HIERARCHICAL CONTROL FOR FINITE STATE MACHINES

Gang Shen

Departement of Electrical and Computer Engineering
MeGill University: Montreal

August 1999

[^0]Acquisitions and Bibliographic Services 395 Wellington Street Onawa ON KIA ONA Canada

Acquisitions et services bibliographiques

395, rue Wellington Ottawa ON KIA ON4 Canada

The author has granted a nonexclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of this thesis in microform, paper or electronic formats.

L'auteur a accordé une licence non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de cette thèse sous la forme de microfiche/film, de reproduction sur papier ou sur format électronique.

The author retains ownership of the copyright in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.

L'auteur conserve la propriété du droit d'auteur qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

ABSTRACT

We base the notion of state aggregation for finite state machines (FS.M) on the $d y$ namical consistency ($D C$) relation ($[17]$) between the blocks of states in any given state space partition π. In this framework, we present the new notion of $S T$ dynamical conststency (ST-DC)) for source-target (ST) FSMls where there is a preferred sense of flow from a set of source states (S) to a set of target states (T). It is proven that if a partition π is $S T$ in-block controllable (ST-IBC). the partition machine of an ST FS.M M based on π. . $M^{\bar{\prime}}$ (i.e. high level abstraction of M based on π). is controllable if and only if M itself is controllable. We also prove that all ST-IBC partition machines of M form a lattice and any chain from the top to the bottom of this lattice provides a hierarchical feedback control structure.

This methodology is next extended to optimal control problems for discrete event systems (DES) modelled by finite state machines. A partition machines based scheme called hierarchically accelerated dynamic programming (HADP) is introduced which significantly speeds up the standard dynamic programming procedure (up to several orders of magnitude) at the cost of a certain degree of sub-optimality. We present necessary and sufficient conditions for the H.ADP procedure to generate globally optimal solutions and. further. give bounds on the degree of sub-optimality. An example called the Broken Manhattan Grid (BMG) system is used to illustrate the implementation of H.ADP. and flexible and generalisable code for this example is described.

Many complex systems appear in the form of the product of multiple interacting sub-systems. A formulation of multi-agent systems is presented where the dynamics of the agents are described by default specifications, of a sets of forbidden state-event relational pairs. denoted \mathcal{R}. Such systems are called relational multi-agent product

Abstract

systems ($M A(\mathcal{R})$). The application of the HADP methodology to relational multiagent product systems is analysed. A multi-machine system consisting of a time counter and agents called a timed multi-agent relational product (TMA($\mathcal{R})$) is formulated.

To apply hierarchical control to the routing problem for networks, we consider two conceptual classes of networks: first, link network systems (LN), and, second, buffer network systems (BN). The notions of dynamical costs and network states are introduced. In particular, the notion of throughput-independent ST-IBC (TI-ST-IBC) partitions is used to formulate the incremental HADP (IHADP) methodology. For the multiple objective optimisation problem of L.is. a notion of (vector) network state is introduced to carry the information describing the available transmission capacity of each link. For buffer network systems, the notion of (matrix) network states is given.

RÉSUMÉ

On fonde la notion d’aggrégation d’état pour les machines à état fini (FS.M). introduites dans la relation dynamiques consistantes ([17]) entre les blocs des états d'une partition d’état π. Dans cette thèse. on présente la nouvelle notion de ST. consistance dynamique. (ST-DC) pour source-déstination (ST FS.Ms) ou le sens de la circulation de l’état source (S) à l’état cible (T) est préferée. Ceci donne naissance à une définition de la dỵnamique à haut niveau sur la machine finie correspondante à la partition blocs donnée. Si une partition π est $S T$ controllable en bloc (ST-IBC). une partition machine dune ST FS.M .II basée sur $\pi . M^{7}$. est controllable si et seulement si W est controllable. Cette définition prourée. nous avons prouvé que si tous les états dans.M sont co-accessibles à T. toutes les partitions machines ST-IBC de.$/ /$ provenant de la trellis et de toute chaine de hayt en bas de cette tréllis donne une structure hiérarchique de commande à retour.

Cette méthodologie est èlargie aux problems de commande optimale pour les systèmes à évènement discret (DES) modelisés par des machines à état fini. Une partition machine basée sur le schema applé programmation dynamıque à hiérarchie accelerée ($H . A D P$). qui accélère sensiblement la procedure de la programmation dynamique standard au coùt dun certain degré de sous-optimalité. est introduite. On présente une condition suffisante et necessaire pour la procedure (H.ADP) afin de générer des solution globales et optimales. mieux encore, donner des limites du degrée de sous-optimalité. L'n exemple d'illustration d'une implémentation (H.ADP) est aussi donné.

Plusieurs systèmes complexes apparaisant sous la forme de sous-systèmes multiples interagis. Une formulation de systèmes multi-agents est presentée où les dynamiques des agents sont décrites. par des spécifications à default. notée \mathcal{R}. Ce
genre de sustème est appelé systèmes de produit multi-agent relationnel (MA($\mathcal{R})$). L'application d'une méthodolgie HADP à ces systèmes est analysée. Un système à multi-machines á base de compleūis et agents, appelé produit relntionnel multi-agent temporel (TMA($\mathcal{R})$), est formulé.

Afin d’appliquer une commande hiérarchique. aux problemes de réseaux, on considère deux classes conceptuelles de reseaux: la première est les systèmes à réseau lié ($L . V$) est la deuxième est les systèmes à réseau temporaire ($B N$). Les notions de coutes dynamique et états réseau. sont introduites. En particulier la notion throughput-independent ST-IBC (TI-ST-IBC) partitions est utilisée pour formuler la méthodologie (HADP) incrémentale pour des problems multiples d’optimisation de L. .̀s. Une notion d'état réseau (vector) est introduite afin de transporter l'information décrirant la capacité disposible de transmission de chaque næud: pour les systèmes à reseau temporaire. la notion d'ètats à réseau (matrice) est donnée.

ACKNOWLEDGEMENTS

Abstract

First and foremost. I would like to thank my thesis supervisor. Professor Peter E. Caines. for his constant encouragement and generous sponsorship. Without his original inspiration and technical guidance, this thesis would never have begun. I must thank him for his rigorous reading of this manuscript. and for his suggestions on both style and the conceptual framework. Like all of Peter's graduate students. I will miss his famous Sunday morning calls. his commitment to scientific accuracy: and his foresight in new disciplines. My discussions with Professor Caines have been an enjoyable experience for me.

\therefore SERC. the Greville Smith McGill Major Fellowship Foundation (1998-1999). FC.AR (1999) and N.AS.A-Ames Research Centre (Mountainview. C.A) all deserve my gratitude for the financial support I have received from them.

I would also like to extend my appreciations to Dr. Charalambos Charalambous. Paul Hubbard. Lemch Ekaterina. and other CIMI fellow students who have always been a challenging and pro-active audience for the presentations of my research. Their constructive and valuable comments led to the improvement of my work.

Thanks should go to the CIMI management and technical staff who have provided a pleasant environment for me to concentrate on writing this thesis.

I would like to thank Nabil Aouf, who did the translation of the abstract into French. Thanks to Carlos Martinez-Mascarúa, who helped me struggle with Latex. and let me use his rich library of style files free of charge.

Finally, but most importantly, I thank my beloved wife, Hongbo, to whom I owe my entire life. Throughout this strenuous period of our life, her support has been my source of momentum to never give up hope. Unfortunately, I cannot find appropriate words to express my thanks to my parents: perhaps no words would do. They never hesitate to lend me their forgiveness when I disappoint them, for which I have no means to compensate them.

CLAIMS OF ORIGINALITY

This thesis contains the following original contributions:

- At theory of hierarchical control for finite systems with a preferred sense of flow. The notions of ST-dynamical consistency and ST-in-block controllability: 'Chapter $2!$
- At theoretical framework of hierarchically accelerated dynamic programming (H.ADP) for trajectory optimisation in very complex systems. including the notions of optimality consistency: convex high level trajectories and semi-dual high level graphs. ©Chapter 3 !
- Algorithms for the implementation of HADP and Incremental HADP. [Chapters 3 and 5
- The notion of relational multi-agent product finite state machines (. $\mathcal{M} . \mathrm{A}(\mathcal{R})$ FS.Ms). ©Chapter 4
- The nution of vector and matrix network states and their applications in hierarchical network routing. [Chapter 5]

TABLE OF CONTENTS

ABSTR.ACT ii
RÉSLCMÉ iv
ACKNOWLEDGEMENTS vi
CL.AIMS OF ORIGINALITY viii
LIST OF FIGC'RES xii
CH.APTER 1. Introduction 1
CH.APTER ?. The Hierarchical Control of ST Finite State Machines 6
2.1. Introduction 6
2.2. The ST-Dynamical Consistency Relation and ST-IBC Partition .Machines 8
2.3. The T-trimmed ST-Machine and Its Associated ST-IBC Lattice 14
2.4. Hierarchical Control for ST-Systems 18
CH.APTER 3. Hierarchically Accelerated Dynamic Programming 21
3.1. Introduction 21
3.2. Hierarchical Control and Control Consistency 23
3.3. Optimality Consistency 28
3.4. P-H.ADP $\left(C_{h}\right) \cdot \operatorname{HADP}\left(C_{h}\right)$ and Their Sub-optimality Estimates 37
3.5. Semi-dual System Graphs ($M_{h}^{s d}, C_{h}^{s d}$) 4.5
3.6. wST-IBC Partitions 51
3.7. Applications to the Broken Manhattan Grid Problem 52
CHAPTER 4. Relational Multi-agent Finite State Machines (MA($\mathcal{R})$ FS.M) 58
4.1. Introduction 58
4.2. Synchronised Agents 60
4.3. Events with Different Live Times 74
CH.APTER 5. Hierarchical Network Routing 79
5.1. Introduction 79
5.2. Incremental HADP 80
5.2.1. Dinamics of Network Topology as a Function of Traffic Loading SO
5.2.2. Throughput-Independent ST-IBC Partition Machines 82
5.2.3. Incremental HADP 85
5.3. Multiple Objective ..etwork Routing 88
5.3.1. Network States of the Link Network Systems ss
5.3.2. Throughput IBC Partition Machines 91
5.4. Hierarchical Dynamical Routing for Networks with Buffers 100
5.4.1. Network States of Buffered . .etworks 100
5.4.2. The Controllability of the Buffer . Network State Systems 103
5.4.3. High Level Network States of the Buffer Network Systems 112
CH.APTER 6. Future Research 118
6.1. Research Related to H.ADP 118
6.2. Research Related to Multi-agent Systems 119
6.3. Research Related to .Vetwork Routing 119
REFERE.ICES 121
APPENDIX A. $C++$ Header File 127

LIST OF FIGURES

2.1 An 8-state machine M_{8} 9
2.2
$\left\langle\bar{l}_{t}, \bar{l}_{j}\right\rangle$ is ST-DC but not DC 11
2.3 ST-IBC is closed under chain union 16
2.4 The 5 -state partition machine M_{5}^{-}of M_{3} and its ST-IBC lattice 19
3.1
Hierarchical control structure 23
3.2 A finite state machine.M 31
3.3 An IBC partition machine M_{n} 31
3.4 There are no circuits in $\operatorname{OPG}\left(\mathrm{X}^{-s}\right)$ 34
3.5 (a) M_{n} (b).$M_{h}^{s d}$ 46
3.6 Three-level hierarchy for a Broken Manhattan Grid problem 5.3
3.7 A Broken Manhattan Grid 54
3.8
A block at the top level of Example 3.2 55
3.9
A block at the middle level of Example 3.2 55
3.10 The ratio of the costs of HADP solution and global optimum 56
3.11 The ratio of the times of H.ADP solution atomic search 56
3.12 The distribution of α in Example 3.3 57
A Finite State Machine $M=\{X, \Sigma, \delta\}$ 62
A circuit in M_{1} 63
Circuits in M_{1} 64
A path in $M_{1} \|_{-R} . M_{2}$ from $[x, y]$ to $\left[\delta_{1}\left(x, \sigma_{1}\right), \delta_{2}\left(y, \sigma_{2}\right)\right]$ 70
Two interacting agents 72
Two interacting timed agents 78
$\operatorname{TMAP}\left(M_{1}, M_{2}\right)$ 78
$d_{Y_{i} Y_{j}, t}(x, z)$ is finite 88
A simple network 89
At routing controller for Example 5.1 91
$\lambda_{\text {: }}$ is not $2-$-throughput IBC 93
An 1-throughput IBC block and its abstraction 94
$p\left(s_{1}, u_{1}^{\prime}\right)$ and $p\left(s_{2}, u_{2}^{\prime}\right)$ go through ξ_{1}^{\prime} no more than twice 99
Setwork in deadlock if $m_{k}(1.3)=m_{k}(2.1)=m_{k}(3.2)=1$ 104
Setwork in a live-lock when $m_{k}(1.1)=m_{k}(2.7)=m_{k}(6.2)=$ $m_{k}(1,2)=1$ 105
A circuit with repetition of nodes 110
All nodes in N are on R_{1} 112

CHAPTER 1

Introduction

Traditional control problems concern continuous time and discrete time vector state vaiued systems which are usually modelled by differential and difference equations respectively: on the other hand. discrete event systems (DES) are distinguished from these traditional models in that the evolution of the finite set valued state of a DES is driven by the occurrences of some sequence of events (34,$21 ; 60$).

Due to its conceptual simplicity and its tast range of applications. the finite state machine model is one of the most basic formal mechanisms for DES models ([29]. 12. 59). Furthermore principally because of the advances in and universal application of computer systems. discrete event systems are applied in almost every aspect of engineering ($40!$. 37$]$. [50]). In particular, as a foundation for research in hybrid systems (i.e. systems which possess mixed continuous and discrete behaviours). it is certainly foreseeable that DES theory will find an ever growing domain of application (.46. 10. 11 . 57 . 38 . 62).

Progress in digital computing technology has made possible the implementation of many advanced algorithms. However. computational complexity due to high state dimension. and frequent information exchanges. make the control of large scale systems extremely difficult ([4]. [30]): consequently. to manage the computational complexity of control synthesis. hierarchically structured information and control systems are frequently employed ([44]. [3]. [12]). By grouping together the states of the original system. which in many applications has a huge cardinality and simpler dynamics. state aggregation will generate a system with a smaller set of (aggregate) states ([$\mathbf{7}]$. [8]. [2]). Thus. as a principal way to create an applicable hierarchy, state aggregation
plays a significant role in the analysis and control of large scale systems ([27]). This observation motivated the research presented in this thesis.

The Hierarchical Control of ST FSMs

A notion of state aggregation for finite machines was introduced in [17] via the concept of the dynamical consistency (DC) relation between the blocks of states in any given state space partition π. This formulation results in a definition of higher level dynamics on the finite (partition) machine M^{π} whose states correspond to the given partition elements.

Chapter 2 of this thesis treats the more general case of Source-Target systems (ST-systems) where there is a preferred sense of flow from a set of source states (S) to a set of target states (T). A generalisation of the theory of [17] to ST-systems is given which includes the generalisation of the notions of dynamical consistency, in block controllability and hierarchical feedback control on the associated hierarchical latrices. The dynamics of a higher level machine M^{*} in a hierarchy $\left\{M^{\prime \prime}\right\}$ are defined in accordance with the ST-DC relations over the partition blocks of the lower level model M.

A class of hierarchical control structures for ST-systems is presented based on the notion of ST dynamical conslstency (ST-DC). It is shown that when a partition π of M possesses some particular properties, which are termed ST in-block controllability (ST-IBC). the higher level finite state machine defined based on π is ST-controllable if and only if M is ST-controllable. Further. if M is T-trimmed. i.e.. every state of M is co-accessible to T. the set ST-IBC partition machines of M forms a lattice structure. and any chain from the top element to the bottom element of this lattice provides a hierarchical control structure for M.

The material in Chapter 2 follows that in [14] and [15]. co-authored by P.E. Caines. V. Gupta and G. Shen.

Hierarchically Accelerated Dynamic Programming

Complex finite state systems arise in many contexts, in particular, optimal control problems for finite state machines have significant applications in transportation management. manufacturing systems and telecommunication networks. The main theoretical foundation and computational technique for finding optimal trajectories in finite state systems is that of dynamic programming (DP) $([\mathbf{4 5}],[\mathbf{8}],[\mathbf{5 1}])$. Consequently: a large number of algorithms have been developed to solve DP problems. The time complexity of these algorithms naturally depends upon the size of the models involved: in general. complexity grows non-linearly (specifically; faster than quadratically) with the number of states in the system ([25!). Hence computational efficiency degrades significantly and. in particular. standard DP algorithms are not applicable to real-time problems of practical interest.

Chapter 3 presents a scheme called hierarchically accelerated dynamic programming (H.ADP) which significantly speeds up dynamic programming (by up to several orders of magnitude) for discrete event systems modelled by finite state machines at the cost of a certain degree of sub-optimality.

The HADP methodology is based upon (possibly iterated) dynamical abstraction of the given DES (by state aggregation) which generates a control consistent hierarchy of finite state machines. We discuss necessary and sufficient conditions for the H.ADP procedure to generate globally optimal solutions and. further. give bounds on the degree of sub-optimality which can occur. Various approaches are proposed to improve the accuracy of the sub-optimal solutions by using semi-dual high level graph while reducing the computational time via the use of weakly ST-IBC partitions. Finally, an example called the Broken Manhattan Grid (BMG) system is used to illustrate our software implementation of H.ADP.

Some contributions in this chapter appeared in [55]. [56] and [53]. co-authored by P.E. Caines and G. Shen.

Relational Multi-agent Systems

In a variety of situations, interacting agents are involved in an integrated environment ([41], [64], [61]). The state transition of each agent takes place when an event happens. and events in distinct agents may occur concurrently or non-simultaneously. The behaviour of the individual agents is regulated by the interaction between all of the agents which can be present in various forms.

Chapter 4 analyses the systems of interacting finite state machines via the proposed models of multi-agent (M.A) product and timed multi-agent (TM.A) product.

A notion of a simultaneous product of finite state machines for which the events have the same execution duration (live time) is proposed. and the necessary and sufficient conditions for simultaneous product systems to be controllable are discussed. When the interaction between agents is given in terms of a set of forbidden (state-event) configurations \mathcal{R}. the sstem of n interacting finite state machines M_{i}, $1 \leq t \leq n$. is modelled b: $(\|-\pi)_{i=1}^{n} \cdot M_{i}$. the multi-agent (relational) (M. $\left.\mathcal{A}(\mathcal{R})\right)$ product of M_{t}. The application of the HADP algorithm to $\left(\|_{-R}\right)_{t=1}^{n} . M_{t}$ is formulated in this chapter. and some preliminary results on the construction of the related control hierarchies are also given. A time counter is used to observe the state transitions of $M_{t} .1 \leq i \leq n$. in case distinct events in M_{i} have different live times. Finally. the product system of the time counter and $M_{2} .1 \leq i \leq n$. the so called timed multi-agent (relational) TM. $\mathcal{A}(\mathcal{R})$ product is formulated.

Hierarchical Network Routing

Dynamical routing in a network is a way of providing flexibility to adapt to changing and volatile traffic demands. Traditionally, for very large networks, a multi-level hierarchical routing is used to reduce the size of each routing table ([58]). With the recent strides in microprocessing technology, dynamic traffic management has become practical ([48]) and state-dependent routing is used to increase network utilisation. The key features of state-dependent routing include the explicit use of global network
information and very short update cycle times.

In Chapter 5, we discuss the hierarchical routing methodologies within the context of several network models.

To cope with the changing traffic load. the notion of a throughput ST-IBC partition is used to form a stable hierarchical control structure. As each new request (message) arises, the high level costs are recalculated according the the feedback of the network state and H.ADP is applied for route optimisation. The resulting incremental H.ADP (IH.ADP) algorithm is formulated in the first part of this chapter.

Consider a network of links for which the capacity of all nodes (riewed as buffers) is assume to be infinite. If multiple requests arrive at the network at the same time instant. the overall optimal solution may differ from the optimal solutions for individual requests because of the constraints of the limited capacity of links. A vector netuork state carries the information describing the available transmission capacity of each link. For n requests. if we can derive a hierarchy consisting of the throughput $I B C$ partition machines of the original network. HADP may be applied.

Xext we consider networks with buffers at the nodes and for which the capacity of all links is assumed to be infinite. The notion of a matrix network state is given for such networks. B! decomposing an IBC block of a partition of the network nodes into a set of intersecting rings. we obtain a method to ensure the in-block controllability of a network state. Finally: we prove that when high level network is in a controllable state and each of the partition blocks of the original network is in an in-block controllable state. the original network is in a controllable state.

CHAPTER 2

The Hierarchical Control of ST Finite State Machines

2.1. Introduction

Hierarchically structured information and control systems occur for at least two related reasons: first. the great complexity of many natural and designed systems limits the ability of humans and machines to describe and comprehend them. and. second. the inherent limitations on the information processing capacity of feedback regulators result in the regulators (and possibly the controlled systems) being organised in special. in particular hierarchical. configurations.

Nany mathematical theories and engineering methodologies have been developed as a response to these problems. Examples are readily found in the power distribution industry and in large scale manufacturing industries. Further important examples are found in the organisation and control procedures of the communications, rail, road and air traffic systems. All of these examples involve some form of aggregation in state space, and most involve some form of hierarchically structured flow of information and control signals. Large social organisations such as governments and corporations provide sociological examples of such structures, while systems which probably do not display these features are idealised markets and the unorganised target-seeking behaviour of messages on the Internet as currently organised.

Theoretical work on hierarchical control has a large literature and has connections to. among other subjects, game theory, mathematical programming and optimal resource allocation. These topics were presented together with their connections to control theory in [30]. More recently, formulations of hierarchical control have appeared in stochastic control [52], automated highway system studies [63] and within the supervisory control formulation of discrete event system theory (e.g. [42], [49], [68], [70]).

The work in this chapter follows that in $[66],[17]$ and $[65]$. where a new notion of state aggregation is introduced via the concept of the dynamical consistency (DC) relation between the sets of states constituting the members of any given partition π of the state space. This formulation results in a definition of high level dynamics on the finite (partition) machine M^{\top} whose states correspond to the given partition elements. The $D C$ relation is then similarly defined on any further partition of the state set of M^{π} : and so on. The theoretical development in $\lfloor 17\rfloor$ gives the lattice structure of the class of so-called in block controllable (IBC) partition machines. The notion of state aggregation given by the concept of the DC dynamics of a partition machine permits a natural construction of a large class of hierarchical control structures on any given finite state machine. It is to be noted that in the purely graph theoretic setting. without any controlled dynamics. an idea related to that of DC dynamics is to be found in $\mathbf{2 8}$.

Since there is a natural parallel between the formulation of levels in hierarchical system theory and their definition in hybrid system theory. where discrete systems play the roles of both models and controllers for finer continuous state systems. In [19] and 18$]$. the theory of $[17]$ is generalised to the hybrid case. and to $[11]$.

In the analysis and design of hierarchical control systems. one is often interested in the reachability of a set of terminal states from a initial (or start) set of states. Many examples of systems with such a preferred sense of flow are to be found among natural and designed systems. As a result. in this chapter. we consider a generalisation of the theory of hierarchical control initiated in [17] to systems in which there are distinguished source and target sets for the controlled flow.

2.2. The ST-Dynamical Consistency Relation and ST-IBC Partition Machines

Consider a finite state machine, $M=\{\mathbf{K}, \Sigma, \delta\}$, where K is a finite set of states, Σ is a finite set of (forced) events, and $\delta: X \times \Sigma \rightarrow X$ is the (partial) state transition function of the system. We shall use the standard notion Σ^{*} for the set of all finite sequences (including the empty string ϵ) of elements of Σ.

A partition π of the state space X of M is a collection of subsets of X. namely: $\pi=\left\{X_{1}, X_{2}, \ldots, X_{i \pi i}^{*}\right\}$ satisfies (1) $X_{i=1}^{|\pi|} X_{t} ;(2) X_{i} \cap X_{j}=\emptyset$ for $1 \leq i \neq j \leq|\pi|:$ (3) $\dot{C}_{1} \neq 0,1 \leq i \leq|\pi|$. A partition machine M^{π} takes π as its state space and its elements are called blocks.

Let $(u<u) u \leq u$ denote that a string u is a (proper) prefix of u.

Denote a distinguished subset of states called source states and a distinguished subset called target states with $S \subseteq \mathbb{X}$ and $T \subseteq \mathbb{X}$ respectively. We shall term finite systems with such distinguished subsets $S T$-systems.

We note that in the case where the sets $S . T$ and X are identical all the definitions and results below become consistent with their counterparts in $[\mathbf{1 7}]$. In this sense the work in this chapter generalises [17].

Definition 2.1. (ST-Controllability)

(1) (Strong ST-Controllable) M is said to be strongly ST-controllable if and only if for every $x \in S$ and for every $y \in T$, there exists $u \in \Sigma^{\bullet}$ such that $\delta(x, u)=y$.
(2) (Weak ST-Controllability) M is said to be weakly ST-controllable if and only if for every $x \in S$ there exists $y \in T$ and there exists $u \in \Sigma^{*}$ such that $\delta(x, u)=y$.

Clearly. strong ST-controllability (and hence weak ST- controllability) is a significantly weaker property than standard controllability because the latter requires the accessibility of every state from every other state.

Figure 2.1. An 8 -state machine.M_{8}

Example 2.1. In the 8 -state machine M_{8} shown in Figure 2.1. $S=\{1\}$ and $T=\{8\}$. Clearly, this ST-system is both strongly ST-Controllable and weakly STControllable.

We recall that a partztion π of a finite set.X is a collection of pairwise disjoint subsets called blocks. $\lambda_{i} \subseteq X, 1 \leq i \leq|\pi|$. such that $X_{\mathrm{t}} \cap X_{j}=0$ for $i \neq j$ and $N=\cup_{i=1}^{\prime \pi}, X_{1}$. A partial order relation \preceq (finer than) on partitions of N is defined such
 if and only if for each block $\mathcal{X}_{1}^{1} \in \pi_{1}$. there is an $\mathcal{X}_{j}^{-2} \in \pi_{2}$ such that $\mathcal{X}_{1}^{1} \subseteq \mathcal{X}_{j}^{2}$, where $1 \leq i \leq\left|\pi_{1}\right|, 1 \leq j \leq\left|\pi_{2}\right|$ i.e. π_{1} is a refinement of π_{2}.

In the example above, for the two partitions $\pi_{1}=\{\{1\} .\{2.4\} .\{3\} .\{5.7\} .\{6\} .\{8\}\}$. $\pi_{2}=\{\{1.2 .3 .4\} .\{5.6,7.8\}\}$, we see that $\pi_{1} \preceq \pi_{2}$.

Definition 2.2. $\left(I\left(X_{1}, S, T\right), O\left(X_{1}, S, T\right)\right)$ Consider a partition $\pi=\left\{X_{1}, X_{2}, \ldots\right.$ $\left.X_{\pi i}\right\}$. of the state set X of a finite state machine M. In each block $X_{i} \in \pi .1 \leq i \leq|\pi|$. we specify two subsets, respectively $I\left(\mathrm{X}_{2}, S, T\right)$ and $O\left(\mathrm{X}_{i}, S, T\right)$, which are termed the local entries (or in-set) and local exits (or out-set); these are defined respectively as follows:
$x \in I\left(\mathbf{X}_{t}, S, T\right) \Longleftrightarrow x \in S \cap X_{i}$ or there exists $x^{\prime} \in\left(X-X_{i}\right)$. i.e. the complement of X_{1} in X^{\prime}, and there exists $u \in \Sigma$ such that $\delta\left(x^{\prime}, u\right)=x$; $y \in O\left(X_{i}, S, T\right) \Longleftrightarrow y \in T \cap X_{i}$ or there exists $y^{\prime} \in\left(X-X_{i}\right)$ and there exists $u \in \Sigma$ such that $\delta(y, u)=y^{\prime}$.

In the partition $\pi=\{\{1,2,3,4\},\{5,6,7,8\}\}$ of Example 2.1, for $X_{1}=\{1,2,3,4\}$, $I\left(\mathrm{~K}_{1}, S . T\right)=\{1,3.4\}$ and $O\left(\mathrm{X}_{1}, S, T\right)=\{2.3\} ;$ for $X_{2}=\{5,6,7,8\}, I\left(X_{2}, S, T\right)=$ $\{5,6\}$ and $O\left(X_{2}, S, T\right)=\{6,7,8\}$.

We now shall define the appropriate generalisation of the notions of dynamical consistency and partition machines to ST-systems.

Definition 2.3. (ST-Dynamical Consistency (ST-DC)) The relation of STd n namical consistency for an ordered pair of blocks $\left\langle\boldsymbol{X}_{2}, \boldsymbol{X}_{j}\right\rangle$ in a partition π is defined as follows:
$\left\langle\mathcal{N}_{1}, \lambda_{j}\right\rangle \in \pi \times \pi$ is called $S T$-dynamically consistent (ST-DC) if one of the following cases holds:
(a) $i \neq j$. For each $x \in I\left(\mathcal{I}_{1}, S . T\right)$
(1) there exists $y \in O\left(X_{t}, S . T\right)$ and there exists $u_{2,2} \in \Sigma^{\bullet}$ such that $\delta\left(x, u_{\mathrm{t}, \mathrm{t}}^{\prime}\right) \in \dot{X}_{\mathrm{t}}$ for all $u_{\mathrm{t}, \mathrm{t}}^{\prime} \leq u_{\mathrm{t}, 2}$, and $\delta\left(x, u_{\mathrm{t}, \mathrm{t}}\right)=y$: and
(2) for at least one such y. there exists $z \in I(X, S . T)$ and there exists $u_{\text {t.j }} \in \mathcal{S}$ such that $\delta\left(y, u_{i, j}\right)==$.
We write $u_{1.2} \cdot u_{1 . j}$ as u_{i}^{J}. where \cdot denotes concatenation.
(b) $2=1$

For every $x \in I\left(X_{1} . S . T\right)$ there exists $y \in I\left(X_{1} . S . T\right)$. and there exists some non-null $u_{\mathrm{t}, \mathrm{t}} \in \Gamma^{\cdot}$ such that $\dot{\delta}\left(x, u_{\mathrm{t}, \mathrm{t}}^{\prime}\right) \in X_{\mathrm{t}}^{\prime}$ for all $u_{\mathrm{t}, \mathrm{t}}^{\prime} \leq u_{\mathrm{t}, \mathrm{i}}$ and $\delta\left(r . u_{t, t}\right)=y$.

In the case $t=j$ the condition above simply requires that each input state of $I_{\text {t }}$ should have a non-empty controlled path within X_{1} which makes it return to the in-set so as to form a high level pseudo-cycle. This is postulated to obtain desirable properties for the formal language of high level transitions as defined below.

Example 2.2. In Example 2.1, $\langle\{1,2.3\} .\{4,6\}\rangle$ is ST-DC. Here the first partition block is such that its in-set is equal to the whole block and the out-set is the pair of elements $\{2.3\}$. The second block is such that its in-set is the element $\{6\}$, which is accessible in one step from $\{2\}$. and the out-set of $\{4.6\}$ is the whole set. But $\langle\{1.2 .3\} .\{4\}\rangle$. where $\{t\}$ is both an input and and out-set. is not ST-DC since $\{t\}$ is not accessible in one step from the first set. A general ST-DC relation is represented in Fig. 2.2. in which we see displayed I-unreachable states (i.e those not reachable

Figure 2.2. $\left\langle X_{2}, X_{j}\right\rangle$ is ST-DC but not DC
from the input states of ${X_{t}}_{\text {t }}$) and O-inaccessible states (i.e. those from which the output states of X_{1} are not reachable) in the block X_{1}.

A high level transition (input) event l_{1}^{-3} is defined. and denoted by l_{1}^{-j}. if and only if $\left\langle\mathcal{L}_{1}, X_{j}\right\rangle$ is ST-DC: in other words. for any pair $\imath . j . L_{z}^{\cdot 3}$ is defined if and only if the conditions of Definition 2.3 hold. The term high level transition is to be taken relative to the base machine.M. but no mention shall be made of this whenever the context is clear. Let Σ^{π} denote the collection of all such L_{i}^{-3} for which we note that the high level null string ϵ is an element of $\left(\Sigma^{\prime \prime}\right)^{*}$.

In order to define the partition machine $M^{\pi}=\left\{\pi \cdot \Sigma^{\pi} \cdot \delta^{\bar{\pi}}\right\}$ (based upon the partition π of M). we define the state transition function $\delta^{\pi}: \pi \times \Sigma^{\pi} \rightarrow \pi$ by $j^{*}\left(X_{1}, \sum_{i}^{\cdot j}\right)=X_{j}, X_{2}, X_{j} \in \pi .1 \leq i . j \leq|\pi|$. whenever $\left\langle X_{1}, \dot{l}_{j}\right\rangle$ is ST-DC. We may now define $\dot{\delta}^{\pi}: \pi \times\left(\mathcal{U}^{\pi}\right) \rightarrow \pi$ recursively as follows: first set $\delta^{\pi}\left(\mathcal{I}_{1}, \epsilon\right)=X_{1}$; then. for strings in $\left(\Sigma^{-\pi}\right)^{*}$ of length one, the definition of $\delta^{\bar{\pi}}$ gives $\delta^{-\pi}\left(X_{t}, L_{t}^{-j}\right)=I_{\text {, }}$, whenever $\left\langle X_{2}, X_{j}\right\rangle$ is ST-DC; finally, for strings L^{-}in $\left(\Sigma^{\pi}\right)^{*}$ of length greater than one we set $\delta^{\top}\left(X_{i}, L_{i}^{\cdot j} \cdot U^{-}\right)=\delta^{\pi}\left(X_{j}, U^{-}\right)$if $\delta^{\pi}\left(X_{i}, U_{i}^{j}\right)=K$, and if $\delta^{\pi}\left(X_{j}, U^{-}\right)$is defined. Here \cdot indicates the concatenation of two strings. From this recursive definition we immediately obtain the following fact as a special case.

Lemma 2.1. (Semi-Group Property) $\delta^{\pi}\left(X_{i}, U_{1} \cdot L_{2}\right)=\delta^{\pi}\left(\delta^{\pi}\left(, \mathrm{Y}_{2}, C_{1}\right), U_{2}\right)$ as long as $\delta^{\pi}\left(X_{1}, L_{1}^{\prime}\right)$ and $\delta^{\pi}\left(\delta^{\pi}\left(X_{2}, U_{1}\right), U_{2}\right)$ are defined. where \cdot means the concatenation of two sets.

It may be verified that when a chain of high level transitions is defined, it is the case that the appropriate generalisation of Definition 2.3 holds; that is to say, for every state in the I-set of the initial block there exists a path through a chain of O and I state sets in the successive blocks which terminates in the I states of the final block. It is to be noted that the definition of one step pseudo-cycles in Definition 2.3 permits well defined chains of high level transition event strings to contain sets of pseudo-cycles. ie. high level identity elements.

For a given state space $\bar{\Sigma}$ and partition π. let S^{\top} denote the elements of π containing states lying in S. ie.. $X_{2} \in S^{\pi}$ if $X_{2} \cap S \neq 0$. and similarly let T^{π} denote the elements of π containing states in T. ie.. $\xi_{j} \in T^{\pi}$ if $\xi_{j} \cap T \neq \emptyset$. Then we may give the following definition of the controllability of the partition machine $M^{\pi} \equiv\left(\pi, \Sigma^{\pi}, \delta^{\pi}\right)$.

Definition 2.4. (ST-Between Block Controllability) A partition machine $M^{\top}=\left(\pi \cdot \Sigma^{\pi} . j^{-\pi}\right)$ is
(1) strongly $S T$ between block controllable (strongly $S T-B B C$) if it is the case that for

 (2) weakly $S T$ between block controllable (weakly $S T-B B C$) if it is the case that for
 $s^{-}\left(X_{,}, L^{\circ}\right)=\xi_{j}$.

We note that we may obtain weak ST-BBC from strong ST-BBC by simply exchanging a universal quantifier for an existential one. As this applies to the results below we henceforth only discuss strong properties in detail and leave the development of the analogous weak properties to the reader.

Definition 2.5. (ST-In-Block Controllability) A block $X_{1}, 1 \leq i \leq|\pi|$ is $S T$ in block controllable $(S T-I B C)$ if and only if either $I\left(X_{2}, S . T\right)=\emptyset$ or $O\left(X_{1}, S . T\right)=\emptyset$ or the following two conditions hold conjointly:
(1) For every $x \in I\left(X_{1}, S, T\right)$ there exists $y \in O\left(X_{2}, S, T\right)$, and there exists $u \in U^{\cdot}$ such that $\delta\left(x, u^{\prime}\right) \in X_{\text {t }}$ for each $u^{\prime}<u$, and $\delta(x, u)=y$.
(2) For every $y \in O\left(X_{i}, S, T\right)$ and for every $z \in O\left(X_{i}, S, T\right)$ with $z \neq y$, there exists $v \in l^{\cdot}$ such that $\delta\left(y, v^{\prime}\right) \in X_{i}$ for each $v^{\prime}<v$. and $\delta(y, v)=z$, i.e., the states in $O\left(X_{i} . S . T\right)$ are mutually accessible with respect to X_{i}.
A partition π is said to be ST-in-block controllable (ST-IBC) if every block of π is ST-IBC.

In other words, any in-set state of an ST-IBC block $X_{i} \in \pi$ must have an internal trajectory going to an out-set state of X_{i}, and the exit states of X_{1} must be mutually accessible, i.e., X_{t} is weakly ST-controllable and $O\left(X_{1}, S . T\right)$ is mutually accessible with respect to K_{1}. In the 8-state machine of Example 2.1. the block $\{1.2 .3 .4\}$ is ST-IBC. although it is not IBC in the sense defined in [17].

We observe that in the standard case where $S=T=X$. ST-in block controllability specialises to the standard IBC property because in this case all elements of any block $\mathcal{L}_{\text {, }}$ are mutually accessible. Further. in case $S=T=\boldsymbol{N}$. ST-between block controllability clearly implies that the standard BBC property holds.

We let $\pi_{S T}^{I B C}(\mathbb{N})$ represent the collection of all ST-IBC partitions of \mathbb{N} and $M_{S T}^{I B C}(M)$ denote the collection of all partition machines of M corresponding to partitions in $-{ }_{S T}^{I B C}\left(\mathrm{~S}^{-}\right)$.

Let \rightarrow represent a one-step state (block) transition in M and M^{\top}.

Theorem 2.1. If M^{π} is an $S T$-in-block controllable partition machine of M. then M^{F} is strongly (respectively. weakly) ST-between block controllable if and only if MI t.s strongly (respectively. weakly) ST-controllable.

Proof:

We only prove the implications concerning strong ST-controllability as the weak case follows bry an alogous argument.
\Longrightarrow :
Given $M^{\pi} \in M_{S T}^{I B C}(M)$. Assume M is strongly ST-controllable and let us look at arbitrary blocks X_{1} in S^{π} and $X_{1} \in T^{\pi}$. Now consider any $x \in X_{2} \cap S$ and $y \in X, \cap T$: then by Definition 2.1. we know there is a trajectory from x to y. Suppose this trajectory traverses a chain of blocks in π. in the order $Y_{1}, Y_{2}, \ldots, Y_{k}$. $Y_{i}=K_{t}, Y_{k}=K_{j}$. Because all of the blocks are ST-IBC it follows that the block pairs $\left\langle Y_{1}, Y_{2}\right\rangle,\left\langle Y_{2}, Y_{3}^{-}\right\rangle, \ldots,\left\langle Y_{k-1}, Y_{k}\right\rangle$ satisfy the conditions to be ST-DC. Thus. we have welldefined high level transitions. $\delta^{\pi}\left(Y_{1}, U_{2}^{1}\right)=Y_{2}^{-}, \delta^{\pi}\left(Y_{2}^{-}, L_{3}^{-2}\right)=Y_{3}^{-}, \ldots, \delta^{\pi}\left(Y_{k-1}, L_{k}^{-k-1}\right)=$
Y_{k}, and hence $\delta^{\pi}\left(Y_{1}^{-}, U_{2}^{1} \cdot U_{3}^{-2} \cdot \ldots \cdot U_{k}^{k-1}\right)=Y_{k}$, i.e., M^{π} is strongly ST-between block controllable.
\Longleftarrow :
Let $M^{\prime \prime}$ be strongly ST-between block controllable. Consider an $x \in S$ and $y \in T$. Then there must be some $X_{i} \in S^{\pi}$ and $X_{j} \in T^{\pi}$ such that $x \in X_{i}$ and $y \in X_{j}$. By Definition 2.4. we know, there is a (finite) sequence of events in $M^{\pi}, L_{2}^{-1} \cdot L_{3}^{-2} \cdot \ldots \cdot L_{k}^{k-1}$ from λ_{1} to λ_{j}. Let this sequence of block transitions correspond to a trajectory of blocks. $Y_{1} \rightarrow Y_{2} \ldots \rightarrow Y_{k}, Y_{i}=X_{i}$ and $Y_{k}=K_{j}$. Because each pair of adjacent blocks Y_{i} and Y_{l-1} on the above trajectory of blocks are ST-DC. by Definition 2.3. there exists a trajectory from x to some input state of X_{k}. Because of the ST-inblock controllability of X_{k}, this input state must have an in-block trajectory leading to $y \in O\left(X_{k}, S . T\right)$. Thus. we get a complete trajectory from x to y. Hence. M is strongly ST-controllable.

2.3. The T-trimmed ST-Machine and Its Associated ST-IBC Lattice

For any given ST-system modelled by $M=\{\mathbb{N} . \overline{\mathrm{V}} . \bar{j}\}$. we term the states in X which are not reachable from $S S$-inaccessible states. and term the states in X from which T is not reachable T-co-inaccessible states.

The S-inaccessible and T-co-inaccessible states of FSMI M are irrelevant to the ST-control problem: this is because any path from a state in S to a state in T cannot pass through either of the S-inaccessible and T-co-inaccessible states. From the point of view of ST-controllability. all the S-inaccessible or T-co-inaccessible states may be deleted before we investigate the ST-control problem. This would yield a minimal realisation of $M . M^{\prime}$. by which we mean every state of M^{\prime} is S-accessible and T -co-accessible, and hence there are no redundant states with respect to the ST-controllability problem for the resulting ST-system. In this chapter, however. it is sufficient to eliminate the T -co-inaccessible states of a finite state machine. M and we denote the finite state machine obtained after this T -trimming process by $M_{t}=\left(X_{t}, L_{t}^{-}, \delta_{t}\right) . M_{t}$ is said to be the T-trimmed FSM of M.

Definition 2.6. (Chain Union \cup^{C}) The chain union of two partitions π_{1} and π_{2} of X. denoted $\pi_{1} \cup^{C} \pi_{2}$, is the least upper bound of π_{1} and π_{2} with respect to \preceq in the set of partitions of X. \in

The following algorithm may be used to calculate the chain union of two partitions. Each of the distinct blocks Z_{2} of the partition $\pi_{1} \cup^{C} \pi_{2}, \pi_{1}, \pi_{2} \in \pi_{S T}^{I B C}(\mathbb{N})$. can be constructed recursively by setting $Z_{\mathrm{t}}=\bigcup_{n=1}^{\mathrm{N}} Z_{\mathrm{t}, \mathrm{n}}, . V=\max \left\{\left|\pi_{1}\right|,\left|\pi_{2}\right|\right\}$, where $Z_{t, n}$ is given by the following algorithm: Set $Z_{\mathrm{t}, \mathrm{i}}=\mathrm{X}_{\mathrm{t}}$ for some $\mathrm{K}_{\mathrm{t}} \in \pi_{\mathrm{t}}$. then for all $n .1 \leq n<. l$.

Alternatively: let us define $x \sim x^{\prime}$ if either $x . x^{\prime} \in X_{1}^{\pi_{1}} \in \pi_{1}, 1 \leq i \leq\left|\pi_{1}\right|$. or r. $x^{\prime} \in \mathcal{X}_{j}^{3} \in \pi_{2} .1 \leq j \leq\left|\pi_{2}\right|$. Then the equivalence classes of the transition closure of this relation are the blocks of $\pi_{1} \cup^{C} \pi_{2}$.

The property of ST-in-block controllability which we have defined above restricts the set of partitions in such a way that it is preserved under chain union.

Theorem 2.2. For $\pi_{1}, \pi_{2} \in \pi_{S T}^{I B C}\left(M_{t}\right)$, the chain union of π_{1} and π_{2} is ST-IBC. เ. $\ldots . \pi_{1} \cup^{C} \pi_{2} \in \pi_{S T}^{I B C}\left(M_{t}\right)$.

Proof:

Suppose π_{1} and π_{2} are two ST-IBC partitions of \bar{X}_{t}, the T-trimmed finite state machine of M. let us look at their chain union $\pi_{1} \cup^{C} \pi_{2}=\left\{Z_{1}, Z_{1}, \ldots . Z_{r}\right\}$. First. we prove that if A and B are ST-IBC. $A \cup B$ is ST-IBC whenever $A \cap B \neq 0$. It is clear that $I(A \cup B . S . T) \subseteq I(A . S . T) \cup I(B, S, T)$ and $O(A \cup B . S . T) \subseteq O(A, S . T) \cup O(B . S . T)$ so that we need only consider the nontrivial cases when $O(A, S, T) \cup O(B, S . T) \neq \emptyset$.

After eliminating all states which are not T-co-accessible, at least one of the output states of A or B is in $A \cap B$. This is shown as follows. Since we may suppose $O(A, S, T) \neq \emptyset($ recall $O(A, S, T) \cup O(B, S, T) \neq \emptyset)$, without loss of generality, take $x \in A \cap B . y \in O(A, S, T)$ then there is an internal path in A from x to y (since X_{t}

Figure 2.3. ST-IBC is closed under chain union
has been thinned. i.e.. all T-co-inaccessible states in I have been eliminated. such that the states left in X_{d} must have a trajectory to I via an output state of its block: and all output states of A in an ST-IBC partition. are mutually reachable). If (1) $y \in A \cap B$. the above claim holds: otherwise if $(2) y \in A-(A \cap B)$. then the path within A from x to y of the form $x \rightarrow x_{1} \rightarrow \ldots \rightarrow r_{k} \rightarrow y$ must have a one step transition leaving B of the form $b \rightarrow a$. where $a \in A-(A \cap B), b \in A \cap B$ and $b . a \in\left\{x . x_{1}, \ldots r_{k}, y\right\}$. Thus. $b \in O(B . S . T)$. so the conclusion follows again.

Now consider the case $I(A \cup B . S . T) \neq \emptyset$ and $O(A \cup B . S . T) \neq \emptyset$ (otherwise. $A \cup B$ is trivially ST-IBC). therefore, we have two cases to analyse as follows (see Fig. 2.3):
Case (a) $(O(.4 . S . T) \cap O(B . S, T)) \neq \emptyset$. Let $x \in . A \cap B$ be such a common output state of both A and B (see Fig. $2.3(a)$). Then. by the mutual accessibility of the output states in ST-IBC blocks. all output states of $O(A . S . T)$ and $O(B . S . T)$ can communicate with each other through x. Hence, the second condition of Definition 2.5 holds. Since $I(A \cup B . S . T) \subseteq I(A, S . T) \cup I(B . S . T)$. every state in $I(A \cup B, S, T)$ can be driven to some state in $O(A . S, T)$ or $O(B, S, T)$ because A and B are ST-IBC; moreover. it may be then driven to some state in $O(A \cup B, S . T) \neq \emptyset$. Hence. it follows that $A \cup B$ is ST-IBC.
Case (b) $(O(A . S . T) \cap O(B . S . T))=\emptyset$. Without loss of generality, by symmetry we may assume there exists $x \in O(A . S . T) \cap(A \cap B)$ (we have shown above $(O(\ldots . S . T) \cup O(B, S . T)) \cap(4 \cap B) \neq \emptyset)$ such that $x \notin O(B, S, T)$ (see Fig. 2.3(b)). . Now. since the states in $O(A \cup B . S . T) \cap(A \cap B)$ are output states of both A and B.
$x \notin O(A \cup B, S, T)$ by the current hypothesis. Because we have already assumed that all T-co-inaccessible states have been eliminated, $x \in B$ is T -co-accessible implies that there is a trajectory in B from x to some output state of B, say z. . Now we need to consider the following two alternative situations:
(b)(1) If all output states of A are inside $A \cap B$, then the current hypothesis of case (b) implies that none of the output states of A can be an output state of $A \cup B$, since such a state would be a common output state of A and B. Because $O(A \cup B . S, T) \neq 0$. $O(A \cup B . S, T) \subseteq O(B, S, T)$. But by the ST-IBC property of A. every input state of A has a trajectory to $x \in O(A . S . T) \cap A \cap B$ and hence to $z \in O(B . S, T)$. Then by the ST-IBC property of B. z has a trajectory to an element of $O(A \cup B . S . T)$. Hence. $A \cup B$ is ST-IBC.
(b)(2) If (b)(1) does not hold. there exist $y \in O(A . S . T) \cap(A-B)$. Clearly: all output states of A are accessible to the elements of $O(B . S . T)$ through x and z. since all output states of A. including x. are mutually reachable by Definition 2.5(b) (see Fig. 2.3(b)). But. by the mutual accessibility of $O(.4 . S . T)$. it is evident that $r \in O(A . S . T)$ must have a trajectory connecting it to $y \in O(A . S . T) \cap(A-B)$ through some $s \in O(B . S . T) \cap(A \cap B)$. Thus. all output states of B are accessible to y through $: \in O(B . S . T)$ by the mutual accessibility of the output states of a ST-IBC block. Hence, all output states of A and output states of B are mutually accessible with respect to $A \cup B$. Furthermore. since A and B all are ST-IBC. their input states have in-block trajectories leading to their output states and hence to a state in $O(A \cup B . S . T) \neq \emptyset$. It follows again that $A \cup B$ is ST-IBC.

By induction on n. the chain union $\pi_{1} \cup^{C} \pi_{2}$ defined in Definition 2.6 is ST-IBC.

Furthermore. $\pi_{1} \cup^{C} \pi_{2}$ is the least upper bound of π_{1} and π_{2} in the collection of ordinary partitions ordered by \preceq, and. since it is ST-IBC. it is also the least upper bound of π_{1} and π_{2} in the $\pi_{S T}^{I B C}(\boldsymbol{X})$.

In the light of Definition 2.5, a block containing only one state must be ST-IBC. since that state is either an input and output state, or one (or both) of the input or output (singleton) sets of this (singleton) block is the empty set. Thus. the partition $\pi^{i d}=\lambda$ must be an ST-IBC partition. This partition $\pi^{i d}$ acts as a lower bound of all ST-IBC partitions.

Theorem 2.3. For two $S T$-IBC partitions $\pi_{1}, \pi_{2} \in \pi_{S T}^{I B C}\left(M_{t}\right)$ of an $S T$ finite state machine, the greatest lower bound $\pi_{1} \Pi \pi_{2} \in \pi_{S T}^{I B C}\left(M_{t}\right)$ exists.

The proof is obtained by use of Theorem 2.2, in particular, the existence of the greatest lower bound of π_{1} and π_{2} (π_{1} and π_{2} are ST-IBC) is established by noting that (i) the trivial partition (i.e., the partition of singletons) lies in the set of ST-IBC partitions, and (ii) $\pi_{1} \cup^{C} \pi_{2}$ is the least upper bound of π_{1} and π_{2} ([22]).

We extend the partial order of partitions to their corresponding partition machines by defining $M^{\pi_{1}} \preceq M^{\pi_{2}}$ if and only if $\pi_{1} \preceq \pi_{2}$. The following theorem is a straightforward result of Theorem 2.2 and Theorem 2.3.

Theorem 2.4. All ST-IBC partition machines of an ST finite state machine M_{t}, ordered by \preceq, form a lattice $\left\langle M_{S T}^{I B C}\left(M_{\mathrm{t}}\right), \preceq, \cup^{C}, \Pi\right\rangle$, denoted by HIBCST, which takes the mac! hine $M_{t}^{!d}=M_{t}$ as its bottom element. In case M_{t} is ST-IBC, then HIBC $C_{S T}$ has as top element the trivial partition $M_{t}^{t r}$.

2.4. Hierarchical Control for ST-Systems

As stated in the introduction, a feature of the ST-IBC lattice structure for any ST-system M is that it permits the construction of all possible sets of hierarchical feedback control systems (for ST-controllability problems) for the given machine.

To be specific, parallel to the standard IBC hierarchical control problem (see [17]), once the underlying ST-IBC lattice of the thinned machine M_{t} has been constructed, one may select any chain \mathcal{C} from the base element $M_{\varepsilon}^{\text {id }}$ to the top element in the ST-IBC lattice $H I B C_{S T}$. (This may or may not be the trivial partition machine depending on whether T is a mutually accessible set.). Then any set of partition machines lying along such a chain is called an ST-hierarchical control structure. Concerning such a control structure we have the following theorem which is readily verified using the results established above.

Theorem 2.5. For an ST-Controllable finite state machine M_{t}, consider any pair of distinct elements $M_{t}^{\pi_{1}}$ and $M_{t}^{\pi_{2}}, M_{t}^{\pi_{1}} \preceq M_{t}^{\pi_{2}}$, in a hierarchical control structure $\left\langle M_{S T}^{I B C}\left(M_{t}\right), \preceq, \cup^{C}, \Pi\right\rangle$; then $M_{t}^{\pi_{2}}$ is $S T-B B C$ and $S T-I B C$ with respect to $M_{t}^{\pi_{1}}$. Further, any (necessarily solvable) state to state ST-controllability problem for M_{t} has a decomposition into a set of recursively defined, solvable, block to block STcontrollability problems for a sequence of machine pairs $M_{t}^{\pi_{n}}$ and $M_{t}^{\pi_{n+1}}, 1 \leq n \leq$

(a)

$M^{\pi+}$
(b)

Figure 2.4. The j-state partition machine $M /_{5}^{5}$ of M_{8} and its ST-IBC lattice
$\therefore-1$. corresponding to the elements of the V-level hierarchical control structure
 problems guves a solution to the original ST-controllability problem.

Theorem 2.5 shows that any ST-controllability problem may be decomposed into a sequence of hierarchical control problems: these are such that the feedback controller at any level steers the level-n aggregated state (i.e. level-n partition machine state, containing the base level system state) along a trajectory solving the level-n partition T-reachability control problem.

We observe that there may well be a wide choice of chains in any given STIBC lattice and that this consequently facilitates the design of a hierarchical control system: on the other hand. any given machine M has only one ST-IBC lattice and to alter it the dynamics of the base machine M must themselves be altered.

Example 2.3. Let us examine the 5 -state machine shown in Figure 2.4.(a): this is a partition machine of the model M_{8}. in Example 2.1. and we choose $S=\{1,2.4\} \in$ $M_{5} . T=\{8\}$. We notice that M_{8} is already trimmed with respect to T and that its corresponding ST-IBC lattice is given in Figure 2.4.(b).

In this lattice the rightmost chain of partitions from the top to the bottom of the lattice is given by:
$\pi_{1}=\lambda_{t r}=\{\{\{1,2,4\},\{3\},\{5,7\},\{6\},\{8\}\}\}: \pi_{2}=\{\{\{1,2,4\},\{3\}\},\{\{5,7\},\{6\},\{8\}\}\} ;$

In this chain we shall choose the sub-chain $\pi_{1}, \pi_{2}, \pi_{4}$ as the hierarchical control structure. In π_{1}. the trivial partition. we know that $S^{\pi_{1}}=T_{1}^{\pi_{1}}=\pi_{1}$. . . Noting the containment relations, we have $S=S^{\pi / 4}=\{1.2 .4\} \subset S^{\pi}=\{\{1.2 .4\} .3\} \subset S^{\pi}=\pi_{1}$ and $T=T^{\pi_{4}}=\{8\} \subset T^{\pi_{2}} \subset T^{\pi_{1}}=\pi_{1}$. Since the partition π_{1} is ST-IBC. there is an internal trajectory from $S^{\pi_{1}}$ to $T^{\pi_{1}}$.

For the partition machine of π_{2}, we know $\{\{\{1,2.4\} .3\} .\{\{5.7\} .6 .8\}$) is DC (relative to $\left.\bar{\pi}_{4}\right) .\{\{1,2,4\} .3\} \rightarrow\{\{\overline{5}, \overline{7}\}, 6.8\}$. Now the $\mathcal{M}^{\text {i }}$: controller chooses the unique one step control event to drive $S^{\pi / 2}$ to $T^{\pi=}$. This is realized (at the next level of the control hierarchy) by the \mathcal{M}^{-+}controller which has the choice of driving $S^{\pi=}=\{\{1.2 .4\}\}$ to $\{6\}$ in one step. or S^{+2} to $\{\{5,7\}\}$ via $\{3\}$. As far as the realization of this hierarchical control law is concerned. the choice is arbitrary and may be determined by any we!l defined rule.

At the finest $\left(\pi_{i}\right)$ level. the controller terminates the path to T^{-4} by finding a path from $\{5.7\}$ to $T=\{8\}$. Finally, expressing the corresponding ST-DC relations as the state to state one step transitions at the finest $\left(\pi_{4}\right)$ level. we obtain $\{1.2 .4\} \rightarrow$ $\{3\} \rightarrow\{5.7\} \rightarrow\{6\} \rightarrow\{8\}$ that solves the ST-reachability problem.

It is worth noting that all the results in this chapter apply to those machines and partitions in which the state set and in-set of the base machine are countably infinite and the set of blocks of any partition has finite cardinality.

CHAPTER 3

Hierarchically Accelerated Dynamic Programming

3.1. Introduction

We consider finite state machines with transition costs $M=\{. \overline{\text {. }} . \overline{\text {. }} .1\}$. where $X=\left\{x_{0}, x_{1}, x_{2}, x_{3} \ldots x_{-}\right\}$is a finite state space. Σ denotes a finite alphabet of events (controls). $\dot{\delta}$ is a (partial) state transition function defined on $\bar{K} \times \Sigma$. and the cost function $l: x \times u \rightarrow(0, x)$ associates each state and control action with a strictly positive real value. The minimisation of the additive cost along ali possible paths ii.e. trajectories) between any two given states is a basic problem in many contexts. and dynamic programming (DP) is well known to be a fundamental technique for its solution.

Let the cost index $d(s . t: u . l)$ be defined b:

$$
d(s . t: u . l)=\sum_{t=1}^{m-1} l\left(x_{i}, u_{t}\right) .
$$

where $s=x_{1} \cdot t=x_{m} \cdot x_{i+1}=\delta\left(x_{1}, u_{i}\right) \cdot 1 \leq i \leq m-1$. We shall denote by u^{00} any optimal control minimising the cost index $d(s, t: u . l)$ over all control sequences u of all lengths m such that t is accessible from s. If we represent a given finite state machine as a directed graph. this problem is a (weighted edge) shortest path problem. A large number of algorithms have been developed to solve shortest path problems. including Dijkstra's algorithm. Ford's algorithm and Dijkstra`s Two-tree algorithm (see [25]). to name a few. The time complexity of these algorithms naturally depends upon the
size of the model: in general, the complexity grows non-linearly with the number of states in the system. and so the computational efficiency degrades significantly and in particular. they are not applicable to real-time problems. We propose a hierarchical approach to drnamic programming problems which, at the cost of a degree of suboptimality, and subject to an initial investment in constructing a control hierarchy, may reduce the computational complexity of solving any given shortest path problem.

The work here is founded upon that in [17]. where hierarchical control systems are formulated in terms of the construction of partition machines via the notion of dynamically consistent ($D C$) state aggregation. and on that in [15]. where the generalisation of the previous results to source-target systems was presented. The H.ADP methodology proceeds by first decomposing a finite state dynamical system into hierarchical layers of partition machines. Each trajectory optimisation problem (between a source-target pair in the base system with respect to the additive cost function) is represented at the next higher aggregated level using a specifically constructed cost function: this process is iterated up to the highest defined aggregation level (for simplicity of exposition. we only consider two hierarchical layers in Sections 3.2. 3.3 and 3.4 of this chapter). Tangibly related work can be found in ! $\mathbf{7}$. where the authors proposed an aggregate DP for acyclic networks without discussing the consistency of high and low level models. Finally: the dynamic programming (DP) solution to the resulting highest level problem is then passed down to the next lower layer. In that layer. a set of corresponding DP problems is solved. one in each of the blocks lying along the previously derived optimal high level path. This process terminates at the bottom level of the hierarchy. The analysis in Section 3.3 of this chapter gives conditions to ensure that the procedure yields optimal. or near optimal. solutions to the original base level trajectory optimisation problem. In Section 3.4. we provide estimates of the sub-optimality of the HADP method when the optimality conditions of Section 3.3 fail.

3.2. Hierarchical Control and Control Consistency

In this section. we give formal definitions of the notions of dynamical consistency ([17]. [15]) and control consistency (analogous to that defined in [68] and [70]) for a class of hierarchical finite state machines.

Definition 3.1. (Dynamical Consistency (DC))An ordered pair of partition elements (blocks) ($\boldsymbol{K}_{1}, \mathrm{X}_{2}$) is said to be dynamically consistent (DC) (with respect to π) if for all $x \in \mathcal{X}_{1}$. there exists $u \in \Sigma^{*}$ such that $\delta(x, u) \in \mathcal{l}_{2}$ and for all $r<u$. $j\left(x . l^{\prime}\right) \in \lambda_{1}$.
A two level hierarchy formed by M and its abstraction model $M_{h}=\left\{\sum_{h}, U_{h}, \delta_{h}\right\}$. where $\delta_{h}=\pi . l_{h}$ is a set of high level control symbols. δ_{h} is the abstract high level state (block) transition function. is denoted by $\left\{. M_{1}, M_{n}\right\}$.

Figcre 3.1. Hierarchical control structure
Assume that we have an abstraction $M_{h}=\left\{\pi \cdot \Sigma_{h} . \dot{\delta}_{h}\right\}$ of the given base model M. In the two level structure shown in Figure 3.1. the hierarchical control is carried out in a top-down fashion layer by layer. The high level controller employs the information provided by M_{h}. The function of M_{h} is to simplify M while preserving its critical behavioural properties. This hierarchical control configuration achieves an objective in the following way: first, the low level control task is communicated to the high level. then the high level control is performed and the corresponding high level (abstract) control commands are passed to the low level controller. The function of low level controllers is simply to realise the high level abstract commands in terms of specific low level state transitions.

For simplicity, we denote a trajectory from x driven by u as $\operatorname{Tr} j(x, u)$ and a high level trajectory from $\boldsymbol{X}_{\mathbf{t}} \in \pi$ driven by \mathcal{L}^{-}as $\operatorname{Trj}\left(\boldsymbol{K}_{1}, \mathcal{C}^{\prime}\right)$. If (l) for all $v<u<u$, there exist $V \leq W \leq C$ such that $\delta(x, v) \in \delta_{h}\left(K_{1}, V\right)$ and $\delta(x, w) \in \delta_{h}\left(K_{1}, W\right)$, and (2) for all $V^{\cdot} \leq W^{-}$. there exist $v<w<u$ such that $\delta(x, v) \in \delta_{h}\left(X_{1}, V^{\circ}\right)$ and $\dot{\delta}\left(x, u^{\prime}\right) \in \delta_{h}\left(X_{1}, W^{-}\right)$, the trajectory $\operatorname{Tr} j(x, u)$ is said to be contained in $\operatorname{Trj}\left(X_{1}, L^{-}\right)$.

Definition 3.2. (Control Consistency) A two level hierarchy $\left\{M_{.} M_{h}\right\}$ is said to be control consistent (CC) if and only if the following two accessibility conditions hold:
(1) For any $x \in X_{1} \in \pi$ and $y \in X_{j} \in \pi$ if there exists $u \in r^{*}$ such that $\delta(x, u)=y$ then there exists $L^{*} \in \Sigma_{h}{ }^{*}$ such that $\dot{\delta}_{h}\left(X_{1} \cdot L^{-}\right)=X_{\text {, }}$, and $\operatorname{Tr} j(x, u)$ is contained in TrJ(X. L_{1}).
(2) For all $X_{t}, X_{j} \in \pi$. if there exists $L^{\prime} \in \Sigma_{h}{ }^{\cdot}$ such that $\dot{\delta}_{h}\left(X_{1}, L^{\cdot}\right)=X_{j}$. then for all $I \in X_{2}$, there exists $y \in X$, and $u \in \Sigma^{\bullet}$ such that $\delta(I, u)=y$ and $\operatorname{Trj}(x, u)$ is contained in $\operatorname{TrJ}\left(X_{\mathrm{t}}, L^{*}\right)$.

This property is analogous to that defined in $\mathbf{7 0}$ in the hierarchical supervisory control context: it ensures that if a low level task can be completed by a sequence of transitions. then the controlled dynamics of the high level system are consistent with these transitions: conversely: if the high level controller steers a high level state to its target. then the high level commands can be translated into realisable low level transitions.

Theorem 3.1. A two level hierarchy $\left\{M_{1} M_{n}\right\}$ is control consistent $(C C)$ if and only the follouing hypotheses (H) are true:
(1) If there exzst $x \in X_{t} \in \pi, y \in X, \in \pi . u \in \Sigma$ such that $\delta(x . u)=y$ and $\operatorname{Tr} j(x . u)$ is contauned in $X_{2} X_{j}$, then $\left(X_{1}, X_{j}\right)$ is dynamically consistent.
(2) For all $X_{1}, X_{j} \in \pi$. if there extsts $U^{\prime} \in L_{h}$. such that $\delta_{h}\left(X_{i}, L^{-}\right)=\lambda_{j}$, then $\left\langle X_{1}, X_{j}\right)$ is dynamically consistent.
13) For all $X_{2} . \dot{X}_{j} \in \pi$ if $\left(X_{2}, X_{j}\right)$ is dynamically conszstent. then there exsts $l^{-} \in \dot{C}_{h}$. such that $\delta_{h}\left(\cdot X_{i} \cdot L^{*}\right)=\dot{X}_{j}$.

Proof:

$$
H \Rightarrow C C
$$

Suppose the statements (1)-(3) hold. we shall prove that $\left\{. M . M_{h}\right\}$ possesses the two properties of control consistency.
(1) For any $x \in \mathbb{X}, \in \pi$ and $y \in \mathbb{X} \in \pi$. if there is $u \in \Sigma^{*}$ such that $\delta(x, u)=y$. denote $\operatorname{Tr} j(x, u)=z_{1.1} \ldots z_{1, m_{1}} z_{2.1} \ldots z_{n, 1} \ldots z_{n, m_{n}}$. where $z_{1.1}=x . z_{1.2}, \ldots z_{1, m_{1}} \in Y_{i}=\mathcal{X}_{1}$. $z_{2.1} \ldots . . z_{2 . m_{2}} \in Y_{2}, \ldots$ and $z_{n, 1} \ldots z_{n, m_{n}} \in Y_{n}=\dot{X}_{j}$. It is clear that u can be rewritten in terms of $u=u_{1} u_{2} \ldots u_{n-1}$ with each $u_{2} \in \Sigma^{*}$ such that $\delta\left(x, u_{1}\right)=z_{2.1}$. $\dot{\delta}\left(z_{2,1}, u_{2}\right)=z_{3.1}, \ldots$ and $\delta\left(z_{(n-1), 1}, u_{n-1}\right)=y$. Moreover. we know that $\operatorname{Tr} j\left(x, u_{1}\right)$ is contained in $K_{1} \xi_{2}, \operatorname{Trj}\left(\varepsilon_{2,2}, u_{2}\right)$ is contained in $Y_{2} Y_{3} . \ldots . \operatorname{Trj}\left(z_{n-1,1}, u_{n-1}\right)$ is contained in $Y_{n-1} X_{j}$. By statement (1). $\left\langle Y_{1}, Y_{2}\right\rangle,\left\langle Y_{2}, Y_{3}\right\rangle, \ldots .\left\langle Y_{n-1}, Y_{J}\right\rangle$ are dynamically consistent and thus by statement (3). there are $L_{1}, L_{2}, \ldots . L_{n-1} \in \Sigma_{h}$ such that $\dot{j}_{n}\left(\xi_{k} \cdot \dot{\zeta}_{k}\right)=Y_{k+1}$ for $1 \leq k \leq n-1$. Therefore. $\dot{\delta}_{h}\left(X_{i} \cdot \dot{C}_{1} \dot{C}_{2} \cdots V_{n-1}\right)=\dot{X}_{j}$.

(2) For any $\dot{X}_{1}, X_{j} \in \pi$. if there is $L^{*} \in \Gamma_{i}$ such that $\dot{\delta}_{h}\left(X_{1}, V^{*}\right)=X_{j}$, then we
 decomposed into $\zeta_{1} L_{2} \cdots l_{n-1}$ such that $\delta_{n}\left(Y_{k} \cdot \zeta_{k}\right)=Y_{k-1}$ for $1 \leq k \leq n-1$. By
 and $y \in L$, are arbitrarily given. according to the definition of dynamical consistenc: there are respective $u_{k} \in \Sigma^{*}$ and $x_{k} \in Y_{k} .2 \leq k \leq n-1$ such that
 is contained $Y_{2} Y_{r} \operatorname{Tr}\left(x_{k}, u_{k}\right)$ is contained in $Y_{i} \sum_{k-1} \geq \leq k \leq n-1$. Hence.
 short. the two conditions for $\left\{M_{1} M_{n}\right\}$ to be CC are satisfied.
$C C \Rightarrow H$
This part follows straightforwardly from the relevant definitions.

On the basis of this theorem. we conclude that the dynamics of the high level model in a control consistent hierarchy are coincidental with the dynamical consistency relations on the partition of the state space of the base model. Thus, we define the dynamics of M^{π} based on the dynamical consistency relations on $\pi \times \pi$. To be specific. in $M^{\pi}=\left\{\pi, \Sigma^{\pi}, \delta^{\pi}\right\}$. if $\left\langle X_{1}, X_{j}\right\rangle$ is DC. then there exists $L_{i}^{-j} \in \Sigma^{\pi}$ such that $j^{\pi}\left(X_{1} .\left[\begin{array}{l}\cdot J\end{array}\right)=X_{j}\right.$. It is to be noted that Σ^{π} is a set of high level abstract control symbols and is not a set of implementable (base level) control actions.

Definition 3.3. (IBC Block) A partition block $X_{i} \in \pi$ is in-block controllable (IBC) if for all $x . y \in X_{i}$ there exists $u \in \Sigma^{*}$ such that $\delta(x, u)=y$ and for all $v<u$, $\dot{\delta}(x, v) \in X_{\mathrm{t}}$.
A partition π is an IBC partition if all its blocks are IBC. At theory of the structure of partition machines for hierarchical control ([65]. [17], [15]) and its extensions to the hybrid and supervisory control cases respectively are to be found in [20]. [16]. [13] and [32]. In particular, this theory asserts that all IBC partition machines of M constitute a lattice L and any chain from the top to the bottom of L provides a hierarchical control structure. where the terms base (level) and high level machine have an obvious implication.

Consider a base system M which may be represented by a directed graph. We observe that if X_{1} is an IBC block. then for any $x . y \in \mathcal{X}_{2}$ there exists $u t \in \Sigma^{\bullet}$ such that $\dot{\delta}(x, u)=y \cdot \dot{(}(y, v)=x$ and for all $u<u r \cdot \dot{\delta}(x, u) \in \dot{l}_{:}$. This fact reveals that IBC partitions may be generated locally, through a search for circuits. We may first partition M into m subgraphs $G_{2}, i=1.2 \ldots . . m$. The following algorithm recursively gives the maximal IBC block which contains a given state s in a subgraph G_{1}.

Algorithm for generating the maximal IBC block $\mathcal{N}(s)$ containing s in $G_{\text {: }}$ (1) Set $\dot{X}(s)=\{s\}$.
(2) If there is a path $r_{1} x_{2} \ldots x_{n}$ in G_{2} which originates from $x_{1} \in \mathcal{X}(s)$ and ends at $r_{n} \in \mathcal{X}(s)$ and $r_{2}, r_{3}, \ldots . r_{n-1} \in \mathcal{N}(s)$, then $\mathcal{X}(s)=X(s) \bigcup\left\{x_{2}, I_{3}, \ldots . x_{n-1}\right\}$:
(3) else. stop.

This algorithm has the same time complexity as depth-first search ([25i).
Definition 3.4. (Controllability) A finite state machine $M=\{\mathbb{X} \Sigma . \delta\}$ is controllable if for any $x . y \in \mathcal{X}$. there exists $u \in \Sigma^{*}$ such that $\delta(x, u)=y$.

The controllability of M^{π} is similarly defined.
Theorem 3.2. $\left\{\mathbf{1 7} \mid\right.$ If π is $I B C$, then M^{π} is controllable if and only if M is controllable.

Finally. we conclude the following result.

Theorem 3.3. If π is IBC, then $\left\{M, M^{\top}\right\}$ is control consistent.

Proof:
Suppose $\pi=\left\{X_{1}, X_{2}, \ldots, X_{; r \mid}\right\}$ is IBC and M^{+}is a parcition machine of M based on π.
(1) Let $x \in X_{t} \in \pi$ and $y \in X, X \in \pi$ be two arbitrary states of M. If there exists $u \in \Sigma^{*}$ such that $\delta(x, u)=y$. let $u=u_{0} u_{1} \ldots u_{m}\left(u_{t} \in \Sigma\right.$ for $\left.0 \leq i \leq m\right)$. then $\operatorname{Tr} j(x, u)=x z_{1} z_{2} \ldots z_{m} y$. with $\delta\left(x, u_{0}\right)=z_{1}, \delta\left(z_{m}, u_{m}\right)=y$ and $\delta\left(z_{1}, u_{i}\right)=z_{1+1}$. $1 \leq i \leq m-1$. Suppose $z_{i} \in X_{n_{1}}$. for some integers $1 \leq n_{i} \leq|\pi|$. For convenience. set $z_{0}=x . z_{m+1}=y$ and $n_{0}=i . n_{m+1}=j$.

Whenever $X_{n_{1}} \neq X_{n_{1+1}}$ it is the case that $z_{i} \in X_{n_{1}}$ and $\delta\left(z_{i}, u_{t}\right)=z_{i-1} \in X_{n_{1-1}}$. By the assumption that π is IBC. $X_{n_{1}}$, is IBC. i.e. for any state $r^{\prime} \in X_{n_{1}}$. there exists $u^{\prime} \in \Sigma^{\cdot}$ such that $\delta\left(x^{\prime}, u^{\prime}\right)=z_{\text {, }}$ and for all $v^{\prime}<v^{\prime} . \delta\left(x^{\prime} . v^{\prime}\right) \in \lambda_{n_{1}}$. Let $u=v u_{2}$. then $\dot{\delta}\left(r^{\prime}, u^{\prime}\right)=\dot{j}\left(z_{1}, u_{2}\right) \in X_{n_{1}-1}$, and for all $u^{\prime}<u \cdot \dot{j}\left(r^{\prime} . u^{\prime}\right) \in X_{n_{1}}$. In other words. $\left(X_{n_{1}}, X_{n_{1}-1}\right)$ is DC and this holds for all n_{1}. Therefore. there is $L_{i} \in \Sigma$ such that $j^{\top}\left(\mathcal{C}_{n}, L_{t}\right)=X_{n,-1}$.

If $X_{n_{t}}=\lambda_{n_{1}-1}$. let $C_{i}^{\prime}=\epsilon$, the empty string over the Σ^{π}. we also have $\dot{J}^{\prime \prime}\left(X_{n_{1}} \cdot \zeta_{i}\right)=$ $\lambda_{n_{1-1}}$.

Hence. there exists a string in $\left(\Gamma^{\pi}\right)^{\bullet}$. i.e. $L^{\circ}=L_{0} L_{1} \ldots L_{m}$ such that $\dot{j}^{\pi}\left(\mathcal{L}_{1}, L^{\circ}\right)=I_{\text {, }}$ and clearly. $\operatorname{Tr}_{r j}(x . u)$ is contained in $\operatorname{Tr} j\left(\mathcal{L}_{1}, L^{\circ}\right)$.
(2) Let $\dot{l}_{2}, \dot{l}_{\text {, }}$ be two arbitrary blocks in π. Suppose $L^{*} \in\left(\Sigma^{\pi}\right)^{*}$ is a string of high level control symbols such that $\delta^{\pi}\left(X_{1}, C^{*}\right)=X_{j}$. Denote $U^{\circ}=\zeta_{1} L_{2}^{\circ} \ldots L_{m}^{\circ}$ with $\dot{L}_{k} \in \Sigma .1 \leq k \leq m$. For simplicity, let $n_{1}=i$. $n_{m+1}=j . \dot{\delta}^{\pi}\left(\mathcal{X}_{n_{1}} \cdot L_{t}^{\prime}\right)=X_{n_{t+1}}$, where $\mathrm{K}_{n_{1}} \in \pi$ and n_{t} is some integer. $1 \leq n_{2} \leq|\pi|$.

For any two states $x \in X_{z}$ and $y \in X_{1}$. we now show there is a $u \in \Sigma^{*}$ such that $\delta(x, u)=y$. Since $\delta^{\top}\left(X_{n_{1}}, U_{1}\right)=X_{n_{1-i}}$, i.e. $\left\langle X_{n_{1}}, K_{n_{1-i}}\right\rangle$ is DC, then we know there exists $x_{2} \in \mathcal{X}_{n_{2}}$ and there is $u_{1} \in \Sigma^{*}$ such that $\delta\left(x, u_{1}\right)=x_{2}$ and for all $u_{2}^{\prime}<u_{2}$,
$\delta\left(x, u_{2}^{\prime}\right) \in X_{n_{1}}=X_{i}$. Subsequently, we may take $x_{i} \in X_{n_{i}}$ for $2<i \leq m+1$ such that there exist $u_{i} \in \Sigma^{*}, \delta\left(x_{i}, u_{i}\right)=x_{i+1}$ and $\operatorname{Tr} j\left(x_{i}, u_{i}\right)$ is contained in $X_{n_{i}} X_{n_{i+1}}$. Let $v=u_{1} u_{2} \ldots u_{m}$, then $\delta(x, v)=x_{m+1} \in X_{n_{m+1}}=X_{3}$. Moreover, because π is IBC, λ_{j} is IBC. This implies that there exists $u \in \Sigma^{*}$ such that $\delta\left(x_{m+1}, w\right)=y$ and for all $u^{\prime}<u \cdot \delta\left(x_{m+1}, u^{\prime}\right) \in \mathbb{X}_{j}$. Denote $u=v u$, clearly, $\delta(x, u)=y$ and $\operatorname{Trj}(x, u)$ is contained in $\operatorname{Tr} j\left(X_{t}, U\right)=X_{n_{1}}, X_{n_{2}} \ldots X_{n_{m+1}}$.

In this chapter. unless otherwise indicated, all partitions π are assumed to be IBC partitions and $M_{h}=\left\{\mathcal{V}_{h}, \mathscr{L}_{h}, \bar{\delta}_{h}\right\}$ will be used to denote the partition machine M^{*} corresponding to π.

3.3. Optimality Consistency

An optimal control with respect to a start state x and a target state $y . u^{00}(x, y)$ is a sequence of transitions such that $y=\delta\left(x, u^{00}(x, y)\right)$ and for all $r \in \Sigma^{\bullet}$ with $j(x . c)=y \cdot d\left(x . y: u^{00}(x, y) . l\right) \leq d(x, y: c, l)$. Denote the set of optimal controls with respect to the start state r and the target state y by $\mathbf{u}^{0}(x, y)$. Hence. if $u \notin \mathbf{u}^{0}(x, y)$. $d\left(x . y: u^{100}(x, y), l\right)<d(x, y: c \cdot l)$.

Denote the set of high level optimal controls with respect to the start block $\bar{L}_{2} \in \pi$ and the target block $X_{j} \in \pi$ b $U^{0}\left(\mathcal{X}_{1}, \lambda_{j}\right)$.

Definition 3.5. (Optimality Consistency $\left(\mathrm{OC}\left(C_{h}\right)\right)$) A two level hierarchy $\left\{. M . M_{h}\right\}$ with a given low level cost function l is optimality consistent $(O C)$ if there exists a high level cost function $C_{h}: \pi \times \Sigma_{h} \mapsto R^{+}$such that the following conditions hold:
(1) for any two states $x \in X_{t} \in \pi \cdot y \in X, \mathcal{X} \in$, if $u \in u^{0}(x, y)$, then there is $\dot{L}^{\cdot} \in \mathrm{U}^{0}\left(X_{\mathbf{t}}, X_{j}\right)$ such that $\operatorname{Tr} j(x . u)$ is contained in $\operatorname{Tr} j\left(\boldsymbol{K}_{1}, L^{*}\right)$.
(2) for any two blocks $X_{i}, X_{j} \in \pi$, if $U \in \mathbf{U}^{0}\left(X_{i}, X_{j}\right)$, then for every $x \in X_{i}$ and $y \in X_{J}$, there exists $u \in \mathbf{u}^{0}(x, y)$ such that $\operatorname{Trj}(x, u)$ is contained in $\operatorname{Tr} j\left(X_{2}, U\right)$.

Definition 3.6. (Convex High Level Trajectories) A high level trajectory $P\left(X_{1}^{n}\right)=X_{1} \cdot X_{2} \cdots X_{n}$ is said to be convex if either:
(1) for all $x \in X_{1}$ and all $y \in X_{n}, P\left(X_{1}^{n}\right)$ does not contain any low level optimal path from x to y.
(2) or for all $x \in X_{1}$ and $y \in X_{n}, P\left(X_{1}^{n}\right)$ contains a low level optimal path from x to y.
A high level model M_{h} is said to be convex if all of its paths are convex.

We note that the convexity property does not imply the low level optimal path between a pair of states is unique; nor does it imply that the high level path containing low level optimal paths between a pair of states is unique.

All states in a block X_{1} can be classified into two disjoint categories: (i) boundary states $\partial . \mathrm{X}_{1}$ which have direct connections to or from elements in X^{c}. and (ii) interior states \dot{K}_{1} which are elements of X_{1} not in ∂X_{1}. i.e. $\dot{X}_{2}=X_{2}-\partial X_{1}$. It turns out that the convexity of paths is exclusively determined by their boundary states. This is formulated by the theorem below.

Theorem 3.4. A high level path $P\left(X_{1}^{n}\right)=X_{1} X_{2} \ldots X_{n}$ containing a lou level globally optimal path from a state in \bar{X}_{1} to a state in X_{n} is conver if and only if for all $x \in O\left(X_{1}\right)$ and $y \in I\left(\boldsymbol{X}_{n}\right)$, there exists a low level globally optimal path from x to If path-uise contaned in $P\left(X_{1}^{n}\right)$.

Prooi:

First. we prove the sufficiency. Because π is IBC. the hierarchy $\left\{. M_{1} M_{h}\right\}$ is CC. Therefore for any state $x^{\prime} \in X_{1}$ and any state $y^{\prime} \in X_{n}$. there is a low level path contained in $P\left(X_{1}^{n}\right)$ connecting x^{\prime} and y^{\prime}. Because. the set of controls with respect to x^{\prime} and y^{\prime} is not empty, the optimal control exists. Denote the low level global optimal path from x^{\prime} to y^{\prime} by $\operatorname{Tr} j\left(x^{\prime}, u\right)$. There is a state $x^{\prime \prime} \in O\left(\mathrm{X}_{1}\right)$ such that $\operatorname{Tr} j\left(x^{\prime}, u\right)$ can be written as $x^{\prime} \leadsto x^{\prime \prime} \rightarrow z \sim y^{\prime}$ where all states on $z \sim y^{\prime}$ are not in K_{1}. Also. there is a state $y^{\prime \prime} \in I\left(X_{n}\right)$ such that $\operatorname{Tr} j\left(x^{\prime}, u\right)$ can be written as $x^{\prime} \sim z^{\prime} \rightarrow y^{\prime \prime} \sim y^{\prime}$ where all states on $x^{\prime} \leadsto z^{\prime}$ are not in X_{1}. By the condition that there is a low level globally optimal path from x^{\prime} to y^{\prime} path-wise contained in $P\left(X_{1}^{n}\right)$, denote this path as $\operatorname{Tr} j\left(x^{\prime \prime}, v\right)$. Hence. $x^{\prime} \sim \operatorname{Tr} j\left(x^{\prime \prime} . v\right) \sim y^{\prime}$, which is path-wise contained in $P\left(X_{1}^{n}\right)$, has the same cost as $\operatorname{Tr} j\left(x^{\prime}, u\right)$ and thus is optimal. Since x^{\prime} and y^{\prime} are arbitrary, we
conclude that $P\left(X_{1}^{n}\right)$ is convex.
"Only if" part is straightforward by the definition of convexity.
Theorem 3.5. If a two level hierarchy $\left\{\mathrm{M}_{\mathrm{M}}, \mathrm{M}_{h}\right\}$ is optimality consistent then $\left\{. M_{h} M_{h}\right\}$ is convex.

Proof:
 arbitrary trajectory of M_{h}. In the non-empty case, if $x \in \mathcal{K}_{1}$ and $y \in \mathcal{X}$, are two states of M and $u \in \mathbf{u}^{0}(x, y)$ is an optimal low level controil sequence such that $\operatorname{Tr} j(x, u)$ is contained in T. then. by Definition 3.1(1). we know there exists $L^{*} \in U^{0}\left(X_{1}, L_{j}\right)$ such that $\operatorname{Tr} j(r, u)$ is contained in $\operatorname{Tr} j\left(\mathcal{X}_{1}, L^{-}\right)$. That is to say. $T=\operatorname{Tr} j\left(\mathcal{X}_{1}, L^{\circ}\right)$ is an optimal high level path from X_{1} to X_{j}.

Since T is an optimal high level path. by Definition 3.8(2). for any two states $x^{\prime} \in X_{1}$ and $y^{\prime} \in X_{2}$. there exists $u^{\prime} \in \mathbf{u}^{0}\left(x^{\prime} . y^{\prime}\right)$ such that $\operatorname{Tr} j\left(x^{\prime} . u^{\prime}\right)$ is contained in T. In other words. there is an optimal low level path from r^{\prime} to y^{\prime} contained in T. Since T is arbitrary. it follows that $\left\{M, M_{h}\right\}$ is convex.

However convexity does not imply optimality consistency: as is shown in the following example.

Example 3.1. In Figure 3.2 is shown a low level model M. Each edge is labelled by the cost of its corresponding transition. An IBC partition machine of $M . M_{h}$, is given by Figure 3.3. It is easy to verify that all (high level) paths of M_{h} are convex. However. as we shall show. no admissible high level cost function exists to make the hierarchy $\left\{M_{M}, M_{h}\right\}$ optimality consistent.

Suppose to the contrary, there was a high level cost function C_{h} such that $\left\{M . M_{h}\right\}$ is $\operatorname{OC}\left(C_{h}\right)$ and the cost of transition from X_{i} to X_{j} for a DC pair $\left\langle\mathbf{X}_{i}, \mathbf{K}_{j}\right\rangle$ in M_{h} is denoted by $C\left(\mathbf{X}_{i}, \mathbf{X}_{j}\right)$.

Figure 3.2. A finite state machine M
By the definition of optimality consistency: a high level path containing a low level optimal path from a state in its first block to a state in its last block is optimal with respect to C_{h}. To be specific. $x_{1} \rightarrow x_{21} \rightarrow x_{5}$ (contained in $X_{1} \rightarrow \Lambda_{2} \rightarrow \lambda_{5}$) is uptimal and $x_{1} \rightarrow x_{41} \rightarrow x_{42} \rightarrow x_{\text {; }}$ (contained in $X_{1} \rightarrow X_{4} \rightarrow X_{j}$) is non-optimal. hence

Figure 3.3. An IBC partition machine.M_{h}

$$
\begin{equation*}
C\left(X_{1}, X_{2}\right)+C\left(X_{2}, X_{5}\right)<C\left(X_{1}, X_{4}\right)+C\left(X_{4}, X_{5}\right) \tag{1}
\end{equation*}
$$

$$
x_{1} \rightarrow x_{41} \rightarrow x_{6} \text { (contained in } X_{1} \rightarrow \Gamma_{4} \rightarrow \Lambda_{6} \text {) is optimal and } x_{1} \rightarrow x_{21} \rightarrow x_{22} \rightarrow
$$ x_{0} (contained in $\lambda_{1} \rightarrow \lambda_{2} \rightarrow \lambda_{6}$) is non-optimal, thus.

$$
\begin{equation*}
C\left(X_{1}, X_{4}\right)+C\left(X_{4}, X_{6}\right)<C\left(X_{1}, X_{2}\right)+C\left(X_{2}, X_{6}\right) \tag{2}
\end{equation*}
$$

(1) and (2) jointly give

$$
\begin{equation*}
C\left(\mathrm{I}_{2}, \mathrm{I}_{5}\right)+C\left(. \mathrm{X}_{4}, \mathrm{X}_{6}\right)<C\left(. \mathrm{I}_{4}, \mathrm{X}_{5}\right)+C\left(\mathrm{X}_{2}, \mathrm{I}_{6}\right) \tag{3}
\end{equation*}
$$

Similarly. $x_{3} \rightarrow x_{42} \rightarrow x_{5}$ (contained in $X_{3} \rightarrow X_{4} \rightarrow X_{5}$) is optimal and $x_{3} \rightarrow x_{22} \rightarrow x_{21} \rightarrow x_{5}$ (contained in $\mathrm{X}_{3} \rightarrow \mathrm{X}_{2} \rightarrow x_{5}$) is non-optimal. hence

Now $x_{3} \rightarrow x_{22} \rightarrow x_{6}$ (contained in $X_{3} \rightarrow \Lambda_{2} \rightarrow \Lambda_{6}$) is optimal and $x_{3} \rightarrow x_{42} \rightarrow$ $x_{41} \rightarrow x_{5}$ (contained in $X_{3} \rightarrow X_{4} \rightarrow X_{6}$) is non-optimal. thus.

$$
\begin{equation*}
C\left(X_{3}, X_{2}\right)-C\left(X_{2}, X_{6}\right)<C\left(X_{3} . \Gamma_{4}\right)+C\left(X_{4}, X_{5}\right) \tag{5}
\end{equation*}
$$

(4) and (5) jointly give

$$
\begin{equation*}
C\left(X_{1}, \dot{X}_{j}\right)-C\left(X_{2}, X_{6}\right)<C\left(X_{2}, \dot{X}_{j}\right)+C\left(X_{4}, X_{6}\right) \tag{6}
\end{equation*}
$$

Obriously: (6) contradicts (3). Thus C_{h} can not exist.

For $x \in X_{1} \in \pi$ and $y \in X_{n} \in \pi$ and a high level trajectory $T=X_{1} X_{2} \cdots X_{n}$. let $\mathbf{u}_{T}(x, y)$ be a set of sequences of low level control actions satisfying: $c \in \mathbf{u}_{T}(x, y) \Rightarrow$ $\dot{\delta}(x, v)=y$ and $\operatorname{Tr} j(x, v)$ is contained in T.

Definition 3.7. (Minimal Cost $d_{T}^{0}(x, y)$) For any $x . y \in I$ and a state and control cost function l. we may define $d_{T}^{0}(x, y)=d_{T}^{0}(x, y: l) \stackrel{ }{\triangleq} \min _{v}\left\{d(x, y ; u, l): v \in \mathbf{u}_{T}(x, y)\right\}$.

The optimal low level cost $d(x, y: u, l)$. where $u \in u^{0}(x, y)$. shall be denoted by $d^{00}(x, y)$. and this shall be referred to as the global optimum value of $d(x, y ; u, l)$.

We may define a less restrictive version of optimality consistency, which is that of optimality consistency with respect to an initial state s :

Definition 3.8. (Optimality Consistency w.r.t. an Initial State s) Atwo level hierarchy $\left\{M, M_{h}\right\}$ with a given low level cost function l is said to be optimality consistent with respect to an initial state $s \in X^{s} \in \pi$ if there exists a high level cost function $C_{h}: \pi \times \Sigma_{h} \mapsto R^{+}$such that the following conditions hold:
(1) For all $t \in \bar{l}_{t} \in \pi$. if $u \in \mathbf{u}^{0}(s . t)$, then there exists $U \in U^{0}\left(X^{s}, X_{t}\right)$ such that $\operatorname{Tr} j(s, u)$ is contained in $\operatorname{Tr} j\left(\mathrm{X}^{\mathrm{s}}, L^{\circ}\right)$, and
(2) For all $t \in X_{t}$, if $L^{*} \in U^{0}\left(X^{-s}, X_{t}\right)$. then there exists $u \in u^{0}(s, t)$ such that $\operatorname{Tr} j(s, u)$ is contained in $\operatorname{Tr} j\left(X^{-s}, C^{\circ}\right)$.

Definition 3.9. (Convexity w.r.t. an Initial State s) A high level model M_{h} is said to be convex w.r.t. an initial state s. where $s \in X^{3} \in \pi$. if for all paths $P\left(Y_{1}^{n}\right)=Y_{1} Y_{2} \cdots Y_{n} . \subset M_{n}$ with $Y_{1}=X^{-s}$.
$\exists x \in Y_{n}, \equiv u^{00}(s, x) \in \mathbf{u}^{0}(s . x)$ s.t. $\operatorname{Tr} j(s, x) \subset P\left(Y_{1}^{n}\right)$
$\Longrightarrow \forall \not y \in \zeta_{n}, \equiv u^{00}(s, y) \in \mathbf{u}^{0}(s . y)$ s.t. $\operatorname{Tr} j(s, y) \subset P\left(\zeta_{1}^{n}\right)$.

With this weakened version of convexity, we have.

Theorem 3.6. If all paths in M_{h} are convex with respect to s. then $\left\{M_{1} M_{h}\right\}$ is optumality consistent with respect to s.

Proof:

To prove the theorem. we introduce a graph called the optimal high-level path graph u.r.t. s ($\operatorname{OPG}\left(X^{-s}\right)$): $\operatorname{OPG}\left(X^{-s}\right)$ consists of all high level nodes and all edges that are on some high level path from X^{-s} to some node X_{1}, where these paths each contain a low level optimal path from s to a state in \mathbf{X}_{1}. Given the convexity w.r.t. s of all high level paths starting from X^{s}. we construct the graph $\operatorname{OPG}\left(X^{s}\right)$ by arbitrarily picking a state, say z, in each block and then finding all low level optimal paths from s to z. The high level paths containing these low level optimal paths constitute $\operatorname{OPG}\left(\mathrm{K}^{-s}\right)$.

FIGURE 3.4. There are no circuits in $\operatorname{OPG}\left(X^{-s}\right)$
We shall prove that there are no circuits in the OPG $\left(X^{-s}\right)$ by obtaining a contradiction by use of the convexity hypothesis.

Abstract

We let \rightarrow represent a one-step transition and let \sim represent a sequence of transitions. Suppose there were a circuit between two distinct nodes I° and I° in OPG $\left(X^{-}\right)$, namely some path $I \sim W \sim I$. By the definition of OPG $\left(X^{-s}\right), V \sim I \cdot$ and $\Pi^{\circ} \sim I^{\circ}$ are the terminal parts of high level paths containing low level optimal paths from s to states in W and V° respectively. Therefore. there must be low level optimal paths from s to a node $x \in I^{\prime}$ contained in $\Gamma^{s} \sim V^{\prime}$ and another from s to $y \in I^{\circ}$ concained in $I^{-s} \sim W^{-} \sim I^{-}$(see Figure 3.4.).

Let $x \in I$ be a state such that the cost from s to x is the minimum with respect to all states in V°. By convexity w.r.t s. since $y \in V^{\circ}$. we also conclude that there is a low level optimal path from s via W to x contained in $N^{-s} \sim W \sim V$. Denote a state in W^{-}on such a low level optimal path by r. By similar reasoning, we know there is a low level optimal path from s to r contained in $S \sim W^{\circ}$, and there is a low level optimal path from s to r contained in $S \sim V^{\circ} \sim W^{\circ}$. Denote a state in V° on the latter path by t.

We know that all segments on a low level optimal path must also be globally optimal trajectories between their end points. Let $d_{S \sim v}^{0}(s, x)$ denote the cost of an optimal path $s \sim x$ with respect to all low level paths from s to x contained in
$S \sim V, d_{S \sim \cdot}^{0} \cdot(s, x)$ equals to the global optimum $d^{00}(s, x)$. We also know that two optimal paths between the same pair of states have the same cost, i.e..

$$
\begin{gather*}
d^{00}(s, x)=d_{X}^{0} \sim \sim \cdot(s, x)=d_{X}^{0}, \sim H \sim \cdot(s, x) \\
=d_{X, \sim W}^{0}(s, r)+d_{V \sim W}^{0} \cdot(r, x)=d^{00}(s, r)+d^{00}(r, x) \tag{i}
\end{gather*}
$$

and

$$
\begin{gather*}
d^{00}(s, r)=d_{X}^{0}, \sim W \cdot(s, r)=d_{X^{0}, \sim レ \sim W}^{0}(s, r) \\
=d_{\cdot: \sim}^{0}, \cdot(s . t)+d_{V}^{0} \sim W \cdot(t, r)=d^{00}(s, t)+d^{00}(t, r) \tag{8}
\end{gather*}
$$

Therefore substituting (8) into (7). it follows that

$$
d^{00}(s . x)=d^{00}(s . t)+d^{00}(t . r) \div d^{00}(r . x) .
$$

Because we have made the assumption that $d^{00}(s, x)$ is minimal with respect to all states in I.

$$
d^{00}(s . t) \geq d^{00}(s . x)
$$

Hence

$$
d^{000}(s . t) \geq d^{00}(s . x)=d^{00}(s . t)+d^{00}(t . r) \div d^{00}(r . x)
$$

which then gives

$$
d^{00}(t, r) \div d^{00}(r, r)=0
$$

This implies $r=t=r$. contradicting $r^{\circ} \neq W$.

We consider two distinct cases where the high level paths that contain low level optimal paths from s to the states in any given block are respectively unique and not unique.

First. let us assume that the high level paths that contain low level optimal paths from s to the states in any given block are unique. then $\operatorname{OPG}\left(\mathrm{X}^{-s}\right)$ is a tree. In this
case, circuits are clearly impossible in OPG $\left(X^{s}\right)$. It is quite straightforward to see that by assigning each arc on this tree a cost 1 , and all other edges of the high level graph which are not shown in $\operatorname{OPG}\left(\mathrm{K}^{3}\right)$ with cost infinity (or a sufficiently large positive number). we obtain a high level cost function which preserves the partial order on blocks established by OC w.r.t.s.

Second. consider the general case in which the uniqueness of high level paths containing optimal low level paths does not hold. that is to say, there may be multiple high level paths containing low level optimal paths from s to some given node in their last block. In this case. we invoke the result proved above to conclude there are no circuits in OPG $\left(\mathbb{X}^{-s}\right)$. To make the costs of the above mentioned high level path equal. we introduce a term depth.

Define the depth of each node on $\operatorname{OPG}\left(\mathbb{I}^{s}\right) \cdot \operatorname{dep}(S)=0 . \operatorname{dep}(\boldsymbol{I})=\max \left\{\operatorname{dep}\left(\mathbb{V}^{\circ}\right)+\right.$ 1 for all I° which is a direct predecessor of $\left.I I^{\circ}\right\}$. ts we have proved. the depth of a node must be finite because no circuit exists in OPG(.$\left.^{-s}\right)$.

Now we define the cost of the arc $\Gamma^{\circ} \rightarrow W^{\circ}$ by $C_{h}\left(W^{\circ} \rightarrow W^{\circ}\right)=\operatorname{dep}\left(W^{\circ}\right)-\operatorname{dep}\left(\Gamma^{\circ}\right)$. which we note is strictly greater than 0 .

For all arcs $I^{\circ} \rightarrow W^{\circ}$ not appearing in $\operatorname{OPG}\left(\mathrm{K}^{-s}\right)$. let $C_{h}\left(V^{\cdot} \rightarrow W^{\circ}\right)=x$.

It is clear that under the so-defined C_{h}, the set of optimal high level paths from X^{s} to $X_{i} \in \pi$ contains a low level optimal path from s to any state $x \in X_{1}$: and any low level optimal path from s to an arbitrary state $x \in X_{i} \in \pi$ is contained in a high level optimal path from X^{s} to X_{2}. Thus. we conclude that $\left\{M, M_{h}\right\}$ is optimality consistent with respect to s.

Let us extend the notion of convexity with respect to a single start state s to that of convexity with respect to $\mathrm{X}^{\mathbf{s}}$: given a high level trajectory T in $\left\{M, M_{h}\right\}$, if for all $x \in X^{-s} \in \pi, T$ is convex with respect to x, then T is said to be convex with respect to X^{-3}. Similarly, we extend the notion of optimality consistency with respect to s to optimality consistency with respect to $X^{-s}:$ a hierarchy $\left\{M, M_{h}\right\}$ is optimality
consistent with respect to $X^{s} \in \pi$ if $\left\{. M, M_{h}\right\}$ is optimality consistent with respect to x. for all $x \in X^{-s}$.

Corollary 3.1. If all paths in M_{h} are convex with respect to K^{-s}, then $\left\{\mathrm{M}_{\mathrm{M}}, \mathrm{M}_{h}\right\}$ is optimality consistent with respect to X^{-3}.

3.4. P-HADP $\left(C_{h}\right), \operatorname{HADP}\left(C_{h}\right)$ and Their Sub-optimality Estimates

Recalling the treatment introduced in [15], we specify a subset called an in-set for each block of the high level model.

Definition 3.10. (In-Sets) For a partition block $X_{t} \in \pi$ in the partition π, its input set. or in-set. $I\left(X_{t}\right)$ is a subset of X_{t} satisfying the following condition: $\forall x \in I\left(X_{t}\right)$, there exists $x^{\prime} \notin \mathcal{X}_{t}$, and there exists $u \in \Sigma$ such that $\delta\left(x^{\prime}, u\right)=r$.
$I\left(\mathcal{X}_{1}\right)$ is further refined according to the DC relations: for a pair of DC blocks $\left(X_{j}, X_{1}\right\rangle$. we set $I_{j}\left(X_{t}\right) \triangleq\left\{x \in X_{t}: \Xi x^{\prime} \in X_{j} \equiv u \in \Sigma . \dot{j}\left(x^{\prime}, u\right)=x\right\}$.

In particular. if the initial and target states $s \in X_{s} \in \pi$ and $t \in X_{t} \in \pi$ are identified. we designate $I\left(\boldsymbol{X}_{s}\right)=\{s\}$ and $I\left(\boldsymbol{X}_{\iota}\right)=\{t\}$.

A possible measure of the cost of a high level transition between blocks is the total cost in terms of the low level events required to traverse this block from its in-set to the next block. Define $d(x, y: u, l)$ with $x \in \mathcal{X}_{1}, y \in I_{1}\left(X_{j}\right)$, and for all $v<u . j(x, u) \in X_{t}$. as a traverse cost from X_{t} to X_{j}. Because a block may have multiple in-set states. finding a single parameter representing the traverse costs may be impossible. Bearing this in mind. we define the bounds.

Definition 3.11. $\left(D^{+}\left(X_{1}, X_{j}\right) . D^{-1-}\left(X_{t}, X_{j}\right), D^{-}\left(X_{1}, X_{j}\right)\right)$ If $\left(X_{2}, X_{j}\right)$ is $D C$. $D^{+}\left(X_{1}, X_{j}\right) \triangleq \max \left\{d_{X_{1}, X_{1}}^{0}(x . y)\right.$ for all $x \in I\left(X_{i}\right)$ and $\left.y \in I_{i}\left(X_{j}\right)\right\}$. $D^{-i}\left(X_{i}, X_{j}\right) \triangleq \max _{x} \min _{y}\left\{d_{X_{i} X_{j}}^{0}(x, y)\right.$ for all $x \in I\left(X_{i}\right)$ and $\left.y \in I_{i}\left(X_{j}\right)\right\}$. $D^{-}\left(X_{2}, X_{j}\right) \triangleq \min \left\{d_{X_{1}, X_{j}}^{0}(x, y)\right.$ for all $x \in I\left(X_{i}\right)$ and $\left.y \in I_{i}\left(X_{j}\right)\right\}$.

Clearly. we know that $D^{\dagger}\left(X_{i}, X_{j}\right) \geq D^{\dagger /-}\left(X_{1}, X_{j}\right) \geq D^{-}\left(. X_{i}, X_{j}\right)$. If $P\left(X_{1}^{n}\right) \geqslant X_{1}$ $X_{2} \cdots X_{n}$ is a high level path. then for all $x \in I\left(X_{1}\right)$ and $y \in I_{n-1}\left(X_{n}\right), \Sigma_{i=1}^{n-1} D^{-}\left(X_{i}, X_{i+i}\right)$
is a lower bound for $d_{P\left(X_{1}^{n}\right)}^{0}(x, y)$, and $\sum_{i=1}^{n-1} D^{\dagger}\left(X_{2}, X_{i+1}\right)$ and $\sum_{1=1}^{n-1} D^{+/-}\left(X_{i}, X_{i+1}\right)$ give upper bounds $d_{P\left(X_{1}^{n}\right)}^{0}(x, y)$. In this sense, $\sum_{1=1}^{n-1} D^{+/-}\left(X_{i}, X_{i+1}\right)$ is a conservative estimate for the cost of the low level optimal control from any $x \in I\left(\mathbf{X}_{1}\right)$ to $y \in \mathbf{X}_{n}$.

Let $D\left(P\left(\mathbf{N}_{1}^{n}\right): D^{-i-}\right)$ represent the D^{-1-} cost of $P\left(\mathbf{N}_{1}^{-n}\right)$, i.e.. $D\left(P\left(\mathbb{X}_{1}^{n}\right) ; D^{-i-}\right)=$ $\sum_{i=1}^{n-1} D^{--}\left(X_{1}, X_{i+1}\right)$ and let $D\left(P\left(X_{1}^{n}\right) ; D^{-}\right)$represent the D^{-}cost of $P\left(X_{1}^{n}\right)$. A high level path is said to be $D^{-/-}$-optimal if it has the minimal $D^{+/-}$cost over all high level paths from X_{1} to X_{n}. Suppose we set the high level cost function in terms of D^{-i-}. i.e., let $C_{h}\left(\mathcal{X}_{t}, L_{t}^{-j}\right)=D^{-1-}\left(X_{i}, \bar{X}_{j}\right)$. If we perform dynamic programming with respect to this high level cost function. the $D^{-/-}$-optimal path $P_{-}^{0}\left(X_{1}, X_{n}\right)=\lambda_{1} X_{2} \cdots \lambda_{m}$ contains a possibly sub-optimal low level solution between the start state s in $I\left(X_{1}\right)$ and the target state t in X_{m}. This is the case simply because any high level path contains a (possibly sub-optimal) low level path by the definition of the DC property:

Let the high level cost function $C_{h}:\left(\pi-\lambda^{s} \cup l^{t}\right) \times \Sigma_{h} \rightarrow R^{-}$be given. For $s \in X^{\prime} \in \pi$ and $t \in X^{t} \in \pi$. let $I\left(X^{s}\right)=\{s\}$ and $I\left(X^{t}\right)=\{t\}$. By virtue of the special status of the start and terminal states s and t, the value of $C_{h}\left(X^{\prime s} \cdot L_{s}^{\cdot j}\right)$ and $C_{h}\left(\dot{C}_{t}, L_{t}^{\prime}\right)$ is taken to depend upon s and t respectively. We observe that the definition of C_{k} entails that it is defined only for high level blocks and transitions corresponding to $D C$ pairs.

After this preparatory step. we have the two distinct schemes presented below for seeking a possibly sub-optimal low level path between the given start state s and target state t. For each of these. we that the target state t is accessible from the start state s. but we note that the failure of these algorithms to converse provides a rapid test for precise accessibility of t from s.

The P-HADP $\left(C_{h}\right)$ Algorithm

This algorithm seeks the low level optimal path with respect to the constraint of confinement in a high level optimal path (with respect to C_{h}) from X^{s} to $\mathrm{X}^{\text {t }}$: this is called the path-wise H.ADP or P-HADP for short.

P-HADP $\left(C_{h}\right)$ Algoritnm:
(1) Set $\operatorname{Dis}\left(\mathrm{X}^{s} ; \mathrm{X}^{s}\right)=0$ and $\operatorname{Dis}\left(X_{i} ; \mathrm{X}^{s}\right)=\infty$ for all $X_{i} \in \pi$ such that $X_{1} \neq \mathrm{X}^{s}$;
(2) $\operatorname{Dis}\left(\mathrm{K}_{j}^{-}: \mathrm{X}^{-s}\right)=\min \left\{\operatorname{Dis}\left(\mathrm{X}_{i} ; \mathrm{X}^{-s}\right)+C_{h}\left(X_{i}, L_{i}^{-j}\right)\right\}$ for all. $\mathrm{X}_{i} \in \pi$ such that $\delta_{h}\left(\mathrm{X}_{\mathrm{i}}, L_{i}^{\cdot}\right)=$ X_{i} with some $L_{i}^{-j} \in \Sigma_{h}$. Find $\operatorname{Dis}\left(X_{i} ; X^{s}\right)$ for all $X_{i} \in \pi$.
(3) Find an optimal path from X^{-s} to X^{-t} in M_{h} with respect to C_{h}. Denote this path by $P^{0}\left(X^{-s}, X^{-t}: C_{h}\right)$.
(4) Denote the set of all states in the blocks on $P^{0}\left(X^{-s}, X^{t} ; C_{h}\right)$ by $X_{\text {opt }}$. Set $\operatorname{dis}(s ; s)=$ 0 and dis($x: s)=x$ for all $x \in \mathcal{X}_{\text {opt }}$ such that $x \neq s$.
(5) $\operatorname{dis}(y: s)=\min \{\operatorname{dis}(x: s)+l(x, u)\}$ for all $x \in \boldsymbol{X}_{\text {opt }}$ such that $\delta(x, u)=y \in \mathcal{X}_{\text {opt }}$ for some $u \in \Sigma$. Find $\operatorname{dis}(x ; s)$ for all $x \in \mathcal{I}_{\text {opt }}$.
(6) With $\operatorname{dis}(x ; s)$. find a low level optimal path from s to t in $X_{\text {opt }}$.

P-HADP shall stand for P-H.ADP $\left(D^{-/-}\right)$, i.e. the H.ADP procedure with D^{--} taken as the high level cost function C_{h}. We note that if $\left\{. M . M_{h}\right\}$ is OC with the high level cost function D^{-i}. P- $\operatorname{HADP}\left(D^{--}\right)$will generate the true low level optimal solutions.

The HADP $\left(C_{h}\right)$ Algorithm

This algorithm seeks a low level sub-optimal trajectory contained block-wise in a high level optimal path $P^{0}\left(X^{s}, X^{t}: C_{h}\right)$. The resulting algorithm is called block-wise H.ADP. or simply H.ADP for short.
H.ADP(C_{h}, Algorithm:
(1) Set $\operatorname{Dis}\left(X^{s}: X^{-s}\right)=0$ and $\operatorname{Dis}\left(X_{1}: X^{-s}\right)=x$ for all $X_{1} \in \pi$ such that $X_{1} \neq X^{s}$:
(2) $\operatorname{Dis}\left(X_{j} ; X^{s}\right)=\min \left\{\operatorname{Dis}\left(X_{t}: X^{s}\right)+C_{h}\left(X_{t}^{*} \cdot C_{i}^{-j}\right)\right\}$ for all $X_{1} \in \pi$ such that $\dot{\delta}_{h}\left(X_{2}, L_{2}^{\cdot j}\right)=$ X_{i} with some $L_{i}^{-3} \in \Sigma_{h}$. Find $\operatorname{Dis}\left(X_{1}: X^{-s}\right)$ for all $X_{2} \in \pi$.
(3) Find an optimal path from X^{-3} to X^{-t} in M_{h} with respect to C_{h}. Denote this path by $P^{0}\left(X^{s} . M^{t}: C_{h}\right)$.
(4) Set $P^{0}\left(X^{s} . X^{t}: C_{h}\right)=Y_{1} Y_{2} \ldots Y_{n}$ with $Y_{1}=X^{s}$ and $Y_{n}=K^{t}$. Set $x_{1}=s$. Start at $i=1$.
(5) Set $\operatorname{dis}\left(x_{i}: x_{i}\right)=0$ and $\operatorname{dis}\left(x: x_{i}\right)=\infty$ for all $x \in Y_{i} \cup I_{i}\left(Y_{i-1}\right)$.
(6) $\operatorname{dis}\left(y: x_{\mathrm{i}}\right)=\min \left\{\operatorname{dis}\left(x: x_{i}\right)+l(x, u)\right\}$ for all $x \in Y_{i}$ such that $\delta(x, u)=y \in$ $Y_{i} \cup I_{t}\left(Y_{i+1}\right)$ with some $u \in \Sigma$. Find all $\operatorname{dis}\left(x: x_{t}\right)$ for $x \in Y_{i} \cup I_{t}\left(Y_{i-1}\right)$.
(7) Set $x_{i+1}=\arg \min _{y \in I_{i}\left(Y_{t+1}\right)} \operatorname{dis}\left(y: x_{\mathfrak{z}}\right)$. Find a low level optimal path from x_{1} to
x_{i+1} path-wise contained in $Y_{i} Y_{i+1}$. Denote this path by $x_{i} \leadsto x_{i+1}$.
(8) If $x_{i+1}=t, s \leadsto x_{2} \ldots \leadsto x_{n-1} \leadsto t$ is the solution, stop; else set $i=i+1$, repeat 5 to 8 .

Similarly, HADP shall denote $\operatorname{HADP}\left(D^{+/-}\right)$, i.e. the scheme above with C_{h} taken to be $D^{+/-}$. When $D^{+/-}\left(Y_{i}, Y_{i+1}\right)=D^{-}\left(Y_{i}, Y_{i+1}\right), 1 \leq i<n$, HADP will generate the true low level optimal solutions. $\operatorname{P-HADP}\left(D^{-}\right)$and $\operatorname{HADP}\left(D^{-}\right)$are the similar processes with D^{-}as C_{h} in the above procedures.

The diameter of a block X_{i} with respect to its in-set $I\left(X_{\mathrm{i}}\right)$ is defined as $\mathcal{D}\left(X_{\mathrm{t}}\right)=$ $\max \left\{d_{X_{1}}^{0}(x, y): x \in I\left(X_{i}\right) y \in X_{i}\right\}$.

Definition 3.12. (Condition $M M<_{s}$)For a two level hierarchy $\left\{M, M_{h}\right\}$, the condition $\mathrm{MM}<$, holds if the following is true: for any two blocks $X_{1}, X_{n} \in \pi$, with $s \in X_{1}$, let $Y_{1}=X_{1}$ and $Y_{m}=X_{n}$, then, whenever $P^{0}\left(X_{1}^{n}\right)=X_{1} X_{2} \ldots X_{n}$ is a $D^{+/--}$ optimal path, and $P^{\prime}\left(Y_{1}^{m}\right)=Y_{1} Y_{2} \ldots Y_{m}$ is any path which is not $D^{+/-}$-optimal, it is the case that $D\left(P^{0}\left(X_{1}^{n}\right) ; D^{+/-}\right)+\mathcal{D}\left(X_{n}\right)<D\left(P\left(Y_{1}^{-m}\right) ; D^{-}\right)$.

Theorem 3.7. Let $\left\{M, M_{n}\right\}$ be a two level IBC hierarchy. For any $X_{1}, X_{n} \in \pi$ with $s \in X_{1}$, assume that the high level $D^{+/-}$-optimal path from X_{1} to X_{n} is unique. Then, MM<s implies the hierarchy $\left\{M, M M_{h}\right\}$ is $O C\left(D^{+/-}\right)$with respect to s.

Proof:
Suppose for a hierarchy $\left\{M, M_{h}\right\}$, the high level cost function is given by $C_{h}\left(X_{i}, U_{i}^{j}\right)$ $=D^{+/-}\left(X_{i}, X_{j}\right)$ for every DC pair $\left\langle X_{i}, X_{j}\right\rangle$ with $X_{j}=\delta_{h}\left(X_{i}, U_{i}^{j}\right)$. Under the assumption that the condition $\mathrm{MM}<_{s}$ holds, we prove $\left\{M_{,} M_{h}\right\}$ is $\mathrm{OC}\left(D^{+/-}\right)$with respect to $s \in X_{1} \in \pi$.
(1) Let $y \in X_{j} \in \pi$ be an arbitrary state accessible from s, and let $u \in \mathbf{u}{ }^{0}(s, y)$. Denote the high level path containing $\operatorname{Trj}(s, u)$ by $P\left(Y_{1}^{m}\right)=Y_{1} Y_{2} \ldots Y_{m}$, with $Y_{1}=X_{1}$ and $Y_{m}=X_{j}$. There is an entry state $x \in I\left(X_{j}\right)$, such that $u_{1} \in \mathbf{u}^{0}(s, x)$ and $u_{2} \in$ $\mathbf{u}^{0}(x, y)$, where $u_{1} u_{2}=u$. It is evident that $D\left(P\left(Y_{1}^{m}\right) ; D^{-}\right) \leq d^{00}(s, x)$.

Next, to obtain a contradiction, assume $P\left(Y_{1}^{m}\right)$ is not $D^{+/-}$optimal, i.e. there is $P\left(Z_{1}^{l}\right)=Z_{1} Z_{2} \ldots Z_{l}$ with $Z_{1}=X_{1}$ and $Z_{l}=X_{j}$ which differs from $P\left(Y_{1}^{m}\right)$ and is
$D^{+/-}$-optimal. We shall prove by (forward) induction (on k) that there exists z_{k} in $I_{k-1}\left(Z_{k}\right), 1<k<l$, such that $d_{P\left(Z_{1}^{k}\right)}^{0}\left(s, z_{k}\right) \leq D\left(P\left(Z_{1}^{k}\right) ; D^{+/-}\right)$.

When $k=2$, the above inequality holds by the definition of $D^{+/-}\left(Z_{1}, Z_{2}\right)$. Suppose it holds for $k=p, 2<p<l$. By the property of IBC blocks, every state in Z_{p+1} is accessible from z_{p}. Denote $d_{z_{p} z_{p+1}}\left(z_{p}, z_{p+1}^{*}\right)=\arg \min _{z \in I_{p}\left(z_{p+1}\right)} d_{Z_{p} z_{p+1}}^{0}\left(z_{p}, z\right)$. It is clear $d_{z_{p} z_{p+1}}\left(z_{p}, z_{p+1}^{\bullet}\right) \leq D^{+/-}\left(Z_{p}, Z_{p+1}\right)$. Hence,

$$
\begin{gathered}
d_{P\left(Z_{1}^{p+1}\right)}^{0}\left(s, z_{p+1}\right) \leq d_{P\left(Z_{1}^{p}\right)}^{0}\left(s, z_{p}^{*}\right)+d_{z_{p} z_{p+1}}\left(z_{p}, z_{p+1}^{*}\right) \\
\leq D\left(P\left(Z_{1}^{p}\right) ; D^{+/-}\right)+D^{+/-}\left(Z_{p}, Z_{p+1}\right)=D\left(P\left(Z_{1}^{p+1}\right) ; D^{+/-}\right) .
\end{gathered}
$$

Therefore, it is straightforward to see that
$d_{P\left(Z_{\mathfrak{l}}^{\prime}\right)}^{0}(s, x) \leq d_{P\left(Z_{1}^{\prime}\right)}^{0}\left(s ; z_{l}^{*}\right)+d_{Z_{\mathrm{l}}}^{0}\left(z_{l}^{*}, x\right) \leq D\left(P\left(Z_{\mathfrak{l}}^{l}\right) ; D^{-/-}\right)+\mathcal{D}\left(X_{j}\right)<D\left(P\left(Y_{l}^{-m}\right) ; D^{-}\right)$.
Then, by the assumption that $M M<$, holds for $\left\{M, M_{h}\right\}, D\left(P\left(Z_{i}\right) ; D^{+1-}\right)+$ $\mathcal{D}\left(\mathrm{K}_{j}\right)<D\left(P\left(Y_{1}^{m}\right) ; D^{-}\right)$, thus $d_{P\left(Z_{1}^{\prime}\right)}^{0}(s, x)<D\left(P\left(Y_{1}^{m}\right) ; D^{-}\right)$. This leads to the contradiction that $d_{P\left(Z_{1}^{\prime}\right)}^{0}(s, x)<d^{00}(s, x)$. Hence, $P\left(Y_{1}^{m}\right)$ is optimal.
(2) Let $P\left(Y_{1}^{m}\right)=Y_{1} Y_{2} \ldots Y_{m}$ be the unique high level D^{-1-}-optimal path from $Y_{1}=X_{1}$, $s \in Y_{1}$, to $Y_{m}=X$, and let y be an arbitrary state in X. Assume that $u \in \mathbf{u}^{0}(s, y)$ and $\operatorname{Tr} j(s . u)$ is contained in $P\left(Z_{1}^{l}\right)=Z_{1} Z_{2} \ldots Z_{l}$, with $Z_{1}=X_{1}$ and $Z_{l}=X_{j}$, which differs from $P\left(Y_{1}^{m}\right)$. We may decompose u into $u=u_{1} u_{2}$, where $u_{1} \in \mathbf{u}^{0}(s, x), u_{2} \in$ $\mathbf{u}^{0}(x, y)$ with $x \in I_{Z_{l-1}}\left(Z_{l}\right)$ is the last entry state into Z_{l} on $\operatorname{Tr} j(s, y)$. Clearly,

$$
D\left(P\left(Z_{1}^{l}\right) ; D^{-}\right) \leq d^{00}(s, x)=d_{P\left(Z_{!}^{\prime}\right)}^{0}(s, x)
$$

But by the condition $M M<s$,

$$
D\left(P\left(Y_{1}^{-m}\right) ; D^{+/-}\right)+\mathcal{D}\left(X_{j}\right)<D\left(P\left(Z_{1}^{l}\right) ; D^{-}\right)
$$

And clearly we have,

$$
d_{P\left(Y_{1}^{m}\right)}^{0}(s, x) \leq D\left(P\left(Y_{1}^{m}\right) ; D^{+/-}\right)+\mathcal{D}\left(X_{j}\right) .
$$

Thus, we reach the contradiction $d_{P\left(Y_{1}^{m}\right)}^{0}(s, x)<d^{00}(s, x)$. Therefore, $P\left(Y_{1}^{-m}\right)$ contains a low level optimal path $\operatorname{Tr} j(s, u)$ from s to y. Since y is an arbitrary state in X_{j}, the second part of the OC property is established.

In spite of the information given in the theorem above, there still remains the problem that if there exist two or more high level optimal paths from X_{1} to X_{n}, then in an optimisation procedure we have to investigate which of them actually includes the optimal low level solution.

Let $\alpha_{j}\left(X_{2}\right)=D^{-}\left(X_{2}, X_{j}\right) / D^{+/-}\left(X_{1}, X_{j}\right)$ for all $X_{2}, X_{j} \in \pi$ such that $\left\langle X_{1}, X_{j}\right\rangle$ is DC.

Theorem 3.8. For arbitrary start state $s \in \bar{X}_{2}$ and target state $t \in \bar{X}_{\jmath}$, let $d^{00}\left(\right.$ s.t) be the cost of the global low level optimal path from s to $t . P^{0}\left(Y_{1}, \zeta_{n}: D^{-1-}\right)$ be the $D^{-/-}$-optimal high level path from $Y_{1}=X_{i}$ to $Y_{n}=\lambda_{j}$. and let $d^{H \cdot A D P\left(D^{--)}\right.}(s, t)$ denote the cost of the $H . A D P\left(D^{+}\right)$solution. Then if the $D^{+^{--}}$-optimal high level path contains a global optimal solution.

$$
d^{f f+D P\left(D^{-}\right)}(s, t)-d^{00}(s . t) \leq \sum_{i=1}^{n-1}\left(1-\alpha_{t-1}\left(Y_{i}\right)\right) D^{-i-}\left(\zeta_{i}, \zeta_{i-1}\right) .
$$

Proof:

$$
d^{\left.H A D P_{(} D^{-}\right)}(\text {s.t }) \leq \sum_{i=1}^{n-1} D^{-i-}\left(Y_{i}, Y_{i+1}\right) .
$$

If the D^{--}-optimal high level path contains a global optimal solution.

$$
d^{00}(s, t) \geq \sum_{i=1}^{n-1} D^{-}\left(Y_{i}, Y_{i-1}\right)
$$

Because. $D^{-}\left(Y_{i}, Y_{i+1}\right) \geq \alpha_{t-1}\left(Y_{i}\right) D^{-i-}\left(Y_{i}, Y_{t-1}\right)$.

$$
\begin{aligned}
& d^{H \cdot A D P\left(D^{-1}\right.}(s, t)-d^{00}(s, t) \\
\leq & \sum_{i=1}^{n-1}\left(D^{-1-}\left(Y_{i}, Y_{i+1}\right)-D^{-}\left(Y_{i}, Y_{i+1}\right)\right) \\
\leq & \sum_{i=1}^{n-1}\left(1-\alpha_{t+1}\left(X_{i}\right)\right) D^{+/-}\left(Y_{i}, Y_{i+1}\right) .
\end{aligned}
$$

If the $D^{+/-}$-optimal high level path does not contain a global optimal solution, we define a parameter ξ to represent its closeness to the D^{-}-optimal high level parh. Let $P^{0}\left(Y_{1} \cdot Y_{n}: D^{+i-}\right)$ be a D^{+i-} optimal high level path from $Y_{1}=K_{1}$ to $Y_{n}=K_{j}$. and $P^{0}\left(Z_{1}, Z_{m} ; D^{-i-}\right)$ be a D^{-}-optimal high level path from $Z_{1}=X_{\mathrm{t}}$ to $Z_{m}=K_{j}$: then we define $\xi=\sum_{t=1}^{m-1} D^{-}\left(Z_{i}, Z_{i-1}\right) / \sum_{t=1}^{n-1} D^{-}\left(Y_{i}, Y_{i+1}\right)$.

Corollary 3.2. For arbitrary start state $s \in \mathbf{K}_{1}$ and target state $t \in X_{j}$, let $d^{00}(s . t)$ be the cost of the global low level optimal path from s to $t, P^{0}\left(Y_{1}, Y_{n}^{\prime}: D^{+-}\right)$be the D^{--}-optimal high level path from $Y_{1}=X_{i}$ to $Y_{n}=\lambda_{j}$. and let $d^{H . A D P\left(D^{-1-}\right)}(s, t)$ denote the cost of the HADP($\left.D^{-}\right)$solution. Then

$$
d^{H . A D P\left(D^{-}\right)}(s . t)-d^{00}(s . t) \leq \sum_{i=1}^{n-1}\left(1-\xi \alpha_{t+1}\left(Y_{i}\right)\right) D^{+i-}\left(Y_{i} \cdot Y_{i-1}\right) .
$$

We define the parameter $\alpha=\alpha(\pi)$ to be the supremum of the set of $\mu(1 \geq \mu>0)$ satisfying $D^{-}\left(\dot{l}_{1}, \dot{l}_{j}\right) \geq \mu D^{-i}\left(\dot{X}_{2}, \dot{l}_{j}\right)$. for all $\imath . j$. such that $\left\langle\dot{l}_{2}, \dot{l}_{j}\right\rangle$ is $D C$.

Let us choose another version of closeness measure of $D^{-{ }^{-}}$-optimal high level path P^{0} to a high level path P^{00} which contains a low level optimal path from the start state to the target state. namely. $\eta \triangleq\left|P^{0} \cap P^{00}\right| /\left|P^{0}\right|$. where $\left|P^{0} \cap P^{00}\right|$ is the number of blocks on both P^{0} and P^{00}. and $\left|P^{0}\right|$ is the total number of blocks on P^{0}. Denote $a^{0}=\min \left\{\alpha_{j}\left(X_{1}\right): X_{1} X_{j}\right.$ is a segment of $\left.P^{0}\right\}$.

Corollary 3.3. For arbitrary start state $s \in X_{1}$ and target state $t \in X$. let $d^{00}(s, t)$ be the cost of the global low level optimal path from s to $t . P^{0}\left(Y_{i}, Y_{n}: D^{--}\right)$be the D^{--}-optımal high level path from $Y_{1}=\Sigma_{1}$ to $Y_{n}=\Sigma_{1}$. and let $d^{H A D P\left(D^{-1)}\right.}(s, t)$ denote the cost of the $H A D P\left(D^{+}\right)$solution. Then

$$
d^{H . A D P\left(D^{-j}\right.}(s . t)-d^{00}(s . t) \leq\left(1-\eta \alpha^{0}-(1-\eta) \alpha\right) P^{0}\left(Y_{1} \cdot Y_{n}: D^{-/-}\right)
$$

It is natural to look for properties of a state space partition π which permit the associated $\operatorname{HADP}\left(D^{+/-}\right)$and P-H.ADP($\left.D^{+/-}\right)$to generate near-optimal results. In particular. we seek partitions for which the D^{-}and D^{+i-} parameters are as close as possible: this is in order to reduce the variability of costs of block traversals corresponding to different in-set states.

Theorem 3.9. For arbitrary start state $s \in X_{i}$ and target state $t \in X_{j}$, let $d^{00}(s . t)$ be the cost of the global low level optimal path from s to $t, P^{0}\left(X_{1}, X_{j} ; D^{+1-}\right)$
 the cost of the H.ADP($\left.D^{-/-}\right)$solution. Then

$$
d^{H A D P\left(D^{+1-}\right)}(s . t)-d^{00}(s, t) \leq \frac{1-\alpha}{\alpha} d^{00}(s, t) .
$$

or. equivalently.

$$
d^{H A D P\left(D^{--1}\right)}(s . t) \leq \alpha^{-1} d^{00}(s, t) .
$$

Proof:
It is clear that

$$
D\left(P^{0}\left(X_{t}, X_{j}: D^{-}\right): D^{-}\right) \leq d^{00}(s, t)
$$

and

$$
\left.\left.d^{H A D P\left(D^{--}\right.}(s, t) \leq D\left(P^{0}\left(X_{t}, . .\right)^{-}\right): D^{--}\right): D^{-}\right) .
$$

Because $P^{0}\left(X_{1}, . X_{j}: D^{--}\right)$is D^{--}optimal.

$$
D\left(P^{0}\left(X_{1}, X_{)}: D^{--}\right): D^{--}\right) \leq D\left(P^{0}\left(X_{1}, X_{1}: D^{-}\right): D^{--}\right) .
$$

By the definition of α.

$$
D\left(P^{0}\left(X_{t}^{-}, X_{1}: D^{-}\right): D^{--}\right) \leq \frac{1}{\alpha} D\left(P^{0}\left(X_{:}: X_{j}: D^{-}\right): D^{-}\right) .
$$

Thus.

$$
\begin{aligned}
& d^{H \cdot I D P\left(D^{--1}\right.}(s . t)-d^{00}(s . t) \\
\leq & D\left(P^{0}\left(X_{t}, . . X_{1}: D^{---}\right): D^{--}\right)-d^{00}(s, t) \\
\leq & D\left(P^{0}\left(X_{1}, ., X_{1}: D^{-}\right): D^{--}\right)-d^{00}(\cdot s . t) \\
\leq & \frac{1}{\alpha} D\left(P^{0}\left(X_{2} . X_{,}: D^{-}\right): D^{-}\right)-d^{00}(s . t) \\
\leq & \frac{1}{\alpha} d^{00}(s . t)-d^{00}(s . t)=\frac{1-\alpha}{\alpha} d^{00}(s . t)
\end{aligned}
$$

We observe that in case $D\left(P\left(X_{1}^{-n}\right): D^{-}\right)$is not a tight estimate of $d_{P}^{0}(x, y)$ for $x \in I\left(\mathrm{X}_{1}\right)$ and $y \in I_{n-1}\left(\mathrm{X}_{n}\right)$. and if other knowledge of the least cost path or its value between X_{1} to X_{n} is available. better estimation may be achieved by exploiting this information. For example. if we know $d_{P\left(X_{n}^{n}\right)}^{0}(x, y)$ for some $x \in X_{1}$ and $y \in X_{n}$. $d_{P\left(X_{1}^{n}\right)}^{0}\left(x^{\prime} \cdot y^{\prime}\right) \geq d_{P\left(X_{1}^{n}\right)}^{0}(x, y)-d_{x_{1}}\left(x, x^{\prime}\right)-d_{X_{2}}\left(y^{\prime}, y\right)$ for any $x^{\prime} \in X_{1}$ and $y^{\prime} \in X_{2}$. All such information about lower bounds for $d_{P\left(X_{i}^{r}\right)}^{0}\left(x^{\prime} . y^{\prime}\right)$ can be used to evaluate an H.ADP solution.

3.5. Semi-dual System Graphs ($M_{h}^{s d} . C_{h}^{\text {sd }}$)

In this section and the next, we discuss our approaches to the improvements of the performance of HADP. This is a two-fold problem: increasing the accuracy of sub-optimality estimation and decreasing the number of blocks of partition machines and thus reducing the computational time.

In Section t. we have defined $D^{-}\left(. X_{1}, X_{1}\right), D^{--}\left(X_{1}, X_{2}\right)$ and $D^{-}\left(, X_{1}, X_{j}\right)$ as the bounds of the costs of low level control driving the system from states in $I\left(X_{t}\right)$ to states in $I_{2}\left(X_{j}\right)$, where $\left\langle\mathcal{I}_{1}, X_{j}\right\rangle$ is a pair of DC blocks. As we pointed out in Section 4. the entry states of $\boldsymbol{X}_{t}, I\left(\mathcal{K}_{1}\right)$ may be differentiated into a collection of subsets according to the neighbouring blocks. If we identify the source and target block of a low level path to traverse a block $X_{\text {: }}$ (i.e.. use the costs from $I_{k}\left(X_{1}\right)$ to $I_{1}\left(X_{j}\right)$. where $\left\langle X_{k}, X_{t}\right\rangle$ and $\left\langle X_{k}, X_{i}\right\rangle$ are $\left.D C\right)$ to define those bounds. we are able to obtain more precise estimates of the low level optimal cost.

Definition 3.13. $\left(D_{i}^{-}\left(X_{1}, X_{j}\right), D_{k}^{-}\left(X_{1}, X_{j}\right), D_{i}^{-}\left(X_{i}, X_{j}\right)\right)$ If $\left\langle X_{4}, X_{1}\right\rangle$ and $\left\langle X_{1}, X_{j}\right\rangle$ are DC. $D_{i}^{-}\left(X_{1}, X_{j}\right) \triangleq \max \left\{d_{X_{1}, x_{i}}^{0}(x . y)\right.$ for all $x \in I_{k}\left(X_{t}\right)$ and $\left.y \in I_{1}\left(X_{j}\right)\right\}$. $D_{k}^{-}\left(X_{1}, X_{j}^{-}\right) \triangleq \max _{r} \min _{y}\left\{d_{X_{1}, X_{j}}^{0}(x, y)\right.$ for all $x \in I_{k}\left(X_{i}\right)$ and $\left.y \in I_{i}\left(X_{j}\right)\right\}$. $D_{k}^{-}\left(X_{i}, X_{j}\right) \triangleq \min \left\{d_{X_{i}}^{0} X_{i}(x, y)\right.$ for all $x \in I_{k}\left(X_{2}\right)$ and $\left.y \in I_{t}\left(X_{j}\right)\right\}$.

Suppose there is more than one X_{k} block such that $\left\langle X_{k}, X_{z}\right\rangle$ is DC. then one needs to know which block is the predecessor of X_{1} on a high level path in order to choose the corresponding bounds to estimate the cost. As a result. the transition $X_{1} \rightarrow X_{j}$, cannot be labelled by a single value to carry out DP.

(a)

(b)

Figure 3.5. (a) M_{h}
(b) $i i_{h}^{s d}$

Using the notion of out-sets in Chapter 2. we may introduce a model based on M_{h} called the semi-dual high level machine $M_{h}^{s d}$. Whenever $\left\langle\mathcal{K}_{1}, X_{j}\right\rangle$ is a DC pair in M_{h}. let us define the high level transition event symbol Γ_{t}^{-3}. and denote the collection of all such sumbuls by $1 \cdot$. By the standing IBC hypothesis. there exist paths from each element in $I_{t}\left(X_{j}\right)$ to each element in $O\left(\mathcal{X}_{J}\right)$ and hence. in particular. to each element in the subset $O_{k}\left(X_{j}\right) \subset O\left(X_{j}\right)$ consisting of elements with one step transitions to.$_{k}^{-}$. Define the set of edges E to be the new collection of derived high level events E_{j}, \mathbf{k}. each of which corresponds to a set of paths in X_{j} from $I_{2}\left(X_{j}\right)$ to $O_{k}\left(X_{j}\right)$ and then to $I_{j}\left(\delta_{i}\right)$. The elements $E_{j}^{1, k} \in E$ are in one-to-one correspondence with the pairs $\left(I_{i}^{\cdot}, I_{j}^{k}\right) \in I^{V} \times I^{\prime}$ and the resulting finite state machine $\left\{I . E . j_{h}^{s d}\right\}$ is denoted by $M M_{h}^{\text {sd }}$.

The algorithm below formulates the H.ADP procedure based on $M_{h}^{s d}$. Here the idea is. with $M_{h}^{s d}$. it is feasible to perform DP. After we find an optimal solution with respect to $M_{h}^{s d}$. we obtain a sequence of between block boundaries. and this in turn gives a sequence of high level blocks where a sub-optimal low level solution is contained. Taking between block boundary $\partial_{\lambda_{i}}\left(X_{j}\right)$ as a node representing a $D C$ pair $\left\langle\mathcal{X}_{1}, \dot{X}_{j}\right\rangle$. and taking the minimal cost between $\partial_{x_{i}}\left(X_{j}\right)$ and $\partial_{x_{j}}\left(X_{k}\right)$ as the high level event $E_{j}^{2, k}$. we carry out DP in the following fashion.

Pre-processing

(1) Convert M_{h} into $M_{h}^{s d}$;
(2) Define the high level cost function: for all $1 \leq i . j . k \leq|I|$. if $\delta_{h}^{s d}\left(V_{t}^{-3}, E_{j}^{1, k}\right)=l_{j}^{-k}$.
$C_{h}^{s d}\left(L_{i}^{\cdot j}, E_{j}^{\mathrm{t}, \boldsymbol{k}}\right)=D_{j}^{+/-}\left(\mathbf{X}_{i}, \mathbf{X}_{k}\right) ;$
(3) If the start state $s \in X_{i} \in \pi$ and the target state $t \in X_{j} \in \pi$, add two new elements. the source node $I_{s}^{\prime 2}$ and and the target node I_{j}^{t} to $I^{\cdot}: I^{\cdot}=V^{-} \cup\left\{I_{s}^{\prime}, I_{j}^{\cdot t}\right\}$; (4) Add new transitions from V_{s}^{2} and to I_{j}^{t} to E in the following way: for all $1 \leq k \leq|\pi|$. if $\left\langle\mathrm{I}_{2}, \dot{X}_{k}\right\rangle$ is DC. add $E_{\mathrm{t}}^{s . k}$ to E, and $\delta_{h}^{s d}\left(V_{s}^{\mathrm{s}}, E_{\mathrm{t}}^{s, k}\right)=I_{i}^{-k}$, the cost of this transition is $C_{h}^{s d}\left(I_{s}^{-2}, E_{1}^{s, k}\right)=\min \left\{d_{X_{1}}^{0} X_{k}(s, y)\right.$ for all $\left.y \in I_{2}\left(X_{k}\right)\right\}$: if $\left\langle X_{i}, X_{j}\right\rangle$ is DC. add a new control symbol $E_{j}^{l, t}$ to E, and $\delta_{h}^{s d}\left(I_{l}^{j} \cdot E_{j}^{l, t}\right)=I_{j}^{t}$. the cost of this transition is $C_{h}^{s d}\left(I_{l}^{\jmath}, E_{j}^{l, t}\right)=\max \left\{d_{X_{i}^{0}}^{0}(x . t)\right.$ for all $\left.x \in I_{l}\left(X_{j}\right)\right\}$:

Denote the resulting model with I_{s}^{2} and I_{j}^{t} added by $M_{h}^{s d}$.

In other words. in the pre-processing we set the start and target nodes in accordance with the start state and the target state, and then set their corresponding transitions to the boundary of the DC pair $\left\langle\boldsymbol{l}_{1}, \lambda_{k}\right\rangle$ and from the boundary of the DC pair $\left(X_{k}, X_{j}\right)$. With these new nodes. we are able to carry out DP with $M_{h}^{s d}$. in order to find a sequence of blocks containing a sub-optimal low level path between the start and target states.

The Semi-dual HADP(D^{--}) algorithm

 for $I_{j}^{k} \in I$:
(3) If $D_{2 . s \mid}\left[\frac{t}{t}: I_{5}^{: 3}\right)=x$ (s is not reachable to t). stop: else. find a shortest path from I_{s}^{\prime} to $I_{;}^{\prime}$ with respect to $\mathcal{C}_{h}^{s d}$ in $M_{h}^{s d}$. Denote this optimal path by $P^{0}\left(I^{s} . I^{t}: D^{-i-}\right)$.

(4) Let $r_{1}=s$. Start from $k=1$:
(5) If $X_{i_{k}}=X_{j} . I_{\text {next }}=\{t\}$: else $I_{\text {next }}=I_{t_{k}}\left(\mathcal{X}_{i_{k+i}}\right)$:
(6) Set $\operatorname{dis}\left(x_{i}: x_{k}\right)=0$: set $\operatorname{dis}\left(x: x_{i}\right)=x$ for all $x \in \mathbf{X}_{i_{k}} \cup I_{i_{k}}\left(\mathbb{X}_{i_{k+1}}\right)$ and $x \neq x_{i}$:
(1) $\operatorname{dis}\left(r: x_{k}\right)=\min \left\{\operatorname{dis}\left(y: x_{k}\right)+l(y, u)\right\}$ for all $y \in X_{z_{k}}$ such that there is $u \in \Sigma$ s.t. $\delta(y . u)=x$: find all dis $\left(x: x_{k}\right)$ for $x \in X_{i_{k}} \cup I_{i_{k}}\left(X_{i_{k-1}}\right)$:
(8) Let $x_{k-1}=\arg \min _{x \in I_{k}\left(x_{k_{k-1}}\right)} d_{x_{x_{k}}}^{0} x_{1_{k-1}}\left(x_{k}, x\right)$. Find a shortest path from x_{1} to I_{k-i} path-wise contained in $X_{i_{k}} X_{t_{k-i}}$. Denote this path by $x_{k} \sim x_{k+1}$:
(9) If $x_{k-1}=t$. i.e. t is reached, $x_{1} \sim x_{2} \leadsto \ldots \leadsto x_{k+1}$ forms a low level solution.
stop; else. set $k=k+1$, repeat step 5-9.

If we find the low level optimal path from s to t with respect to the high level optimal path obtained in step 4, the result gives a P-H.ADP algorithm solution.

Theorem 3.10. For a high level path $P\left(X_{1}^{n}\right)=._{1} X_{2} \cdots \lambda_{n}$. with arbitrary start state $s \in X_{1}$ and target state $t \in \boldsymbol{K}_{n}$.

$$
d_{P}^{0}(s . t) \leq \frac{D\left(P\left(X_{1}^{n}\right): D^{+}\right)+D\left(P\left(X_{1}^{n}\right): D^{-}\right)}{2}
$$

Proof:

Let $D^{\sim}\left(X_{i}, X_{i-1}\right), 1 \leq i \leq n-1$ (the minimal between in-set cost) be realised by a sequence of (not necessarily connected) segments $\mathcal{S}_{1} \triangleq s \sim y_{2} . \mathcal{S}_{2} \triangleq z_{2} \sim z_{3} . \mathcal{S}_{3} \triangleq$ $y_{3} \sim y_{1}, \mathcal{S}_{1} \equiv z_{4} \sim z_{5} \ldots$. for $y_{2}, z_{2} \in I\left(X_{2}\right): y_{3} . z_{3} \in I\left(X_{3}\right): \ldots: y_{n-1}, z_{n-1} \in I\left(X_{n-1}\right)$. Linking $y_{2}, y_{3}: y_{4}, y_{5} ; \ldots$ and $s_{1} z_{2}: z_{3} . z_{4} \ldots .$. respectively by optimal paths. we construct two low level paths from s to t as:

$$
\begin{aligned}
& p_{!}=s \sim y_{2} \sim y_{3} \cdots y_{n-1} \sim t \text { and } \\
& p_{2}=s \sim z_{2} \sim z_{3} \cdots z_{n-1} \sim t .
\end{aligned}
$$

Hence we obtain two low levels paths with alternate realisations of $D^{-}\left(X_{t}, X_{t-1}\right)$. Denote the low level costs of p_{1} and p_{2} by $d\left(p_{1}\right)$ and $d\left(p_{2}\right)$. then collecting the elements of \mathcal{S}_{1} together to give the first sum below. we obtain.

$$
\begin{aligned}
& d\left(p_{1}\right)-d\left(p_{2}\right)=\left(\sum_{i=1}^{n-1} D^{-}\left(X_{i}, X_{i+1}\right)\right)+d_{X_{1} X_{2}}^{0}\left(s, z_{2}\right)+d_{X_{2} X_{3}}^{0}\left(y_{2}, y_{3}\right)+\ldots \\
& \left.\leq \sum_{i=1}^{n-1} D^{-}\left(X_{i}, X_{t+i}\right)\right)+\sum_{i=1}^{n-1} D^{+}\left(X_{i}, X_{i+1}\right) \\
& =D\left(P\left(X_{1}^{n}\right) ; D^{+}\right)+D\left(P\left(X_{1}^{n}\right) ; D^{-}\right) .
\end{aligned}
$$

Since $d_{P}^{0}(s, t) \leq d\left(p_{1}\right)$ and $d_{P}^{0}(s, t) \leq d\left(p_{2}\right)$, we have

$$
d_{P}^{0}(s, t) \leq \frac{D\left(P\left(X_{1}^{n}\right): D^{\dagger}\right)+D\left(P\left(X_{1}^{-n}\right): D^{-}\right)}{2}
$$

Let us define the parameter $3=\beta(\pi)$ to be the supremum of all $\mu(1 \geq \mu>0)$ satisfying $D_{k}^{-}\left(X_{1}, X_{j}\right) \geq \mu D_{k}^{-}\left(X_{t}, X_{j}\right)$ for all $k, i . j$ such that $\left\langle X_{k}, X_{t}\right\rangle$ and $\left\langle X_{2}, X_{j}\right\rangle$ are DC.

Theorem 3.11. For arbitrary start state $s \in X_{1}$ and target state $t \in X_{j}$. let $P^{0}\left(X_{1}, X_{j}: D^{-}\right)$be the D^{-}-optimal high level path from X_{1} to X_{j}. and $d_{P^{0}\left(X_{1}, \ldots, D-\right.}^{0}(s, t)$ be the cost of the P-H.ADP($\left.D^{-}\right)$solution. then

$$
d_{P 0}^{0}, x_{1}, . x_{2}, D^{-},(s, t)-d^{00}(s, t) \leq \frac{1-3}{23} d^{00}(s, t)
$$

Proof:

By Theorem 3.10.

$$
\begin{gathered}
d_{P 0,}^{0} X_{1}, x_{:}: D^{-},(s, t)-d^{00}(s, t) \\
\leq \frac{1}{2}\left(D\left(P^{0}\left(X_{1}, \Lambda_{,}: D^{-}\right): D^{-}\right)-D\left(P^{0}\left(, X_{t}, X_{,}: D^{-}\right): D^{-}\right)\right)-d^{00}(s, t)
\end{gathered}
$$

Since $D_{i}^{-}\left(X_{1}, X_{j}\right) \geq 3 D_{k}^{-}\left(X_{1}, X_{j}\right)$ for all $k . i . j$.

$$
D\left(P^{0}\left(\Lambda_{1}, \Gamma_{3}: D^{-}\right): D^{-}\right) \geq 3 D\left(P^{0}\left(\kappa_{t}, X_{,}: D^{-}\right): D^{-}\right)
$$

Hence.

$$
\begin{gathered}
d_{P^{0}\left(X_{i}, \ldots, x_{:}: D_{-}\right)}^{0}(s, t)-d^{00}(s, t) \\
\leq \frac{1+3}{23} D\left(P^{0}\left(X_{i}, X_{j}: D^{-}\right): D^{-}\right)-d^{00}(s, t) \\
\leq \frac{1+3}{23} d^{00}(s, t)-d^{000}(s, t) \\
=\frac{1-3}{23} d^{00}(s, t)
\end{gathered}
$$

Definition 3.14. $\left(\bar{D}_{k}\left(X_{i}, X_{j}\right)\right)$ The (arithmetic) average between boundary distance is defined as

$$
\bar{D}_{k}\left(X_{t}, X_{j}\right) \triangleq \frac{\sum_{r \in I_{k}\left(X_{t}\right)}\left(\sum_{y \in I_{i}\left(X_{j}\right)} d_{X_{1}, X_{j}}^{0}(x . y)\right)}{\left|I_{k}\left(X_{t}\right)\right| \times\left|I_{t}\left(X_{j}\right)\right|}
$$

Theorem 3.12. Let $P\left(X_{1}^{n}\right)=X_{1} \cdot X_{2} \ldots X_{n}$ be a high level path with $s \in X_{1}$ and $t \in X_{n}$, then $d_{P}^{0}(s, t) \leq \sum_{t=0}^{n-1} \bar{D}_{i-1}\left(X_{t}, X_{t-1}\right)$.

Proof:

Let the elements of $I_{t-1}\left(\mathcal{X}_{t}^{\prime}\right)$ ', be denoted $\left\{r_{1}^{1}, x_{2}^{2} \ldots . r_{\left.I_{1-1}, X_{1}\right)}\right\} .1 \leq t \leq n$. where $I_{0}\left(I_{i}\right)=\{s\}$ and $I_{n-1}\left(X_{n}\right)=\{t\}$. We connect $r_{\text {, }}^{:}$and $r_{i}^{:-1} \cdot 1 \leq j \leq i I_{1-1}\left(X_{i}\right) \mid$. $1 \leq k \leq\left|I_{i}\left(X_{t-1}\right)\right|$ wia the optimal low level path $x_{j} \stackrel{0}{\sim} x_{k}^{t-1}$ contained in $X_{t} X_{t-1}$ with the cost of $d_{X_{1}, X_{i-1}}^{0}\left(r_{j}^{2}, r_{k}^{i-i}\right)$. This gives a low level path from s to t path-wise contained in $P\left(\mathcal{I}_{1}^{n}\right)$ necessarily passing through $I_{t-1}\left(\mathcal{X}_{t}\right) .1<i<n$. Because there are $I_{t}\left(X_{t-1}\right)$ nodes in each $I_{t-1}\left(X_{t}\right)$. connecting any one state in $I_{t-1}\left(\mathcal{X}_{t}\right)$ to any state in $I_{t}\left(\mathcal{X}_{t+1}\right.$ gives a low level path from s to t. Hence the total number of distinct paths of this type is $\prod_{t=1}^{n} \mid I_{i-1}\left(X_{t}\right)$. The sum of the costs of all these low level paths shall be denoted by $\mathcal{S}_{3 t}$. Since $x_{j}^{:} \stackrel{0}{\sim} x_{k}^{t-1}$ is on $\prod_{k=1, k=2, k=:-1}^{n}\left|I_{k-1}\left(X_{k}\right)\right|=\left(\prod_{l=1}^{n}\left|I_{l-1}\left(X_{l}\right)\right|\right) /\left(\left|I_{t-1}\left(X_{t}\right)\right|\right.$ $\left.I_{:}\left(X_{t-1}\right)\right)$ distinct low level paths from s to t of the form described above, we have.

$$
\begin{aligned}
& \mathcal{S}_{\mathrm{st}}=\sum_{y^{\prime} \equiv I_{0}\left(x_{1}\right)}\left(\sum_{y_{2} \equiv I_{1}\left(x_{2}\right)} d_{x_{1}, x_{2}}^{0}\left(y_{1}, y_{2}\right)+\left(\sum_{y_{3} \in I_{2}\left(X_{3}\right)} d_{x_{2}, X_{3}}^{0}\left(y_{2}, y_{3}\right) \div \ldots\right.\right. \\
& \left.\left.+\left(\sum_{y_{n} \in I_{n-1}\left(X_{n}\right)} d_{X_{n-1}}^{0} x_{n}\left(y_{n-1} \cdot y_{n}\right)\right) \ldots\right)\right) \\
& =\sum_{t=1}^{n-1} \sum_{j=1}^{\mid I_{1-1}\left(X_{i}\right)} \sum_{k=1}^{\mid I_{t}\left(X_{t-1}\right)!}\left(d_{X_{t}, X_{t-1}}^{0}\left(x_{j}^{2}, x_{k}^{i+1}\right) \frac{\prod_{l=1}^{n}\left|I_{l-1}\left(X_{l}\right)\right|}{\left|I_{t-1}\left(X_{t}\right)\right|\left|I_{2}\left(X_{t-1}\right)\right|}\right)
\end{aligned}
$$

$$
=\left(\prod_{k=1}^{n}\left|I_{k-1}\left(K_{k}\right)\right|\right)\left(\sum_{i=1}^{n-1} \bar{D}_{2-1}\left(K_{t}, X_{i+1}\right)\right)
$$

Since $d_{P}^{v}(s . t)$ is less than or equal to the cost of any of the above paths,

$$
\left(\prod_{k=1}^{n}\left|I_{k-1}\left(\mathcal{X}_{k}\right)\right|\right) d_{P}^{0}(s, t) \leq S_{s t} .
$$

Therefore.

$$
d_{P}^{0}(s . t) \leq \sum_{i=0}^{n-1} \bar{D}_{i-1}\left(._{i}, x_{i-1}\right) .
$$

We observe that $\bar{D}(\because)$ is a valid candidate for a high level cost function C_{h} in the context of semi-dual HADP algorithms.

3.6. wST-IBC Partitions

Evidently, the number of states in $M_{h}^{s d}$ is usually strictly greater than number of states in M_{h}. therefore performing HADP with $M_{h}^{s d}$ is more complex than with M_{h}. To counteract this affect we shall weaken the IBC condition with the objective of decreasing : and thus decreasing $\left|\zeta_{h}\right|$. For systems for which a direction of flow from start states to target states is defined. we formulated in [15] a generalisation of IBC partition called ST-IBC partition and within this framework we derived a hierarchical control structure based on the lattice of ST-IBC partition machines.

In [15]. the notion of the ST-IBC property of a block $X_{i} \in \pi$ was defined as follows: if (i) there is a path internal to X_{t} from every state in $\Gamma\left(X_{t}\right)$ to every state in $O\left(X_{i}\right)$: (ii) all states in $O\left(\boldsymbol{X}_{\mathrm{t}}\right)$ are mutually accessible by paths internal to X_{t} then X_{t} is said to be ST-IBC.

Now we may define a slightly different ST-IBC property of blocks by dropping the mutual accessibility of states in $O\left(\mathrm{X}_{\mathrm{i}}\right)$.

Definition 3.15. (wST-IBC) A partition block $X_{i} \in \pi$ is weak ST-IBC (wSTIBC) if for any state $x \in I\left(X_{i}\right)$ and any state $y \in O\left(X_{i}\right)$ there exists $u \in \Sigma^{*}$ such that $\delta(x, u)=y$ and. for all $u^{\prime}<u, \delta\left(x, u^{\prime}\right) \in X_{i}$.

Denote the partition machine based on an ST-IBC partition π as $M_{S T}^{*}=\left\{\pi \cdot \Sigma_{h}, \delta_{h}\right\}$. The dynamics of the ST-DC (see Chapter 2) partition machine $M_{\tilde{S} T}^{\pi}$ is defined by the ST-DC relations over $\pi \times \pi$. i.e., if $\left\langle\mathcal{I}_{2}, X_{j}\right\rangle$ is ST-DC. then there exists $L^{\cdot} \in \Sigma_{h}$ such that $\delta_{h}\left(X_{1} \cdot L^{*}\right)=X_{J}$.

Definition 3.16. (ST-Control Consistency) Atwo level hierarchy $\left\{M_{.} M_{S T}^{\pi}\right\}$ is said to be ST-control consistent (ST-CC) if and only if the following two accessibility conditions hold:
(1) For all $x \in I\left(\mathcal{X}_{2}\right) \in \pi$ and $y \in I\left(\mathcal{X}_{j}\right) \in \pi$ if there exists $u \in \Xi$ such that $\dot{j}(x, u)=y$ then there exists $\mathscr{L}^{-} \in \Sigma_{h}{ }^{*}$ such that $\dot{\delta}_{h}\left(K_{1}, U^{-}\right)=X_{j}$ and $\operatorname{Tr} j(r, u)$ is contained in $\operatorname{Tr}_{J}\left(\mathbb{X}_{\mathrm{t}}, L^{\circ}\right)$.
(2) For all $X_{1}, X_{j} \in \pi$. if there exists $C^{\prime} \in \Sigma_{h}{ }^{*}$ such that $\dot{\delta}_{h}\left(X_{2}, C^{*}\right)=X_{j}$, then for all $x \in I\left(X_{t}\right)$, there exists $y \in I\left(X_{j}\right)$ and $u \in \Gamma^{*}$ such that $\delta(x . u)=y$ and $\operatorname{Tr} j(x . u)$ is contained in $T_{r J}\left(X_{2}, L^{\circ}\right)$.

Theorem 3.13. If partition π is $w S T-I B C$, the hierarchy $\left\{M . M_{s T}\right\}$ is $S T-C C$.

The proof is similar to that to Theorem 3.3.

An algorithm to find a wST-IBC block containing a given seed as an in-set state in a constraint can be found in $\{53]$. Partitioning X into a wST-IBC partition π is a process of high complexity: hence we use an algorithm to improve an existing IBC partition by generating a related wST-IBC partition. It functions by growing a given IBC block into a wST-IBC block with respect to a given constraint (see [53]).

3.7. Applications to the Broken Manhattan Grid Problem

We use a class of examples called the Broken Manhattan Grid (B.MG) problems to illustrate the generation of hierarchical control structures and the operation of HADP algorithms.

Figure 3.6. Three-level hierarchy for a Broken Manhatan Grid problem
Consider a graph with a large number of nodes and edges. which are formed by randomly removing some nodes and edges from a regular grid. A three-level hierarchy is constructed for such a system so that the middle level model is an IBC partition machine of the low level model (i.e. it forms an FS.M abstracting the broken grid itself): and the high level model is an IBC partition machine of the middle level model.

Example 3.2. Consider a 500×500 regular grid (A grid is regular in the sense that every node has connections to its neighbouring nodes). Here we assume each link has unit cost. We randomly remove 10% of the nodes and their connecting edges. A middle level block of the hierarchy is shown in Figure 3.9. The simulation is done with C on a Silicon Graphics O_{2} work station (CPL 180.1 Hz . main memory 9631). In general. remarkable accelerations for the sub-optimal path calculations using HADP (D^{-i}) have been obtained. For example. when the start and target nodes are (1.1) and (499.499) respectively, the atomic full size DP takes over 30 K seconds to find an optimal path with a cost of 1060 : the $\operatorname{HADP}\left(D^{+/-}\right)$described above gives a sub-optimal cost of 1165 (less than 10% higher) in less than 9 seconds.

Example 3.3. In this example. a 100×100 unidirectional regular grid (this can be viewed as a directed graph and moreover, and, in fact. as a finite state machine) is given to represent a transportation network. We assign the direction of links as follows: odd-numbered vertical streets are north bound, even-numbered ones are

Figure 3.7. A Broken Manhattan Grid
south bound: odd-numbered horizontal streets are east bound. even-numbered ones are west bound. Here we assume each link has unit cost. Subsequently we randomly remove 10% of the nodes and corresponding edges concerned with them. This grid has some resemblance to the Manhattan area. When the start and target nodes are (10.99) and (89.38) respectively. (see Figure 3.8 for a high level block structure) the atomic full size DP takes over 55 seconds to find an optimal path with the cost of 112 . We use the semi dual method to form a hierarchy, the D^{-}cost of the D^{-}optimal high level path is 88 and the $D^{-/-}$cost of the $D^{+/-}$optimal high level path is 116 . so the error of H.ADP solution is less than $(116-88) / 88<32 \%$ of the global optimum. In fact. the $\mathrm{H}-\mathrm{ADP}\left(D^{-/-}\right)$gives a sub-optimal cost 116 ($<4 \%$ higher) in 3 seconds.

In a graph generated from a 88×88 regular unidirectional grid with 10% nodes randomly removed. we choose the start states as $1,1111,2222,3333,4466,5666$ and 6666. and we also set the target to be in the same set as above. Then, we carry out HADP with semi dual graph for the start target pair chosen from the above set respectively. The ratio of HADP cost and global optimum as well as the speed up of HADP are visualised in Figure 3.10 and 3.11. In Figure 3.12, the distribution of

Figtre 3.8. A block at the top level of Example 3.2

Figure 3.9. A block at the middle level of Example 3.2
$\alpha\left(X_{2}, X_{j}\right)$ is given when the start state is 1111 and the target state is 6666.

A rough comparison of the time complexity of H.ADP (with a two level hierarchy) and that of standard DP for finite state machines in general reveals the drastic speed-up of computation obtained by HADP. Specifically, suppose we take Dijkstra's

3.3.: APPLICATIONS TO THE BROKEN MA.HHATTAN GRDD PROBLEM

Figure 3.10. The ratio of the costs of HADP solution and global optimum

FIGURE 3.11. The ratio of the times of H.ADP solution atomic search
shortest path algorithm which is of $O\left(n^{2}\right)$ for a graph with n nodes. If a partition gives n_{1} equal-sized blocks. each with n_{2} low level nodes ($n_{1} \times n_{2}=n$), then the H.ADP algorithm has a time complexity $O\left(n_{1}^{2}\right)$ at the high level, and $O\left(l \times n_{2}^{2}\right)$ at

The distribution of alpha

Figlre 3.12. The distribution of α in Example 3.3
the low level. Here l is the number of blocks on the path obtained by the application of DP to the high level strstem. Therefore the speed-up may be estimated by $O\left(n^{2}\right) /\left(O\left(n_{1}^{2}\right)-O\left(l *\left(n / n_{1}\right)^{2}\right)\right)$. In many cases. l and n_{1} are both approximately equal to $\vee \bar{n}$. and hence an estimate of the increase of efficiency due to the use of H.ADP is $O(\sqrt{n})$.

Incidentally: for BMG problems. the effort needed to find an IBC block containing a given node ε in a constraint with n_{3} nodes is linear in n_{3}. because every node in this constraint only need labelling twice to see if it is reachable from and co-accessible to c. If we use n_{3} equal-sized constraints in the pre-processing. i.e.. $n_{3} \times n_{3}=n$. the time complexity of partition is $O\left(n^{\frac{3}{3}}\right)$. To get D^{-}parameters for each block, we need $O\left(n_{1} \times n_{4} \times\left(n_{2}+n_{4}\right)^{2}\right)$ extra computations if each block has n_{4} in-set states. However, when s and t change, only parameters concerned with X_{s} and X_{ι} need to be modified and so the remainder of the pre-processing can be done off-line.

CHAPTER 4

Relational Multi-agent Finite State Machines (MA($\mathcal{R})$ FSM)

4.1. Introduction

In the areas of transportation management. telecommunication networks and manufacturing systems. many problems involve multiple agents running interactively (40). Such multi-agent systems are distinguished from classical single agent systems in that both task specifications and cost functions may differ from agent to agent in the cooperative as well as in the competitive case. Due to the dynamical interactions between agents. and because of the inherent complexity of many physical systems. the analysis and control of multi-agent network systems often engenders problems of enormous complexity.

In this chapter. we formulate the notion of a relational multi-agent finite state machine. Consider a system of agents. each in the form of a forced event discrete event system. the dynamics of which are modelled by finite state machines. generally denoted $M=\{X . \Sigma . \delta\}$. We assume that the events always happen at discrete time instants. A (state-event) configuration of M is a pair of states and events (r.a). $x \in K . a \in \Sigma$. such that $\delta(x, a)!$, which is interpreted to mean that the system is in state x and is to take action (event) a. For n agents with models $M_{1}, M_{2}, \ldots . M_{n}$, where $M_{\mathrm{t}}=\left\{\mathrm{K}_{\mathrm{i}}, \Sigma_{\mathrm{t}}, \delta_{\mathrm{t}}\right\}, 1 \leq i \leq n$, their joint configuration at time instant k is a vector $c(k)=\left[\left(x_{1}, a_{1}\right),\left(x_{2}, a_{2}\right), \ldots .\left(x_{n}, a_{n}\right)\right]$, where $x_{i} \in X_{i}, a_{i} \in \Sigma_{i}$, and $\delta_{i}\left(x_{i}, a_{i}\right)!$ In the M.A($\mathcal{R})$ FSMI formulation. the relation \mathcal{R} is a subset of $X_{1} \times \Sigma_{1} \times X_{2} \times \Sigma_{2} \times \ldots \times X_{n} \times \Sigma_{n}$.

The interaction between n agents is represented by the collection of forbidden configurations \mathcal{R}. that is to say, the dynamics respecting the prohibitions $c(k) \notin \mathcal{R}$. for any configuration $c(k)$ at any time instant $k \in \mathcal{N}$.

To motivate this notion. consider a simple system with two interacting agents in the presence of synchronous events ([41], [47]). When two agents are at states $x_{1} \in X_{1} . x_{2} \in X_{2}$ respectively. where there exists a synchronous event $a \in \Sigma_{1} \cap \Sigma_{2}$ such that $\delta_{1}\left(x_{1}, a\right)$! and $\delta_{2}\left(r_{2}, a\right)!$, their interaction forces either both of the agents to take a or neither of them to take a. In other words. for this swstem. $\mathcal{R}=$ $\left\{\left[\left(x_{1}, a_{1}\right),\left(x_{2}, a_{2}\right)\right]\left(a_{1} \neq a_{2}\right) \wedge\left[\left(\delta_{1}\left(x_{1}, a_{1}\right)!\wedge \delta_{2}\left(x_{2}, a_{1}\right)!\right) \vee\left(\delta_{1}\left(x_{1}, a_{2}\right)!\wedge \delta_{2}\left(x_{2}, a_{2}\right)!\right)\right]\right.$ $\left.a_{1} \in \Sigma_{1}, a_{2} \in \Sigma_{2}, r_{1} \in X_{1}, r_{2} \in X_{2}\right\}$. In this example, we note that if $a_{1} \neq a_{2}$. $j\left(x_{1}, a_{1}\right)$! but $-\delta\left(x_{2}, a_{2}\right)$!. then no transition is possible since the joint state cannot make a transition. and similarly in case $a_{1} \neq a_{2} \neq \delta\left(x_{1}, a_{1}\right)!. \delta\left(x_{2}, a_{2}\right)!$.

Other examples of forbidden interactions between two agents include mutually exclusive states: if Σ_{1}, x_{2} cannot appear at the same time. then for all $a_{1} \in \Sigma_{1}, a_{2} \in \Sigma_{2}$. (x_{1}, a_{1}) $\left.\left(x_{2}, a_{2}\right)\right] \in \mathcal{R}_{1}$: and mutually exclusive events: if a_{1}, a_{2} cannot happen at the same time. then for all $r_{1} \in X_{1}, x_{2} \in X_{2} .\left\{\left(x_{1}, a_{1}\right) .\left(x_{2}, a_{2}\right)\right] \in \mathcal{R} 2$.

In 33 and $[54]$, the formulation of a notion called multi-agent product for finite state machines and automata is presented. where the interaction between agents appears in the form of synchronous events.

In 1 a a heory of timed (finite) automaton is developed to model the behaviour of real-time systems. Timed words are infinite sequences of events each associated with a real-calued time. In hybrid systems. a set of guard conditions on the continuous states are imposed: only when these conditions are satisfied can a discrete transition take place ($[\mathbf{5}] .[43]$). A finite set of clocks are attached to a finite automaton to keep track of the elapsed time. In [69], a control theory of timed discrete event systems is presented based on Ramadge-Wonham supervisory control theory: a special event, tick. represents a quantum time elapse between transitions. A hierarchical control of timed discrete event systems is developed in [9]. Usually, timed models possess much
greater complexity than untimed discrete event system models.

A multi-agent system is said to be synchronised if all agents take actions simultaneously, that is to say, when a state transition happens in one agent, actions take place in all the other agents. One may view this to be a discrete clock shared by all the agents.

In this chapter. we first discuss multi-agent systems synchronised bry a discrete time clock: then. second. a time counter is introduced to deal with multi-agent systems with non-simultaneous agents.

4.2. Synchronised Agents

In an event-driven finite state machine. $M=\{. X . \Sigma . j\}$. events happen at discrete time instants and each state transition takes one unit time to complete. i.e.. the live time of all events is 1 . This will be called a (system) quantum time unit since it is the common indivisible minimum time for a system event to occur. The set of states.X is partitioned into transient states ${\Omega_{T}}_{T}$ and stable states λ_{s}. A stable state $x \in X_{S}$ is one that can be kept at the subsequent state transition: this of course is represented by a self-loop, i.e.. there is $s_{r} \in \Sigma$ such that $\delta\left(x, s_{r}\right)=r$. Transient states are those without self-loops which cannot be held at the subsequent state transition. Once the system enters a transient state at any instant $k \in \mathcal{N}$. it takes the next action immediately: that is to say, the system will be in a distinct state at the instant $k+1$.

Definition 4.1. $\left(\left(\|^{s m}\right)_{t=1}^{n}, M_{t}\right)$ The simultaneous product machine of n finite state machines $M_{1}=\left\{\mathcal{X}_{t}, \Sigma_{i}, \delta_{i}\right\}, 1 \leq i \leq n$, is a finite state machine denoted by $\left(\|^{s, m}\right)_{t=1}^{n}\left(M_{t}\right) \equiv\{X, \Sigma, \delta\}$, where $\AA=K_{1} \times K_{2} \times \ldots \times K_{n}, \Sigma=\Sigma_{1} \times \Sigma_{2} \times \ldots \times \Sigma_{n}$, and

Evidently: $\left(\|^{s i m}\right)_{t=1}^{n} \cdot M_{2}=M_{1}\left\|^{s, m} \cdot M_{2}\right\|^{s t m} \ldots \|^{s i m} \cdot M_{n}$.
Example 4.1. In a game. at each discrete time instant. two players simultaneously make one of three gestures: scissors. hammer. cloth. This is a two-agent system with $R=0$.

Definition 4.2. ($\left.(\|-\pi)_{t=1}^{n}, M_{:}\right)$The relational multt-agent product machine (with
 nite state machine denoted by $\left(\|_{-\pi}\right)_{t=1}^{n} . M_{t} \equiv\{N . \Sigma . j\}$. where $\mathbb{N}=X_{i} \times X_{2} \times \ldots \times V_{n}$. $\Sigma=\Sigma_{1} \times \Sigma_{2} \times \ldots \times \Sigma_{n}$, and

Example 4.2. Suppose all streets in an area are one-way one-lanes. The actions an automobile may take at an intersection include: stop. go east-west bound and go south-north bound. i.e. $\Sigma=\{a . b . s\}$. This is shown in Figure 4.1. If two automobiles (modelled by $M_{1}=M_{2}=M$) meet at the same intersection. one of the automobiles has to stop for one (quantum) time unit. In this case. $\mathcal{R}=\left\{\left(\left[x_{1}, \sigma_{1}\right],\left[x_{2}, \sigma_{2}\right]\right) \mid x_{1}=\right.$ $\left.r_{2}, \sigma_{1}, \sigma_{2} \in \Sigma . \delta_{1}\left(x_{1}, \sigma_{1}\right) \neq x_{1} . \delta_{2}\left(x_{2}, \sigma_{2}\right) \neq x_{2}\right\}$.

A multi-agent system consisting of $M_{1}, M_{2}, \ldots . M_{n}$, is said to be controllable, if $(\|-R)_{t=1}^{n}, M_{i}$ is controllable. i.e.. for any states $x . x^{\prime} \in X, X=X_{1} \times X_{2} \times \ldots \times X_{n}$.

Figlere 4.l. A Finite State Machine $M=\{. X . \Sigma . \delta\}$
there exists $u \in\left(\Sigma_{1} \times \Sigma_{2} \times \ldots \times \Sigma_{n}\right)^{\circ}$. such that $\delta(r, u)=r^{\prime}$.

It is straightforward to see that M_{1} and M_{2} are controllable if $M_{1} \|^{s+m} . M_{2}$ is controllable. This is because. for any $x \cdot x^{\prime} \in X_{1}, y, y^{\prime} \in X_{2}$. if there exists a sequence of input vectors $u\left(\{x \cdot y] \cdot\left[x^{\prime}, y^{\prime}\right]\right)=\left[u_{1}\left(x \cdot x^{\prime}\right) \cdot u_{2}\left(y \cdot y^{\prime}\right)\right] \in\left(\Sigma_{1} \times \Sigma_{2}\right)^{\cdot}$ which drives the two agent system from $[x, y]$ to $\left[y, y^{\prime}\right]$. then. for M_{1} and M_{2} respectively. $\delta_{1}\left(x \cdot u_{1}\left(x \cdot x^{\prime}\right)\right)=x^{\prime}$ and $\delta_{2}\left(y \cdot u_{2}\left(y \cdot y^{\prime}\right)\right)=y^{\prime}$. This is formalised by the following lemma.

Lemma 4.1. Let $M_{1} .1 \leq i \leq n$ be n finite state machines. If $\left(\|^{s i m}\right)_{j=1}^{n} . M_{j}$ is controllable. M_{1} is controllable. $1 \leq i \leq n$.

Fur a path $p(x, y) \in X_{i}^{;}$between two states $x \in \mathcal{X}_{i}$ and $y \in \mathcal{X}_{1}$. define its length $!p(x, y) \mid$ as the number of state transitions on $p(x, y)$. A circuit is defined to be a path $p(x, y)$ for which $|p(x, y)| \geq 1$ and $x=y$. The following theorem gives a necessary and sufficient condition for a simultaneous product machine of two controllable finite state machines to be controllable. In the proof of this theorem. a "pumping" technique is used (see [31]).

Theorem 4.1. For two controllable finite state machines M_{1} and M_{2}. $\left|X_{1}\right| \geq 2$ or $\mid X_{2} \geq 2 . M_{1} \|^{s \mathrm{~m}} ._{2}$ is controllable if and only if there are circuits C_{1} and C_{2} in \dot{I}_{1}, X_{2} respectively satisfying $\left|C_{1}\right|-\left|C_{2}\right|= \pm 1$.

Figure 4.2. A circuit in M_{1}

Proof:

Consider arbitrary initial and final state pairs $\{x . y] \cdot\left[x^{\prime}, y^{\prime}\right] \in X_{1} \times X_{2}$. Suppose C_{1} and C_{2} are circuits in M_{1} and M_{2} respectively, and $\left|C_{1}\right|-\left|C_{2}\right|= \pm 1$. Without loss of generality, let $\left|C_{1}\right|-\left|C_{2}\right|=1$. Denote $C_{1}=x_{1} \rightarrow r_{2} \rightarrow \ldots \rightarrow x_{n-1}$. $r_{1}=x_{n-1} \cdot x_{2} \ldots . . x_{n} \in X_{1}$. and $C_{2}=y_{1} \rightarrow y_{2} \rightarrow \ldots \rightarrow y_{n}, y_{1}=y_{n} \cdot y_{2}, \ldots, y_{n-1} \in I_{2}$. Note that the states on these circuits are not necessarily distinct from one another. For any $x . x^{\prime} \in X_{1}$ and $y \cdot y^{\prime} \in X_{2}$. because of the controllability of M_{1} and M_{2}. there are paths $p_{1}\left(x . x^{\prime}\right)=x \rightarrow \ldots x_{1}^{\prime} \rightarrow x_{1} \rightarrow x_{1}^{\prime \prime} \rightarrow \ldots \rightarrow x^{\prime}$ (see Figure 4.2) and $p_{2}^{0}\left(y \cdot y^{\prime}\right)=y \rightarrow \ldots \rightarrow y_{1}^{\prime} \rightarrow y_{1} \rightarrow y_{1}^{\prime \prime} \rightarrow \ldots \rightarrow y^{\prime}$. Clearly. by repeating circuit C_{2} on $p_{2}^{0}\left(y . y^{\prime}\right)$. we may generate countably many distinct paths from y to y^{\prime}. Choose a path $p_{2}\left(y \cdot y^{\prime}\right)$ such that $\left|p_{2}\left(y \cdot y^{\prime}\right)\right|-\left|p_{\mathrm{t}}\left(x . x^{\prime}\right)\right|=k>0$. Hence there exists a path

$$
p_{1}^{\prime}\left(x . x^{\prime}\right)=x \rightarrow \ldots \rightarrow x_{1}^{\prime} \rightarrow \underbrace{C_{1} C_{1} \ldots C_{1}}_{k} \rightarrow x_{1}^{\prime \prime} \rightarrow \ldots \rightarrow r^{\prime} .
$$

from x to x^{\prime} in M_{1}. and a path

$$
p_{2}^{\prime}\left(y, y^{\prime}\right)=y \rightarrow \ldots \rightarrow y_{1}^{\prime} \rightarrow \underbrace{C_{2} C_{2} \ldots C_{2}}_{k} \rightarrow y_{1}^{\prime \prime} \rightarrow \ldots \rightarrow y^{\prime}
$$

from y to y^{\prime} in M_{2}. Since $\left|p_{1}^{\prime}\left(x, x^{\prime}\right)\right|=\left|p_{1}\left(x, x^{\prime}\right)\right|+\left(\left|p_{2}\left(y . y^{\prime}\right)\right|-\left|p_{1}\left(x . x^{\prime}\right)\right|\right)\left|C_{1}\right|$. $\left|p_{2}^{\prime}\left(y \cdot y^{\prime}\right)\right|=\left|p_{2}\left(y \cdot y^{\prime}\right)\right|+\left(\left|p_{2}\left(y, y^{\prime}\right)\right|-\left|p_{1}\left(x, x^{\prime}\right)\right|\right)\left|C_{2}\right|$, and $\left|C_{1}\right|-\left|C_{2}\right|=1$, it follows that $\left|p_{1}^{\prime}\left(x . x^{\prime}\right)\right|=\left|p_{2}^{\prime}\left(y . y^{\prime}\right)\right|$. Therefore, jointly, $\left[p_{1}^{\prime}\left(x, x^{\prime}\right), p_{2}^{\prime}\left(y, y^{\prime}\right)\right]$ is a vector path from $[x, y]$ to $\left[x^{\prime} . y^{\prime}\right]$ in $M_{1} \|^{\text {stm }}, M_{2}$. Because $x . x^{\prime}, y . y^{\prime}$ are arbitrary. $M_{1} \|^{\text {stm }} . M_{2}$ is controllable.

Figlere 4.3. Circuits in M_{1}

Conversely: suppose $M_{1} \|^{s t m} M_{2}$ is controllable. Without loss of generality; let $X_{1} \geq 2$. Because M_{1} is controllable. there exists a path $x_{1} \rightarrow x_{2}$ in M_{1}. for which $x_{1} \neq x_{2}$. By the controllability of $M_{1} \|^{s t m} M_{2}$. there is a path in $M_{1} \|^{s u m} M_{2}$ from i x_{2}, y_{1}^{\prime} to $: x_{1}, y_{1} \dot{j}$ for any $y_{1} \in X_{2}$. Because $x_{1} \neq x_{2}$, this path is longer than 1 . Let this path from $\left[x_{3}, y_{2}\right\}$ to $\left[x_{1}, y_{1}\right]$ be $\left[p_{1}\left(x_{2}, x_{1}\right) . p_{2}\left(y_{1}, y_{1}\right)\right]$ whose corresponding pair of paths in $M_{1} . M_{2}$ are $p_{1}\left(x_{2}, x_{1}\right)$, and $p_{2}\left(y_{1} \cdot y_{1}\right) .\left|p_{1}\left(x_{2}, x_{1}\right)\right|=\left|p_{2}\left(y_{1}, y_{1}\right)\right| \leq 1$. Then. $C_{1}=r_{1} \rightarrow p_{1}\left(r_{3} . x_{1}\right)$ and $C_{2}=p_{2}\left(y_{2}, y_{1}\right)$ are two circuits in M_{1} and M_{2} respectively. Obviously: $C_{1}-C_{2}=1$.

Corollary 4.1. For two controllable finite state machines M_{1} and M_{2}. $f\left|\mathrm{I}_{2}\right| \geq$ 2 and in M_{i} there are carcuits uith 2 and 3 transitions respectively, then $M_{1} \|^{\text {sim }}, M_{2}$ l.) controllable.

Proof:

Suppose in M_{1}. there is a circuit $C_{1}=x_{1} \rightarrow x_{1}^{\prime} \rightarrow x_{1}$ from x_{1} and back to x_{1} with length of 2 . and there is a circuit $C_{2}=x_{2} \rightarrow x_{2}^{\prime} \rightarrow x_{2}^{\prime \prime} \rightarrow x_{2}$ from x_{2} to x_{2} with $\left|C_{1}\right|=3$ (Figure 4.3). Because M_{1} is controllable, there is a path $p\left(x_{1}, x_{2}\right)$ from x_{1} to x_{2}, and there is a path $p\left(x_{2}, x_{1}\right)$ from x_{2} to x_{1}. Let $k=\left|p\left(x_{1}, x_{2}\right)\right|+\left|p\left(x_{2}, x_{1}\right)\right|$. Because M_{2} is controllable and $\left|M_{2}\right| \geq 2$, we can obtain circuits longer than k by repeating cycles. Let C^{\prime} be such a circuit in M_{2} and $\left|C^{\prime}\right|>k$.

If $\left|C^{\prime}\right|-k=2 m-1$ for some integer $m>0$, construct a circuit from x_{2} to x_{2} in M_{1} as follows:
such that $\left|C^{\prime \prime}\right|-\left|C^{\prime}\right|=\left|p\left(x_{1} . x_{2}\right)\right|+2 m+\left|p\left(x_{2}, x_{1}\right)\right|-\left|C^{\prime}\right|=1$.

If $\left.\mid C^{\prime}\right\}-k=2 m$ for some integer $m>0$, construct a circuit from r_{1} to r_{1} in M_{1} as follows:

$$
C^{\prime \prime}=p\left(x_{1}, x_{2}\right) \underbrace{\rightarrow x_{2}^{\prime} \rightarrow x_{2}^{\prime \prime} \rightarrow p\left(x_{2}, x_{1}\right) \underbrace{\rightarrow x_{1}^{\prime} \rightarrow x_{1} \cdots \rightarrow x_{1}^{\prime} \rightarrow x_{1}}_{2(m-1)}, ~}_{3}
$$

such that $\left|C^{\prime \prime \prime}-\left|C^{\prime}\right|=\left|p\left(x_{1} \cdot x_{2}\right)\right|+2 m+1+\left|p\left(x_{2} \cdot x_{1}\right)\right|-\left|C^{\prime}\right|=1\right.$.

Therefore by Theorem 4.1. $M_{1} \|^{s t m} . M_{2}$ is controllable.

Note that since a self-loop at a state generates circuits with arbitrary lengths. we obtain the following coroilary as a direct application of Corollary 4.1.

Corollary 4.2. For two controllable finate state machines M_{1} and M_{2}. if there t: a state in M_{1} with a self-loop defined. then $M_{1} \|^{13 m} M_{2}$ is controllable.

We may now make the important observation that since $M_{1} \|^{s u m} M_{2}$ may be taken as a finite state machine M^{\prime}. and since for any other finite state machine $M^{\prime \prime}$ we may repeat the argument above to inductively obtain the results concerning $\left(\|^{s t m}\right)_{t=1}^{n} . M_{\text {t }}$ for any $n>2$. Set $M^{1}=. M_{1}$ and define finite state machines $M^{2}=M^{2-1} \|^{s i m} \cdot M_{t}$. for $2 \leq i \leq n$. By the associativity of $\|^{s s m}$. a necessary and sufficient condition for the controllability of $\left(\|^{s a m}\right)_{i=1}^{n} . M_{i}$ is given by a test as to whether there are two circuits in M^{t-1} and M_{t} with the length difference of $1.2 \leq i \leq n$.

Theorem 4.2. Let $M_{t}, 1 \leq i \leq n(n \geq 2)$, be n controllable finite state machines. Then $\left(\|^{s i m}\right)_{t=1}^{n} M_{i}$ is controllable if and only if for any M_{i}, there is a circuit C_{i} such that there are, respectively. circuits $C_{j}^{\mathfrak{i}}$ in $M_{j}, 1 \leq j \leq n, j \neq i$, and each $\left|C_{j}\right|$ is co-prime with $\left|C_{1}\right|$.

Proof:
\Longrightarrow
Suppose for any $M_{1}, 1 \leq i \leq n$, there is a circuit C_{1} such that there are circuits C_{j}^{2} in $M_{j} .1 \leq j \leq n . j \neq i$, such that each $\left|C_{j}^{i}\right|$ is co-prime with $\left|C_{i}\right|$. For arbitrary circuits C_{i}^{\prime} and C_{J}^{\prime}, respectively, in M_{2} and $M_{j} .1 \leq i, j \leq n . i \neq j$, respectively, by repeating $C_{1}^{\prime}\left|C_{j}^{\prime}\right|$ times in.M_{2} and repeating $C_{j}^{\prime}\left|C_{t}^{\prime}\right|$ times in M_{j}. we can obtain a circuit with length $\left|C_{t}^{\prime}\right|\left|C_{j}^{\prime}\right|$ in $M_{i} \|^{s, m} . M_{j}$. As a result. in $\left(\|^{s i m}\right)_{t=1}^{k}\left(M_{t}\right) .1 \leq k \leq n-1$. there are circuits of length $l \prod_{j=1}^{k}\left|C_{j}^{k+1}\right|$. where l can be an arbitrary positive integer. Also. by repeating the circuit $C_{k+1} m$ times, we can obtain a circuit with length $m\left|C_{k-1}\right|$ in M_{k-1}. where m can be an arbitrary positive integer.

By. the running assumption. $\left|C_{k+1}\right|$ is co-prime with all $\left|C_{j}^{k+1}\right| .1 \leq j \leq k$. thus $\left\{C_{k-1} \mid\right.$ is co-prime with $\prod_{j=1}^{k}\left|C_{j}^{k+1}\right|$. Therefore, there are integers $l_{1} \cdot l_{2}$ such that $l_{1}\left(\prod_{1=1}^{k} \mid C_{j}^{k-1}\right)-l_{2}\left|C_{k+1}\right|=1([\mathbf{2 4} \mid)$. Recursively applying Theorem 4.1. it follows that $\left(\|^{s t m}\right)_{t=:}^{n} . M_{t}$ is controllable.
\Longleftarrow
Suppose ($\left.i^{s m}\right)_{t=1}^{n}, M_{t}$ is controllable. By the associativity of $\|^{s t m}$. for arbitrary t.
 controllable. Thus. according to Theorem 4.1. there are circuits C^{\prime} and C_{1} respectively in $\left(\|_{1}^{s e m}\right)_{j=1, j=1}^{n} M_{j}$ and M_{1} such that $\mid\left\{C^{\prime}\left|-\left|C_{1}\right|\right|=1\right.$. In other words. $\left|C^{\prime}\right|$ and $\left|C_{1}\right|$ are co-prime. Clearly, since C^{\prime} is a circuit in $\left(\|^{s i m}\right)_{j=1 . j=2}^{n}, M_{j}$. there are circuits C, in M_{j} correspondent to C^{\prime} with length $\left|C_{j}\right|=\left|C^{\prime}\right| .1 \leq j \leq n$. $j \neq i$. Hence. $\left|C_{i}\right|$ and C_{j} are co-prime. $1 \leq j \leq n . j \neq i$.

Theorem 4.2 is a necessary and sufficient condition for $\left(\|^{s t m}\right)_{i=1}^{n} . M_{i}$ to be controllable. For example, in case $n=3$. assume there are circuits in M_{1} with length 2 and 3. the length of the only circuits in M_{2} are $3 m$, the length of the only circuit in M_{3} is $4 n . m . n \in N^{\dagger}$. Because there is a circuit in $M_{1} \|^{s m m} M_{2}$ with length 3 , which is co-prime with 4 . the length of a circuit in $M_{3} . M_{4}\left\|^{s t m} M_{2}\right\|^{s i m} M_{3}$ is controllable. Suppose there were no circuit in M_{1} with length co-prime with both 3 and 4 . Since the lengths of the circuits in $M_{2} \|^{s t m}, M_{3}$ are multiples of 12 . the lengths of all circuits in M_{1} thus would not be co-prime with the length of any circuit in $M_{2} \|^{s+m}, M_{3}$. Hence. no circuits C_{1} in M_{1} and C^{\prime} in $M_{2} \|^{s s m} M_{3}$ such that $\left\|C_{1}|-| C^{\prime}\right\|=1$. This contradicts

Theorem 4.1. Therefore, there is a circuit in M_{1} with length co-prime with both 3 and 4.

The following theorem states that the controllability of a multi-agent system with $\kappa \neq \boxtimes$ is dependent on the state-to-state reachability of the state pairs given in \mathcal{R}.

Theorem 4.3. For two controllable finate state machines M_{1} and $M_{2}, M_{1} \|_{-R} M_{2}$ is controllable if and only if the following two conditions hold: (1) $\left.M_{1}\right|^{\text {sim }} M_{2}$ is controllable.
(2) For any $\left.\left(r_{1}, \sigma_{1}\right) \cdot\left(x_{2}, \sigma_{2}\right)!\right) \in \mathcal{R}$. there are $s_{1}=a_{1} a_{2} \ldots a_{k} \in \Sigma_{i}$ and $s_{2}=b_{1} b_{2} \ldots b_{k}$ $\in \Sigma_{i}$ such that $\left.\left\{\left(\delta_{1}\left(x_{1}, a_{1} a_{2} \ldots a_{t}\right) \cdot a_{t-1}\right) \cdot \delta_{2}\left(x_{2}, b_{1} b_{2} \ldots b_{t}\right) \cdot b_{1-1}\right)\right] \in \mathcal{R}$. for all $1 \leq i \leq k$. and such that $\left., \dot{I}_{1}\left(x_{1}, s_{1}\right), \delta_{2}\left(x_{2}, s_{2}\right)\right]=\left\{\delta_{1}\left(x_{1}, \sigma_{1}\right), \delta_{2}\left(x_{2}, \sigma_{2}\right)\right]$.

Priouf:

The "only if" direction follows immediately from the definitions.

For the "if" direction. suppose conditions 1 and 2 hold. For any vector states $[x . y]$ and $x^{\prime} \cdot y^{\prime}$. because $M_{i} \|^{\text {sim }}!_{2}$ is controllable there is a control $u\left(\{x, y] \cdot\left[x^{\prime}, y^{\prime}\right\}\right)=$ $u^{\prime}\left(x, r^{\prime}\right) . u_{2}\left(y, y^{\prime}\right)!\in\left(\Sigma_{1} \times \Sigma_{2}\right)^{*}$ driving $M_{1} \|^{\text {sim }} . M_{2}$ from $[x, y]$ to $\left[r^{\prime} . y^{\prime \prime}!\right.$. Denote

$$
u\left(\left[x, y j \cdot\left[r^{\prime} \cdot y^{\prime}\right]\right)=\left[\begin{array}{c}
c_{1} c_{2} \ldots c_{n} \\
d_{1} d_{2} \ldots d_{n}
\end{array}\right] .\right.
$$

Denote $x_{:}=\delta_{1}\left(x, c_{1} c_{2} \ldots c_{2}\right)$ and $y_{1}=\delta_{2}\left(y . d_{1} d_{2} \ldots d_{2}\right) .1 \leq i<n$. where $r_{1}=x . y_{1}=y$. $I_{n}=x^{\prime} . y_{n}=y^{\prime}$.

By Condition (2). if there are any x_{t} and $y_{t}, 1 \leq i<n$. such that $\left[\left(x_{t}, c_{t-1}\right),\left(y_{t}, d_{i+1}\right)\right]$ $\in \mathcal{R}$. there exists $\left[s_{1}^{2}, s_{2}^{2}\right]$. such that for all $v_{1}, u_{1} \in \Sigma_{1}^{*}, a \in \Sigma$ and $v_{2}, u_{2} \in \Sigma_{2}^{*}, b \in \Sigma_{2}$. $s_{1}^{2}=v_{1} a u_{1} . s_{2}^{\mathrm{t}}=\tau_{2} b u_{2}$ and $\left|v_{1}\right|=\left|\tau_{2}\right|$.

$$
\left[\begin{array}{l}
x_{i+1} \\
y_{i+1}
\end{array}\right]=\left[\begin{array}{l}
\left(\delta_{1}\left(x_{i}, v_{1}\right), a\right) \\
\left(\delta_{2}\left(y_{i}, v_{2}\right), b\right)
\end{array}\right] \notin \mathcal{R}
$$

Replacing all such $\left[c_{i+1}, d_{i+1}\right]$ in $u\left([x, y],\left[x^{\prime}, y^{\prime}\right]\right)$ by $\left[s_{1}^{2}, s_{2}^{2}\right]$, we obtain a control sequence $u^{\prime}\left([x, y],\left[x^{\prime}, y^{\prime}\right]\right)$ steering $M_{1} \|^{\text {sim }} M_{2}$ from $[x, y]$ to $\left[x^{\prime}, y^{\prime}\right]$ without going through any configuration in \mathcal{R}. That is to say, $u^{\prime}\left([x, y],\left[x^{\prime}, y^{\prime}\right]\right)$ is a valid control from $[x, y]$ to $\left[x^{\prime}, y^{\prime}\right]$ in $M_{1} \|-\mathbb{R} . M_{2}$. Hence, $M_{1} \|_{-\mathcal{R}} \cdot M_{2}$ is controllable.

For two states $x \in X_{1}, y \in X_{2}$, and two sequences of actions $s_{1}=a_{1} a_{2} \ldots a_{n} \in \Gamma_{i}$. $s_{2}=b_{1} b_{2} \ldots b_{n} \in \Sigma_{2}$. if

$$
\left[\begin{array}{l}
\left(\dot{\delta}_{1}\left(x \cdot a_{1} a_{2} \ldots a_{\jmath}\right) \cdot a_{j+1}\right) \\
\left(\dot{\delta}_{2}\left(y, b_{1} b_{2} \ldots b_{j}\right) \cdot b_{\jmath+1}\right)
\end{array}\right] \notin \mathcal{R} .
$$

for all $1 \leq i<\pi$. write $\left[\left(x, s_{1}\right),\left(y, s_{2}\right)\right] \cap \mathcal{R}=\emptyset$.

We observe that for n finite state machines. $. M_{1}, 1 \leq i \leq n$. if (1) $\left(\|^{s i m}\right)_{t=1}^{n}\left(. M_{2}\right)$ is controllable, and if (2) for any $\left\{\left(x_{1}, a_{1}\right),\left(x_{2}, a_{2}\right), \ldots\left(x_{n}, a_{n}\right)\right\} \in \mathcal{R}$ with $\delta_{1}\left(x_{1}, a_{i}\right)$!. $1 \leq 1 \leq n$. there is a vector string $\left[s_{1}, s_{2}, \ldots . s_{n}\right] \in \Sigma_{1} \times \Sigma_{2} \times \ldots \times \Sigma_{n} .\left|s_{1}\right|=\left|s_{2}\right|=\ldots$ $=s_{n}$. such that $\delta_{1}\left(x_{1}, s_{1}\right)=\dot{\delta}_{1}\left(x_{2}, a_{1}\right)$ and $\left[\left(x_{1}, s_{1}\right),\left(x_{2}, s_{2}\right), \ldots .\left(x_{1}, s_{t}\right)\right] \cap \mathcal{R}=0$ (that is to say: there is a path in $(\|-R)_{t=1}^{n}, M_{1}$ from $\left[r_{1}, r_{2}, \ldots, x_{n}\right]$ to $\left[\dot{\delta}_{1}\left(x_{1}, a_{1}\right), \dot{\delta}_{2}\left(x_{2}, a_{2}\right)\right.$. $\left.\ldots .{\dot{\delta_{n}}}_{n}\left(x_{n}, a_{n}\right) j\right) .\left(\|_{-n}\right)_{t=1}^{n} . M_{t}$ is controllable.

We shall apply the following theorem in Example 4.4.
Theorem 4.4. For turo controllable finite state machines M_{1} and $M_{2}, M_{1} \|-\pi . M_{2}$ is controllable if and only if the following three conditions are satisfied.
(1) For all $\left[\left(x, \sigma_{1}\right) \cdot\left(y, \sigma_{2}\right)\right] \in \mathcal{R}$. there exists $\left[s_{1}, s_{2}\right] \in\left(\Sigma_{1} \times \Sigma_{2}\right)^{*}$ where $s_{1}=a_{1} a_{2} \ldots a_{n}$ and $s_{2}=b_{:} b_{2} \ldots b_{n}$. such that.

$$
\left[\begin{array}{l}
\left(x . s_{1}\right) \\
\left(y . s_{2}\right)
\end{array}\right] \cap \mathcal{R}=0 .
$$

and such that $\dot{\delta}_{1}\left(x \cdot s_{1}\right)=\delta_{1}\left(x \cdot \sigma_{1}\right)$;
(2) For all $\left[\left(x, \sigma_{1}\right),\left(y, \sigma_{2}\right)\right] \in \mathcal{R}$, there exist $y^{\prime} \in X_{2}$ and $\left[s_{1} \cdot s_{2}\right] \in\left(\Sigma_{1} \times \Sigma_{2}\right)^{\cdot}$ where $s_{1}=a_{1} a_{2} \ldots a_{n}$ and $s_{2}=b_{1} b_{2} \ldots b_{n}$, such that.

$$
\left[\begin{array}{l}
\left(x, s_{1}\right) \\
\left(y^{\prime} . s_{2}\right)
\end{array}\right] \cap \mathcal{R}=\emptyset .
$$

and such that $\delta\left(\left[x, y^{\prime}\right],\left[s_{1}, s_{2}\right]\right)=\left[\bar{\delta}_{1}\left(x, \sigma_{1}\right), \delta_{2}\left(y, \sigma_{2}\right)\right]$;
(3) There exists $x_{0} \in X_{1}$ such that for all $y_{1} \in X_{2}$ and $y_{2} \in X_{2}$, there exists $\left[s_{1}, s_{2}\right] \in$
$\left(\Sigma_{1} \times \Sigma_{2}\right)^{*}$ where $s_{1}=a_{1} a_{2} \ldots a_{n}$ and $s_{2}=b_{1} b_{2} \ldots b_{n}$, such that

$$
\left[\begin{array}{l}
\left(x_{0}, s_{1}\right) \\
\left(y_{1}, s_{2}\right)
\end{array}\right] \cap \mathcal{R}=\emptyset .
$$

and such that $\delta\left(\left[x_{0}, y_{1}\right],\left[s_{1}, s_{2}\right]\right)=\left[x_{0}, y_{2}\right]$.

These conditions can be paraphrased as follows: (1) means $M_{1} \|_{-R} . M_{2}$ can escape from \mathcal{R}-configurations with the M_{1} move reproduced with non- \mathcal{R}-configuration moves: (2) says all targets of \mathcal{R}-configurations. $\left[\delta_{1}\left(x, \sigma_{1}\right), \delta_{2}\left(y, \sigma_{2}\right)\right]$, can be reached from a pair of initial states $\left[x, y^{\prime}\right]$ with a sequence of non- \mathcal{R}-configuration moves: (3) means that M_{1} can loop at x_{0} while M_{2} moves from y_{1} to y_{2} with non- \mathcal{R}-configuration moves.

Although all assumptions are made with M_{1}. the active agent. the conclusion holds. symmetrically: if all conditions for M_{1} and M_{2} are swapped.

Proof:

Suppose the above conditions (1)-(3) are true. We shall demonstrate that these imply the conditions of Theorem 4.3 and hence that $M_{1} \|-\Omega_{2} M_{2}$ is controllable.

Let $x_{0} \in \Lambda_{1}$ be the state in X_{1} such that Condition (3) holds. Consider any forbidden configuration $\left[\left(x, \sigma_{1}\right) \cdot\left(y, \sigma_{2}\right)!\in \mathcal{R}\right.$: because M_{1} is controllable. there exists a finite sequence of actions $s=a_{1} a_{2} \ldots a_{n} \in I_{i}$ such that $\delta_{1}(x, s)=x_{0}$.

Set $i=1 . r_{1}=x, y_{1}=y, s_{1}=\epsilon$ and $s_{2}=\epsilon$ (we recall that ϵ is an empty string. not a self-loop action). By Condition (1), there is $\left[s_{1}^{2}, s_{2}^{2}\right] \in\left(\Gamma_{1} \times I_{2}\right)^{\text {- }}$ such that $\delta_{1}\left(x, s_{1}^{2}\right)=\delta_{1}\left(x_{1}, a_{i}\right)$ and $\left[s_{1}^{i}, s_{2}^{i}\right]$ steers the system from $\left[x_{2}, y_{i}\right]$ to $\left[\delta_{1}\left(x_{i}, a_{1}\right), \delta_{2}\left(y_{i}, s_{2}^{2}\right)\right]$ with $\left[\left(x_{1}, s_{1}^{2}\right) .\left(y_{2}, s_{2}^{2}\right)\right] \cap \mathcal{R}=0$.

Let $i=i+1 . s_{1}=s_{1} s_{1}^{2}$ and $s_{2}=s_{2}^{i}$. Denote $x_{i}=\delta_{1}\left(x, s_{1}\right), y_{i}=\delta_{2}\left(y, s_{2}\right)$. Recursively continue this procedure until $\delta_{1}\left(x . s_{1}\right)=x_{0}$. We obtain $\left[s_{1}, s_{2}\right] \in\left(\Sigma_{1} \times \Sigma_{2}\right)^{*}$

FIGURE 4.4. A path in $. M_{1} \|_{-\pi} \cdot M_{2}$ from $[x . y]$ to $\left[\delta_{1}\left(x, \sigma_{1}\right), \delta_{2}\left(y . \sigma_{2}\right)\right]$
such that $\delta\left(\left[x, y,\left[s_{1}, s_{2}\right]\right)=\left\{x_{0} \cdot \delta_{2}\left(y \cdot s_{2}\right)\right]\right.$ and $\left[\left(x, s_{1}\right),\left(y, s_{2}\right)\right] \cap \mathcal{R}=0$.

Similarly: by Condition (2). working backwards from $\left[\delta_{1}\left(x, \sigma_{1}\right) \cdot \delta_{2}\left(y, \sigma_{2}\right)\right]$. we can find $\left[s_{5}, s_{6}\right] \in\left(\Sigma_{1} \times \Sigma_{j}\right)^{\circ}$ such that $\delta\left(\left[x_{0}, y_{0}\right] \cdot\left[s_{5}, s_{6}!\right)=\left[\dot{\sigma}_{1}\left(r, \sigma_{1}\right), \dot{\delta}_{2}\left(y, \sigma_{2}\right)\right]\right.$ for some $y_{0} \in l_{2}$, and the path driven by $\left[s_{5} . s_{5}\right]$ does not go through \mathcal{R}.

By conditions (3), there is $\left[s_{3} \cdot s_{4}\right] \in\left(\Sigma_{1} \times \Sigma_{2}\right)^{*}$ such that $\dot{\delta}\left(\left[r_{0} \cdot \delta_{2}\left(y . s_{2}\right)\right] \cdot\left[s_{3} \cdot s_{4}\right]\right)=$ $\left.x_{0} \cdot y_{0}\right\}$ and $!\left(x_{0} \cdot s_{3}\right) \cdot\left(j_{2}\left(y \cdot s_{2}\right) \cdot s_{4}\right)!\cap \mathcal{R}=0$.

Therefore. $\delta\left([x, y],\left[s_{1} s_{3} s_{j} \cdot s_{2}, s_{4} s_{6}\right]\right)=\left[j_{1}\left(r, \sigma_{1}\right) \cdot \delta_{2}\left(y, \sigma_{2}\right)\right]$ (see Figure 4.4) and it follows recursively that $\left[\left(x, s_{1} s_{3} s_{5}\right) \cdot\left(\delta_{2}\left(y . s_{2} s_{4} s_{6}\right)\right] \cap \mathcal{R}=0\right.$. According to Theorem 4.3. $M_{1}:-M_{2}$ is controllable.

The "only if" direction follows immediately from the definitions.

A finite state machine M is said to be controllable with respect to $\Sigma^{\prime} \subset \Sigma$ if all states of M are mutually accessible via transition events restricted to Σ^{\prime}. Clearly, if $M_{1} \|_{-R} . M_{2}$ is controllable. and $[(x, a),(y, b)] \in \mathcal{R}$ for some $x \in X_{1}, a \in \Sigma_{1}, y \in X_{2}$ and $b \in \Sigma_{2}$, then M_{1} and M_{2} must be controllable with respect to $\Sigma_{1}-\{a\}$ and $\Sigma_{2}-\{b\}$. If two finite state machines M_{1} and M_{2} are controllable, the following theorem gives a sufficient condition for $M_{1} \|_{-R} . M_{2}$ to be controllable.

Theorem 4.5. For two controllable finite state machines M_{1} and M_{2}, if there exist $E_{1} \subset \Sigma_{1} . E_{2} \subset \Sigma_{2}$ such that $\mathcal{R} \subseteq\left(X_{1} \times E_{1} \times X_{2} \times \Sigma_{2}\right) \cup\left(X_{1} \times \Sigma_{1} \times X_{2} \times E_{2}\right)$. then $M_{1} \|_{-\mathcal{R}} . M_{2}$ is controllable if the following conditions are satisfied:
(1) There exist circuits C_{1}, C_{2} in M_{1} or M_{2} with events in $\Sigma_{1}-E_{1}$ and $\Sigma_{2}-E_{2}$ respectively, and $\left|C_{1}\right|-\left|C_{2}\right|= \pm 1$.
(2) M_{1} is controllable with respect to $\Sigma_{1}-E_{1}$.
(3) M_{2} is controllable with respect to $\Sigma_{2}-E_{2}$.

Proof:

It is sufficient to prove that $M_{1} \|^{s, m} \cdot M_{2}$ is controllable with respect to $\left(\Sigma_{1}-E_{1}\right) \times$ $\left(\Sigma_{2}-E_{2}\right)$ to demonstrate that $M_{1} \|_{-R} \cdot M_{2}$ is controllable, and under hypotheses (1)-(3). this follows from Corollary 4.1.

Example 4.3. Two finite state machines M_{1} and M_{2} are shown in Figure 4.5.
A list of the mutually exclusive events in M_{1} and M_{2} are:
(1) events in $\left\{a_{1}, b_{1}, d_{1}\right\}$ and events in $\left\{b_{2}, d_{2}, e_{2}\right\}$:
(2) c_{1} and events in $\left\{a_{2}, b_{2}, c_{2}, d_{2}\right\}$:
(3) events in $\left\{e_{1}, f_{1}\right\}$ and events in $\left\{b_{2}, d_{2}\right\}$.

Thus. the interaction of M_{1} and M_{2} is given by a forbiden set

$$
\begin{aligned}
& \mathcal{R}=\left\{\left[\left(x_{1}, a_{1}\right),\left(y_{2}, b_{2}\right)\right], \quad\left[\left(x_{1}, a_{1}\right),\left(y_{3}, d_{2}\right)\right] . \quad\left[\left(x_{1}, a_{1}\right),\left(y_{1}, e_{2}\right)\right] .\right. \\
& {\left[\left(x_{2}, b_{1}\right),\left(y_{1}, e_{2}\right)\right] \cdot\left[\left(x_{2}, b_{1}\right),\left(y_{2}, b_{2}\right)\right] . \quad\left[\left(x_{2}, b_{1}\right),\left(y_{3}, d_{2}\right)\right] .} \\
& {\left[\left(x_{2}, c_{1}\right) \cdot\left(y_{4}, a_{2}\right)\right] . \quad\left[\left(x_{2}, c_{1}\right) \cdot\left(y_{2}, b_{2}\right)\right] . \quad\left[\left(x_{2}, c_{1}\right),\left(y_{2}, c_{2}\right)\right] .} \\
& {\left[\left(x_{2}, c_{1}\right) \cdot\left(y_{3}, d_{2}\right)\right] .\left[\left(x_{3}, d_{1}\right),\left(y_{1}, e_{2}\right)\right], \quad\left[\left(x_{3}, d_{1}\right),\left(y_{2}, b_{2}\right)\right] .} \\
& {\left[\left(x_{3}, d_{1}\right),\left(y_{3}, d_{2}\right)\right],\left[\left(x_{1}, e_{1}\right),\left(y_{2}, b_{2}\right)\right], \quad\left[\left(x_{1}, e_{1}\right),\left(y_{3}, d_{2}\right)\right] .} \\
& \left.\left[\left(x_{3}, f_{1}\right),\left(y_{2}, b_{2}\right)\right] . \quad\left[\left(x_{3}, f_{1}\right),\left(y_{3}, d_{2}\right)\right]\right\} .
\end{aligned}
$$

Set $E_{1}=\left\{c_{1}, d_{1}\right\}$ and $E_{2}=\left\{b_{2}, d_{2}, e_{2}\right\}$. It is easy to verify that without E_{1} and E_{2} respectively. M_{1} and M_{2} are both controllable. And without E_{1}, there are circuits $x_{1} \rightarrow x_{2} \rightarrow x_{1}$ with length of $2, x_{1} \rightarrow x_{3} \rightarrow x_{2} \rightarrow x_{1}$ with length of 3 in M_{1}. By the theorem above. $M_{1} \|_{-\pi} . M_{2}$ is controllable.

Figtre 4.5. Two interacting agents
Let a finite state machine with cost be denoted by $M=\{. \bar{I} . \Sigma . \delta . d\}$. where $d: X \times \Sigma \rightarrow R^{-}$associates an event taken at a state with a non-negative cost. The joint cost of a multi-agent system configuration may be represented by a function of the component costs. i.e.. $d\left(\left[\left(x_{1}, a_{1}\right) \cdot\left(x_{2}, a_{2}\right) \ldots \ldots\left(x_{n}, a_{n}\right)!\right)=f\left(d_{1}\left(x_{1}, a_{1}\right), d_{2}\left(x_{2}, a_{2}\right)\right.\right.$. $\left.\ldots . d_{n}\left(x_{n} . a_{n}\right)\right) . f$ may take different forms in tarious contexts. The state to state optimal control problem of multi-agent systems of the $M A(\mathcal{R})$ FSMI type can then in principle be solved by applying dynamic programming in the $M . A(\mathcal{R})$ model.

Example 4.4. In Example 4.2. two automobiles at s_{1} and s_{2} respectively are going to t_{1} and t_{2}. Suppose in $M . d(x, a)=d(x . b)=1$. and $d(x . s)=5$ for all $x \in X$. Since a task is completed after an automobile arrives at its goal. the joint cost of $M i-\pi . M$ takes the form

$$
d\left(\left(\left(x_{1}, \sigma_{1}\right) \cdot\left(x_{2}, \sigma_{2}\right)\right]\right)=\left\{\begin{array}{ll}
d\left(x_{1}, \sigma_{1}\right)+d\left(x_{2}, \sigma_{2}\right) & \text { if } x_{1} \neq t_{1} \cdot x_{2} \neq t_{2} \\
d\left(x_{1}, \sigma_{1}\right) & \text { if } x_{1} \neq t_{1} \cdot x_{2}=t_{2} \cdot \sigma_{2}=s \\
d\left(x_{2}, \sigma_{2}\right) & \text { if } x_{1}=t_{1} \cdot \sigma_{1}=s, x_{2} \neq t_{2}
\end{array} .\right.
$$

If two automobiles meet at an intersection. one can continue while the other stops. that is to say: the first condition of Theorem 4.4 holds. For any $\left[\left(n_{i}, \sigma_{1}\right),\left(n_{i}, \sigma_{2}\right)\right] \in \mathcal{R}$.
$1 \leq i \leq 16, \sigma_{1}, \sigma_{2} \neq s$, reset the second automobile to $\delta_{2}\left(n_{2}, \sigma_{2}\right)$ and let it take action s while the first one takes σ_{1} at n_{i}, the second condition of Theorem 4.4 is satisfied. We know that the first automobile may stay at any n_{i} while the second one moves from n_{k} to $n_{j} .1 \leq i . j . k \leq 16$, hence the third condition of Theorem 4.4 is true. Therefore, $M \|_{-R} . M$ is controllable, that is to say, for any $\left[s_{1}, s_{2}\right],\left[t_{1}, t_{2}\right]$. the optimal control exists. For example. when $\left[s_{1}, s_{2}\right]=\left[n_{6}, n_{9}\right]$, $\left[t_{1}, t_{2}\right]=\left[n_{11}, n_{15}\right]$. one optimal control is [ababba.aaabas] with the joint cost of 11.

Since a muiti-agent system has a much larger state space than its component finite state machines. it is extremely useful if one can obtain an IBC partition machine of $M A(\mathcal{R})$ based on partition machines of individual M_{2} s . This could be followed by successive aggregation cycles. Assume this significant step can be carried out for a system $M A(\mathcal{R})$. we have the following application of the HADP to multi-agent systems.

HADP for MA(R) Systems

(1) Compute the $M A P(\mathcal{R})(\|-\pi)_{:=:}^{n} M$ of n interacting finite state machines $M_{1} .1 \leq$ $: \leq n$.
(2) Successively create a hierarchy of IBC partition machines with base machine $(1-\pi)_{t=1}^{n} \cdot M_{1}$.
(3) Apply HADP to the hierarchy:

In the following corollary: Condition (2) implies the conditions (1) and (2) of Theorem 4.4.

Corollary 4.3. Let $X_{1} \in \pi_{1}$ and $X_{2} \in \pi_{2}$ be IBC and the conditions (1) and (2) hoid:
(1) For any $I \in X_{1}, y \in X_{2}, a \in \Sigma_{1}, b \in \Sigma_{2}$ such that $\delta_{1}(x, a) \in X_{1}, \delta_{2}(y, b) \in X_{2}$ and $\left[(x, a),(y, b)!\in \mathcal{R}\right.$, there exists $b^{\prime} \in \Sigma_{2}$ such that $\delta_{2}\left(y, b^{\prime}\right) \in \boldsymbol{X}_{2}$ and $\left[(x, a),\left(y, b^{\prime}\right)\right]$ $\in \mathcal{R}$.
(2) There exists $x_{0} \in \boldsymbol{I}_{1}, c \in \Sigma_{1}$ such that $\delta_{1}\left(x_{0}, c\right)=x_{0}$ and for all $y \in \boldsymbol{X}_{2}, b \in \Sigma_{2}$ such that $\delta_{2}(x . b) \in \boldsymbol{X}_{2} .\left[\left(x_{0}, c\right),(y, b)\right] \notin \mathcal{R}$. Then $\boldsymbol{\Lambda}_{1} \times \boldsymbol{K}_{2}$ is IBC.

If $X_{i}^{1} \in \pi_{1}$ and $X_{j}^{2} \in \pi_{2}$, let $\mathcal{R}\left(X_{i}^{1}, X_{j}^{-2}\right)$ be the set of forbidden configurations restricted to $X_{1}^{1} \times X_{j}^{-2}$. i.e.. $\mathcal{R}\left(X_{i}^{1}, X_{j}^{2}\right)=\left\{[(x, a) .(y, b)] \in \mathcal{R} \mid[x, y] \in X_{i}^{1} \times X_{j}^{2}\right\}$.

Define $\Sigma_{j}^{i}=\left\{a \in \Sigma_{i} \mid \delta(x, a)\right.$! for some $\left.x \in X_{j}^{i}\right\}$ for $i=1,2,1 \leq j \leq\left|\pi_{i}\right|$. According to Theorem 4.5, we obtain the corollary below.

Corollary 4.4. If $\mathrm{X}_{1}^{1} \in \pi_{1}$ and $\mathrm{X}_{j}^{2} \in \pi_{2}$ are IBC. and there exist $E_{i}^{1} \subseteq \Sigma_{i}^{1}$ and $E_{j}^{2} \in \Sigma_{j}^{2}$ such that for all $x \in X_{i}^{1}: y \in \mathcal{X}_{j}^{2}, a \in \Sigma_{1}^{1}, b \in \Sigma_{j}^{2}$. the configuration $[(x, a),(y, b)] \notin \mathcal{R}\left(X_{i}^{1}, X_{j}^{2}\right)$, and the following conditions hold.
(1) There exist circuits $C\left(\mathbf{X}_{i}^{1}\right), C\left(X_{j}^{2}\right)$ in X_{1} and X_{2} with events in $\Gamma_{i}^{1}-E_{i}^{1}, \Gamma_{j}^{2}-E_{j}^{2}$ respectively, and $\left|C\left(X_{1}^{-1}\right)\right|-\left|C\left(X_{j}^{-2}\right)\right|= \pm 1$.
(2) X_{i}^{1} is $I B C$ with respect to $\Gamma_{i}^{1}-E_{:}^{1}$.
(3) X_{j}^{2} is $I B C$ with respect to $\Sigma_{j}^{2}-E_{j}^{2}$.

Then $X_{2}^{1} \times X_{j}^{-2}$ is an IBC block of $M_{1} \|_{-R} \cdot M_{2}$.

If $X_{1}^{-1} \times X_{j}^{-2}$ is IBC. for all $X_{1}^{-1} \times X_{j}^{-2} \in \pi_{1} \times \pi_{2}$, the dynamics of an IBC partition machine of $M_{1} \|-R M_{2}$ based on $\pi_{1} \times \pi_{2}$ are given by the DC relations between elements of $\pi_{1} \times \pi_{2}$. If there exists $x \in O\left(\mathcal{X}_{i}^{1}\right), a \in \Sigma_{1}^{1}$. such that $\delta_{1}(x, a) \in I\left(X_{k}^{-1}\right)$, and there ex-

4.3. Events with Different Live Times

Up to this point. all events have been assumed to have the same live time. that is to say: all transitions are assumed to take the same quantum time unit (taken to be 1 for convenience) to complete. We now consider systems in which distinct events may have different live times. In a timed finite state machine $M=\{\mathbb{S}, \Sigma, \delta, t\}$, an event $\sigma \in \Sigma$ is associated with a time measurement $t(\sigma)>0$ that indicates the live time of an event. Although in practice. events may occur at any real-valued time. in this setting. a discrete-time clock is used. Hence, we assume that all events have durations $t(\sigma)$. which are integral multiples of the basic quantum time interval which is again taken to be 1 .

In many cases, minimal time control problems for multi-agent systems are of interest. This is the problem of seeking a controlled path between two vector states that takes the minimal time to finish. In this section, a simplified clock structure. a time counter. is proposed to record the difference of live times of two events taken by two agents. With the help of such a time counter, a minimal time control problem for
multi-agent systems may be transfered into a point to point shortest path problem and thus solved with HADP.

For a system consisting of n agents modelled by finite state machines $M_{1}, 1 \leq$ $i \leq n$, a time counter observes the progress of the running events in each of.M_{i}. Since distinct events may have different live times. when the systems M_{2} take events in parallel. the state transitions in n agents may not complete at the same time instant. The function of a time counter is to record the residual live times of the events being executed at $M_{j} .1 \leq j \leq n . j \neq i$, at the moment an state transition in M_{1} is completed.

A time counter for two timed finite state machines $M_{1}=\left\{\mathcal{S}_{1}, \Sigma_{1}, \delta_{1}, t_{1}\right\}$ and $M_{2}=\left\{\dot{X}_{2}, \Gamma_{2}, \delta_{2}, t_{2}\right\}$ is a third finite state machine $C\left(M_{1}, M_{2}\right)=\left\{D_{t}, \Gamma_{t}, \delta_{t}, t\right\}$. The set of counter states. $D_{t}=\left\{\left[\left(\Gamma_{1} \times\left\{0,1.2 \ldots T_{2}\right\}\right) \cup\left(\Sigma_{2} \times\left\{0.1 .2 \ldots T_{1}\right\}\right)\right] \times\{1.2\}\right\}$ $\mathcal{U}\{R E S E T\}$, where $T_{1}=\max \left\{t_{1}(a)-t_{2}(b) .0\right\} . T_{2}=\max \left\{t_{2}(b)-t_{1}(a) .0\right\}$ for all $a \in \Sigma_{1} . b \in \Sigma_{2}$, and RESET is a distinguished state representing the reset of the counter to zero. A state other than $R E S E T$ is a triple consisting of an event and two integers. which give information about the residual live time for a running event that is being executed by an agent. The set of vector events is $\Sigma_{t}=\left[\left(\Sigma_{1} \cup\{-\}\right) \times \Sigma_{2}\right]$ $\cup \Xi_{-} \times\left(\Sigma_{2} \cup\{-\}\right)!$. where the symbol - means that an agent is in the process of executing an incomplete event. The counter state transition function is defined as follows:

$$
j_{\mathrm{t}}\left(\text { RESET. }\left[\begin{array}{l}
a \\
b
\end{array}\right]\right)= \begin{cases}\left(a . t_{1}(a)-t_{2}(b) .1\right) . & \text { if } t_{1}(a)-t_{2}(b)>0 \\
R E S E T . & \text { if } t_{1}(a)-t_{2}(b)=0 \\
\left(b . t_{2}(b)-t_{1}(a) .2\right) . & \text { if } t_{1}(a)-t_{2}(b)<0 \\
\text { if }[a . b] \in \Sigma_{1} \times \Sigma_{2} .\end{cases}
$$

$$
\dot{\delta}_{\mathrm{t}}\left((a . \tau .1) .\left[\begin{array}{c}
- \\
b
\end{array}\right]\right)= \begin{cases}\left(a . \tau-t_{2}(b) .1\right), & \text { if } \tau-t_{2}(b)>0 \\
R E S E T, & \text { if } \tau-t_{2}(b)=0 \\
\left(b, t_{2}(b)-\tau .2\right), & \text { if } \tau-t_{2}(b)<0\end{cases}
$$

and.

$$
\delta_{\mathrm{t}}\left((b . \tau .2),\left[\begin{array}{c}
a \\
-
\end{array}\right]\right)=\left\{\begin{array}{ll}
\left(a, t_{1}(a)-\tau, 1\right), & \text { if } t_{1}(a)-\tau>0 \\
R E S E T, & \text { if } t_{1}(a)-\tau=0 \\
\left(b . \tau-t_{1}(a), 2\right), & \text { if } t_{1}(a)-\tau<0
\end{array} .\right.
$$

Otherwise, δ_{t} is undefined. The time measurement $t: D_{t} \times \Sigma_{t} \rightarrow \mathcal{N}^{+}$is defined by:

$$
\begin{gathered}
t\left(\text { RESET }\left[\begin{array}{l}
a \\
b
\end{array}\right]\right)=\min \left(t_{1}(a), t_{2}(b)\right) . \\
t\left((a . \tau .1),\left[\begin{array}{l}
- \\
b
\end{array}\right]\right)=\min \left(\tau, t_{2}(b)\right)
\end{gathered}
$$

and

$$
t\left((b . \tau .2) .\left[\begin{array}{c}
a \\
-
\end{array}\right]\right)=\min \left(t_{1}(a) . \Gamma\right) .
$$

Consider two agents M_{1} and M_{2} interacting with one another with the forbidden relation denoted by $\mathcal{R} \subseteq \Sigma_{1} \times \Sigma_{2} .[a . b] \in \mathcal{R}$ means two events $a \in \Sigma_{1}$ and $b \in \Sigma_{2}$ are forbidden to happen at the same time. This is a simplified version of the forbidden configurations introduced earlier.

Definition 4.3. $\left(M_{1}\left(\|_{-R}\right) \cdot M_{2}\right)$ For two finite state machines M_{1} and M_{2}. their tımed multi-agent product machine $M_{1}\left(\|_{-R}^{t}\right) M_{2}=\left\{X_{1} \times X_{2} \times D_{i} \cdot \Gamma_{t}-\mathcal{R} . \delta . t\right\}$. has the state transition function defined as follows:

$$
\begin{gathered}
\left.\dot{\delta(}\left[\begin{array}{c}
x \\
y \\
R E S E T
\end{array}\right] \cdot\left[\begin{array}{l}
a \\
b
\end{array}\right]\right)=\left[\begin{array}{l}
\delta_{1}(x . a) \\
\delta_{2}(y, b) \\
\delta_{t}\left(R E S E T .\left[\begin{array}{l}
a \\
b
\end{array}\right]\right)
\end{array}\right] . \\
\\
\text { if }[a, b] \notin \mathcal{R}, a \neq-, b \neq-. \delta_{1}(x . a)!\text { and } \delta_{2}(y, b)!, \\
\delta\left(\left[\begin{array}{c}
x \\
y \\
(c . \pi .1)
\end{array}\right],\left[\begin{array}{l}
a \\
b
\end{array}\right]\right)=\left[\begin{array}{l}
x \\
\delta_{2}(y, b) \\
\delta_{t}\left(s,\left[\begin{array}{l}
a \\
b
\end{array}\right]\right)
\end{array}\right]
\end{gathered}
$$

$$
\begin{aligned}
& \text { if } a=-, \delta_{2}(y, b) \text { ! and }[c, b] \notin \mathcal{R} \text {, } \\
& \delta\left(\left[\begin{array}{c}
x \\
y \\
(\text { d. T. 2) }
\end{array}\right] \cdot\left[\begin{array}{l}
a \\
b
\end{array}\right]\right)=\left[\begin{array}{l}
\delta_{1}(x, a) \\
y \\
\delta_{t}\left(s .\left[\begin{array}{l}
a \\
b
\end{array}\right]\right)
\end{array}\right] . \\
& \text { if } b=-\delta_{1}(x . a) \text { ! and }[a . d] \notin \mathcal{R} \text {. }
\end{aligned}
$$

The time counter records the residual live times of the events running in all of the agents. In $M_{1}\left(\|_{-R}^{t}\right) M_{2}$, a state transition takes place whenever a state transition of one of the agents is completed.

The control problem for two interacting timed agents M_{1}. M_{2}. is to find a sequences of (vector) events that steers the multi-agent system from the start (vector) state $\left\{x, y\right.$, to the target state $\left[x^{\prime}, y^{\prime}\right\}$ such that the system enters $\left\{x^{\prime}, y^{\prime}\right]$ at the same time point. i.e.. find a path from $[x, y, R E S E T]$ to $\left[x^{\prime}, y^{\prime} \cdot R E S E T\right]$ in $M_{1}\left(\|_{-}^{2}\right) \cdot M_{2}$. The minimal time control problems for interacting timed agents can be solved with DP in their timed multi-agent product.

Example 4.5. In M_{1} and M_{2} (Figure 4.6). $t\left(a_{1}\right)=t\left(b_{1}\right)=t\left(b_{3}\right)=1$ and $t\left(a_{2}\right)=$ $t\left(b_{2}\right)=2 . \mathcal{R}=0 . M_{1} \|_{-\pi}^{2} \cdot M_{2}$ is shown in Figure $4 . \bar{T}$.

Definition 4.4. A timed multi-agent system $M_{1} \|_{-R}^{t} M_{2}$ is said to be controllable if for any states $s=[x, y, R E S E T]$ and $t=\left[x^{\prime}, y^{\prime}, R E S E T\right]$, there are a sequence of vector events that steer the system from s to t.

Let $A \subseteq N^{+}$be a set of positive integers, denote the greatest common divisor of elements in A br $\operatorname{gcd}(A)$.

Theorem 4.6. If $\mathcal{R}=\emptyset$ and there are circuits C_{1}, C_{2} in M_{1} and M_{2} such that $t\left(C_{1}\right)-t\left(C_{2}\right)=\operatorname{gcd}\left(\left\{\mid t(a)-t(b) \| a \in \Sigma_{1}, b \in \Sigma_{2}\right\}\right)$, then $M_{1}\left(\|_{-\mathcal{R}}^{\ell}\right) . M_{2}$ is controllable.

Figure 4.6. Two interacting timed agents

Figure 4.7. TMAP $\left(M_{1}, M_{2}\right)$
Proof:

Similar to that of Theorem 4.1.

CHAPTER 5

Hierarchical Network Routing

5.1. Introduction

The solution of routing problems for cost-sensitive telecommunication and transportation networks has become critical for the provision of economic high quality service (6!. 63: 39$]$). Because (1) the network structure varies when traffic load changes. and (2) multiple users compete for the limited resources (transmission channels. buffers. etc.). the network routing problem has much higher complexity than the conventional single agent optimal trajectory problem addressed in Chapter 3. For a single task. the routing objective is to find a path from its origin s to its destination t with the minimal cost among all admissible paths. The multiple user nature of the networks under consideration suggests that traffic congestion may well occur when the number of flows carried on a link is close to its capacity: evidently this may lead to poor service quality and thus induce higher overall cost.

In networks with heavy traffic, the available size of buffers and the capacity of links constantly vary over the time ([35]. [36]). In order to provide good service quality as well as complete tasks. the dynamical routing needs to be flexible. adaptive and functional in real-time ($\{\mathbf{6 7}$. [48]). To this end, hierarchical controllers based on the network status are proposed to solve dynamical routing problems. In this chapter. a generalisation of the HADP algorithm is proposed to cope with the problem of multiagent time-varying networks. The key notions introduced here are (1) dynamical high level cost pattern. and (2) the state-dependent dynamical routing methods.

A (buffered) network is modelled by a directed graph, $G=\{. V, E, \delta, d, B, C\}$, where.$V$ is a set of nodes, E is a set of edges, $\delta: N \times E \rightarrow N$ represents the connectivity relations (if $e_{1} \in E$ is an edge from $n_{j} \in . V$ to $n_{k} \in N . \delta\left(n_{j}, e_{t}\right)=n_{k}$), $d: E \rightarrow \mathcal{R}^{-}$is a cost function mapping each edge to a positive real $B: \mathcal{N} \rightarrow \mathcal{N}^{+}$ is a function mapping each node to a positive integer. $C: E \rightarrow \mathcal{N}^{-+}$is a function mapping an edge to a positive integer.

The cost function d may have different interpretations in various contexts. B can be used to represents the maximal size of the buffer at a given node. and C may represent the maximal capacity of transmission of a given edge. i.e. the maximal number of individual flows that can be handled by the edge at one time.

A request $r(s, t)$. s. $t \in N . s \neq t$, is an ordered pair of nodes for which s represents an origin and t represents a destination. An (acyclic) route assignment for $r(s . t)$ is a mapping $R:\left(\sigma_{k}, r(s, t)\right) \rightarrow\left\{E^{-} \cup \emptyset\right\}$. where σ_{k} is the network state at time instant $k:$ and if $R\left(\gamma_{k} . r(s, t)\right)=e_{1} e_{2} \ldots e_{n} \in E^{-}$. then $e_{1} \neq e$, when $i \neq j$. and $\dot{\delta}\left(s . e_{1} e_{2} \ldots e_{n}\right)=t$. A routing controller maps an element of $N \times . \mathcal{t}$ to $E^{-} \cup\{0\}$. i.e.. when a request $r(s, t)$ arises at time k. the controller either assigns a route $R\left(\%_{k} .(s, t)\right) \in E^{-}$or rejects the request according to the current state of the network, which is modelled b. $R\left(\sim_{k}, r(s, t)\right)=0$.

In this chapter. networks are conceptually partitioned into two classes: the link network systems. denoted L.is. in which the capacity of nodes is assumed to be infinity: and the buffered network systems. denoted B.is. in which the capacity of links is assumed to be infinity. Actually. L. $⿳$ and B.N can be viewed as duals. or two elements which can be combined later.

5.2. Incremental HADP

5.2.1. Dynamics of Network Topology as a Function of Traffic Loading.

Consider a network $G=\{N, E, \delta, d, B, C\}$ in the class $L . V$, in which the capacity of all nodes is assumed to be infinite. and hence the loading of traffic that can be
handled by the network is constrained by the capacities of links.

Assume that the requests can enter the network at any time instant but only one request arises at a time. Also assume that the request is assigned a route or rejected instaneously. Because the network routing controller under consideration is event (request) driven, only the ordering of requests is relevant. By mapping the ordering of the occurrences of the requests to positive integers, the time instant at which a request arrives can be relabelled by an integer. Hence, we refer to an integer k as the time that a request arises. instead of the value registered by a clock.

For a request $r(s, t)$. if there are admissible paths (the current loading of any link on an admissible path is strictly less than its capacity) from s to the t. then one of these paths is assigned to this request: otherwise. the loading of this request on any path from the origin to the destination will lead to overflow. and thus the request is rejected.

For a route assignment $R(s, t)$. one unit of capacity of all links of $R(s . t)$ is reserved for the exclusive use of $r(s, t)$. In other words. if the request $r(s, t)$ is assigned a route $R(. s, t)$ at time instant $k(k>0)$. then for every link e of $R(s . t)$. the available transmission capacity at time instant k of e is $C_{k}(e)=C_{k-1}(e)-1$. After a task is completed on $R(s, t)$. one unit of the capacity of all links of $R(s . t)$ is released for the use of other requests. Hence, the capacity of a link is recursively given by.

$$
\begin{array}{cc}
C_{k}(e)=C_{k-1}(e)-A_{k}(e)+L_{k-1}(e) . & \\
& e \in E \cdot k \in \mathcal{N}^{-} \\
C_{0}(e)=C(e) . &
\end{array}
$$

where $A_{k}(e)$ is the number of routes containing link e which are assigned at time k ($A_{k}(\epsilon)$ is 0 or l, since only one request is processed at any given k), and $L_{k}(e)$ is the number of tasks which have been completed on link e at time k.

A local dynamical weighting corresponding to local traffic load may be used at a node to give higher preference to the link with relatively light traffic, and thus to avoid traffic congestion. One scheme we isolate is to set the load cost at a link $e \in E$ as

$$
d_{k}(e)=\frac{C_{0}(e)}{C_{k}(e)} d(e)
$$

If $C_{k}(e)=C_{0}(e), d_{k}(e)=d(e)$. When $C_{k}(e)=0$, i.e., $d_{k}(e)=x$. the link has no spare transmission capacity. In this case, an alternative of this link will be chosen if it exists. In the computation of an additive minimum cost trajectory, a node in an optimal path may of course be such that a link is chosen which does not have minimum cost at that node because it contributes to a globally optimal trajectory: A frequently used form of the traffic-dependent transmission costs in the probabilistic secting is

$$
d_{k}(e)=\frac{E\left[C_{0}(e) \cdot T\right]}{E\left[C_{0}(e)-C_{k}(e) \cdot T\right]} .
$$

where $E\left[C_{0}(e)-C_{k}(e) . T\right]$ is the Erlang-B formula for T Erlangs offered to $C_{0}(e)$ $C_{k}(e)$ channels ($[\mathbf{4 8} \mathrm{i})$.

In a dynamical network. the capacity information of the links is updated at each instant k immediately, when a route is assigned for a request or a task is step-wise (partially) completed. The dynamical weights are also updated. We shall denote the topology of a network N at time instant k by $G_{k}=\left\{\therefore . E_{k}, \overline{0} \cdot C_{k} \cdot d_{k}\right\}$. where $E_{k} \triangleq\left\{e \in E \mid C_{k}(e)>0\right\}$.
5.2.2. Throughput-Independent ST-IBC Partition Machines. For an ordered pair of distinct nodes $(x, y) \in N \times N$. let a subset $E_{c}(x, y) \subseteq E$ be such that there does not exist $u \in\left(E-E_{c}(x, y)\right)^{*}$ such that $\delta(x, u)=y . E_{c}(x, y)$ is called a cut with respect to $(x, y)([\mathbf{2 3}])$. In other words. a cut with respect to $(x . y)$ is a subset of edges that separate x from y. Denote the collection of all cuts for $(x, y) \in V \times V$, $x \neq y$. by cut (x, y).

For two subsets of nodes, $X, Y \in 2^{V}, E_{c}(X, Y)$ is a subset of edges such that for all $x \in \mathbb{K}$ and for all $y \in Y^{*}, x \neq y$. there does not exist $u \in\left(E-E_{c}(x, y)\right)^{\bullet}$
$. \delta(r, u)=y$. Denote the collection of all such $E_{c}(X, Y)$ by $\operatorname{cut}(X, Y), X: Y^{-} \in 2^{N}$.

Define the minimal cut of $x \in \bar{X}$ and $y \in \bar{X}$ with respect to a subset of nodes $\mathcal{I} \subseteq \mathcal{V}$ as follows, $\operatorname{mincut}_{X_{i}}(x, y) \triangleq \min \left\{\sum_{e \in X \times X, e \in E_{c}(x, y)} C(e) \mid E_{c}(x, y) \in \operatorname{cut}(x, y)\right\}$. For two subsets $X . Y^{-} \subseteq Z \subseteq V, \operatorname{mincut}_{Z}(X, Y) \triangleq \min \left\{\sum_{e \in Z \times Z . e \in E_{e}(X, Y)} C(e)\right\}$ $\left.E_{c}\left(\mathcal{X}, Y^{\prime}\right) \in \operatorname{cut}\left(\mathbb{X}, Y^{\prime}\right)\right\}$. It is a basic result in graph theory that the maximal flow from x to y with respect to N is equal to mincut $_{x}(x, y)([\mathbf{2 3]})$, and this also holds for any subsets $\mathrm{K} . Y^{\prime} \subseteq Z$.

For a sequence of links $p=e_{1} e_{2} \ldots e_{n} \in E^{\bullet}$. define the path-wise capacity $P C(p)=$ $\min \left\{C\left(e_{t}\right) \mid 1 \leq i \leq n\right\}$.

Suppose in a network G. there are two subsets of nodes $S \subseteq \cdots$ and $T \subseteq \cdots$. such that for all request $r(. s, t), s \in S$ and $t \in T$. Let π be a partition of.\therefore. the set of nodes of a network G. Recall the definitions of in-sets and out-sets ($[\mathbf{1 5 !}$). The property of throughput-independent ST-IBC for partition blocks as follows:

Definition 5.1. ((TI-ST-IBC) A block $X_{2} \in \pi$ is throughput-independent STIBC (TI-ST-IBC) if
(1) $\forall x \in\left[\left(X_{t}\right) . \exists y \in O\left(X_{t}\right)\right.$ such that there is $u \in E^{\bullet} . \dot{\delta}(x, u)=y$ and $\forall u<u$. $s(x,:) \in x_{t}:$
(2) $\forall x, y \in O\left(\mathcal{X}_{t}\right) . x \neq y \cdot u_{x}(x, y)=\left\{u \in E^{\cdot}\right.$ such that $\dot{\delta}(x, u)=y$ and $\forall u<u$. $\left.j(x, v) \in X_{i}\right\} \neq 0$:
(3) $\forall r . y \in O\left(\dot{X}_{t}\right)$, there is $v \in u_{X_{1}}(x . y)$ such that $P C(c) \geq$ mincut $_{X_{1}}\left(I\left(\mathcal{X}_{1}\right), O\left(\mathcal{X}_{t}\right)\right)$.

The first two conditions in Definition 5.1 are those for a block to be ST-IBC ([15]); the third condition ensures the ST-IBC property of a block to be preserved. regardless of the varying traffic load in the sense that there exists a path from $x \in O\left(\mathcal{X}_{i}\right)$ to $y \in O\left(X_{t}\right)$ whose capacity exceeds the maximal flow from $I\left(X_{i}\right)$ to $O\left(X_{i}\right)$. This property also implies that $I\left(\mathbf{K}_{\mathrm{t}}\right) \cap O\left(\mathrm{X}_{\mathrm{t}}\right)=\emptyset$.

Definition 5.2. $\left(I_{k}\left(X_{i}\right)\right)$ For $X_{i} \in \pi$, the in-set of X_{i} at time instant $k, I_{k}\left(X_{i}\right)$ is a subset of $I\left(X_{i}\right)$ such that for all $x \in I_{k}\left(X_{i}\right)$.
(1) $\exists y \notin X_{\imath}, e \in E_{k}$ such that $\delta(y, e)=x$ and.
(2) $\exists z \in O\left(X_{t}^{*}\right)$ such that $\exists u \in E_{k}^{*} \cdot \delta(x, u)=z$ and $\forall v<u . \delta(x, v) \in X_{1}$.

With the loading of traffic to \boldsymbol{X}_{1}, some nodes in $I\left(\mathcal{X}_{1}\right)$ may not be accessible to any outset node with respect to X_{2}. These nodes do not appear in $I_{k}\left(X_{i}\right)$. Define $I_{\mathrm{t} . \mathrm{k}}\left(\mathrm{X}_{j}\right)=\left\{x \in I_{k}\left(\mathrm{~K}_{j}\right) \mid \exists y \in \mathrm{X}_{\mathrm{t}} \exists e \in E_{k} \cdot \delta(y, e)=x\right\}$. As stated earlier. any route assignment is acyclic. i.e.. for all $e \in E$. e appears no more than once in $R(s, t)$.

Lemma 5.1. If X_{i} is $T I-S T-I B C$ and $I_{k}\left(X_{t}\right) \neq \emptyset$. then for all $x \in I_{k}\left(X_{z}\right)$ and for all $: \in O\left(X_{1}\right)$. there is $p \in E_{k}^{*}$. such that $\delta(x, p)=$ and for all $q<p . \delta(x, q) \in X_{1}$.

Proof:

Suppose $\mathbf{X}_{\text {: }}$ is TI-ST-IBC. By the definition of $I_{k}\left(\boldsymbol{X}_{t}\right)$, for an arbitrary $x \in I_{k}\left(\boldsymbol{X}_{t}\right)$. there is $y \in O\left(X_{1}\right)$. and $u \in E_{k}^{\bullet}$. such that $\dot{\delta}(x, u)=z$ and for all $c<u . \dot{\delta}(x, v) \in \mathcal{X}_{2}$.

Let $==y$ be an arbitrary node in $O\left(X_{1}\right)$. According to Definition 5.1. there is $u \in E^{\bullet}$. such that $\dot{\delta}(y, u)=z$ and for all $r<u \cdot \dot{\delta}(y . u) \in X_{1}$ and $P C(u)>$ mencut $x_{1}\left(I\left(X_{:}\right) \cdot O\left(X_{t}\right)\right)$.

A path from any $s \in S$ to any $t \in T$ including a link more than twice must involve a circuit. and thus can clearly be replaced by another acyclic route assignment. That is to say. for any s. $t \in \mathcal{V}$. if there is a path from s to t. then there exists an acyclic $R(s, t) \in E^{*}$. So. for any link $e \in E, e$ is on $R(s, t)$ at most once.

By assumption. for all requests $r(s, t), s \in S, t \in T$, and it is always the case that $R(. s . t)$ goes through X_{i} from $I\left(\mathbf{X}_{i}\right)$ to $O\left(\boldsymbol{X}_{t}\right)$. Because $u \in E_{k}^{e}$. such that $\delta(x, u)=z$. at time instant k. there are strictly less than mincut $X_{i}\left(I\left(X_{i}\right) . O\left(X_{i}\right)\right)-1$ route assignments going through X_{i} from $I\left(\mathrm{X}_{\mathrm{t}}\right)$ to $O\left(\mathbf{X}_{\mathrm{i}}\right)$. Hence, for any edge e in $X_{t} \times X_{1}$, at time k. e carries at most mincut $X_{1}\left(I\left(X_{1}\right), O\left(X_{2}\right)\right)-1$ individual fows.

Therefore, for any edge a in $u, a \in E_{k}$. That is to say $p=u w \in E_{k}^{*}, \delta(x, p)=z$ and for all $q<p . \delta(x, q) \in X_{1}$.

A partition of $. \lambda . \pi$. is said to be an throughput-independent ST-IBC partition if all its blocks are throughput-independent ST-IBC. Let a throughput-independent ST-IBC partition machine of G be denoted by $G^{h}=\left\{\pi, E^{h}, j^{h}\right\}$, where $E^{h}=\left\{L_{i}^{\cdot j}\right\}$ $\left\langle X_{i}, l_{j}\right\rangle$ is ST-DC (see Chapter 2) $\left.1 \leq i . j \leq|\pi|\right\}$, and $\delta^{h}\left(X_{1} \cdot C_{i}^{-3}\right)=X_{j}$.
5.2.3. Incremental HADP. Denote a two level hierarchy consisting of G^{h} and G by $\left\{G . G^{h}\right\}$. In this section we present an extension of HADP to $\left\{G . G^{h}\right\}$ which treats the multi-agent case under consideration.

Define $d_{x_{1}, x, k}(x . y)=\min \left\{d(u) \mid u \in E_{k}^{*}\right.$ s.t. $\delta(x . u)=y$ and $\forall u<u . \delta(x . v) \in$ $\left.X_{i}\right\}$. The high level cost function D_{k}^{--}is defined below.

Definition 5.3. $\left(D_{k}^{--}\left(X_{1}, \dot{L}_{j}\right)\right)$

Define $E_{k}^{h}=\left\{L_{:}^{\prime}: D_{t}^{--}\left(X_{1}, X_{j}\right)<x\right\} . G_{k}^{h}=\left\{\pi, E_{k}^{h} \cdot \delta^{h} \cdot D_{k}^{-i-}\right\} . k \in M^{-}$.

To apply H.ADP. we first set up a hierarchy consisting of a low level network G and its TI-ST-IBC partition machine G^{h}. Then an initial route assignment is made by H.ADP(D^{-}-) based on $\left\{G . G^{h}\right\}$ (see Chapter 3).

Subsequently, at every time instant a request is received by the network. an observation is made on the traffic loading (links reserved and released) and the link capacities of the entire system are updated. For a request $r(s, t)$, arriving at time k. the high level costs $\left\{D_{k}^{-1-}\right\}$ are recalculated (similar to the treatment in Chapter 3). This latter step is formalised in the algorithm below which hence generalises G_{k}^{h}.

Algorithm 1 of Incremental HADP (IHADP) for $r(s, t)$ at $k>0$
(1) For each $e \in E$, set $C_{k}(e)=C_{k-1}(e)+L_{k-1}(e)$, where $L_{k}(e)$ is the number of tasks which have been completed on link e at time k.
(2) Calculate $d_{k}(e)=\left(C_{0}(e) / C_{k}(e)\right) d(e)$ for each $e \in E$.
(3) Calculate $I_{k}\left(X_{2}\right)$ for all $X_{i} \in \pi$.
(t) Calculate $D_{k}^{-1-}\left(X_{t}, X_{2}\right)$ for all DC pairs $\left\langle X_{t}, X_{j}\right\rangle, 1 \leq i . j \leq|\pi|$.

For request $r(s, t)$. let X^{s} and X^{t} be the blocks containing s and t respectively. If $X^{-s}=X^{t}$. seek an optimal path from s to t with respect to X^{s}. Otherwise. we first seek a high level optimal solution with respect to $D_{k}^{+/-}$from X^{-3} to X^{-t} in G_{k}^{h}. Then. a low level solution is sought by the process described in the algorithm formulated below.

Algorithm 2 of Incremental HADP (IHADP) for $r(s, t)$ at $k>0$
(1) If $X^{-s}=X^{t}$. seek an optimal path from s to t with respect to X^{-s}. stop: else. set $I_{k}\left(X^{-s}\right)=\{s\} \cdot I_{k}\left(X^{t}\right)=\{t\}$.
(2) Calculate $D_{k}^{-1-}\left(X_{t}, X_{j}\right)$ for all DC pairs $\left\langle\mathrm{X}^{-3} . X_{j}\right\rangle$ and $\left\langle\mathrm{X}_{\mathrm{t}} . \mathrm{X}^{t}\right\rangle, 1 \leq i . j \leq \pi$.
(3) Set $E_{k}^{n}=\left\{L_{1}^{-1} \mid D_{k}^{-1-}\left(X_{1}, X_{j}\right)<x\right\}$.
(t) Seek an optimal path from K^{-s} to X^{t} in G_{k}^{h}. Denote this path by $Y_{i} \rightarrow Y_{2} \rightarrow \ldots \rightarrow$ Y_{n}. If no path from Γ^{3} to X^{t} exists. stop.
(5) Let $x_{1}=s$ and $x_{n}=t$.
(6) Start from $t=1$. if $i<n-1$. seek $u_{t} \in E_{k}^{j}$ such that $\delta\left(x_{t}, u_{t}\right) \in I_{t}\left(Y_{i-1}\right)$ and $d(u)=\min _{\left.y, f L_{1} Y_{i-1}\right)} d_{Y_{i} Y_{i-1}, k}\left(x_{1}, y\right)$. Set $x_{t-1}=\delta\left(x_{1}, u_{t}\right)$. Set $\imath=i+1$.
(i) If $\imath=n-1$. seek $u_{t} \in E_{k}^{*}$ such that $\delta\left(x_{1}, u_{2}\right)=r_{n}, u_{1} u_{2} \ldots u_{n-1}$ is a low level solution for $r(s . t)$.
(8) Set $C_{k}(e)=C_{k-1}(e)-1$ for all $e \in E_{k}$ on the resulting low level path.

Algorithm IH.ADP consists of algorithms 1 and 2 at every time instant $k \geq 1$.

Compared with the single task HADP, the extra computational time of the timevarying HADP lies in steps 1 and 2 in the above algorithm. Clearly, these two steps may be cartied out locally for each DC block pairs and at each time instant $k \geq 1$..

If these steps can be performed in parallel, a greater speedup of HADP is expected.

The following basic theorem guarantees that if no high level solution exists in step t. no low level solution exists in G_{k} for $r(s, t)$.

Theorem 5.1. Let π be a $T I-S T-I B C$ partition of N and $X^{-s} \neq X^{t}$, then for any $s \in I\left(\mathrm{X}^{-s}\right)$ and $t \in I\left(\mathrm{I}^{t}\right)$. there is $u \in E_{k}^{*}$ such that $\delta(s, u)=t$ if and only if there is $L^{-} \in\left(E_{t}^{h}\right)^{*}$ such that $\delta^{h}\left(X^{-s}, L^{\bullet}\right)=X^{t}$.

Proof:

Suppose there is a high level path from X^{-s} to X^{t} with finite cost at time instant k. Denote this path by $Y_{1} \rightarrow Y_{2} \rightarrow \ldots \rightarrow Y_{n} . Y_{i}=X^{s}$ and $Y_{n}=X^{t} .\left\langle Y_{i} \cdot Y_{i-1}^{-}\right\rangle$ is ST-DC and $D_{k}^{--}\left(Y_{2}, Y_{i-1}\right)<x .1 \leq i<n$. That is to say: in any Y_{i}. for all $r \in I_{k}\left(Y_{i}\right)$. there is $x^{\prime} \in I_{t, k}\left(Y_{i-1}\right)$. such that $d_{Y_{i} Y_{i-1}, t}\left(x . x^{\prime}\right) \leq D_{k}^{-i-}\left(Y_{i}, Y_{i-1}\right)<x$ (by Definition 3.3). $I_{t . k}\left(Y_{i-1}\right) \neq 0$.

For any node $z \in I_{2 . k}\left(Y_{i-1}\right)$. by Definition 5.2. there is $y \in O\left(Y_{t}\right)$ and $e \in E_{k}$ $\left(d_{k}(e)<x i\right.$ such that $\delta(y, e)=z$. By Lemma 5.1. since Y_{i} is TI-ST-IBC. for all $r € I\left(Y_{i}\right) \cdot y \in O\left(\dot{X}_{t}\right)$. there is $u \in E_{k}^{*}$ such that $\delta(x, u)=y$. and moreover $\delta(x . u e)==$ (see Figure 5.1). Because $d_{Y_{i}, k}(r, y) \leq d(u)<x . d_{Y_{i} Y_{i-1}, k}(x, z) \leq d(u e)<x$ for arbitrary $x \in l\left(\xi_{i}\right)$ and $z \in I_{t, k}\left(\xi_{i-1}\right)$.

Let $r_{1}=s$ and $I_{n}=t$. Starting from ξ_{1}, when $i<n-1$. seek $u_{t} \in E_{k}^{*}$ such that $\delta\left(x_{t}, u_{t}\right) \in I_{t}\left(Y_{i-1}\right)$ and $d(u)=\min _{y \in I_{1}\left(Y_{i+1}\right)} d_{Y_{i} Y_{i+1}, k}\left(x_{i}, y\right)$. set $x_{t+1}=\delta\left(x_{t}, u_{t}\right)$. When $\imath=n-1$. seek $u_{1} \in E_{k}^{*}$ such that $\delta\left(x_{1}, u_{t}\right)=x_{n}$. It is clear that $u_{1} u_{2} \ldots u_{n-1}$ is a low level path from s to t and that $d\left(u_{1} u_{2} \ldots u_{n-1}\right)=\sum_{i=1}^{n-1} d_{t}\left(u_{t}\right)<\infty$.

Conversely, suppose at time k. there is a low level path $p(s, t)$ from s to t with finite cost. Denote the blocks containing this low level path by $Y_{1}, Y_{2}, \ldots, Y_{n}$ in order. $Y_{1}=\lambda^{-s}$ and $Y_{n}=X^{t}$. Clearly, $I_{k}\left(X_{i}\right) \neq 0$ and there are $x_{i} \in O\left(Y_{i}\right), y_{i+1} \in I_{i}\left(Y_{i+1}\right)$ and $e_{i} \in E^{k} .1 \leq i<n$. such that $\delta\left(x_{i}, e_{i}\right)=y_{i+1}$. Because π is TI-ST-IBC. it is

Figtire 5.1. $d_{Y_{i} y_{, ~}}(x . z)$ is finite
straightforward to see that any $\left\langle\mathcal{X}_{1}, \bar{l}_{j}\right\rangle$ is ST-DC if there is a low level path directly from λ_{i} to λ_{j}. Thus. $\left\langle Y_{i}, Y_{i+1}\right\rangle$ is ST-DC. $1 \leq i \leq n-1$.

For any $x \in I_{k}\left(Y_{i}^{*}\right)$ by Lemma 5.1 , there is $u \in E_{k}^{*}$ such that $\delta(x, u)=r_{:} \in O\left(Y_{i}^{*}\right)$. and moreover $\delta\left(x . u e_{i}\right)=y_{t-1} \in I_{t}\left(Y_{i-1}\right)$. Thus, by definition. $D^{--}\left(Y_{t} \cdot Y_{i+1}\right)<x$. Therefore the cost of $C^{\circ}=C_{1}^{-2} C_{2}^{-3} \ldots L_{n-1}^{n}$ is finite and $\delta^{h}\left(I^{-3} . L^{-}\right)=I^{t}$.

It is worth remarking that if there is high level solution for \mathcal{X}^{s} and X^{t} in G_{k}^{h} when $I^{s} \neq X^{-t}$ or there is no solution for s and t with respect to X^{-s} when $X^{s}=\lambda^{t}$. $r(s . t)$ is rejected at time instant k. This corresponds to the case that an overload is taking place in the network.

5.3. Multiple Objective Network Routing

5.3.1. Network States of the Link Network Systems. Consider a network $G=\{. ., E, \delta, d . C\}$ in the class of L.V. Suppose n requests with origin-destination pairs. $r\left(s_{i}, t_{i}\right) .1 \leq i \leq n$, arrive at G simultaneously. Assume that for each i. $1 \leq i \leq n$. there is $R\left(s_{t}, t_{2}\right) \in E^{*}$ satisfying

$$
\delta\left(s_{i}, R\left(s_{i}, t_{i}\right)\right)=t_{i}
$$

Figure 5.2. A simple network

$$
1 \leq i \leq n .
$$

and satisfying.

$$
\begin{equation*}
\sum_{i=1}^{n} 3\left(e_{\jmath} . R\left(s_{t}, t_{\mathrm{t}}\right)\right) \leq C\left(e_{\jmath}\right) \tag{5.5.1}
\end{equation*}
$$

$$
1 \leq j \leq|E|
$$

where $3\left(e_{j}, r\left(s_{i}, t_{\mathrm{t}}\right)\right)$ is a unit cost set-membership (or characteristic) function for an edige e, and a path $R\left(s_{i}, t_{t}\right)$) defined $b:$

$$
3\left(e_{j}, R\left(s_{i}, t_{\mathrm{i}}\right)\right)= \begin{cases}1 & \text { if } e_{j} \text { is on } R\left(s_{i} \cdot t_{\mathrm{t}}\right) \\ 0 & \text { otherwise }\end{cases}
$$

Then we say that a valid routing $\left\{R\left(s_{i}, t_{z}\right), 1 \leq i \leq n\right\}$ for these n requests $\left\{r\left(s_{i}, t_{i}\right), 1 \leq\right.$ $t \leq n\}$ exsits.

When a valid routing exists for a set of requests $\left\{r\left(s_{i}, t_{t}\right) .1 \leq i \leq n\right\}$. the optimal control objective is to minimise the overall cost

$$
\sum_{t=1}^{n} d\left(R\left(s_{i}, t_{\mathrm{t}}\right)\right)
$$

For convenience. from now on. only the case $n=2$ will be discussed. but all conclusions hereafter can be extended to $n>2$ with a little modification of the argument in each case.

Example 5.1. A network is shown in Figure 5.2. All links have a unit capacity. The costs $d(a)=d(e)=3 . d(b)=d(c)=d(d)=1$. Two requests are $r\left(n_{1}, n_{4}\right)$ and $r\left(n_{1}, n_{4}\right)$. The optimal route for both requests is $R^{0}\left(n_{1}, n_{4}\right)=b c d$. But if this route is assigned to any of the requests. the other is blocked.

The notion of (vector) network state can be used to represent the state of a network. A vector network state $\gamma=\left[c\left(e_{1}\right), c\left(e_{2}\right), \ldots, c\left(e_{i E}\right)\right] .0 \leq c\left(e_{z}\right) \leq C\left(e_{i}\right)$, $1 \leq i \leq|E|$. is a vector with each element denoting the available capacity of an edge.

The dynamics of a routing process may be expressed as a finite state machine $R P=\{\Gamma . E \cup\{\epsilon\} . \xi\}$. where $\Gamma=\left\{0,1, \ldots, C\left(e_{1}\right)\right\} \times\left\{0.1, \ldots . C\left(e_{2}\right)\right\} \times \ldots \times\left\{0,1, \ldots . C\left(e_{i E_{i}}\right)\right\}$ is the set of all network states. ϵ is a distinguished event corresponding to no transition taking place. With this notation, the state transition function

$$
\xi\left(\left[\begin{array}{l}
c\left(e_{1}\right) \\
c\left(e_{2}\right) \\
\vdots \\
c\left(e_{\mathrm{z}}\right) \\
\vdots \\
c\left(e_{\cdot E}\right)
\end{array}\right] . e_{\mathfrak{z}}\right)=\left\{\begin{array}{l}
{\left[\begin{array}{l}
c\left(e_{1}\right) \\
c\left(e_{2}\right) \\
\vdots \\
c\left(e_{\mathrm{i}}\right)-1 \\
\vdots \\
c\left(e_{\left.\mathrm{E}_{\mathrm{E}}\right)}\right.
\end{array}\right] .} \\
\text { if } c\left(e_{\mathrm{z}}\right) \geq 1 \\
\text { undefined. } \\
\text { if } c\left(e_{:}\right)=0
\end{array}\right.
$$

if $e_{\imath} \neq \epsilon$. otherwise. $\xi(n s, \epsilon)=n s$.
A routing controller for a network G is a finite state machine $R C(G)=\{N \times N \times \Gamma$. $(E \backsim\{\epsilon\}) \times(E \cup\{\epsilon\})$. $\left.\rho . d^{\prime}\right\}$. where
 $(d(x, \epsilon) \triangleq 0$ for all $x \in J)$.

If $\left[\operatorname{Trj}\left(s_{1}, u_{1}\right) . \operatorname{Trj}\left(s_{2}, u_{2}\right)\right] . u_{1}, u_{2} \in(E \cup\{\epsilon\})^{*}$, is a (vector) path from $\left[s_{1}, s_{2}\right.$. $\left.\left[C\left(e_{1}\right) . C\left(e_{2}\right) \ldots . . C\left(e_{|E|}\right)\right]\right]$ to $\left[t_{1}, t_{2}, \gamma\right]$ in $R C(G)$. where $\geqslant \in \Gamma$ may be any network state, then $\delta\left(s_{1}, u_{1}\right)=t_{1}$ and $\delta\left(s_{2}, u_{2}\right)=t_{2}$. Because ρ gives all admissible routing processes. u_{i} and u_{2} satisfy the capacity constraints (5.5.1). The optimal routing problem is thus converted to a problem of seeking a shortest path from

Figure 5.3. A routing controller for Example 5.1
$\therefore_{1} \cdot \dot{s}_{2}\left[C\left(e_{1}\right) \cdot C\left(e_{2}\right) \ldots . C\left(e_{E_{1}}\right)!\right]$ to a set of states $\left\{\left[t_{1}, t_{2} \cdot \sim \| n s \in \Gamma\right\}\right.$ in $R C(G)$.

A part of $R C(G)$ for the network G in Example 5.1 is shown in Figure 5.3. We note that all legal non-blocking routings of the network are represented by $R C(G)$. An optimal control for $\left[n_{1}, n_{1}\right]$ and $\left[n_{4}, n_{4}\right]$ is $[a d . b e]$ with the orerall cost of 8 .
5.3.2. Throughput IBC Partition Machines. Since $R C(G)$ has a huge state space if.N and E of G are large. we are interested in studying the application of hierarchical control (specifically. HADP) for finding the optimal routing for large G. in order to reduce the computational complexity of DP procedure.

Assume that the origins of all requests are in $S \subseteq \mathcal{V}$. a subset of nodes in G. and the destinations of all requests are in $T \subseteq N$. We may directly partition $N \times N \times \Gamma$ into ST-IBC partitions to obtain a high level model for $R C(G)$ for which HADP is applicable. Alternatively. hierarchical routing can be achieved by partitioning N. which is much smaller than $. V \times N \times \Gamma$ (into some structures to be discussed) to form a high level network model G^{h}. Then we may construct a routing machine $R C^{h}\left(G^{h}\right)$ for this
high level network. $R C^{h}\left(G^{h}\right)$ and $R C(G)$ form a hierarchy $\left\{R C(G), R C^{h}\left(G^{h}\right)\right\}$ to apply HADP. Let π be an arbitrary partition of N. We now present a formulation of $1-S T-D C$ and $2^{+}-S T-D C$ relations over partition blocks.

Definition 5.4. (1-ST-DC) An ordered pair of blocks $X_{1} \in \pi$ and $X_{j} \in \pi$ are 1-ST-DC if:
(1) $\forall x \in I\left(X_{z}\right)$. there is $y \in I_{t}\left(X_{j}\right)$ such that there is $u \in E^{*} . \delta(x, u)=y$ and for all $c<u . \delta(x . c) \in X_{2}$;
(2) mincut $X_{t} X_{:}\left(I\left(X_{t}\right) \cdot I_{t}\left(X_{j}\right)\right)=1$.

Clearly. if $\left\langle X_{2}, X_{j}\right\rangle$ is 1-ST-DC. $\left\langle X_{2}, X_{j}\right\rangle$ is ST-DC. Furthermore. $\left\langle._{t}, X_{j}\right\rangle$ is $1-$ ST-DC implies that then only one flow entering X_{1} at any node in $I\left(X_{t}\right)$ can go through X_{1} to X_{1}, without causing an overflow.

If n requests $r\left(s_{t}, t_{t}\right) . i \leq i \leq n$. are under consideration. for any link $e \in E$ such that $C(e) \geq n$. an acyclic route assignment $\left\{R\left(s_{v}, t_{l}\right), 1 \leq i \leq n\right\}$ will not lead to an overflow on e. Only the links with capacity strictly less than the number of requests are critical to avoiding overflow. Therefore. in case only 2 requests are under consideration at the same time. the links with capacity greater than 2 can be siewed as being in the same class, and we shall use 2^{-}to represent capacities which are greater than or equal to 2 .

Definition 5.5. (2--ST-DC) An ordered pair of blocks $X_{t} \in \pi$ and $X_{j} \in \pi$ are $2^{-}-S T-D C$ if:
(1) $\forall x \in I\left(X_{t}\right)$. there is $y \in I_{2}\left(X_{j}\right)$ such that there is $u \in E^{*} . \delta(r . u)=y$ and for all $r<u . \dot{d}(x, v) \in X_{t}$:
(2) $\forall[r . y] \in I\left(X_{t}\right) \times I\left(X_{t}\right)$. there is $\left[x^{\prime} . y^{\prime}\right] \in I_{t}\left(X_{j}\right) \times I_{t}\left(X_{j}\right)$. such that there is $\left\{u_{1}, u_{2}\right\} \in E^{*} \times E^{*} . \delta\left(x, u_{1}\right)=x^{\prime}, \delta\left(y . u_{2}\right)=y^{\prime}$. for all $v_{1}<u_{1}, v_{2}<u_{2} . \delta\left(x, u_{1}\right) \in$ $\dot{\Lambda}_{1}, \delta\left(y, v_{2}\right) \in X_{t}$, and for all $e \in E, \beta\left(e, u_{1}\right)+\beta\left(e, u_{2}\right) \leq C(e)$.

The first clause in the above definition states the standard condition for a pair of blocks to be ST-DC. The second clause indicates that if $\left\langle\mathrm{X}_{i}, \mathrm{X}_{j}\right\rangle$ is 2^{+}-ST-DC, then two individual flows entering X_{i} at any two nodes in $I\left(X_{i}\right)$ can go through X_{i} to X_{j}

FigURE 5.4. X_{t} is not 2^{-}-throughput IBC
without causing an overflow.

Definition 5.6. (1-throughput IBC) A block $X_{t} \in \pi$ is l-throughput $I B C$ if: (1) $\nabla x \in I\left(X_{:}\right)$and $\forall y \in O\left(X_{t}\right)$. there is $u \in E^{*}$ such that $\delta(x, u)=y$ and for all $r<u . j(x . r) \in \mathcal{K}_{2}$:
(2) mincut $x_{1}\left(I\left(X_{1}\right), O\left(X_{t}\right)\right)=1$.

In a l-throughput IBC block $X_{:} \in \pi$. the elements in $O\left(X_{1}\right)$ are not required to be mutually accessible because only one flow from $I\left(X_{:}\right)$to $O\left(X_{1}\right)$ is possible.

Definition 5.7. (2+-throughput IBC) A block $\lambda_{t} \in \pi$ is 2^{-}-throughput $I B C$ if:
(1) $\forall r \in I\left(X_{1}\right)$ and $\forall y \in O\left(X_{1}\right)$. there is $u \in E^{*}$ such that $\dot{\delta}(r, u)=y$ and for all $r<u \cdot \dot{u}(x . v) \in \mathcal{X}_{t}$:
 such that $\delta\left(x, u_{1}\right)=x^{\prime} . \delta\left(y, u_{2}\right)=y^{\prime} . \forall u_{1}^{\prime}<u_{1}, u_{2}^{\prime}<u_{2} . \delta\left(x, u_{1}^{\prime}\right), \delta\left(y, u_{2}^{\prime}\right) \in X_{2}$, and for all $e \in E .3\left(e . u_{1}\right)+3\left(e . u_{2}\right) \leq C(e)$.

Example 5.2. If $\left|I\left(\mathcal{X}_{\mathfrak{t}}\right)\right|=1$. i.e., $I\left(\boldsymbol{X}_{\mathrm{t}}\right)$ is a singleton. the condition $\operatorname{mincut}(x, y)$ ≥ 2. for all $x \in I\left(X_{t}\right) . y \in O\left(X_{t}\right)$, implies that X_{1} is 2^{+}-throughput IBC. But when X_{1} has more than one in-set node, this is not a sufficient condition for X_{1} to be 2^{-}-throughput IBC. In Figure 5.4, the capacities of links are as labelled. Although $\operatorname{mincut}\left(x_{2}, y_{j}\right)=2$ for all $i, j=1.2$, no admissible control with respect to X_{1} can drive the system from $\left[x_{1}, x_{2}\right]$ to $\left\{y_{1}, y_{2}\right]$.

Figure 5.5. An 1-throughput IBC block and its abstraction

A partition π is throughput IBC if all its blocks are either l-throughput IBC or $2-$-throughput IBC. In order to avoid ambiguity, an internal "ralve" is placed in a 1-throughput IBC to switch a flow to one of its succeeding blocks (see Figure 5.5). Hence. two nodes. $\mathcal{l}_{i}^{1}, \mathcal{M}_{i}^{2}$, are used to abstract a 1 -throughput IBC block \boldsymbol{l}_{1}. In contrast. for a 2^{-}-throughput IBC block. it can be abstracted into a node when the number of requests is 2 .

Analogously. if $n>2$. blocks can be classified into 1 -throughput IBC. 2-throughput IBC. n^{-}-throughput IBC. in accordance with their internal capacity to transmit Hows. And. similarly: an internal valve $X_{i}^{1} \rightarrow \lambda_{1}^{2}$ with capacity k is used to represent the transmission capacity of block \mathcal{X}_{1}. for a k-throughput IBC block X_{1}. $k<n$.

Lemma 5.2. Let $X_{t} \in \pi$ be a 1 -throughput IBC block. for any $X_{j} \in \pi$. if there are $x \in \dot{X}_{1}, y \in X_{j} . e \in E$ such that $\delta(x . e)=y$. then $\left\langle\mathcal{X}_{2}, X_{j}\right\rangle$ is $l-S T-D C$.

Proof:

Suppose $X_{t} \in \pi$ is l-throughput IBC. If $x \in O\left(X_{t}\right): y \in I_{1}\left(X_{j}\right)$. and $e \in E$ such that $\delta(x . e)=y$. by Definition $5.6(1)$, for all $z \in I\left(X_{i}\right)$, there is $u \in E^{*}$ such that $j(z . u)=x \in O\left(X_{t}\right)$ and for all $v<u, \delta(z, v) \in X_{1}$. Thus $\delta(z, u e)=y \in I_{z}\left(X_{j}\right)$ and for all $u<u e . \delta\left(z, u^{\prime}\right) \in \mathbf{K}_{i}$. This also implies $\operatorname{mincut}_{X_{1} X_{j}}\left(I\left(\mathbf{X}_{i}\right), I_{i}\left(X_{j}\right)\right) \geq 1$.

By Definition 5.6(2), mincut $_{X_{i}}\left(I\left(X_{i}\right), O\left(X_{i}\right)\right)=1$. Thus, mincut $X_{X_{i} X_{j}}\left(I\left(X_{i}\right), I_{i}\left(X_{j}^{-}\right)\right)$ $=\min \left\{\operatorname{mincut}_{X_{i}}\left(I\left(\mathrm{X}_{2}\right), O\left(\mathrm{X}_{2}\right)\right), \operatorname{mincut}_{X_{1} X_{1}}\left(O\left(X_{i}\right), I_{i}\left(X_{j}\right)\right)\right\} \leq \operatorname{mincut}_{X_{i}}\left(I\left(X_{2}\right)\right.$.

Therefore. $\left\langle\mathcal{K}_{2}, X_{j}\right\rangle$ is 1-ST-DC.
Lemma 5.3. Let $X_{1} \in \pi$ be a 2^{-}-throughput IBC block. For any $X_{j} \in \pi$. if there are $x \in X_{2}, y \in X_{j}, e \in E$ such that $\delta(x . e)=y$, then $\left\langle X_{1}, X_{j}\right\rangle$ is either $1-S T-D C$ or $2^{-}-S T-D C$.

Proof:

Assume X_{1} is 2^{-}-throughput IBC. Let $x \in O\left(\bar{X}_{t}\right) . y \in I_{t}\left(\dot{X}_{j}\right)$. and $e \in E$ be such that $\delta(x, \epsilon)=y$. By a similar argument to that of the proof of Lemma 5.2. we know that the first condition for Definition 5.7 is satisfied and mincut. $x_{1} x_{:}\left(O\left(X_{1}\right), I_{:}\left(X_{j}\right)\right) \geq$ $C(e) \geq 1$.

Evidently: it is the case that either mencut. $x_{i} x_{:}\left(O\left(X_{t}\right) \cdot I_{2}\left(X_{j}\right)\right) \geq 2$ or mencut $x_{1} x_{\text {: }}$ $\left(O\left(X_{2}\right) \cdot I_{2}\left(X_{j}\right)\right)=1$. If mincut $x_{X_{i}},\left(O\left(X_{2}\right) \cdot I_{t}\left(X_{j}\right)\right) \geq 2$. then there are two cases:
(1) If there is $x \in O\left(\mathcal{X}_{1}\right), e_{1} \in E$ such that $\delta\left(r, e_{1}\right)=y \in I_{1}\left(X_{j}\right)$ and $C\left(e_{1}\right) \geq 2$. For any two nodes $x_{1}, x_{2} \in I\left(X_{t}\right)$ (not necessarily distinct). by Definition 5.i. there are $u_{1}, u_{2} \in E^{\cdot}$ such that $\delta\left(x_{1}, u_{1}\right)=\delta\left(x_{2}, u_{2}\right)=x$, and for all $v_{1}<u_{1} \cdot c_{2}<u_{2}$. $\dot{j}\left(r_{1} \cdot u_{1}\right) \cdot \delta\left(x_{2}, i_{2}\right) \in \lambda_{1}$. for all $a \in E .3\left(a, u_{1}\right)-3\left(a, u_{2}\right) \leq C(a)$. Therefore
 $3\left(e_{1} \cdot u_{1} e_{1}\right)+3\left(e_{1}, u_{2} e_{1}\right)=2 \leq C\left(e_{1}\right)$. Hence. $\left\langle\dot{x}_{1}, \dot{N}_{j}\right\rangle$ is 2^{-}-ST-DC.
(2) If there are $x . x^{\prime} \in O\left(X_{1}\right)$ (not necessarily distinct). $e_{1}, e_{2} \in E, e_{1} \neq e_{2}$, such that $\dot{\delta}\left(x, e_{1}\right)=y \in I_{1}\left(X_{j}\right)$ and $\delta\left(x^{\prime} . e_{2}\right)=y^{\prime} \in I_{2}\left(X_{j}\right)$. It follows from Definition .5. 7 that for all $x_{1}, x_{2} \in I\left(\mathcal{X}_{2}\right)$, there are $u_{1}, u_{2} \in E^{*}$ such that $\delta\left(x_{1}, u_{1}\right)=x$ and $\delta\left(x_{2}, u_{2}\right)=x^{\prime}$. and for all $v_{1}<u_{1}, v_{2}<u_{2} . \delta\left(x_{1}, v_{1}\right), \delta\left(x_{2}, v_{2}\right) \in \lambda_{1}$. and for all $a \in E .3\left(a . u_{1}\right)+3\left(a . u_{2}\right) \leq C(a)$. Furthermore. $\left[u_{1} e_{1}, u_{2} e_{2}\right]$ drives the system from $\left[x_{1}, x_{2}\right]$ to $\left[y, y^{\prime}\right]$ via $\left[x, x^{\prime}\right]$ through $\mathrm{X}_{\mathrm{i}} \times \mathrm{K}_{1}$. It is clear $3\left(e_{1}, u_{1} e_{1}\right)=1 \leq C\left(e_{1}\right)$ and
$3\left(e_{2}, u_{2} e_{2}\right)=1 \leq C\left(e_{2}\right)$. Hence, $\left\langle X_{i}, X_{j}\right\rangle$ is $2^{-}-$ST-DC.

When mincut $\mathcal{X}_{1} X_{;}\left(O\left(\mathcal{X}_{1}\right), I_{2}\left(\mathbf{X}_{j}\right)\right)=1$. it implies that $O_{j}\left(\mathcal{X}_{2}\right)=\{x\} . I_{2}\left(\mathcal{X}_{j}\right)=$ $\{y\}$ and $C(e)=1$. it is clear that $\left\langle\mathrm{K}_{2}, \boldsymbol{X}_{j}\right\rangle$ is 1-ST-DC.

Let π be a throughput IBC partition of.$\underset{\text {. The throughput IBC partition ma- }}{ }$ chine of G based on π is denoted by $G^{h}=\left\{\pi^{\prime} \cdot E^{h} \cdot \delta^{h} \cdot C^{h} \cdot D^{h}\right\}$. where $\pi^{\prime}=\left\{X_{1} \in \pi ; X_{\text {: }}\right.$ is 2^{-}-throughput IBC $\} \cup\left\{X_{1}^{-1}, X_{1}^{2} \mid X_{2}\right.$ is 1 -throughput IBC $\}:$
 throughput IBC\}.

High level transitions

The high level connectivity (transition) function of G^{h} is defined as follows: for any $x_{1}, x_{j} \in \pi$.
$i^{h}\left(X_{1}^{l} \cdot C_{i}^{-}\right)=l_{i}^{2}$ if X_{t} is 1 -throughput IBC:
 IBC:
$i^{h}\left(X_{2}^{2} \cdot\left(L_{1}^{j}\right)=\dot{l}_{j}^{-}\right.$. if $\left\langle X_{1}, X_{j}\right\rangle$ is 1-ST-DC and $X_{1} . \dot{l}_{\text {, }}$, are 1-throughput IBC:
 throughput IBC:
$i^{h}\left(X_{2}, C_{i}^{-}\right)=X_{j}^{\prime}$. if $\left\langle X_{2}, X_{j}\right\rangle$ is 1-ST-DC or $2^{-}-$ST-DC. X_{2}^{-}is 2^{-}-throughput IBC. and λ_{i} is 1-throughput IBC.

High level capacities

The high level capacity of a $1-$ ST-DC connection is 1 , the capacity of a $2^{-}-$ST-DC connection is 2 . i.e. for a $1-$ ST-IBC pair $\left(X_{1}, \dot{X}_{j}\right) \cdot C^{h}\left(C_{1}^{-1}\right)=1$. for a 2^{+}-ST-IBC pair $\left\langle X_{1}, X_{j}\right\rangle, C^{h}\left(C_{1}^{-j}\right)=2$. As stated earlier. there are two nodes representing a 1-throughput IBC block $X_{2}: X_{2}^{1}$ and X_{i}^{-2}. which are connected with a link L_{i}^{-}with capacity of l. i.e.. $C^{h}\left(C_{i}^{*}\right)=1$ for all 1 -throughput IBC X_{1}.

High level costs

To calculate the high level costs. some modification of the in-sets is needed (see Section 3.4). If $s \in X_{t}$ and X_{t} is a 1 -throughput IBC block. $X^{s}=X_{1}^{1}$. If $t \in X_{t}$ and
X_{t} is a 1 throughput IBC block, $\mathrm{X}^{t}=\mathrm{X}_{2}^{2}$. Let $\left[s_{1}, s_{2}\right] \in I\left(\mathrm{X}^{s_{1}}\right) \times I\left(\mathrm{X}^{-s_{2}}\right)$. In order to calculate high level costs. set $I\left(X^{-s_{1}}\right)=\left\{s_{1}\right\}, I\left(X^{s_{2}}\right)=\left\{s_{2}\right\}$ whenever $X^{s_{1}} \neq X^{s_{2}}$: otherwise. $I\left(X^{-s_{1}}\right)=\left\{s_{1}, s_{2}\right\}$: set $I\left(X^{t_{1}}\right)=\left\{t_{1}\right\} . I\left(X^{t_{2}}\right)=\left\{t_{2}\right\}$ whenever $X^{t_{1}} \neq X^{t_{2}}$: otherwise. $\Gamma\left(X^{-t_{1}}\right)=\left\{t_{1}, t_{2}\right\}$: if $X^{s_{1}}=X^{-t_{2}} \cdot I\left(X^{-s_{1}}\right)=I\left(X^{-s_{1}}\right) \cup I\left(X^{t_{2}}\right)$ if $X^{t_{i}}=X^{-s_{2}}$. $I\left(X^{t_{1}}\right)=I\left(X^{t_{1}}\right) \cup I\left(X^{-s_{2}}\right)$.

For any $X_{1}, X_{1} \in \pi$. if $\left\langle X_{2}, X_{j}\right\rangle$ is $1-S T-D C . D^{h}\left(C_{z}^{-j}\right) \triangleq D^{-}\left(X_{1}, X_{j}\right) \max _{2} \max _{y}$ $\left\{d_{X_{1} X_{2}}(x . y) \mid x \in I\left(X_{2}\right) . y \in I_{2}\left(X_{j}\right)\right\}$. If $\left\{\dot{I}_{1}, X_{j}\right\rangle$ is 2^{-}-ST-DC. let $D^{h}\left(L_{1}^{-j}\right)=\frac{1}{2}$
 or $2^{-}-S T-D C$. and $3\left(e . u_{1}\right)-3\left(e . u_{2}\right) \leq C(e)$ for all $\left.e \in E\right\}$. Let $D^{h}\left(C_{1}^{\prime}\right)=0$. for all 1-throughput $\operatorname{IBC} \Gamma_{1} \in-$.

The following theorem is an analogy to Theorem 2.1.

Theorem 5.2. Let $G^{h}=\left\{a^{\prime} . E^{h} \cdot j^{h} \cdot C^{h} \cdot D^{h}\right\}$ be a throughput $I B C$ partition machene of $G=\{\therefore . E . \dot{J} C . d\}$. For any $s_{1} \in X^{\prime} \in \pi^{\prime} . s_{2} \in X^{i} \in \pi^{\prime} \cdot t_{1} \in X^{t_{1}} \in$

Pront:
\Longrightarrow
Wie shall prove that any given high level valid routing contains a low level valid ront-
 the blocks on an optimal path (with respect to D^{h}) in order by $Y_{i}, Y_{2} \ldots . Y_{m} \in \pi$ and $Z_{1}, Z_{2} \ldots Z_{n} \in-$ respectively: where $s_{1} \in Y_{i}, s_{2} \in Z_{1} . t_{1} \in Y_{m}$ and $t_{1} \in Z_{n}$. Because an optimal path with respect to D^{h} is acyclic. if $i \neq j . Y_{i} \neq \xi_{j}, Z_{i} \neq Z_{j}$: and if $Y_{i}=Z_{j}$. there is no $j^{\prime} \neq j$ such that $Y_{i}^{\prime}=Z_{j^{\prime}}$. Hence. for each $\xi_{:} .1 \leq i \leq m$. if there is $Z_{j}=Y_{i}$ for some $1 \leq j \leq n$. then there are two individual flows in this routing going through Y_{i} in G^{h}. and by Lemmas 5.2 and 5.3 . Y_{i} is a 2^{+}-throughput IBC block.

Set $s_{1}^{1}=s_{1}, s_{1}^{2}=s_{2}, s_{m}^{1}=t_{1}, s_{n}^{2}=t_{2}$. Search from $i=1$ to $i=m-1$ by increasing order. if Y_{i} is such that there is $Z_{j}=Y_{i}$, then carry out the following procedure: (1) if $s_{i}^{1} \cdot s_{j}^{2} . s_{i-1}^{1} \cdot s_{j-1}^{2}$ are not set, arbitrarily choose $\left[s_{i}^{1} \cdot s_{j}^{2}\right] \in I\left(Y_{t}\right) \times I\left(Z_{j}\right)$ and
$\left[s_{1-1}^{1} \cdot s_{j-1}^{2}\right] \in I\left(Y_{i+1}\right) \times I\left(Z_{j-1}\right):$
(2) denote by $\left[{ }^{-}\left(Y_{i}^{\prime}, Z_{j}\right)\right.$ the set of $\left[u_{i}^{1}, u_{j}^{2}\right] \in E^{*} \times E^{*}$ such that $\delta\left(s_{i}^{1}, u_{i}^{1}\right)=s_{i-1}^{1}, \delta\left(s_{j}^{2}, u_{j}^{2}\right)$ $=s_{j-1}^{2} . \forall u_{1}^{\prime}<u_{1}^{1}, u_{2}^{\prime}<u_{j}^{2} . \delta\left(s_{i}^{l}, u_{1}^{\prime}\right) \in Y_{i}^{\prime}, \delta\left(s_{j}^{2}, u_{2}^{\prime}\right) \in Z_{j}$. and for all $e \in E$. $3\left(e . u_{1}^{1}\right)+3\left(e . u_{j}^{2}\right) \leq C(e)$. Since Y_{i}^{2} is 2^{-}-throughput IBC. $L^{-}\left(Y_{i}, Z_{j}\right) \neq \emptyset$. Seek $\left[u_{i}^{1^{0}}, u_{j}^{2^{0}}\right\}$ such that $d\left(u_{i}^{1^{0}}\right)+d\left(u_{j}^{2^{0}}\right) \leq d\left(u_{i}^{1}\right)+d\left(u_{j}^{2}\right)$ for all $\left[u_{i}^{1}, u_{j}^{2}\right] \in L^{\prime}\left(Y_{i}, Z_{j}\right)$.

We note that $d\left(u_{i}^{1^{0}}\right)+d\left(u_{j}^{20}\right) \leq D^{h}\left(L^{C}\left(Y_{i} \rightarrow Y_{i+1}\right)\right)+D^{h}\left(L^{-}\left(Z_{j} \rightarrow Z_{J-1}\right)\right)$.

Starting from $i=1$ to $m-1$ by increasing order. if each Y_{i} such that no $Z_{j}=Y_{i}$ exists. repeat the following procedure:
(1) if $s_{t}^{t} \cdot s_{i-1}^{t}$ are not set. arbitrarily choose $s_{i}^{t} \in I\left(Y_{i}\right)$ and $s_{i-1}^{1} \in I\left(Y_{i-1}\right)$:
(2) no matter whether X_{t} is 1 -throughput IBC or 2^{+}-throughput IBC. be Definitions 5.6 and 5.7 . there is $u_{:}^{l} \in E^{*}$ such that $\dot{\delta}\left(s_{i}^{1} \cdot u_{i}^{1}\right)=s_{i-1}^{1}$ and for all $u_{i}^{\prime}<u_{i}^{1}$. S(s) $\left.u_{i}^{\prime}\right) \in Y_{i}^{:}$. Denote the set of all such u_{i}^{\prime} by $C^{\prime}\left(Y_{i}\right)$. Seek $u_{:}^{\prime \prime} \in C^{\prime}\left(Y_{i}\right)$ such that $\left(d \mid u^{\prime!}: \leq d\left(u^{!}\right)\right.$for all $\left.u_{1}^{l} \in[\}_{i}^{0}\right)$.

It is clear that $d\left(u_{i}^{!}\right) \leq D^{n}\left(C^{\prime}\left(Y_{i} \rightarrow Y_{i-i}\right)\right)$.

Starting from $j=1$ to $n-1$ by increasing order, for each Z_{j} such that no $\xi_{i}=Z_{\text {; }}$ exists. repeat the process similar to above seek $u_{j}^{2^{n}} \in C^{-}\left(Z_{j}\right)$. Also. $d\left(u_{j}^{2^{n}}\right) \leq$ $D^{h}\left(Z_{j}, Z_{j-i}\right)$.

Clearly: $\left.\dot{s}_{1} \cdot u_{1}^{1^{\prime \prime}} u_{2}^{!_{2}^{\prime \prime}} \ldots u_{m-1}^{!^{\prime}}\right)=t_{1} . \delta\left(s_{2}, u_{1}^{20} u_{2}^{20} \ldots u_{n-1}^{20}\right)=t_{2}$. and for all $e \in E$.
 $u_{n-1}^{2 u^{T}} T^{T}$ is a valid routing for $\left.s_{1}, s_{2}\right]^{T}$ and $\left[t_{1}, t_{2}\right]^{T}$ in G. And $d\left(u_{1}^{1^{0}} u_{2}^{1^{0}} \ldots u_{m-1}^{11}\right)-$ $d\left(u_{1}^{20} u_{2}^{u_{2}^{0}} \ldots u_{n-1}^{2^{0}}\right) \leq D^{h^{00}}\left(\left[X^{s_{1}} \ldots \|^{-s_{2}}\right]^{T} \cdot\left[X^{t_{1}} \ldots I^{t_{2}}\right]^{T}\right)$.

\Longleftarrow

We shall construct a high level valid routing based on any given low level valid routing. Suppose there is a valid routing $\left[u_{1}, u_{2}\right] \in E^{*} \times E^{*}$ from $\left[s_{1}, s_{2}\right] \in . \times N$ to $\left[t_{1}, t_{2}\right] \in$ $\therefore \times 1$. Denote the high level blocks containing the low level paths $\left[p\left(s_{1}, u_{2}\right), p\left(s_{2}, u_{2}\right)\right]$

Figure 5.6. $p\left(s_{1}, u_{1}^{\prime}\right)$ and $p\left(s_{2}, u_{2}^{\prime}\right)$ go through Y_{i}^{\prime} no more than twice
driven by u_{1} and u_{2}, respectively. from s_{1} and s_{2}, respectively by $\zeta_{1} . Y_{2}, \ldots . Y_{m} \in \pi$ and $Z_{1}, Z_{2}, \ldots Z_{n}, \in \pi^{\prime}$ by order.

Now we prove there are valid routing $\left[p\left(s_{1}, u_{1}^{\prime}\right) \cdot p\left(s_{2}, u_{2}^{\prime}\right)\right]$ such that each of $p\left(s_{1}, u_{1}^{\prime}\right)$ and $p\left(s_{2}, u_{2}^{\prime}\right)$ goes through every $Y_{i}, Z_{j}, 1 \leq i \leq m-1.1 \leq j \leq n-1$. no more than once.

For an arbitrary ξ_{1}. if $p\left(s_{1}, u_{1}\right)$ goes through ξ_{i} strictly more than once. because - is throughput IBC. $\}_{;}$is 2^{-}-throughput IBC. Denote the first entry of $p\left(s_{1} . u_{1}\right)$ in $[(\} ;)$ by r. the last exit of $p\left(s_{1}, u_{1}\right)$ in $\left.O(\}_{:}\right)$by y. Let the segment from r to y of $p(s) \cdot u!)$ be denoted by $x \sim y$.

There are two possible cases:
(1) $p\left(5_{1} . u_{2}\right)$ does not go through $Y_{:}$(see Figure $\overline{5} 6(\mathrm{a})$). By definition. there is $u \in E^{\bullet}$ such that $\dot{\delta}(x, u)=y$ and for all $u^{\prime}<u . \dot{\delta}\left(x . u^{\prime}\right) \in Y_{i}^{\prime}$. Replace $x \sim y$ by $p(x . u)$ for $p\left(s_{1}, u_{1}\right)$. denote the resulting path by $p\left(s_{1}, u_{1} \mid p(x, u)\right) .\left\{p\left(s_{1}, u_{1}!p(x, u!), p\left(s_{2}, u_{2}\right)\right\}\right.$ is a valid routing for $\left[s_{1}, s_{2}\right]$ and $\left[t_{1}, t_{2}\right]$.
(2) $p\left(s_{2}, u_{2}\right)$ goes through Y_{1} (see Figure $5.6(\mathrm{~b})$). denote the first entry of $p\left(s_{1}, u_{1}\right)$ in $I\left(Y_{1}\right)$ by x^{\prime}. the last exit of $p\left(s_{1}, u_{1}\right)$ in $O\left(Y_{i}\right)$ by y^{\prime}. Let the segment from x^{\prime} to y^{\prime} of $p\left(s_{2}, u_{2}\right)$ be denoted by $x^{\prime} \sim y^{\prime}$. B \mathfrak{y} definition. there is $\left[u . u^{\prime}\right] \in E^{*} \times E^{*}$ such that $\delta(r, u)=y$ and for all $u_{1}<u . \delta\left(x, u_{1}\right) \in Y_{i}^{\prime} . \dot{\delta}\left(x^{\prime} . u^{\prime}\right)=y^{\prime}$ and for all $u_{2}<u^{\prime}$. $\delta\left(x^{\prime} . u_{2}\right) \in Y_{i}^{\prime}$. Moreover. for all $e \in E .3(e, u)+3\left(e, u^{\prime}\right) \leq C(e)$. Replace $x \sim y$ and $x^{\prime} \sim y^{\prime} b y p(x . u)$ and $p\left(x^{\prime} . u^{\prime}\right)$ for $p\left(s_{1}, u_{1}\right)$ and $p\left(s_{2}, u_{2}\right)$ respectively, we obtain $j p\left(s_{1}, u_{1} \mid p(x, u)\right), p\left(s_{2}, u_{2}\left\{p\left(x^{\prime}, u^{\prime}\right)\right)!\right.$, a valid routing for $\left[s_{1}, s_{2}\right\}$ and $\left[t_{1}, t_{2}\right]$.

In this way, we can obtain a valid routing $\left[p\left(s_{1}, u_{1}^{\prime}\right), p\left(s_{2}, u_{2}^{\prime}\right)\right]$ for which $p\left(s_{1}, u_{1}^{\prime}\right)$ and $p\left(s_{2}, u_{2}^{\prime}\right)$ respectively go through each $Y_{i}, 1 \leq i \leq m$ and each $Z_{j} .1 \leq j \leq n$ at most once. Rename the blocks containing $p\left(s_{1}, u_{1}^{\prime}\right)$ and $p\left(s_{2}, u_{2}^{\prime}\right)$ respectively by $I_{i}, V_{2}, \ldots . V_{k}$ and $W_{1}, W_{2}, \ldots . W_{i}$, for which $s_{1} \in V_{1}, t_{1} \in V_{k}, s_{2} \in W_{1}, t_{2} \in W_{1}$. By Lemmas 5.2 and 5.3 , if there is a low level transition from X_{t} to $X_{j},\left\langle X_{2}, X_{j}\right\rangle$ is 1 or $2^{-}-S T-D C$. Hence. $\left\langle L_{i}, V_{i-1}\right\rangle$ and $\left\langle W_{j}, W_{j-1}\right\rangle$ all 1 or $2^{-}-S T-D C .1 \leq i \leq k-1$. $1 \leq j \leq l-1$. If $p\left(s_{1}, u_{1}^{\prime}\right)$ and $p\left(s_{2}, u_{2}^{\prime}\right)$ both go through $V_{i} \rightarrow V_{i+1}$. by definition. $\left\langle\Gamma_{i} I_{i-1}\right\rangle$ is 2^{-}ST-IBC. Therefore $V_{i} \rightarrow V_{2} \rightarrow \ldots \rightarrow V_{k}$ and $W_{1} \rightarrow W_{2} \rightarrow \ldots \rightarrow W_{i}$ form a valid routing for $\left[X^{s_{1}} \ldots X^{-s_{2}}\right]$ to $\left[X^{t_{1}} . X^{t_{2}}\right]$ in G^{h}.

Let the optimal high level cost for $\left[\mathrm{X}^{-s_{1}} . \mathrm{X}^{s_{2}}\right]$ and $\left[\mathrm{S}^{t_{1}} . \mathrm{X}^{-t_{2}}\right]$ be denote by $D($ $\left.X^{4} \cdot X^{3}: \cdot\left(X^{t_{i}} . X^{t_{2}}\right] \cdot D^{n}\right)$. from the proof of the above theorem. it is straightforward to see. there is a low level routing with a cost less than $D\left(\left[X^{s_{1}}, X^{-s_{s}}\right] \cdot\left[X^{t_{1}}, X^{t_{2}}, D^{h}\right)\right.$.

5.4. Hierarchical Dynamical Routing for Networks with Buffers

5.4.1. Network States of Buffered Networks. Consider a network in the class $B . \$ represented by $G=\{. . E . j . d . B\}$ in which the capacity of links may be thought to be infinite. The capacity of a node. which may be thought to be the size of a buffer is denoted $B(n) \in \mathcal{V}^{-}$. for any $n \in \cdots$.

Suppose the system is event-driven. We shall map the ordering of the occurrences of exents to the positive integers. which is equivalent to viewing that the system clock as bring discrete-valued. All exogenous events (the arrivals of new messages) take place non-simultaneously: i.e.. at any event-indexed (or marked) time instant at most one new message arrives at G. Also assume that only one event (including control actions) happens at the a time instant.

Let $F_{k}(n)$ denote the total number of messages stored in the buffer of node $n \in . V$ at a time instant $k \geq 1$. At time k. if $B\left(n_{1}\right)>F_{k}\left(n_{2}\right)$ for $n_{1} \in \lambda$. a new message $m \cdot s g_{k}\left(n_{j}\right)$. associated with a destination $n_{j} \in \mathcal{V}, n_{j} \neq n_{i}$. may be accepted by the network and be stored in the buffer at the node n_{1}. This message $\operatorname{msg}\left(n_{j}\right)$ can be either kept in the buffer at n_{t} or sent to $n_{l} \in N$ if the following two conditions are
true: (1) there is a link $e \in E$ such that $\delta\left(n_{l}, e\right)=n_{l}$, and (2) $F_{k}\left(n_{l}\right)<B\left(n_{l}\right)$ when $n_{l} \neq n_{j}$. If $n_{l}=n_{j}, \operatorname{msg}\left(n_{j}\right)$ reaches its destination and leaves the network without entering the buffer n_{l}; otherwise, it is to be stored in the buffer n_{l}.
A (matrix) network state. which bears the information on the number of messages $m_{k}(i . j) .1 \leq i . j \leq \mid . V i$. at node n_{i} with destination as node n_{j} at time k is given by.

$$
\begin{aligned}
& \ddots_{k}=\left[\begin{array}{cccc}
0 & m_{k}(1.2) & \ldots & m_{k}(1 .|. V|) \\
m_{k}(2.1) & 0 & \ldots & m_{k}(2 .|.|) \\
m_{k}(\mid . V .1) & m_{k}(|. V| .2) & \ldots & 0
\end{array}\right] \\
& F_{k}\left(n_{t}\right)=\sum_{j=1}^{N} m_{k}(l . j) \leq B\left(n_{z}\right) . \text { for all } 1 \leq i \leq \ldots
\end{aligned}
$$

where m is always 0 . A distinguished state $0=00 \times$. . . the zero matrix. evidently represents the network state where no messages are being held by the network.

It may be proved by induction that the total number of network states is $\prod_{i=1}^{i}$ $C_{B i n,}^{B i n}-\cdots$

There are two classes of events in a B \mathcal{N} network G. i.e.. $E=A \cup I$, where (1) $A=\left\{a_{:}^{J} n_{t} \neq n_{j}\right\}$. Here $a_{:}^{\prime}$ means a new message m.sg $\left(n_{j}\right)$ with destination n, enters the network at node n_{1}.
(2) $T=\left\{t_{t, k}^{J}\right.$, there is a link in G from n_{t} to $\left.n_{k}, n_{t} \neq n_{j}, n_{k} \neq n_{t}\right\}$. Here $t_{2, k}^{j}$ means that a message, with destination n, is transmitted from a node n : via a link $e_{:}^{k}$ to n_{k}.

It is clear that $|\cdot H|=|. V| \times(|\cdot V|-1) \cdot|T|=(|\cdot|-1) \times E \mid$.

Obviously. $t_{\mathrm{t} . \mathrm{k}}^{\mathrm{j}}$ is a control action. When an action $t_{\mathrm{z}, \mathrm{k}}^{\mathrm{k}}$ is taken at time instant l. if $n_{k} \neq n_{j} . m(i . j)$ decreases by 1 while $m(k . j)$ increases by i. i.e.. $m_{l-1}(i . j)=$ $m_{l}(i . j)-1$ and $m_{l-1}(k . j)=m_{l}(k . j)+1$: if a message arrives at its destination. i.e.. in case $n_{k}=n_{j}$. it leaves the network without entering the buffer at $n_{k} \cdot m_{l+1}(i, j)=$
$m_{l}(i . j)-1, F_{l-1}(k)=F_{l}(k)$. At time l. if the buffer of n_{i} is not full, a new message to n_{j} may arrive at $n_{1}\left(n_{1} \neq n_{j}\right)$. The arrivals of new messages are spontaneous. Not every a_{2}^{J} is accepted by the network; if necessary, a_{1}^{J} may be rejected. After a_{t}^{J} is accepted by $n_{t} . m_{i}^{J}$ increases by l, i.e.. $m_{l-1}(i . j)=m_{l}(i . j)+1$.

The dynamics of the buffered network state systems (BNS) may be represented as a finite state machine. $B . \backslash S(G)=\{\Gamma . A \cup T . \nu\}$. where Γ is the set of all network states. We note that a network state (in the product system) is not a location in a network. Here $\nu\left(\because_{k}, u_{k}\right)=\because_{k-1}, u_{k} \in A \cup T . k \leq 0$. Explicitly.

$$
\begin{aligned}
& \nu\left(\left[\begin{array}{ccccc}
0 & m_{k}(1.2) & \ldots & \ldots & m_{k}(1,|.|) \\
& \ldots & \ldots & \ldots & \\
m_{k}(i .1) & \ldots & m_{k}(i . j) & \ldots & m_{k}(i . \mid . V) \\
& \ldots & \ldots & \ldots & \\
m_{k}(. V .1) & \ldots & \ldots & \ldots & 0
\end{array}\right] . a_{i}^{j}\right)= \\
& {\left[\begin{array}{ccccc}
0 & m_{k}(1.2) & \ldots & \ldots & m_{k}(1.1 .1) \\
& \ldots & \ldots & \ldots & \\
m_{k}(2.1) & \ldots & m_{k}(1 . j-1) & \ldots & m_{k}(2.1) \\
& \ldots & \ldots & \ldots & \\
m_{k}(1.1 .1 .1) & \ldots & \ldots & \ldots & 0
\end{array}\right] .} \\
& \text { if } \sum_{l=0}^{\cdots} m_{k}(2 . l)<B\left(n_{i}\right) \text {. } \\
& \left.\nu\left[\begin{array}{ccccc}
0 & m_{k}(l .2) & \ldots & \ldots & m_{k}(1,|,|) \\
& \ldots & \ldots & \ldots & \\
m_{k}(l .1) & \ldots & m_{k}(l . j) & \ldots & m_{k}(l .|. V|) \\
& \ldots & \ldots & \ldots & \\
m_{k}(i .1) & \ldots & m_{k}(i . j) & \ldots & m_{k}(i,|. V|) \\
& \ldots & \ldots & \ldots & \\
m_{k}(|. V| .1) & \ldots & \ldots & \ldots & 0
\end{array}\right] . t_{: . l}^{\prime}\right)=
\end{aligned}
$$

$\left[\begin{array}{ccccc}0 & m_{k}(1.2) & \ldots & \ldots & m_{k}(l,|. V|) \\ & \ldots & \ldots & \ldots & \\ m_{k}(l .1) & \ldots & m_{k}(l . j)+1 & \ldots & m_{k}(l .|. V|) \\ & \ldots & \ldots & \ldots & \\ m_{k}(i .1) & \ldots & m_{k}(i . j)-1 & \ldots & m_{k}(i .|., V|) \\ & \ldots & \ldots & \ldots & \\ m_{k}(|. V| .1) & \ldots & \ldots & \ldots & 0\end{array}\right]$.

$$
\text { if } n_{l} \neq n_{j} \text {. i.e. } l \neq j \text {. and } \sum_{n=0}^{, ., i l} m_{k}(l . n)<B\left(n_{l}\right) \text {. }
$$

	0	$m_{k}(1.2)$...		$m_{k}(1 . W)$. $t_{1.2}^{J}$! $=$	
		\ldots			
	$m_{k}(l .1)$	\ldots	$m_{k}(l . j)$...	$m_{k}(l . \mid l)$		
41		\ldots	...	\cdots			
	$m_{k}(2.1)$	\ldots	$m_{k}(i, j)$...	$m_{k}(1 . \cdots)$		
		\ldots			
	$\left.m_{6}(1) . \cdots, 1\right)$...			1)		

$$
\begin{aligned}
& \text { if } n_{l}=n_{2} \text {. i.e. } l=J
\end{aligned}
$$

Otherwise. ν is undefined.
5.4.2. The Controllability of the Buffer Network State Systems. At network state is said to be BNS controllable (to \%) if there is a finite sequence of actions in T that drive the network to $\%$.

FigCre 5.7. . Network in deadlock if $m_{k}(1.3)=m_{k}(\underline{2} .1)=m_{k}(3.2)=1$

Uncontrollable network states include deadlocks and live-locks. At deadlock is a state of a network in which the network cannot accept any control actions. In contrast. a live-lock is a state such that the network can make some transitions in T but is not B. IS^{2} controllable to \because.

Example 5.3. In Figure 5.7. the netuork state is

$$
\because_{k}=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] .
$$

The rapacaty of the buffers of all nodes a.s 1 . This network is in a deadlock because no artuons can be taken at this state.

In Figure 5.8. the netuork state is

$$
\ddots_{k}=\left[\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The capacity of buffer of all nodes is 1 . This network is in a live-lock because no message can be sent to its destination.

- : a message

Figure 5.8. . letwork in a live-lock when $m_{k}(1.7)=m_{k}(2.7)=$ $m_{k}(6.2)=m_{k}(\overline{1}, 2)=1$

To prevent the network from entering deadlocks or live-locks. it is necessary that some arrivals of new messages should not be accepted. i.e.. if $\nu\left(\square_{k} . a_{i}^{J}\right)=\sigma_{k-1}, k \geq 0$. such that \cdot_{k-i} is not $\mathrm{B} . \mathrm{S}^{2}$ controllable. the message $\operatorname{msg}(n$,$) should be rejected and$ not put into the buffer at n_{t}. Given an initial network state $-_{k_{1}, \text {, }}$, he control objective is to find a sequence of control actions in T that drive the network from ${ }^{\circ} k_{1}$, to $\%$. wheh embodies the completion of all tasks. while aroiding getting into deadlocks or live-locks.

A network G is said to be path-uzse controllable if for all $n_{1}, n_{j} \in \lambda$. there exists a path from n_{1} to n_{2}.

Lemma 5.4. If a network $G=\{N . E . j . d . B\}$ l.s completely path-uz.e connected. then $B . W S(G)$ is deadlock free if and only if there is a node. $n_{:} \in N$. such that for all $n_{!} \in \cdots . \imath \neq \jmath$, there ts $e_{t}^{\prime} \in E$. s.t. $\delta\left(n_{\mathrm{t}} \cdot e_{\mathrm{t}}^{J}\right)=n_{\jmath}$.

Proof:
\Longrightarrow
For any network state $i_{k_{0}} \neq \%_{0}$, all messages at n_{1} can be sent directly to their destinations $n_{j} .1 \leq j \leq|. V| . j \neq i$. by control actions $t_{i}^{: \cdot J}$. In other words. after taking
the network state is

Because G is path-wise controllable. for any $n_{\jmath} \in \cdots . n_{j} \neq n_{2}$. there is path from n_{j} to $n_{:}$. Ler u_{j}, be the length of the shortest path from n, to $n_{\text {, in }}$ in terms of the number of links. n, is said to be $\left|u_{j}\right|$ step reachable to n_{1}. Let k be the maximum of u_{j} for all $1 \leq J \leq M . j \neq i$.

First. suppose the node n, is one step reachable to n_{t}. For a message to n_{k} stored at n_{2}.
(1) if $k=\iota$, the control action $t_{j,:}^{2}$, makes that message reach its destination and leare the network:
(2) orherwise. it may be sent to n_{k} vial $n_{\text {: }}$ by taking $t_{, k, t}^{k} t_{\text {t, }}^{k}$.

In this way: all messages at the nodes one step reachable to n, can be forwarded to their destinations.

Recursively drain off the messages in the buffers at the nodes n step reachable to $n_{n} .1<n \leq K$, the $B .-(G)$ arrives at $\because_{i j}$. Therefore no deadlock state exists for this network.

\Longleftarrow

Suppose no such n_{1} exists. that is to say. for any node $n_{\jmath} \in \lambda$. there is a node n_{k}, which is 2 step reachable from n_{f}. In a network state such that $B\left(n_{j}\right)$ messages with destination n_{k}, are in the buffer n_{j} for all $n_{J} \in V$. the network state is in deadlock. This is because any control action $t_{j, l}^{k_{j}}\left(k_{j} \neq l\right.$ as assumed $)$ will cause the overflow of the buffer of n_{1}.

From the proof to Lemma 5.4. it is evident that if there is $n_{1} \in . V$ such that n_{1} is reachable to any other nodes in N in one step, the network state sustem $\operatorname{BNS}(G)$ is live-lock free.

Let \rightarrow represent a one step transition in E. A ring is a non-trivial circuit $R(n)=x_{1} \rightarrow x_{2} \rightarrow \ldots \rightarrow x_{n} \rightarrow x_{1} . n>1$. such that for all $1 \leq i . j \leq n$. if $i \neq j$. $x_{i} \neq x_{j}$. An arc from x_{1} to x_{j} is the part of $R(n)$ from x_{i} to x_{j}. i.e.. $\operatorname{trc}\left(x_{i}, x_{j}\right)=x_{i} \rightarrow$ $\ldots \rightarrow r_{j}$. If at time $k_{0} . \sum_{j=1}^{N} m_{k_{0}}(i, j)<B\left(n_{2}\right)$ for a node $n_{i} \in \cdots$. then an empty buffer pluce is said to exist in $n_{\mathbf{t}}$. Moreover. $B\left(n_{\mathbf{2}}\right)-\sum_{j=1}^{\mathrm{y}} m_{k_{0}}(i . j)$ empty buffer places are said to exist in n_{1} at time k_{0}.

Lemma 5.5. For a ring $R(k)=n_{1} \rightarrow n_{2} \rightarrow \ldots \rightarrow n_{k} \rightarrow n_{1} . n_{t} \in \mathcal{V}$ such that
 then the following conditions. are true:

- For any $1 \leq t \leq k$, there is a finite sequence of control actions in T such that at a time instant $k^{\prime} \geq k_{0} .\left(\sum_{j=1}^{N} m_{k^{\prime}}(i . j)<B\left(n_{t}\right)\right.$.
\therefore For any message m.sg(j) in $R(k)$ at $k_{i 1} .1 \leq J \leq k$, there as a finute sequence of control action.s in T such that at a time instant $k^{\prime}>k_{i b}$. It is sent to n_{j}.

4. For inny message m.sgl j) in $R(k)$ at k_{11}. $j>k$. and for all $1 \leq l \leq k$. there .s is finte sequence of control actions. in I such that at a time instont $k^{\prime}>k_{i s}$. it w. sent to) n_{1}.

Proof:

Suppose at time instant $k_{0} . \sum_{t=1}^{k}\left(\sum_{j=1}^{N} m_{k_{0}}(2, j)<\sum_{t=1}^{k} B\left(n_{t}\right)\right.$. That is to say. there exists n_{j} in $R(k)$. such that there is an empty buffer place in n_{j} at time instant k_{0}. i.e.. $\sum_{i=1}^{l} m_{k_{1}}(j . l)<B\left(n_{j}\right)$.
(1) For any $1 \leq i \leq k$. if $i=j$. then let $k^{\prime}=k_{0}$. Lemma $5.5(1)$ is obviously true. Otherwise. $R(k)$ consists of two paths $A r c\left(n_{2}, n_{j}\right)$ and $A r c\left(n_{3}, n_{i}\right)$. Rename the nodes in.$V$ such that $\operatorname{Arc}\left(n_{t}, n_{3}\right)$. the part of $R(k)$ from n_{2} to n_{j}. is denoted by

$$
v_{1} \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{n-1} \rightarrow v_{n}
$$

where $v_{1}=n_{i}$ and $v_{n}=n_{j}$.

Let $l=n-1 . k^{\prime}=k_{0}$. If $\sum_{j=1}^{N \mid} m_{k^{\prime}}(l, j)=B\left(c_{l}\right)$. send an arbitrary message $m s g\left(m_{l}\right)$ at c_{l} to c_{l-1}. i.e.. let $a_{l}=t_{l, l+1}^{m_{l}}$: otherwise let $a_{l}=\epsilon$. Hence. by taking a_{l}. $\sum_{j=1}^{\infty:} m_{k^{\prime}-1}(l . j)<B\left(c_{l}\right)$. If $l>0$. set $l=l-1 . k^{\prime}=k^{\prime}+1$. repeat the above procedure. Therefore. after taking $a_{n-1} a_{n-2} \ldots a_{1}$. at time $k^{\prime}=k_{0}+n-1$. ($\sum_{i=1}^{\mathrm{v}_{1}} m_{k^{\prime}}(1 . l)$ $<B\left(v_{1}\right)$. An empty place is thus generated in $n_{1}=v_{1}$.

This process creates an empty buffer place in n_{t} based on an empty buffer place in n_{j} on $R(k)$ and will be denoted by $C E\left(n_{j} \rightarrow n_{i} . R(k)\right)$.
(2) For any message $m s g(m)$ in $R(k)$ at $k_{0} .1 \leq m \leq k$. without loss of generality. suppose it is in n, for some $1 \leq i \leq k$. For any node $n, \neq n_{m}$ in $R(k)$. rename the nodes in .1 such that $\operatorname{Arc}\left(n_{t}, n_{j}\right)$ is denoted by

$$
v_{1} \rightarrow v_{1} \rightarrow \ldots \rightarrow v_{n-1} \rightarrow v_{n} .
$$

wherer: $=n_{1}$ and $c_{n}=n_{m}$.

According to (1) if at $k_{i j}$. the empty buffer place in c_{i}, then $C E\left(c_{t} \rightarrow c_{t} . R(k)\right)$ will create an empty place in the buffer of $c_{t}, 1 \leq 1 \leq n$ after a finite time. First. do $C E\left(\because, r_{2} R(k)\right)$. This will not force msg(n) to leave v_{1} because as the immediate predecessor of r_{2} in $R(k)$. v_{1} can not be an intermediate node on $\operatorname{Arc}\left(c_{2}, v_{f}\right)$ and thus nu $t_{\text {?.2 }}^{n}$ is taken in $C E\left(u_{1} \rightarrow c_{2}, R(k)\right)$. Then take $t_{1.2}^{n}$. At time $k_{2}-1$. there is an empty buffer place in v_{1}. Therefore take a sequence of actions $C E\left(c_{1} \rightarrow v_{3} . R(k)\right) t_{2.3}^{n}$ $C E\left(c_{2} \rightarrow c_{1} . R(k)\right) t_{3.1}^{n} \ldots C E\left(c_{n-2} \rightarrow v_{n} . R(k)\right) t_{n-1 . n}^{n} . m s g(n)$ is sent to v_{n} and leave the network.
(3) Since $m s g(m)$ will not reach n_{m} around $R(k)$. it will not leave the network. By an analogous argument to the above. $m s g(m)$ can be sent to any node in $R(k)$. Denote this process that a message $m s g(m)$ at n_{1} is sent to an arbitrary node n, on $R(k)$ by $S O\left(n_{1} \rightarrow n_{\mu} . R(k)\right)$.

Corollary 5.1. For $G=\{$.V. $E, \delta, d . B\}$, if all nodes in N forms a ring. i.e.. there ss a circuit. $n_{1} \rightarrow n_{2} \rightarrow \ldots \rightarrow n_{!\cdot v!} \rightarrow n_{1}, n_{2} \in N$ such that $i \neq j . n_{2} \neq n_{j}$. $1 \leq i . j \leq|\cdots|$. then $B N S(G)$ is free of live-locks.

Proof:

At a time instant k_{0}. if the network G is in $\%_{k_{0}}$. Which is not a deadlock state. there
 $B\left(n_{t}\right)$. In other words. an empty buffer place in n_{t} is generated at time $k_{0}-1$.

Suppose that all nodes in N form a ring without the repetition of any node. If at time k_{11}^{\prime} there is an empty buffer place in n_{a}. then by Lemma $5.5(2)$. any message with destination n_{k} at n_{n} at time k_{0}^{\prime} can be sent to n_{k} in finite steps.

Hence, all messages will be sent to their destinations in finite time. That is to say. \cdot is, is reachable to -0.

Clearly. if G is Hamiltonian(26!). B. $S(G)$ is live-lock free.

Define an operation concatenation over two paths: for any $p_{1}=n_{1}-n_{2} \rightarrow \ldots$ $\rightarrow n_{k} \equiv N^{\bullet} \cdot p_{2}=m_{1} \rightarrow m_{2}-\ldots \rightarrow m_{2} \in N^{*}$. the concatenation of p_{1} and p_{2}.

$$
p: p_{2}= \begin{cases}n_{1} \rightarrow n_{2} \rightarrow \ldots \rightarrow n_{k} \rightarrow m_{1} \rightarrow m_{2} \rightarrow \ldots \rightarrow m_{2} & \text { if } m_{1} \neq n_{k} \text { and } \\ & \equiv \epsilon \in E \cdot \dot{\left(n_{k} \cdot \epsilon\right)=m_{1}} \\ n_{1} \rightarrow n_{2} \rightarrow \ldots \rightarrow n_{k} \rightarrow m_{2} \rightarrow \ldots \rightarrow m_{3} & \text { if } m_{1}=n_{k} \\ \text { undefined } & \text { otherwise }\end{cases}
$$

Lemma 5.6. If G is path-uise controllable, then there is a circuit C in G covering all nodes in.\therefore. and C can be represented as a set of intersecting rings $\left\{R_{1} .1 \leq\right.$ $\left.t \leq n, R_{\mathrm{t}} \cap R_{\mathrm{t}-\mathrm{i}} \neq 0.1 \leq i<n\right\}$.

Proof:

(b)

C?
(d)

FIGCRE 5.9. A circuit with repetition of nodes

Since G is path-wise controllable. for any $r . y \in \cdots$. there exists $u \in E^{*}$ such that $\dot{y} .4 .4=y$. A circuit that covers all nodes in N can be constructed in the following way:

Let $C(1)=n_{1}, \imath=1$. if $n_{:-1}$ is not included by $C(\imath)$. find $u(\imath) \in E^{\bullet}$ such that $\dot{s}\left(n_{1}, u(t)\right)=n_{t-i}$. and denote $p_{:}=p\left(n_{1}, u_{1}\right):$ otherwise. let $p_{1}=\epsilon . C(2-1)=C(\imath) p_{1}$. $[\hat{i} 1<\cdots$. let $\imath=1-1$: repeat the above procedure. When $t=N$. seek u) $M^{\prime} \in E^{*}$ such that $\delta\left(n^{\prime}, u(\cdots)\right)=n_{1}$, where $n^{\prime} \in N$ is the last node in $C(N)$. $C(\cdots-1)=C(\cdots) p\left(i n^{\prime} . \mu\left(\mathcal{N}^{\prime}\right)\right)$ is such a circuit.

Rename the nodes on $C(\cdots-1)$ to be $v_{t} .1 \leq t \leq C_{-1}$. Then if $v_{t}=v_{j}$, break down $C(1-1)$ into two circuits C_{1} and C_{2} such that $C_{1} \cap C_{2}=\left\{n_{2}\right\}$ (Figure $5.9(\mathrm{a})$ and (b)). If two nodes in $C_{1}, n_{k}=n_{l}, C_{1}$ may be further broken down into $C_{1.1}$ and $C_{1.2}$ such that $C_{1.2} \cap C_{1.2}=\left\{n_{k}\right\}$. If n_{k} is in $C_{1} . n_{l}$ is in C_{2}. and $n_{k}=n_{l}$, then two circuits $C_{1} \cap C_{2}=\left\{n_{1} . n_{k}\right\}$ (Figure $5.9(\mathrm{c})$ and (d)). Thus. by breaking down circuits with repetition of n_{i} into intersecting circuits without repetitions of $n_{1} . C(|\cdots|+1)$ can be represented by a union of intersecting rings $\left\{R_{t} .1 \leq i \leq n \mid R_{1} \cap R_{t-1} \neq \emptyset\right.$. $1 \leq i<n\}$.

Theorem 5.3. If all nodes in. lare on $\left\{R_{1} .1 \leq i \leq n \mid R_{1} \cap R_{n+1} \neq 0.1 \leq i<n\right\}$. then any network state $\gamma_{k_{0}}$ with $\sum_{i=1}^{i v \mid} \sum_{j=1}^{|, N|} m_{a}^{\jmath}\left(k_{0}\right) \leq \sum_{i=1}^{|N|} B\left(n_{i}\right)-n$. is a $B N S$ controllable network state.

Proof:

Suppose $\sum_{i=1}^{N} \sum_{j=1}^{v} m_{k_{0}}(i . j) \leq \sum_{i=1}^{v} B\left(n_{i}\right)-n$. That is to say. there are n empty buffer places in N at time k_{0}.

By Lemma $5.5(1)$ for any φ_{2}, v_{j}, in the same ring R_{k}. if there is an empty buffer place in v_{i}, then after a finite time. by $C E\left(v_{i} \rightarrow v_{j}, R_{k}\right)$. there will be an empty place in ε_{j}. i.e. any empty buffer place can be circulated around R_{k}.

Furthermore. if $u_{k} \in R_{3} \cap R_{t-1}$. and there is an empty buffer place in $R_{\text {: }}$ at k_{0}. then an empty buffer place may be generated in c_{k} after a finite time and by the same reason. an empty buffer place can be created in any node on R_{t-1} after a finite time.

Therefore, the n empty buffer places can be exchanged between intersecting rings. Assume at a time instant $k^{\prime}>k_{1}$. each ring has an empty buffer place.

For a message m.sg in R_{r} with destination in another node in R_{r}. by Lemma 5.5). mig can be sent to its destination since there is an empty buffer place in $R_{\text {a }}$ at k.

For a message $m s g$ in $c_{t} \in R_{1}$ with destination in $R_{J} . j>i$. Circulate the empty buffer places such that there is an empty buffer place in $v_{e}(k) \in R_{k}-R_{k} \cap R_{k-1}$ for each $i<k \leq j$. Then. by Lemma $5.5(3)$. $m s g$ can be sent to a node in $v_{c}(i) \in R_{t} \cap R_{t-1}$ by $S O\left(v_{l} \rightarrow v_{c}(i) . R_{t}\right)$. Since $v_{e}(i) \notin R_{1} \cap R_{t+1} . S O\left(v_{l} \rightarrow v_{c}(i) . R_{t}\right)$ will not change the empty buffer place in $v_{e}(i)$. That is to say, any message in R_{1} can be circulated to $R_{t} \cap R_{t-1}$ and R_{t-1} still has an empty buffer place (see Figure 5.10). Hence. msg

Figcre 5.10. All nodes in.$\stackrel{y}{ }$ are on $R_{\text {t }}$
can be sent to $R_{,-1} \cap R_{\text {f through }} R_{1-1 \ldots R_{-1}}$ and then sent to its destination.

For a message insg in $c_{l} \in R_{t}$ with destination in $R, j<1$. Circulate the empty buffer places such that there is an empty buffer place in $c_{e}(k) \in R_{k}-R_{k}-R_{k-1}$ for rach $\jmath \leq k<1$. By an argument analogous to the above. m.sg can be sent to $R, \cap R R_{-1}$ and then to its destination.

Therefore. all messages can be sent to their destinations. i.e.. $i_{i,}$ is $B . X$ controllable.

Let ar G) be the minimal number of rings for which there exists a circuit C covering all nodes in.V sucin that C is the set of rings. If at time k_{10}. the number of empty buffer places in G is strictly less than $\alpha(G)$. the network is possibly in a live-lock. e.g.. the network state as shown in Figure 5.3.

5.4.3. High Level Network States of the Buffer Network Systems.

In addition to directly applying H.ADP to the network state machine B. $\triangle S(G)$, we present a formulation of hierarchical control by partitioning.V. the set of nodes of G into IBC blocks to reduce the computational complexity of seeking the optimal control (a shortest path problem for network state representation B. $\mathrm{CS}(\mathrm{G})$). This is because the number of network states is usually much greater than that of the nodes
in the network.

Let $\pi=\left\{X_{1}, X_{2}, \ldots . \Gamma_{\pi}\right\}$ be an IBC partition of N. Define the size of buffer for a block $X_{i} \in \pi$ by $B^{h}\left(X_{1}\right) \triangleq \sum_{n_{j} \in X_{t}} B\left(n_{j}\right)$. The number of messages stored in $K_{:}$with destination as nodes in $X_{j}\left(X_{j} \neq \boldsymbol{X}_{2}\right)$ at time instant k is $M_{k}(i, j)=$ $\sum_{n_{l} \in X_{i}, n_{m}=X_{:}} m_{k}(l, m)$. A high level network $G^{h}=\left\{\pi, E^{h} \cdot \delta^{h} \cdot D^{h} \cdot B^{h}\right\}$ is defined based on DC relations over r. A high level network state.

$$
\because_{k}^{h}=\left[\begin{array}{cccc}
0 & M_{k}(1.2) & \ldots & M_{k}(1,|\pi|) \\
M_{k}(2.1) & 0 & \ldots & M_{k}(2,|\pi|) \\
& \ldots & \ldots & \\
M_{k}((\pi-1) & M_{k}(i \pi \mid \cdot 2) & \ldots & 0
\end{array}\right] .
$$

where $F_{k}^{h}\left(X_{t}\right)=\sum_{j=1}^{\pi}, M_{k}(2, j)<B^{h}\left(X_{t}\right)$. for all $1 \leq i \leq \pi^{-1}$.

High level events include:
1: $A^{h}=\left\{A_{:}^{\prime} i=1.1 \leq 1.1 \leq-i\right\}$: a new message with destination in $X_{\text {, }}$, arrives at $\dot{l}_{:}, \dot{l}_{1}=\dot{l}_{\text {: }}$ at time instant $k_{i 1}-1$. if the $F_{k, 0}^{h}\left(X_{i}\right)<B\left(\dot{X}_{t}\right)$.
 tion in X_{1} is sent from X_{1} to X_{j} at time instant $k_{i)}-1$ if $X_{j}=X_{4}$ or $F_{i_{1}}^{h}\left(X_{1}\right)<B\left(X_{j}\right)$.

For a block $\lambda_{t}=\left\{n_{1}^{2}, n_{2}^{2} \ldots . n_{1}^{2} x_{1}\right\}$ an in-block netuork state with respect to X_{1} at time instant k bears information about the number of messages with destination in $\left\{n_{1}^{2} \cdot n_{2}^{2}, \ldots . n_{i_{1}}^{i}\right\} \cup\left(\pi-\left\{X_{:}\right\}\right)$being processed at node $n_{j}^{2} .1 \leq j \leq X_{i}$.

$$
\begin{aligned}
& \because_{k}\left(X_{i}\right)=\left[\begin{array}{cccc}
0 & m_{k}\left(n_{1}^{2} \cdot n_{2}^{2}\right) & \ldots & m_{k}\left(n_{1}^{2} \cdot n^{2} \cdot X_{1}\right) \\
m_{k}\left(n_{2}^{2} \cdot n_{1}^{2}\right) & 0 & \ldots & m_{k}\left(n_{2}^{1} \cdot n_{\cdot}^{2} \cdot X_{1},\right. \\
& \ldots & \ldots & \\
m_{k}\left(n_{X_{i}}^{2} \cdot n_{1}^{2}\right) & m_{k}\left(n_{\cdot X_{1}}^{2} \cdot n_{2}^{2}\right) & \ldots & 0
\end{array}\right.
\end{aligned}
$$

$$
F_{k}\left(n_{j}^{i}\right)=\sum_{l=1}^{\left|X_{i}\right|} m_{k}\left(n_{j}^{2}, n_{l}^{i}\right)+\sum_{l=1, l=t}^{\mid \pi i} m_{k}\left(n_{j}^{i}, X_{l}\right)<B\left(n_{j}^{i}\right) .
$$

where $m_{k}\left(n_{j}^{i} . . \bar{X}_{l}\right) . m_{k}\left(n_{j}^{2}, n_{l}^{i}\right)$ represent the number of messages being processed at node n_{j}^{2} at time k with destination in block λ_{l} and node $n_{l}^{2} \in \lambda_{2}$ respective! :

An control action $t_{i, j}^{k} \in T$ is said to be an in-block control action with respect to λ_{t} if boch n_{2} and n, are in $\lambda_{\text {: }}$.

Definition 5.8. An in-block network state of IBC block $X_{t} \in \therefore . \ddots_{k}\left(X_{t}\right)$ is said to be a B. $\$ S in-block controllable state if. for all $n_{l}^{2} \in X_{1}$. all $n_{e}^{:} \in I\left(X_{t}\right)$ and all $n_{n}^{2} \in O\left(X_{t}\right)$. there is a finite sequence (length $\left.k^{\prime}-k\right)$ of in-block control actions with respect to l_{2} such that

1) $F_{k^{-1}}\left(n_{e}^{:}\right)<B\left(n_{e}^{2}\right)$ and
(2) if $M_{\mathrm{k}}(2, j)>0 . m_{0}^{2}\left(. X_{,}, k^{\prime}\right)>0$. and
(3i $\sum_{i=1}^{X_{i}} \sum_{m=1}^{X_{1}} m_{k^{\prime}}\left(n_{l}^{2} \cdot n_{m}^{:}\right)=0$.

If an IBC block \bar{X}_{t} is in a B.$八$ in in block controllable state at a time instant k. after taking a finite sequence of in-block control actions. without the occurrence of pents in.t^{h} and A. the three conditions above will be true: (1) there will be an empty buffer place in any given in-set node. (2) any message to another block will be sent to any giwn out-set node. and (3) all messages with destinations in $\lambda_{\text {, will be }}$ sent to their destinations.

Theorem 5.4. Given an IBC block $X_{\text {: }}$ consisting of k rings. X_{t} is in a $B . V S$ in-block controllable state $\because_{k}\left(\mathcal{X}_{2}\right)$ if the total number of messages in \mathcal{X}_{2} at k is less than or equal to $B^{h}\left(\mathrm{X}_{\mathrm{t}}\right)-k$.
Proof:
Similar to the proof of Theorem 5.3.

Redefine the IBC partition machine $G_{c}^{h}=\left\{\pi \cdot E^{h} \cdot 0^{h} . D^{h} . B_{c}^{h}\right\}$, where $B_{c}^{h}\left(\mathcal{X}_{z}\right)=$ $B^{h}\left(X_{\mathrm{z}}\right)-\alpha\left(X_{\mathrm{t}}\right)$ for all $X_{\mathrm{t}} \in \pi$. The network corresponding to G_{c}^{h}. $M^{h}\left(G_{c}^{h}\right)=$
$\left\{\Gamma^{h c} . . t^{h} \cup T^{h} \cdot \nu^{h}\right\}$. The dynamics of $M^{h}\left(G_{c}^{h}\right)$ are defined by
$\nu^{h}\left(\left[\begin{array}{ccccc}0 & M(1.2) & \ldots & \ldots & . M(1 .|\pi|) \\ & \ldots & \ldots & \ldots & \\ M(i .1) & \ldots & M(i . j) & \ldots & M(i .|\pi|) \\ & \ldots & \ldots & \ldots & \\ M(i \pi \mid .1) & \ldots & \ldots & \ldots & 0\end{array}\right] \ldots ._{2}^{J}\right)=$
$\left[\begin{array}{ccccc}0 & M(1.2) & \ldots & \ldots & M(1 . \mid \pi i) \\ & \ldots & \ldots & \ldots & \\ M(2.1) & \ldots & M(2 . j)-i & \ldots & M(i ., \pi) \\ & \ldots & \ldots & \ldots & \\ M(\pi \cdot 1) & \ldots & \ldots & \ldots & 0\end{array}\right]$.

$$
\text { if } \sum_{k=1)}^{\pi} M(1, k)<B_{c}^{h}\left(X_{i}\right)
$$

$$
\mu\left[\begin{array}{ccccc}
0 & M(1.2) & \ldots & \ldots & M(1 .-) \\
& \ldots & \ldots & \ldots & \\
M(k .1) & \ldots & M(k . j) & \ldots & M(k .-) \\
& \ldots & \ldots & \ldots & \\
M(i .1) & \ldots & M(2 . j) & \ldots & M(2 .-1 \\
& \ldots & \ldots & \ldots & \\
M(-.1) & \ldots & \ldots & \ldots & 0
\end{array}\right] . T_{: .1}^{k}!=
$$

$\left[\begin{array}{ccccc}1) & M(1.2) & \ldots & \ldots & M(1 . \pi) \\ & \ldots & \ldots & \ldots & \\ . M(k .1) & \ldots & M(k . j)-1 & \ldots & M(k .-i) \\ & \ldots & \ldots & \ldots & \\ M(i .1) & \ldots & M(2 . j)-1 & \ldots & M(i . i n) \\ & \ldots & \ldots & \ldots & \\ M(\mid \pi .1) & \ldots & \ldots & \ldots & 0\end{array}\right]$

Otherwise. ν^{h} is undefined.

Theorem 5.5. Let G^{h} be an IBC partition machine of G. if at time instant k_{10}.
 controllable state for all $X_{:} \in \pi$. then $-k_{1}$ is a $B . V S$ controllable state of $M(G)$.

Proof:

Suppose at time instant $k_{0} . M^{h}\left(G_{c}^{h}\right)$ is in a B. \backslash S controllable network state $\Gamma_{k_{0}}^{h c}$. that is to say, there is a sequence of control actions in T^{h} that drives $M^{h}\left(G_{c}^{h}\right)$ from $\Gamma_{k_{0}}^{\text {hc }}$ to Γ_{0}. Also suppose all blocks $X_{i} \in \pi$ are in B. S_{S} in-block controllable states at k_{0}.

Because all messages in $\lambda_{\text {t }}$ with destination in $X_{\text {t }}$ can be sent to their destinations. by Definition 5.8. it is equivalent to proving that each of the high level control
commands is realisable by low level controllers and after completing a high level control command. $\gamma_{k_{0}}\left(\mathrm{~K}_{t}\right)$ is still a BNS in-block controllable state.

Let a message $m s g(l)$ with $n_{l} \in X^{-k}$ is held in X_{i} at time k^{\prime}. By definitions. for a high level command $R_{i, j}^{k}$, it is defined at a state $\Gamma_{k^{\prime}}^{h c}$ for some $k^{\prime}>k_{0}$ if: (1) $M_{k^{\prime}-1}(i, k)>0$. (2) $\left\langle\mathrm{K}_{1}, \mathrm{~K}_{j}\right\rangle$ is $D C$. and (3) $F_{k^{\prime}-1}^{h}\left(\mathrm{~K}_{j}\right)<B_{c}^{h}\left(\mathrm{~K}_{j}\right)$.

Since ${ }^{\prime} k^{\prime}-1\left(X_{t}\right)$ is a B.VS in-block controllable state. by Definition 5.8. there is an outset node $n_{o}^{2} \in O,\left(X_{2}\right)$. such that at time $k_{1}>k^{\prime}$. after the in-block controller takes a sequence of control actions with respect to $X_{1}, m_{o}^{t}\left(\dot{K}_{3}, k_{1}\right)>0$. In other words. there is a message at n_{o}^{i} with destination in X_{i} at $k_{!}$.

Since $\left\{X_{1}, X_{j}\right\}$ is DC. $n_{o}^{2} \in O,\left(X_{t}\right)$. there is $e \in E . n_{e}^{J} \in I_{1}\left(X_{j}\right)$. such that $\left.\sin _{i,}, ~ e\right)=n_{e}^{\prime}$.

Because - $k^{\prime}-1\left(X_{j}\right)$ is a B. S_{S} in-block controllable state. by Definition 5.8. n^{j} E $I_{2}\left(X_{,}\right)$. such that at time $k_{2}>k_{1}>k^{\prime}$. after the in-block controller takes a sequence of control actions with respect to $\bar{l}_{2}, F_{k_{2}}\left(n_{e}^{3}\right)<B\left(n_{p}^{\prime}\right)$.

Therefore. at time $k_{3}=k_{2}-1 . r_{n_{j}^{\prime}, n}^{l}$ is well-defined. Let the low level controller take this control action $r_{n_{n}^{\prime}, n}^{l}$: then $m . s g(l)$ is a sent to block X_{j} at k_{3}.

At $k_{3} . F_{k_{3}}^{h}\left(X_{2}\right)=F_{k_{0}}^{n}\left(X_{2}\right)-1$. evidently $\cdot_{k_{3}}\left(X_{1}\right)$ is BMS controllable after remoring a message from a B.iS controllable state $\wedge_{k_{0}}\left(X_{2}\right) . \quad F_{k_{3}}^{h}\left(X_{j}\right)=F_{k_{0}}\left(X_{j}\right)-1$ $\leq B_{c}^{h}\left(X_{j}\right) \leq B^{h}\left(X_{j}\right)-\alpha\left(X_{j}\right)$. by Theorem 5.t. $x_{3}\left(X_{j}\right)$ is a B..S in-block controllable state.

In case $k=j$. by Definition 5.8. $m s g(l)$ can be sent to its destination by low level controller and hence leave the network. X, remains in B.iS controllable state.

Thus. i_{0} is reachable.

CHAPTER 6

Future Research

In this thesis we present a hierarchical control framework based on the notion of state aggregation via the dynamic consistency relations over the partition blocks of a given state space. Some suggestions for future research are given below.

Throughout this thesis the mathematical framework is deterministic. If the system state transitions are allowed to be probabilistic. for instance Markovian. then both the fundamental issues of the construction of the $D C$ relations and the assoctated partition machines. and the solution of optimal control problems become challenging issues within the framework of stochastic system theory.

6.1. Research Related to HADP

A relation to be investigated is the size of partition blocks and the ratio of computational times taken by HADP and atomic search (i.e. search for an optimal control in the original system). This will result in an optimal partition in the sense that one multiple level hierarchy has the greatest magnitude of acceleration by H.ADP among all hierarchies with the same number of levels.

The relationship between the quality of a partition and the sub-optimality of the H.ADP method is given in Chapter 3. It is of great interest to investigate how to generate a partition within a given level of tolerance of optimality: Recall that all IBC partitions of a base finite state machine form a lattice. Through investigating
the relation of the degree of optimality (statistical measurements might be used to represent this degree) and the position of a partition in the lattice. it is hoped that optimal partitions can be determined for which a two level HADP (consisting of the original system and a partition machine) will achieve solutions closest (on average) to the global optimum.

In order to judge the quality of partition before applying HADP. a good estimate of the cost of high level optimal solution becomes necessary. The combinatorial nature of in-block paths may make these estimates very loose. An improvement of estimation of the error bounds will definitely lead to the improvement of the H.ADP methodology:

6.2. Research Related to Multi-agent Systems

In the analysis of multi-agent systems in Chapter the telation R is taken to be in a general form. If R is chosen to be a more specific relation (for instance. mutually exclusix events). more specific results will be derivable about the construction of an IBC partition.

For multi-agent systems. due to the huge state space of the product machine. in addition (t) the hierarchical control presented here a hierarchical-decentralised control is worth further investigation. In the proposed configuration. each of a set of low controllers works on each of the agents. while a high level controller co-ordinates the uperations of low level controllers in a feedback fashion. This will in turn shed some light on how to partition the state space of each agent separately in order to obtain an IBC partition of the product system.

6.3. Research Related to Network Routing

In Chapter 5 . we discussed both link network systems and buffer network systems separately. A possible duality of these two classes of networks should be formulated and analysed. Moreover, the more complicated systems which combine the constraints
on both links and buffers are of course deserve further investigation.

In real-time network. the information exchange sometimes is insufficient for the precise update of the network states. In the presence of uncertainty. the problem poses itself as to how an improved IH.ADP should be formulated achieve an applicable routing reliably:

Because of the multi-agent nature of the network. the concurrency of events is inevitable. In practice. a set of protocols are applied to each node in a network. This is a version of decentralised control. Through the analysis with the models proposed in Chapter 5 . one of the objectives might be to find a set of protocols which combine the decentralised and hierarchical controls to efficiently decide the route for a request at a node dependent on the current network state.

REFERENCES

[1] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science 126 (1994). 183-235.

2 R. Alur and T.A. Henzinger. Computer-aided verification. Lecture Notes. Depatment of Electrical Engineering and Computer Science. LC Berkeley: 1996.
3. P.I. Antsaklis. K. M. Passino. and S.J. Wang. At system and control theoretzc perspective on artificial intelligence planning systems. Applied Artificial Inteiligence 3 (1989). 1-32.
t. J.I. Arrow and L. Hurwitz. Decentralization and computation in resource alloratuon. Essays in Economics and Econometrics (R.W. Pfouts. ed.). Lnisersity of Corth Carolina Press. 1960.
\therefore E. Asarin. O. Maler and A. Puneli. Reachability analysts of dynamical systems humaty puceureseconstant dervatzees. TCS 138 (1995). no. 1. 3.5-66. Special issue on hybrid systems.
6). G.R. Ash. Design and control of network: with dynamic nonhierarchucal routung. IEEE Communication Magazine (October. 1990). 3t-40.
\therefore J.C. Bean. J.R. Birge. and R.L. Smith. Aggregation in dynamic proyramming. Operations Research 35 (1987). no. 2. 215-20.

D D. Bertsekas and D. Castanon. Adaptive aggregation methods for infinite horizon dynamic programming. IEEE Transactions on Automatic Control 34 (1989). no. 6. 589-598.

91 B.A. Brandin and W.M. Wonham. Supervisory control of timed discrete-event systems. IEEE Transactions on Automatic Control 39 (1994). no. 2. 329-42.

10: W.S. Branicky. Topology of hybrid systems. Proceedings of the 32nd IEEE Conference on Decision and Control (St.Antonio. Texas). 1993. pp. 2309-2314.
[11] M.S. Branicky, V.S. Borkar, and S.K. Mitter, A unifed framework for hybrid control. Proceedings of the 33rd IEEE Conference on Decision and Control (Lake Buena Vista. FL). 1994. pp. 42:28-4234.
112! Brave and M. Heymann. Control of discrete event systems modeled as hierarchical state machines. IEEE Transactions on Automatic Control 38 (1993). no. 12. 1803-1819.
1.3! P. E. Caines. P. Hubbard. and G. Shen. A state aggregation approach to hierarchical supervisory control with applications to a transfer line example. Proc. of the 36th IEEE Conf. on Decision and Control (San Diego. FL). December 199-. pp. 3590-3.391.
14'. P.E. Caines. I'. Gupta. and G. Shen. The hierarchical control of ST finte state machines. Proceedings of the 36th IEEE Conference on Decision and Control (San Diego. CA). 199․ pp. 3584-3589.
1.5: - The hierarchical control of ST finute state machines. Sistems and Control Letters 32 (1997). 185-192.
16. P.E. Caines and E. Lemch. On the global controllability of hamiltonaan and other nonlinear systems: fountain.s and recarrence. Proceedings of the 3ith IEEE Conference on Decision and Control (Tampa. FL). 1998. pp. 3.5.5-3.580.
17. P.E. Caines and Y-.J. Wei. The huerarchucal lattices of a finte machene. Systems and Control Letters (1995). 25:-263.

1s. On dynamically consistent hybrad systems. Proceedings of the 1994 Cornell Cniversity Workshop on Hebrid Sustems \& Autonomous Control (.I'C) (W. Kohn and A. Nerode. eds.). Lecture Notes in Computer Science. Springer lerlag. 1995.
19. P.E. Caines and Y'.J Wei. Hierarchzcal hybrid control system.s. Proceedings of the Block Island Workshop of Control Using Logic-Based Switching (S. Morse. ed.). L.CCIS 222. Springer-Verlag. 1996. pp. 39-48.
20] P.E. Caines and ¿'-J. Wei. Hierarchical hybrid control systems: A lattice theoretic approach. IEEE Transactions on Automatic Control (37(4). 1998). 501-8.
[11 C. Cassandras. Discrete event systems: Modeling and performance analysis. Irwin Publ.. 1993.
Di.2 B.A. Davey and H.A. Priestley. Introduction to lattice and order. Cambridge University Press. 1990.
[23] R. Diestel. Graph theory, Springer, 1997.
[24] 〔․ Dudley, Elementary number theory. W.H. Freeman and Company: 1969.
[25] J. R. Evans and E. Minieka. Optimization algorithms for networks and graphs. \arcel Dekker Inc., New York. 1993.
[26! A. Gibbons. Algorithmic graph theory. Cambridge Cniversity Press. 1985.
2- H. Haken. The intractability of resolution. Theoretical Computer Science 39 (1985). 29i-308.
[23: F. Harary: R.Z. Norman. and D. Cartwright. Structural models: An introduction to the theory of directed graphs. John Wiley \& Sons. Vew York. 1965.
:29] D. Harel. Statechart: A visual formalism for complex systems. Science of computer programming 8 (1987). 231-27.
30) Y. C. Ho and S. K. Mitter (eds.). Directions in large-scale systems: Many per:ion optimization and decentralized control. Plenum Press. 1976.
31. J. E. Hopcroft and J.D. Lllman. Introduction to automata theory. languages. and computatzon. Addison-Westev. 1979.
32. P. Hubbard and P. E. Caines. Trace-DC hierarchical superizory control with applucation.s to transfer-lines. Proceedings of the 3ith IEEE Conference on Decision and Control (Tampa. Florida). 1998. pp. 3293-98.

33: P. Hubbard and P.E. Caines. Intial investigation.s of heerarchical supervisory control for multi-agent systems.s submitted to the 38th IEEE CDC. Pheonix. AZ. 1999.
34° K.M. Inan and P.P. Varaiya. Alyebras of discrete exent model.s. Proceedings of IEEE 77 (1989). no. 1. 2t-38.
3.3 P. B. Keve and G. A. Cope. Distributed dynamic routing schemes. IEEE Communications Magazine (1990). $54-64$.
36. K. Krishnan. Markov decision algorithms for dynamic routing. IEEE Communications Magazine (1990). 66-69.

3-: R. Kumar and V . Garg, Optimal supervisory control of discrete event dynamical systems. SIAM Journal on Control and Optimization 33 (1995). no. 2. 419-39.

38 B. Lennartson. M. Tittus, B. Egardt. and S. Pettersson. Hybrid systems in process control. IEEE Control Systems (1996). 45-56.
[39] E. Leonardi, F. Neri, M. Gerla. and P. Palnate. Congestion control in asychronous, high-speed wormhole routing networks. IEEE Communication Magazine (1996). 58-69.
40] Y. Li and W.M. Wonham. Concurrent vector discrete-event systems. IEEE Trans. on Automatic Control 40 (1995). no. 14. 628-38.
[11] F. Lin. A.F. Vaz. and W.M. Wonham. Supervisor specification and synthesis for discrete event systems. International Journal of Control 48 (1988). no. 1. 321-332.
42. F. Lin and W.M. Wonham. Decentralized control and coordination of discreteevent systems with partial observation. IEEE Trans. on Automatic Control 35 (1990). no. 12. 1330-1337.
'43: J. Lẹgeros. D. Godbole. and S. Sastry. Verfied hybrad controllers for automated vehtcles. [EEE Transactions on Automatic Control 43 (1998). no. 4. 522-.j39.
'4t'. M.D. Mesarovic. D. Macko. and Y'. Takahara. Theory of hierarchical. multalevel syitem.s. Academic. New York. 1970.
4.): G.L. Xephauser. Introduction to dynamac proyrammeng. John Wiley and Sons. 1066.
+66! K.M. Passino and C̈mit Özgüner. Mordelling for hybrad systerns: examples. Proceedings of the 1991 IEEE International Symposium on Inteiligent Control - Arlington. V.A). 1991. pp. 251-256.
47. P.J. Ramadge and W..M. Wonham. The control of discrete ecent system.s. Proceedings of IEEE 77 (1989). no. 1. 81-97.
48. J. Regnier and W.H. Cameron. State-dependent dynumac traffic management for telephone netuorks. IEEE Communications Magazine (10.1990). t2-5.3.
49. K. Rudie and W.M. Wonham. Think globally. act locally: Decentralized superutsory control. IEEE Trans. on Automatic Control 37 (1992). no. 11. 169:1708.

50 M. Sampath. S. Lafortune. and D. Teneketzis. Active diagnosis of discrete event systems. The 36st IEEE Conference on Decision and Control (San Diego. C.А). 1992. pp. 2976-83.

51 R. Sengupta and S. Lafortune. An optimal control theory for discrete event systems. SIA.M Journal on Control and Optimization 36 (1998). no. 2. 488541.
[52] S. Sethi and Q. Zhang, Multilevel hierarchical decision making in stochastic marketing-production systems, SI.A.M J. Control and Optimization 33 (1995). no. 2. 528-553.
53) G. Shen and P. Caines. Hierarchically accelerated dynamic programming for discrete event systems. submitted to IEEE Transactions on Automatic Control. 1999.

54 - On the application of hierarchically accelerated dynamic programming to multi-agent networks. Technical Report. Department of Electrical and Computer Engineering. McGill Cniversity. 1999.

5:5: G. Shen and P. E. Caines. Control consistency and hierarchically accelerated dynamuc programming. Proceedings of the 3ith IEEE Conference on Decision and Control (Tampa. Florida). 1998. pp. 1686-91.

56 . Hierarchically accelerated dynamic programming with applicatzon.s to transportatzon netuorks. Proceedings of the 1th World Congress of IFAC (Beijing. China). vol. L. 1999. pp. 285-290.

Si'. I. A. Stiver. P..I. Antsaklis. and M.D. Lemmon. Deytal control from a hybrud perspecture. Proceedings of the 3.3rd IEEE Conference on Decision and Control (Lake Buena (ista. FL). 1994. pp. $4241-4246$.
58. A.S. Tanenbaum. Computer netuorks. Prentice Hall. 1989.
59. J.G. Thistle. Logical aspect.s of control of discrete event systems: a survey of tools and technuques. 11th International Conference on Analysis and Optimization of Systems (Suphia-Antipolis) (Guy Cohen and Hean-Pierre Quadrat. eds.). 1994. Lecture Notes in Control and Information Sciences. 199. pp. 3-15.
60) . Superizsory control of discrete event systems. Mathl. Comput. Modelling 23 (1996). no. 11/12. 25-53.
61. J.G. Thistle. R.P. Malhamé. H.-H. Hoang, and S. Lafortune. Supervisory control of distributed systems part I: Modelling. specification and synthesis. Research report. École Polytechnique de Montréal. 1997.
62. M. Tittus and k . Akesson, Deadlock avoidance in batch processes. IFAC World Congress 1999 (Beijing. China), 1999. A-1c-05-5.
$63!$ P.P. Varaiya. Smart cars on smart roads: problems of control. IEEE Trans. on Automatic Control 38 (1993). no. 2. 195-207.
[64] F. Wang and G.‥ Saridis. A coordination theory for intelligent machines, Automatica 26 (1990), no. 5. 833-844.
[65] Y-J Wei. Logic control: Markovian fragments. hierarchy and hybrid systems. Ph.D. thesis. Department of Electrical Engineering. McGill University, Montreal. Canada. October, 1995.
[66] Y-J. Wei and P.E. Caines. Hierarchical COCOLOG for finite machines. Proceedings of the 11th INRI.A International Conference on the Analysis and Optimization of Systems (Sophia Antipolis. France) (A. Bensoussan and J. Lions. eds.). Lecture .Notes in Control and Information Sciences. vol. 199. I.RI.A. Springer Verlag. June. 1994. pp. 29-38.
67: R. Wolf. P. Chemouil. and K. Mase. Adtanced trafic control methods for circult-suztched telecommunications networks. IEEE Communications Magazine (1990). 12-14.
68. K.C. Wong and W.M. Wonham. Hierarchical and modular control of discrete. reent systems. Proc. of Thirtieth Annual Allerton Conference on Communication. Control and Computing. September. 1992. pp. 614-62.3.
69․ K.C. Wong and W..M. Wonham. Hierarchucal control of tumed discrete-etent systems. Discrete event dynamic systems 6 (1996). no. 3. 2-5-306.

Fo) H. Zhong and W.M. Wonham. On the consistency of heerarchical supertision in dhecrete-puent systems. IEEE Trans. on Automatic Control 35 (1990), no. 10. 112:5-1134.

APPENDIX A

C ++ Header File

The application of the H.ADP methodology to the broken Manhattan grid systems (see Section 3.7) is realised by $\mathrm{C}+-$ code. Its header file is listed below.

```
#nnclude":ostream.h"
#include"fstream.h"
#include <math.h>
#nnclude <time.h>
#include <sys/times.h>
#nclude <sys/types.h>
#nnclude <stdlib.h>
const int MAXEDGES=50;
const int BOUNDARYNODES=60;
const lnt MAX=2147483647;
```

The maximal number of edges starting from one node is set to be 50 . and the maximal number of in-set nodes of a block with respect to a DC relation is set to be 60. In vether words. for any $x_{t} \in \pi$. we assume there are no more than 50 blocks $X_{j} \equiv-$ such that each $\left(X_{1}, X_{j}\right)$ is DC. We also assume $\left\{I_{1}\left(X_{j}\right) \leq 60\right.$.

```
struct Path{
    int current node;
    Path #next node;
}path;
struct Node{
    int label;
```

```
    int number_of_edges;
    int edge[MAXEDGES]; //the index of an immediate successor
    float cost[MAXEDGES]; //D+/- cost for high level nodes
    float Mcost[MAXEDGES]; //D+ cost for high level nodes
    float mcost[MAXEDGES]; //D- cost for high level nodes
}node;
struct Block
{ int number_of nodes;
    Node node[100];
    int number_of_insets; //the number of predecessor DC blocks
    int inset[MAXEDGES]; //the index of a predecessor DC block
    int number of_innodes[MAXEDGES];
    int innode[MAXEDGES][BOUNDARYNODES];
    int number_of_transitions; //the number of successor DC blocks
    int transition[MAXEDGES]; //the index of a successor DC block
    int number_of outnodes[MAXEDGES];
    int outnode[MAXEDGES][BOUNDARYNODES];
}block;
```

A bhock is an array of nodes. A structure Block also bears the information about the DC relations (transition) and the in-set. out-set nodes of a block.

```
Int Rand(int); //generate a random integer bet;een O and int
//************E***********************************************
// Grid: a size*size array of vertices
// vertex[i]=0: it is removed
//*****#********************#**********************************
class Grid
l
    public:
            int size;
            int *vertex;
        public:
            Grid(int length)
            { size=length; vertex=new int[size*size]; }
            void Create_Random_Grid(float);
};
//************************************************************************
// (directed) Graph: an array[number_of nodes] of nodes
```

```
// node[i]: absolute index in the Grid
```



```
class Graph
{
        public:
        int number of nodes;
        Node node;
        public:
        Graph(int); //constructor
        void Copy_Graph(Graph); // copy a graph
        Graph(Grid); //turn from a random grid
        Graph();
};
```

A grid is an array of integers. for which 1 means that a vertex exists. A broken grid is created by randomly remoring a certain percentage of nodes (Create_Random_Grid (float)) from a regular grid. Then this broken grid is converted into a graph Graph (Grid)!.

```
//**********************************************************************
// PartitionGraph: a Graph used to generate a partition
// first generate an array of constraint (a set of nodes)
// then find IBC isolated blocks in each constraint
// node[i].in_rhich_block: the index of the block
// containing this node
//***************************************************************************
class PartitionGraph : public Graph
!
    public:
        1nt wn_which_block;
        int number of blocks;
        int :In_which_constraint;
        int *constraint;
        int nodes_in.constraint;
        public:
            PartitionGraph(Graph,int,int);
            // int, int : number of constraints, Grid.size
            PartitionGraph(int); //int : Graph.number.of_nodes
            void Partition(int,int);
            // int, int : Grid.size, number of constraints
```

```
        void Find_IBC(int); //int : seed
        // find an IBC block containing the seed in the current constraint
        void LabelPredecessors(int); //int : seed
};
```

To obtain an IBC partition of a graph, we first partition this graph into a given number of regions (specified by constraints). Then. within every region. we randomly and sequentially choose seed nodes which are used for the construction of maximal IBC blocks containing them in the remaining region. We next label every node with the block index (in-which_block) which corresponds to the index of the IBC block containing it.

```
//***************************************************************************
// WorkGraph: a Graph used to calaculate shortest distances
// label[nodeindex] used in the process of Dijkstra's algorithm
// to determine whether a label is permanent
//***********************************************************************
class WorkGraph : public Graph
{ public:
    Int *distance;
    protected:
        1nt label;
        // label: -1, unlebelled 0, temporary :: permanent
        public:
            workGraph(Graph); //turn a Graph into a WorkGraph
            WorkGraph(int ); //create a WorkGraph ulth int nodes
            Path ShortestPath(int,int); //(int int): (source target)
            void ShortestDistance(int, int); //labelling process
            int Distance(int,int); //return the shortest distance
};
```

Dijkstra's algorithm is used to find the shortest distance between a pair of start and target nodes (value returned by Distance(int,int)). A shortest path is then given by Shortest Path(int,int).

```
//*********************************************************************
// TransferGraph: an array[number_of_blocks] of blocks
// based on a PartitionGraph, find in-block structure
```

```
//*******************************************************************
class TransferGraph
{
    public:
    ine number.of_blocks;
    Block *block;
    public:
    TransferGraph(int); //int : number.of blocks
    void TransferBlock(PartitionGraph);
    int AdjustBlock(); //turn indices into local
    int Number of Highernodes();
    //return the number of high level nodes in case of semiduai
    WorkGraph BlockGraph(int);
    //int : the number of nodes in a block
    //turn a block into a WorkGraph to calculate costs
};
```

In TransferGraph. we record the in-block structures.
PartitionGraph: :Partition (int,int) only labels each node with the name of the block containing it.
In TransferBlock(PartitionGraph). the internal structure of a block in-set outset is set up by TransferBlock(PartitionGraph)

The calculation of $D^{-} . D^{-}$and D^{-}costs of the high level transitions is per(irmmi ber HigherGraph: : Costs ().

```
//*************************************************************
// HighPartitionGraph: used to partition a high level
// difference from PartitionGraph: how to decide a block
// in uhich high level constraint
//******************************************************************
class HighPartitionGraph : public PartitionGraph
| public:
                                    HighPartitionGraph(TransferGraph,int,int);
                                    //int, int : Grid.size, number of high level constraints
};
//**********************************************************************
// HigherGraph: graph-like structure of middle/highest levels
// block_from/block_to : indices of a pair of DC blocks
```

```
//***####**#############################################********************
class HigherGraph : public WorkGraph
l
        public:
        int *block_from;
        int *lock_to;
        public:
            HigherGraph(TransferGraph);
            void Costs(TransferGraph,int,int,int,int,int);
            //cost from I_i(X_j) to I_j(X_k)
            //j: index of the current block, (i,j): index of this node
//(j,k): index of this edge, i: from which block, k: to which block
            Block HighBlockGraph(int, PartitionGraph, TransferGraph,
                    WorkGraph,int, int);
    TransferGraph HighTransferGraph(PartitionGraph,TransferGraph,
    WorkGraph, int, int);
    WorkGraph Modify_Graph(TransferGraph,int,int,int,int);
    //recalculate costs concerning Xs and Xt
    Path FindHigh_Path(TransferGraph,WorkGraph,
                WorkGraph,int, int, int,int);
                //int,int,int,int: Xs, Xt, s, t
    Path FFindLow Path( TransferGraph, Path * :nt,:nt);
                //int, int: s, t
    Path LowPath(TransferGraph,int,int,int,int &);
        //int,int,int,int:blockfrom, block_to, s, &\tau(next s)
    void GraphFile(); //arite the graph into dot file
};
```

The conversion from a high level graph (an array of Blocks) to its semi-dual graph is carried out by HigherGraph(TransferGraph). For every node in a semidual. there are two correspondent integers: block_from and block_in. which together represent a pair of DC blocks.

Document Log:

Manuscript Version 0-28 August 1999
Typeset by \boldsymbol{A} US-EATEX - 28 August 1999

Gang Shen

[^1]
[^0]: A Thesis submitted to the Faculty of Graduate Studies and Research in partial fulfilment of the requirements for the degree of Doctor of Philosophy

[^1]: Cemter for Intelligent Machines. McGill Cinersity. 3480 Činersity Sf.. Mompreal Q(ébec) h3a 2AT. Canada

 E-manl address: shgđcim.megill.ca

