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Abstract

Adaptive Bayesian Information Filtering

Brian D. Chambers
Master of Science
Graduate Department of Computer Science
University of Toronto

1999

A new approach to interactive information filtertng is presented: incremental Bayesian
inference is applied to a multinomial model of text-document relevance as a means of
learning user information needs over extended periods of time, through interactive data
sampling. An information filtering agent acts autonomously on a user’s behalf by filtering
on-line document streams for text documents that are relevant to the user’s information
need and forwarding such documents to the user. For each forwarded document, the user
is prompted to confirm or deny its relevance; a filtering agent that is able to incorporate
such user feedback into its decision process can significantly improve its future document
selection accuracy.

In contrast to nonprobabilistic information filtering models, which are based on heuris-
tics and ad hoc techniques, the proposed probabilistic model provides a theoretical
foundation for interactive information filtering. During empirical trials, the proposed
probabilistic model has shown improved performance for certain measures, relative to

nonprobabilistic models.
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Chapter 1

Introduction

1.1 Background and Motivation

The recent explosive growth of networked, disseminated on-line information sources has
led to a significant need for autormated methods of retrieval of such information. For
example, every user of the World Wide Web is familiar with commercial search engines
or topical directories, such as Lycos [Lyc94] or Yahoo! [Yah94]. The immense volume of
source information, however, often leads to query results which are too long and unwieldy
for human users to manage effectively. The need therefore arises for more “intelligent”
aids for information access tasks. Information filtering is an example of such an
information access process and is the subject of the current work. Information filtering
processes are applicable to information access situations in which user needs are relatively
stable and information sources have dynamically varying content (a characteristic of much
of today’s on-line information environment).

Information filtering, ad hoc retrieval, and database management systems represent
three important and contrasting automated information access methodologies, and are
illustrated in Table 1.1. The table illustrates differences between these information access
methodologies according to the following subjective measures, suggested by Oard and

Marchionini [Oar96]:
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e Rate of change of user information needs
Users may have relatively stable long-term needs, or their needs may vary for each

data access.

e Rate of change of the source information content
The information content of the information source may be stable, or may change

dynamically and independently of user needs.

e Structure of the stored information
The stored information may be rigidly formatted according to some convention, or

it may be “free form”.

e Nature of the output of the access process
The output of an information access process either (1) is the information desired
(direct access), or (2) contains the information desired (indirect access). An ex-
ample of the former is the value of the salary field of an employee payroll record
returned by a relational-database query; an example of the latter is a document

returned by an information filtering process.

Process User Need | Source Information Structure | QOutput
Information filtering | static dynamic | unstructured indirect
Ad hoc retrieval dynamic static unstructured indirect
Database access dynamic static structured direct

Table 1.1: Important Information Access processes

Information filtering and ad hoc retrieval have complementary usage patterns (static
vs. dynamic) for both user need and source information; i.e., information filtering pro-
cesses are characterized by relatively stable long-term user information requests of dy-
namically changing information sources. Ad hoc retrieval processes are characterized by
frequently changing user information requests of relatively static information sources.

It is most informative to compare information filtering with database access: these two
information access processes are complementary for each of the four measures. Perhaps

the most important difference between the two processes is illustrated by the dynamic
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nature of information filtering’s information source, versus the relatively stable infor-
mation sources characteristic of database systems. For database systems, an information
need can always be precisely mapped into a query for which there will be a precise defi-
nition of which database items form the answer to the query. For information filtering,
neither the query (user profile) nor the answer to the query can be precisely formulated,
i.e., there is no precise definition of which source documents will match a given user’s
query. Therefore uncertainty is implicit in the information filtering process: information
filtering’s highly nondeterministic nature makes probability theory a natural tool for

formulating the task. This is the central theme of the current work.

1.2 Machine Learning and Information Filtering

Machine learning is defined to be any automated process that improves its performance
at some task through experience, where performance is measured based on some pre-
specified measure. The classification problem within machine learning is the task of
classifying observed phenomena into two or more discrete sets of possible categories.
Binary classification into two categories such as yes/no or relevant/nonrelevant is often
used. Classification involves partitioning a set of previously unseen input items of some
domain into these two categories, based only on observations of the features of previously
classified “training ezamples” of items from the domain.

Given a data domain, tnductive learning may be defined as a form of inference where
a person or system generalizes beyond training examples to infer the classification of
new data instances. It is characterized by an inductive inference assumption or inductive
bias; e.g., to ensure inductive learning in the case of document information filtering, some
assumption must be made about the manner in which document features may be used
to classify documents. Without such an assumption, the best that can be achieved is

rote-learning. Mitchell [Mit97] provides an excellent exposition of inductive bias and of
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machine learning in general.

Users typically initialize document information filtering systems in one of two ways:
by providing a set of labeled training documents partitioned into two disjoint subsets
of relevant and nonrelevant documents, or by providing a naturael language description
of some specific interest. In the former case, information filtering becomes a batch-
oriented classification supervised learning problem, as discussed above. If the user profile
is in the form of a natural-language statement, the task is more difficult because it is
widely recognized that users have great difficulty accurately describing or verbalizing
their interests in a concise manner. In this case, users are required to guide the process
during its operation. This is called relevance feedback supervised learning: during the
operation, the user provides judgement feedback to the process about the true relevance
of documents which the process has estimated as relevant to the user’s information need.
Many such user judgements allow the process to iteratively improve its stored user-
profile. The user-profile therefore “evolves” into a much more accurate representation of
the user’s information need than is represented by the initially provided natural language

description.

The second of the above two methods (the initial profile as a natural language de-
scription of a user’s interest, with relevance feedback) is used in the subsequent work
because it is most consistent with the interactive nature of today’s distributed comput-
ing environment. Today’s highly interactive computer environment has led to a shift
in focus from batch-oriented information retrieval learning algorithms towards on-line
interactive informative processing algorithms. Interactive information filtering systems
are expected to learn user information needs on-line, based upon user feedback, rather
than from prespecified training examples. Such systems are expected to respond im-
mediately to user input, based only on information processed up to that point in time.
Interactive information filtering systems rely on user relevance feedback to improve per-

formance with experience. However, research in the area of relevance feedback has largely
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been in the context of nonprobabilistic filtering models. This work investigates relevance
feedback within an adaptive Bayesian probabilistic model and demonstrates that
such an approach is an effective means of achieving on-line learning.

The primary learning performance measures used for information filtering are recall
and precision. Recall is the percentage of all possible relevant documents that the process
has successfully retrieved. Precision is the percentage of retrieved documents that are, in
fact, truly relevant. Recall is usable only in experimental environments because in “real-
world” environments, the number of truly relevant documents within a given document

source is usually unknown.

1.3 Information Filtering Models

Information filtering models may be interpreted as decision functions whose domain
is the set of all possible document features and whose range is the set {relevant,
nonrelevant}.

Filtering models fall into two broad categories: nonparametric and parametric. Non-
parametric models, such as the the Vector Space Model (VSM) [Sal83], do not assume
the nature of the distribution of the source data. The Vector Space Model represents
queries and documents as vectors in a vector space, with component terms weighted
in some manner, as discussed below. The relevance of an unseen document to a given
query is judged by calculating the distance between the query vector and the document
vector and comparing this distance to a threshold value (vector distance is established
using some prespecified distance-metric). Parametric models [vanR79], [Fuh93], make
assumptions about how the data is generated and postulate a probabilistic model that
embodies these assumptions. A collection of labeled training examples and relevance
feedback is used to estimate the parameters of the generative model, and classification

of new examples is made by selecting the class that is most likely to have generated each
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example. For example, in the two-class relevant/nonrelevant case, the most likely class

is selected based on the mazrimum of
P(relevant|d;t) and P(nonrelevant|d;t),

where d is a new (previously unseen) document, and ¢ represents a user topic of interest.

The “bag of words” model of representing documents is typically used for both the
vector space and probabilistic models, i.e., the features (tokens) used to represent a
document possess no internal structure, distinguishing semantics, or relationships with
each other. Given an enumerated vocabulary V' ={t,, 15, ..., t|v|} representing an arbitrary
set of tokens such as English language words, or any other prespecified set of tokens, then

any document d may be represented as a weight vector
d _
w = (wla Wwa, --., w|V|)1

where, for 1=1,...,|V]|, wj; is either (1) zero or one, indicating the absence or presence
of ¢; in d or (2) a non-negative integer, indicating the frequency of occurrence of ¢; in
d. In the probabilistic model, the former leads to the multi-variate Bernoulli document
model and the latter leads to the Poisson or multinomial document models.

The current work investigates the probabilistic model because (1) it fits naturally with
the uncertainty inherent in the information filtering process, as discussed in section 1.2,
and (2) its firm theoretical foundation allows rigorous analytic treatment of the problem;
in contrast, the vector space model uses heuristics and ad hoc techniques which are not
easily amenable to analysis.

The multinomial probabilistic model was chosen because (1) in contrast to the multi-
variate Bernoulli model, it is intuitively appealing that the relevance decision function
should depend on document word frequencies (i.e., the more frequently a user-specified
“important” word occurs in a document, the more likely that the document will be
relevant to the user’s interest), (2) the multinomial model outperforms the multi-variate

Bernoulli model for text classification, especially at large vocabulary sizes, as shown by
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McCallum and Nigam [McC98], and (3) to the best of our knowledge, multinomial models

have not been applied to the information filtering task.

1.4 Conceptual Modeling and Telos

Research in the areas of information retrieval and filtering has historically addressed only
the process of accessing information; i.e., it has tended to ignore the important follow-up
task of storing retrieved information in an organized persistent form that can be easily
used by users!. Fiitering an on-line news feed for a specific topic will yield documents
that will need to be stored and somehow related to the topic, its subtopics, and its
parent subject-domain. Subject-domains, topics, and documents are complex objects
with complex inter-relationships which are not easily representable in, for example, a
relational database. In addition, documents are aggregations of other complex objects
such as document ID, title, header, and body. The ideal solution is to store not only a
document’s low-level information tokens but also its internal structure and relationships
with its topic classes, in a manner that is consistent with the way hAumans view such
structure and relationships. This ideal implementation-independent modeling approach
is called Conceptual Modeling {Myl92a].

To provide the information filtering user with the ability to store filtering results
persistently in a conceptual manner, the conceptual modeling language Telos [Kou89],
[Myl90], [Myl92a] has been adopted: a Telos information base is implemented in the
form of a query-capable repository that is able to to represent subject-domains, topics,
subtopics, retrieved documents, and relationships between these objects. Telos offers
many powerful and novel features including (1) a sophisticated object-oriented frame-

work, which allows complex real-world structures to be represented without being arbi-

11t is only recently that this trend has begun to change: see, for example, [Cra98] and [Hah98]; the
former discusses the use of machine learning to build computer-understandable knowledge bases from
information extracted from the World Wide Web; the latter introduces a methodology for automating
the maintenance of domain-specific taxonomies based on new concepts retrieved from real-world texts.
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trarily decomposed into tables and records, as is required for relational database represen-
tation, (2) a single proposition building-block with which all Telos objects are constructed,
(3) first-class nature of an attribute (an attribute is simply a proposition), (4) three
structuring mechanisms (classification, aggregation, and generalization), (5) classification
along an infinite dimension of metaclasses (rather than the single object-class dimension

characteristic of object-oriented programming languages), and (6) multiple instantiation.

1.5 Thesis Contribution

The following summarizes the contribution of the current work to interactive information
filtering:

1. The application of the multinomial distribution as a model of text-document rele-

vance;

2. The application of incremental Bayesian methods, using the Dirichlet conjugate
family and sequential data sampling, as a means of estimating the parameters of

the multinomial document model;

3. Conceptual modeling of the information domain of a specific document filtering
application.
Items 1 and 2 are novel approaches to information filtering and have led to favorable

performance results, relative to other information filtering techniques.

1.6 Thesis Organization

Chapter 2 presents architectural overviews of the information filtering and document
repository subsystems and discusses the manner in which these subsystems are inte-
grated into an overall system. Chapter 3 discusses term-weighting document represen-
tation schemes and provides a brief literature review of information retrieval methods.

Chapter 4 introduces probabilistic machine learning: Bayesian learning and the naive
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Bayes methodology. Chapter 5 presents the theoretical framework for achieving rele-
vance feedback in an interactive probabilistic information filtering environment, through
an adaptive Bayesian approach (the Dirichlet conjugate family) that is able to incre-
mentally estimate the parameters of multinomial models. Chapter 6 presents empirical
results of an implementation of the approach outlined in Chapter 5 and compares perfor-
mance with that of two nonprobabilistic information filtering processes: a vector-space
machine learning system, and a static “benchmark” system. Chapter 7 discusses con-
ceptual modeling and the background and motivation behind Telos. Chapter 8 discusses
the rationale behind the Telos implementation of the repository and outlines in detail
several repository features. Chapter 9 concludes with a summary of results and suggests

possible directions for future research.



Chapter 2

System Architecture

2.1 Introduction

Interactive information filtering systems are characterized by the asynchronous arrival of
textual information from external on-line sources such as news-wire feeds. Such docu-
ments must be processed immediately in order of arrival. For each arriving document,
the system must make an immediate relevance judgement whether the document is rel-
evant to a user’s prespecified information need; if the system judges that the document
is relevant, then it is forwarded to the user for confirmation of the system’s judgement.
The user’s confirmation or denial of the system’s judgement is provided as feedback to
the system so that it may update its user-profile accordingly.

This chapter provides a detailed description of the architecture and functionality of the
document filtering and repository system. The system consists of a source-document
subsystem, an autonomous filtering agent, a user-interface agent!, a repository
agent, and a Telos repository. To highlight the nature of inter-agent communica-
tion, the following exercitive, interrogative, and assertive speech act performatives are

employed, as suggested in [Fer99:

In the remainder of the chapter, “user agent” will be used in place of “user-interface agent”.

10
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e Request: Request that another agent perform a specific task

e Question: Request that another agent provide specific information

Reply: Response to another agent’s Question

Assert: Provide another agent with information (the target agent adds the received

information to its set of beliefs)

e Inform: Provide another agent with information (the target agent may optionally

add or not add the received information to its set of beliefs).

Figure 2.1 provides a graphical overview of the system; only those system messages and

information flows that are central to a general understanding of the system are shown.

2.2 Source-Document Subsystem

The purpose of the source-document subsystem is to transform randomly arriving
raw text news-documents into a form usable by the remainder of the automated system.
The news source is assumed to be a standard on-line “live” news-feed such as Reuters,
AP, CNN, etc.. Arriving news documents are in tezt form with minimal internal struc-
ture; they consist of a title, a brief header description, and a body. The source-document
subsystem parses each arriving document and creates a standard structured vector rep-
resentation of the document for use by the other subsystems. This vector representation
of the document, called term-weighting or VSM-representation, was mentioned briefly
in Chapter 1 and will be discussed in more detail in Chapter 3. For now, it is sufficient
to consider this subsystem as a transformation process that creates structured machine-

readable vector representations of unstructured human-readable document text.
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2.3 Filtering Agent

The filtering agent occupies the position of a personal assistant to a human user
(acting through a user agent); it possesses specialized knowledge of news-domains and
collaborates with the user, acting autonomously on the user’s behalf, with the goal of
assisting the user in detecting news-documents that are relevant to a given news-topic.

It accomplishes this goal by

e minimizing the user’s time and effort in locating relevant documents, and

e providing an abstraction to the user of the specialized news-domain knowledge

required to perform the news-document filtering task.

The filtering agent filters out incoming irrelevant news-documents and presents to
the user agent only those documents that it believes that the user will find interesting.
Over time, it becomes more effective as it gradually learns the user’s news preference and
becomes more accurate in performing the filtering task. As a personal assistant to the
user, it covers several roles within the system:

® Interfacing with the source-document subsystem,

e Managing the user-profile,

e Calculating the “closeness™? or relevance of a document-vector to the user-profile,

e Communicating with the user agent.

The following is a sequential outline of the tasks associated with the filtering agent’s

roles:

1. Request(user agent; obtain from user, the topic for the current document filtering

session)

2. Initialize user-profile vector ¢ using the current topic’s title and text

2Chapter 3 will discuss in detail the notion of “closeness” of a document-vector to a user-profile.
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3. Obtain next news-document vector d from source-document subsystem
4. Retrieve current user-profile vector ¢

5. Calculate Pr = P(Relevant|d;t) and Py = P(NonRelevant|d;t)

6. If Pgr > Py, then for the hypothesized relevant document d:

(a) Obtain text of d from source-document subsystem
(b) Inform(user agent; text of d)
(c) Request(user agent; obtain from user, the actual relevance-judgement of d)

(d) Update user-profile vector ¢t with the actual relevance-judgement of d

7. Repeat from Step 3.

2.4 User Agent

The user agent’s role is that of an interface between the human user and (1) the
filtering agent, and (2) the repository agent. It acts on behalf of the human user with
the goal of providing an abstraction of the entire system to the human user by hiding all
implementation details of the system from the user. It is responsible for the following

tasks:

e Question(user; choice between reinitializing the repository with a set of predefined
topics or adding a new custom topic definition to the existing set of topics)

® Assert(repository agent; user’s choice of initializing with predefined topics or adding

a new custom topic)

® Question(user; description of the new custom topic, if any: subject-area, title, and

narrative text)
® Assert(repository agent; description the custom topic, if any)

e Question(user; topic for the current news-document filtering session)
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e Assert(filtering agent; topic for the current news-document filtering session)

Inform(user; text of each document hypothesized by the filtering agent as relevant

to the current topic)

Question(user;

1. actual relevance-judgement of the hypothesized relevant document, and

2. optional semantic-categories of selected document keywords)

Assert(filtering agent; actual relevance-judgement of the hypothesized relevant

document)

e [f user confirms that the proposed document is actually relevant, then:

Assert(repository agent; text of relevant document and optional keyword semantic-

categorization for classification of document token under topic simple class)

Transform user queries into repository agent queries

Request(repository agent; submit repository queries to repository)

e Transform query-results into user understandable form

e Inform(user; query-results).

2.5 Repository Agent

The repository agent’s role is that of a Telos repository manager. It acts on behalf
of the user agent with the goal of providing an abstraction of the Telos repository to the
user agent by hiding all implementation details of the repository from the user agent. It

is responsible for the following tasks:

e Accept from user agent: directive to initialize repository with predefined topics or

add a custom topic
e Input from file system: predefined topics and subject-domains, if required

e Accept from user agent: custom topic description, if required
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® Repository TELL: initial instantiation of predefined or custom topics (simple classes

as instances of subject-domain meta classes)

® Accept from user agent: text of relevant news-documents for classification under

the current topic, and optional keyword semantic categorization

e Repository TELL: instantiate relevant news-documents (tokens as instances of topic

simple classes)
e Accept from user agent: repository queries
e Transform user agent queries into Telos queries
® Repository QUERY: Telos queries
® Transform Telos query-results into user-agent understandable form

e Assert(user agent; query-results).

2.6 Telos Repository

The Telos repository represents an information base of a Telos conceptual model of the
information domain or subject world of the news-document filtering system. Conceptual
modeling and Telos are discussed in Chapter 7, and the specific Telos conceptual model

implemented in the repository is outlined in Chapter 8.



Chapter 3

Introduction to Information Access

Information filtering and ad hoc retrieval were briefly introduced and compared to data-
base access in Section 1.1 and related to machine learning in Section 1.2. Section 1.3
discussed the two classes of term-weighting information access models: nonparametric
and parametric models. This chapter provides brief overviews of these models, together
with their related document representation schemes. The goal of information access is to
learn a user’s information need, in the form of a user-profile, through the use of training
documents or user feedback; the learned user-profile is then used to judge how well new
previously unseen documents satisfy the user’s information need. The following defini-

tions illustrate the broad nature of information access:

Information Classification' Batch-oriented training using a static collection of user-
provided relevant/nonrelevant-labeled training documents, where the training documents
are processed as a group. The goal is to classify each document of a set of new documents
as relevant or nonrelevant.

Information Filtering? Interactive training using an asynchronous dynamic stream

1See Chapter 4 for a discussion of batch-oriented Bayesian probabilistic methods and binary

classification.
2See Section 4.5 and Chapter 5 for a discussion of incremental Bayesian probabilistic methods and

information filtering.
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of unlabeled documents, where each document is processed individually, as it arrives,
and a binary decision made whether or not it is relevant to the user’s information need
(only documents previously processed may influence the decision); proposed relevant
documents are forwarded to the user who provides relevance feedback which is used as
training information. The goal is to classify each newly arriving document as relevant
or nonrelevant.

Ad hoc Retrieval Batch-oriented training using a static collection of user-provided
relevant /nonrelevant-labeled training documents, where the training documents are pro-
cessed as a group. The goal is to numerically rank all documents of a set of new docu-
ments according to their relevance.

Information Routing Multiple independent information filtering processes operating in
parallel on one stream of unlabeled documents, where each process is assigned a unique
user information need; each arriving document is simultaneously tested for relevance
against several independent user needs and is routed to the respective user, if it is judged

as relevant to that user.

3.1 Term-Weighting

Term-weighting models are based on the association of weights with the terms (noncom-
mon words or word-stems®) occurring in a topic or document, for the purpose of quantify-
ing the “importance” of each term in the topic or document. As discussed in Section 1.3,
given an enumerated vocabulary V = {t,,¢,,...,tjv(}, the “bag of words” assumption
allows a document d to be represented by a weight vector w®=(w;,ws, ..., wyv), where
each w; is either (1) zero or one, indicating the absence or presence in d of term ¢; € V,
or (2) a non-negative integer, indicating the frequencyind of termt; € V, i =1,...,|V|.

Depending on the type of information access model, the document weight vector w® may

3See Section 3.4.
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be transformed into an adjusted weight vector consisting of real-valued term-weights®.
Similarly, a topic ¢ will have an associated topic weight-vector wt. The ultimate pur-
pose of such term-weighting is to determine the “similarity” between a document and
a given topic, through (1) nonparametric approaches: computation of a similarity met-
ric between the document and the topic, or (2) parametric approaches: construction of
probabilistic models of relevant and nonrelevant documents (relative to the topic). Such
similarities are used either for ranking of documents (as in ad hoc retrieval) or for rel-

evance classification of documents relative to some threshold value (as in information

filtering).

3.2 Nonparametric Information Access Models

Nonparametric information access models are established using heuristics that are based
on commonsense observations of text documents and document collections. Salton and
Buckley [Sal87] provide a comprehensive overview of common heuristic approaches to
information access. The widely-used nonparametric Vector Space Model (VSM) [Sal83]
adopts as a heuristic the assumption that a high degree of importance should be assigned
to those terms that occur frequently in only a few documents of a collection. That is,
the importance of each term ¢; in a document d is (1) proportional to its frequency tf; in
d, and (2) inversely proportional to the total number of documents df; in the collection

that contain ¢;. In the literature, this is referred to as tf.idf term-weighting:

w*Y = tf;ilog % (3.1)
where 7 =1,...,|V| and N is the total number of documents in the collection.

Given a document d with weight vector w? and a topic ¢ with weight vector w¢,

the similarity measure sim(d,t) between d and t is calculated as either the linear inner

4See Section 3.2.
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product between w? and w*
N
sim(d,t) = Zw:fwf, (3.2)
=l

or the nonlinear cosine correlation

. — Z‘l—lw 'Ll)
R N oy 43

where |Jw!{| = /ZL(wf)? and |[w']] = /I, (w2

Given a user topic of interest, nonparametric information-access models incorporate these
topic/document similarity calculations in a manner that depends on the nature of the
specific information-access task: (1) batch-oriented classification and interactive filtering
tasks establish individual document relevance based on whether or not the document’s
similarity score exceeds some arbitrarily chosen threshold value; (2) the ad hoc retrieval

task ranks documents according to their similarity scores.

3.2.1 Relevance Feedback

The above similarity measures are static calculations, given a topic ¢ (also called user-
profile) and its weight vector w*. Provided with a set of labeled training documents, it is
possible to improve the accuracy of nonparametric information access by adjusting the
topic (user-profile) weight vector w’ in an incremental and cumulative manner: as each
training document d is encountered that is sufficiently similar to topic (user-profile) ¢, t's
weight vector w' is updated to reflect information contained in the “similar” document
d. In this manner, called relevance feedback, the topic (user-profile) weight vector wt is
incrementally improved and becomes more representative of the user’s information need
than the user’s initial topic description. Negative information may also be incorporated
into relevance feedback (i.e., information from documents dissimilar to ¢ may be used to
negatively weight wt). In addition, topic or query ezpansion may be achieved by adding

to t those terms that exist in relevant training documents but do not currently exist in ¢.
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The current state-of-the-art for batch-oriented nonparametric relevance feedback is
the Rocchio algorithm [Roc71], augmented with Dynamic Feedback Optimization (DFO)
[Buc95]. The Rocchio algorithm, applied to the binary classification task, adjusts the
weight of each individual topic term by adding to or subtracting, from its original value,
the weight of the term in each relevant or nonrelevant training document, respectively
(subject to weighting parameters that control the relative impact of the original user-
profile weight vector w®, the relevant training documents, and the nonrelevant training
documents).

Interactive nonparametric relevance feedback algorithms employ learning rate mech-
anisms that allow gradual learning of user-profiles over time; for example, (1) Rocchio
implemented as an incremental algorithm [A1196], (2) the LMS or Widrow-Hoff algorithm
[Wid85], and (3) the ezponentiated-gradient (EG) algorithm [Kiv94]. Empirical evalua-
tions of the batch-Rocchio, Widrow-Hoff, and EG algorithms are presented in [Lew96].

3.3 Parametric Information Access Models

Parametric information access models treat documents and terms as data sample in-
stances that follow some underlying theoretical probability distribution. The goals of
parametric modeling include (1) establishing the parameters of the underlying probabil-
ity distribution through statistical data sampling, and (2) calculating the probability that

the random variable modeled by the distribution will assume a specified value.

3.3.1 Ad Hoc Retrieval

Parametric ad hoc retrieval requires that the probability P(relevant|d;t) be determined
for every document d in a given static document collection, for a given topic ¢; this value
represents each document’s absolute probability of relevance with respect to ¢ and may

be used to rank the documents in order of relevance.
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The batch-oriented Binary Independence Model (BIM) proposed by Robertson and
Sparck Jones [Rob76] has been the most influential parametric model in the area of
information access. Given vocabulary V, the BIM vector-representation of individual
documents consists of boolean-valued term-weights z; € {0,1},i=1,...,|V], that indicate
the absence or presence of each vocabulary term ¢; € V' in a document. Given a static
collection of iabeled training documents and a document class c;, each vocabulary term
t; is assigned a probability p;; = P(z; =1|c¢;) = ns;=1/n.;, where n.; is the number of
documents of class c; in the collection, and n.,-; is the number of these n., documents
with z; =1 (i.e., that contain term ¢;); p;; represents the probability that term £; € V'
exists in an arbitrary chosen document of class c;. If there are only two classes: ¢; =
relevant and c, = nonrelevant, then [Rob76] and [Lew98] provide the following formula

for calculating P(relevant|d;t):

vi

P:l(]- p1.2)
P(relevant|d;t z; lo 3.4
( | ) ;Z_l g(1 P:l)P:2 ( )

Despite its historical influence, the BIM has at least two shortcomings: (1) it ignores
the frequencies of terms in documents (the more frequently an “important” term occurs
in a document, the greater its predictive value), and (2) it ignores document length (an
“important” term that occurs in a short document should possess more predictive value

than that of the same term occurring in a long document).

3.3.2 Information Filtering
Parametric information filtering requires that both of the probabilities
P(relevant|d;t) and P(nonrelevant|d;t)

be calculated for each arriving document d in an on-line data stream, for a given topic
t; the maximum value of these two probabilities determines the most probable classifica-
tion of d. Only those documents classified as “relevant” are removed from the document

stream and presented to the user.
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There has been much research on batch-oriented parametric document classification;
see, for example, [McC98] and [Lew98]; however, we are unaware of any studies on
sequential parametric document classification (i.e., parametric information filtering). The
latter area is the focus of the current work. The research closest in spirit to the current
work, although addressing ad hoc retrieval, is outlined in [Kei97]: it combines a Bernoulli
(binomial) parametric document model with incremental Bayesian methods (the Beta

conjugate family) as a means of achieving incremental relevance feedback.

3.3.3 Relevance Feedback

Relevance feedback and query expansion are commonly applied to batch-oriented para-
metric information access environments; for example, Harman [Har92] provides a brief
survey of such research in the area of parametric ad hoc retrieval, citing work by Robert-
son, Croft and Harper, Harper and van Rijsbergen, and Wu and Salton. An interesting
result of this work is that the performance of query expansion under parametric models
tends to be heavily dependent on the specific document collection used for empirical

testing.

Bookstein [Boo83] provides perhaps the first example of sequential relevance feed-
back within a statistical decision theoretic framework, where retrieval judgements of
documents are made individually for each document, and feedback is part of the model
itselfS. Aalbersberg [Aal92] provides further evidence (although in the context of non-
parametric models) of the value of incremental relevance feedback, where each feedback
iteration occurs after the retrieval of a single document and before the retrieval of the
subsequent document: such incremental feedback yielded better performance than the

widely used batch-Rocchio and Ide relevance feedback algorithms.

SEarlier parametric feedback methods used various ad hoc techniques based on word frequencies to
estimate the parameters of the probabilistic model.
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3.4 Controlling Dimensionality

The size of an English vocabulary that includes scientific, technical, and business terms,
and acronyms may easily exceed 50,000 terms. It is therefore clear that a document-
vector feature space that is based on such a vocabulary will have an enormous dimen-
sionality; some control over this dimensionality is therefore required. The following are
three methods that have been adopted in the current work to control document-feature

dimensionality.

3.4.1 Elimination of Stop Words

Many words in the English language possess no inherent topical information. For exam-
ple, articles, pronouns, conjunctions, and prepositions provide structure to the language
but provide no content value. In addition, very common words and contractions provide
little information value, e.g., “million”, “company”, “didn’t”, “couldn’t”, “Co”, “Corp”,
etc.. Therefore, a stop word list has been created that contains approximately 600 ar-
ticles, pronouns, conjunctions, prepositions, contractions, and various common words.
Documents are preprocessed against this list and and document terms appearing in this
list (and punctuation and numbers) are removed from each document before it is placed

into lower-case form and converted into its vector representation.

3.4.2 Word Stemming

Under the “bag of words” document representation scheme discussed in Section 1.3,
suffixes applied to a given base English word generally add no significant extra topical
information. For example, the words “abduct”, “abducts”, “abducted”, “abduction”,
“abducting”, and “abductor”, although different parts of speech, possess little differ-
entiation of content under this representation scheme. Therefore, after elimination of

stop words, punctuation, and numbers, the remaining words are stemmed using the well-
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known stemming algorithm by Porter [Por80].

3.4.3 Zipf’s Law

English words have varying frequencies of occurrence in document collections. For exam-
ple, the word “hostage” would presumably occur very frequently in contemporary news-
document collections; however, there are many obscure words in the English language
that will occur very infrequently in such document collections. Sahami [Sah98] cites work
by Zipf and van Rijsbergen that provide empirical evidence that words occurring only
once or twice in an entire document collection account for approximately one-half of the
total unique terms in the collection, but have little resolving power between documents.
Therefore, words that have very low frequencies of occurrence in a collection have been
omitted from document-vector representations in the current work. This step occurs im-
mediately after the elimination of stop words in the case where documents are provided
as a static collection. When documents are provided incrementally, one at a time (as in
information filtering), a cumulative frequency count is maintained for each unique word
that has appeared. At periodic intervals, say every fifty days or every 10,000 documents,
words that have occurred only once or twice are added to a low-frequency stop list; words

appearing in this list are then excluded from the document-vectors of future documents.



Chapter 4

Bayesian Learning and Document

Classification

4.1 Introduction

Bayesian learning methods! take a probabilistic approach to the task of learning
which of several alternative hypotheses best explains observed phenomena; probabilistic
methods provide a strictly quantitative means of weighing all the available evidence
that supports alternative hypotheses. Under this approach, for a given set of observed
data, each possible hypothesis is assigned a probability that it is the “best” hypothesis
that explains the data. If the best hypothesis is assumed to be the most probable
hypothesis (the hypothesis with the highest probability, called the mazimum a posteriori
or MAP hypothesis) then probability theory can be used to determine such a hypothesis.
Given a set of observed data, then the probability that a given hypothesis is the best

hypothesis may be calculated using the following information:

!See [Mit97] Chapter 6 for a general introduction to Bayesian learning, [McC98] for a comparison
of event models for batch-oriented Bayesian text classification, and [Mar89], [Rob94], and [Gel95] for
theoretical coverage of empirical Bayesian analysis.
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e The prior probability that the hypothesis is the best hypothesis, before making
data observations (determined using background knowledge of the problem domain
or from assumptions of the underlying probability distributions of the prior).

e The probability that the observed data will actually occur in a world where such a
hypothesis holds.

Bayesian methods have the distinct advantage that each observed data element can
incrementally increase or decrease the estimated probability that a hypothesis is consis-
tent with the hypothesis. This offers more flexibility over certain other machine learning
methods that eliminate a hypothesis if it is found to be inconsistent with any single
training example?. Bayesian methods are therefore more tolerant of “noisy” data (e.g.,
outlying data) than other common machine learning methods. However, Bayesian meth-
ods have disadvantages: they require large amounts of initial probabilistic information
(which may be very difficult to obtain), and they require significant amounts of compu-

tational resources (which may make their use impractical for large hypothesis spaces).

4.2 Bayes Theorem

Bayes theorem provides a direct method for calculating the most probable hypothesis
harap, given a set of observed data D and background knowledge of the prior probability
P(h) of each hypothesis k in a hypothesis space H. Let P(D) represent the probability
that the data would be observed without any knowledge of which hypothesis is correct.
Let P(D|h) represent the probability that the data would be observed, given that hy-
pothesis h is the correct hypothesis. The Bayesian learning task described in Section 4.1
involves determining, for each hypothesis h the posterior probability P(h|D), i.e., the

probability that hypothesis h is the correct hypothesis, given the observed data D. The

2For example, the Find-S and Candidate-Elimination concept learning algorithms. See [Mit97] for
details of these, and many other machine learning methodologies.
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following formula, called Bayes theorem, provides the means of calculating P(h|D):

P(h)P(D|h)

P(hID) = =7

Any hypothesis which has a mazimum such value, over all hypotheses h € H given the
observed data D, is a most probable or mazimum e posteriori (MAP) hypothesis (i.e.,
a hypothesis that best explains the observed data). A hypothesis hy4p € H is a MAP
hypothesis provided

heH
P(ER)P(DI|k)
= argmax ——————"=
hen . P(D)
= argmax P(h)P(D|h) as P(D) is a constant, independent of h.
heH

4.3 Binary Classification

Binary classification is defined to be the learning problem where the hypothesis space H
is defined such that each hypothesis h € H is a boolean-valued function of features
of data items of a data domain D. Each data item d € D is described by a conjunction
of the values of n predefined-features (attributes). The boolean-value generated by a
hypothesis is with respect to some concept pertaining to an individual data item and
can take on any value from a set C, where |C| = 2. For example, {yes, no}, {rainy,
sunny}, {relevant, nonrelevant}, etc.. Provided with a set Dy C D of positive and
negative training examples and an actual concept value ¢(d) for each d € Dr, the classifier
attempts to determine a hypothesis function i such that h(d) = ¢(d) for all training
examples d € Dr. Once the hypothesis has been determined, new previously unseen
data instances may be classified. In Bayesian learning, this translates to determining the

most probable or mazimum a posteriori (MAP) hypothesis, as discussed in Section 4.2.
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4.4 Naive Bayes Classifier

Once the most probable hypothesis hjr4p has been found, given the training data set
Dr € D and a new data instance d € D is presented, hyr4p can be used to find the
most probable classification cprap of d as follows: caprpp = hayrar(d) € C. A less compu-
tationally expensive method of probabilistic classification, the naive Bayes “frequency
counting” classifier, is discussed next. This classifier avoids searching through a space of
possible hypotheses by counting the frequencies of various data combinations within the
training data.

Assume that data instances are represented by n features or attributes where each
attribute 7, 7 = 1...n, may take values from an attribute set X;, and the new data
instance d is represented by the n-tuple (z,, z,,...,,) of attribute values z; € X;. Then

the most probable classification cyrap € C of d may be calculated as follows:

cmap = argmax P(cj|d) (4.1)
c;€C
NP(dlc:
= argmax Ple)Pldlc;) by Bayes theorem (4.2)
CjGC P(d)
P(Cj)P(Il, T2, .- =, :EnICJ')
= argmax 4.3
g?c P(I]_,ZQ,-.-,I",) ( )
= argmax P(c¢;)P(z1,22,...,Zslcj) as P(Ty1,Z2,-..,Za) is constant. (4.4)
c;€C

In this formulation, the P(c;) may be calculated by counting the frequencies of occurrence
of each possible classification ¢; € C within the training data. However, the values of all
the P(x,, %2, ..., Zn|c;) terms must be calculated. But there are usually an astronomical
number of possible values for d = (z,, 3, . . . , Zn), S0 the number of such terms is immense.
Let Dynique C Dt be set of unique instances of training data; then |Dynique| < |D7l, i-e.,
huge data training sets would be required to ensure that each unique training instance
occurs a sufficient amount of times so that frequency counts would be reliable.

If the simplifying assumption is made that each of the n attributes is conditionally in-

dependent, given the value of c;, then P(z1, Z2, . . ., Talc;) = P(z1|c;) P(x2|c;) - - - P(znlc;) =



CHAPTER 4. BAYESIAN LEARNING AND DOCUMENT CLASSIFICATION 30

[T? P(zilc;). The number of distinct P(z;|c;) terms that must be estimated from the
training data is just n-|C| (much less than the number of P(z,z,,...,z.|c;) terms
which would have to be estimated without an attribute independence assumption). If
cns € C denotes the target concept output by the naive Bayes classifier for a new
data instance d = (z1, Z2, - - -, ZTn), then substituting [I7 P(z;lc;) for P(z1,zs,. .., Zalc;s)

in equation 4.4 yields

es = argmax P(c;) [] P(ziles)- (4.5)
c;eC i

Both P(c;) and P(z:{c;) are estimated using frequency counts of training data in-
stances. Given a training data set Dr and a specific concept value ¢; € C, let n.; be the
number of data instances in Dr that have c; as their concept value, and let n;, be the

number of these n.; data instances that have value z; for attribute 7. Then

[C]
N,
P(c;) = L where |[Dr| =) n. 4.6
Ty,
P(zile;) = ;li (4.7)
o

7

Equations 4.6 and 4.7, however, are appropriate for use only in batch-oriented supervised

learning environments where

e ¢ll training and test data instances are available at one time;

e each training data instance possesses a specific known concept target value c;.

New methods are required to adapt naive Bayes classification to interactive learning

environments where

e data instances arrive over a period of time;

e concept target values c; are not known for arriving data instances.

The next section and Chapter 5 will introduce a new approach for calculating the n-|C]|

terms P(z;|c;) in such interactive learning situations.
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4.5 Adaptive Naive Bayes Document Classification

The naive Bayes formulation may be applied to document classification in a number of
ways. We will be concerned here with binary classification where a document may be
Relevant or Nonrelevant to some particular topic t of interest, i.e., C = {R, N} with
respect to t. The document representation scheme discussed in Chapter 3 will be adopted
where each document has an associated weight vector that is composed of the frequencies
of occurrences of the (non-common) words that it contains. That is, given an enumerated
vocabulary V = {¢,,1,, ..., {v}, a document d may be represented as a weight vector of
term frequencies w? = (wy,ws, ..., wy|), where w; is a non-negative integer indicating
the frequency indof term t; € V,i=1,...,|V].

To obtain the naive Bayes classification of a given document d, the value R’ € {R, N}
must be determined that maximizes P(R?|d), i.e., the most probable classification of d.
From Equation 4.5, this requires calculation of the n-|C| = |V|-|C| = |V]|-2 terms
P(z;|R’) = P(t;|R?). Thus Equations 4.6 and 4.7 must be applied to training data
to derive point estimates of P(¢;|R) and P(¢;|N) for all terms t; € V; these are estimates
of the probability of each term ¢; occurring in a document d that is relevant or nonrelevant
to the current topic, respectively.

However, as discussed above, interactive learning environments do not allow the
P(t;|R?) parameter values to be calculated using the batch-oriented frequency-count
method of Equations 4.6 and 4.7 (because document arrival is spread out over time,
and document relevance R’ € {R, N} is available only for those arriving documents that
the system selects and presents to the user for a relevance judgement). The absence of
point estimates for these probabilities leads to the need for an incremental Bayesian ap-
proach: prior distributions are assigned to the parameters, and sequential data sampling
is used to dynamically update the prior distributions, yielding posterior distributions for
the parameters. This may be achieved through the use of the model’s conjugate prior

distribution, which will be discussed in Chapter 5. The prior distributions embody any
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prior knowledge that may be available about the relevance and nonrelevance of docu-
ments to a given topic. Prior relevance knowledge may be obtained by observing the
occurrences of terms in the text of the topic description. The intuition behind this as-
sumption is the fact that documents relevant to a given topic are likely to possess many
of the same terms as the topic description, and in roughly the same proportions as in the
topic description. Prior nonrelevance knowledge is generally unavailable, therefore the
use of uniform (equal) nonrelevance priors is justified.

The next consideration is the choice of the specific probability distribution for docu-
ment representation. As discussed in Chapter 1, the frequency of occurrence of a topic
term in a document is indicative of the possible relevance of the document to the topic. A
natural probabilistic model that takes into account frequencies is the multinomzial model:
a document d of length N may be considered as resulting from /N word events or draws
from a vocabulary V. If the naive Bayes assumption is again made that the probability
of each word event is independent of the position (draw) of the word, and of other word
events of the document, then each document d can be said to result from N independent
draws on a |V|-valued multinomial variable.

Chapter 5 discusses in more detail the application of the multinomial model to adap-
tive Bayesian document classification or filtering, and provides experimental verification

of the validity and usefulness of this approach.



Chapter 5

Adaptive Bayesian Information

Filtering: Theory

5.1 Introduction

A central problem faced by interactive information filtering systems is the difficulty
of creating accurate representations of a user’s information need: users have difficulty
verbalizing their needs in a concise manner but are easily able to verify which documents
satisfy their needs and which do not, when presented with such documents. A user typ-
ically initializes such systems with a concise query, topic description, or set of keywords.
Such initial information is normally only an approximate description of the users actual
information need. This chapter outlines how Bayesian learning may be applied in an
interactive information filtering environment in an adaptive manner that allows a user’s
information need (or user-profile) to be learned over a period of time by incorporating
user feedback into the learning process!. This may be contrasted with, for example,

batch-oriented learning where users typically provide large amounts of labeled training

1See [Mar89)], [Rob94], and [Gel35] for theoretical coverage of empirical Bayesian analysis; the current
chapter illustrates how this theory may be adapted to an interactive information filtering domain.
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examples at a single point in time and learning occurs all at once.

After initialization, the system begins filtering arriving documents using the initial
user-profile as a guide, and presents to the user only those documents that “match” the
user-profile. The user reviews each presented document in turn and provides the system
with feedback of the actual relevance of each presented document. The system adjusts
its user-profile based on this feedback, and is able to learn from both its successes and its
failures. The initial profile gradually evolves into a more accurate user-profile over time.

By constantly intferacting with the user, the process is potentially able to achieve a
more accurate representation of user information needs than is possible through batch-
oriented supervised learning; at any time the user may change her information require-
ments in subtle ways, and the interactive system will adapt to such changes.

However, such an interactive environment imposes the constraint that the system
must generalize a user’s information need based only on user feedback from documents
that the system has seen up to a point in time. That is, the system must pass a judge-
ment on a document before it sees all future documents. Thus, such a system does not
possess the learning efficiency of batch-oriented learning systems where all positive and
negative training documents are available at one point in time, and model parameters

are optimized before the system is asked to classify new documents.

5.2 Multinomial Document Representation

Section 4.5 provided the intuition behind the usefulness of the multinomial distribution
for modeling document word frequency information in an interactive document classifi-
cation or filtering environment. Given a vocabulary V and the naive Bayes assumption
that the occurrence of a term in a document is independent of (1) the term’s position in
the document, and (2) all other term occurrences in the document (including multiple

occurrences of the specified term), then each document ¢ may be considered drawn from
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a multinomial distribution of terms ¢; € V, i=1,...,|V|, through |d| independent trials.
Let f; > 0 denote the count of the number of times term ¢; € V occurs in document d;
then the probability of occurrence of d, given its relevance value R¥ € {R, N} to some
user-topic of interest, is provided by the multinomial distribution:

P@1§iR) = Pl foreoos fit | B 70) = i (g @)™ 0y, Y1 (5.1)

i=1
where |d| = V! 1 fi, and OR, = P(t;|R7) is the probability of term t; € V being selected
in a trial, given the relevance value R? of d to the current topic, i =1,...,|V]|.
The most probable classification (relevant or nonrelevant) of d, with respect to a given

topic, is determined by the maximum of P(R|d) and P(N | d), where

P(R|d) = P(RL}(;()dIR) by Bayes theorem (5.2)
P(R) Id|' : I-IIVI of;
= --I;(fi) by (5.1) where Rf = R (5.3)
= c-P(R) 11"/['0{?; (5.4)
i=1
and
P(N|d) P(N;D}(;()d IN) by Bayes theorem (5.5)
P(N) gt I, 6f; |
= I_;(a;) by (5.1) where R? = N (5.6)
= c-PoV) T16%, (57)

where ¢ = mﬁ-‘f@m is a scaling constant that ensures that the two conditional proba-

bilities sum to one, for a given document d.

Point estimates cannot be made of the 2{V'| multinomial parameters 8z, = P(t;|R) and

6y, = P(t;|N) in an interactive on-line document filtering environment?. However, these

2The reason for this is the same as that discussed in Section 4.5: such point estimates cannot be
derived when data sampling occurs over an extended period of time, as occurs in interactive environments.
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parameters may be represented through probability distributions p(6g,) and p(fx,),
respectively, ¢ = 1, ...,|V|. Such distributions can be established through a combination
of (1) prior knowledge of their form, and (2) sequential document data sampling. The

next section will discuss in detail the manner in which these distributions are determined.

5.3 Conjugate Priors and Learning Model Parameters

The method of conjugate priors® may be used to provide incremental Bayesian learning
of the parameters of a given probabilistic model in the case where
e data sampling is sequential in nature (e.g., from on-line data sources);

® prior information of the model’s parameters is available.

A family C of probability distributions on parameter # is said to be conjugate (or
closed under sampling) if, for every (prior) distribution 7(#) in C, the posterior distri-
bution 7(#|z) also belongs to C [Rob94]. That is, if a data sample z is obtained from
data distributed according to probability distribution p(z|8), written = ~ p(z|f), and 7

represents the conjugate prior of p, then
z~p(zld) and »(#) eC = w(f|z) €C.

If the family of priors C is parameterized, then for any @ € C, m has has the desir-
able property that switching from prior to posterior distribution is reduced to simple
arithmetic updating of the parameters of w. Thus conjugate priors are a mathemati-
cally convenient means of obtaining posterior distributions from prior distributions in an
incremental manner, as data samples arrive over time.

Once a probability distribution D has been postulated as a model of the manner in
which specified data is generated, the general procedure outlined in Figure 5.1 illustrates

how the above incremental Bayesian approach may be used to learn the parameters of D.4

3See [Mar89], [Rob94], or [Gel95).
4The procedure of Figure 5.1 is an expanded version of that presented in [Cas97], p. 48.
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1. Determine D’s conjugate family of priors C.

2. Approximate a prior C distribution on each of D’s n parameters and initialize
the means and variance of each of these distributions by setting C’s n hyperpa-
rameters, using

@ frequency counts from prior data, or

@ uniform (noninformative) priors.
Obtain a data sample d from data distributed according to D.
Increment C’s n hyperparameters with d, yielding n posterior C distributions.

Repeat from Step 3 until data sampling has been completed.

e

Calculate the mean of each of C’s n posterior distributions.

. Assign the n posterior means as point estimates of D’s n parameters.

=~

Figure 5.1: General procedure for incremental Bayesian learning.

The following subsections will elaborate on this general procedure for the specific
document filtering application; that is, through incremental document sampling, prob-
ability distributions and hence point estimates of the parameters of the relevant- and
nonrelevant-document multinomial models may be established, with respect to a given

topic. A detailed algorithm for this procedure is presented in Figure 5.2 of Section 5.6.

5.3.1 Dirichlet Conjugate Family

A multinomial distribution of n parameters has as its conjugate the Dirichlet distribu-
tion ‘DIT\’,fj (a1, 9, -..,a,) with n hyperparameters a;,a;...,a, which are normally
initialized with frequency counts obtained from prior information of the specific multi-
nomial distribution being modeled, relative to given information R’ of the concept being
modeled. If the multinomial distribution has parameters 3: (6,,6,...,6,), then the

Dirichlet density function for 5 is

T +az+---+ ap)

-
e Q) = pr—lgez—l ... gan—l ’
p(e l a1, » O ) F(al)r(ag) . I‘(an) 1 62 on N (5 8)
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where I'(ey;) = /; C?"“'Hﬂ"dt is the gamme function, and go,» =1.

For a given user-topic, Equations (5.4) and (5.7) of Section 5.2 indicate that two multi-
nomial document models are required: a model of document relevance and a model of doc-
ument nonrelevance. Therefore, letting n = |V| and R; € {R, N} in Equation (5.8) leads
to the following Dirichlet distributions over the multinomial parameters 0 r= P(?l R)

and fn= P(? | N), respectively:

N vi 1
p(8r) = DIRf(ar,,---.ary) « [l & (5.9)
=1
— N Wi ay.—1
p(eN) = DIR[V[(aNU . “)aN[v|) o< H oN;' - (5'10)

i=1
5.3.2 Initialization of Prior Distributions

For relevance priors, the information implicitly provided by topic description word fre-
quencies may be used as prior information to provide objective priors with which to
initialize the hyperparameters ag, of p(b',;). In a given topic description T, the fre-
quency of occurrence f; of an individual term ¢; € V in T, as a proportion of the length
|T’| of T, may be considered as a rough approximation of the proportion of times that ¢;
will occur in “typical” documents that are relevant to T. Given vocabulary V, then for
each term ¢; € V, i =1,...,|V], the relevance prior ess frequency-estimate of t; is

ess
ag, = fi + |T|R, (5.11)

where f; > 0 is the frequency of occurrence of term ¢; in topic T', and essg is a constant
called the relevance equivalent sample size that represents essp virtual samples of data
before actual data sampling begins. The relevance prior ess frequency-estimate ag; serves
two important purposes:

1. A means of initializing every term t; € V (even those with f;=0) with a non-zero

prior probability of appearing in a relevant document, and

2. The total 2?;'1 ag; provides a wetghting of our confidence of how well the “prior”

proportions ag,/ E}‘QI ar; estimate the relevance-model’s parameters Og; , relative to
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the proportions from term-frequencies obtained during document data sampling®.

The first item is justified because the number of unigque terms ny in T is such that
nr < |V|; setting ag, to zero for all |V|—nr terms that do not appear in T would
understate the probabilities of these terms appearing in relevant documents (i.e., there
will exist many vocabulary terms that may potentially occur in relevant documents in
addition to the nr unique terms in T'). Also, setting ag, to zero for some t; € V' would
result in @g, = P(t;|R) =0 in (5.4), if ¢t; does not occur in subsequent training documents.
If such a t; then occurs in a document d that is to be classified, the right-hand side of
(5.4) would become zero, making a comparison between (5.4) and (5.7) meaningless.
The second item is justified because both the prior frequencies of (5.11) and the ac-
tual training data frequencies contribute to the determination of the final values of the
hyperparameters. In the case of relevance priors, the actual frequencies obtained from
subsequent (unlimited) document data sampling will have potentially much more influ-
ence in providing term relevance information than the prior frequencies. Hence, it is
expected that essg will be a “small” positive integer; this intuition will be confirmed
with empirical analysis in Chapter 6.

For nonrelevance priors, there is no prior information regarding which terms will
be indicative of a nonrelevant document, with respect to a given topic; therefore, nonin-
formative (uniform) priors are appropriate. For each term t; € V, i =1,...,|V]|, the

nonrelevance prior ess frequency-estimate of t; is

€SSyN
= —— 5.12
QanN; |V| ] ( )

where essy is a constant called the nonrelevance equivalent sample size. The nonrelevance
prior frequencies given by (5.12) intuitively should have much more influence in providing
term nonrelevance information than actual nonrelevant document sampling (because the

latter sampling represents only a very small example of all possible unseen nonrelevant

5See Section 5.3.4 for a discussion of parameter estimation.



CHAPTER 5. ADAPTIVE BAYESIAN INFORMATION FILTERING: THEORY 40

documents). Hence, it is expected that essy will be a “large” positive integer, i.e.,

essy > essp; this intuition will also be confirmed with empirical analysis in Chapter 6.

5.3.3 Updating Distributions with Observed Data

As each document data observation d arrives, with w? = (fi, fa,..., fjv|), where f; >0
represents the frequency of term t; € V in d, interactive document filtering systems
require that the system make an immediate judgement of d’s relevance R’ € {R, N},
with respect to the given topic T. Only if the system judges d as relevant to T, is d
presented to the user for a final relevance judgement. The user’s relevance judgement of
d is then used to update either p(zg) or p(;N), depending on whether his judgement is
“relevant” or “nonrelevant”.

The initial system relevance judgment for each d is made by obtaining point estimates
for 6r, = P(t:|R) and Oy, = P(t;|N), i = 1,...,|V|, and then evaluating and comparing
(5.4) and (5.7). The calculation of point estimates for 8z, and 8y, will be discussed below,
in subsection 5.3.4.

Assume (1) the system has judged document d = (fi, f2,..., fiv|) as relevant to T’
and has presented d to the user, and (2) the user has provided the system with d’s
true relevance value R’ € {R, N}. Then the frequencies f; > 0 of occurrences of terms
t;€Vind,1,...,|V|, are used to update the hyperparameters of either p(.;;z) or p(aN),

depending on the value of R’:

- Vi -
p(6rld) = DIRF(cr, + fi,---rary, + fiv) o« [ 6%+ (5.13)
i=1
— N A\ an.+fi—1
p(ON | d) = DIR|V|(CYM + fi,---, Ny, + f|V|) o< H ON,-' . (5.14)
i=1

Thus (5.13) and (5.14) represent the posterior distributions P(ZR |d) and p(ZN | d),
given observed document d. These become the prior distributions p(gn) and p(aN) for
the next iteration. In this manner, incremental Bayesian updating of prior to posterior

distributions is possible.
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5.3.4 Parameter Estimation

As data sampling progresses, the Dirichlet distributions p(agl d) and p(ZN | d) gradually
evolve into accurate posterior distributions that describe the model’s individual parame-
ters Og, = P(£;|R) and Oy, =P(t;|N), i =1,...,|V|. At any time, point estimates fp, and
fn, for these parameters may be obtained by calculating the 2|V| means of the Dirichlet

posterior distributions as follows:

~ -~ aR.
Or, = P(t|R) = Elp(brld)] = —pr-— (5.15)
2 =1 OR;
Ov. = P(IN) = Elp(On|d)] = —pro—, (5.16)
Zj=1 an;
for each term ¢; € V, 1 =1,...,|V].

5.4 Most Probable Document Classification

Substituting the point estimates (5.15) and (5.16) of the multinomial parameters g, = P (t;| R)

and Oy, =P(t;|N) in (5.4) and (5.7) respectively, yields the following:

vi

P(R|d) = c-P(R) ] (5.17)
=1
i

P(N|d) = c-P(N)ﬁé,{;’i. (5.18)

i=1

For convenience, it is useful to express (5.17) and (5.18) in “log odds” form:

P(R|d P(R)ITY, 6%
IOg?’((_!\’_ll-c?))' = log P(N; nl‘i'laf (5.19)
B P(R) M (6 \"
= (P(N) I (5) (520
B ( ) ] 0‘ fi
= log P(N) + gl g( ) (5.21)
v
= log IP;((N)) + Z fi-log ZR‘ (5.22)
_ g BB m ¢ PEIR) (5.23)

spm) + &5 By

i=1
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The maximum of P(R|d) and P(N | d), and hence d’s most probable classification, may
now be established by noting the sign of log F((Fit% Iflog -I-,—((-A—,ll% > 0 then P(R|d) > P(N|d),
and d is most probably a relevant document; otherwise d is most probably a nonrelevant
document, relative to the current topic.

The term IOgFuLv))' (5.23) is an unknown constant for a given topic. As a general
rule, P(R) <« P(N), i.e., an arbitrarily chosen document is most likely nonrelevant to a
given topic. Omitting log %‘% from (5.23) results in the decision point (threshold) mov-
ing a constant amount in the positive direction on the z-axis, away from the origin. The
exact threshold is unimportant if the goal is simply to rank documents according to their
log odds. But if the goal is to determine the most probable classification of documents,
then the threshold should be learned, as a prerequisite to document classification. How-
ever, the empirical analysis of Chapter 6 shows that the use of zero as an approximate
threshold is sufficient (as the exact threshold is generally “close” to zero, relative to the
log odds being compared, e.g., a typical threshold of O(10') versus log odds of +0(10?)).

Therefore, (5.23) can be reduced to

P(R|d) ] P(t.IR)

PVTD ~ =5 % ) (5-24)

log

Equation (5.24) is used by the filtering system to judge documents as either relevant or
nonrelevant to a given topic. If the system judges a document as relevant to the current
topic, it “retrieves” the document on the user’s behalf and presents it to the user, for
confirmation of actual relevance.

The next two sections present implementation details of the user-profile and an algo-
rithm for adaptive Bayesian information filtering. Chapter 6 provides empirical verifica-
tion of the usefulness of this information filtering approach and provides comparisons of

results with two non-probabilistic information filtering methodologies.
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5.5 User-Profile Implementation

Given a vocabulary V' and a user-topic of interest T, the user-profile U is represented as
a dynamically growing vector of size |U|, consisting of tuples of six elements each; each
tuple ¢ =1,..., |U|-1, represents a unique term of V that has been encountered in either
T or the document-stream, up to a point in time; tuple [U| has label ¢y, = other and
represents all |V |—|U|+1 vocabulary terms not yet encountered up to that point in time.

Each tuple 7 of U consists of siz components:

e term label ¢;

e (a) relevance and (b) nonrelevance cumulative term-frequency counts, represented
as cumulative hyperparameters ag, and ay,, Equations (5.13) and (5.14), respec-
tively

e (a) relevance and (b) nonrelevance point-estimates P(t;|R) and P(t;|N) of the
multinomial parameters 8g; and 8y,, respectively, Equations (5.15) and (5.16)

P(t;|R)
P(4IN)”

e estimated log odds of t; appearing in a document, log
Totals of the second and third components of all of U’s tuples are maintained, to facilitate
calculation of the fourth, fifth, and sixth components of each tuple. The fourth and fifth
components of tuple |U| are calculated as averages over the |V|—|U|+1 unseen terms;
therefore, the sixth component of tuple U], log -5-((—:5:%, represents the average log odds
of an unseen term.

At initjalization, the relevance and nonrelevance cumulative frequency counts (second
and third components) of tuple |U| are assigned the priors equivalent sample size values
defined in Section 5.3.2, essg and essy, respectively; as each new vocabulary term is
encountered in T and during document sampling, these cumulative frequency counts
are decremented by -‘-I’V’f and °—|‘"—’,fﬁ, respectively. The latter values are then used to

initialize the second and third components of the newly added term’s tuple (e.g., topic-

term initialization, Equations (5.11) and (5.12)).

5.6 Algorithm

Figure 5.2 presents an algorithm for adaptive Bayesian information filtering of on-line

news-documents, given a vocatulary V' and the multinomial distribution as document model.
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3. Let the second and third components of tuple |U]| of U be essp and essy, respectively.

4. Foreacht; in T:

8. Repeat from Step 5 until news-document sampling has been completed.

. Let the conjugate family C be the Dirichlet conjugate family of Section 5.3.1, with density
function (5.8) and members C®’ € C. Given R7 € {R,N} and n = |V|, then clf‘t’f = ‘DI'R,’%,'

and CI’{,[ e DI'R,f{,I, Equations (5.9) and (5.10), respectively.

. Let: T = (t1,¢2,...,tv|) be the user-topic term vector,
w* = (f1, f2,-. ., fiv]) be T’s term-frequency vector,
U be the user-profile, as defined in Section 5.5,
essp be the relevance equivalent sample size,

essy be the nonrelevance equivalent sample size.

If f; > 0 then:
agr, = fi + essr/|V],
an, =essny [|V],
Add a new tuple to U to represent ¢;,
Initialize second and third components of new tuple with ag, and ay,, respectively,
Decrement second and third components of tuple |U]| with essg/|V| and essy/|V],
respectively
EndIf
EndFor,
Update U’s second and third component totals, and recalculate the fourth, fifth, and sixth
components of every tuple of U.

. Sample the news-wire feed for the next document d = (t1,1,,..., Yvy)s
Let w? = (fy, fa,- .-, fiv]) be d’s term frequency vector,
Let {4 = (I},1,, .. -,jvy) be d’s term log odds vector, initialized with l; =0,i=1,...,|V].

. For each ¢; in d with f; > 0:
If(t; €U)

then Set [; to t;’s log odds in U: log -g—g—fl%))-
else Set I; to unseen-term log odds: log -5%51:% (from tuple |U| of U)
EndIf
EndFor.
. Calculate dzog0dds = w® -1 = Z!-:Il fi-log -g—g—:l%,z%. Equation (5.24),

If (dzogodds > 0) then: (If true, then the system has judged d as relevant to T': update U )
If any of d’s terms are not explicitly contained in U, then:
Add tuples to U to represent these new terms,
Initialize the second and third components of each of these new tuples with essg/|V|
and essy /|V], respectively,
For each new term added to U, decrement the second and third components of
tuple |U] with essr/|V| and essn /|V|, respectively
EndIf,
Forward d to the user,
Let j be the user’s relevance-judgement for d,
If (j == Relevant) then
Update the second component of U’s tuples with w? frequencies (Equation (5.13))
else
Update the third component of U’s tuples with w? frequencies (Equation (5.14))
EndIf,
Update U’s second and third component totals, and recalculate the fourth, fifth, and
sixth components of every tuple of U
EndIf.

Figure 5.2: Algorithm for adaptive Bayesian information filtering.



Chapter 6

Adaptive Bayesian Information

Filtering: Empirical Tests

6.1 Introduction

This chapter describes empirical tests of the Dirichlet conjugate prior approach for esti-
mating the parameters of a multinomial model of text documents in a specific interactive
news-document filtering environment. The experimental results are compared with the
performance of two other interactive information filtering nonprobabilistic methods: a
VSM/Rocchio learning approach, and a static “benchmark” system that does not em-
ploy learning techniques. The probabilistic Dirichlet model performed significantly better
than the other models for the perforrnance measure F3; however, its performance for the
measure “geometric mean of precision and recall” was slightly less than that of the other

models. These performance measures are defined in Section 6.2.1.

45
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6.2 Experimental Evaluation

6.2.1 Experimental Method

Performance Measures

The following are the performance measures adopted for the experiments (defined relative

to a given user-topic of interest):

Precision. The percentage of documents retrieved by the system and presented to the

user that are actually relevant,

Recall. The percentage of actually relevant documents in the data set that are retrieved

by the system and presented to the user.

Precision and recall are inversely proportional to each other; e.g., a system with high pre-

cision will usually have low recall. Different systems may exhibit dramatically different

performances, depending on the adopted measure. Therefore a weighted mean of the two

measures is sometimes used as a measure. The weighting depends on the relative impor-

tance of each component, which varies from user to user. Typically, the geornetric mean

of the two measures is used, with equal weighting given to each.

TREC F-Utility. Of the documents retrieved by the system as relevant, let R and N

represent the number that are actually relevant and nonrelevant, respectively; then the

following F-Utility measure represents the weighted net absolute number of documents

correctly retrieved, as defined by the Tezt REtrieval Conference-7 (TREC-7) [Hul98]:
F3 = 4R - N. (6.1)

Data

The document set used for the experiments consists of 164,597 Associated Press news-
documents provided by TREC-7 for their filtering track competition. The topic set
consists of 50 predefined topics, also provided by TREC-7. A subset of the provided

documents is labeled with relevance and nonrelevance judgements with respect to the
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topics in the topic set. Any document that has not been labeled with such a judgement
is assumed to be nonrelevant to all 50 topics. The documents are partitioned into 686

days: February 12, 1988 to December 31, 1989. Each day consists of a few hundred

documents.

Method

Documents are presented to the filtering system one at a time, in chronological order.
Documents occurring in the first 441 days are training documents, and subsequent doc-
uments, up to day 686, are test documents. Cumulative results are tabulated in a 2 x 2
misclassification matrix (also called confusion matrix) that forms the basis for the cal-
culation of the three performance measures: precision, recall, and F3. The first row of
the matrix contains counts of all documents that the system has retrieved and presented
to the user as relevant; the second row contains counts of all documents that the sys-
tem classes as nonrelevant and does not retrieve; the first column contains counts of all
documents that are labeled as relevant (retrieved or not); and the second column con-
tains counts of all documents that are labeled as nonrelevant or have no relevance label

(implicitly nonrelevant).

User-provided Parameters

Vocabulary. The model’s vocabulary V is the usual English language vocabulary, aug-
mented with proper nouns and acronyms. All text is converted to lower-case and punc-
tuation and numbers are ignored!. Use of the formulas in Chapter 5 requires that a
vocabulary size |[V| be assigned: the value of 50,000 has been chosen as an approxima-
tion to |V| as it represents a reasonable choice for the number of distinct terms and

acronyms that may be encountered in a general news-document environment.

IDigits are allowed to form portions of of acronyms; future work uses punctuation to disqualify certain
groups of words from forming phrases
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Equivalent Sample Size. Formulas (5.11) and (5.12) require that values be chosen for
the priors equivalent sample sizes essgp and essy. Figures 6.2 and 6.3 provide graphs
of performance results at the end of the 686 day training and testing period, for essgr
between 1 and 700 and essy between 1,000 and 50,000; the specific performance measure
chosen for this experiment is the geometric mean of precision and recall, averaged over
the TREC-7 topic numbers 1 to 10. Figure 6.2 is a 3-D view, with the z-axis representing
the geometric mean of precision and recall; Figure 6.3 includes 2-D perspectives of the
first graph with respect to each independent variable.

These graphs indicate that average performance is rather insensitive to changes over
fairly wide ranges of ess values; however, it was noticed that performance varies con-
siderably for individual topics as ess values change. Therefore, the following arbitrarily
ess values were chosen for the experiments: essp = 20 and essy = 20, 000; this choice
guards against the introduction of “tuning bias” into the experiments from choosing ess
values that optimize performance for certain topics?. These selected ess values were used
for two sets of tests: (1) comparative tests of the performance of the current paramet-
ric information filtering model against two nonparametric models, and (2) tests of the
parametric model’s performance variation over time (training and testing periods).
Log Odds Threshold. As explained in Section 5.4 and illustrated by Equation (5.24),

a log odds relevance threshold of zero has been chosen.

Other Models for Comparative Purposes

For comparative purposes, the performance of the current probabilistic model is compared
with two nonprobabilistic interactive filtering models: an incremental VSM/Rocchio
learning method, denoted “Single PG Agent”, and a benchmark method that does not

employ any learning, denoted “Benchmark”. All three methods begin with a user-profile

2Such “tuning” is strictly prohibited during testing of incremental (adaptive) filtering algorithms
because tuning is implicitly a batch process.
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initialized with term frequencies from the current topic of interest, as discussed in Sec-
tion 3.1. The “Single PG Agent” nonprobabilistic method employs a form of the tf.idf
term-weighting heuristic discussed in Section 3.2, with user-profile updating based on user
relevance feedback using an incremental-Rocchio approach, as discussed in Section 3.2.1.
The “Benchmark” nonprobabilistic method also uses a tf.idf term-weighting heuristic;
however, for each given topic, the user-profile is static over all documents and is not
updated by user relevance feedback. See [Kar96] for more detailed descriptions of these

nonprobabilistic document filtering methods.

6.2.2 Results

Figures 6.4(a) and 6.4(b) provide detailed comparative results by topic for the three eval-
uated systems at the end of the 686 day training and testing period, for the performance
measures geometric mean of precision and recall, and F3, respectively. The following

table summarizes the performance averages of Figure 6.4, over all topics:

Performance Averages

Model G. Mean F3
Benchmark 0.2208 —6.22
PG Agent 0.2186 —27.14
Probabilistic 0.1678 34.38

Figure 6.1: Performance averages (topics 1-50 of the TREC-7 adaptive filtering track).

Figures 6.5 and 6.6 show the manner in which the probabilistic model’s perfor-
mance changed over time. The model’s parameters 8z, = P(t;|R) and 8y, = P(t:|N),
i=1,...,|V|, are learned only during the training period from Day 1 to Day 441. Dur-
ing the testing period from Day 442 to Day 686, the parameter values in effect at the
end of the training period are used.

See Section 6.2.3 for a discussion of these results.



CHAPTER 6. ADAPTIVE BAYESIAN INFORMATION FILTERING: EMPIRICAL TESTS50

0.35 —y--er iR FISTT et sonrer Ty

Trvreee

Averaga G. Mean

015 o o - ............ IR
T R S A --------- '. .......................................
e S N S A AP A
3 2 1 0 200 400 600
x 10* ess,, ess,
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Figure 6.3: Performance as a function of equivalent sample sizes (single variable view).
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Topic Bench | PG Agent | Prob Topic Bench | PG Agent | Prob
1 0.12 0.21 0.25 1 -3 -125 30
2 0.15 0.18 0.15 2 -14 -108 22
3 0.19 0.23 0.10 3 2 -34 -1
4 0.33 0.31 0.38 4 -92 -153 32
5 0.38 0.51 0.50 5 36 55 62
6 0.47 0.43 0.45 6 154 49 162
7 0.37 0.34 0.28 7 -26 -239 52
8 0.07 0.07 -~ 8 -88 41 -14
9 0.47 0.46 0.03 9 72 41 -12

10 0.41 0.35 0.43 10 90 -306 174
11 0.46 0.44 0.54 11 224 146 411
12 0.29 0.30 0.13 12 125 158 21
13 0.35 0.69 0.03 13 50 190 -17
14 0.13 0.10 0.09 14 -36 -24 -6
15 0.40 0.39 - 15 46 =27 -16
16 - - - 16 -28 -26 -18
17 - - 0.44 17 0 0 175
18 0.14 0.15 ~ 18 -1257 -1493 -39
19 0.10 0.09 0.17 19 -14 -12 8
20 0.58 0.37 0.34 20 109 35 39
21 0.62 0.70 0.62 21 48 66 55
22 0.19 0.41 0.35 22 109 539 385
23 0.44 0.57 0.55 23 108 224 243
24 0.04 - 0.18 24 -26 -11 26
25 0.37 0.26 0.12 25 28 -178 -18
26 - - - 26 -1 -1 -23
27 0.41 0.41 0.10 27 4 4 -13
28 0.27 - - 28 -87 -6 -17
29 0.05 - - 29 -58 -2 -9
30 - - - 30 -14 -14 -16
31 - - - 31 -7 -4 -8
32 - - - 32 -1 -1 -21
33 0.08 0.08 0.13 33 -8 -8 -8
34 - - - 34 o 0 -18
35 0.41 0.45 0.38 35 -1 0 -2
36 0.21 0.13 0.10 36 -5 -81 -12
37 - - - 37 0 0 -3
38 0.12 0.14 0.03 38 18 26 -10
39 - - - 39 0 g -11
40 0.48 0.44 0.43 40 140 2 165
41 0.07 0.09 - 41 -19 -10 -10
42 0.02 - - 42 -43 -8 -15
43 0.18 0.16 0.09 43 -3 3 -10
44 0.27 0.36 0.02 44 26 45 -28
45 - - 0.31 45 -1 -1 20
46 0.62 0.40 0.51 46 91 -29 62
47 0.25 0.24 0.03 47 11 -7 -18
48 - - - 48 -11 -11 -7
49 0.52 0.46 0.11 49 41 20 -13
50 - - - 50 0 Q -10
Average | 0.2208 0.2186 | 0.1678 Average | -6.22 —27.14 | 34.38
(a) Geometric Mean of Prec. & Recall (b) F3 Utility

Figure 6.4: Comparative tables of performance for the three document filtering models
(by topic, where performance is cumulative over the entire training and testing period).
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Figure 6.5: Probabilistic model performance over time (average of topics 1-50).

6.2.3 Discussion

Figure 6.1 shows that, over the 50 topics, the current probabilistic model obtained an
impressive average F3 value of 34.38, compared to —6.22 and —27.14 for the Benchmark
and PG Agent, respectively®. The measure F3 reflects filtering precision as a weighted
net absolute number of relevant documents correctly retrieved (net of nonrelevant doc-
uments incorrectly retrieved, or fallout). The geometric mean of precision and recall,
however, averaged 0.1678 for the the probabilistic model, which is slightly less than the
PG Agent’s average of 0.2186 and the Benchmark’s average of 0.2208. The inverse re-

lationship between F3 and the geometric mean can be explained by the fact that an

3A higher score represents better performance.
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Figure 6.6: Probabilistic model F-Utility performance over time (average of topics 1-50).

increase in geometric mean is often associated with an increase in recall. But an increase
in recall (the percentage of relevant documents retrieved) generally implies an increase
in the number of nonrelevant documents that are also being retrieved; such fallout is
represented by the N value in Formula (6.1), where it can be seen that an increase in N
may cause a decrease in F3.

The probabilistic model clearly performs very well for the TREC F-Utility measure F3.
This verifies the theoretical validity of the current probabilistic model for interactive doc-
ument filtering, and indicates that such a model is at least as powerful as the interactive

VSM/Rocchio nonprobabilistic model.

Figure 6.5 shows that average precision improved during training from Day 1 to Day
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200, and average recall improved from Day 1 to Day 320; it is apparent, however, that
very slight overfitting has occurred during training: the model’s user-profile has grown
to such an extent that performance degrades very slightly, halfway through the 441 day
training period. Two independent experiments were performed in an attempt to alleviate
this degradation: (1) training was restricted to the period from Day 1 to Day 200, and
(2) the profile-size was limited to a maximum of 500 terms (rather than an unlimited
size). Both experiments, however, yielded approximately 15% reduction in geometric
mean at Day 686, from the value indicated in Figure 6.5. Overfitting may be occurring
because only a single prcfile is being used to model all relevance regions of the very large
news-document space. In effect, the model may have reached its “limit of effectiveness”
(for a single model). Hence, the use of multiple models may be justified, where each

individual model approximates a local area of the document space?.

Overfitting in the late stages of training may also be occurring due to the nature of
frequency-updating in the Dirichlet model: the impact of individual frequency updates
on the model’s parameters decreases with training time because frequency counting is
cumulative in nature; the earliest updates have the greatest impact in changing the
model’s parameters, and the latest updates have the least impact. This becomes a serious
problem when, for a given topic, the probability of a term ¢; occurring in a relevant
document, P(t;| R), changes over time (called term nonstationarity). The cumulative
nature of the frequency-counts for ¢; (both relevance and nonrelevance) result in the

model being unable to adjust for such nonstationarity.

Figure 6.6 shows that average F3 performance increased almost linearly with training
and testing time. This indicates that, cumulatively over the training and testing periods,
the weighted number of correctly retrieved (relevant) documents consistently erceeded

the number of incorrectly retrieved (nonrelevant) documents or fallout; i.e., the model

4See [Kar96] for a discussion of the SIGMA information filtering approach that employs multiple
models for exactly this reason.
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performed very well at minimizing fallout at all stages of the learning process, not just
after training had completed. This observation strongly confirms the model’s theoretical
suitability for interactive environments: it is able to make “good quality” predictions

midway through training, before seeing all training data.



Chapter 7

Conceptual Modeling and Telos

7.1 Introduction

Research in the field of information filtering has tended to address only the process
of accessing information and has generally ignored the important requirement that re-
trieved information must be stored in an organized persistent form that is easily under-
standable by users. While filtering on-line news feeds for documents relevant to specific
topics, users generally wish to store both the relevant documents located and the relation-
ships between the documents, topics, subtopics, and subject-domains. However, subject-
domains, topics, and documents have complex internal structure and possess complex
inter-relationships. A relational database representation of this information is, in some
sense, “artificial” because the real-world entities and relationships must be decomposed
into tables and records in order that they fit the logical model; i.e., the correspondence
between the model and the real-world becomes unclear to users: users are not easily able
to interpret the semantic content of such a logical data model. Therefore, it is clear that

information models are required that are able to capture the semantics of applications.

Automated information modeling has experienced significant advances since the early

days of Computer Science when tmplementation issues, such as efficiency, were a primary

56
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concern to computer users. The introduction of logical data models in the early 1970s
freed users from such implementation concerns; hardware advances since that time have
made possible the development of a family of more compute-intensive people-oriented
information modeling techniques, called conceptual modeling.

This chapter briefly discusses information modeling and introduces conceptual model-
ing; several directions of information modeling research closely related to conceptual
modeling are also discussed. The Telos conceptual modeling language is introduced, and
an overview of its representational framework is provided. Telos will be used in Chapter 8
to model the information domain of the news-document filtering system presented in the

preceding chapters.

7.2 Information Modeling

Information modeling is the use of computer-based symbol structures to formally de-
scribe and capture the meaning of some aspect of the real world, for use by automated
systems or by people. An information model® consists of collections of (1) symbol
structure types, (2) operations that can be applied to the symbol structures, and (3) in-
tegrity rules that define the legal symbol structures that are allowed by the model. An
information base! is a symbol structure based on a specific information model that
describes a specific aspect of the real world. It consists of structured information and
serves a role somewhat analogous to long-term human memory.

Information modeling possesses at least three dimensions: (1) the real world domain
being modeled, (2) the symbol structures used, and (3) the intended users of the model.
The domain may consist of concrete items, abstract concepts, natural-world phenomena,
or any type of human or automated activity (e.g., entity knowledge, activity/task knowl-
edge, processes, agents, goals, relationships, positions, roles, etc.). The symbol struc-

tures may take many possible forms: natural languages, implementation (programming)

1The definitions of information model and information base have been adopted from [Myl98].
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languages, mathematical languages, diagrammatic languages, logic-based languages, etc..
Such a variety of languages clearly have varying degrees of formality and relationship to
machine implementation. The users of information models may be people and/or other
automated systems. The symbol structure dimension determines the type of the infor-
mation model (physical, logical, or conceptual) and its ezpressiveness. Physical models
utilize programming-like data structures, with an emphasis on computational efficiency
(at the expense of modeling real world structure). Logical models use abstract math-
ematical data types to hide implementation details from the user, but offer minimal
information structuring capability. Conceptual models represent information in a man-
ner analogous to the way humans conceptualize the information, i.e., conceptual models
model the complex structure and relationships implicit in the real world domains they

are modeling.

7.3 Conceptual Modeling

Conceptual modeling is described in [Myl92a] as modeling information in a manner

1. consistent with the way people conceptualize the subject matter (e.g., via entities,

relationships, actions, and abstraction mechanisms), and
2. independent of machine implementation issues

That is, conceptual models are intended for use by people rather than by systems, for
the communication and understanding of information; they are characterized by “high-
level” complex symbol structures which have no specific relationship to any machine

implementation. They are specified by their ontologies and abstraction mechanisms:

Ontology Aspects of the world to be modeled, expressed in terms of the primitive con-
cepts or semantic terms used within the area being modeled (e.g., entity, activity,

relationship, process, state, agent, goal, belief, actor, role, etc.)

Abstraction mechanism Means of organizing a model’s primitive concepts into ab-
stract semantic relationships (e.g., classification, generalization, aggregation, con-

textualization, etc.)
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Ontologies may be arbitrarily classified into various types, depending on the nature
of the application being modeled. For example, a static ontology is concerned with
the static aspects of an application by describing concrete or generic entities that exist
in the application, and their attributes and interrelationships. A dynamic ontology is
concerned only with the changes inherent in an application, such as events, processes,
states, and state transitions. An intentional ontology is concerned with agents (intelligent
autonomous entities) and the goals and beliefs they possess about other concrete or
generic entities. A more detailed description of these “coarse-grained” ontologies, based

on a survey of several conceptual models, may be found in [Myl98].

Classification is the abstraction mechanism describing the binary relationship of a
single concept as a member of one or more generic concepts (classes), with all class
members sharing common properties. Classification is a non-transitive relation. The

converse of classification is instantiation.

Generalization is the abstraction mechanism describing the binary relationship of
superset between two generic concepts (classes); it is a partial order (and hence transitive)
relation. The converse of generalization, called specialization, provides the inference rule
of inheritance, where the properties of members of a class are also properties of the
members any specialization (subset) of the class. Inheritance may be strict (constraints
on properties may be strengthened only) or default (constraints on properties may be
arbitrarily changed). In addition, specialized classes may have additional properties to

those inherited.

Aggregation is the most common abstraction mechanism; it structures a concept in
terms of its component concepts. Such an aggregation structure is not necessarily unique
for a given concept: it is possible that a concept may be described by aggregation in more
than one way, depending on the contert under which the concept is modeled. References
to aggregate components may either be “by value” or “by reference” (i.e., components

may be other concepts or may be pointers to other concepts). There is generally no
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restriction on the “types” of a concept’s components; therefore, if a concept is composed
of any components of type Class, aggregation hierarchies of arbitrary nested complexity
may result, possibly leading to recursive aggregation.

Omitted from the above discussion are the (potentially complex) issues of multiple
inheritance and multiple instantiation; for a discussion of these issues, see [Tho92], and
[Myl90] pp. 6-7, respectively.

A more detailed survey of the many abstraction mechanisms that have been adopted
by Computer Science from Cognitive Science and Mathematics may be found in [Myl98]
(e.g., classification, generalization, aggregation, contextualization, materialization, nor-
malization, and parameterization).

Following [Bor90], as cited in [Myl92a], it is useful to contrast conceptual modeling
with knowledge representation and semantic data modeling. Knowledge representation
is the formal axiomatic modeling of information for the purpose of supporting reasoning
and planning by automated systems. Semantic data models (e.g., the Entity-Relationship
model [Che76}, and Tazis [Myl80]) attempt to capture the semantics of an application
and use this semantics in a manner consistent with current database technology; thus
semantic data models make implicit implementation assumptions about the manner in
which an information model will be represented on a machine, and are intended for use
by people or systems.

During the period 1974 to the present, a significant amount of research into knowledge
representation, semantic data models, and conceptual models has been performed by
the Knowledge Representation Group of the Department of Computer Science at the
University of Toronto. A comprehensive overview of this work appears in [Myl92b).
The culmination of this work, the conceptual modeling language Telos [Kou89], [Myi90],
[Myl92a], is the subject of the remainder of the chapter. Section 7.4 discusses related
work in knowledge representation, databases, and software engineering, and outlines
Telos’ genealogy. Section 7.5 provides a brief overview of Telos’ distinguishing features.

Section 7.6 discusses Telos’ representational framework.
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7.4 Related Work and Telos Genealogy

It is useful to overview related work in the context of research performed at the University

of Toronto from 1974 to the present.

7.4.1 Related Work in Knowledge Representation and Databases

Knowledge representation is concerned with the modeling of knowledge for the pur-
pose of automated reasoning and planning. Database management systems are
concerned with efficiently managing large amounts of knowledge. In the 1970s, modeling
of the “semantic content” of real world domains became an increasingly important focus
of research in both of these areas.

In the area of knowledge representation, semantic networks became a popular nota-
tion and were adopted by many AI projects. Initial research in the TORUS project at
the University of Toronto [Myl76] used semantic networks as a means of representing
the semantics of relational database systems. This research led to the conclusion that
semantic networks provide a promising notation for knowledge representation. However,
TORUS and other semantic network proposals at the time had serious weaknesses in
unambiguously representing natural language and other knowledge. These weaknesses
resulted in research into more powerful and greatly expanded semantic network represen-
tations. One such research effort at the University of Toronto led to the general purpose
knowledge representation language PSN (Procedural Semantic Network) [Lev77]. PSN
introduced several novel features within semantic networks: (1) object-oriented semantic
network representation, (2) use of metaclasses, (3) eztension of classification to meta-
classes, relations, and programs, (4) use of generalization and aggregation within semantic
networks, and (5) built-in class operations (methods).

In the area of database models, attention was directed to the shortcomings of physical

and logical database models in modeling real world domains. Abrial’s semantic model
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[Abr74] and Chen’s Entity-Relationship model [Che76] were early results of this new
direction. They were followed at the University of Toronto by the Tazis model [Myl80].
Taxis used some of PSN’s features, however it was heavily oriented towards maintaining
consistency with traditional database technology. Taxis was concerned with semantic
modeling for the specific purpose of supporting the design of information systems. It
organizes all components of an information system in terms of generalization hierarchies
(taxonomies). The strong implementation-oriented emphasis of Taxis is reflected by the
fact that data, attributes, and programs are each classified into fized built-in categories,
according to their implementation or execution characteristics. Taxis extends PSN’s class
operations by allowing arbitrary class operations, in addition to built-in methods.
Object-oriented databases [Ber93| have attracted attention in the database commu-
nity and share some of the goals of the above cited research; however, they are closer
in philosophy to object-oriented programming languages, and strongly emphasize the
aggregation abstraction mechanism. The following are their main features: (1) mod-
eling of real world entities as objects, (2) aggregation of complez non-primitive objects
as attributes, (3) encapsulation of method implementation (from method specification),
(4) single-level classification, and (5) inheritance. They are useful for applications such
as CAD where real world entities possessing complez internal structure are required to

be modeled in a manner that reflects exactly the actual internal structure of the entities.

7.4.2 Related Work in Software Engineering

Information modeling is a key component of requirements modeling, the initial anal-
ysis phase of software design where the software analyst attempts to understand a real
world problem before embarking on a software solution to the problem. Significant
early work in this area is represented by the techniques of Structured Analysis (e.g.,
Data Flow Diagrams (DFDs) [DeM78] and Structured Analysis and Design Technique

(SADT) [Ros77]). These early research efforts emphasized the aggregation abstraction
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mechanism. Subsequent research efforts introduced further abstraction mechanisms into
requirements modeling, such as generalization and classification. For example, the re-
quirements modeling language RML [Gre84] developed at the University of Toronto, and
object-oriented analysis approaches [Coa90] were highly influential in the evolution of
requirements modeling methodologies.

RML was introduced as a formal version of SADT for formally specifying the func-
tional requirements for proposed software systems. It adopted ideas from knowledge rep-
resentation and semantic data modeling and features an object-oriented representational
framework supporting classification, aggregation, and generalization. RML distinguishes
three types of built-in objects: entities, activities, and assertions, with entities and activ-
ities organized into generalization hierarchies. Attributes associated with each of these
objects are classified into specific built-in attribute-categories, each with a prespecified
semantic meaning. An assertional sublanguage replaces Taxis’ procedural sublanguage

and is used to specify constraints and deductive rules on objects.

7.5 Telos

RML’s rather rigid built-in semantics for objects and attribute-categories made it in-
adequate as a general-purpose modeling language. Therefore a line of more expressive
and general-purpose conceptual modeling languages was developed, beginning with CML
[Sta86], and culminating with Telos. This line of languages borrowed several concepts
from its predecessors and also added new innovations. Telos provides greatly improved
modeling flexibility over RML, allowing the modeling of widely disparate real world sit-
uations. The following is a brief outline of Telos’ distinguishing features:

1. Proposition “building-biock”: elimination of the distinction between entities and re-
lationships by allowing all knowledge base components to be treated in a consistent

manner as propositions; i.e., in Telos, “everything is a proposition”;

2. Object-oriented semantic network framework;
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3. Abstraction mechanisms: classification, aggregation, and generalization;

4. Classification along an infinite dimension of metaclasses (cf., the single-level clas-

sification characteristic of most object-oriented programming languages);

5. First-class citizenship of attributes: instantiation end attribution (allows the use of

attribute metaclasses as a means of obtaining customizable attribute categories);
6. Multiple instantiation: an object may be an instance of more than one class;
7. Functional capability: operations for knowledge insertion, removal, and query;
8. Assertional sublanguage: domain-specific integrity constraints and deductive rules;

9. Temporal representation and reasoning capability.

7.6 Telos Representational Framework

The Telos representational framework! is the structure provided by Telos for rep-
resenting knowledge; it is a generalization of the graph-theoretic data structures char-
acteristic of semantic networks and object-oriented programming languages. A Telos
knowledge base is composed entirely of a collection of propositions. A Telos proposition
is defined as a 4-tuple with components which are themselves propositions: source, label,
destination, and duration; the first three components denote a labeled edge, which serves
as a “relationship” within the represented knowledge (analogous to a semantic-network
link); the last component denotes a time-interval proposition, which represents the life-
time of the relationship that is represented by the proposition?. Example proposition

definitions are provided below.

1Several of Telos’ important features are omitted from this very brief discussion (e.g., its assertion lan-
guage and temporal knowledge representation); see [Kou89] for a thorough discussion of Telos’ features.
2Time-interval propositions are not used in the current work.
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The collection of Telos propositions is divided into two disjoint sets: individuals and
attributes. Individuals represent real world entities, classes, objects, concepts, etc.; at-
tributes represent real world binary relationships between entities or other relationships.
Individuals may be considered to be the nodes in a traditional semantic network, and
attributes may be considered to be the links between the nodes. The following are ex-

ample proposition definitions, and their respective types®:

Country := [Country, ..., Country, ...] class individual
Canada := [Canada, ..., Canada, ...] token individual
role_of_city_in_country := [Country, role, City, ...] class attribute

Canada’s_capital_is_Ottawa := [Canada, capital, Ottawa, ...] token attribute

Telos propositions form the “building blocks” of all objects in a Telos knowledge base.
This convention, together with the structuring mechanisms discussed below, removes the
traditional distinction between entities and relationships, allowing them to be treated in

a uniform manner.

Propositions are organized along three orthogonal abstraction or structuring dimen-
sions: classification, aggregation, and generalization.

Classification calls for every proposition to be a member of (instance of) one or more
generic propositions called classes, which are themselves propositions and members of
other more abstract classes. Thus there exists an infinite classification dimension: tokens
(propositions having no instances), simple classes (propositions having only tokens as
instances), meta classes (propositions having only simple classes as instances), metameta

classes (propositions having only meta classes as instances), etc..

Token propositions represent concrete entities or relationships in the domain of dis-

course, while class propositions represent abstract or generic concepts.

Instantiation of a structured object (from one or more classes) can be considered a

3Ellipses (...) denote proposition components that are not applicable to the specific example.
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typing mechanism: it determines the kinds of attributes the object can have and the
properties it must satisfy.

At each class level of the classification hierarchy there is a Telos buzlt-in class: Token
(a simple class, having all tokens as instances), SimpleClass (a meta class having all simple
classes as instances), MetaClass (a metameta class having all meta classes as instances),
MetaMetaClass (a metametameta class having all metameta classes as instances), etc..
In addition, there are a number of built-in w-classes which are used to facilitate the
structuring of the knowledge base: Proposition (having all propositions as instances),
Class (having all generic propositions as instances), Individual (having all individuals
as instances), Attribute (having all attributes as instances), AttributeClass (having all
attribute classes as instances, and OmegaClass (having all w-classes as instances).

Aggregation allows for the creation of structured objects consisting of collections of
attributes that have a common proposition as source.

Generalization allows for classes along the same classification level to be organized
into a hierarchy from most general to most specialized (in the form of superclasses and

subclasses).

7.7 Implemented Telos Information Bases and Tools

Chapter 8 outlines an information base of a Telos conceptual model of the information
domain of the news-document filtering system presented in the preceding chapters. The

following are further examples of implemented Telos information bases and tools:

1. ¢* Modeling Tool
Automated modeling of an application’s early software requirements based on the
i* strategic-dependency modeling framework [Yu95] requires large amounts of both
graphical modeling information and real-world application-domain information.

Automated representation of this information, together with a graphical user in-
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terface for visual presentation, has been developed using a Java implementation of

a subset of Telos.

2. ITHACA Software Information Base
The ITHACA project [Con91] is a large ESPRIT project devoted to the construc-
tion of an object-oriented application development environment. One of ITHACA's
main components is a software information base intended to facilitate software
reuse; automated representation of this information base, together with a graphi-
cal user interface, has been developed using a C++ implementation of a subset of

Telos.

3. Generic Telos Browser
Currently under development is a Java 2.0 graphical user interface browser that
will allow the visual display of the underlying conceptual models of arbitrary Telos

information bases.



Chapter 8

Modeling the Subject World of a

Document Filtering System

8.1 Introduction

This chapter describes an information base of a Telos conceptual model of the informa-
tion domain or subject world of the news-document filtering system presented in the
preceding chapters. The static ontological concept of entity has implicitly been assumed
appropriate for this modeling situation. News-domain subject-areas, topics, documents,
and their interrelationships are modeled in a manner consistent with the way in which
people conceptualize this information, that is, in a strict classification hierarchy. Similarly,
the descriptive properties of these entities are modeled precisely in the manner in which

people associate attributes with these entities.

In addition, information base query-capability is described: the implemented query
and subtopic-instantiation capability {(described in Sections 8.5 and 8.6) may be consid-
ered a fine-grained deterministic classification mechanism that complements the coarse-
grained non-deterministic document filtering process. These sections provide a vivid

illustration of an additional tangible benefit of conceptual modeling: the implementation

68
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of complex queries proved quite elegant and relatively effortless—queries are abstract
concepts that are formulated by people, and hence they are implemented most effectively
in information bases that are organized in a manner that is consistent with the way in

which people conceptualize the subject matter being modeled.

8.2 Subject World Entity Structure

The information domain or subject world of a news-document filtering system consists
of three principal types of structured (aggregate) objects: general subject-areas, specific
topics within subject-areas, and news-documents within topics. Therefore, the static
ontological concept of entity is implicitly assumed as appropriate for modeling this in-
formation domain. The above information entities do not exist in isolation: human users
intuitively impose a hierarchical structure among them. For example, the relationship
between a topic and a subject-area (assuming both are classes) may be “is a type of”,
“is part of”, or “is a member of” (i.e., in Telos terminology, is-a, part-of, or instance-
of, respectively). Similarly, a given document-token may be considered “a part of” or

“a member of” a topic (i.e., part-of or instance-of respectively).

8.2.1 Justification for Entity Structuring Choice

Each of Telos’ three abstraction mechanisms (classification, generalization, and aggre-
gation) was independently considered as a structuring choice for the interrelationships
between the generic and concrete concepts of a news-document filtering system (subject-
areas, topics, and documents). It was decided that a uniform structuring mechanism
across these entities is the most appropriate choice (in order to facilitate implementation

of user-queries of the information base!).

1See Sections 8.4 and 8.5.
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Generalization was quickly discarded as a choice because the three entities are
conceptually dissimilar, i.e., a document is not “a type of” topic, nor is a topic “a type
of 7 of subject-area. This will become more apparent when the attributes of each of the
entities are discussed in Section 8.3.

Aggregation appeared useful at first: subject-areas are composed of various topics,
and a topic may be considered composed of all documents in the domain that discuss that
topic. However it was decided, in an abstract sense, that aggregation is more appropriate
when an entity is composed of a fized number of well-defined components. Also, under
aggregation, removing any component from an entity should change the inherent nature
of the entity, causing it to be redefined; however, if aggregation was adopted for the
current model, “removing” a document from a topic, or a topic from a subject-area,
would not disqualify that topic or subject-area from retaining its previous identity.

Classification was finally chosen as the most appropriate Telos abstraction mecha-
nism for the current model: documents may be considered members of topic generic con-
cepts and, likewise, topics may be considered members of subject-area generic concepts.
That is, each generic concept may have any number of members (instances). Therefore,
instance-of was chosen for both the document/topic and topic/subject-area relationships.
This results in the entire entity hierarchy being represented as a classzfication structure,
as follows:

1. MetaMetaClass Subject_Area
IN MetaMetaClass
ISA MetaClass

2. MetaClass Topic_Class
IN Subject_Area, MetaClass
ISA SimpleClass

3. SimpleClass Topic
IN Topic_Class, SimpleClass
ISA Token

4. Token Article
IN Topic, Token

where MetaMetaClass, MetaClass, SimpleClass, and Token are built-in Telos classes.
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As an illustration of the above entity classification hierarchy, the following will be used
as a running ezample throughout the text: Economics_Topic_Class as an example subject-
area Topic_Class metaclass, Antitrust_Lawsuits_Topic as an example Topic simpleclass, and
AP980723-0139 as an example Article token (an instance of Antitrust_Lawsuits_Topic).
This document is assumed to be a news article which discusses the recent U.S. government
antitrust lawsuit action taken against Microsoft corporation (regarding the Windows 95
operating system). Figure 8.1 illustrates the entity classification structure for this ex-
ample, in graphical form. Also shown are two additional topics, Entrepreneurs_Topic and
Operating_Systems_Topic, of which the given document is also assumed to be an instance

(an example of multiple instantiation).

8.3 Aggregation and Attribute Classification

The definition of the three structured entity types discussed in the preceding section
is formalized by assigning to each entity several components or attributes via Telos’
aggregation structuring dimension. Telos’ treatment of attributes as first class citizens
allows the use of attribute meta and simple classes as customizable attribute categories
which may be used to classify the attributes associated with an individual. Aggregation
and attribute classification will be discussed next.

The definition of the metametaclass Subject_Area, shown below, introduces three at-
tribute classes with labels subjectNumber, subjectTitle, and topicDescription. The at-
tribute simpleclasses with labels subjectNumber and subjectTitle have as destinations
the built-in classes Integer and String, respectively; these provide the two descriptive
properties of every Topic_Class instance of Subject_Area. The attribute metaclass with
label topicDescription acts as an attribute category for the descriptive properties of Topic
simpleclass instances of Topic_Class (with component labels topicNumber, topicTitle, and
topicNarrative, which represent attribute simpleclasses having source Topic and destina-

tions Integer, String, and String respectively).
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———— -
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Dl R

Document discussing:
- Microsoft antitrust lawsuit
- Bill Gates
- Windows 95

AP980723-0139

Figure 8.1: Example entity classification structure of the news-article filtering model.



CHAPTER 8. MODELING THE SUBJECT WORLD OF A DOCUMENT FILTERING SYSTEMT73

MetaMetaClass Subject_Area
IN MetaMetaClass
ISA MetaClass
WITH
attribute
subjectNumber: Integer;
subjectTitle: String;
topicDescription: SimpleClass
End

MetaClass Topic_Class
IN Subject_Area, MetaClass
ISA SimpleClass
WITH
subjectNumber

subjectTitle
topicDescription
topicNumber: Integer;
topicTitle: String;
topicNarrative: String
attribute
articleDescription: SimpleClass
End

Every metaclass subject-area instance Topic_Class of Subject_Area further introduces
an attribute metaclass with label articleDescription which acts as an attribute category

for the two descriptive properties of Article token-instances of Topic (with component la-

bels articleContent and articleSemnantics and destinations String and Semantic_Category).
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SimpleClass Topic
IN Topic_Class, SimpleClass
ISA Token
WITH
topicNumber

o eee

topicTitle

. & ”

topicNarrative

(13 1"

. cow

articleDescription
articleContent: String;
articleSemantics: Semantic_Category
End

Token Article
IN Topic, Token
WITH
articleContent
title: “...";
head: “...";
text: “..."
articleSemantics
person: ...;
location: ...;
organization: ...;
item: .__;
concept: ...;
action: ...;
role: ...;
relationship: ...
End

The components of the articleContent attribute category (with labels title, head, and

tert) represent the three major descriptive String attributes of an Article token.
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The components of the articleSemantics attribute category each have user-defined
tokens as destinations; these represent the user’s (optional) semantic categorization of
important article keywords (for each relevant article and for each listed semantic cat-
egory, the user is prompted to provide an important keyword that is to be associated
semantically, in the specified category, with that article). This provides optional semantic
content for articles, which may be useful during queries of the repository?. Such semantic
content allows the user to dynamically create arbitrary subfopic queries of the repository;
these subtopic queries provide a finer query-granularity than that allowed by the original
static topic hierarchy.

See figure 8.2 for a graphical depiction of the above aggregation and attribute classi-

fication structures for the current example.

2See section 8.5.
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Figure 8.2: Example aggregation and attribute classification structure of the news-article
filtering model.3

] 1]

3Dashed arrows indicate attribute-tokens omitted from the diagram that have been instantiated
from the attribute-simpleclasses with labeis: subjectNumber, subjectTitle, topicNumber, topicTitle, and
topicNarrative.
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The following attribute definitions illustrate the attribute classification hierarchy for
the specific example of a user-provided person semantic-keyword, as illustrated in fig-

ure 8.2:

1. AttributeClass := [Class, attribute, Class]
IN AttributeClass
ISA Attribute, Class

2. AttribMeta := [Economics_Topic_Class, articleDescription, SimpleClass]
IN AttributeClass, MetaClass
ISA SimpleClass

3. (a) AttribSimple := [Antitrust_Lawsuits_Topic, articleSemantics, Semantic_Category]
IN AttribMeta, AttributeClass, SimpleClass
ISA Token

(b) AttribSpecialization := [Antitrust_Lawsuits_Topic, articleSemantics, Person]

ISA AttribSimple

4. AttribToken := [AP980723-0139, person, Bill_Gates]

IN AttribSpecialization, AttributeClass, Token

8.4 Extracting Information from the Information Base

The model was implemented as an information base using the JTelos language*. JTelos
does not offer Telos’ standard built-in Ask or Retrieve query commands; however, Telos’
sparse framework provides an elegant means of extracting information from a repository
through custom implementation of attribute-based queries. The following are the main
contributing factors that enable such query-capability:

e Strict classification hierarchy between subject-area, topic, and news-article

4JTelos was developed by Techné Knowledge Systems Inc., Toronto. It provides an interface between
a Telos information base and the Java programming language.
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e Attribute first class citizenship

e Multiple instantiation

The following section describes several types of repository queries that have been
implemented and provides suggestions for possible enhancement of the current query

capability.

8.5 Query Implementation

kn

Listed below are six example instances of implemented query-capability, where and

“NA” are defined as follows:

e “*” represents the knowledge base target-individuals that are the objects of the
query.

o “NA” indicates that the field is not used by the query.

1. All antitrust-articles (topic instances) containing the person-token Bill_Gates:

Topic: Antitrust_Lawsuits_Topic
Article: *

Article-attribute (label): person
Article-attribute (value): Bill_Gates

2. All articles and parent topics where article contains the person-token Bill_Gates:

Topic: *

Article: *
Article-attribute (label): person
Article-attribute (value): Bill_Gates

3. All parent topics of the given article, regardless of article attributes:

Topic: *
Article: AP980723-0139
Article-attribute (label): NA

Article-attribute (value): NA
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4. All antitrust articles (topic instances), regardless of article attributes:

Topic: Antitrust_Lawsuits_Topic
Article: *

Article-attribute (Iabel): NA

Article-attribute (value): NA

5. All antitrust articles (topic instances) containing the text string “Bill Gates”:

Topic: Antitrust_Lawsuits_Topic
Article: *

Article-attribute (label): NA

Article-attribute (value): “Bill Gates”

6. All articles and parent topics where article contains the tezt string “Bill Gates”:

Topic: *
Article: *
Article-attribute (label): NA
Article-attribute (value): “Bill Gates”

Query types 5 and 6 involve tert searches of the body of retrieved articles; these are
useful for the specific cases where the user has declined to provide the system with article
semantic-content information (provision of this information is optional, after the user has

provided her relevance-judgement of the article).

The above queries are only a “first attempt” at query implementation; a number of
enhancements are possible: for example, the article-attribute query field could employ
disjunction, conjunction, negation, or any boolean function of article-attributes. This

would lead to considerably more powerful query capability.
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8.6 Virtual-Topics

An additional implemented feature is the ability to instantiate the documents returned
by an arbitrary query into new custom user-defined virtual-topics within the information
base. This feature provides the user with the ability to dynamically create and instantiate
complex subtopics within the Telos information base; it forms a powerful document
classification feature beyond the static topic-document classification capability provided
by the filtering process’s learned user-profile: users can, at any time, create special
subtopics of interest and populate these new subtopics with instances returned from any
query.

For example, assuming that the article-attribute query field employs conjunctions,
then the documents returned from a query asking for “all Antitrust_Lawsuits_Topic doc-
uments that contain both of the organization-tokens: Microsoft and Netscape” could be
dynamically instantiated into a new topic in the information base called, for example,
Microsoft_Netscape_Dispute.

This capability provides the user with more control over the information base, allowing
her to “personalize” the information base by arbitrarily classifying documents into a
personal hierarchy, without being limited to the initial static topic-document classification

hierarchy.



Chapter 9

Conclusions and Future Work

9.1 Contribution and Summary

The following summarizes the contribution of the current work:

1. A new approach to parametric information filtering that integrates a multinomial
document model with incremental Bayesian methods as a means of learning user-

profiles through sequential data sampling over time;

2. Integration of a news-document filtering process with a conceptual model informa-

tion base of the process’s information domain.

9.1.1 Information Filtering

The probabilistic information filtering model was chosen for investigation because, as
Chapter 5 has shown, it is amenable to mathematical analysis, whereas nonprobabilistic
models are primarily heuristic-based. The multinomial probabilistic model was chosen
because, as discussed in Chapter 4, it is intuitively reasonable that document relevance is
proportional to the frequency of occurrence of “important” terms in the document (rather
than simply whether important terms occur in a document); this intuition has been con-
firmed empirically, for large vocabulary sizes, in [McC98]. The Dirichlet conjugate prior

. approach of estimating multinomial parameters was adopted because it accommodates

81
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the updating of prior to posterior probabilities in sequential data sampling environments
such as information filtering.

In empirical trials using 164,597 Associated Press news-documents and 50 user-topics,
the current interactive probabilistic model was shown to outperform two interactive non-
probabilistic models for the TREC F3 performance measure, receiving an average score of
34.38 over the 50 topics (compared to —27.14 and —6.22 for the two reference nonproba-
bilistic models). The nonprobabilistic models, however, exhibited better performance for
the measure consisting of the geometric mean of precision and recall (this may account for
their poor F3 performance, as explained in Section 6.2.3). The competitive performance
of the probabilistic model verifies the validity of the theoretical approach developed in
Chapter 5.

The overfitting discussed in Section 6.2.3 indicates that perhaps the complexity of
the news-document filtering task is such that no single model can effectively model the
relevance regions of the document space. This possibility gives rise to multiple-model

approaches such as the SIGMA approach, discussed in [Kar96].

9.1.2 Conceptual Modeling

Information filtering literature generally treats user information needs as one-time needs
only; i.e., relevant documents and their relationships to topics and subject areas are lost
after the user has finished reading each document presented by the system. The current
work provides for the persistent modeling of the relationships between documents, topics,
and subject areas.

The information domain or subject world of a news-document filtering application
was modeled with the Telos conceptual modeling language. The resulting information
base was integrated with the filtering process to provide users with the ability to store fil-
tering results persistently, in a conceptual manner. People conceptualize news-document

domains in a particular structured form; concebtual modeling allows the automated mod-
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eling of the semantic relationships among the model’s concepts in a manner consistent
with the way people view the relationships in the real world. The current implementation
allows the user to build an automated model of a news-document information domain
that is structured in the same manner as in the real world. In addition, the implemented
information base provides a powerful query-capability that allows the user to selectively

retrieve information previously returned by the filtering process.

9.2 Directions for Future Research

There are several possible directions for future research that expand upon the current

information filtering work:

9.2.1 Document phrases

A refinement that has significant performance potential is the inclusion of word groups
or phrases within the current probabilistic filtering model. Phrases clearly have more in-
formation content than isolated words. This refinement, however, is a departure from the
“bag of words” model and may require a Bernoulli document model, rather than a multi-
nomial model (as important phrases will occur in documents with much lower frequencies
than important terms; therefore phrase occurrence, rather than phrase frequency, may

be more appropriate in deciding document relevance).

9.2.2 Equivalent Sample Sizes

More work needs to be done to determine whether there exist equivalent sample sizes
essp and essy that optimize performance. Figure 6.2 suggests that globally optimal ess
values may not exist; however, there is evidence that each topic may possess its own
optimal values for these parameters. For very large document data sources (such as exist

in real-world document filtering environments), it may be possible to learn such optimal
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ess values by topic. For example, as training progresses over time for a given topic, a
heuristic search such as a genetic algorithm beam-search on ess values over a subset of
N? may yield higher-performing ess values for that topic than is possible using static
(global) ess values. As topics are processed independently, such ess learning would be
performed independently for each topic and therefore would be consistent with adaptive

filtering requirements.

9.2.3 Alternative Priors Approaches

For certain applications, such as information filtering, the use of Dirichlet conjugate priors
is an unwieldy approach for estimating the parameters of a multinomial model. Friedman

and Singer [Fri98] provide the following features that characterize such applications:

e The set of possible outcomes (e.g., documents) from draws on a given multinomial

distribution is very large, and often not known in advance;

e The number of training examples is small, relative to the number of possible out-

comes;

e The outcomes that have non-zero probability constitute a relatively small subset

of all possible outcomes, and are not known in advance.

Predictions based on a Dirichlet prior tend to distribute most of the probability mass
to outcomes that will not occur in the training data. Friedman and Singer provide a
hierarchical prior that allows efficient predictions over an infinite number of outcomes,
without losing the ability to explicitly represent the model’s posterior distribution (mak-
ing it suitable for stochastic sampling tasks where explicit representations of approxi-
mated distributions are required). Their priors approach has potential value in stochastic
modeling environments that are characterized by very large state spaces, such as (1) infor-
mation filtering, and (2) Markov decision process parameter-estimation in reinforcement

learning.
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A related, although simpler, priors approach is provided by Ristad [Ris95]. It lacks
the flexibility of Friedman and Singer’s approach, but outperforms other standard multi-
nomial estimation approaches, and may be of value for multinomial estimation in infor-

mation filtering.

9.2.4 Alternative Frequency-Based Parametric Models

The Poisson family of distributions provides an alternative means of modeling term
frequencies within text documents. Lewis [Lew98] observes that the use of mixtures
of Poisson distributions has generally not proven more effective for batch-oriented ad
hoc retrieval than the simple binary independence model. Bookstein [Boo83], however,
provides an example of successful two-Poisson document modeling within a sequential
relevance feedback ad hoc retrieval environment. As sequential feedback is inherent in
the information filtering task, the latter work raises the question whether the Poisson

distribution may be of value for document modeling within information filtering.
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