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Abstract 

Adaptive Bayesian Informat ion Filt ering 

Brian D- Chambers 

Master of Science 

Graduate Department of Computer Science 

University of Toront O 

1999 

A new approach to interactive infornation filtering is presented: incremental Bayesian 

inference is applied to a multinomial model of text-document relevance as a means of 

learning user information neeh over extended periods of tirne, through interactive data 

samphg. An information filtering agent acts autonomously on a user's behalf by filtering 

on-line document streams for text documents that are relevant to the user's information 

need and fornrarding such documents to the user. For each forwarded document, the user 

is prompted to confirm or deny its relevance; a filtering agent that is able to incorporate 

such user feedback into its decision process can s i w c a n t l y  improve its future document 

selection accuracy. 

In cont rast to nonprobabilistic information filtering models, which are based on heuris- 

tics and ad hoc techniques, the proposed probabilistic model provides a t heoretical 

foundation for interactive information filtering. During empirical trials, the proposed 

probabilistic model has shown improved performance for certain measures, relative to 

nonprobabilistic models. 
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Chapter 1 

Introduction 

1.1 Background and Motivation 

The recent explosive growt h of networked, disseminated on-line information sources has 

led to a significant need for automated methods of retrievai of such information. For 

example, every user of the World Wzde Web is familiar with commercial se=& engines 

or topical directories, such as Lyws [Lyc94] or Yahoo! [Yah94]. The immense volume of 

source information, however, often leads to query resuits which are too long and unwieldy 

for human users to manage effectively. The need therefore arises for more "intelIigentn 

aids for information access tasks. Information filtering is an example of such an 

information access process and is the subject of the current work. Information filtering 

processes are applicable to information access situations in which user needs are relatively 

stable and information sources have dynamically varyhg content (a characteristic of much 

of todayYs on-line information environment). 

Information filtering, ad hoc retn'eval, and database management systens represent 

three important and contrasting automated information access methodologies, and are 

illustrated in Table 1.1. The table illustrates differences between these information access 

met hodologies according to the following subjective measures, suggested by Oard and 

Marchionini [Oar96] : 



0 Rate of change of user information needs 

Users may have relatively stable long-term needs, or their needs may vary for each 

data access. 

Rate of change of the source information content 

The information content of the information source may be stable, or may change 

dynamically and independently of user needs. 

0 Structure of the stored information 

The stored information may be rigidy formatted according to some convention, or 

it may be "free form". 

Nature of the output of the access process 
The output of an information access process either (1) is the information desired 

(direct access), or (2) contains the information desired (indirect access). An ex- 

ample of the former is the value of the salary field of an employee payroll record 

returned by a relational-database query; an example of the latter is a document 

returned by an information filtering process. 

Process 

Information filtering 

Ad hoc retrieval 

Table 1.1: Important Information Access processes 

Database access 

Information filtering and ad hoc retrieval have complementary usage patterns (static 

vs. dynamic) for both user need and source information; i.e., information filtering pro- 

cesses are characterized by relatively stable long-term user information requests of dy- 

namically changing information sources. Ad hoc retrieval processes are characterized by 

frequently changing user information requests of relatively static information sources. 

It is most informative to compare information filtering with database access: these two 

information access processes are complement ary for each of the four measures. Perhaps 

the  most important difference between the two processes is illustrated by the dynamic 

User Need 

static 

dynamïc 

dynamic 

Source 

d y n d c  

static 

static 

Information Structure 

unstructured 

uns tructured 

Output 

indirect 

indirect 

structured direct 



nature of information filtering's information source, versus the relatively stable infor- 

mation sources characteristic of database systems. For database systems, an information 

need can always be precisely mapped into a query for which there wiil be a precise defi- 

nition of which database items fonn the m e r  to the query. For information filtering, 

neither the query (user profile) nor the aaswer to the query can be precisely formulated, 

Le., there is no precise definition of which source documents will match a given user's 

query. Therefore uncertainS. is implicit in the information filtering process: information 

filtering's highiy nondeterministic nature rnakes probability t heory a natural tool for 

fomulating the task. This is the central theme of the current work. 

1.2 Machine Learning and Informat ion Filtering 

Machine learning is defined to be any automated process that zmproues its performance 

at some task through experience, where performance is measured based on some pre- 

specified rneasure. The classàfication problem mithin machine learning is the task of 

classiSing observed phenomena into two or more discrete sets of possible categories. 

Bznary classification into two categories such as yes/no or relevant/nonrelevant is often 

used. Classification involves partitioning a set of previously unseen input items of some 

domain into these two categories, based only on observations of the features of previovsly 

classified "training examples" of items €rom the domain- 

Given a data domain, inductive learning may be defined as a form of inference where 

a person or system generalizes beyond training examples to infer the classification of 

new data instances. It is characterized by an inductive inference crssumption or inductive 

bias; e.g., to ensure inductive learning in the case of document information filtering, some 

assumption must be made about the manner in which document features may be used 

to classi@ documents. Without such an assumption, the best that can be achieved is 

rote-learning. Mitchell [Mit971 provides an excellent exposition of inductive bias and of 



machine learning in general. 

Users typicdy initialize document information filtering systems in one of two ways: 

by providing a set of labeled training documents partitioned into two disjoint subsets 

of relevant and nonrelevant documents, or by providing a naturd language description 

of some specific interest. In the former case, information nItering becomes a batch- 

oriented classification supervised learning problem, as dimissed above. If the user profile 

is in the form of a natural-language statement, the task is more di£Ecult because it is 

widely recognized that users have great ditnculty accurately descnbing or verbaiizing 

their interests in a concise manner. In this case, users are required to guide the process 

during its operation. This is calied relevance feedback supervised learning: during the 

operation, the user provides judgement feedback to the process about the true relevance 

of documents which the process has estimateci as relevant to the user's information need. 

Many such user judgements allow the process to iteratively improve its stored user- 

profile. The user-profile therefore ccevolves" into a much more accurate representation of 

the user's information need than is represented by the înîtially provided naturai language 

description. 

The second of the above two methods (the initial profile as a natural language de- 

scription of a user's interest, with relevance feedback) is used in the subsequent work 

because it is most consistent with the interactive nature of today's distributed comput- 

ing environment. Today's highly interactive cornputer environment has led to a shift 

in focus from batch-oriented information retrieval learning algorithms towards on-line 

interactive informative processing algorit hms. Interactive information filtering systems 

are expected to learn user information needs on-he, based upon user feedback, rather 

than from prespecified training examples. Such systems are expected to respond im- 

mediately to user input, based only on information processed up to that point in time. 

Interactive information filtering systems rely on user relevance feedback to improve per- 

formance with experience. However, research in the area of relevance feedback bas largely 



been in the context of nonprobabilistic filtering models. This work investigates r e l e ~ n c e  

feedback within an adaptive Bayesian probabilistic model and demonstrates that 

such an approach is an effective means of achieving on-line learning. 

The primary leaming performance measures used for information filtering are recul1 

and precision. Recall is the percentage of ali possible relevant documents that the process 

has successfu11y retrieved. Precision is the percentage of retrieved documents that are, in 

fact, truly relevant. Recall is usable only in experimental environments because in "real- 

world" environments, the number of truly relevant documents within a given document 

source is usually unknown. 

1.3 Informat ion Filtering Models 

Information filtering models may be interpreted as decision hinctions whose domain 

is the set of aii possible document features and whose range is the set {relevant, 

nonreievant). 

Filtering models fa11 into two broad categories: nonparametric and parametric. Non- 

p~rametric rnodels, such as the the Vector Space Model (VSM) [Sal83], do not assume 

the nature of the distribution of the source data. The Vector Space Model represents 

queries and documents as vectors in a vector space, with component tenns weighted 

in sorne manner, as discussed below. The relevance of an unseen document to a given 

query is judged by calculating the distance between the query vector and the document 

vector and cornparing this distance to a threshold value (vector distance is established 

using some prespecified distance-metric) . Parametn'c models [vanR79], [Fhh93], make 

assumptions about how the data is generated and postulate a probabilistic model that 

ernbodies these assumptions. A collection of labeled training examples and relevance 

feedback is used to estimate the parameters of the generative model, and classification 

of new examptes is made by selecting the class that is most likely to  have generated each 



example. For example, in the two-class relevant/nonrelevant case, the mod likely class 

is selected based on the maximum of 

P(re1evant 1 d ; t) and P(non+elevant 1 d ; t),  

where d is a new (previously unseen) document, and t represents a user topic of interest. 

The "bag of words" model of representing documents is typicdy used for both the 

vector space and probabüistic models, i.e., the features (tokens) used to represent a 

document possess no intemal structure, distinguishing semantics, or relationships with 

each ot her. Given an enumerated vocabulary V = {ti, t2, ..., t lv l )  representing an arbitrary 

set of tokens such as English language words, or any other prespecified set of tokens, then 

any document d may be represented as a weight vector 

where, for i = 1,. . . , IVI, w, is either (1) zero or one, indicating the absence o r  presence 

of ti in d or (2) a non-negative integer, indicating the frequency of occurrence of ti in 

d.  In the probabilistic model, the former leads to the multi-variate Bernoulli document 

model and the latter leads to the Poisson or multinomial document rnodels- 

The current work investigates the probabilistic model because ( 1 )  it fits naturally with 

the uncertainty inherent in the information filtering process, as discussed in section 1.2, 

and (2) its firm theoretical foundatioo allows rigorous analytic treatment of the problem; 

in contrast, the vector space model uses heuristics and ad hoc techniques which are not 

easily amenable to andysis. 

The multinomial probabilistic model was chosen because (1) in contrast to the multi- 

variate Bernoulli model, it is intuitively appealing that the relevance decision function 

should depend on document word frequencies (i.e., the more frequently a user-specified 

"important" word occurs in a document, the more likely that the document wiil be 

relevant to the user's interest), (2) the multinomial model outperforms the multi-variate 

Bernoulli model for text classification, especidy at  large vocabulary sizes, as shown by 



McCallum and Nigam [McC98], and (3) to the best of our knowledge, multinomial modeis 

have not been applied to the information filtering task. 

1.4 Conceptual Modeling and Telos 

Research in the areas of information retrieval and filtering has historicdy addressed only 

the process of accessing information; Le., i t  has tended to ignore the important follow-up 

task of s t o h g  retrieved information in an orgonimi persistent form that can be easily 

used by usersl. Filtering an on-line news feed for a specific topic will yield documents 

that will need to be stored and somehow related to the topic, its subtopics, and its 

parent subject-domain. Subject-domains, topics, and documents are complex objects 

with complex inter-relationships which are not easily representable in, for example, a 

relational database. In addition, documents are aggregations of other complex objects 

such as document ID, title, header, and body. The ideal solution is to  store not only a 

document's low-level information tokens but also its interna1 structure and relationships 

with its topic classes, in a manner that is consistent with the way humans view such 

structure and relationships. This ideal implementation-independent modeling approach 

is called Conceptual Modeling [My192a]. 

So provide the information filtering user with the ability to store filtering results 

persistently in a conceptual manner, the conceptual modeling language Telos [Kou89], 

[My190], [Myl92a] has been adopted: a Telos information base is implemented in the 

form of a query-capable repository that is able to to represent subject-domains, topics, 

subtopics, retneved documents, and relationships between these objects. Telos offers 

many powerful and novel features including (1) a sophisticat ed ob ject-oriented kame- 

work, which allows complex real-world structures to be represented without being arbi- 

'It is only recently that this trend has begun to change: see, for example, (Cm981 and [Hah98]; the 
former discusses the use of rn-e Iearning to build cornputer-understandable knowledge bases fiom 
information extracteci fiom the World Wide Web; the latter introduces a rnethodology for automathg 
the maintenance of domain-specific taxonomies based on new concepts retrieved fiom real-world texts- 



trarily decomposed into tables and records, as is required for relational database represen- 

tation, (2) a single proposition building-block with which al1 Telos objects are constmcted, 

(3) first-class nature of an attribute (an attnbute is simply a proposition), (4) three 

structuring rnechanisms (classification, aggregation, and generalization), (5) classification 

dong an infinite dimension of metaclasses (rather than the single object-class dimension 

characteristic of object-oriented programming languages) , and (6) multiple instantiation. 

1.5 Thesis Contribution 

The following summarizes the contribution of the current work to interactive information 

jltering : 

1. The application of the multinomial distribution as a model of text-document rele- 

vance; 

2 ,  The application of incrernental Bayesian met hods, using the Dirichlet conjugate 

family and sequential data sampling, as a means of estimating the parameters of 

the multinomial document model; 

3. Conceptual rnodeling of the information domain of a specific document filtering 

application. 

Items 1 and 2 are novel approaches to information filtering and have led to favorable 

performance results, relative to other information filtering techniques. 

1.6 Thesis O r g d z a t  ion 

Chapter 2 presents architectural overviews of the information filtering and document 

repository subsystems and discusses the manner in which these subsystems are inte- 

grated into an overall system. Chapter 3 discusses term-weighting document represen- 

tation schemes and provides a bnef literature review of information retrieval methods. 

Chapter 4 introduces probabilistic machine Iearning: Bayesian leaming and the naive 



Bayes methodology. Chapter 5 presents the theoreticai framework for achieving rele- 

vance feedback in an interactive probabilistic information fiitering environment, through 

an adaptive Bayesian approach (the Dirichlet conjugate family) that is able to incre 

ment ally estimate the paramet ers of multinomial models. Chapter 6 presents empirical 

results of an implementation of the approach outlined in Chapter 5 and compares perfor- 

mance with that of two nonprobabilistic information filtering processes: a vector-space 

machine learning system, and a static "benchmark" system. Chapter 7 discusses con- 

ceptual modeling and the background and motivation behind Telos. Chapter 8 discusses 

the rationale behind the Telos implementation of the repository and outlines in detail 

several repository features. Chapter 9 concludes with a summary of results and suggats 

possible directions for future research. 



Chapter 2 

System Architecture 

2.1 Introduction 

Interactive information filtering systems are characterized by the asynchronous amval of 

textud information fkom extemal on-line sources such as news-wire feeds. Such docu- 

ments must be processed immediately in order of arrivai. For each arriving document, 

the system must make an immediate relevance judgement whether the document is rel- 

evant to a user's prespecified information need; if the system judges that the document 

is relevant, then it is forwarded to the user for confirmation of the system's judgement. 

The user's confirmation or denial of the system's judgement is provided as feedback to 

the system so that it may update its user-profile accordingly. 

This chapter provides a detailed description of the architecture and functionality of the 

document fiitering and repository system. The system consists of a source-document 

subsystem, an autonomous filtering agent, a user-interface agent1, a repository 

agent, and a Telos repository. To highlight the nature of inter-agent communica- 

tion, the following exercitive, interrogative, and assert ive speech act perfonnatives are 

employed, as suggested in [FerSS]: 

'In the remainder of the chapter, "user agent" wiü be used in place of "user-interface agentn. 

10 
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a Request: Request that another agent perfonn a specific task 

a Question: Request that another agent provide specific information 

Reply: Response to another agent's Question 

a Assert: Provide another agent with anformation (the target agent adds the received 

information to its set of beliefs) 

r Infonn: Provide another agent with information (the target agent may optiondy 

add or not add the received information to its set of beliefk). 

Figure 2.1 provides a graphical overview of the system; only those systern messages and 

information flows that are central to a general understanding of the system are shown. 

2.2 Source-Document Subsystem 

The purpose of the source-document subsystem is to transform randomly arriving 

raw text news-documents into a form usable by the remainder of the automated systern. 

The news source is assumed to be a standard on-line "live" news-feed such as Reuters, 

AP,  CNN, etc.. Arriving news documents are in text form with minimal interna1 struc- 

ture; they consist of a title, a brief header description, and a body. The source-document 

subsystem parses each arriving document and creates a standard structured vector rep- 

resentation of the document for use by the other subsystems. This vector representation 

of the document, called term-weighting or VSM-representation, was mentioned briefly 

in Chapter 1 and will be discussed in more detail in Chapter 3. For now, it is s a c i e n t  

to consider this subsystem as a transformation process that creates stmctured rnachine- 

readable vector representations of unstructured human-readable document text. 
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Figure 2.1: System architecture. 
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2.3 Filtering Agent 

The filtering agent occupies the position of a persona1 assistant to a human user 

(acting through a user agent); it possesses specialized knowledge of newsdomains and 

collaborates with the user, acting autonomously on the user's behalf, with the goal of 

assisting the user in detecting news-documents that are relevant to a given news-topic. 

It accompiishes this goal by 

0 minimizing the user's time and &ort in locating relevant documents, and 

a providing an abstraction t o  the user of the specialized newsdomain knowledge 

required to perform the news-document fltering task. 

The filtering agent fiIters out incoming irrelevant news-documents and presents to 

the user agent only those documents that it  believes that the user will find interesting. 

Over time, it becomes more effective as it graduauy leams the user's news preference and 

becomes more accurate in performing the filtering task. As a personal assistant to the 

user, it covers several roles within the system: 

hterfacing with the source-document subsystem, 

0 Managing the user-profile, 

a Calculating the "closenessn2 or relevance of a document-vector to the user-profde, 

r, Comrnunicating with the user agent. 

The following is a sequential outline of the tasks associated with the filtering agent's 

roles: 

1. Request(user agent; obtain from user, the topic for the current document filtering 

session) 

2. Initialize user-profile vector t using the current topic's title and text 

*Chapter 3 w f l  discuss in detail the notion of "closenessn of a document-vector to a user-profile. 



3. Obtain next news-document vector d from source-document subsystem 

4. Retrieve curent user-profile vector t 

5. Calculate PR = P(Relevant1d; t) a d  PN = P(NmRe1evantld; t) 

6. If PR > PN, then for the hypothesized relevant document d: 

(a) Obtain text of d fiom source-document subsystem 

(b) Inform(user agent; text of d )  

(c) Request(user agent; obtain h m  user, the actual relevance-judgement of d )  

(d) Update user-profile vector t %th the actual relevance-judgement of d 

7. Repeat fiom Step 3. 

2.4 User Agent 

The user agent's role is that of an interface between the human user and (1) the 

filtering agent, and (2) the repository agent. It acts on behalf of the human user with 

the goal of providing an abstraction of the entire system to the human user by hiding ail 

implementation details of the system nom the user. It is responsible for the following 

tasks: 

Question(user; choice between reinitializing the repository with a set of predefined 

topics or adding a new custorn topic dennition to the existing set of topics) 

Assert(repository agent; user's choice of initializing with predebed topics or adding 

a new custom topic) 

Question(user; description of the aew custom topic, if any: subject-area, title, and 

narrative text) 

Assert (repository agent; descriptioa the custom topic, if any) 

0 Question(user; topic for the c u m n t  news-document fdtering session) 



Assert (filtering agent; topic for the cumnt  newsdocument filtering session) 

Inform(uxr; text of each document hypothesized by the filtering agent as relevant 

to the current topic) 

1. actual relevance-judgement of the hypothesized relevant document, and 

2. optional semantic-categories of selected document keywords) 

Assert (filtering agent; actual relevancejudgement of the hypothesized relevant 

document) 

If user confirms that the proposed document is actually relevant, then: 

Assert(repository agent; text of relevant document and optional keyword semantic- 

categorization for classification of document token under topic simple class) 

Transform user queries into repository agent queries 

Request(repository agent; submit repository queries to repository) 

Transform query-results into user understandable form 

r Inform (user; query-results) . 

2.5 Repository Agent 

The repository agent's role is that of a Telos repository manager. It acts on behalf 

of the user agent with the goal of providing an abstraction of the Telos repository to the 

user agent by hiding al1 implementation details of the repository from the user agent. It 

is responsible for the following tasks: 

Accept fkom user agent: directive to initialize repository with predefined topics or 

add a custom topic 

0 Input from file system: predefined topics and subject-domains, if required 

Accept from user agent: custom topic description, if required 



a Repository TELL: initial instantiation of predehed or custom topics (simple classes 

as instances of sub ject-domain meta classes) 

* Accept kom user agent: text of relevant news-documents for classification under 

the current topic, and optional keyword semantic categorization 

m Repository TELL: instantiate devant  news-documents (tokens as instances of topic 

simple classes) 

0 Accept from user agent: repository queries 

a Transform user agent queries into Telos queries 

a Repository QUERY: Telos queries 

Transform Telos query-results into user-agent understandable form 

a Assert(user agent; query-results) . 

2.6 Telos Repository 

The Telos repository represents an information base of a Telos conceptual model of the 

in formation domain or subject world of the news-document filtering system. Conceptual 

modeling and Telos are discussed in Chapter 7, and the specific Telos conceptual model 

implemented in the repository is outlined in Chapter 8. 



Chapter 3 

Introduction to Informat ion Access 

Information filtering and ad hoc retrievai were bnefly introduced and compared to data- 

base access in Section 1.1 and related to machine learning in Section 1.2. Section 1.3 

discussed the two classes of term-weighting information access models: nonparametric 

and parametric models. This chapter provides brief overviews of these models, together 

with their related document representation schemes. The goal of information access is to 

leam a user's infornation need, in the form of a user-profde, through the use of training 

documents or user feedback; the learned user-profile is then used to judge how weli new 

previously unseen documents s a t i e  the user's information need. The following defini- 

tions illustrate the broad nature of information access: 

Idormation Classification1 Batch-oRented training using a static collection of user- 

provided relevant/nonrelevant-labeled training documents, where the training documents 

are processed as a group. The goal is to classify each document of a set of new documents 

as relevant or  nonrelevant. 

Information Filtering2 Interactive training using an asynchronous dynarnic stream 

'See Chapter 4 for a discussion of batch-oriented Bayesian probabilistic methoàs and binary 
dassification. 

*Sec Section 4.5 and Chapter 5 for a discussion of inmmental Bayesian probabilistic methods and 
information filtering. 



of unlabeled documents, where each document is processed individually, as it arrives, 

and a binary decision made whether or not it is relevant to the user's information need 

(only documents previously processed may influence the decision); proposed relevant 

documents are forwarded to the user who provides relevance feedback which is used as 

training information. The goal is to classzfy each newly arriving document as relevant 

or nonrelevant. 

Ad hoc Retrieval Batch-oriented training using a static collection of user-provided 

relevant/nonreIevant-labeled training documents, where the training documents are pro- 

cessed as a group. The goal is to numerically rank al1 documents of a set of new docu- 

ments according to their relevance. 

Information Routing Mult2ple independent information Gltering processes operating in 

parallel on one stream of unlabeled documents, where each process is assigned a unique 

user information need; each amving document is simultaneously tested for relevance 

against several independent user needs and is routed to the respective user, if it is judged 

as relevant to that user. 

3.1 Term- Weight ing 

Term-weighting models are based on the association of weights with the terms (noncom- 

mon words or word-stems3) occumng in a topic or document, for the purpose of quanti@- 

ing the "importance" of each term in the topic or document. As discussed in Section 1.3, 

given an enumerated vocabulary V = ( t l  , t2, ..., t lV l ) ,  the "bag of words" assumption 

allows a document d to be represented by a weight vector wd = (wI , wz, . . . , wl where 

each wi is either (1) zero or one, indicating the absence o r  pwence in d of term ti E V, 

or (2) a non-negative integer, indicating the h u e n c y  in d of term ti E V, i = 1, . . . ,l VI. 
Depending on the type of information access model, the document weight vector wd rnay 

3See Section 3.4. 



be transforrned into an adjusted weight uector consisting of ml-valued term-weights4. 

Similarly, a topic t will have an associated topic weight-vector w'. The ultimate pur- 

pose of such tem-weighting is to determine the LLsimilarity" between a document and 

a given topic, through (1) nonparametric approaches: computation of a simzlarity met- 

ric between the document and the topic, or (2) paramet~c approaches: construction of 

probabilistic modek of relevant and nonrelevant documents (relative to the topic). Such 

similarities are used either for ranking of documents (as in ad hoc retrieval) or for rel- 

evance ckr9stfieatzon of documents relative to some threshold value (as in information 

filtering). 

3.2 Nonparametric Information Access Models 

Nonparametric information access models are established using heuristics that are based 

on commonsense observations of text documents and document collections. SaIton and 

Buckley [Sa1871 provide a comprehensive overview of common heunstic approaches to 

information access. The widely-used nonparametric Vector Space Mode1 (VSM) [Sa1831 

adopts as a heuristic the assumption that a high degree of importance shouid be assigned 

to those terrns that occur fkquently in only a few documents of a collection. That is, 

the importance of each term ti in a document d is (1) proportional to its frequency tfi in 

d, and (2) inversely proportional to the total number of documents dfi in the collection 

that contain ti- In the literature, this is referred to as tf-idf term-weighting: 

where i = 1, . . . , IV1 and N is the total number of documents in the collection. 

Given a document d with weight vector wd and a topic t with weight vector wt,  

the similafitg rneasure sim(d, t) between d and t is calculated as either the linear inner 

4See Section 3.2. 



pmduct between wd and w t  

or the nonlinear cosàne correlation 

Given a user topic of interest, nonparametric information-access modeis incorporate these 

topic/document similarity cdcuiations in a manner that depends on the nature of the 

specific information-access task: (1) batch-oriented classification and interactive filtering 

tasks establish individual document relevance based on whether or not the document's 

similarity score exceeds some arbitrarily chosen threshold value; (2) the ad hoc retrieval 

task ranks documents according to their similarity scores. 

3.2.1 Relevance Feedback 

The above similarity measures are static calculations7 given a topic t (also called user- 

profile) and its weight vector ut. Provided with a set of labeled training documents, it is 

possible to improve the accuracy of nonparametric information access by adjusting the 

topic (user-profile) weight vector ut in an incremental and cumulative manner: as each 

training document d is encountered that is sufficiently similar to topic (user-profile) t, t's 

weight vector wt is updated to reflect information contained in the "similar" document 

d. In this manner, called relevance feedback, the topic (user-profile) weight vector w t  is 

incrementally improved and becomes more representative of the user's information need 

than the user's initial topic description. Negative information may also be incorporated 

into relevance feedback (Le., information from documents dissimilar to t may be used to 

negatively weight wt). In addition, topic or query ezpansion may be achieved by adding 

to t those terms that exist in relevant training documents but do not currently &st in t. 



The current state-of-the-art for batch-onented nonparametric relevance feedback is 

the Rocchio algorithm [Roc71], augmented with Dynamic Feedback Optimization (DFO) 

[Buc95]. The Rocchio algorithm, applied to the binary classincation task, adjwts the 

weight of each individual topic term by adding to or subtracting, from its original value, 

the weight of the term in each relevant or nonrelevant training document, respectively 

(subject to weighting parameters that control the relative impact of the original user- 

profile weight vector wt,  the relevant training documents, and the nonrelevant training 

documents). 

Interactive nonparametric relevance feedback algorithms employ leaming rate mech- 

anisms that allow gradua1 learning of user-profiles over time; for example, (1) Rocchio 

implemented as an incremental algorithm [AU96], (2) the LMS or W-w-Hofi algorithm 

[Wid85], and (3) the exponentzated-gradient (EG) aigorithm [Kiv94]. Empirical evalua- 

tions of the batch-Rocchio, Widrow-Hoff, and EG algorithms are presented in [Lew96]. 

3.3 Pararnetric Information Access Models 

Parametnc information access models treat documents and tenns as data sample in- 

stances that follow sorne underlying theoretical probability distribution. The goals of 

parametric modeling include (1) establishing the parameters of the underlying probabil- 

ity distribution through statistical data sampling, and (2) calculating the probability that 

the random variable modeled by the distribution will assume a specified value. 

3.3.1 Ad Hoc Retrieval 

Parametric ad hoc retrieval requires that the probability P(relevant 1 d ; t) be determined 

for every document d in a given stattc document collection, for a given topic t; this value 

represents each document's absolute probability of relevance with respect to t and may 

be used to rank the documents in order of relevance. 



The batch-orienteci Binaxy Independence Mode1 (BIM) proposed by Robertson and 

Sparck Jones [Rob761 has been the most ineuential parametric mode1 in the area of 

information access. Given vocabulary Vy the BIM vector-representation of individual 

documents consists of booleun-valued term-weights xi E {O, 1), i = 1, . . . , 1 VI, that indicate 

the absence or presence of each vocabulary term t; E V in a document. Given a static 

collection of iabeled training documents and a document class cj, each vocabulary term 

ti is assigned a probability p u  = P(xi = 1 1 ci) = n,,,l/nq, where n,.+ is the number of 

documents of class c, in the collection, and %i=i is the number of these n,, documents 

with xi = 1 (i.e., that contain term ti); pa represents the probability that term ti E V 

exists in an arbitrary chosen document of class cj. If there are only two classes: cl = 

relevant and c2 = narelevant, then [Rob761 and [Lew98] provide the following formula 

for calculating P(re1euant 1 d ; t ) :  

IV1 
P(relevant ( d ; t) = xi log ~ i l ( l  - pi21 

i=l (1 - p i l ) p i ~  - 
Despite its historical iduence, the BIM has at least two shortcomings: (1) it ignores 

the frequencies of terms in documents (the more frequently an "importantyy term occurs 

in a document, the greater its predictive value), and (2) it ignores document length (an 

"important" term that occurs in a short document should possess more predictive value 

than that of the same term occurring in a long document). 

3.3.2 Information Filtering 

Parametric information filtering requùeç that both of the probabilities 

P(re1evunt 1 d ; t) and P(nonre2evant 1 d ; t) 

be calculated for each arriving document d in an on-line data stream, for a given topic 

t; the maximum value of these two probabilities determines the most probable classifica- 

tion of d. Only those documents classified as "relevant" are removed from the document 

stream and presented to the user. 



There has been much research on batch-oeented parametric document classification; 

see, for example, [McC98] and [Lew98]; however, we are unaware of any studies on 

sequential parametnc document classification (Le., pararnetric information filtering). The 

latter area is the focus of the current work. The research closest in spirit to the current 

work, although addressing ad hoc retrieval, is outlined in [Kei97]: it combines a Bernoulli 

(binomial) parametnc document model with incremental Bayesian methods (the Beta 

conjugate family) as a means of achieving incrementol r e l e ~ n c e  feedback. 

3.3.3 Relevance Feedback 

Relevance feedback and query expansion are commonly applied to batch-oriented para- 

metric information access environments; for example, Harman [Ha921 provides a brief 

survey of such research in the area of parametric ad hoc retrieval, citing work by Robert- 

son, Croft and Harper, Harper and van Rijsbergen, and Wu and Salton. An interesting 

result of this work is that the performance of query expansion under parametric models 

tends to be heavily dependent on the specific document collection used for empirical 

test ing. 

Bookstein [Bo0831 provides perhaps the first example of sequential relevance feed- 

back wit hin a statistical decision theoretic framework, where retrieval judgements of 

documents are made individually for each document, and feedback is part of the mode1 

itself5. Aalbersberg [Ad921 provides further evidence (although in the context of non- 

parametric models) of the value of incremental relevance feedback, where each feedback 

iteration occurs after the retrieval of a single document and before the retrieval of the 

subsequent document: such incremental feedback yielded better performance than the 

widely used batch-Rocchio and Ide relevance feedback algorithms. 

SEarlier parametric feedback methods used various ad hoc techniques baseci on word frequencies to 
estimate the parameters of the probabitic model. 



3.4 Cont rolling Dimensionality 

The size of an English vocabulary t hat includes scient S c ,  technical, and business t erms, 

and acronyms may easily exceed 50,000 terms. It is therefore clear that a document- 

vector feature space that is based on such a vocabulary will have an enormous dimen- 

sionalitg; some control over this dimensionality is therefore required. The foilowing are 

three methods that have been adopted in the curent  work to control document-feature 

dimensionality. 

3.4.1 Elimination of Stop Words 

Many words in the English language possess no inherent topical information. For exam- 

ple, articles, pronouns, conjunctions, and prepositions provide structure to the language 

but provide no content value. In addition, very common words and contractions provide 

little information value, e-g., "million" , Lccompany", "diddt" , "couldn't" , "Co" , "Corp" , 

etc.. Therefore, a stop word list has been created that contains approximately 600 ar- 

ticles, pronouns, conjunctions, prepositions, contractions, and various common words. 

Documents are preprocessed against this list and and document terms appearing in this 

list (and punctuation and numbers) are rernoved fkom each document before it is placed 

into lower-case form and converted into its vector representation. 

3.4.2 Word Stemming 

Under the "bag of words" document representation scheme discussed in Section 1.3, 

s u f i e s  applied to  a given base English word generaily add no significant extra topical 

information. For example, the words "abduct" , "abducts" , "abducted" , "abduction", 

"abducting", and "abductor", although different parts of speech, possess little differ- 

entiation of content under this representation scheme. Therefore, after elimination of 

stop words, punctuation, and numbers, the remaining words are stemmed using the well- 
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known stemming algorithm by Porter [Por80]. 

3.4.3 Zipf's Law 

English words have varying fiequencies of occurrence in document collections. For exam- 

ple, the word "hostagey' would presumably occur very hequently in contemporary news 

document collections; however, there are many obscure words in the English language 

that will occur very Wequently in such document collections. Sahami [Sahg81 cites work 

by Zipf and van Rijsbergen that provide empirical evidence that words occurring only 

once or twice in an entire document collection account for approximately onehalf of the 

total unique terms in the collection, but have little resolving power between documents. 

Therefore, words that have very low frequencies of occurrence in a collection have been 

omitted from document-vector representations in the curent work. This step occurs im- 

mediately f i e r  the elimination of stop words in the case where documents are provided 

as a static collection. When documents are provided incrementally, one a t  a time (as in 

information filtering), a cumulative frequency count is mauitained for each unique word 

that haç appeared. At periodic intervals, Say every nfty days or every 10,000 documents, 

words that have occurred only once or twice are added to a lov-frequency stop List; words 

appearing in this List are then excluded from the document-vectors of future documents. 



Chapter 4 

Bayesian Learning and Document 

Classification 

4.1 Introduction 

Bayesian learning met hodsl take a probabilistic approach t O the task of learning 

which of several alternative hypo theses best explains O bserved phenornena; probabilistic 

methods provide a strictly quantitative means of weighing al1 the avaiIable evidence 

that supports alternative hypotheses. Under this approach, for a given set of observed 

data, each possible hypothesis is assigned a probability that it is the "best" hypothesis 

that explains the data. If the best hypothesis is assumed to be the most probable 

hypothesis (the hypothesis with the highest probability, called the maximum a posteriori 

or MAP hypothesis) then probability theory can be used to determine such a hypothesis. 

Given a set of observed data, then the probability that a given hypothesis is the best 

hypothesis may be calculated using the following information: 
-- - - 

'See Nt971 Chapter 6 for a general introduction to Bayesian learniag, w 9 8 ]  for a cornparison 
of event models for batch-oriented Bayesian text ~Iassitication, and War891, [Rob94], and [Ge1951 for 
theoretical coverage of empirical Bayesian anaiysis. 
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a The prior probability that the hypothesis is the best hypothesis, before making 

data observations (determined using background knowledge of the problem domain 

or from assumptions of the underlying probability distributions of the prîor). 

a The probability that the obserued data WU a c t u d y  occur in a world where such a 

hypothesis holcls. 

Bayesian methods have the distinct advantage that each observed data element can 

incrementally increase or decrease the estimated probability that a hypothesis is consis- 

tent with the hypothesis. This offers more fiexibility over certain other machine learning 

methods that elirninate a hypothesis if it is found to be inconsistent with any single 

training example2. Bayesian met hods are therefore more t oleran t of "noïsy" data (e-g., 

outlying data) than other common machine learning methods. However, Bayesian meth- 

ods have disadvantages: they require large amounts of initial probabilistic information 

(which may be very difficult to obtain) , and they require significant amounts of compu- 

tationd resources (which may make their use impractical for large hypothesis spaces) . 

4.2 Bayes Theorem 

Bayes theorem provides a direct method for calculating the most probable hypothesis 

hMAP, given a set of observed data D and background knowledge of the pnor  probability 

P(h) of each hypothesis h in a hypothesis space H. Let P ( D )  represent the probability 

that the data would be obsemed without any knowledge of which hypothesis is correct. 

Let P(D1h) represent the probability that the data would be observed, given that hy- 

pothesis h is the correct hypothesis. The Bayesian learning task described in Section 4.1 

involves determining, for euch hypothesis h the posterior pro bability P(hl D)  , i .e., the 

probability that hypothesis h is the correct hypothesis, given the observed data D. The 

*For example, the Find-S and Candidate-Elimination concept learning algorithms. See w t 9 7 ]  for 
details of these, and many other machine learning methodoIogies. 



following formula, called Bayes theorem, provides the means of calculating P(hl D)  : 

Any hypothesis which has a mazimum such value, over all hypotheses h E H given the 

observed data D, is a most probable or maximum a posteriori (MAP) hypothesis (Le., 

a hypothesis that Lest explains the observed data). A hypothesis I L M A p  E H is a MAP 

hypot hesis provided 

= argmax P(h)  P(D1h) as P (D)  is a constant, independent of h. 
hEH 

Binary Classification 

Binary classification is defined to be the learning problem where the hypothesis space H 

is defined such that each hypothesis h E H is a boolean-valued fwiction of features 

of data items of a data domain D. Each data item d E D is described by a conjunction 

of the values of n predefined-features (attributes). The boolean-value generated by a 

hypothesis is with respect to some concept pertaining to an individual data item and 

can take on any value from a set C, where ICI = 2. For example, {yes, no}, {rainy, 

sunny}, {relevant, nonrelevant}, etc.. Provided with a set DT c D of positive and 

negative training examples and an actual concept value c(d) for each d E DT, the classifier 

attempts to determine a hypothesis function h such that h(d)  = c(d) for ail training 

examples d E &. Once the hypothesis has been determined, new previously unseen 

data instances may be classified. In Bayesian learning, this translates to determining the 

most probable or mazimum a posterion (MAP) hypothesis, as discussed in Section 4.2. 
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4.4 Naive Bayes Classifier 

Once the most probable hypothesis hMAP has been found, given the training data set 

DT E D and a new data instance d E D is presented, hMAP can be used to h d  the 

most probable c l ~ ~ s i f i ~ ( ~ t i o n  c ~ a p  of d as follows: C M ~  = hMAP(d) E C. A l e s  compu- 

tationally expensive method of probabilistic classification, the naive Bayes 'Yrequency 

counting" classifier, is discwed next. This classifier avoids searching through a space of 

possible hypot heses by counting the frequencies of various data combinations wit hin the 

training data- 

Assume that data instances are represented by n features or attributes where each 

attribute 2 ,  i = 1 . .  . n, may take values hom an attribute set Xi,  and the new data 

instance d is represented by the n-tuple (xl, x2¶ . . . , xn) of attribute values xi E Xi. Then 

the most probable classification CMAP E C of d may be calculated as foilows: 

= argmax 
cj EC 

- - argmax 
cj E C 

P(cj)P(dlcj) 
P(4 

by Bayes theorem 

In this formulation, the P(c,) may be calculated by counting the frequencies of occurrence 

of each possible classification cj E C within the training data. However, the values of ail 

the P(x l ,  x2, . . . , xn lcj) terms must be calculated. But there are usually an astronomical 

number of possible values for d = (x i ,  x2, . . . , xn), so the number of such terms is immense. 

Let Dunique c DT be set of unique instances of training data; then lDunjnuel < IDTI, Le., 

huge data training sets would be required to ensure that each unique training instance 

occurs a sufficient amount of times so that fiequency counts would be reliable. 

If the simplifying assumption is made that each of the n attributes is condztionolly in- 

dependent, given the value ofcj, then P ( z l ,  X*, . . . , ~ , l e j )  = P ( x ~ ~ c ~ ) P ( x ~ ~ c ~ )  - * *  P(xnlcj) = 



P(X,[C~)- The number of distinct P(xilcj) terms that must be estimated from the 

training data is just neIC1 (much less than the number of P(x1,x2, -. ., xnlcj) terms 

which would have to be estimated without an attribute independence assumption). If 

C N B  E C denotes the target concept output by the naive Bayes classifier for a new 

data instance d = (x17 22 , .  . . , xn), then substituting nl P(~~1c.j) for P(x l ,  ~ 2 , .  . . , x&) 

in equation 4.4 yields 

Both l'(ci) and P ( X ~ [ C ~ )  are estimated using fkequency 

stances. Given a training data set DT and a specific concept 

counts of training data in- 

d u e  cj  E C, let nCj be the 

number of data instances in DT that have cj  as their concept value, and let n, be the 

number of these ne, data instances that have value xi for attribute i. Then 

P(cj) = 

P(xilcj) = 

Equations 4-6 and 

ne, ICI 
where IDT~ = 

l D ~ l '  j=i 

4.7, however, are appropriate for use o d y  in batch-oriented s u p e ~ s e d  

learning environments where 

O al1 training and test data instances are available a t  one time; 

O each training data instance possesses a specific known concept target d u e  cj-  

New methods are required to adapt naive Bayes classification to interactive Iearning 

environments where 

0 data instances arrive over a period of time; 

0 concept target values cj are not known for arrïving data instances. 

The next section and Chapter 5 will introduce a new approach for calculating the n-ICI 

terms P(xi  lcj) in such interactive learning situations. 
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4.5 Adaptive Naive Bayes Document Classification 

The naive Bayes formulation rnay be applied to document classification in a number of 

ways. We d l  be concerned here with binary classification where a document may be 

Relevant or Nonrelevant to some particuiar topic t of interest, Le., C = {R, N) with 

respect to t. The document representation scheme discussed in Chapter 3 will be adopted 

where each document has an associated weight vector that is composed of the fiequencies 

of occurrences of the (non-common) words that it contains. That is, given an enumerated 

vocabulary V = {ti7 t2, ..., tlvl}, a document d may be represented as a weight vector of 

term fiequencies wd = (wlr w2, . . . , wIVI), where wi is a non-negative integer indicating 

the frequency in d of term E V, i = 1,. . . , /VI. 

To obtain the naive Bayes classification of a given document d, the value Rj E {R, N )  

must be determined that maximizes P(Rjld), Le., the most probable classification of d.  

From Equation 4.5, this requires calculation of the n --ICI = IV1 -ICI = /VI - 2 terms 

P(xilRj) = P(tilRj)- Thus Equations 4.6 and 4.7 must be applied to training data 

to denve point estimates of P(tilR) and P(tilN) for all t e m s  ti E V; these are estirnates 

of the probability of each term ti occurring in a document d that is relevant or nonrelevant 

to the current topic, respectively. 

However, as  discussed above, interactive learning environrnents do not allow the 

p(tilRj) parameter values to be calculated using the batch-oriented fkequency-count 

method of Equations 4.6 and 4.7 (because document arriva1 is spread out over tirne, 

and document relevance RJ E {R, N )  is available only for those arriving documents that 

the system selects and presents to the user for a relevance judgement). The absence of 

point estimates for these probabilities leads to the need for an incremental Bayesian a p  

proach: pnor distributions are assigned to the parameters, and sequential data sampling 

is used to dynamically update the pnor distributions, yielding posterior distributions for 

the parameters. This may be achieved through the use of the model's conjugate prior 

distribution, which will be discussed in Chapter 5. The pnor distributions embody any 
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prior knowledge that may be available about the relevance and nonrelevance of docu- 

ments to a given topic. Prior relevame knowledge may be obtained by observing the 

occurrences of terms in the text of the topic description. The intuition behind this as- 

sumption is the fact that documents relevant to a given topic are likely to possess many 

of the same terrns as the topic description, and in roughly the same proportions as in the 

topic description. Prior nonrelevance knowledge is generally unavailable, therefore the 

use of uniforrn (equal) nonrelevance priors is justified. 

The next consideration is the choice of the specific probability distribution for docu- 

ment representation. As discussed in Chapter 1, the h u e n c y  of occurrence of a topic 

term in a document is indicative of the possible relevance of the document to the topic. A 

natural probabilistic model that takes into account Erequencies is the multinomial model: 

a document d of length N may be considered as resulting from N word events or draws 

from a vocabulary V. If the naive Bayes assumption is again made that the probability 

of each word event is independent of the position (draw) of the word, and of other word 

events of the document, then each document d can be said to result from N independent 

draws on a 1 VI-valued multinomial variable. 

Chapter 5 discusses In more detail the application of the multinornial model to adap 

tive Bayesian document classification or filtering, and provides experimentai verifkation 

of the validity and usefulness of this approach. 



Chapter 5 

Adapt ive Bayesian Informat ion 

Filtering: Theory 

5.1 Introduction 

A central problem faced by interactive information filtering systems is the difficulty 

of creating accurate representations of a user's information need: users have difficulty 

verbalizing their needs in a concise manner but are easily able to verie which documents 

satisfy their needs and which do not, when presented with such documents. A user typ- 

ically initializes such systems with a concise query, topic description, or set of keywords. 

Such initial information is norrndy only an approximate description of the users actual 

information need. This chapter outlines how Bayesian learning may be applied in an 

interactive infornation filtering environment in an adaptive manner that allows a user's 

information need (or user-profile) to be leamed over a period of time by incorporating 

user feedback iato the learning processl. This may be contrasted with, for example, 

batch-onented learning where users typicdy provide large amounts of labeled training 

'See Par891, @ob94], and [Ge1951 for theoretical coverage of anpirical Bayesian analysis; the current 
chapter illustrates haw this theory may be adapted to an interactive information filtering domain. 



exunples a t  a single point in time and learning occurs aii a t  once. 

After initialization, the system begins filtering arriving documents using the initial 

user-profile as a guide, and presents to the user only those documents that "match" the 

user-profile. The user reviews each presented document in turn and provides the system 

with feedback of the actual relevance of each presented document. The system adjusts 

its user-profile based on this feedback, and is able to leam from both its successes and its 

failures. The initial profile gradually evolves into a more accurate user-profile over time. 

By constantly interacting with the user, the process is potentially able to achieve a 

more accurate representation of user information needs than is possible through batch- 

oriented s u p e ~ s e d  learning; at  any tirne the user may change her information require- 

ments in subtle ways, and the interactive system d l  adapt to such changes. 

However, such an interactive environment imposes the constraint that the system 

must generalize a user's information need based only on user feedback from documents 

that the system has seen up to a point in time. That is, the system must p a s  a judge- 

ment on a document before it sees al1 future documents. Thus, such a system does not 

possess the learning efficiency of batch-onented learning systems where aU positive and 

negative training documents are available at one point in tirne, and mode1 parameters 

are optimized before the system is asked to classify new documents. 

5.2 Mult inornial Document Represent at ion 

Section 4.5 provided the intuition behind the usefulness of the multinomial distribution 

for modeling document word fiequency information in an interactive document classifi- 

cation or f i l t e ~ g  environment. Given a vocabulary V and the naive Bayes assumption 

that the occurrence of a term in a document is independent of ( 1 )  the term's position in 

the document, and (2) al1 other term occurrences in the document (including multiple 

occurrences of the specified term), then each document d may be considered drawn from 



a rnultinomial distribution of terms ti E i = l , .  . . , lVl, through Id1 independent trials. 

Let fi 2 O denote the count of the number of times tenn ti E V occurs in document 4 

then the probability of occurrence of d, given its relevance value Rj E {R, N) to some 

user-topic of interest, is provided by the d t inomia l  distribution: 

where Id1 = 2:; fi , and Be = P(ti IRj) is the probability of term ti E V being selected 

in a triai, given the relevéince d u e  Rj of d to the curent topic, i = 1,. . . , [VI. 

The most probable classification (relevant or nomelevant) of d, with respect to a given 

topic, is determined by the maximum of P(R 1 d) and P(N 1 d), where 

and 

P(Nld)  = p ( N )  P(d IN) by Bayes theorern 
Pldl 

ppr) -+. of; ni=i fi- ~ = l  Ni 
- - 

P(4 
by (5.1) where RJ = N 

where c = +, is a scaling constant that ensures that the two conditional proba- 
~ ( d )  ni=, fi! 

bilities sum to one, for a given document d. 

Point estimates cannot be made of the 21VI rnultinomial parameters BR, = P(til R) and 

ON, = P(t i lN)  in an interactive on-line document filtering environment*. However, these 

2The reason for this is the same as that discussed in Section 4.5: such point estimates cannot be 
derived when data sarnpling occurs oves an extended penod of tirne, as occurs in interactive environments. 



parameters may be represented through probability distributions p(Bp) and ~ ( B N ~ ) ,  

respectively, i = 1,. . . , IVI. Such distributions can be established through a combination 

of (1) pnor knowledge of their form, and (2) sequential document data sarnpling. The 

next section will discuss in detail the manner in which these distributions are determined. 

5.3 Conjugate Priors and Learning Mode1 Parameters 

The method of wnjugate priors3 rnay be used to provide ancremental Bayesian leamang 

of the parameters of a given probabiiistic model in the case where 

O data sampling is sequential in nature (e-g., kom on-line data sources); 

p n o r  information of the model's parameters is available. 

A family C of probability distributions on parameter 9 is said to be conjugate (or 

closed under sampling) if, for every (prior) distribution ~ ( 8 )  in C, the posterior distri- 

bution ?r(Blz) also belongs to C [Rob94]. That is, if a data sample x is obtained from 

data distributed according to probability distribution p(xlû), written x - p(xlB), and n 

represents the conjugate prier of p, then 

x -p(xlO) and n(8) E C ir(t9lx) E C. 

If the family of priors C is parameterized, then for any ir E C, n has has the desir- 

able property that switching nom prior to posterior distribution is reduced to simple 

arithmetic updating of the parameters of ir. Thus conjugate priors are a mathemati- 

cally convenient means of obtaining posterior distributions from prior distributions in am 

incremental manner, as data samples arrive over time. 

Once a probability distribution 2, has been postulated as a model of the manner in 

which specified data is generated, the geneml procedure outlined in Figure 5.1 illustrates 

how the above incremental Bayesian approach may be used to leam the parameters of V.4 

3See war89], [RobW], or [Gel95]. 
4The procedure of Figure 5.1 is an expanded version of that presented in [Cas97], p. 48. 



1. Determine V's conjugate farniIy of priors C- 

2. Approximate a prior C distribution on each of D's n parameters and initialize 
the means and variance of each of these distributions by setting C's n hyperpa- 
rarneters, using 

O frequency counts fiom prior data, or 

m uniform (noninformative) prion. 

3. Obtain a data sample d from data distributeci according to V. 

4. hcrement C's n hyperparameters with dl yielding n posterior C distributions. 

5. Repeat from Step 3 until data sampling has been completed. 

6. Calculate the mean of each of C's n posterior distributions. 

7. Assign the n posterior means as point estimates of D's n parameters. 

Figure 5.1: General procedure for incremental Bayesian leaniing. 

The following subsections will elaborate on this general procedure for the specific 

document filtering application; that is, through incremental document sampling, prub- 

ability distributions and hence point estimates of the parameters of the relevant- and 

nonrelevant-document multinomial models may be established, with respect to a given 

topic. A detailed algorithm for this procedure is presented in Figure 5.2 of Section 5.6. 

5.3.1 Dirichlet Conjugate Family 

A multinomial distribution of n parameters has as its conjugate the Dirichlet distribu- 

tion Z > Z R ~  (al, a2, . . . , a,) with n hyperparameters al, a~ . . . , an which are normaily 

initialized with fiequency counts obtained fiom prior information of the specific multi- 

nomial distribution being modeled, relative to given information Rj of the concept being 
-b 

modeled. If the multinomial distribution has parameters 8 = (Bi, B2, . . . , O,), then the 

Dirichlet density function for is 



a0 n 

where r(w) = / ta i - 'ë td t  is the gamma function, and Cei = 1. 
O i-1 

For a given user-topic, Equations (5.4) and (5.7) of Section 5.2 indicate that two multi- 

nomial document models are required: a model of document relevance and a model of doc- 

ument nonrelevance. Therefore, letting n = IV1 and R, E {R, N) in Equation (5.8) leads 

to the following Dirichlet distributions over the multinomial parameters BR= P($ 1 R) 
-b -9 

and 0 w= P( t ( N), respectively: 

5.3.2 Initialization of Prior Distributions 

For relevance priors, the information implicitly provided by topic description word £re- 

quencies rnay be used as prior information to provide objective priors with which to 
3 

initialize the hyperparameters c r ~  of p ( e  R). In a given topic description T, the fie- 

quency of occurrence fi of an individual term ti E V in T, as a proportion of the length 

ITI of T, may be considered as a rough approximation of the proportion of times that ti 

wiil occur in "typical" documents that are relevant to T. Given vocabulary V, then for 

each term ti E V, i = 1, . . . , IVI, the relevance prior ess frequency-estirnate of ti is 

where fi 2 O is the frequency of occurrence of term ti in topic T, and e s s ~  is a constant 

called the relevance equivalent sample size that represents e s s ~  virtual s m p l e s  of data 

before actual data sampling begins. The r e l e ~ n c e  pnor ess fkequency-estimate a& serves 

two important purposes: 

1. A means of initializing every term ti E V (even those with fi =O) with a non-zero 

prior probability of appeariog in a relevant document, and 

2. The total a4 provides a weighting of our confidence of how well the "prior" 
IV1 proportions r r q / ~ j , l  ah estimate the relevance-model's parameters B R ,  relative to 



the proportions from term-fiequencies obtained during document data samp Ling5. 

The first item is justified because the number of unique terms n~ in T is such that 

n~ « IVI; setting crq to zero for ail IV[ -% terms that do not appear in T would 

understate the probabilities of these terms appearing in relevant documents (Le., there 

will exist many vocabulary terms that may potentially occur in relevant documents in 

addition to the unique terms in T). Also, setting a& to zero for some ti E V would 

result in BRi = P(tilR) =O in (5.4), if ti does not occur in subsequent training documents. 

If such a ti then occurs in a document d that is to be classified, the right-hand side of 

(5.4) would become zero, making a cornparison between (5.4) and (5.7) meaningless. 

The second item is justified because both the pnor frequencies of (5.11) and the ac- 

tual training data fkequencies contribute to the determination of the final values of the 

hyperparameters. In the case of relevance priors, the actual fiequencies obtained fkom 

subsequent (unlimited) document data sampling will have potentidly much more influ- 

ence in providing tenn relevance information than the prior fiequencies. Hence, it is 

expected that e s s ~  will be a "smali" positive integer; this intuition will be codimed 

with empirical analysis in Chapter 6. 

For nonrelevance priors, there is no prior information regarding which terms wi i l  

be indicative of a nonrelevant document, with respect to a given topic; therefore, nonin- 

formative (uniform) priors are appropriate. For each term ti E V, i = 1 . - - , VI, the 

nonrelevance prt'or ess frequency-estinrate of ti is 

where e s s ~  is a constant c d e d  the nonrelevance eqttivalent sample size. The nonrelevance 

p ior  fkequencies given by (5.12) intuitively should have much more iduence in providing 

term nonrelevance information than actual nonrelevant document sampling (because the 

latter sarnpling represents only a very smail example of al1 possible unseen nonrelevant 

'Sec Section 5.3.4 for a discussion of parameter estimation. 



documents). Hence, it is expected that e s s ~  WU be a Yarge" positive integer, i.e., 

e s s ~  » e s s ~ ;  this intuition will also be confmned with empirical analysis in Chapter 6. 

5 -3.3 Updating Distributions with Observed Data 

As each document data observation d arrives, with wd = (fi, f2,. . . , flvl), where fi 2 O 

represents the frequency of term ti E V in d, interactive document £iltering systems 

require that the system make an ammediate judgement of d's relevance R j  E {R, N), 

with respect to the given topic T. Oniy if the system judges d as relevant to T, is d 

presented to the user for a final relevance judgement. The user's relevance judgement of 
+ 

d is then used to update either p(zR) o r  p ( e N ) ,  depending on whether his judgement is 

cLreleva.nty' or c'n~nrelevant'y. 

The initial system relevance judgment for each d is made by obtaining point estimates 

for OS = P(ti  1 R) and ONi = P(t i lN) ,  i = 1, . . . , IVI, and then evaluating and comparing 

(5.4) and (5.7). The calculation of point estimates for Op and BNi will be discussed below, 

in subsection 5.3.4. 

Assume (1) the system has judged document d = (fi, f2,. . . , flvl) as relevant to T 

and has presented d to the user, and (2) the user has provided the system with d's 

true relevance value ~j E {R, N ) .  Then the frequencies fi 2 O of occurrences of terms 
-b -b 

ti E V in d, 1, . . . , I  VI, are used to update the hyperparameters of either p ( e  R) or p(0 N), 

depending on the value of Ri: 

Thus (5.13) and (5.14) represent the posterior distributions p ( è ~  ( d) and p(BN 1 d) , 
3 -b 

given observed document d. These become the pnor distributions p ( 0 ~ )  and p ( 0 ~ )  for 

the next iteration. In this manner, incremental Bayesian updating of pnor to posterior 

distributions is possible. 



5.3.4 Parameter Estimation 
3 3 

As data sampling progresses, the Dirichlet distributions p(0  R 1 d) and p(B N 1 d) gradually 

evolve int O accurate posterior distribut ions t hat describe the model's individual parame- 

ters OR. = P(til R) and BN = P(tilN), i = 1, . . . , IVI. At any tirne, point estirnates f i R  and 

BN, for these parameters may be obtained by calculating the 21VI means of the Dirichlet 

posterior distributions as follows: 

for each term ti E V ,  i = 1 , .  . . , IVI. 

5.4 Most Probable Document Classification 

Substituting the point estimates (5.15) and (5.16) of the multinomial parameters Be =P(tilR) 

and BNi = P(ti 1 N )  in (5.4) and (5.7) respectively, yields the foiiowing: 

I 

I 

For convenience, it is useful to express (5.17) and (5.18) in "log odds" form: 

P ( R  14 ivl ^fi 

= log P(R) ITi=1e4 

log P ( N  1 d) P(W ni=i IVI 0,  -f i  

('(RI fi 
= log - - - 

P ( N )  i=l e~~ 
P(R) IV1 fi 

= log - + log(%) 
P(N) ,, @ ~ i  



The maximum of P(R 1 d) and P(N 1 d), and hence d's most probable classification, may 

now be established by noting the sign of log m. If log > O then P ( R  1 d) > P(N 1 d), 

and d is most probably a relevant document; otherwise d is most probably a nonrelevant 

document, relative to the current topic. 

The term log% in (5.23) is an iinknown constant for a given topic. As a general 

rule, P(R) < P ( N ) ,  Le., an arbitrarily chosen document is most likeiy nonrelevant to a 

given topic. Omitting log % fiom (5.23) results in the decision point (threshold) mov- 

ing a constant amount in the positive direction on the x-iLXiS, away from the origin. The 

exact threshold is unimportant if the goal is simply to rank documents according to their 

log odds. But if the goal is to determine the most probable classification of documents, 

then the threshold should be leamed, as a prerequisite to document classification. How- 

ever, the empirical analysis of Chapter 6 shows that the use of zero as an approximate 

threshold is sufficient (as the exact threshold is generally "close" to zero, relative to the 

log odds being compared, e-g., a typical threshold of 0(101) versus log odds of &0(102)). 

Therefore, (5.23) can be reduced to 

Equation (5.24) is used by the filtering system to judgo documents as either relevant or 

nonrelevant to a given topic. If the system judges a document as relevant to the current 

topic, it "retrieves" the document on the user's behalf and presents it to the user, for 

confirmation of actual relevance. 

The next two sections present implementation details of the user-profile and an algo- 

rit hm for adap tive Bayesian information filtering. Chap ter 6 provides empirical verifica- 

tion of the usefulness of this information filtering approach and provides cornparisons of 

results with two non-probabilistic information filtering methodologies. 



5.5 User-Profile Irnplementation 

Given a vocabulary V and a user-topic of interest T, the user-profile U is represented as 

a dynamically growing vector of size 1U1, consisting of tuples of six elements each; each 

tuple i = 1, . . . , IUI-1, represents a unique term of V that has been encountered in either 

T or the document-stream, up to a point in t h e ;  tuple 1U1 has label tlul = other and 

represents al1 IVI-IUI+l vocabulary terms not yet encountered up to that point in t h e .  

Each tuple i of U consists of s i z  components: 

term label ti 

a (a) relevance and (b) nonrelevance cumulative term-frequency counts, represented 
as cumulative hyperparameters a~~ and a ~ , ,  Equations (5.13) and (5.14), respec- 
tively 

(a) relevame and (b) nonrelevance point-estimates p(ti 1 R) and P(tilIV) of the 
multinomial paramet ers and eNi , respectively, Equations (5.15) and (5.16) 

 GR estimated log odds of ti appearing in a document, log &-&. 
To tals of the second and third components of ail of U's tuples are maintained, to facilitate 

calculation of the fourth, fifth, and sixth components of each tuple. The fourth and fifth 

components of tuple lUl are calculated as averages over the IV1 -IUI+1 unseen terms; 

fi@ " IR) therefore, the sixth component of tuple IUI, log A, represents the average log odds 
P(tlcrl IN) 

of an unseen term. 

,4t initialization, the relevance and nonrelevance cumulative frequency counts (second 

and third components) of tuple IUI are assigned the priors equivalent sample szze values 

defined in Section 5.3.2, e s s ~  and e s s ~ ,  respectively; as each new vocabulary term is 

encountered in T and during document sampling, these cumulative kequency counts 

are decremented by and 3, respectively. The latter values are then used to 

initialize the second and third components of the newly added term's tuple (e-g., topic- 

term initiaiization, Equations (5.11) and (5.12)). 

5.6 Algorithm 

Figure 5.2 presents an algorithm for adaptive Bayesian idormation fütering of on-line 

news-documents, given a vocs5uiary V and the multinomial distribution as document model. 



1. Let the conjugate family C be the Dirichlet conjugate famiiy of Section 5.3.1, with density 
function (5.8) and members CF E C. Given ~j E IR, N} and n = IVI, then CE, = v T R ~ ~  

and CFI = V Z ' R ~ ~ ~ ,  Equations (5.9) and (5.10), respectively. 

2. Let: T = (tl,t2, .-.,tlV1) be the user-topic term vedor, 
ut = (f 1, f2 ,  - . . , fiVI) be T's term-frequency vector, 
U be the user-profile, as defineci in Section 5.5, 
essR be the relevance equivalent sample size, 
essN be the nonrelevance equivalent sample size. 

3. Let the second and third components of tuple lCTl of U be essR and essN, respectively. 

4. For each t i  in T: 
If fi > 0 then: 

QR, = fi + ~ s s R / [ V I ,  
a ~ ,  = essnr/lVI, 
Add a new tuple to U to represent f i l  
Initialize second and third components of new tupie with aR, and QN,, respectively, 
Decrement second and third components of tuple 1111 with essR/lV1 and e s s ~ / l V l ,  
respectiveiy 

EndIf 
EndFor, 
Update U's second and third component totals, and recalculate the fourth, Wth, and sixtb 
components of every tuple of W. 

5. Sample the news-wire feed for the next document d = (t 1, t 2, . . . , t l  ), 
Let wd = (f l ,  f2, . . - , fivI) be d's term Gequency vector, 
Let ld = (il, 12,  . . . , llvl) be d's term log odds vector, initialized with f i  = O, i = 1, . . . , IVI. 

6. For each ti in d with fi > 0: 
(ti € U) 

then Set li to fiYs log odds in U: log 

else Set li to unseen-tenn log odds: log p(tfu'lR) (from tuple I u I  of U) 
P(tlCr1lN) 

EndIf 
EndFor. 

P t - R  7. Calculate dLogOdd, = wd Id = c!:\ fi-log M, Equation (5.24), 

If (dLogOddr > 0) then: (If truc, then the system has judged d as relevant to T: update U) 
If of d's terms are not explicitly containeci in U, then: 

Add tuples to U to represent these new terms, 
Initialize the second and third components of each of these new tuples with essR/I VI 
and essN / l  VI, respectively, 
For each new term aâded to U, decrement the second and third components of 
tuple IUI with essR/IVI and essN/IVI, respectively 

EndIf, 
Forward d to the user, 
Let j be the user's celevance-judgement for d, 
If (j  == Relevant) then 

Update the second component of U's tuples with wd frequencies (Equation (5.13)) 
else 

Update the t h i d  cornponent of U's tuples with wd frequencies (Equation (5.14)) 
Endlf, 
Update U's second and third component totals, and recalculate the fourth, fifth, and 
sixth components of evety tuple of U 

EndIf. 

8. Repeat from Step 5 until news-document sarnpling has been completed. 
- . - .  --  

Figure 5.2: Algorit hm for adaptive Bayesian information filtering. 



Chapter 6 

Adapt ive Bayesian Inforrnat ion 

Filtering: Empirical Tests 

6.1 Introduction 

This chapter describes empirïcal tests of the Dirichlet conjugate prior approach for esti- 

mating the parameters of a mdtinomial model of text documents in a specific interactive 

news-document filtering environment. The experimental results are compared with the 

performance of two other interactive information filtering nonprobabilistic methods: a 

VSM/Rocchio learning approach, and a static "benchmark" system that does not em- 

ploy learning techniques. The probabilistic Dirichlet model performed significantly better 

than the other models for the performance measure F3; however, its performance for the 

measure "geometric mean of precision and recail" was slightly less than that of the other 

models. These performance measuses are defined in Section 6.2.1. 



6.2 Experimental Evaluation 

6.2.1 Experimental Method 

Performance Measures 

The following are the performance measures adopted for the experiments (defined relative 

to a given user-topic of interest): 

Precision. The percentage of documents retrîeved by the system and presented to the 

user that are actuaily relevant, 

Recall. The percentage of actually relevant documents in the data set that are retrieved 

by the system and presented to the user. 

Precision and recall are inversely proportional to each other; e-g., a system with high pre- 

cision w i l  usually have low recall. Different systems may exhibit dramatically different 

performances, depending on the adopted measure. Therefore a weighted mean of the two 

measures is sometimes used as a measure. The weighting depends on the relative impor- 

tance of each component, which varies Çom user to user. Typically, the geometric mean 

of the two measures is used, with equal weighting given to each. 

TREC F-Utility. Of the documents retrieved by the system as relevant, let R and N 

represent the number t hat are actually relevant and nonrelevant, respectively ; t hen the 

following F-Utility measure represents the weighted net absolute number of documents 

correctly retrieved, as defined by the Tezt REtn'eval Conference-7 (TREC-7) [Hu198]: 

F3 = 4R - N. (6-1) 

Data 

The document set used for the experiments consists of 164,597 Associated Press news- 

docuinents provided by TREG7 for their filtering track competition. The topic set 

consists of 50 predefined topics, also provided by TREC-7. A subset of the provided 

documents is labeled with relevance and nonrelevance judgements with respect to the 



topics in the topic set. Any document that has not been labeled wîth such a judgement 

is assumed to be nonrelevant to all 50 topics. The documents are partitioned into 686 

days: February 12, 1988 to December 31, 1989. Each day consists of a few hundred 

documents. 

Method 

Documents are presented to the filtering system one a t  a time, in chronological order. 

Documents occurring in the fint 441 days are tmining documents, and subsequent doc- 

uments, up to day 686, are test documents. Cumulative results are tabulated in a 2 x 2 

misclassification matrix (also called confusion matrix) that foms the basis for the cd- 

culation of the three performance measures: precision, recall, and F3. The first row of 

the matrix contains counts of all documents that the system has retrieved and presented 

to the user as relevant; the second row contains counts of ail documents that the sys- 

tem classes as nonrelevant and does not retrieve; the first column contains counts of all 

documents that are labeled as relevant (retrieved or not); and the second column con- 

tains counts of al1 documents that are labeled as nonrelevant o r  have no relevance label 

(implicitly nonrelevant). 

User-provided Parameters 

Vocabulary. The modelys vocabulary V is the usual English language vocabulaq, aug- 

mented with proper nouns and acronyms. AU text is converted to lower-case and punc- 

tuation and nurnbers are ignoredl. Use of the formulas in Chapter 5 requires that a 

vocabulary size IV1 be assigned: the value of 50,000 has been chosen as an approxima- 

tion to ]VI as it represents a reasonable choice for the number of distinct terms and 

acronyms that may be encountered in a general nems-document environment. 

'Digits are aiiowed to form portions of of acronyms; future work uses punctuation to disqualï& certain 
groups of words fiom forming phrases 



Equivalent Sample Size. Formulas (5.11) and (5.12) require that d u e s  be chosen for 

the piors  etpivalent sample &es e s s ~  and e s s ~ .  Figures 6.2 and 6.3 provide graphs 

of performance results at the end of the 686 day training and testing period, for e s s ~  

between 1 and 700 and e s s ~  between 1,000 and 50,000; the specific performance measure 

chosen for this experiment is the geometnc mean of precision and recall, averaged over 

the TREG7 topic numbers 1 to 10. Figure 6.2 is a 3-D view, with the z-axis representing 

the geometric mean of precision and r e c d ;  Figure 6.3 includes 2-D perspectives of the 

k t  graph with respect to each independent variable. 

These graphs indicate that average performance is rather insensitive to changes over 

fairly wide ranges of ess values; however, it was noticed that performance varies con- 

siderably for individual topics as ess values change. Therefore, the following arbitrady 

ess values were chosen for the experirnents: e s s ~  = 20 and e s s ~  = 20,000; this choice 

guards against the introduction of "tuning bias" into the experirnents fkom choosing ess 

values that optirnize performance for certain topics2. These selected ess  values were used 

for two sets of tests: (1) compamtive tests of the performance of the current paramet- 

ric information filtering model against two nonpararnetric models, and (2) tests of the 

parametric model's performance variation over tzme (training and test ing periods) . 

Log Odds Threshold. As explained in Section 5.4 and illustrated by Equation (5.24), 

a log odds relevance threshold of zero has been chosen. 

Other Models for Comparative Purposes 

For comparative purposes, the performance of the current probabilistic model is compared 

with two nonprobabilistic interactive mtering models: an incremental VSM/Rocchio 

learning method, denoted "Single PG Agent", and a benchmark method that does not 

employ any learning, denoted "Benchmark". AU three methods begin with a user-profile 

- 

*Such "tuning" is strictly prohibited during testing of incremental (adaptive) filtering algorithms 
because tuning is Mplicitly a batch process. 



initialized with term fiequencies from the current topic of interest, as discussed in Sec- 

tion 3.1. The "Single PG Agent" nonprobabilistic method employs a form of the tf-idf 

term-weighting heuristic discussed in Section 3.2, with user-profile updating based on user 

relevance feedback using an incrementd-Rocchio appcoach, as discussed in Section 3 -2.1. 

The "Benchmark" nonprobabilistic method also uses a tf-îdf term-weighting heuristic; 

however, for each given topic, the user-profile is static over all documents and is not 

updated by user relemce feedback. See [Kar96] for more detailed descriptions of these 

nonprobabilistic document filtering methods. 

6.2.2 Results 

Figures 6.4(a) and 6.4(b) provide detailed comparative resu1t.s b y topic for the three eval- 

uated systems at the end of the 686 day training and testing period, for the performance 

measures geometric mean of precision and recall, and F3, respectively. The following 

table summarizes the performance averages of Figure 6.4, over al1 topics: 

Performance Averages 

Figure 6.1: Performance averages (topics 1-50 of the TREG7 adaptive filtering track). 

Benchmark 

PG Agent 

Probabilistic 

Figures 6.5 and 6.6 show the manner in which the probabilistic mode17s perfor- 

mance changed over time. The niode17s parameters O& = P(til R) and ON, = P(tilN), 

i = 1,. . . , IVI, are learned only durhg the training period from Day 1 to Day 441. Dur- 

ing the testing period kom Day 442 to Day 686, the parameter values in effect a t  the 

end of the training period are used. 

See Section 6.2.3 for a discussion of these results. 

0.2208 

0.2186 

0.1678 



Figure 6.2: Performance as a function of equivalent sample s k e s  e s s ~  and esss .  

Figure 6.3: Performance as a function of equivalent sample sires (single variable view). 
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Figure 6.4: Comparative tables of performance for the three document fitering models 
(by topic, where performance is cumulative over the entire training and testing period). 



Figure 6.5: Probabilistic rnodel performance over time (average of topics 1-50). 

6.2.3 Discussion 

Figure 6.1 shows that, over the 50 topics, the current probabilistic model obtained an 

impressive average F3 value of 34.38, compared to -6.22 and -27.14 for the Benchmark 

and PG Agent, respectivel~. The measure F3 reflects filtering precision as a weighted 

net absolute number of relevant documents correctly retxieved (net of nonrelevant doc- 

uments incorrectly retrieved, or fallout). The geometric mean of precision and recall, 

however, averaged 0.1678 for the the probabilistic model, which is slightly less than the 

PG Agent's average of 0.2186 and the Benchmark's average of 0.2208. The inverse re- 

lationship between F3 and the geometric mean can be explained by the fact that an 

3A higher score represents better performance. 



Figure 6.6: Probabilistic model F-Utility performance over time (average of topics 1-50). 

increase in geometric mean is often associated with an increase in recd.  But an increase 

in recall (the percentage of relevant documents retneved) generally implies an increase 

in the number of nonrelevant documents that are also being retrieved; such fallout is 

represented by the N value in Formula (6.1), where it can be seen that an increase in N 

may cause a decrease in F3. 

The probabilistic model cleariy performs very weU for the TREC F-Utility measure F3. 

This verifies the theoretical validity of the current probabilistic model for interactive doc- 

ument filtering, and indicates that such a model is at least as powerful as the interactive 

VSMIRocchio nonprobabilistic model. 

Figure 6.5 shows that average precision improved during training Pom Day 1 to Day 



200, and average recall irnproved fkom Day 1 to Day 320; it is apparent, however, that 

very slight overfitting has occurred during training: the model's user-profile has grown 

to such an extent that performance degrades very slightly, halfway through the 441 day 

training period. Two independent experiments were performed in an attempt to alleviate 

this degradation: (1) training was restricted to the period fiom Day 1 to Day 200, and 

(2) the profile-size was limited to a maximum of 500 t e m  (rather than an unlimited 

size) . Bot h experiments, however, yielded approximately 15% reduction in geometnc 

mean at Day 686, from the value indicated in Figure 6.5. Overfitting may be occurrhg 

because only a single profile is being used to model d l  relevance regions of the very large 

newsdocument space. In effect, the mode1 may have reached its %mit of effectiveness" 

(for a single model). Hence, the use of multiple models may be justified, where each 

individual model approximates a local area of the document space4. 

Overfitting in the late stages of training rnay also be occurring due to the nature of 

frequency-updating in the Dirichlet model: the impact of individual fiequency updates 

on the model's parameters decreases with training time because fiequency counting is 

cumulative in nature; the earliest updates have the greatest impact in changing the 

model's parameters, and the latest updates have the least impact. This becomes a serious 

problem when, for a given topic, the probability of a term ti occurrhg in a relevant 

document, P(ti 1 R) , changes ouer time (cded  term nonstationarity) . The cumulative 

nature of the frequency-counts for ti (both relevance and nonrelevance) result in the 

model being unable to adjust for such nonstationarity. 

Figure 6.6 shows that average F3 performance increased almost linearly with training 

and testing tirne. This indicates that, cumulatively over the training and testing periods, 

the weighted number of correctly retrieved (relevant) documents consistently ezceeded 

the number of incorrectly retneved (nonrelevant) documents or fdlout; Le., the model 

4See [Ka961 for a discussion of the SIGMA information filtering approach that employs multiple 
modeis for exactly this reason. 



perfomed very weil at minimizing fdout  at al1 stages of the leaniing process, not just 

after training had completed. This observation strongly confirms the model's theoretical 

suitability for interactive environments: it is able to make "good quality" predictions 

midway through training, before seeing di training data. 



Chapter 7 

Conceptual Modeling and Telos 

7.1 Introduction 

Research in the field of information filtering has tended to address only the process 

of accessing information and has generdy ignored the important requirement that re- 

trieved information must be stored in an organized persistent form that is e a d y  under- 

standable by users. While filtering on-line news feeds for documents relevant to specific 

topics, users generally wish to store both the relevant documents located and the relation- 

ships between the documents, topics, subtopics, and subject-domains. However, subject- 

domains, topics, and documents have complex intemal structure and possess complex 

inter-relationships. A relational database representation of this information is, in some 

sense, "artificial" because the real-world entities and relationships must be decomposed 

into tables and records in order that they fit the logicd model; i.e., the correspondence 

between the model and the real-world becomes unclear to users: users are not easily able 

to interpret the semantic content of such a logical data model. Therefore, it is clear that  

information models are required that are able to capture the semantics of applications. 

Automated information modeling has experienced significant advances since the early 

days of Computer Science when implementation issues, such as efficiency, were a primary 



concern to computer users. The introduction of logical data rnodels in the early 1970s 

freed users fiom such irnplementation concerns; hardware advances since that time have 

made possible the development of a f d y  of more compute-intensive people-oriented 

information modeling techniques, called conceptual modeling. 

This chapter briefly discusses information modeling and introduces conceptual model- 

ing; several directions of information modeling research closely related to conceptual 

modeling are also discussed. The Telos conceptual modeling Ianguage is introduced, and 

an o v e ~ e m  of its representational &ameWork is provided. Telos will be used in Chapter 8 

to model the information dornain of the news-document filtering system presented in the 

preceding chapters. 

7.2 Information Modeling 

Information modeling is the use of cornputer-based symbol structures to fomally de- 

scribe and capture the rneuning of some aspect of the real world, for use by automated 

systems or by people. An information modell consists of collections of (1) symbol 

structure types, ( 2 )  opemtions that can be applied to the symbol structures, and (3) in- 

tegrity rules that define the legal symbol structures that are allowed by the model. An 

i d o r m a t i o n  base1 is a symbol structure based on a specific information model that 

describes a specijic aspect of the real world. It consists of structured infonnation and 

serves a role somewhat analogous to long-term human memory. 

Information modeling possesses at  l e s t  three dimensions: (1) the real world domain 

being modeled, ( 2 )  the symbol structures used, and (3) the intended users of the model. 

The domain may consist of concrete items, abstract concepts, natural-world phenornena, 

or any type of human or automated activity (e.g., entity knowledge, activity/task knowl- 

edge, processes, agents, goals, relatîonships, positions, roles, etc.). The symbol struc- 

tures may take many possible forms: natural languages, implementation (programming) 

IThe definitions of infonnation model and information base have been adopted from [My198]. 
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languages, mathematical languages, diagrammatic languages, logic-based languages, etc.. 

Such a variety of languages clearly have varying degrees of formaliQ and relationship to 

machine implementation. The users of information modeis may be people anti/or other 

automated systems. The symbol structure dimension determines the type of the infor- 

mation mode1 (physical, logical, or conceptual) and its q m s i v e n e s s .  Physical models 

utilize programming-like data structures, with an emphasis on cornputational efficiency 

(at the expense of modeling real world structure). Logical models use abstract math- 

ematical data types to hide implementation detaiIs fiom the user, but offer minimal 

information structuring capability. Conceptual models represent information in a man- 

ner analogous to the way humans conceptualize the information, Le., conceptual models 

mode1 the cornplex structure and relationships implicit in the r d  world domains they 

are modeiing. 

7.3 Concept ual Modeling 

Conceptual modeling is described in [My192a] as modeling information in a marner 

1. consistent with the way people conceptualize the subject matter (e.g., via entities, 

relationships, actions, and abstraction rnechanisms), and 

2. independent of machine implementation issues 

That is, conceptuai models are intended for use by people rather than by systems, for 

the communication and understanding of information; they are characterized by "high- 

leve17' complex symbol structures which have no specific relationship to any machine 

implementation. They are specified by their ontologies and abstraction rnechanisms: 

Ontology Aspects of the world to be modeled, expressed in terms of the primitive con- 

cepts or semantic ternis used within the area being modeled (e.g., entity, activity, 

relationship, process, state, agent, goal, belief, actor, role, etc.) 

Abstraction mechanism Means of organizàng a model's primitive concepts into a b  

stract semantic relationships (e-g., classification, generalization, aggregation, con- 

textualization, etc.) 
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Ontologies may be arbitrarily claûsified into various types, depending on the nature 

of the application being modeled. For example, a statzc ontology is concemed with 

the static aspects of an application by describing concrete or genenc entities that exist 

in the application, and their attributes and interrelationships. A dynamic ontology is 

concerned only with the changes inherent in an application, such as events, processes, 

st  ates, and state transitions. An intentional ontology is concerned with agents (intelligent 

autonomous entities) and the goals and beliefi they possess about other concrete or 

generic entities. A more detailed description of these 'koarse-grained" ontologies, based 

on a survey of several conceptual models, rnay be found in [My198]. 

Classification is the abstraction mechanism describing the binary relationship of a 

single concept as a member of one or more generic concepts (classes), with al1 class 

members sharing common properties. Classification is a non-transitive relation. The 

converse of ~Iassification is instantietion. 

Generalization is the abstraction mechanism describing the binary relationship of 

superset between two genenc concepts (classes); it is a partial order (and hence transitive) 

relation. The converse of generalization, cailed speczalization, provides the inference rule 

of inheritance, where the properties of members of a class are also properties of the 

members any specialization (subset) of the class. Inhentance rnay be strict (constraints 

on properties rnay be strengthened only) or default (constraints on properties rnay be 

arbitrarily changed) . In addition, specialized classes rnay have additional properties to 

those inherited. 

Aggregation is the most common abstraction mechanism; it structures a concept in 

terms of its component concepts. Such an aggregation structure is not necessarily unique 

for a given concept: it is possible that a concept rnay be described by aggregation in more 

than one way, depending on the contezt under which the concept is modeled. References 

to aggregate components rnay either be "by value" or "by reference" (i.e., components 

may be other concepts or rnay be pointers to other concepts). There is generally no 



restriction on the "types" of a concept's components; therefore, if a concept is composeci 

of any components of type Class, aggregation hierarchies of arbitrary nested complexity 

may result? possibly leading to recursive aggregation. 

Omitted from the above discussion are the (potentidy complex) issues of multiple 

inheritance and multiple instantiation; for a discussion of these issues, see [Tho92], and 

[Myl9O] pp. 6-7, respectively. 

A more detaiied survey of the many abstraction mechanisms that have been adopted 

by Computer Science korn Cognitive Science and Mathematics may be found in [My1981 

(e-g., classification, generalization, aggregation, contextualization, materialization, nor- 

rnalization, and parameterkation). 

Following [Borgo], as cited in [MylgZa], it is useful to contrast conceptual modeling 

with knowledge representation and semantic data modeling. Knowledge representation 

is the formal axiomatic modeling of information for the purpose of supporting reasonang 

and planning by automated systems. Semantic data models (e.g., the Entity-Relationshzp 

mode1 [Che76], and Tazis [Myl80]) attempt to capture the semantics of an application 

and use this semantics in a manner consistent with current database technology; thus 

semantic data models make implicit zmplementation assumptzons about the rnanner in 

which an information mode1 will be represented on a machine, and are intended for use 

by people o r  systems. 

Dunng the period 1974 to the present, a significant amount of research into knowledge 

representation, semantic data models, and conceptual models has been performed by 

the Knowledge Representation Group of the Department of Computer Science a t  the 

University of Toronto. A comprehensive overview of this work appears in [My192b]. 

The culmination of t his work, the conceptual modeling laquage Telos [Kou89], [My1901 , 

[My192a], is the subject of the remainder of the chapter. Section 7.4 discusses related 

work in knowledge representation, databases, and software engineering, and outlines 

Telos' genealogy. Section 7.5 provides a brïef overview of Telos' distinguishing features. 

Section 7.6 discusses Telos' representationd framework. 



7.4 Related Work and Telos Genealogy 

It is usefui to o v e ~ e w  related work in the context of research performed at the University 

of Toronto from 1974 to the present. 

7.4.1 Related Work in Knowledge Representation and Databases 

Knowledge representation is concerned with the modehg of knowledge for the pur- 

pose of automated reasoning and planning. Database management systems are 

concerned with efficiently managing large amounts of knowledge. In the 1970s, modeling 

of the "semantic content" of real world domains became an increasingly important focus 

of research in both of these areas. 

In the area of knowledge representation, semantic networks became a popular nota- 

tion and were adopted by many AI projects. Initial research in the TORUS project at  

the University of Toronto [My1761 used semantic networks as a means of representing 

the semantics of relational database systems. This research led to the conclusion that 

semantic networks provide a promising notation for knowledge representation. However, 

TORUS and other semantic network proposals a t  the time had serious weaknesses in 

unarnbiguously representing natural language and other knowledge. These weaknesses 

resulted in research into more powerN and greatly expanded semantic network represen- 

tations. One such research effort at the University of Toronto led to the general purpose 

knowledge representation language PSN (Procedural Semantic Network) [Lev77]. PSN 

introduced severai novel features within semantic networks: (1) object-oriented semantic 

network representation, (2) use of metaclasses, (3) extension of classification to meta- 

classes, relations, and programs, (4) use of generaiization and aggregation within semantic 

networks, and (5) built-in class operations (methods) . 

In the area of database modeis, attention was directed to the shortcomings of physical 

and logical database models in modeling real world domains. Abrial's semantic mode1 



[Abr74] and Chen's Entity-Relationship mode1 [Che761 were early results of this new 

direction. They were followed a t  the University of Toronto by the Tazis mode1 [My180]. 

Taxis used some of PSN's features, however it was heavily oriented towards maintaining 

consistency with traditional database technology. Taxis was concerned wit h semantic 

modeling for the specijic purpose of supporting the design of information systems. It 

organizes all components of an information system in terms of generalization hierarchies 

(taxonomies). The strong implementation-oriented emphasis of Taxis is reflected by the 

fact that data, attdmtes, and program are each classified into &ed bu&-in categoees, 

according to their implementation or execution characteristics. Taxis extends PSNys class 

operations by allowing arbitrary class operations, in addition to built-in methods. 

O bject-oriented databases [Ber931 have attracted attention in the database commu- 

nity and share some of the goals of the above cited research; however, they are closer 

in p hilosophy to ob ject-oriented programming languages, and strongly emphasize the 

aggregation abstraction mechanism. The following are their main features: (1) mod- 

eling of real world entities as objects, (2) aggregation of complex non-primitive objects 

as at  tributes, (3) encapsulation of method implementation (fiom met hod specification) , 

(4) single-level classification, and (5) inheritance. They are usefd for applications such 

as CAD where real world entities possessing complex internal structure are required to 

be modeled in a manner that reflects exactly the actual internal structure of the entities. 

7.4.2 Related Work in Software Engineering 

Information modeling is a key component of requirements modeling, the initial anal- 

ysis phase of software design where the software analyst attempts to understand a real 

world problem before embarking on a software solution to the problem. Significant 

early work in this area is represented by the techniques of Structured Analysis (e-g., 

Data Flow Diagrams (DFDs) [DeM78] and Structured Analysis and Design Technique 

(SADT) [Ros~?']). These early research efforts ernphasized the aggregation abstraction 



mechanism. Subsequent research efforts introduced further abstraction mechanisms into 

requirements modeling, such as generalization and classification. For example, the re- 

quirements modeling language RML [Gre84] developed at the University of Toronto, and 

object-on'ented analysis approaches [CoaSO] were highly influentid in the evolution of 

requirements modeling met hodologies. 

RML was introduced as a forma1 version of SADT for formdy specifying the finc- 

tional requzrements for proposed software systems. It adopted ideas from knowledge r e p  

resentation and semantic data modehg  and features an object-oriented representational 

kamework supporting classification, aggregation, and generalization. RML distinguishes 

three types of built-in objects: entities, actizuities, and assertz'ons, with entities and activ- 

ities organized into generaiization hierarchies. At tribut es associated with each of these 

objects are classified into specific built-in uttribute-categories, each with a prespecijed 

semantic meaning. An assertional sublanguage replaces Taxis' procedural sublanguage 

and is used to specify constraints and deductive rules on objects. 

7.5 Telos 

RML7s rather rigid built-in semantics for objects and attribute-categories made it in- 

adequate as a general-purpose modeling language. Therefore a line of more expressive 

and general-purpose conceptual modeling languages was developed, beginning with CML 

[Sta86], and culminating with Telos. This line of languages borrowed several concepts 

from its predecessors and also added new innovations. Telos provides greatly improved 

modeling flexibility over RML, allowing the modeling of widely disparate real world sit- 

uations. The following is a brief outline of Telos' distinguishing features: 

1. Proposition "building-biock" : elimination of the distinction between entities and re- 

lationships by allowing al1 knowledge base components to be treated in a consistent 

manner as propositions; i.e., in Telos, "everything is a proposition" ; 

2. Object-oriented semantic network fiamework; 
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3. Abstraction mechanisnu: classification, aggregation, and generalization; 

4. Classification along an infinite dimension of metaclasses (cf., the single-level clas- 

sification characteristic of most ob ject-oriented programming languages) ; 

5. First-class citizenship of attributes: instantiation and attribution (allows the use of 

attribute metaclusses as a means of obtaining customizable attribute categorïes) ; 

6. Multiple instantiation: an object may be an instance of more than one class; 

7. Fvnctional capa bility : operations for know-ledge insertion, remod, and query; 

8. Assertional sublanguage : domain-specific integrity constraints and deduc tive rules; 

9. Temporal representation and reasoning capabiiity. 

7.6 Telos Representational Framework 

The Telos representational &amework1 is the structure provided by Telos for r e g  

resenting knowledge; it is a generalization of the graph-theoretic data structures char- 

acteristic of semantic networks and object-oriented programming languages. A Telos 

knowledge base is composed entirely of a collection of propositions. A Telos proposition 

is defined as a 4-tuple with components which are themselves propositions: source, label, 

destination, and duration; the first three components denote a labeled edge, which serves 

as a "relations hip" wit hin the represented knowledge (analogous t O a semant ic-network 

link); the last component denotes a time-interval proposition, which represents the life- 

time of the relationship that is represented by the proposition2. Example proposition 

definitions are provided below. 

'Several of Telos' important features are omitted from this very brief discussion (e-g., its assertion fan- 
guage and temporal knowledge repreaentation); see [Kou891 for a thorough discussion of Telos' featwes. 

2Tirne-interval propositions are not used in the current work. 



The collection of Telos propositions is divided into two disjoint sets: indivz'duals and 

uttribu tes. Individuals represent real world entities, classes, O bjects ,  concepts, etc.; at- 

tributes represent real world binary relationships between entities or other relationships. 

Individuds may be considered to be the nodes in a traditional semantic network, and 

attributes may be considered to be the Links between the nodes. The following are ex- 

ample proposition definitions, and their respective types3: 

Country := [Country, .... Country, ...] class individual 

Canada := [Canada, .... Canada, ...] token individual 

role-of-cityjn-country := [Country, role. City, . . .] class attribute 

Canada'ssapital-is-Ottawa := [Canada, capital, Ottawa, ...] token attn'bute 

Telos propositions form the "building blocks" of al1 objects in a Telos knowledge base. 

This convention, toget her with the struct uring mechanisms discussed below , removes the 

traditional distinction between entities and relationships, allowing them to be treated in 

a uniform rnanner. 

Propositions are organized dong three orthogonal abstraction or structuring dimen- 

sions: classification, aggregation, and generalization. 

Classification calls for every proposition to be a member of (instance of) one or more 

generic propositions cailed classes, which are thernseives propositions and rnembers of 

O t her more abstract classes. Thus there exists an infinite classification dimension: tokens 

(propositions having no instances), simple classes (propositions having only tokens as 

instances), meta classes (propositions having only simple classes as instances), metameta 

classes (propositions having only meta classes as  instances), etc.. 

Token propositions represent concrete entities or relationships in the domain of dis- 

course, while class propositions represent abstract or generic concepts. 

Instantiation of a structured object (from one or more classes) can be considered a 

3Ellipçes (...) denote proposition components that are not applicable to the specific example- 



typing mechanism: it determines the kinds of attributes the object can have and the 

properties it must satisfy. 

At each class level of the classification hierarchy there is a Telos built-in class: Token 

(a simple class, having al1 t okens as instances), Sim pleClass (a meta class having ail simple 

classes as instances), MetaClass (a metameta class having aii meta classes as instances), 

MetaMetaClas (a metametameta class having all metameta classes as instances), etc.. 

In addition, there are a number of butlt-in w-classes which are used to facilitate the 

structuring of the knowledge base: Proposition (having aii propositions as instances), 

Class (having all generic propositions as instances), Individual (having ail individuah 

as instances), Attribute (having al1 attributes as instances), AttributeClass (having ail 

at  tribute classes as instances, and OmegaClass (having all w-classes as instances). 

Aggregation ailows for the creation of stnrctured objects consisting of collections of 

attributes that have a common proposition as source. 

Generalization d o w s  for classes dong the same clossification level to be organized 

into a hierarchy fkom most general to most specialized (in the form of superclasses and 

su bclasses) . 

7.7 Implemented Telos Information Bases and Tools 

Chapter 8 outlines an information base of a Telos conceptual mode1 of the information 

domain of the newsdocument filtering system presented in the preceding chapters. The 

following are further examples of implemented Telos information bases and tools: 

1. i* Modeling Tool 

Automated modeling of an application's e d y  software requzrements based on the 

i* strategic-dependency modeling framework vu951 requires large amounts of both 

graphical modeling information and real-world application-domain information. 

Automated representation of this information, together with a graphical user in- 



terface for visual presentation, has been developed using a Java implementation of 

a subset of Telos- 

2. ITHACA Software Information Base 

The ITHACA project [ConSl] is a large ESPRIT project devoted to the constmc- 

tion of an object-oriented application development environment. One of ITHACA's 

main components is a software infonnation base intended to facilitate software 

reuse; automated representation of this information base, together with a graphi- 

cal user interface, has been developed using a Cf+ implementation of a subset of 

Telos. 

3. Generic Telos Browser 

Currently under development is a Java 2.0 graphical user interface browser that 

will allow the visual display of the underlying conceptual models of arbitmry Telos 

information bases. 



Chapter 8 

Modeling the Subject World of a 

Document Filtering System 

8.1 Introduction 

This chapter describes an information base of a Telos conceptual mode1 of the ànfonna- 

tion domain or subject world of the news-document filtering system presented in the 

preceding chapters. The static ontological concept of entity has implicitly been assumed 

appropriate for this modeling situation. News-domain subject-areas, topics, documents, 

and their interrelationships are modeled in a manner consistent with the way in which 

people conceptualize this information, that is, in a strict classification hierarchy. Similarly, 

the descriptive properties of these entities are modeled precisely in the manner in which 

people associate attributes with these entities. 

In addition, information base query-capability is descnbed: the irnplemented query 

and sub topic-instantiation capabi5t-y (described in Sections 8.5 and 8.6) may be consid- 

ered a fine-grained deteministàc classification mechanism that complements the coarse- 

grained non-deterministic document filtering process. These sections provide a vivid 

illustration of an additional tangible benefit of conceptual modeling: the implementation 
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of complex queries proved quite elegant and retatively effortless-queries are abstract 

concepts that are formulated by people, and hence they are implemented most effectively 

in information bases that are organized in a manner that is consistent with the way in 

which people conceptualize the subject matter being modeled. 

8.2 Subject World Entity Structure 

The information domain or subject world of a newsdocument 6ltenng system consists 

of t hree principal types of stmctured (aggregate) objecb: general sub ject-areas, specific 

topics within subject-areas, and news-documents within topics. Therefore, the statéc 

ontological concept of entity is implicitly assurneci as appropriate for modeling this in- 

formation domain. The above information entities do not exist in isolation: human users 

intuitively impose a hierarchical stmcture among them. For example, the relationship 

between a topic and a subject-area (assuming both are classes) may be "is a type of", 

"2s port of ", or Uis a member of" (Le., in Telos terminology, ica .  part-of, or instance- 

of, respectively). Similarly, a given document-token may be considered "a part of" or 

"a member of " a topic (i.e., part-of or instanceof respectively) . 

8.2.1 Justification for Entity Structuring Choice 

Each of Telos' three abstraction mechanïsms (classification, generalization, and aggre- 

gation) was independently considered as a structuring choice for the interrelationships 

between the generic and concrete concepts of a news-document filtering system (subject- 

areas, topics, and documents). It was decided that a uniform structuring mechanism 

across t hese entities is the most appropriate choice (in order to facilitate implementation 

of user-queries of the information base1). 

'See Sections 8.4 and 8.5. 



Generalization was quickly discardeci as a choice because the three entities are 

conceptuaily dissimilar, Le., a document is not Ga type of" topic, nor is a topic uu type 

of" of subject-area. This WU become more apparent when the attnbutes of each of the 

entities are discussed in Section 8.3- 

Aggregation appeared usehl at hrst: subject-areas are composed of various topics, 

and a topic rnay be considered composed of all documents in the domain that àiscuss that 

topic. However it was decided, in an abstract sense, that aggregation is more appropriate 

when an entity is composed of a j k d  number of well-defined components. &O, under 

aggregation, removing any component from an entity should change the inherent nature 

of the entity, causing it to be redefined; however, if aggregation was adopted for the 

current model, 'kemoving" a document fiom a topic, or a topic from a subject-area, 

would not disqual* that topic or subject-area £rom retaining its previous identity. 

Classfication was finally chosen as the most appropriate Telos abstraction mecha- 

nism for the current model: documents rnay be considered members of topic generic con- 

cepts and, likewise, topics may be considered rnembers of subject-area generic concepts. 

That is, each generic concept rnay have any number of members (instances). Therefore, 

instance-of was chosen for both the document/topic and topic/subject-area relationships. 

This results in the entire entity hierarchy being represented as a classification structure, 

as follows: 

1. MetaMetaClass SubjectArea 
IN MetaMetaClass 
ISA MetaClass 

2. MetaClass Topic-Class 
IN SubjectArea, MetaClass 
ISA SimpleClass 

3. SimpleClass Topic 
I N Topic-Class, SimpleClass 
ISA Token 

4. Token Article 
IN Topic, Token 

where MetaMetaClass, MetaClass, SimpleClass, and Token are built-in Telos classes. 
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As an illustration of the above entity classification hierarchy, the following will be used 

as a running ezample throughout the text: Economia-Topic-Class as an example subject- 

area Topic-Class metaclass, AntitnihLawsuits-Topic as an example Topic sirnpleclass, and 

AP980723-0139 as an example Article token (an instance of AntitruhLawsuits-Topic). 

This document is assumed to be a news article which discusses the recent US. government 

antitrust lawsuit action taken against Microsoft corporation (regardhg the Windows 95 

operat ing system) . Figure 8.1 iliustrates the entity classification structure for this ex- 

ample, in graphicd form. Also shown are two additional topics, Entrepreneurs-Topic and 

OperatingSystems-Topic, of which the given document is also assumed to be an instance 

(an example of multipie instantiation) . 

8.3 Aggregation and At tribute Classification 

The definition of the three structured entity types discussed in the preceding section 

is formalized by assigning to each entity several components or attributes via Telos' 

aggregatzon structuring dimension. Telos' treatment of attributes as first class citizens 

allows the use of attribute meta and simple classes as customizable at tribute categories 

which may be used to classify the attributes associated with an individual. Aggregation 

and attribute classification wiU be discussed next. 

The definition of the met ametaclass Su bject Area , shown below, introduces t hree at- 

tribute classes wit h labels subjectNumber, subject Title, and topicDescription. The at- 

tribute simpleclasses with labels subjectNumber and subjectTztle have as destinations 

the built-in classes lnteger and String, respectively; these provide the two descriptive 

properties of every Topic-Class instance of SubjectArea. The attribute metaclass with 

label topicDescription acts as an attribute category for the descriptive properties of Topic 

simpleclass instances of Topic-Class (with component labels topicNumber, topicTitle, and 

topicNamatiue, which represent attnbute simpleclasses having source Topic and destina- 

tions Integer, String, and String respectively). 
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Figure 8.1 : Example entity classification structure of the newsarticle filtering model. 
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Meta MetaClass SubjectArea 
I N MetaMetaClas 

ISA MetaClass 

WITH 
attribute 

subjectNum ber: I nteger; 

subjectTitle: String; 

topicDescription: SimpleClass 

End 

MetaClass Topic-Class 

IN SubjectArea. MetaClass 

ISA SimpleClass 

WITH 
subjectNumber 

. .-. 
su bjectfitle 

44 1 )  . .-. 
topicDescription 

topicNum ber: Integer; 

topicTitle: String; 

topicNarrative: String 

attribute 
articleDescription: SimpleClass 

End 

Every metaclasç subject-area instance Topic-Class of SubjectArea further introduces 

an attribute metaclass with label articleDescription which acts as an attribute category 

for the two descriptive properties of Article token-instances of Topic (with component la- 

bels articleContent and articleSemantics and destinations String and Semantic-Category). 
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SimpleClass Topic 

IN Topic-Class, SimpleClass 

ISA Token 

WITH 
topicN um ber 

. S.. 

topicTitle 
4 1  #1 - ... 

topicNarrative 
tt ( 9  . -*. 

artideDescription 

articleconten t: String; 

articleSemantics Semantic-Category 

End 

Token Article 

IN Topic, Token 

WfTH 
articlecontent 

title: ". . ." ; 
head: "..."; 
text: "..." 

articleSemantics 

person: ...; 
location: ...; 
organization: ...; 
item: ...; 
concept: . . .; 
action: ...; 
role: ...; 
relationship: ... 

End 

The components of the articleContent attnbute category (with labels title, head, and 

tezt) represent the three major descriptive String attributes of an Article token. 
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The components of the articleSemantics attnbute category each have user-defùied 

tokens as destinations; t hese represent the w er 's (opt ional) semantic categorization of 

important article keywords (for each relevant article and for each listed semantic cat- 

egory, the user is prompted to  provide an important keyword that is to be associated 

semantically, in the specified category, with that article). This provides optional semantic 

content for articles, which may be usehi during queries of the reposito$. Such semantic 

content allows the user to dynamically create arbitrary subtopic queries of the repository; 

these subtopic queries provide a finer query-granularity than that allowed by the original 

static topic hierarchy. 

See figure 8.2 for a graphical depiction of the above aggregatzon and uttebute classi- 

fication structures for the cwrent example. 
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Figure 8.2: Example aggregation and attnbute classificution structure of the news-article 
filtering model. 

Dashed arrows indicate attribute-tokens omitted kom the diagram that have been iastantiated 
£rom the attribute-simpleclasses with labels: subjectNumber, subjectTitle, t o p i d u m k r ,  topicTitle, and 
topicNamtive- 
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The following attribute definitions illustrate the attnbute classification hierarchy for 

the specific example of a user-provided person semantic-keyword, as illustrated in fig- 

ure 8.2: 

1. Attri buteCIass := [Class. attribute, Clas] 

IN AttributeClass 

ISA Attribute, Class 

2. AttribMeta := [Economics-Topic-Clars. articleOe.scnption. SirnpleClass] 

IN AttributeClass, MetaClass 

ISA SimpleClass 

3. (a) AttribSimple := [Antitrust-Lawsuits-Topic, articIPCemantics. Semantic-Category] 

IN AttribMeta, AttributeClass, SirnpleCIass 

ISA Token 

(b) AttribSpecialization := [Antitrust~Lawsuits~Topic, articleSemantics, Person] 

ISA AttribSimpfe 

4. AttribToken := [AP980723-0139, peson. Bill-Gates] 

IN Attribspecialization, AttributeClass, Token 

8.4 Extracting Information from the Information Base 

The mode1 was implemented as an information base using the JTelos language4. JTelos 

does not offer Telos' standard built-in Ask or Retrieve query comrnands; however, Telos' 

sparse fiamework provides an elegant means of extracting information from a repository 

through custom irnplementation of attnbute-based queries. The foliowing are the main 

contri but ing factors t hat enable such query-capability: 

0 Strict classification hierarchy between sub ject-area, topic, and newsarticle 

JTdos was developed by Techné Knowledge Systems Inc., Toronto. It provides an interface between 
a TeIos information base and the Java programming language, 
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a Attribute fmt class citizenship 

a Multiple instantiation 

The following section describes several types of repository queries that have been 

implemented and provides suggestions for possible enhancement of the curent  query 

8.5 Quer y Implementat ion 

Listed below are six example instances of implemented query-capability, where "*" and 
"NA" are defined as follows: 

a represents the knowledge base target-indiuiduals that are the objects of the 
query. 

"NA" indicates that the field is not used by the query. 

1. Al1 antitrust-articles (topic instances) containing the person-token Bil LGates: 

Topic: Antitrus~Lawsuits-Topic 

Article: * 

Article-at tribute (label) : person 

Article-attribute (value): Bill-Gates 

2. Al1 articles and parent topics where article contains the person-token Bill-Gates: 

Topic: * 
Art icle: * 

Art icle-attribut e (label) : person 

Article-attribute (value) : Bill -Gates 

3. Al1 parent topics of the given article, regamlless of article attributes: 

Topic: * 
Article: AP980723-O139 

Article-attribute (label): NA 

Article-attribute (value) : NA 
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4. Al1 antitrust articles (topic instances), regardless of article attributes: 

Topic: Antitrust-Lawsuits-Topic 

Article: t 

Article-attribute (label): NA 

Article-attribute (value) : NA 

5. Al1 antitrust articles (topic instances) containhg the tezt string "Bill Gates": 

Topic: Antitrustlawsuits-Topic 

Article: * 
Article-attribute (label): NA 

Article-attribute (value): "Bill Gates" 

6. Al1 articles and parent topics where article contains the t& string "Bill Gates": 

Topic: * 
Article: * 
Article-attribute (label): NA 

Article-attribute (value) : "Bill Gates*' 

Query types 5 and 6 involve tezt searches of the body of retrieved articles; these are 

useful for the speciiic cases mhere the user has declined to provide the system with article 

semantic-content information (provision of this information is optional, after the user has 

provided her relevance-judgement of the article). 

The above queries are only a ' 'fint attempt" a t  query implementation; a number of 

enhancements are possible: for example, the article-attribute query field could employ 

disjunction, conjunction, negation, or any boolean function of article-attributes. This . 
would lead to considerably more powerful query capability. 



CHAPTER 8. MODELING THE SUBJECT WORLD OF A DOCUMENT FILTERING SYSTEM~O 

8.6 Virtual-Topics 

An additional implemented feature is the ability to  instantiate the documents returned 

by an arbitrary query into new custom user-defhed Mual-topics within the information 

base. This feature provides the user with the ability to dynarnicully create and instantiate 

complex subtopics within the Telos information base; it forms a powerful document 

classification feature beyond the static topic-document classification capability provided 

by the filtering process's learned user-profile: users cm,  a t  any tirne, create special 

subtopics of interest and populate these new subtopics with instances returned from any 

que W. 

For example, assurning that the article-attribute query fieId employs conjunctions, 

then the documents returned fiom a query asking for "dl Antitrust,Lawsuits_Topic doc- 

uments that contain both of the organitation-tokens: Microsoft and Netscape" codd be 

dynamically instantiated into a new topic in the information base cailed, for example, 

Microsoft~Netscape~Dispute. 

This capability provides the user with more control over the information base, allowing 

her to "personalize" the information base by arbitrarily c lass img documents into a 

personal hierarchy, without being lirnited to the initial static topic-document classification 

hierarchy. 



Chapter 9 

Conclusions and Future Work 

9.1 Contribution and Summary 

The following summarizes the contribution of the current work: 

1. A new approach to parametric information filtering that integrates a multinomial 

document model with incremental Bayesian methods as a means of learning user- 

profiles through sequential data samplàng over time; 

2. Integration of a news-document fütering process with a conceptual model informa- 

tion base of the process's informataon domain. 

9.1.1 Information Filtering 

The pro ba bilistic information filtering model was chosen for investigation because, as 

Chapter 5 has shown, it is amenable to mathematical analysis, whereas nonprobabilistic 

models are primarily heuristic-based. The multinomial probabilistic model was chosen 

because, as discussed in Chapter 4, it is intuitively reasonable that document relevance is 

proportional to the frequency of occurrence of 'ïmportant" terms in the document (ratber 

than simply whether important terms occur in a document); this intuition has been con- 

firmed empirically, for large vocabulary sizes, in [McC98]. The Dirichlet wnjugate prior 

approach of estimating multinomial parameters was adopted because it accommodates 
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the updating of pnor to posterior probabilities in sequentiul data samplzng environments 

such as information filtering. 

In empirical trials using 164,597 Associated Press news-documents and 50 user-topics, 

the current interactive probabilistic model was shown to outperform two interactive non- 

probabilistic models for the TREC F3 performance measure, receiving an average score of 

34.38 over the 50 topics (compared to -27.14 and -6.22 for the two reference nonproba- 

bilistic models) . The nonprobabilistic models, however, exhibited better performance for 

the measure consisting of the geometric mean of precision and recall f this may acconnt for 

their poor F3 performance, as explaineci in Section 6.2.3). The cornpetitive performance 

of the probabilistic model venfies the validity of the theoretical approach developed in 

Chapter 5. 

The overfit ting discussed in Section 6.2.3 indicates that perhaps the complexity of 

the news-document filtering task is such that no single mode1 can effectively model the 

relevance regions of the document space. This possibility gives rise to multiple-mode1 

approaches such as the SIGMA approach, discussed in [Kar96]. 

9.1.2 Conceptual Modeling 

Information filtering literature generally treats user information needs as one-time needs 

only; i.e., relevant documents and their relationships to topics and subject areas are lost 

after the user h a  finished reading each document presented by the system. The current 

work provides for the persistent modeling of the relationships between documents, topics, 

and subject areas. 

The information domain or subject world of a news-document filtering application 

was modeled with the Telos conceptual modeling laquage. The resulting information 

base was integrated with the filtering process to provide users with the ability to store fil- 

tering results persistently, in a conceptual manner. People conceptualize news-document 

domains in a particular structured form; conce&d niodehg allows the automated mod- 



eling of the semantic relationships among the rnodel's concepts in a rnanner consistent 

with the way people view the relationships in the r ed  world. The current implementation 

allows the user to build an automated model of a news-document information domain 

that is structured in the same rnanner as in the real world. In addition, the implemented 

information base provides a powerful query-capability that allows the user to selectively 

re trieve information previously returned by the filtering process. 

9.2 Directions for Future Research 

There are severai possible directions for future research that expand upon the current 

information filtering work: 

9.2.1 Document phrases 

A refinement that has significant performance potential is the inclusion of word groups 

or phrases within the current probabilistic filtering model. Phrases clearly have more in- 

formation content than isolated words. This refinement, however, is a departure fiom the 

"bag of words" model and may require a Bernoulli document model, rather than a multi- 

nomial model (as important phrases will occur in documents with much lower frequencies 

than important terms; therefore phrase occurrence, rather than phrase frequency, rnay 

be more appropriate in deciding document relevance). 

9 -2.2 Equivalent Sample Sizes 

More work needs to be done to determine whether there exist etpivalent sample sizes 

e s s ~  and e s s ~  that optimize performance. Figure 6.2 suggests that globally optimal ess 

values may not exist; however, there is evidence that each topic may possess its own 

optimal values for these parameters. For verg large document data sources (such as exist 

in real-world document filtering environments), it may be possible to leam such optimal 
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ess values by topic. For example, as training progresses over tirne for a given topic, a 

heuristic search such as a genetic algorithm beam-search on ess \r-alues over a subset of 

fl may yield higher-performing ess values for that topic than is possible using static 

(global) ess values. As topics are processed independently, such ess learning wouid be 

performed independent ly for each topic and therefore would be consistent with adaptive 

fil tering requirements. 

9.2.3 Alternative Priors Approaches 

For certain applications, such as information fltering, the use of Dirichlet conjugate priors 

is an unwieldy approach for estimating the parameters of a mdtinomial model. Friedman 

and Singer [fi981 provide the following features that characterize such applications: 

The set of possible outcomes (e.g., documents) from draws on a given multinornial 

distribution is very large, and often not known in advance; 

The number of training examples is small, relative to the number of possible out- 

cornes; 

0 The outcomes that have non-zero probabiliw constitute a relatively smdl subset 

of a11 possible outcomes, and are not known in advance. 

Predictions based on a Dirichlet pnor tend to distribute most of the probability m a s  

to outcomes that will not occur in the training data. Friedman and Singer provide a 

hierarchical pnor that allows eficzent predictions over an infinite number of outcomes, 

without losing the ability to explicitly represent the model's posterior distribution (mak- 

ing it suitable for stochastic sampling tasks where explicit representations of approxi- 

mated distributions are required). Their pnors approach has potential value in stochastic 

modeling environments that are charactcrized by very large state spaces, such as (1) infor- 

mation filtering, and (2) Markov decision process parameter-estimation in reinforcement 

learning. 
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A related, although simpler, priors approach is provided by Ristad [Ris95]. It lacks 

the flexibility of Friedman and Singer's approach, but outperforms other standard multi- 

nomial estimation approaches, and may be of value for multinomial estimation in infor- 

mation filtering. 

9.2.4 Alternative F'requency-Based Parametric Models 

The Poisson famiiy of distributions provides an alternative means of rnodeling term 

frequencies within text documents. Lewis [Lew98] observes that the use of mixtures 

of Poisson distributions has generaiiy not proven more effective for batch-oriented ad 

hoc retrieval than the simple binary independence model. Bookstein [Boo83], however, 

provides an example of successful fmo-Poisson document modeling within a sequential 

relevance feedback ad hoc retrieval environment. As sequential feedback is inherent in 

the information filtering task, the latter work raises the question whether the Poisson 

distribution may be of value for document modeling within information filtering. 
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