant. as determined by the regular 

expression set for the header. 

HttpRequest/HttpResponse and HttpHeader 

Both HrtpRequest and HnpResponre objects contain a set of HTTP headas îhat appear in the 

request or response stream. respectively. 

HttpHeader and HtipRequesrURL 

An HnpRequestURL object reprcsents the rcquested URL of the rquest Stream. 

HnpRequestURL is a subclass of HttpHeader since the requested URL is simply a header 

(with value) that appears in the rquest stream. For other subclasses of HttpHeader that are 

supported see Section 4.4.9. 

ObservinglF and AssistanîSpec~cation 

Each observing assistant has an AssistantSpecf?cation object that gives the list of headers by 

their class names dong with their regular expression set. Ody headers that can potentially 

become interesthg to the observing assistant based on its content are included in this list. In 

Java, an interface can only contain a final attribute; therefore. the containment of an 

AssistantSpec~jication is irnplemcnted in the concrete class that implements the ObservinglF. 

AssistantSpecif7cation and Hashtable 

CIass Hashtable is a utility class from JDK. An AssistantSpecif?cation object is simply a data 

structure in the form of a hash table. The name colurnn of this hash table contains a String 

type object for the header class name: the value column contains a String type object for the 

header's reguiar expression. Thus, an AssistantSpecification object is able to return the 



regular expression of a given header ciass name. The following figure is an example of an 

AssistantSpecifcation object for an assistant that is intermed in (a) al] URL ever rcquested 

by the user, (b) al1 requests with response codes qua1 to 200 for OK or 304 for Not 

Modified or 404 for Not Found. 

name value 

com.http.HttpRequestURL 

In the ussistanr.propenies file, the foiiowing entry will be created for this assistant. 
1-assistant-specl-corn. http .HttpRequestURL, - 

l,assistant~spec2-com.httpPHttpResponseCode,2OO~3O4~4O4 

NOTE: 

( 1 )  The regular expression API assumeci in this aample is the ddault implementation that 

cornes with Sandwich. S e  Section 4.4.8. 

(2) This example is actually fkom one of  the prototype assistants, Enhanced History 

Assistant. descfl'bed below. 



trpm P y pe- 
E n t i o n c o M i ~ f y A r i a n I  

< L p w  n o a d o U ~ m ~  : SMng 
-8lum** (Iller: Smng 

ccnoo10, 
i N e r O O r w r n ~ A U ~ n t  

Figure 23: Observing Assistants Static View 

After descrïbing the static and dynamic view on the behavior of observing assistants. we now 

look at the hook used to mate a new observing assistant. New Observing Assistant Hook. We 

first outiine this hook using the hook template proposed by [Froc%] and reviewed in Section 3.3. 

Then, we provide an exarnple of how this hook is enacted by one of the prototype assistants, 

Enhanced History Assistant. Other assistants that are included in the use case and are considered 

as observing assistant include the Time Keeper. RFA Mailto Assistant and Image Downloader. 



Requirement 

Participants 

Uses 

Changes 

- - 

Adding Pattern 

Personal Assistants 

New Okrving Assistant Hook 

Add a new assistant that is Înterested in the user's browsing activities - 
- 
- 
1 

Abstract class Assistant. interface ObservinglF 

1. new subclass NewObservmgAssistant of Assistant 

// to perform any assistant-specific initialkation 

NewObservingAssistanttload() overrides Assistant .load() 

// to release any system-resources held 

NewObservingAssistant.f111ish~ ovenides Assistant.finish() 

2. Note: Identify which HïTP headas (by their class names) 

NewObservingAssistant is interested in 

3. Note: for each H T ï P  headers. identify its regular expression filter 

4. NewObservingAssistant implements ObservingIF interface 

new property NewObservin~~istant~assSpcc of type 

AssistantS pecification 

New ObservingAssistant .setSpecification(hsistantS pecification) 

overrides Obsemin@F.sctSpecification(&~istantSpecificatioi:) 

writes Ne~ObservingAssistant~assSpec 

new property NewOb~ervingAssistant~isActive of type boolean 

NewObservingAs~istant~se~ctive(bo01ean) overrides 

ObservingEsetAct ive() 

writes NewObser~ingAssistant~is Active 

// renvn the value object of the assistant specification object, given 

headerName as the key 

NewObservingAssistant.gctFiltcrByHeaderName(String) overrides 

Observin@F.getFilterByHeadcrName(Strmg) 

// to save &ta of interest either persistently or in mcmory, this method is 

// invoked for each data change made to each of the H ï T P  Headers 

NewObsmingAssistant.update() ovemdes 0bservingiF.updateO 



Post-condit ions 

5. Note: register this assistant with Sandwich by updating the 

ussîstarrt.pruperties file with the foliowing paramaers 

increase the number of assistants field 

indicate the fully quaJificd class name for NewObscrvmgAssistant. 

indicate the alias name, description. properties file name of the 

NewObservingAssistant, if any 

indicate whether the NewObservingAssistant is active or not 

indicate the number of H T T P  headers that the 

NewObservingAssistaat is interestcd in 

indicate the specifîcation of NewObservingAssistant (i.e. idtntified 

HttpHeaders(s) w ith its regular filter urpression) 

A new assistant is addcd to Sadwich's pool of assistants 

If the assistant would like to support GUI output under the default 

administrative application, thcn apply the New Assistant Result 

Window Hodr, 

Step 5 can be optionally done through the administrative application. if 

supported - 

Hook 1: New Observing Assistant Hook 

4.4.3.4 Enhanced Histoty Assistant 

Enhanced History Assistant is an example as well as the product of enacting the New Observing 

Assistant Hook. Using this hook the following steps are followed during the creation of this 

new assistant, Enhanced History Assistant. Note that the number matches those of the hook 

"changes" section. This assistant also enacted the New Assistant Result Window Hook that wiil 

be elaborated in Section 4.4.5. 

1. A new class Enhance&iistoryAssistant subclass of Assistant is created. 

defmed luad0 mcthod to r a d  any propcrty fde(s) of this sptcific assistant, e.g. 

EnhHistory.prop 

defincbj7nish() to close al1 files opcned 

Note that the NewObservingAssistant refcrrcd in the hook is the EnhancetfHistoryAssistarrt 

class when the hook is enacted. 



2. Recall that this Enhanced History Assistant is interested to know ail sites the user has ever 

visited and the statu of each visit such as whether the pages are fetched from the remote 

server. from the browser cache or is not fond in the remote s r n a .  Thus. tbe HTTP hcaders. 

dong with their regular expression. chat this assistant is interested in are 

HrrpRequestURL.. 

HttpResponseCode.2ûûI3041404 

3. Class EnhanceàHistoryAssistant implenients the intaface ObsmngIF, as shown in Figure 

23. 

A new AssistantSpecificarion instance variable is declared in class 

En?mnceùHistoryAssistant and defimes the setSpecification(AssrStantSpecifaction) be the 

setter of this variable. 

A new boolean instance variable is declared in class EnhancedHistoryAssistanr and 

defmed the sdbsentingActive(6001ean) be the setter of this variable. 

Define the gerFilterByHeaderName(Stting kaderNume) to rcturn tht value object of the 

AssistantSpec~jïcation object, e.g. spec.gctFilterByHeadcrName( headerName ) where 

spec is the variable name for the new Assistadpeciflcation instance variable. 

Define updare() to save al1 notification by the hader into a raw data file 

EnhHistoryRD.txt. For example. the first line of the following is saved when notification 

by HnpRequestURZ is received. The parameters include the thread number. the tirne the 

notification is received, and the requested W. The second iine is savcd when 

notification by HnpResponseCode is received. The parameters include the thread 

number, the t h e  the notification is received. and the response code 200 for successful 

transmission from the remote web server. 
Thread-0,Sun Jan 31 22:3l: 75 M S T  1999, UR~:http://]ava.son.com/docs/books/tutoriaL/index.ht~ 

Thread-O, Sun J a n  3 1 22 : 3 1 : 27 MST 1999. RESPOSD-CODE: 200 

4. Update the ussistanî.properties frle with the foliowing parameters. Assurning this is the fvst 

assistant of S d w k h .  the number of assistant field is therefore 1 (prefim of al1 property 

fields). 

r the f u l l y  qualif ied cfass name ( i.e. including 

s package name) for the e n h a n c e d  hi s tory  ass i s c a n t  

1~~88i8t.nt~cl888nur-coci.a88istrnt.pool .anh~ceQIL8toty .bihrncadH&storyA.sistrnt 



8 t h e  a l i a s  name g i v e n  t o  t h i s  a s s i s t a n t  

1-~~Si~trnt-nrra-Zalnanccd Uîstory Assistant 

* d e s c r i p t i o n  of v h a t  semice t h i s  a s s r s t a n t  p r o v i d e s  

l~risistuat~descdption- This arsfaturt (a.k.a enhrncmd hlstory assistant) rill r>nitor al1 sitai 

you have visited and pzoâucmd a atatistic report for your b r ~ ~ d  hiatvry 

r t h i s  a s s i s t a n t ' s  property file 

1-assf stuit,praprilem~-hrhaistory .pxop 

a i n d i c a t e s  v h e t h e r  t h i s  a s s i s t a n t  is a c t r v e  or n o t .  a s  

3 a n  o b s e r v i n g  tWype  

1,rssFs~t-actlveobae~bg-1 

: t h e  number of Ht tpHeader  c l a s s e s  t h i s  a s s i s t a n t  i s  

1 u i r e r e s t e d  i n  

1-iasistmt~nuispec-2 

t T h i s  means t h a t  a l 1  r e q u e s t e d  URLs a r e  r n t e r e s t e d  

1,asaiatrnt-apecl-ca. http .Pttp.rqueatrnL, - 

t T h i s  means t h a t  al1 r e s p o n s e s  v i t h  r e s p o n s e  code i n  

t 200.  304 or 404 a r e  i n t e r e s t e d  

l ~ a a s i s t r ~ t , i p ~ 2 - c a . h t t p . ~ t t p ~ e 8 p 0 ~ ~ ~ ~ ~ 0 0 ~ 3 0 4 I 4 O 4  

4.4.3.5 Des@n Rathnale 

Whv introduce a new interface ObseninalF instead of usine - the JDK Observer interface'? 

Using the JDK Observer interface will roquire ail HtîpHeader classes that are observable to 

extend 3TX Obsenuble class. This w il1 imply that the observer Iist (Le. observing assistants) of 

each HttpHeader is per instance based rather than per class based. The former wiil then require 

the registration of an observing assistant to every instance of HttpHeader. This is redundant in 

the context of Sanddch where all objects belonging to the same HttpHeader class share a 
common list of observers suffices. 

4.4.4 Delegsting A88jstbnt 

As the name implies, the role of this type of assistant is to delegate. There are two types of 

delegating assistant: requtst delegate and response delegate. A request delegaie ta& an 

HttpRequest object, acts on it. and outputs eitha (a) a modif~ed HtrpRequest object indicated as 

HttpRequest'. or (b) an HttpResponse objtct. A response ddegate takts an HnpResponse 

object, acts on it and outputs a modifieci response object as mdicated with HnpResponse'. 



Request ' 

Request Delegating 
Assistant 

Respcnse w 
Figure 2 4  Request Delegating Assistant 

Figure 25: Response Delegating Assistant 

fn this section. we 

(1) elaborate on the dyaamic view of initializing delegatmg assistants. 

(2) dkuss the default delegating assistant of SundwicIC. 

(3) describe how multiple rtsponse and request delegathg assistants are handled by SundwÛR. 

(4) present the static view of ail major classes that are involvai. 

(5) outline the New Request and Response Delegating Hook, 

(6) provides an example of how the CheckFree Auto Post Assistant enacted the New Request 

Deiegating Hook. 

(7) discuss any relevant points of the design rationale 

. 4.4.4.1 Delegating Assistant initlalizathn 

The foUowing scenario, in conjunction with Figure 26, describes on the dynarnic view of how 

request delegates are initialized during start up. Thus, it elaborates on step 6 of Figure 16 where 

the proxy component queues up delegating assistants after creating them. in the context of rcquest 

delegates. The scenario below is also applicable to response delegates. the sequence diagram of 

which is shown in Figure 27. 

1. For each assistant created, the HttpProxy checks if the assistant is a request delegating 

assistant by asking the assistant if it is an instance of interface RequestDelegatinglF. 



Using the SwProperties object Ioaded for the assistant.propem'es file, the HîtpProxy gets the 

request delegatiug active flag for this assistant. Recall that during the start up of the 

HnpProxy object, the SwPropenies is created for the assistant.propenïes aiready. 

The HttpProxy sets the active flag of the assistant to the value obtained from the 

SwProperties objec t . 

The HrrpProxy gets the priority. an integer value. of this assistant as a request dclegate from 

the SwPropenies object. 

The HtrpProxy sets the priority of this assistant to the value obtained in previous step. 

Based on the assistant's priority. the HttpProxy inserts this assistant mto the request delegate 

priority queue. 

5. setReqDelPriority@Req) I 
\ 
4 

6. insert to req dekgates pnority queue(a) 3 
1 
I 

Figure 26: Request Delegate Initialization 



je. insert to resp deiegates priority queue(a) 
:- l 
< 1 
i i 
I I 
I 1 I 

Figure 27: Response Deïegate Initialization 

4.4.4.2 De fauit Delegating Assistant 
In this section. we will fust give a high level view of where the default delegating assistant of 

Sandwich fits and then a low level (object level) dynamic view of how this default delegating 

assistant is active when no other request assistants are active within Sandwich. 

Default Delegaing Assistant High Level View 

Sandwich contains a default delegate assistant referred to as the DirectHttpDelegate. 

DirecrHttpDelegate is an example of a request delegate. With no additional delegating assistants 

that are active. Sandwich is a very rudimentary H?TP proxy server operating with just 

DirectHtrpDelegate. The fkamework constn~cts an HttpRequesf object as directed from the user 

browser. and *en sen& ùlis object to its delegating assistant pool that contains only the 

DirectHttpDelegate assistant. Tbc role of this assistant is to go and fctch the rcquested rcsource 

(e.g. h m l  and GIF file) from the remote web serve and return the conesponding HtrpResponse 

object. In the Figure 28 below, solid lines show that the framework is responsible for invoking 

the cal1 while dmed lines indicatc that the delegating assistant is rcsponsible. 



I Remoto Wob Sowrc 

Figure 28: Defaul t DirectHttpDdegate (Higb Level) 

The foliowing entries appear in the assisrantproperties file by default. These entries trigger the 

crcation of DirectHîîpDelegate by Htîpptoxy during startup. Since DirectHitpDelegare is a type 

of request delegating assistant, Le. it implements the RequesrDeleg~ringlF~ this default assistant 

wiii be put into the request delegate priority queue. 

t h i s  g i v e s  t h e  f u l l y  q u a l i f  i e d  c l a s s  name ( i - e .  i n c l u d i n g  package name) t h a t  

t implements the d e f a u f t  a s s i s t a n t  

n-aaii8trnt,cla~8a~1-~œ~a~slitrn+.Dl~ctBttpA.ai8trnt 

t t h r s  g i v e s  t h e  name of t h i s  d e f a u l t  a s s i s t a n t  

n,aiiis+rnt-MM-DFrrct m t t p  A.il8tant 

3 t h i s  indica:es t h a t  the  d e f a u l t  a s s i s t a n t  is a c t i v e  

n,isf8trat~ac~veRsqDclaga~ng-L 

= t h i s  g i v e s  t h e  p r l o r i c y  of t h i s  d e f a u l t  assistant 

n-aasi8Wt-lrqmrpatFngPriority-1 

N o t e :  'na t h a t  b e g i n s  e a c h  l i n e  is r e p l a c e d  by a number. 

a s s i s t a n t s  i n  t h e  assistant.properties f i l e .  L i n e s  that 

o n 1  y .  

de termined  by the number of 

b e q i n  u i t h  ' 8 '  a r e  comments 

Default Delegating Assistant Object LeveJ View 

The following scenario describes the dynamics for the situation in whkh Sandwich traverses the 

request delegates for each H T ï P  request. in the context that only the ddault delegating assistant 

is active. Thus, step 3. 4. and 5 of HttpProxy servicing a request xenario are elaborated. 

1, Recall that the proxy instantiates a new HnpSerwiceThread for each incoming request, Le. a 

soc ket connect ion. 

2.  The HttpServiceThread constmcts a HnpRequest from the socket comection. 



3.  The HitpServiceThreuù gets the next assistant object fiom the request delegating priority 

queue. This queue retums the next request delegate with the highest priarity. In this 

example, this queue rcturns the DirectHttpAssistant object because only the default assistant 

is active. 

4. The HtrpSenfceThreud asks the DirectHttpAssistant object whether a delegating opportunity 

exists. The irnplementation of the reqDeZOppExist() method for class DirectHttpAssktanr 

always r e m  m e  since S4ndwich simply relays by default. 

5 .  The HttpSenliceThread asks the DirectHttpAssistanî to dclegate this request. Le. invoking 

the senice() rnethod and passing in the HttpRequest object constructed. 

6. DirectWttpAssistant.sen-,ice() connects to the designated remote web servcr. gets the 

requested content Born it, rctums tbe response as a type of Objec?. During run time, the 

response object is a type of HttpRespome. 

7 .  The HttpSen~iceThread checks if the returncd object is a type of HttpRespome. This is tme 

in this Ca :,o. 

8. The HttpSeniceThread W i l s  the request by invoking the receiveResponse method of the 

original HttpRequest object, passing it the returned HnpRespome. 



Figuir 29: Defaul t h'r~cfHftpDefegute (Object Level) 

4.4.4.3 Muniple Request and Response Delegates 
Now that we have seen a simple scenario of how Sandwich takcs care of one delegating assistant. 

let us look at how multiple delegating assistants are handled by Sandwich conceptually. With 

multiple delegating assistants, Sandwich will sequentially pass the HttpRequest object to al1 

active request delegates assistants until the output is an instance of HttpRespome type. Because 

of the default assistant. DirectHttpDelegate. al1 HttpRequest objects are guarantetd to be fulfiiiled 

w ith thtir correspondhg HttpResponse objects. 



Figure 30: Multiple Delegating Assistants 

4.4.4.4 Delegate P&rity Queues 

When multiple delegates are active. two queues are constructeci by the proxy during start up. one 

for rcquest delegates and one for response delegates. Figure 31 contains two aramples where (a) 
is the request delegate priority queue. and (b) is the response delegate priority queue. both of 

which are constnicted fiom the ussistanf.ptopenies fde with the followmg entries: 

: t h i s  a s s i s t a n t  1s an a c t i v e  request d c l e g a t e  v i t h  

t p r i o r r t y  o f  2 and an a c t i v e  response d e l e a a t e  v i t h  

1 p r i o r i t y  of 1 

1-aasia+rnt,clmarnua-coi.aaaiarrint. RaquaatbclogatœA 

1-imiatrnt-actlvel~Dalagatiag-1 

l , 8 ~ a i m ~ t , . r g ~ 1 o ~ a t i P g ? r i o r i t y - 2  

l-mmia+rnt-.cUva.e#pDI1ogatinq-l 

l,aaaiatrnt,~ipD.lagatLnq?rIorLtyll 

c t h l s  a s s i s t a n t  1s an ac trve  request d e l e g a t e  v l t h  

t p r l o r r t y  of 1 and an a c t i v e  response d e l e g a t e  v i t h  a 

r p r r o r i t y  o f  O 

2-aaii~trnt,cl8aiau.-com - aaaimtrntt UquoatLhlogatd9 
2,sais~t,activm~alagaUng-1 

2,aaaisunt-..PW.gatinQItiority-1 

2-aaiat.nt-ac+iv~ReapD.lagating-1 

2-mmaistcat,lrmpklagating?riority-O 

8 t h i s  d e f a u l t  de legat ing a s s i s t a n t  is a n  a c t i v e  

8 request  de l ega te  but vr th  t h e  l o v e s t  p r i o r i t y ,  i - e .  a 

8 p r i o r i t y  o f  O .  



priority 

f- \ 

(a) (b) 

Figure 31: Delegate Priority Queues 

An object level scenario of how multiple rquest delegates are handled in S d w i c h  is included 

in the foIlowing. in conjunction wit'i Figure 32. 

Red1  that the proxy instantiates a new HtrpServiceThread for each incoming requcst, ix. a 

soc ket connect ion. 

The HrtpSeniceThread constnicts a HttpRequest fiom the soc ket C O M ~ C ~  ion. 

The HttpSeniceThread gas the next assistant with the highest priority from the request 

delegating priority queue. 

The HttpSenfceThread asks this delegate if an delegation opportunity exists by invoking the 

public boolean reqDelOppExisttHnpRequest). 

(a) If step 4 retum false, then HttpSenpiceThread proceeds urith the next rquest delegate in 

the queue by rcpcating step 3. (b) If step 4 rctunis tme, thcn WtrpServiceThread invokes the 

service() method of the delegate, where the request delegate executes its dclegation. 

The HttpSeniceThread asks the r e m  object from stcp S(b) whetha it is an instance of the 

HtrpResponse class. 



(a) if step 6 is bue, then the HttpSeniceThread continues with the scenarîo on which 

response delegates are traversed. and (b) If step 6 is false, the HfrpSenticeThreuû sets the 

return object as the current HnpRequest and continues with the next request delegate. i.e. 

repeats step 3. 

Figure 32: Multiple Request Delegates 

Similarly, once a response object is retuned in the request delegates traversal, Scurdwich uses this 

response object as the input to the list of response delegates and traverses it. Having both of these 

chaining capabilities, Sandwich allow s more than one delegat h g  assistant to be registcred. The 

following scenario, in conjunction with Figure 33. describes how multiple rcspoasc delegates are 

handled in Sadwich. 



The HrtpServiceThread gets the Fmal HttpRespone object for a given UnpRequest from the 

above scenario. Le. step 8 of Figure 32. This HrrpResponse is set be the "cuncnt" 

HrrpRespome object- 

The HrtpSeniceThread gets the next assistant with the highest priority from the response 

delegating priority queue. 

The HnpSeniceThread asks this delegate if a delegating opportunity exist by invoking its 

public bosIean respDelOppExrSttHrtpResponre) method. 

If step 3 r e m  false. then the HttpSen~iceThread proceeds with the next response delegate 

by repeating step 2. (b) If step 3 returns me, then HttpSenpiceThread mvokes the sentice() 

method of the delegate, passing in the m e n t  HttpResponse object, This is where the 

response delegate executcs its delegation. e.g. modifying the response content pages for the 

Filtering Assistant example. 

The return responsc object in step 43) is set to be the curent HttpResponse object. 

The HttpSeniceThread repeats the above st tp  2-5 for ail response delegates that are in the 

queue. 

The f i  HtîpResponse object is renimed to its HrtpRequest object. 



I I I 

2.1 gets 
I 1 

I 
I 1 

i 6. repeat step26 for dl rvpose deiegates <---. 
I I 

Figure 33: Multiple Response Delegates 

4.4.4.5 Delegating Assistant Statk View 

Figure 34 gives a static view of major and stcreotypcd classes that are involved in supporthg 

deIegating assistants describeci above. Assistant, RequestDelegatinglF and 

ResponseDelegatingIF are the only three major classeslinterfaces that are rcquired in supporthg 

request and response delcgates. Saminich predcfines the flow of cxecution for a typM rcquest 

and response delegate. 



Figure 34: Delegating Assistant S t u c  View 

The stereotyped classes hae can be broken down into the following three groups: 

Class NavRequestDelegatingAssistanr and NewResponseDelegaringAssistant show where the 

New Request Ddegating Assistant and New Response Delegating Assistant Hook are. 

respective1 y. 

Class DirectHttpDelegate is a default irnplementation of the New Request Delegating 

Assistant Hook that is included in Sandwich. 

Class CkcWreeAutoPostAssistant is a class created for the delegating prototype, Le. one 

impIementation of the New Request Delegating Assistant Ho&. Note that this class also 

implements the ObsevinglF. Le. cnacted the New Observing Assistant Hook. because the 

assistant treeds to monitor user activities fist before acting on behalf of the user for postable 

pages of Check Free site. 

Among the assistants dcscr1W in the use case section. Auto POST Assistant. Search S m  

Assistant, Simple Fihering Assistants. Change Monitor Assinam and DefdBatch Post Assistant 

are examples of request delegates; PICS Filtering Assistant is an a m p l e  of a response delegate. 

In this section we begin with the New Request Delegating Assistant Hook. followed by an 



example of bow this hook is enacted by the CbeckFree Auto Post Assistant prototype. F i y ,  

we outline the New Response Megating Assistant Hodr which is very sirnilar to the New 

Request Delegating Assistant Ho* 

Narne 

Requirement 

Participants 

uses 

New Request DelegaÜng Assistant Hook 

An assistant object that acts as a delegate for a user in certain circumstances. 

in particular. acting upon an upstream H ï T P  request 

Adding Pattern 

Personal Assistants 

Interface RequesfDelegaringlF, a bstract class Assistant and 

assistant.prqerties file 

None 

None 

1. new subclass NewReqDeiAssistant of Assistant 

// to perform any assistant-spccific initial kat ion 

NewReqDeiAss istant ovmides Assistant Joad0 

// to release any system-resources held 

NewReqDel Assistant overrides Assistant. fmisho 

2. NewReqDelAssistant implements RequestDelegatingIF interface 

// to include the business logic in detmnining whetha a delegation 

// opportwiity exists; note that this is also whcre the assistant is 

// responsible to prompt for user co~umation, 8 any 

NewReqDeIAssis~t.reqDelOppExist~(HtrpRquest) hplements 

RequestDeltgatin@F.rqDelOppExists~ttpRequest) 

// to perforrn the delegation; the framework invokes this cstllback if and 

// oniy if the rcqDelOppExists(HttpRequest) retums tnie 

NewRtqDelAssistant.service(HttpRquest) implements 

RtquestDelegatin@F.servke(HttpRquest) 

3. Note: register this assistant with S o n d ~ c h  by updating the 

assistant.prcperties file with the foUowing parameters: 

increase the number of assistant feld. 

indicate the fully qualifieci class name for NewReqDelAssistant, 

indicate Ihe alias name. description, property file name of 

fB 



4.2.4.6 CheckFm Auto Post Assistant 
Checffree Auto Post Assistant is an example and product of enacting the New Request 

Delegating Assistant Hook. Since this assistant also needs to monitor the user posting name 

vaiue pairs for the Check Free site, uiis assistant is also an observing assistant and thus. also 

enacts the New Observing Assistant H d  as well. We f W  provide the steps involved in 

creating this new assistant as an observing assistant followed by the seps involved in creating 

this assistant as a rcquest delegate. 

Post-conditions 

Comments 

As an obsnving assistant. the following steps matching the steps in the ''changes" section of the 

New Obsemng Assistant Hodc are foiiowed: 

1. A new class ChecffreeAuofPosrAssisrant subclass of Assistant is created. 

defmed /utad() to read the property fiie of this assistant. e.g. AutoPost.properties, and the 

raw &ta file, e.g. AutoPostRD.txt, that was saved by this assistant before. if any. 

defmedfTnish0 to close any files opened. 

Note that the NewObsewingAssistant used in the "changes" section of the New Observing 

Assistant Hook is the cîass Checff~ee~utoPost~ssistanr here. 

NewReqDelAssistant. if any 

indicate whether NewReqDelAssistant is active or not 

determine the priority of NewReqDeîAssistant 

A new request delegating assistant is added to SdwichWs pool of assistants 

None 

This assistant is interested to h o w  ail name-value pairs posted by the user on the CheckFree 

site to get real time quotes. Thus, the H'TTP headers that this assistant is interested in are the 

HTTT method, in particulas the POST methoâ. CheckFrcc URL(s), and the H T f P  request 

body whae ail the name-value pairs are transmitted. Thus, the headcr classes and thtir 

regular expression filters are 

HttpMethad,POST 

HrtpRequestURL, http://qs.secapi .com/cgi-bWqshttp://qs-alt .secapl.com/cg i- 

bin/qs 

HïTPRequestBody,. 

Hook 2: New Request Delegaîing Assistant Hook 



Class ChecffreeAutoPostAssistant implements the interface ObservingIF. as shown in 

Figure 34. 

0 Declared a new AssistantSpecifTcation instance variable in class 

CkcffreeAutoPostAssistant and defmed the setSpecificarion method as the setter of this 

variable. 

Declared a new bookan instance variable in class CheckFreeAutoPostAssistant and 

defmed the setObservingActive method as the setter of this variable. 

Defmed the gerFilterByWeaderN&Sting kaderName) to retum the value objcci of 

the AssistantSpecification abject. e.g. spec.getFilterB yHeaderName(headerName) where 

spec is the variable name for the new AssisstantSpecifcation instance variable. 

Defined @te0 to save aU notification by the headers mto a raw data file, 

CheckFreeAutoPostRD.txt. Some examples of this are mcluded in the following. For 

each line, the thread number of the HTïP  request. the date the notification is receivcd 

and the name-value pairs of the H'ITP Post arc savcd. In tbis particirlar urample. 3 pairs 

of name-value are used in CheckFree page whcre tirne, gif and tick are the names. 
O Thread-9.Hcn May 34 11:16:34 U n  1999. 

( t i r n e - 0 0 ~ 0 0 0 0 9 ~ ~ ~ 6 ~ ~ ~ ~ .  grf-2, tick-t-atp t.bmo t. td t .nt t .nncj 

0 Thread-0,Mon Uay 24 11:27:35 UDT 1999, 

[tuw-0000000927565910. grf-2. trckgt.v t.net.a t -0ce.b t.lus.un t . b r t l  

Thread-3.Mon May 24 11:28:35 XDT 1999. 

(t me-0000000977566286, 9 ~ f  -3, tlck-t .chp t . s k l  t .cos t .dmc t . bcel 

4. Update the assistant.properties file, see Step 3 of the following steps when enacting the New 

Request Delegating Assistant Hook 

As a request-delegating assistant, whenever the user attempts to p s t  to the Check Free W, this 

assistant will pop up a dialog box, Ietting the user constmct a new set of name-value pairs either 

with previously posted narne-value pairs or changing them. This savcs the user a great dtal of 

time in any sceoarios sirnilar to the second scenario describecl in Chapter 1. 

1. Same as stcp 1 of above when enacting the New Observing Assistant H d  

2. Class CheckFreeA utoPostAssistant implemen ts the RequestDelegatingIF interface. 

defme the reqDelOppExists(HttpRequest) method such that it will pop up a dialog box, 

lening the user to pick from a set of name-value pairs posted bcfore 

90 



defuie the serr*ice(HtrpRequest) method such that the original HttpRequest object is 

modifieci to include the name-value pairs that user has selected above 

3. Register this assistant with Sandwich by updating the assistant.properties file with the 

follow ing parameters. Assuming the assistant is created as the Enhanced History Assistant. 

the number of assistant is then incrcmented to two. This will be used as the prefii to all 

property fields applicable to this new assistant. 

: t h e  f u l l y  qua1  rf i e d  c l a s s  name { r . e .  i n c l u d i n g  

t package n a m l  for t h e  C h e c k F r e e  AutoPos t  A s s i s t a n t  

2~aaai8~t~claaanu.-co1.aaaiatrnt.pool.autoroat.uitoDoaUaalatmt 

2 t h e  a l i a s  nauœ g r v e n  to  t h i s  a s s r s t a n t  

2,a.aiataat,o.m-Auto Poat A8Sl8t.ot 

t d e s e r r p t i o n  of  v h a t  seniice t h i s  a s s i s t a n t  p r o v i d e s  

2,aaair+.nt-dricriptlon-'LaL1 auto pomt 88aiat.nt d l  praqt uaoz rhe+hrt M auto 

fomm that hivm b..n prrviamly f iL1.d  out. 

* t h i s  a s s i s t a n t ' s  property f i l e  

2,a~mi~+.nt_ru~urll~irr-AutoPoat.praporUoa 

a i n d i c a t e s  v h e t h e r  t h r s  a s s i s t a n t  15 a c t i v e  o r  n o t ,  a s  

r an observrng  t y p e  

2 -aS i i i tu i t -ac tLv0Ob~O~Fng-1  

8 i n d i c a t e s  v h e t h e r  t h i s  a s s i s t a n t  i S  a c t i v e  o r  n o t ,  a s  

= a request d e l e g a t r n g  t y p e  

2-aaaiiunt,actFv.~qo.1.~aZFng-l 

* i n d l c a t e s  t h e  p r i o r i t y  of t h r s  a s s l s t a n t .  a s  a  

r e q u e s t  d e l e q a t m g  t y p e  

2-a8siat.nt-mq~1lega+ingPrioxtty-l 

a t h e  number of Ht tpHeader  classes t h r s  a s s i s t a n t  1s 

a i n t e r e s t e d  i n  a s  a n  o b s e r v i n g  t y p e  

2-aaalat8nt~uaspec-3 

0 f ~ r s t  header t h a t  t h i s  a s s i s t a n t  is i n t e r e s t e d  i n  a s  

r a n  observrng  :ype - a l 1  POST H m P  POST mechods 

2,aaaiataot,apul-cœ. http .BttpUethod, XiBT 

a second  h e a d e r  t h a t  t h i s  a s s i s t a n t  is r n t e r e s c e d  i n  a s  

* a n  o b s e r v i n g  t y p e -  o n l y  URLS of t h e  CheckFree sitc 

a t h a t  p rov ide  r e a  1 - t i m e  q u o r e s  

2-aaiiatrrit-apocz-cœ. http .~ttpRaquratUXL, http r //qr . amcap1 . ca/egt-bln/qa 1 http: //qa- 
ait. macapl.ca/cgl-bin/qr 

r t h i r d  header  t h a t  t h i s  a s s i s t a n t  is i n t e r e s t e d  i n  a s  

r a n  observ ing  type:  a l 1  r e q u e s t  body t h a t  c o n t a i n s  t h e  



: nanie-value pairs 

2-isstmtant-spae3-cœ. http .8ttpRaquestBody, . 

Participants 

Uses 

Re-condit ions 

Changes 

New Response Delegating Assistant Hook 

An assistant object that acts as a delegate for a user in certain circumstances. 

in particular upon an downstrcam HTTP response 

Adding Pattern 

Personal Assistants 

Interface ResponreDelegafingIF. abstract class Assistant and 

assistanî.properties file 

None 

None 

1. new subclass NcwRespDelAssistant of Assistant 

// to perform any assistant-specific initialization 

NewResp Assistant .load() overrides Assistant .loadO 

// to release any system-resources held 

NewRespAssistant.finish() overrides Assistant.fmish0 

2. NewReqDelAssistant implements RcsponseDelegatinglF interface 

// to include the business logic in dctcrmining whether a delegation 

// opportunity exists: note that this is also where the assistant would 

// prompt for user coMmtion. if any 

NewReqDelAssistant.respDe1OppExiSts(HttpRespome) ovenides 

ResponseDeIegatin~F.respDelOppExists(HttpResponse) 

// to perform the delegation; the framework invokcs this callback if and 

// oni y if the respDelOppEx kts(HttpResponse) returns true 

NewRqDelAssistant.service(HttpResponse) ovenides 

ResponseDelegatin~.servicc(HttpResponse) 

3. Note: rcgistcr this assistant with Sand&h by updating the 

assistant.propenies me with the following parameters: 

increase the number of assistant field. 

indicate the fblly qualifieci class name for Ne~RcspDelAssistant. 

indicate the alias narne, description. property file name of 

NewRespDelAssistant. if any 

92 



1 indicate whether NewRespDelAssistant is active or not I 
l 1 determine the priority of NewRespDelAssinant l 

Post-conditions 1 A new response delegating assistant is added to Sandwich's pool of assistants 

Comments 1 None 1 
Hook 3: New Response Delegaîiag Assistant Hook 

4.4.4.7 Desgn Rathale 

Whv do delepatine assistants need to have a ~rioritv set'? 

Much of the rationale behind this priority flag lies in the way that the HTT'P protocol works. In 

short. an H ï ï P  stream contains a pair of request and rcsponse objects. To support multiple 

delegating assistants on the same Stream., either the request or response stream, the framework 

must have sorne schernt of determinhg which delegate to mvoke if more than one assistant is 

interested in delegating. Tbere is various ways in doing t h :  

Altanative #1: 

When a delegation opportunity by multiple delegates is detccted. the Framcwork can prompt the 

user with the list of delegats that are of interest for this delegation. 

Alternative #2: 

Using a blackboard approach [SG%) where al1 delegates bid for the delegat ion opportunit y. This 

alternative is the same as a choosing the delegate on a first come fust serve (FIFO) basis. 

Alternative #3: 

The user specifie. the priority of a delegate when registering the assistant with the framework. 

This priority. which is simply an inttger value, allows SundwicA to determine the order of 

delegating assistants to ôc invoked when a delegation opportunity exists. in Sandwich, a delegate 

can be assignai with two difïaent priorities when acting in both a request and response role. 

We have chosen alternative #3 whme the user decides ahead of tirne on which delegate has a 

higher priority over anotha. Alternative #1 might be overwhelming or burdensome to the user as 

he or sbe bas to select a particular dclegate whenever there is a dtlegation opportunity. 

Alternative #2 is too uncertain in ternis of which delegate will get the bid or which wiil come 

first. If alternative #2 is irnplemented, the user must confirm with the approved delegate, like 



aiternative #1. Alternative #3 was chosen over the other two mainly because the user is likely to 

want to have a particular delegate for a particular request. For example. it m a y  be the case that a 

particuiar set of delegates are interested in the delegation op- based on a request for a 

particular URL and the highest priority should be set to the most prefened delegate. 

4.4.5 Administmtive AppIkation (SmdWich IntMdce) 
This component of Sandwich is sirnply an iategrated GUI application that provides an interface 

to the proxy component as well as the pool of assistants of Sandwich. At present. the two main 

services provided by the administrative application are 

(1) inforrning Sdwich's proxy component when a particular event occurs. such as the 

shutdown event triggered when user clicks on the exit button. 

(2) rendering of a selected assistant's panel. such as the output panel of an observing assistant 

By default. Sunüwich creates a Web Application Management Tm1 (WAMT) irnplementd in the 

class com.adminWAhfT as the default administrative application, the S d w i c h  Interface. 

Creation of this administrative component is a hot spot of Sdw1'cAr and thus fiamework users 

a n  replace this default administrative application with a new one. The New Administrative 

Application Hook describcs the steps required in replacing this drfault WAMT with a new 

irnplementation. 

In this section. we will 

(1) present an overview of the major dynamic scenarios of this administrative component. 

(2) provide a siatic view of major classes that shows the relationships of the major classes 

involved as well as on the stereotyped classes that are used for 

hooking in a new administrative application. 

the default administrative implementation. 

(3) outline the New Administrative Application H o d c  

(4) tlaborate on the defauit administrative application. the Sondwich Interface 

4.4.5.1 Dynamk View 
The two main dynamic views of this administrative component will be dcscribed in this section. 

The fust scenario describes how the communication occurs between this administrative 

component and the proxy component of Sandwich. and the second sccnario dcscn%cs how the 



communication occurs between this administrative component and the pool of assistants of 

Sandwich. 

Communication with the Proxy 

The communication between this administrative application and the proxy is through the observer 

pattern approach [GHN9S J. Basicaily, 

a) As an object observable by the proxy. this default administrative application triggers events 

when it wants to broadcast to al1 its obmers  that the user bas rcquested a particular event or 

its interna1 state has cbanged. Fm ample .  the following scenario shows W d f T  fning the 

SHUT-DOW-EVENT when the user indicates that Wshe has selected to exit SondwicIC 

through the interface. This then triggers a notification event to a i l  registered obstrvers of this 

default administrative application. including the HttpProxy component of S d w ë c h .  Recall 

in step 8 of the starts up scenario that the HrrpProxy is registered as an observer of the 

administrative application. The HttpProxy objcct will then shut d o m  cleanly. releasing 

system rtsources. 

Figure 35: Administrative Application and HttpProxy 

b) As an observing abject of the proxy, this default administrative application is Uiterested in 

the ASSISTANT-UPDATE-EVENT event that is triggered by the proxy when dl 

assistants are king loaded. 



Communication with the Pod of Assistants 

Scurdwick uses the template [GHN95] pattern in achieving the communication bctween the 

administrative application and the pool of assistants. One of the services provided by the 

administrative application is to be able to view the result panel of assistants, if any. The 

following scenario in conjunction with Figure 36 elaboratcs on this. 

User selects an assistant p e n t e d  by the graphical interface of this administrative 

applîation, set Figure 12. 

User clicks on the "View Resdt" button. 

This triggers the actionPerfomd() callback method of the button's listener. 

This listener or handler of the "View Result" button will then ask the WAMT for the 

selected assistant. 

This listena verifies if the selected assistant is an AssistantAdminlF. i-e. implernents the 

AssistantAdnrinlF interface. 

If step 5 is me. then the listener will ask the selectcd assistant for its rtsdt panel. 

The listener renders the assistant's r d t  panel in a window. If  step 5 is false. a dummy 

message box saying that the assistant has not enacted the New Assistant Result Windc-.~ 

Hodr is popped up. 



2. view m u l t  
7 

Figure 36: Administrative Application and Assistants 

4.4.5.2 Static View 

Figure 37 gives a static view of the major and stereotyped classes involved in the administrative 

component. Other classes that are show in the figure (class JFrame and Observable and 

interface Observer) arc from JDK and are included in the figure for the pwposes of completcncss 

only. 

Stereotyped classes here can be broken down into the following two groups: 

Class NmAdminAppln and NmSwAdmin show where the hooks are for enacting the New 

Administrative Application H&. 

Class SwDefaultAdnrin and WAMT are dcfault classes created for the default administrative 

application, which is one implementation of the New Administrative Application Hodc. 

Major classes and their collaboration are included in the following: 

Class AdnrinAppInFuctory 



This class dyaamically creates an object that conforms to the AdminAppldF interfkce based 

on the class name passed in as an argument of the class's main factory method, In Java, this 

is accomplished througb the Class.forNarne and newInstance() mcthods of the JDK reflection 

capability. This class implernented the abstract facîory crcational pattern documentecl in 

[GHJV95]. The two recurring themes in applying this pattern are (a) they encapsulate 

howledge about which wncrete class the system uses. and (b) they hide how instances of 

these classes are created and put togettier. In short, tbey help to make a system independent 

of how its objects are crtated. 

Interface AhinApplnlF 

This interface declares all abstract methods that the framework expects fiom its 

administrative component. 

Class SwAdmin 

The ciass is the mode1 of the administrative application cxpected by the framework It is 

expected to be an observa as well as an observable. 

Scurd~ich is solely aware of the abstract levei classes or interfaces including only the 

AdminAppldF interface and class SwAAdmin. The latter is expected to implement the Obsenler 

interface and extends Observable such that it can be registered as an observer of the proxy 

component and be observed by the proxy, respectively. 



- - 

participants 

uses 

Precondiuons 

Changes 

Figure 37: Administrative Component Static View 

New Administrative Application Hook 

An administrative tool or interface for Sandwich 
-- 

Replacing Pattern 
- -  - 

Administrative 

Interface AdminApplniF, absîracî class SwAdniin and the sandH.ich.properties 

file 

None 

1.  new class NewAdminApplication implernents AdminApplnlF interface 

2. new subclass NewSwAdrnin of SwAdmin 

// ddine with handlers to al1 events apected from the proxy 

3. News wAdmin.update() overrides S wAdmin.update0 

4. NewAdminApplicatiOn.getSwAdmia0 overrides 



Hook 4: New Administrative Application Hook 

4.4.5.3 Defauff A dministtative Applhtion 

t 

Post-conditions 

Figure 37 shows the default administrative application of Sundwàch, i.e. classes with the 

< cdefault> > stereotype. Basicall y, this default implementation is an example of enacting the 

New Administrative Application Hook In summary. this is accomplished by the foiiowing: 

// to show the NewAdminApplication 

5. New AdminApplication-startu overrides AdminApplnIF.start0 

6. Note: update a field in the sandwich.propenies Ne: 

admin-application classname-NewAdminApplication's class name 

Default administrative application is replaced by NewAdminApplication 

1. Crcates a ncw class WAMT tbat implements the AdminApplnlF interface. Note tbat 

WAMT is the NewAdrninApplication used m the New Administrative Application 

Hook and 

WAMT extends JDK JFrame and thus is a GUI application by defimition. 

2. Creates a new class SwD6aultAdmin tha? subciasses the SwAdmin abstract class. Note tbat 

SwDefaultAdmin is the NewSwAdrnin used in the New Administrative Application Hook. 

3. Defme the SwDefaultAdmin.up&te() method to handle the anticipated event from the proxy 

such as the ASSISTANT-UPDATE event 

4. Defme the WAMT.getSwAdmin() method to retum SwDefaultAdmin. 

5. Defme the WAMT.sturt() to rmder the GUI of WAMT 

6. Update a field in the sandwich.properiies frle: 
admin-applica t ion,  classname-corn. admin . d e f  ault -k'AHT 

The following is a hook that is applicable only when S d w i c h  uses the default administrative 

application. It basicdy allows an assistant to hook in a GUI that can be invoked through the 



default S d w j c k  interface. This hook is eaacted by one of the prototype assistants. Enhanced 

History Assistant. 

Requirement 

New Assistant Resuh Wmdow Hook 

An assistant wants to display a result panel through S d w i c l i  administrative 

component. 

Adding Pattern 

Administrative 

Interface AssistantAdminlF. anAssistant Assistant 

the Qfaul t administrauve application WAMT is used 

anAssistant is an aist ing Assistant object in S d w i c h  

// anAssistant is cwently an instance of Assistant class 

1. anAssistant implements AssistantAdminIF interface 

// r e m  a JPaneI that contains the assistant output panel. which gets 

// rendered when user selects the "View Result" button 

2. anAssistant .getAssistan?PaneI~) ovcrriâes 

AssistantAdminIF.getAssistanff anel() 

When usa selects anAssistant and click on the "View R d t "  button. then 

the panel returned by the getAssistmtPanei() rnethod will get rendered. 

Hodr 5: New Assistant Result Window Hook 

The Enhanced History Assistant enacted this hook such that its result window can be accessed 

through the default Sandwich Interface, the administrative application. Basically. 

1. The class EnhuncedHisto~Assistant implements the interface AssisranfAdminIF 

2. Define the getAssistantPanel() rnethod to rmvn a JDK JPanel object that contains the output 

panel. 

After the above mation is finished, rtstarts Sundwich, select ''Enhanceci History Assistant" in 

the window of the dcfault administrative application. as shown in Figure 12, and clicks on the 

"View Resuit" button. A window (see Figure 38) appears, which contains the JPanel of the 

Enhanced Ristory Assistant. 

101 



Figure 38: Enhanced History Assistant Result Window 

4.4.6 Persisteme 
Persistence within Sandwich is considercd to be a framework itseif. pertaining to the common 

service pool referred to in WLS99c). This framework is from the Client Server Framework 

(CSF) by Garry Frœhlich [CSFJ. Version 1.1.1 of CSF was mvestigated during the early stage of 

this thesis and was adopted. Since then. updated versions of CSF have not been incorporated. 

This framework transparently handles storing and loading of &ta objects within database, files. 

or any other persistent storage mechanisms. At present. ody fde support is hplemented. A 

managerial design approach is taken such that al1 raponsibilities to paform storing and loading 

of persistent data lie within the singleton [GHJVgS] objcct known as the Petsi~ten~ehfa~ger.  

Like ail other CSF core classes. Persistencehfa~ger is a subclass of CSF's CommAwareObject. 

This section elaborates on how this adopted framework has evolved and Figure 39 shows the 

static class diagram of the evolved persistence framework. This persistence framework was 



succasfully deployed in Sandwich with minor code changes and additions. whiie maintainhg the 

fundamental design. 

Figure 39: 

In CSF vl . l .1  [CSF], the loading 

methuds of PersistenceManager. 

and storing of persistent data are based on the foilowing two 

Load inq : 

public Data 

Stor ing : 

public void 

read (String classname, Criteria c) 

vrite (String classname. Criteria c, Data d )  



At the t h e  of adopting this sub-fkamework. these methods simply delegate to a FileManager 

object to read and write the object whenever necessary. Howevcr. the methods that FiIeMa~ger 

used were only declared and a full implementation was not available for the r a d  and write 

methods. The following is a summary of changes made to the original CSF v 1.1.1 persistence 

sub-framework with theu rationale: 

1. A new package named csf.persistence is created, and ail classes that pertained to the 

persistence sub-framework are rnovcd thae. Originally. al1 classes of CSF pertained to one 

big package known as tik csf. This new package uplicitly shows what classes compriscd the 

persistence sub-framework and further enforces low coupling among independent classes 

through Java packaging visibility d e s .  This includes the following set of d e s :  

(a) only public methods of public classes in package A are visible (Le. accessible) to any 

other classes of any other packages other than package A. and 

(b) protected methods of a class are visible to other classes in the sanie package 

2. The methods of PersistenceMa~ger were mded to the following: 

Loading  : 

p u b l i c  P e r s l s t e n t D a t a  1-0 ( C r r t e r  l a  c )  throvs DataEeadExcept  ion 

S t o r i n g  : 

p u b l i c  vold s c o r e  ( F e r s l s t e n t n a t a  d )  t h r o v s  D a t a W r r t e E x c e p t ~ a n  

We note the foiïowing changes. some of which are further claborated on below with the indicated 

item number. 

The method names are rcnamed from read to load and write to store (mainly due to object 

naming or style preference). 

The original r m  type of the load method was Data; this is now replaced with the 

PersistentDara type (#3), 

Tbe use of class FileMa~ger is rcmoved (#4). 

The parameter type of the load mcthod changes fiorn taicing a c k s  name and Criteria 

object to only a Criteria object (#5); the store method changes from taking a class namc. 

Criteria object and Data object to only a PersistentData object (#3,4), 

The load method was modified to throw DatuReadException; the store method was 

modif ied to throw Data WriteException (#6). 



The introduction of two new abssact subclasses of PersistentData known as the 

PersistentProperties FileData and PersistentLineFi IeDa ta (ü7). 

3. The previous class Data was renamed to PersiflentData and was made an abstract ciass. The 

word "Data" has broad meanings. For example transient data. network scriaiizable data, and 

persistent data are di considered as data, We felt that PersistentData was a better name for 

representing data that were stored in persistent storage. By making PersistetuData an 

abstract class, we ensured that framework users had to provide an implementation for these 

declared abstraa methods. 

4. The use of FileManuger ta do the actual reading from and writing to fies was removed. This 

change is mainly due to design style preference. Using the FileManager approach is a typical 

"object manager" approach in accomplishing tasks. We felt that the PersistentData object 

should be rtsponsible for and know how to Ioad and store itsclf. The latter approach 

promotes object cohesion. 

5. Previously. when a Persistencehfa~ger needed to load data, a particular class name and a 

criteria object must be provided. Thrcugh the reflection API of Java. the object for the given 

class name is instantiatcd and then assigned the criteria. The evolved version moved this 

class name value into the criteria object itself. This seems appropriate as a criterion often 

applies a set of conditions. We felt that the class name was one of these conditions and thus 

could be encapsulated in the Criteria object itseif. Additionally, the class Crireria was now 

abstract to further ensure chat the fiamework user provided an implementation for its abstract 

methods. 

6. Exception handling was added because there were obviously occasional times when 

persistent data cannot be read or stored properly. This could be due to inputhutput error 

while reading from or writing to file or mvalid instantiation of PersistenîData through the 

rdlection API. 

7. Two new subchsses of PersistentData are added. 

Class PersistentPropertiesData defimes the lwdFromStorage () abstract mcthod to rtad 

the file content into a JDK Properties object. This is done to facilitate property Fies that 

contain a set of lines in the form of key 1-valuel . 

105 



Class PersistentLineFifeData defimes the ICMdFrornStorage () abstract methoù to read in a 

file into a vector of lines as strings. Both of these new subclasses are abstract as thus 

defers the implementation of the parse() method to its subclasses, see ternplate mahod 

[GHJV95]. 

Name 1 Reading Pro- File Hook 1 
I 

Requirement 1 Read a properry Ne into a Swfroperties object. 1 

Participants I FileCriteria aFlleCriteria. String aPropertyFileName. SwPropenies 

as wnoperties I 
T F  Enabling Pattern 

Uses None 

Pre-conditions 

Changes 

Comments 1 None I 

None 

1 . code: aFiieCrit cria - new FileCriteria ("com.config .S ~Propertjcs", 

aPropaty FileName) 

2. code: PersistentManager mgr - PcrsisttntManager.getlnstanc@; 
3. code: aSwPropcrties - mgr.load( aFiJeCritcria); 

Post-conditions 

Hook 6: Reading Property File Hook 

During the early stage of Sandwich constniction, we had a New Roperties File Data Ho&. 

However. during the final revisit, this h m k  was removed due to its redundancy. This is mainly 

because properties files format is well defmed, and there is no additional business logic to be 

interpreted in the template [GHJV95] methad parse(). lo other words, the Reading Property 

File Ho& suffices in most cases for a given pr- me. 

A new SwProperties object is initialized with the content of 

aPropertyFileName. Thus. ail property values can now be obtained using this 

SwProperties ob ject . 



Following are two other hooks written for the extension added to the persistence framework 

specificaïly for supporting line file data as the persistent storage. 

Name 1 New Line File Data Hook I 
L 

Requirement Encapdating the content of a particular non-property file as a 

1 1 PersistentLineFiIeData object . 1 
I Type 

1 

1 Adding Pattern 1 
l 1 Utüities l 
1 Participants 1 Abmact class PersistentLineFiIeData. Sabg aLine~ile~&e 1 

Pre-condit ions 

=GE-{ 

Uses 

None 

1. new subclass NewLineFileData of PersistentLineFileData 

// construct the appropriate business objects fiorn the f ie  

// aLineFilcNarne 

2. NewLineFiIeData.parse() overrides PcrsistentLineFileData.parse() 

A new subclass of PersisteniLineFileData that hows how to parse the 

content of aLineFileName is created. 

Reading Line File Hmk 

Requirement 

Participants 

uses 

Changes 

Hook 7: New Line File Data Ho& 

Reading Line File Hook 

Read a file into a PersistentLineFiZeData object. 

Enabling Pattern 

Utilities 

FileCriteria aFileCriteria. String aLineFileName, aPersistentLineFileData 

None 

There is a concrete subclass of PersistentLineFileData. 

1. Note: Declare a variable classNaxne of String type and assigned it the full 

class name of a PersistentLineFiZeData subclass 

2. Code: aFiicCritcria - new FileCriteria (className, aLmeFileNamc) 

3. Code: PersistentManager mgr = PersistentManagu.getInstancH); 

4. Cde:  classNarne aPersistentLineFiteData = mgr.load( aFileCritcria); 

A PersisteniLinefileData object is initiaiized and loaded with the content of 



I 1 aLmeFileNarne. This object is an instance of a PersistentLineFiIeData 1 

4.4.7 Lugging 

Comrnents 

Lugging is an important aspect of all software systems. A typW logging system r.9ows for more 

subclass mentioncd in pre-conditions. 

To create a concrete subclass of PersisrentLineFileData. see the New Line 

File Data H d .  

effective trouble shooting by developers when the user encounters a problem at run time. At 

Hook 8: Reading Line File Hook 

present. the logging support of Sandwich is minimal but can be very easily extendeci. 

Sandwich has dcclarcd an abstract class Log for logging diffnent types of messages such as 

debugging, informational. waniing, and enor messages, s e  Figure 40. This Log class has a 

public static gerloggefl) method that -tes and returns a singleton Log object. Thus, tbis class 

plays the role of a singleton as well as a factory [GHJV95]. Since Log is an abstract class, its 

implementation must be provided by one of its subclasses. The chosen subclass or 

irnplementation is plugged in as the Log object at run tirne using static initialiation and the 

protected void sdogger mcthod. Stereotyped classes included in Figure 40 include (a) default 

logger, LoggerSthut, and (b) the hot spot of the new loggn hook 

Figure 40: L a n g  Support 
108 



DHerent subclasses of Log provide different implementations of Ioggmg the default 

implementation is througb the subclass Logge~Stdora that simply prints messages to standard 

output. The creatioa of the desired Log object or logger is a hot spot in S(Md&h. Thus. another 

logger can be easily hooked in by the user without any code change required in the framewak 

The framework user may choose to implement new subclasses for more robust and sophisticated 

impiementatioa such as one that logs messages to fdes or database tables. or one that supports 

asynchronous logging. The New Logger Hodr below describes how the steps in creating new 

logger and replacing the default logger with the new one. Al1 cxisting messages that are cunently 

log@ in the framework will then be logged through this new logger witbout any additional code 

change in the framework. This lies on the fact that the framework is always and only needed to 

be aware of the abstract Log class. 

uses 

Changes 

New Logga Hook 

A more robust logging mechanism is desired. 

Replacing Pattern 

Abstract class Log, the sandwich.propenies fde 

new subclass NewLogger of Log 

// Mine ail the absuact methah of the Log 

NewLogger.logInfo(String) ovcrrides Log.logInfo(String) 

New Logger . logWm(S tring) overrides Log-log Wani(S tr ing) 

NewLogger.IogErr(String) overrides Log.logErr(Siring) 

NewLogger.dcbug(String) overrides Log.debug(String) 

NcwLogger.tuniDebugOn() ovenides Log.niniDebugOnO 

NewLogg«.tunu)cbugOff() overrides Log. turnDebugOff0 

note: includes the following static initialire code in NewLogger 

static ( 

setLog( new NewLoggerO ); 

1 
note: update the configurable parameter that tells the framework which 

logger to use in the sandwich-properties file: 



1 

Post-conditions 1 NewLogger will k uxd instead of the default logger 1 

Hook 9: New Logger Hooù 

4-48 Ragular € ~ ~ t t ~ W o n  
R e d 1  that an observing assistant specifies which data element (in particular which HTTP 

headers) it is interesteci in observing- Adding reguiar expressions to ?ïïTP headas allows the 

framework to send out notification only when interested data changes occur. 

For example. with the default regular expression built in. the following is hue. 
Synops i s  : 

Cheader name>, <regula r  express ion7 

s E.g. Framework w i l l  no t i f y  observing a s s i s t a n t s  t h a t  are i n t e r e s t ed  i n  response code 

J that is one of 200, 304, or 404. 

corn.http.HttpRespon~eCode,200~304J404 

Classes ïnvolved in supporting regular expression in Sandwich are show in Figure 41. To 

reduce coupling between Sandwich and any third party Iibrary tbat is used to support the regular 

expression implementation. a factory class and an interface are created and these are the only 

classes/interfaces that S ~ n d ~ c h  is aware of. Optionally the adapter (wrapper) pattern [GHN95] 

is used. To elaborate, 

(a) the RegExpFactory factory class is responsible to create the appropriate regular expression 

implementation object. 

(b) the RegrrlarEjrpressiodF interface that declares the required methods by the framework. 

(c) the adapter pattem allows incompatiile interfaces to work together. thus this pattern can be 

applied when third party classes that support regular expression are reused in Sandwich. In 

other words, those third party classes are adapted to the RegularErpresslF expected by 

Sundwich. The default FastMatcherAflapter class wraps the third party classes from a free 

Java regular expression package (htt~:i/  ww.cs.umd.edu~us~dfs/~va/).  This sarne 

technique can be applied should a different regular expression library be picked over this 

default one. 

Stereotyped classes included in Figure 41 include 

(a)  class FastMatcherA@ater that is the present ddault regular expression support included in 
Scmdwich, and 

110 



(b) class NewRegExpressionAdapter shows where the new class will be added when enacting the 

New Regular Expression Adapter Hoolr described beiow 

~ r e a t s R e g E x p l F ( c l a i n l m e  : String) 

\ 

Figure 4 1: Regular Expression 

Narne 1 New Regular Expression Adapter Hook 

Participants 

Requirement 

Type 

Area 

1 ReguZarExpressiodF interface and the san<hiich.propenies file 

Rquired another set of regdar expression. probably due to some defïciency 

of the default regular expression hooked in 

Replacing Pattern 

Utiiities 

uses 

Pre-conditions 

Changes 

Post-conditions 

None 

1. new class NewRegExpressionAdaptn irnplements RegularExpressionlF 

2. note: update the sandwich.properties file: 

rcgular_expression-clas~nammNewRegExprtpt class Mme 

The next time Sandwich is started. the NewRegExpressionAdapter will be 

used instead of the default FastMatcherAdapter 



1 ~ommenu 1 NewRegEnpressionAdaptn. is likely to contain or inherit a third pany 1 
l 1 class tbat support the desirable regular expression I 

Hook 10: New Regular Expression Adapter Hook 

4.4.9 r n P  Support 
The HTTP protocol will continue to evolve over the next few years as the web develops. As the 

specification changes. Sundwich implementation must be revisited if new headers are added, the 

following New HTTP Header Hook cm be applied to evolve S d w i c h  such that this new 

Cumently. not al1 headers defincd in H T P  1.1 are implcmented in Sandwich. Only those that 

are directly used by one of the prototypes are coded and test& thoroughly. It is vcry easy to add 

support for al1 othu headers with the directions outlincd in the New HTTP Herder HodG 

Figure 42 shows the static relationships of ail MipHeuder related classes, in panicular 

Stereotypcd class NewHrrpHeuder shows where the new class will be added when enacting 

the New HTTP H d e r  Hodr- 
Collaboration between HnpHeader and ObservinglF exist to support the nM1catio;l. to 

observing assistants when the state of the data elcmtnt of the HttpHeader objects changes. 

Al1 HitpHeader classes are subclasses of the abstract HnpHeader class. 

Figuie 42: HTTP Support 



1 Participants 

New HTP Header Hook 

An additional HTïP Header needs to be supported and thus becomes 

available for observing assistant to register against. 

Adding Open-Ended 

HnpHeader abtract class 

None 

This new HTïP  Header is not yet supported in Sandwich. 

t . new subclass NewHttpHeader of HttpHurder 

// declare new variable for keeping the data element of 

// NewHttpHeader type is typicaüy String but depends on the header. 

// for example. HttpDate might use type Date instead 

2. property newDataElemcnt 

3. NewHttpHmder.getDataElcment0 overrides 

HttpHeadcr.getDataElement() 

retums newDataElement 

// declare new static variable for a list or vector to store registaed 

// observers 

4. new class property NewHttpHeader-list of type list 

5 .  NewHttpHeader.getObservers() overrides HttpHeader.getObsewers() 

r e m  NewHttpHeader.list 

6. note: when the &te element state changes or is set initially ( u s d y  

encapsulateci in the setter method of the data element), this 

NewHttpHeader object shouid invoke its superclass's 

notifiAssistants(Object) method 

This new HTTP Header is now available for registration by observing 

assistants. 

This hook can bc applied whcn a new HTTP header is introduced as the 

HTTT protocol evolvts or as the framework evolves to support more 

HTTP headcrs. 

Tbe data element of the H T î P  header is often the value of the HTTP 

hcader. recalf that each header is a narne-value pair. 

Hook 11: New HTTP Header Hook 

113 



Whv does the HttuHeader's reeistef and derepister observin~ assistant take a Darameter m e  of 

The Law of Demeter says that if two classes have no reason to be directly aware of each d e r  

then they should not diectly collaborate (Grand991. According to this rule of thumb and because 

HnpHeader objects are only responsible to notw observing assistants, there is no reason for 

HttpHeader to interact with Assistant directly but with ObservingIF instead. This is why the 

regisrerObse~ingASsistant and aèregister0bservingAssistam both take a parameter of type 

ObservinglF rather than the type Assistant. 

Whv is the New H t t ~  Header Hook considered to have the onen-cnded level of suvwrt? 

This hook provides directions to extend the framework itself. The user of this hook will have to 

possess a decp kwwledge of the framewak design and the H'iTP protocol in order for thcm to 

determine whcn to notify its observers based on the state change of its data elernent. This maps 

to having the highest level of support, open-end&. in the hook model. 

4.5. St-s in Crwting New Sandwkh Assistant 
This section summarizes the steps required in identifying and constnicting a new assistant usmg 

Sandwîck : 

1. There is a new requirement for a new assistant. 

2. Use case Idenrifi an Assistant must fvst be rcalized Le. an application use case for the new 

assistant has been written and the developer has verified that the requirement of this new 

assistant can be fulfdled in Sandwich. 

3. Determine if the assistant needs to monitor the user browsing HTï'P stream. If so, identify 

which HTTP header(s) the assistant is interested in. If Sundwich does not yct support the 

H?TP header that this assistant is ùiterested in. enact the New HTTP Header Hodr for the 

new header. 

4. Detemine if the assistant dclegates on behalf of the user. If so, determine whether the 

assistant is a raquesi or response delegate. 

If the assistant meets the foliowing criteria, then the assistant is likely to be a request 

delegate: 

nceds to modify the incoming request 

needs to create a new response for a particular rcquest 

If the assistant mtcts the following criteria. then the assistant is likcly to be a response 

delegate: 

114 



needs to change the content of an existing response 

needs to create a new response for a particular response 

5. If the assistant is a delegating type. then determine the priority of it. 

6. Create the assistant using the cmesponding hook. e-g. New Observing Assistant Hook for 

step 3. and the New Request or Response Assistant Hook for step 4 

7. Assuming the default administrative application is used, if the assistant requins some GUI to 

the end user. thcn the New Assistant Result Window Ho& might be applicd. 

4.6.1 Assistent Zhat is Observing and Oekgating 
Figure 43 shows an example where the assistant is both an observing and a delegating type. M m  

specifically. the assistant is a request delegate; as an obsnving assistant. aii states of 

HfrpHeaderA arc mtaested. Duc to the nature of asynchromus approach that is dcployed in 

supporting obscrving assistants, it is possible for this assistant to get notifid by HttpHeaderA of 

service thread 2 when the assistant is servicing a HrtpRequest from service thrcad 1. Thus. 

assistant that plays the role of observing and delegating will likely need to lmow which 

notification of HtfpHeaderA conesponds to the current request or response object that it is 

servicîng. Usine the thread number of HnpSeniceThread that is responsibIe in fulfdling the 

current HtrpRequest. this rtquirement can be easily fulfilled. The details of this. in terms of &ta 

structures. w t?re included in Section 4.4.3 in the discussion of AssistarrtSpecification containment 

for Assistant. 

HttpRequest from 
sewice thread 1 

service 

as a request delegating 

Hf IpHeaderA 
from sewice thread 1 

notifies I / 
HttpHeaderA 

from service thread 2 

assistant 

as an observing assistant 
interested in 
HttpHeaderA 

Figure 43: Assistant that is both Observing and Delegating 
11s 



4.6.2 Request and Response Deiegates Pair 
There wiU be occasions that a request delegate needs to collaborate with a corresponding 

response delegate and vice versa. More generally. as the scope of assistants that are to be 

supported expands. there wlll likely be a need for an assistant-teassistant collaboration. 

Cmentiy, we do not know the best approach to accomplish this goal. A study of protocols for 

assistant-teassistant communication is rcquxcà in conjunction with the dcvelopment of 

prototypical collaboration assistants. 

In the current state of S d w i c h .  the colIaùoration among two or more assistants can be 

accomplished through a simple mcchanism such as direct methods invocation as described below 

using an example. sec Figure 44. Assumed that RequestDelegate.4 is interested 

to perform delegation when the requested URL is Fred URL, 

to use ResponreDelegateB for tbe response gencrated by its delegation 

To accomplish this today with Scudwich. during the execution of the senlce() method of 

RequestDelegateA for HttpRequest with Frcd URL. the followmg occws: 

1. RequestDelegateA performs its delegation as usual and products a HrtpResporzse for Fred's 

HttpRequest . 

2. RequestDelegateA gets the object refcrence to ResponseDelegateB from the prox y. 

3. RequestDelegateA invokes the senice() method of ResponseDelegateB. giving it the 

HrrpRespome object from the above step. 

4. RespodelegateB performs its delegation as usual and outputs a HtrpRespome objcct. 

w hic h is retmed to RequestDelegatd . 
5 .  RequestDelegateA retum thh HttpRespome as the result of its service0 method 

HttpRequest 
with Fred URL 

I 

HttpResponse 

final HttpResponse EkI 
Figure 44: Request and Response Megates Pair 



5. Evaluation 
During the fi'irst iteration of Sandwich's coastruction. a quick prototype - a ruchentary Java- 

based HTTP proxy server - was built. With the kiowledge gained from this prototype, we 

investigated what sort of assistantships are candidates of the frameworks, what are the common 

services that can be shated by assistants and how this framework should support these common 

services through its hot spots. The next or second iteration involved a rapid prototyping of an 

observing assistant example, the Enhanced History Assistant. This provided a proof of concept 

for the framcwork design to support observing assistants. The last or thnd iteration applieâ the 

hook model. involved some class re-factoring and developed a delegating assistant lcnown as the 

Check Free Auto Post Assistant. Similar to the previous prototype. this assistant was another 

proof of concept for the framework design. on1 y this time it supponed a del egatiag assistant. 

In this chapta, we F i  evaluate the major techniques and tools that are used during the 

framework construction and documentation. These include (1) the hook model uscd to document 

the h e w o r k  extension points, and (2) UML used as the notation standard in use cases and 

object diagrams. We then provide a comparative analysis betwcen Scudwkh and Webby. as 

promised in Section 2.3.3. 

5.1. The Hook Model 
The hook model is used to document the extensions of Sanàwich. The hook model was 

successNly applied during the last iteration of the framework construction. The reason for not 

king able to use the hook model during the first two iterations was mainiy due to the 

unfamilianty of the solution approach. e.g. frameworks in geaeral, the Java programming 

language, and the instability of the framework design. The l m  or third iteration provided the 

rnost complete and stabilized design and therefore we felt that applying the hook model to this 

last iteration was appropriate. The following summarized the lesson leamcd in applying the hook 

model in this thesis. 

IMPROVED FRAMEWORK USAGE 

By usiag the hook model, the framework designers can identify where the hot spots of the 

systems are and the steps on how to exttnd the framework in a more fotmalized manner. We 

found that if the hook for a particular hot spot could not be easily written, then the soundness of 

the design around the hot spot should be questioned. 

I l7  



AREA OF HOOKS 

The current mechanism to group hooks together is through the "Area" field of the hook template. 

No clear guidelines are documenteci on how framework developers stiould defme their "Areas." 

This can be further improved At present. rather vague or intuitive guidelines are that the "Area" 

field value is based on (a) the commonality of the services that the hook provides, or (b) 

subsystem components of the whole system. Meanwhile. some areas can be predefined in the 

hook defdtion, and framework developers can add more domain-specific areas as needed. An 

unanswered question is what orha gains &e thae in havmg the "Arca" field in addition to simply 

organizing hooks. A mixonception that we had initially was that hooks with the same "Area" 

values are to be enacted altoget her. 

SUPPORT FOR PROPERTY CHANGES 

Based on the hook model, a property change that can h m  WofF a feanire is considcred as an 

optional level of hook The hook language addressed welî property changes tint applied to 

objccts, howeva, lackcd the syntax to illustrate how to makt changes to a system property that is 

stored in a property file. Maintainhg persistent propertits is an important aspect of al1 software 

systems. and thus we feel that a more siringent syntax to support them in the hook model is 

desirable in the future. 

REQUIREMENT OF HOOKS 

In the hook template, there is a field for "Requirement" as "a textual description of the problem 

the hook is intended to help solve. The framework builda anticipates the requirements that an 

application will have and describes hooks for those requirements" CFHLS99a). There are no strict 

guidelines as to how the value of this field maps to the requirement specifiations of the 

framework. We feel that there is a close relationship between this "Requirement" field and 

auticipated use cases that are typical in the application domain. Further analysis in determinhg 

uiis relationship might be worthwhile. 

HOOK TARGETED USERS 

Depending on the skills of the framewofk developers and users, the hook model may appear to be 

vcry tasy or txtremdy sophisticatcd. It may be worthwhile to indicate the sort of user 

experiences that the hook model is most suitable for. Initially, when we wefe fkst introduced to 

the hook model. in order to understand it. we required real code examples that have enacted the 



hooks. Afier a detail study of few hooks. the hook model appears to be much easier to 

understand. Perhaps. the hook maiel can be constructed in different granularity. witb each level 

targeting dif'ferent types of users. based on their knowledge of object technology. 

EXAMPLES OF HOOKS 

SEAF w 9 9 a ]  and CSF [CSF] are the other two projects that include hook documentation. 

Most of these examples are enabling open hwks with a couple of adding open and one enabling 

option hooks. Through our experience in this thesis, in the context of documenthg the 

framework with books. we got started by learning tu H e  hooks through the a-g haok 

examples. hproving the pool of hook examples. covering al1 possible hook types, wiil further 

promote the use of hook model. 

LANGUAGE DEPENDENCY 

The current hook model bas its own grammar d e f i i o n  [FHLS98a] and is programming- 

language independent. This is a nice approach because 

( 1) It ailows the building of a graphical hook tool to be languagt independent. Luyuan Liu, 

another SERL graduate studcnt. is cunently investigated this tool for his Mitsttrs m i s  

Liua99]. 

(2) It facilitates the integration of multiple frameworks built in different languages. 

Assuming all framework extensions are specified with the hook model. the 

communication gap among integrators will be mUrimized as they share the common 

terminology of the hook model. 

Nonetheless, there are a few drawbacks to being language independent. First. there is yet another 

need for boui framework developers and framework users to learn and understand anothcr new 

language. Also, amateur programmers who are not familiar to the hook model and the 

framework's implcrnentation language might not be able to quickly enact a ho& Translation 

guidelines for each poputar 00 programming language (e.g. Java and C++) to reduce lhis 

overhead are desirable. 

DEPENDENCIES AND OPTIONAL PATHS 

A simple scenario where hmk dependencies occur is whcn a patticular hook cannot bc enactcd 

by itself but rcquires the use of some othcr additional hook(s). For example, in Figure 45 (a) 

Hook A requires the use of Hook B. The "Uses" field of the current hook model addresses this 

scenario sufficientl y. 

119 



Optional paths occur when various combinations of hooks can fulfill a certain requirernent. This 

happens regularly in a framework where a hot spot cm bave various hooks. A generic example is 

illustrated in Figure 45 (b) where a certain requirement can be W i e d  either with 

Hook A that uses Hook B, or 

HookAthat usesHmkC that intumuses HookD 

The latest grammar of "Uses" is 

euses> ::- Uses: chook name> [, . . ., diook name>] 

There is the lack the capability to show this optional path scenario. Adding an "I" for "OR" 

might be the easiest modification to address this scenario. 

Figure 45: Hook Dependenaes and Optional Paths 

A more cornplex sccnario wcurs whcn bath hook dependencies and optional paths cxist together 

for the sanie requirement . For instance, in Figure 45 (c). depending on which path of hook E we 

choose we mua use a particular conespondhg hook A path. In particular. a certain requirement 

can be fûlfiiled with either 

Hook E that uses F and Hook A that uses B. or 

Hook E that uses G and Hook A that uses Hook C and D 

This scenario is tackled well in the improvcd version of the hook mode1 that includes the "Pre- 

Conditions" and "Post-Conditions" fields. The grarnmar for these two fields is stlll in progress. 
120 



Looking back on this section and how a complicated situation can easily appear, we feel that 

additional pictorial illustration, especially for complex hook dependencies and optiooal paths, to 

the hook model is necessary. 

HOOK ATOMICITY 

A particular hook is considered as atomic if it can be used by itself. The notion of atomicity does 

not yet exist in the proposed hook moâel. We feel tbat there is a need for it. For example. when 

creating new assistant m S d w i c h .  thc user must c h m e  îkom the thme hooks: 

New Observing Assistant Hook 

New Request Delegate Assistant Hook. and 

New Response Delegaîe Assistant H d c  

In theory. there can be a generic hook for creating new assistant without dettmiining the type of 

the assistant. This generic hook can have a name like the New Assistant Hook and can be used 

by the above threc books. Howeva, this hook canna bc enacted by itself (non-atomic) because 

SandwÏch does not consider an assistant that dots not observe or dclegatc as an assistant. 

Based on the cunent hook model. the Niiw Assistant Hook is not considered to be a hook and the 

"changes" section of the hook is to be repeatcd for al1 the three above hooks. For this particular 

example. the following lines that are anticipated to be in the "changes" instruction of New 

Assistant Hodc have been repeated in the "changes" instruction of the above three hooks. 

new class NewAssistant subclass Assistant 

// to p e r f o r m  any assistant-specif ic 

// initial ization 

0 NeuAssistant.load() overrides Assistant.load() 

// to release any system-resources held 

NewAssistant.finish() overrides Assistant.finish() 

Thus, if the "changes" insuuctions of non-atomic hook are huge, rcpeating them to every hook 

that uses it can potentially produce redundancy, unnecessary inconsistency, and mistakes. The 

simplest approach to overcome this might be introducing a new field into hook tcmplate that 

indicates whether a b k  is atomic or not. This then aiiows non-atomic hooks to be cxtracted out. 

Other hooks that use it can then indicate their dependencies on it using the "Uses" field. 



COMPLEMENTS TO HOOK DOCUMENATION 

At present, what consthtes good framework documentation is still an open research question. 

Needless to say. the hook model will not be alone and thus will ceexkt with some other sections 

of ftamework documentation, To pornote the mtegration of the hooks to other sections of the 

document and improve better understanding of the hooks, we recommend the inclusion of the 

foilowing non-exhaustive list for the stated reasons: 

Use cases. These can be diredy refwred to in the "Requirement*' field of hook description. 

This could further improve the context of the hook applicability. 

Some sort of subsystem mudel that ilïustrates the major services offacd by the framework 

This can directîy map to the "Area*' field of the hook description. 

With option hooks. static class diapms on the objects involved suffice. With pattern and 

open-ended haoks. we feel the need to have dynamic models of the objccts hvolved. This is 

because for the latta types of hooks, users are expected to know more about the framework 

dynamics, and having collaboration or stquence diagrams togetha with certahly help. 

An on-line documentation system with the use of hyperttxt. This allows the linking togcthn 

of related hmks as well as thcir umesponding examples. From the experimental studies 

conducted by Gany Frœhlich with CMPUT 401, an dergraduate software-enginetring 

course at the University of Alberta students wme more comfortable when code examples 

explaining how to use the hooks wcre also providcd. 

We conclude that the hook model is reasonably good at forrnaiizing the documentation for how a 

framework can be extended. It has the potential to show precisely wherc the hot spots are for the 

given fraxneworks and what the hooks are for these hot spots. With the on-going work to add 

diagrammatic notation to the hook model. the potenrial bccomes more appeaiing. Nevertheless. 

there is a cost to using the hook mode]. For both the framework developas and users, there is the 

overhead of Icaming and adopting the hook made1 with its own set of grammar and templates. 

Also, it is important to remember that the hook maiel is not the only form of framework 

documentation. 1 t is also recommended to complement hook documentation with easy-tw 

understand examples constructcd using the framework by enacting the hwks. 

5.2. Applylng UML 
This section summatizes the experience gained whcn applying UML to the Object-Oriented 

Analysis and Design (OOAD) phase of Sandwich construction. Gencral observations and 

particular features of UML tbat are deployed in this thesis will be commented on. 

122 



1. UML is perhaps the best notation standard available in documenting frameworks. UML is 

becoming more widely accepted by a large user community. Using it will promote the 

understanding of a framework to a greater audience. 

2. üML should be used carefully. It is important for developers to be aware that UML is a 

notation standard for a diagramming language. UML helps in the OOAD modeling phase of 

software development by improving communication and understanding among modelers via 

d i a m  with standard notations. Often. thae is a misconception tbat people with skills to 

read and write UML, can model. The latter is a much more important skill; one can be a good 

modeler without knowing UML. Some background is desired when deploying UML to 

ensure that &velopcrs use it conectly and efficiently and not have their models restricted by 

any üML shortcornings. 

3. Rational Rose 98 is a good tool that provides intuitive interface in drawing UML diagrams. 

Rose is easy to l m  and simple to use. 

4. Static class diagrams are used to capture the objccts of the system, in the form of 

relationships, class hierarcbies. and dependencies. We found that as the number of classes 

grows. putting all classes together and showing their static relationship is impossible. Thus, 

we took the approach of grouping classes based on their core services. For example. onIy 

classes tbat are directly involved in logging will be shown on the logging static class diagram. 

This improves readability and organization of classes that collaborate or are relatcd. 

S. Static class d i a m  can also be tagged as stereotypes. This feature of UML aliows us to 

diagrammatically show three important concepts (prototype. hook and default) related to a 

framework As mention& before, another active research JLiuW] is currentïy undagoing in 

SERL in modeling hooks using the UML's project notation. 

6. Use cases are used to capture requirements of S d w i c h .  We found tbat use cases is very 

uscfui when capturing the functional requirements of the targeted applications. The exetcise 

of writing the use cases for the set of reprcsentative applications has helped us to capture not 

only the c o m o n  functionality of the applications that the framework should support but dso 

the flow of control that should be cmbedded in the framework On the orber hand we found 

123 



that deriving the use case for the framewak by generalizing the applications' use case was 

not a very helpful exercise. We felt that framework use cases are too abstract to be 

rneaninm although. by nature. framework use cases are supposcd to be generalization of the 

applications* use cases. More studics need to be conducted in this area of software 

engineering in terms of the guidelines or protocol in writing use cases for framewaks and 

determining their useiùiness. 

We conciude that some parts of UML are good cnough to capture framework rnodels; others are 

na. The use case component of UML is v a y  helpful in capturing the rcquirements of the 

targeted applications. In particular. the set of use cases written for the chosen set of applications 

have facilitated us in capturing the common functionality of the applications and the control flow 

that the framewotk shodd support. However, due to the abstract nature of framework use cases. 

we found that writing use cases for the framework bas produces less benefit. Static class 

diagrams are suffkient whcn applying them to the OOD (Object-Oriented Design) phase of 

fkamework development. UML's stereotype povided additional flwribiiity that is useful in 

capturing framework design concepts. 

5.3. Sandwich versus Webby 
During the initial startup period of SundwicIt. a copy of Webby was downloaded and evaluattd. 

At that tirne. the download was not runnable. and there was oniy a lirnited amount of 

documentation. In particular. there was no documentation for how to add new assistantship to 

Webby. This copy of Webby. rcferred to as WB1 Application, is similar to the applications 

WebMate and WebeW (Section 2.3.3). The WB1 Application provides personal wcb 

assistantship on pasonal history and traffic: lights. This copy of Webby is king referred to as the 

WB1 Application and was originaily written in P d  (1996) and later ported to C* and f d y  

Java in 1997. The Webby team is comprised of about 2-3 full-timt IBM Aimaden research staff. 

During the wrap up phase of S d w i c h .  we revisitcd the IBM alphaWorks page and downloadcd 

the fnst offi'iial (June 1999) release of Webby. This time it was refared to as the WB1 Developer 

Kit and not the WB1 Application. To our surprise, we found that its demo programs nin, and 

thme is documentation for how to add new assistantship. Below, when the word "Webby*' is 

use& WB1 Developer Kit is implicd. 



Like Sandwich. Webby's approach to provide a persona1 web assistant framework is also through 

an intermediate H T ï P  proxy. Users of Webby can add more assistantship by writing and adding 

new '*plug-ins." The documentation of Webby. however. does not claim it to be a framework but 

"a programmable HTTP request and response processor." Webby 's initial installation came with 

a p l  of five plug-in: Personal History. T H i c  Lights. PageFilter, Yahoo Subjects, and 

XMUXSL. Another important similarity is that both Sundwich and Webby assumed that the end 

user trusts the intermediate H T ï P  proxy fuily. 

In Webby, an HïTP meam passes through one or m a e  ngistered plug-ins. each plug-in 

consisting of one or more of the following. rcferred as MEG: 

(1) A Request Editor (RE) ?hat can optionally change the request. 

(2) A Gencrator (G) that takcs a rcquest and outputs a response. 

(3) A Document Editor (DE) that GUI optionally change the response. and 

(4) A Monitor (M) that c m  be dtsignatcd to reccive a copy of request and response but 

cannot othmvise intercept with the strcam flow 

Initiaily, a Webby's "plug-in" sounds like the counterpart of Sunàtdch's "assistant." Aftcr a 

more thorough study on what comprises a Webby plug-in. we sce chat a Webby's MEG element 

is the counterpart of a Sandwich's assistant "rolc". Thus. an assistant that plays two roles. such 

as observing and request delegating. is the counterpart of a Webby plug-in that consists of two 

MEGS. Monitor and Request Editor. 

The following surnmarizes the counterparts of each of Sandwich's major features. Art astaisk in 

column one indicates that a numbered comment on this feature follows Table 4. 

k 

L 

[ 11 

Sandwich 

Overall control flow: 

request delegates are traversed fnst 

followed by response delegates 

observing assistants cannot intercept 

the control flow, they simply receive 

event notifications from interestcd 

Webby 

Overall control flow: 

rquest cditors are traversed f i  

followed by gentrators and then 

document editor 

monitor canna intcrcept the control 

flow, they receive the request and 

1 H?TP headers that fulfiiil the regular response objects that they are 



expression set 

Use of interrnediary prox y as the basis. 

Request Delegating "role" 

Inpm request 

Outpuc request '. response 

Response Delegating "role" 

Inpur: response 

Orrrpnt: response 

Observing "role" 

Inprrt: Hl'"ïP headcrs notification 

Output result panel upon request 

Assistant that plays multiple roles. such 

as observing and rtquest delegating 

Default request delegating assistant. 

DirectHtrpAssistarü 

Delegating assistants have priorities set 

use of priority queues 

Support for regular expression for 

3bserving assistant 

D To change the regular expression of 

an assistant, change the property file 

and restarts Sunàwich 

Minimal administrative support but can 

x easily built on top of currait dcfault 

~dministrative application 

Segistering new assistant involves 

interested based on the conditions set 

Use of intermediary proxy as the basis. 

a) Request Editor MEG. and 

Inpm rqucst 

Output request' 

b) &nerator 

Inpur: request 

Output: document (response 

cquivaIcnt) 

Document Editor MEG 

Input: document 

Output: document 
- - 

~ o n i t o r  MEG 

Input: request, document 

0 Outpur: HTML pages (Men) upon 

request 

Plug-in that comprises of multiple MEGS 

such as Monitor. Request Editor and 

Generator 

Default Generator MEG 

Request Editor. Generator and Document 

Editor MEGS ail have priorities 

use of priority queues 

Support for set conditions for each MEGs. 

To make a condition change for a 

MEG. need to change the source code, 

rtcompile and rem.  

-- - - 

4drninistrative suppo~ through the console 

vindow whcre Webby was startcd. 

legistering new plug-in involves the use of 



new 

[12]* 

envies ma king 

: 
l 

t 

4 

4 

4 

to the 

and restarting Sandwich. 

Documentation includes 

overview 

use cases for the applications 

use cases for the framework 

B architecture 

r design and its rationale using UML 

static and sequence diagrams 

hooks 

assistant examples 

the keyword "register" in the command 

prompt of the administrative console 

window. Plug-in is registereâ without 

rtstartmg Webby. 

Documentation includes 

overview 

architecture 

programming 

API 

FAQ 

plug-in examples 

Table 4: Scuidwich end Webby 

[3] Webby has broken down the role of request delegatïng into two MEGS based on the possible 

retum type. The input type to request dclegate and the two MEGS (Monitor and Rcquest Editor) 

is the same, a request object. Sandwich's request dtlegate outputs cither a modified request or a 

response; Webby's Request Editor MEG outputs a rquest* and Generator MEG outputs a 

response. Thus. the role of a request delegathg can be accomplished with a Rquest Editor and 

Generator MEGS pair in Webby. 

[SI The design of Webby's Monitor is slightly different fiom Sandwich's observing assistant m 

two perspectives: processing and presentation. 

pro ces sin^ Perspective: how the input of observing assistant or Monitor MEG is supported. 

In Sandwich. an observing assistant mdicates which HTTP &ta clcments that it is interestcd 

in. almg with a regular expression for each of these H?TP data elemcnts. When such a data 

element exists in an HTP stream, the assistant is notifii by an event. This event notif~cation 

approach is an asynchronous approach similar to those used in MVC [KPSS] or Observer 

pattern [GHJV95]. 



In Webby. a ,Monitor MEG expresses its interest in an HTTP stream with a condition nile. 

When this nile is tnie for an H T ï P  stream, al1 information in the Stream is passed into the 

monitor synchronously. 

The two approaches are quite different in the following aspects: 

SIlndwich supported an asynchronous way in informing obsefving assistants: Webby 

supported a synchronous way in informhg Monitor MEGS 

Sandwich's observing assistants expressed their mterest on a per H?TP header basis; 

Webby's Monitor MEGS aprd their interest on a pcr-request or per-respanse objet 

basis. Note that in the S d w i c A  model. a request and response object contains one or more 

H T ï P  headers. 

Based on the experience gaineci in the prototype, we facl that S d w i c h  is defii:ient in 

circumstances when two conditions on two different data clements must be met before the H ï T P  

stream is considercd to be interesting. For example. if we want to get hold of al1 HTML pages 

from al1 rtquestcâ URLs endiag with ibrn.com, we will have the following. Assumed that this 

observing assistant is the 3"1 rcgistered assistant aad we have the following entries in the 

a;sistarrt.prqerties file: 

Here. for each H T ï P  Stream. this observing assistant can potentially receive up to two events: one 

for the rquested URL (if the URL ends with ibm.com). and the other for content type (if the 

content is an HTML page). The assistant remains responsible for mauitaining the state 

information of the evcnt and consolidatïng it based on the unique thread ID of the event. So, in 

this example. the assistant rnight contains two hash tables. one for kceping track of the requested 

URL and the 0th- for the cuntent type, as shown below. With this, the assistant can quickly 

determine the content type (from hash table B) given a service thread with a particular requested 

URL (of hash table A). Howevcr, the assistant has the overhead of additional processing in 

maintaining aU these state information. 



h ash key 7 hash value 

1 Threadl  1 urlA 1 Threadl 1 hi;! 1 
Thread 2 url B fhread 2 

Thread 3 url C Thread 3 l ~ e g  

A) hash table to keep lrack 
of requesled URLs 

6) hash table ta keep track 
of content type of al1 HTTP 

stream 

We see that when an observmg assistant is intaesteci in more than one &ta element of an H T ï P  

Stream, the assistant requires some additional processing in maintainhg al1 these state 

information. M e r  constnicting an observing prototype in sandwich and conducting a detailed 

analysis with Webby. the lesson learned here is that the asynchronous way in notifying assistants 

that simply observe is a less suitable approach than the synchronous way. 

Presentation PersDective: how the output of an observing assistant or Monitor MEO is propagated 

or displayed back to the end user. 

In Sandwich, this output is prtsented upon request by clicking on the "View Result" button 

of WAMT or is pushed by the observing assistant. The presentation interface is a Java GUI 

that can rnake use of various powerful APIs such as Swing. 

In Webby. the output is presented when the user requests a pre-defmed HTTP URL for the 

plug-in. This rcquest will route to the appropriate Generator MEG that is responsïble to 

consolidate persistent data storcd up by the concsponding Monitor MEG. The output is then 

presented to the user in the form of HTML pages. These HTML pages may contain 

JavaScript for any required programming logic. 

The two approaches mentioned above are very similar. Usmg Webby's approach of a pre-defmed 

HlTT URL to get the interface of the Monitor MEG or observing assistants seerns to be more 

consistent with the rest of the architecture because the proxy drcady understands HTTP. 

However. there are three major drawbacks to this approach: 

Use of HTML pages (optional with JavaScript) as the prtsentation style setms limiting, more 

sophisticattd interface can bt buiit when more powerful and richer G U  APIs, such as Swing. 

are used. 



When the amount of business logic that needs to be added increases, one is likely to end up 

with HTML pages with convoluted JavaScript. 

Ability to perform "push" technology is limited as H T P  supports "pull" technology. 

The ideal approach seems to be to use the H?TP request approach with a full-fledge GUI 

application, such as applet or ActiveX component, as the front end. This removes the first nvo 

drawbacks descriied above. The third drawback remains but becornes feasible under the 

condition that the user cxplicitly Ioads the GUI application h to  memory the initiaIIy. 

[ 121 The following table elaborates further on the documentation techniques used by Sandwich 

and Webby. 

Ovcrview 

Requuements 

Architecture and 

design 

Sandwich 

dtscfiied as a framework 

that supports the 

construction of browsing 

included a couple stories on 

the use of personal 

assistants, Enhanccd History 

and Check Free Auto Post 

Assistant 

included a set of use cases 

for a representative set of 

applications that the 

framework support 

included a set of generalized 

use cases for the framework 

itself 

described as subsystem 

componcnts 

included the inputhutput for 

each type of assistants. 

dynamic and static view of 

130 

Webby 

a described as a flexible API for 

programrning intermediaries on the 

web or a HTïT request and response 

processor 

included an example of an 

application that transformecl XML to 

HTML was given ' 

none 

relied on the overview and examples 

included a data mode1 for the HTTP 

protocol and mput/output for each 

MEG 

included a processing mode1 on the 

overd flow of cxecutions amongst 



Webby's documentation uses the word "API" and "processor" rather than ''framework" and 

follows the typical style in documenthg APIS. initially, this 1ed us to a misconception that Webby 

was sirnply a library and not a framework. It was not until that we dived into the detailed 

documentation for how Webby operates that we realized Webby is a framework to some extent. 

Like Sandwich, Webby does contain an inverted flow of control in hvokùig its plupins and the 

support to m a t e  a new plug-in as a set of MEGS. 

Usage 

Ex ampl es/ 

Prototypes 

To summarize. we feel that Webby's documentation can be m e r  improved by 

considering the use of the word "framework" over "API" or "processor". 

including use cases for a representative set of applications that can be instantiated fiom 

Webby, 

including same static and interaction diagrams on major ciasses involved 

including the hook model in documcnting its usage. 

including implementation examples with steps that match those in the "changes" section of 

the hook(s) enactcd, 

deploying UML as the notation standard 

major objects of the 

framework group by their 

services 

used the UML as the 

notation standard 

covered concise steps on 

how to use the framework 

using the hook mode1 

covcred with concise steps 

in implementing the 

assistant examples; these 

steps matched back to 

"changes" steps outlintd in 

tbe hook(s) enacted 

different types of MEG 

covered with long paragraphs in 

describing how to use the API 

referred as the progranunhg section 

relied on examples 

covered with long paragraphs in 

describing how a plug-in does its job 

usmg MEGS 



After documenthg Sanüwich and cornparhg Sandwich's documentation with Webby's. we feel 

that typical kuneworks documentation should include. at least, the foliowing sections: 

An overview section that describes what the framework is for and a brief story for its use. 

A requirement section that captures what the hmework supports, in particuîar applying 

UML use cases to the set of representative applications of the framework This helps to set 

the context in using the framework and provide an overall picture on what the framework 

supports. 

A section on arcbitedute and design that presents 

(a) all subsystem compomnts of the framework basai on their semices. 

(b) the object model of the framework covering the dynamics and static relationships among 

classes using the UML notation. 

(c) the data model in the form of input and output for a given compouent as weli as persistent 

storage involved, if any 

A section on framcwork usage (i-e. how to use the framework) using hwks. 

A section on applicaîion examples instantiated from the framework where their 

implementation daaiis should match the steps listed in the "changes" section of the books 

involvecl. 

It is actually very interesting and surprishg to see that the end result of Webby and Sandwich are 

so sirnilar because they were totaily independent efforts until the recent official release of Webby 

Developer Kit. The fiust iteration of Sandwich staried in the fa11 of 1998; Webby was evolved 

from the WB1 Applications (note that t h  is an application rather than a developer kit) that was 

implemented in 1996 in Perf and migrated to Java in 1997. The Webby. as a developer kit. is 

released to the public in lune 1999. Sudnich contains a defadt pool of three assistants; 

Webby's contains a default pool of five plug-in. In tenns of these two aspects, Sandwich is 

considered to be less mature than Webby. 

Here, we summarize this detailed cornparison section with the following points: 

The objective of both Sandwich and Webby is the same, Le. to provide the support m 

constnicting personal web assistants. 

The architecture of both Sandwich and Webby relay on an intermediary personal proxy that 

has been granted by the user to snoop Uito bis or her browsing activities. 
132 



In terms of documentation. the framework-based approach taken by S d w i c h  has ailowed it 

to produce bener and more concise documentation than Webby. In particular. Sundwiih 

documentation includes the use the hook mode1 proposed by [Froc%], the application of 

UML use cases to a representative set of applications. and the deployment UML notation 

standards for static and dynamic class relationships, di of which are missing in Webby's 

documentation- 

In tams of design, based on the major services maed by both Saiddch and Webby, we 

have the foilowing points: 

- The approach in supporting delegating assistant in Sudwich, such as the use of prionty 

queues, raquest and response type and default request delegate, is very similar to the 

approach taken by Webby's Requesî Editor. Monitor and Document Editor MEGS. and 

thus can remah intact 

The approach in supporting observing assistant m Sandwich is siightly dinerent from the 

approach taken b;i Webby 's Monitor MEG. As mentimed tefore. we have leamed that 

synchronous notification to observing assistants is a better solution due to the 

additional processing overhead imposed by the current asynchronous notifkation 

seheme. and 

the use of H'ITP as the communication protocol with a GUI application as the front 

end (to get the output of observing assistants or Monitor MEG) to the proxy is a more 

consistent design 

- Although the administrative component of Sandwich is preliminary cornparcd to 

Webby's administrative console-based component. we feel that the best approach is to 

deploy a web-based administrative interface to both Sandwich and Webby. Improving 

this component of Sandwich should be very straighdorward and only requires 

implementation. 

- The idea of registering and de-registering assistants is the sarne as in both S d w i c h  and 

Webby. Scuidwich can be further improvcd so that it does not nceâ to be restartd for a 

new assistant to be activated. 



6. Conclusions and Future Work 
The thesis shows that baving an application framework that supports persod assistants is valid 

and feasible. This framework encapsulates the common functioaality of and is an integrated 

architecture for personal web assistants that have been identified and anal yzed. The development 

of two prototyped assistants demonstrateci this. New assistants are added to Sandwich by 

enacting one or more of its identified and documented hooks. 

This thesis is also a case study on documenting application frameworks m general. By 
documenting Sand~ich and comparing it to Webby's documentation. the two sections that we 

found especially useful are (a) use cases for the family of applications. and (b) framework usage 

documented using the hook model. The conciseness of the hook model not only can help the 

framework users to extend the framework but also the framework maintainers to evolve the 

frarnework S d d c h  is still in a very early stage of development and most of its book level 

support are of type pattern or open-endtd, and when applied, most framework feanires are added 

or replaced. This observation is consistent with [Johnson921 in that an immature framework is 

likely to bc predomhantly white-box in nature. As Sundwich continues to evolve, we foresec it 

shifting to a more black box framework with a pool of assistants that can o p t i o d y  be hooktd in. 

We also feel that the use of UML as the notation standard tbrough out the documentation is also 

useful as it promotes consistency and understanding to a p a t e r  audience. 

Sandwich can be extended and reused in the context of browsing history-dependent assistants 

programs. At times. we felt that this well-defined scope in targeting assistants that are bascd on 

browsing history liniits some other forms of assistantship such as batch assistantship that does not 

require any browsing history. Nonctheless. we are grateful that this scope is enforced ihroughout 

and has helped in the completion of the project on tirne. Analysis on the Intemet domain can go 

on indefinitely in this fast-changing environment as the WWN matures. 

There are, of course, penalties that we pay when we deploy a proxy that does more than relays. 

Fust. thcre is the overhead of additional processing and thaefore performance impact. Another 

caveat in deploying a poxy lies on the assumption made in this thesis: the end user trusts his or 

her personal proxy. If this assumption no longer holds in the future, furthcr studies will netd to 

be conducted in addressing it such as by adding some security support. 



Based on the experience gained in this experiment in building Sandwich and cornparmg with 

Webby. we summarized some near fume in hproving Sandwich and some potentjal new 

requirements that Sandwich is anticipateci to address: 

Support for synchronous noMikation to observing assistants 

Support for a web-based adniinistrative interface to the framework as well as to assistants that 

have result panels. 

Recall that the three data elements that an observing assistant can register interest in and be 

notified of are H T W  headers. content, and META tags. At present. Sandwich contains 

implementation support for the H î ' T P  headers only and only those headers that are needed by 

the two prototyped assistants have been thoroughly teste& Thus. a near term future work 

involves adding support for the content and META tags data elements and al1 the other H T T P  

headers using the documented New HTTP Heaàer Hook. 

Support a more robust mechnïsrn than the cunent rudirnentary approach via direct mcthod 

calls (Section 4.6.2) for assistant-to-assistant collaboration. 

At present, Sandwich does not cache or keep a copy of the HlTP content (e-g. HTML pages 

and GIFs). This might become a rcquirement later to hnprove performance. Determinhg the 

best approach in accomplishing this requires more in-depth evaluation. including further 

investigation of another active area of research. web caching. When content caching is 

supporteci, it is also expectd that there is a dcmand for a search engine that a m  upon the 

content cache. 

When H T ï P  is used with Secure sockcts layn (SSL). it is also frequently rcfcned to as 

H m .  At prescrit, Sandwich only supports H T ï P  and not HTïPS. Mme sgecifically, 

whcn an )fITPS communication is establishcd, Sundwich or any HTïP-based application 

proxy semer losts its capability to snoop on the strcam. HTTPs is gaining popularity as the 

web evolves into a place for electranic commerce. Tbis capability is desirable for most e- 

commerce web applications whcre confidential information such as acdit car& numbers 

needs to bc traclsferred ovet the Intemet. In this situation. we foresec the need for a 

negotiating assistant uiat plays two roles. To the scrver. this assistant is the SSL client and to 



the end user's browser. this assistant is the SSL server. Thus. two SSL sessions existe4 one 

between the browser to the assistant and the other from the assistant to the serva. Further 

studies ne& to be conducteci in determinhg the best approach for Sandwich to handle this 

emerging technology. 

Support for independent assistants. As we have seen in Figure 8, S d w i c I t  was originally 

designed to support the goup of assistants that depends on user browsing activities. Another 

group of assistants acts independently of user browsmg activities. As this thesis progressed. 

we saw the nccd to support this group of assistants m Sandui&. This requirement expands 

the scope of the framework and as a result will make the framework a more complete one for 

providing personal assistantship. The following is an example. from Professor Eleni Suoulia. 

where there is a nced to support batch assistant m Sadwich. 

Here is a question for you: 1 uant to capture a set of examples of using easySABRE 

http://wvv.easysabre.com. Basically 1 want to try out a set of approximately 200 

combinations of cities and dates and times to travel. Could 1 'program' a delegate 

in your framework ta qet these traces for me? Also if the ansver is yes. would the 

observer cache the different 'screens' chat corne from the server locally the 

client sidc? 

Tbere are many ways to fùlfill the above requirement. mcluding the following: 

a) Use SandwM to monitor the easySAi3R.E sites that are of interest. Using the information 

gathered develop a batch program to perforni the 200 combinations independent of 

Sandwich. The Java Networking API would suffice and the program will have to cache al1 

the response or "screens" rcturned from the requested sites. 

b) Evolve Sandwich to support extemal batch assistants and ailowing uternal batch assistants 

to interact with observing assistants. This approach will ailow the use of an observing 

assistant to perforrn al1 the caching of responses from easySABRE, 



7. References 

IBM Agîets. htt~:/lwuw.trI. ibm-CO. i~:'adets/index.html 

Ajanta h t t v : / / ~ ~ . c s . u ~ ~ ~ e d ~ ~ A i a n t a , ~  

Frank Buschmann. Regine Meunier. Hans Rdincrt, Peter Sommerlad and 

Michaet Stal. Pattern-Onented Software Architedure: A System of 

Patterns. John Wiley & Sons. Inc. 1996. 

CacheFlow, htto:;iwww .cacheflow .com/infddocs/wb/'activecach'm~~~html - 

Concorida 

hthx!lweb.vsisinc.corm'concordia,~broduct informat ion/what it does. htm 

Garry Frœhlich. Cammon Services Framework (CSF). 

htt~://www .cs.ualberta.cal-e~/frameuror k 

D'Agent. htt~:// wuw .cs.darbnouththeduf~aeent/ 

T. Eggenshwiltr and E. Gamma. ET++ SwapManager: Using Object 

Techndogy in the Financial Engineering Domain. In Proceedirigs of 

OOPSLA 92. 1992, t 66- 177. 

Stan Franklin and Art Graesser. 1s it an Agent or just a Program? A 

Taxanomy for Autonomous Agents. Roceedings of the Third 

International Workshop on Agent Theories. Architectures. and Languages. 

Springer-VerIag. 19%. 

http:llw~w .msci.mem~his.edu/-WinlA?entProe.html#aeent 

Gany FrœNich, H. James Hoover. Ling Liu. Paul G. Sorenson. Hooldng 

into Object-Oriented Application Frameworks. PrOctedings of the 

1997 International Conference on Software Engineering, Boston, Mass., 

May 17-23. 1997. pp. 491-501. 

Garry FrocMich, H. James Hoover, Ling Liu, Paul G. Sorenson. Reusing 

ApplicPtion Frameworks Thnnigh Hodrs. To appear in Object-Oricnttd 

Application Frarnewarks, M. Fayad. R. Johnson cditors 



[FHLSggbI Garry Froehlich. H. James Hoover. Lmg Liu. Paul G. Sorenson. Designing 

O bJed-Oriented Framewoiks. In the Handbook of Object-Otiented 

Technology. S-Zarnir editor. CRC Ress, New York 1999. pp. 25-1 to 25- 

22. 

[FHLS*] Gany Frœhlich. H. James Hoover. Wendy Liew. Paul G. Sorcnson. 

Application Framework Issues wben Evdving Business Applications 

for Electmnic Commerce. Proceedings of the 32nd Hawai'i International 

Conference on Systems Sciences (HICSS 32). January 5-8, 1999, Maui 

Hawaii. Software Technology Track. (CD-ROM), Copyright 1999 by the 

lnstitute of Electricd and Electronics Eagineers. Inc. (IEEE). 10 pages. 

Fowler971 Martin Fowla. UML Distüled: Applying the Standard Objed 

Modeling Language. Addison-Wesley Longman. Inc. 1997. 

m=%] Gany FrocMich. Hooks: an Appmach to the Reuse of Object-Oriented 

Application Frameworks, Ph.D. Candidac y Document. University of 

Alberta. 1 9%. 

Mohamed E. Fayad and Douglas C. Schmidt. Objed-Oriented 

Application Frameworks. Communication of ACM, Vol 40, No. 10, 

October t 997. 

Erich Gamma, Richard Helm Ralph Johnson and John Vl issides. Design 

Patterns: Elements of Reusable Ob ject-Oriented Sohware. Addison- 

Wesley Longman. Inc. 1995. 

Gangopadhyay, D. and Mitra. S. Understanding Frameworks by 

Exploration of Exenplm.  In Roceedings of 7" International Workshop 

on cornputer Aidcd Software Engineering (CASE-95) Toronto, Canada. 

1995, pp. 90-99. 

Mark Grand. Patterns in Java, Volume 1 .  John Wiley & Sons. Inc. 

1998. 

Mark Grand. Patterns in Java Volume 2. John Wiley & Sons, Inc. 

1999. 



Warold971 Eliiotte Rusty HaroId- Java Networking Rogramming. O'Reilly & 

Associates 1997. 

r'HflG901 Richard Helm Ian M. Hoiland and Dipayan Gangopadbyay. Contracts: 

Speciming Bebavi~ai  Compositions in Objet-Oriented Systems. 

Proceedings of OOPSLA October 1990. pp. 169- 180. 

Wunte~-981 Jason Hunter. Java Serlveâs. O'Reilly & Associates 1998. 

[JACK] 

[JATLite] 

[JavaToGo] 

[Johnson921 

JACK, hm:!/www.aeent-software.com.auliack.html 

Java-To-Go. htto://~tolemv.eecs.btrkcle~.edddpm/iavatools/~~va-to-ed 

Ralph Johnson. Doarmenting Frameworks Using Patterns. Roceeding 

of OOPSLA '92, Vancouver, BC, Canada. 

Kmsner, G.  and S. Pope. A Cookbodr for Using the Mode1 View 

Contidler User Intetface Paradigm in SmaJltalk-W. J o d  of 

Object-Oriented Programmùlg, August/Septernber 1988. pp. 26-49 

Ari Luotonen. Web Proxy Servem. Rcntice Hall 1998. 

Richard Lapie and Rudolf K. KeUer. Design and Reuse in Object- 

Oriented Frameworks: Patterns, Contracts and Motiih in Conawt. 

Proceedings of the 62" Congrcss of the Association Candienne Francaise 

pour l'Avancement des Sciences (ACFAS ), Montreal, Canada. May 1 994. 

Colloqium on Objcct-Orientation in Databases and Software Engineering. 

Luyuan Liu. A Tod Communicating with the Design of O 0  

Frameworks and Hooks. In preparation, Aug 1999. 

Adolfo M. Ncmirovsky. Building 0b)ed-Oriented Frameworks. 

Http://www7.software.ibm.comlvad.ns~ata/Document 1569. 1998. 



[SOCKS] 

[Squid] 

[S rinivasan991 

Odessey , htto:~vrww.cs.cmu.edu~afs/cs.cmu. edu/~roiect/ccxhWebidocs- 

odv.html 

OROMatcber, http::iwww.cs.umd.eduluser~dfs/ i a v d  

CMU's Restina htt~://www.cs.cmu.edu~-softaeentsl 

James Rumbaugh. Ivar Jacobson and Grady Booch. The Uni6ed 

Modeling Language Reference Manual. Addison Wesley Longman Inc: 

1999. 

Mary Shaw and David Garlan. Sobware Architecture. Rentice Hail Inc. 

1996. 

SOCKS. htt~:li~~.socks.nec.co~introductioml 

Squid. htt~:?'/ sauid.nlanr.net 

Savitha Srhivasan. Design Patterns in Ob ject-Orienteci Frameworks. 

iEEE Cornputer, Febniary 1999. pp. 2432 

Sua Mimysterns, hm:!!iava.sun.com 

Wayne B. Salamonsen and Roland Yeo. PICS-Aware Proxy System vs 

Roxy Semer Filters. Rocetding of INEi'97. Kuala Lumpur. Malaysia. 

Tacoma htto:!!www.tacoma.cs.uit.na' 

W3C. httv://www. w3.or~l  

WebeW. htt~:!!www.authentech-inc.com'webew/hel~ 11 introduction. html 

Webby. htt~:l/www.d~haworks.ibm.com/tech~wbidW 

WebMate. htt~://www.cs.cmu.edu/-softa~ents/webmata' 



Appendix A: HTTP 

Foilowing is a lin of H ï T P  headers. their type and purposes m e d  by the headen' nama. 

&uotonen98] provides a more detaii description for each of these headers. 

Notes: 

Header type: G for General, RQ for Request. RP for Response. E for Entity. 

The term "end client" used in the purpose description is essentially today 's web browser. 

At the end of this appendix. important changes bawectl H ï W  1.0 and HTTP 1.1 will be 

summarized. 

Caveats: 

H ï T P  is still evolving. the latest specification is available from [W3C]. 

Not ail browsers and web semas foïlow the H'ITP specifkation in their implementation. 

Header Name 

- 
Accept 

Accept-Encoding 

Accept-Language 

Accept-Ranges 

Pwpose a d  EXrrmpe 

Specifies what media types are acceptable to 

the requesting client. E.g. Accept: tm/html, 

texilplain. image/gif 

Spec8y acceptable charmer sets. By default. 

al1 character sets are acceptable; specifying this 

header will narrow down the acceptable charter 

sets. E.g. A ccept-Charset: iso-8899-5 

Specifies the acceptable encoding that the 

server may use. E.g. Accept-Encoding: 

compress, gzip 

Specify language prcferences of the usa. E.g. 

Accept-language: en. fi 

Indicatcs the web serve is able to respond to 

"Range" request, an H'ïTP header that can 

appear in request headers. E.g. Accept- 

Ranges: bytes indicates the semer support byte 

H d e r  Tym 
G E RQ 

x 

x 

x 

x 

RP 

x 



-- 

Cache-Control 

Connection 

Zontent-Base 

Content-Encoding 

range requests 

This header 's value specifies the age of the 

response content since the time the response 

was generated by the origin server. 

The values of this header give the HTïP  

methods that the wtb server of the requested 

URL supports. E.g. A l l m  GET. HEAD. 

POST. PUT 

Uscd to pass user's credentials to the origin 

m e r ,  

Can be used to control caching in proxy 

savers and end clients. E.g. Cache-cowol: 

no-cache. Cache-control: proxy-revalidate, 

Cache-control: must-revalidate. Cache- 

control: public 

1. When used in rquest. it indicates special 

request by client in guarantecing an upto- 

date response. 

2. When used in response, it indicates to the 

origin server's instructions to grox y 

servers and end clients. 

Specify communication options for the 

comection between the client and server. In 

H'ITP 1.1. persistent connections are the 

default. Le. connection remains open afier the 

response has been end. This aïlows the client 

to reuse the connection. E-g. Connection: 

close will override this default. Connection: 

kep-alive (older way in doing persistent 

connection in HTTP 1 .O) 

Mnes  the URL that the relative URLs within the 

returned document are relative to. Eg Cuvrrenr- 

h e :  hrt~:!;wuw. heIlo.~~,m!in&x.hrml 

Indicates the encoding of the entity body of 



Content-Language 

Content-Length 

- -- 

Content-Location 

Content-Range 

Content-Type 

Date 

the response. E-g. Content-encoding: grip 

Identifies the laquage of the retumed 

resource entit y. E-g. Content-language: en 

Spif ies  the length of the entity object in 

bytes. E.g. Content-length: 3253 

Specifies the URL or the accessed resource 

and is useful when the requestcd URL points 

to a resource with multiple representation 

(diffaent media type, for example). 

Contains the MD5 signature. E.g. Content- 

MD5: base-64 encoded MDS signature 

Indiates the start and end range of a byte 

range rcquest togetha with the total number 

of bytes available in the entire objcct. E.g. 

Content-range: 0-300/1m means the first 

300 bytes of a lûûû bytes object is being 

rcnuned. 

Specifies the media type of the object. E.g. 

Content-type: rext/hmtl 

lndicates the &te and time at which the 

message was generated. E.g. Date: Wed, 07 

April1999 1 9:4O: 1 7 GMT 

1. When useci in request, it's the t h e  the 

client gencrated the request. If proxy auto 

gcnerate a request, the proxy should set 

this field. 

When used in response. i t 's the tirne the server 

generated the response. 

W value of this header specifies the entity 

ag of the retumed object. E.g. Etag: doc-id- 

?441. This is used together with If-Match and 

If-None-Match for object validation. It can 

iIso be used with the Vaty headcr for object 

:omparison. Format of the E-Tag values are 

143 



I l I 1 vendor (web server) dependant. 

Expires 

1 1 1 1 1 For privacy reason. this header is rarely sent 

From 1 
1 1 1 1 1 in client request. E.g. Front: 

x OffersbyHTIF1.0tolinitcaching. 

x 

1 ( ( 1 1 addressa the problem of v imul  multi-hosting 

E,g. Expires: -1 

Contains the requesring user's e-mail address. 

Host 

1 1 1 

If-Modified-S ince 1 X I 1 Used witb cache uptedate checks to perfona 

x 

wendy@cs. ualb4rta.m 

Specifies the h o m e  and port number 

If-Match 

1 1 1 1 1 

If-Range 1 x 1 1 lnis header îs uscd wwi byte range request. 

If-None-Match 

x 

1 1 1 1 1 operation (request) is carricd out only if the 

conditional GET. 

Used to perfonn condition rcquest. an 

x 

if-Unrnodified-Since 

1 1 1 1 1 resource has not k e n  modificâ since the 

alternative of If-Modifieci-Since header. 

Inverse of the If-Match header. 

1 1 1 ( ( indicated date and t h e .  E.g. if-Unmod$ed- 

x Used to make the request conditional. Le. the 

1 1 1 1 1 time of the objet on the origin server. 

Last-Modif~ed x 

Location 

Since: Sun. 7 Apn'l1999 O9:30:3 7 GMT 

This specifies the creation or last modif~cation 

Max-Forwards 

pragma 

x 

E.g. Last-modified: Sun. I I  May 1997 

û9:30:37 GMT 

Indicates the redllection destination. ustd 

when a 3XX redireetion rcsponse status. 

x 

x Used to limit the number of hops a rcquest 

can make, uscd together with the TRACE 

method. 

Being phascd out from H T ï P  1.0 in favor of 

Cache-Control header. The on1 y valid value 



Proxy- 

Authentication 

Prox y- Authorization 

Range 

Referer 

Retry- After 

in H ï T P  1.1. is Pragrna: no-cache. This 

directive is linked to the "reload" button of a 

browser. 
- When used in request, fresh puil from 

the semer is required. 
- When used in response, the response 

shouid not be cached. e.g. Pragma: 

nu-cache 

Used with 407 proxy authentication tcquired 

response code. It specifies the authentication 

parameters that the client should used in 

constnicting the authentication credentials to 

the proxy server. 

Used to p a s  uset's authentication ccadentials 

10 a proxy semer. e.g. Proay-arcthorization: 

Basic eGl hcfpjb29raWU= 

Indicates the rncthods supponed by the web 

m e r .  E.g. Public: GET. HEAD. POST. 

PUT, OPTIONS, TRACE 

Used to make a range retrieval request. 

Eontains the URL of the document that 

mntahed the reference to the rquested URL. 

Used with the 503 service unavailable 

rtsponse status to indicate the requesting 

:lient rnay retry af'ter the specified tirne. E.g. 

Petry-afi'er: 120 for a 2 minutes retry tirne. 

[dentifs the serva software chat generated 

he response, e.g. Server: ApacheIl .2. 

ndicates any transformations îhat have been 

mformed on the message. The only valid 

ralue in HTï'P 1.1. i s  TraLlSfer-Encoding: 

:hunked 

ntended for switching the protocol, or the 



User- Agent 

Vary 

Via 

m79.~/2. O 

When used in request, ciient indicates the 

protocol version it worrld prcfer to switch to. 

When used in rcsponse, server indicates the 

praocol version it would like to switch to. 

x Gives the browser name and vasion of the 

end user. E-g. User-Agent: MozWal4.0 

x Used to indicate tbat a Qcument is a&bk 

I I I  should use wben preparing the authentication 

challenge response to an origin semer. 

x 

x 

x 

in several languages. e.g. Vary: Accepr- 

langwlge 

lndicatts the proxy chaîn that a rtquest was 

passed through, scparating by a comma. e.g. 

Via: 1. l firstProxyHost. I .I secondProxyHosst 

Mows the origin serva a mtcnnodiate prox y 

serves to attach warning messages indicating 

additional status information of the resource 

in a human-readablc frxmat. 

Contains authentication parametas that ctient , 
l 



Appendix 6 : META Tags 

META Tags are used to embed meta information of a HTML pages. There are two main MFTA 

tags: MAïN and HTïP-EQUIV. Both of these tags will proceed with the META tag and reside 

after the <HEAD> (or 4TTT'LG if present) and before the <BODY> tag. Thus, a typical HTML 

page with META Tags would contain the foiiowùlg few lines at tbe beginning of the page: 

An example of an HITP-EQUIV META tag is thc rdiesh tag used to rcload or redirect a site. 

For example, say http://www. hello.com/page 1. hunl contains the foilow ing META tas 
<META HTIP-EQUIV='rr&d' CONTENT= '2; U R G h t ! p J / w w u ~ p . l ~ Z b t m l " >  

When user loads pagel .html, the page htm:!/www.cs.ua~berta.~'~aee2.html wili automatically be 

redirtcted in 2 seconds. 

An example of a NAME META tag is to include keywords for page indexing purpose. For 

example, say page 1 contahs the following META tag: 

<META NAME- 'kcywords' CONTENT-'object-oricntcd hmcworlrs, personal assistantsm> 

Subsequently. when someone does a kcyword search using search engine such as 

www.vahoo.com, page 1 wiU appear on the scarched k t .  

The attribute NAME (Le. "keywords") rcfers to user-selected names, while the value for H T ï P -  

EQUIV (i.e. refresh) means that the value has a r d  equivalent header in the H m  protocol. It is 

important to note that META tags are useful only when the tools deployed made use of them (e.g. 

web browser, search engines and so on). 



Appendix C: Tools and Standards Deployed 

Standards Referreû: 

H T ï P  1.1 WC2068 specifjcation 

Software Tools Deployed: 

Netscape 4.x 

JavaWebServer 1.1.3 

Visuai Age for Java 2 as the htegrated Development Environment (IDE) and Source Code 

Control 

OMG Rational Rose 98 for Java (UML) 



Appendix D: UML Notation 

Three major components of UML notation that are used thrcwgh this thesis are swnmarizcd in 

this appendix. For more in depth explanation, please see WW]. 

a) Use Case Diagram 

used to capture user requucments, i.e. functionality that the system being build should 

providc 

Use Case 1 Use Case 3 O 

Use case 

Actor 

uses 

Extends 

Use Csse 2 Use Case 4 

A coUection of possible interaction between the system under discussion and its 

exterml actor(s). 

A role that extemal entities (someone or something) in the extemai environment can 

play in relation to the system. 

A uses relationship occurs when a particular behavior is similar across more than one 

use case and thus can be factored out and be reused by the applicable use cases. 

An extend relationship is used when one use case is similar ta ander use case but 

does a little bit more. 



b) Class Diagram 

used to describe static relationships arnong classes 

Class 

Stereotype 

Aggregation 

Composition 

Usage 

ednlart . c o r  
Anlntart w e  

roalhomlim plom anis 

A class represents a discrete concept within the application king 

modeled. 

The basic information content and form of a stcreotype are the sarne 

as an existing base mode1 but with an cxtended meaning. 

An association that represents the part-whole relationship. In the 

above example, Class B is part of Class A. 

A stronger association than aggregation in which the composite has 

the soie rcsponsibility for managing its parts such as its allocation 

and de-allocation. 

A situation where one eltment rcquires another for its correct 



Inheritance An association that represents the parent-child relationship. in the 

above example, the class Chihi inhcrits ail methods. i.e. behaviors, 

and non-private variables of the class Parent. 

Realize In UML. the relationship where a class realizes a specification is 

refend as rcalization. The above notation applies in Java where 

most specification is Încluded in an (Java) interface and a class 

realizcs it by implementing this interface. 

C) Sequence Diagram 

use to describe the interaction (dynamic view ) of collaborated objects in the system 

"a: Cl assA" means that "a" i s an instance of 'ClassA" 

"sep 1 for doStuffB" means objm "a*' invoke the doSt@?() method of object "b*' 

"step 2 for doStuffA" means object "a*' invoked one of its own method doSt@A(). 

verticai axis can be labeled as tirne; horizontal axis can be labeled as objects 



Appendix E: Sandwich Properties Files 

a )  File: sandwich.properties 

D 

Al1 the configurable factory parameters that Sandwich uses 

a 

admin-application-ciassname-com.admin.WAMT 

logger-classname-com.logging-Loggerstdout 

regular-expression-classname-com.comK>n.FastMatcherAdapter 

8 

8 The file that contains which assistants are hooked in the fu 

I 

assistant-f ilename-assistants . properties 

8 

8 The port at which the proxy component will listen to 

8 

port-number-8082 

C )  File: assistant.properties 

l~assistant,ciassname-coml,assistant,ciassname-com.assistanr.poolassistan~.pool.enhancedHisto~Assistant.EnhancedHisto~Assistan 

t 

1-assistant-name-Enhanced History Assistant 

1-assistant-activeObse~~ing-l 

1-assistant-description-This assistant will monitor al1 sites you have visited and 

produced a statisLic report out £rom it. 

l,assistant-metaDataFileName-EnhH istory - prop 

1-assistant-numSpec-2 

l,assistant,specl-commhttppHttpRequestURL,. 

l,assistant~spec2-com.httptAttpRe~p~nseCode,2OOl3O4l4O4 

2~~ssistant,classnamelcom.assistantepool.autoPost.~uto?ost~~~~~tant 

2,ass istant-name-CheckFree AutoPost Assistant 

2-assistant-activeObse~ing-1 

2,assistant-activeReqDelegating-1 

2,assistant,~eq~eiegatingPriority~l 

2,assistant-description-~his auto post assistant will prompt user w h e t h e r  an auto post on 

forms that have been previously filled out. 

2-assistant~netaDataFileName-AutoPost-prop 

152 



3,assistant~cïassname-~0m~assi~tant.DirectEttpAssistant 

3-assistant-name-Direct Http Assistant 

3,assistant-activeReqDelegating-1 

3,assistant-ReqDelegatingPriority-2 

3-assistant-description-Default delegate of S a n d w i c h .  

3,assis tantgetaDataFileName-DirectFf t t p H  . L x t  

3,assistant-numÇpec-O 




