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ABSTRACT 

K e  base the notion of state aggregation for finite state machines (FSII) on the dy- 

numical consrstency (DC) relation ([17]) betu-een the blocks of states in any given 
state space partition 7 .  In this framework. ive present the new notion of ST dynarnical 

corrststency (ST-DC)) for source-target (ST) F S h  where there is a preferred sensr of 

Roit. from a set of source states (S) CO a set of target States (T). I t  is proven that if a 

partition T is ST rn-block controllable (ST-IBC). the partition machine of an ST FSN 
J I  basetl on 7 .  JI' (Le. high level abstraction of J I  based on i). is controllable if 

and ml!- i E  JI  itself is controllable. Ué also prore that al1 ST-IBC partition machines 

of .\l form a la t  tice and an- chain from the top to the bottom of this lattice provides 

n hrrirnrchzcal feedback control structure. 

This methodology is nest estended to optimal control problems for discrete event 

systerns (DES) rnodelled by finite state machines. A partition machines based scheme 
çall~ti htrrnrchtcaiiy ncceleraîed dynamic programming ( H A D P )  is introduced which 

significantly speetis iip the standard dynamic programming procedure (up to several 

orders of magnitude) at the cost of a certain degree of sub-optirnality. Ke  present 

necessary and sufficient condit ions for the HADP procedure to generate globally opti- 

mal solutions and. further. give bounds on the degree of sub-optirnality. An esample 

called the Broken Manhattan Grid (BIIG) system is used to illustrate the implemen- 

ration of HADP. and flesible and generalisable code for this esample is described. 

Slany cornplex systems appear in the form of the product of multiple interacting 

sub-systems. A formulation of multi-agent systems is presented where the d-ynarnics 

of the agents are described bl- default specifications. of a sets of forbidden state-event 

relational pairs. denoted R. Such systems are called relational rnulti-agent product 



systems (MA (R)). The application of the HADP rnethodology to relational multi- 

agent product systems is analysed. -1 multi-machine system consisting of a time 

counter and agents called a timed multi-agent relational product (TiClrl(R)) is formu- 

lated. 

To apply hierarchical control to the routing problem for networks? ive consider 
two conceptual classes of networks: first link network systems (LN).  and. second. 

buffer network sgsterns (BN). The notions of dynamicaf costs and network states are 
introduced. In particular. the notion of throughput-independent ST-IBC (TI-ST-IBC) 
partitions is used to formulate the incrementaf HADP (IHADP) rnethodology. For 

the multiple objective optimisation problem of LSs. a notion of (vector) network state 

is introduced to carry the information describing the available transmission capacity 
of each link. For buffer network systems. the notion of (matm) network states is 

given. 

iii 



On fonde la notion d'aggrégation d'état pour les machines à état fini (FSM). in- 

troduites dans la relation dynamiques consistantes ([17]) entre les blocs des états 

d'une partition d'état 7. Dans cette thèse. on présente la nouvelle notion de ST. 
conszstance Jynumzpue. (ST-DC) pour source-déstination (ST FShls) ou le sens de la 

circulation de l'état source (S) à l'état cible (T) est préferée. Ceci donne naissance à 

une définition de la dynamique i haut niveau sur la machine finie correspondante à la 

partition blocs donnée. Si une partition n est ST controllable en bloc (ST-IBC). une 

partition machine d'une ST FSbI 11 basée sur 7 .  .W. est controllable si et seulement 

si JI est controllable. Cette définition prouvée. nous avons prouvé que si tous lcs 

6ttits dans .II sont CO-accessibles ii T. toutes les partitions machines ST-IBC de JI 
provenant rie la tréllis et de toute chaine de haut en bas de cette tréllis donne une 

structure htérnrchtque rie cornmande O retour. 

Crtte ni6thodologie est élargie aus problenis de commande optimale pour les 

systtirries ii évknement discret (DES) modelisés par des machines à état fini. Cne 

partition machine basée sur le schema applé programmation dynamrque ù hrerarchce 

(icceltlrt+ (KA DP). qui accélère sensiblement la procedure de la programmatiiin dy- 

namique standard au coùt d'un certain degré de sous-optimalité. est introduire. On 

présente une condition suffisante et necessaire pour la procédure (HADP) afin de 

générer des solution globales et optimales. mieux encore. donner des limites du degrée 

de sous-optimalicé. Cn esemple d'illustration d'une implémentation (HADP) est aussi 

donné. 

Plusieurs systèmes complexes apparaisant sous la forme de sous-systèmes mul- 

tiples interagis. Cne formulation de systèmes multi-agents est presentée oil les d l -  

namiques des agents sont décrites. par des spécifications à default. notée R. Ce 



genre de système est appelé systèmes de produit multi-agent relationnel (hIA(R)). 
L'application d'une méthodolgie HADP à ces systèmes est analysée. Un système à 

multi-machines a base ae conipîrüis et agents. rppe!6 yrnrltli! olntionnel multi-agent 

temporel (TMA (RI)' est formulé. 

Afin d'appliquer une commande hiérarchique. aux problemes de réseaux. on con- 

sidère deus classes conceptuelles de reseaux: la première est les systèmes a réseau 

lié (LX) est la deuxième est les systèmes à réseau temporaire (BiV). Les notions 

de coures dynamique et états réseau. sont introduites. En particulier la notion 

throughput-independent ST- IBC (TI-ST- IBC) partitions est utilisée pour formuler la 

méthodologie ( HADP) incrémentale pour des problems multiples d'optimisation de 

LSs. Cne notion d'état réseau (ucctor) est introduite afin de transporter I'information 

décrirant la capacité disposible de transmission de chaque naeud: pour les sysrémes à 

rescau temporaire. la notion d'ètats à réseau (matnce) est donnée. 



ACKNOWLEDGEMENTS 

First and foremost. I would like to thank my thesis supervisor. Professor Peter E. 
Caines. for his constant encouragement and generous sponsors hi p. Wit hout his orig- 

inal inspiration and technical guidance. this thesis tvould never have begun. I must 

thank him for his rigorous reading of this manuscript. and for his suggestions on 

bot h style and the conceptual framework. Like al1 of Peter's graduate students. 1 will 

miss his famous Sunday morning calls. his cornmitment to scientific accuracy. and 

his foresight in new disciplines. 11' discussions with Professor Caines have been an 

enjoyable esperience for me. 

SSERC. the Greville Smith .\lcGill h j o r  Fellowhip Foundation ( 19%- 1999). 

FC AR ( 1999) and '\'.-\S.-\-Ames Research Centre (Ilountainview. CA) al1 deserve rny 

gratitude for the financial support I have received from them. 

I would also like to estend rny appreciations to Dr. Charalambos Charalambous. 

Paul Hubbard. Lemch Ekaterina. and ottier CIlI fellow students who have ahwys 

been a challenging and pro-active audience for the presentations of rny research. 

Their constructive and valuable ccrnments led to the improvement of my work. 

Thanks should go to the CI11 management and technical staff who have provided 

a pleasant enrironment for me to concentrate on writing this thesis. 

I aould like to thank Xabil Aouf, who did the translation of the abstract into 

French. Thanks to Carlos Martinez-hIascania7 who helped me struggle with Latex. 

and let me use his rich libra- of style files free of charge. 



Finally. but rnost importantly, I thank my beloved tviie, Hongbo, to whom 1 owe 

my entire life. Throughout this strenuous period of Our life, her support has been my 

source of mornentum to never give up hope. Cnfortunately, 1 cannot find appropriate 

words to espress mu thanks to my parents: perhaps no words would do. They never 

hesitate to [end me their forgiveness ahen 1 disappoint them. for which I have no 

means to compensate them. 

Gung Shen 

.Ilontréal. Québec. rlugust 1999 

vii 



CLAIMS OF ORIGINALITY 

This t hesis contains the following original contributions: 

r -4 theory of hierarchical control for finite systerns with a preferred sense of 

BON-, The notions of ST-dunamical consistency and ST-in-block controllability. 

[Chapter Z j  
r, .-\ rhroretical franiework of hierarchically accelerated dynarnic prograrnrning 

( HADP) for trajectory optimisation in ver? cornples systerns. including the 

notions of optirnality consistency. conves high lerel trajectories and semi-dual 

high Ictel graphs. [Chapter 31 
e Algorithms for the implementation of HADP and Incremental HADP. [Chap- 

ters 3 and 5; 
e The notion of relational multi-agent product fini te state machines (.\1.1(7;1) 

FSlIs).  [Chapter 41 

O The notion of vector and matris network States and their applications in hier- 

nrchicnl netnork routing. [Chapter 51 
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CHAPTER 1 

Introduction 

Traditional control problems concern continuous tirne and discrete time rector state 

vaiued systenis which are usually rnodelled by differential and difference equations 

respect ively : on the ot her hand. discrete event systems (DES) are dist inguished from 

thesc traditional rnodels in that the evolution of the finite set ralued state of a DES 
is tiriven iiy t hc. occurrences of sorne sequence of evenrs (i3-11. :21i. ;6Oj). 

Duc. tci its conceptual simplicity and its 1 s - r  range of applications. the finitc state 

niachine mode1 is one of the most basic forma1 mechanisms for DES rnodels ([29]. 

2 .  5 9  . Furthermore. principally because of the advances in and unirenal appli- 

ration of cornputer systems. discrete event systems are applied in almost erery aspect 

of engineering (j.101. !3?;. [503). In particular. as a foundation for research in hybrid 

systems ( i.r. systerns which possess mised continuous and discrete behaviours). it is 

ccrrainly foreseeable that DES theory r d  find an ever growing dornain of application 

(:46'. [IO!. : I l s .  . .  [ s i \ .  . i38:. [62!). 

Progress in digital computing technologv has made possible the irnplementation of 

many advanced algorithms. Hoivever. computational complexity due to high state di- 

mension. and frequent information exchanges. make the control of large scale systems 

est remely difficult ([4]. [30]): consequently. to manage the computationai complexity 

of control synthesis. hierarchicdly structured information and control systems are 

frequently employed ([44]. [3]. [12]). By grouping together the states of the original 

system. which in many applications has a huge cardinaiity and simpler dynamics. 

state aggregation will generate a - s t e m  a i t h  a smdler set of (aggregate) states ( [ T l .  
[8!. [2]). Thus. as a principal wvq to create an applicable hierarchy. state aggregation 



pl-s a significant role in the analysis and control of large scale systems ([27]). This 

observation motivated the research presented in this thesis. 

The Hierarchical Control of ST FSMs 

-4 notion of state aggregation for finite machines aas introduced in [17] via the 

concept of the dynamical consistency (DC) relation between the blocks of states in 

any given state space partition r. This formulation results in a definition of higher 

lerel dynarnics on the finite (partition) machine JI" whose states correspond to the 

giwn partition elements. 

Chapter 2 of this thesis treats the more general case of Source-Target systems 

(ST-systems) where there is a preferred sense of flow from a set of source states (S) 
ti, a set of target states (T). .-\ generalisation of the theory of (171 to ST-systerns 

is giren which includes the generalisation of the notions of dyamical  consistency. in 

block cont rollabili ty and hierarchical feedback control on the associated hierarchical 

larrices. Ttie dynarnics of a higher level machine J I "  in a hierarchy {.Il. .\17} are 

defineti in accordance with the ST-DC relations over the partition blocks of the lower 

I t w l  niodel J I .  

A class of hierarchical control structures for ST-systerns is presented based on the 

notion of ST Jynamtcai conszstency (ST-DC). Ir is s h o w  that ivhen a partition a of 

.II possesses some particular properties. which are termed ST in-block controllabilrty 

(ST-IBC).  the higher Ievel finite state machine defined based on ;T is ST-controllable 

if and only if J f  is ST-controllable. Further. if .\l is T-tnmmed. Le.. every state 

of .\l is CO-accessible to T .  the set ST-IBC partition machines of .ll forms a lattice 

structure. and an- chain from the top element to the bottom element of this lattice 

provides a hierarchical control structure for M. 

The rnaterial in Chapter 2 follows that in [14] and (151. CO-authored by P.E. 
Caines. 1'. Gupta and G. Shen. 



CHXPTER 1. IYTRODUCTIO3 

Hierarchically Accelerated Dynamic Programming 

Cornplex finite state systems arise in many contexts. in particular. optimal con- 

trol problems for finite state machines have significant applications in transportation 

management. manufacturing systems and telecommunication networks. The main 

theoretical foundation and computational technique for finding optimal trajectories 

in finite state systems is that of dynamic programming ( D P )  ([45!. (81. [51]). Conse- 

quently. a large number of algorithms have been developed to solve DP problems. The 

time complesity of these algorithms naturally depends upon the size of the models 

involved: in general. complexicy grons non-linearly (specifically &ter than quadrari- 

cally) with the number of States in the system ( [ 2 5 ] ) .  Hence computational efficiency 

degrades significanrly and. in particufar. standard DP algorit hms are not applicable 

to real-tirne problems of practicai interest. 

Chapter 3 presents a scheme called hierarchically accelerated dynamlc program- 

mtng ( H A D P )  tvhich significantly speeds up drnarnic programming (by up to several 

orders of magnitude) for discrete erent systerns modelled by finite state machines a t  

the cost of a certain degree of sub-optimality. 

The HADP rnethodology is based upon (possibly iterated) dynamical abstraction 

of the given DES (by state aggregation) which generares a control conszstent hierarchy 

of finite state machines. \té discuss necessary and sufficient conditions for the HADP 
procedure to generate globally optimal solutions and. further. give bounds on the de- 
gree of sub-optirnalit- which can occur. Yarious approaches are proposed to improve 

the accuracy of the sub-optimal solutions bu using sernz-dual high leoel graph while 

reducing the computational tirne via the use of weal;.l ST-IBC partitions. Final15 an 

esample called the Broken Manhattan Grid (BUG) sysrem is used to illustrate Our 

software implernentation of HADP. 

Some contributions in this chapter appeared in [55j' [56] aEd (531. CO-authored 

b -  PX. Caines and G. Shen. 



Relat ional Mult i-agent Systems 

In a variet? of situations. interacting agents are involved in an integrated environ- 

ment (i41]. [64], [61!). The state transition of each agent takes place when an event 

happens. and events in distinct agents rnay occur concurrently or non-simultaneously. 

The behaviour of the individual agents is regulated by the interaction between al1 of 

the agents which can be present in various forrns. 

Chapter 4 analyses the systems of interacting finite state machines via the pro- 

pcised rnodels of mufti-agent (b1.4) product and tirned multi-agent (TM.4) product. 

A notion of a stmultaneous product of finite state machines for which the events 

have the same esecution duration ( [ ive  time) is proposed. and the necessary and 

suficienr conditions for simultaneous product systems to be controllable are dis- 

ctissed. Khen the interaction berween agents is giren in terms of a set of forbidden 

(.date-ruent) configurations 72. the systern of n interacring finite state machines .\Il. 
1 5 L 5 n. is modclled by (Il-r,):,IJI,. the mufti-agent (relational) (.\I.-I(R)) prod- 

uct of J I , .  The application of the HADP algorithm to (Il-&, ,  JI, is formulated in 

tiiis chaptcr. and some preliminary results on the construction of the relared control 

hierarcliies are also given. .\ time counter is used to observe the state transitions of 

JI,. 1 5 1 5 n. in case distinct events in -11, have different live times. Finally. the 

product system of the time counter and .II,. 1 5 i 5 n. the so called timed multi-agent 

(relutlonul} T.\I.-I(R) product is formulated. 

Hierarchical Network Routing 

Dynamical routing in a network is a tvay of providing flesibility to adapt to chang- 

ing and volatile traffic demands. Traditionally, for very large networks. a multi-level 

hierarchical routing is used to reduce the size of each routing table ((581). With the 

recent strides in microprocessing technologv, dynarnic trafbc management has become 
practical ([48]) and state-dependent routing is used to increase network utilisation. 

The key features of state-dependent routing include the explicit use of global oetwork 



information and very short update cycle times. 

In Chapter 5. we discuss the hierarchical routing methodologies within the con- 

test  of several network models. 

To cope with the changing traffic ioad. the notion of a throughput ST-IBC par- 

tition is used to Form a stable hierarchical control structure. As each new request 

(message) arises. the high level costs are recalculated according the the feedback of 

the network state and HADP is applied for route optimisation. The resulcing incre- 

mental HADP ( I H A D P )  algorithm is formulated in the first part of this chapter. 

Consider a network of links for which the capacity of al1 nodes (tiewed as buffers) 

is assume to be infinite. If  multiple requests arrive at the netivork at the same time 

instant. the owrall optimal solution may differ from the optimal solutions for indi- 

vidual requests because of the coostraints of the limited capacit- of links. A vector 

netirork state carries the information describing the available transmission capacity 

of eacli link. For n requests. if ive can derive a hierarchy consisting of the throughput 

IBC partition machines of the original network. HADP may be applied. 

Sesr ae consider networks rvith buffers a t  the nodes and for which the capacity 

of al1 links is assumed to be infinite. The notion of a matnc networlr s t ~ t e  is given for 

s i c h  networks. By decomposing an IBC block of a partition of the network nodes into 

a set of intersecting rings. n-e obtain a rnethod to ensure the rn-block controll~bility o f a  

network state. Finally. ive prove that when high level network is in a controllable state 

and each of the partition blocks of the original network is in an in-block controllable 

state. the original network is in a controllable state. 



CHAPTER 2 

The Hierarchical Control of ST Finite 
S tate Machines 

2.1. Introduction 

Hierarchicnlly structured information and control systems occur for a t  least two 

relatcd reasons: first. the great compiesity of man- narural and designed systcms 

limirs the ability of humans and machines to describe and comprehend them. and. 

second. the inherent limitations on the information processing capacity of feedback 

regillators resiil t in the regulators (and possi bly the controlled systems) being organ- 

ised in special. ln particular hierarchical. configurations. 

.\ tany mat heniatical theories and engineering niethodologies have been developed 

as a response CO these problems. Esamples are readily found in the power distribution 

industry and in large scale manufacturing industries. Furrher important esamples are 

found in the organisation and control procedures of the communications. rail. road 

and air traffic systems. -411 of these esamples involve some forrn ofaggregation in state 

space. and most involve some form of hierarchically structured flow of information 

and control signals. Large social organisations such as governments and corporations 

provide sociological esamples of such structures. whiie systems rvhich probably do 

not display these features are idealised markets and the unorganised target-seeking 

behaviour of messages on the Internet as currently organised. 



Theoretical worlc on hierarchical control has a large literature and has connections 

to. among other subjects. game t heoy, mathematical programming and optimal re- 

source allocation. These topics tvere presented together with their connections to coa- 

trol theory in [30]. More recentlp formulations of hierarchical control have appeared 

in stochastic control [52], automated highway system studies [63] and within the su- 

pervisory control formulation of discrete event system t heory (e.g. [42], [49] ! [68]. [7O]). 

The ivork in this chapter follows that in (661, [17] and [65]. where a new notion 

of state aggregation is introduced via the concept of the dynamical consistency (DC) 
relation between the sets of states constituting the members of an- giren partition n 

of the state space. This formulation results in a definition of high level dynamics on 

the finite (partition) machine .\Ir whose states correspond to the given partition ele- 

ments. The DC relation is then similarly defined on an? further partition of the state 

scr of J I " :  and so on. The theoretical derelopment in [l?] gives the iattice structure 

of the class of 50-called zn block controllable (IBC) partition niachines. The nutiijri 
of statc aggregarion given by the concept of the DC dynamics of a partition machine 

permits a natural construction of a large class of hierarchical control structures on 

itny given finite state machine. It is to be noted that in che purely graph theoretic 

setting. without an? controlled dynarnics. an idea related to that of DC dynamics is 

t o  bc found in !281. 

Sincc r here is a natural parallel between the formulation of lerels in hierarchical 

system theor- and their definition in hybrid system theor?. ivhere discrete systems 

play the roles of both models and controllers for finer continuous state systems. In [19] 

and [18]. the theory of il71 is generalised to the hybrid case. and to [ I l ] .  

In the analysis and design of hierarchical control systems. one is often interested 

in the reachability of a set of terminal states from a initial (or start) set of states. 

'ilan? examples of systems a i t h  such a prefened sense of Born are to be found among 

natural and designed systems. As a result. in this chapter. we consider a generalisation 

of the theory of hierarchical control initiated in [17] to systems in which there are 

dist inguished source and target sets for the controlled flow. 
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2.2. The ST-Dynamical Consistency Relation and ST-IBC Par- 
t it ion Machines 

Consider a finite state machine. JI = {S. T. 6 ) :  where .Y is a finite set of states. 

X is a finite set of (forced) events. and d : .Y x 1 i S is the (partial) state transition 

Function of the system. We shall use the standard notion Tm for the set of al1 finite 

sequences (including the empty string c)  of elements of X. 

-1 partition a of the Stace space .Y of .\l is a collection of subsets of S. namely. 

:: = (.Yl.& ..... Siri} satisfies (1) S =u!!,S,; (2)  S,n.Y, = 0  for 1s i f  j 5 /ri: 
( 3  S + 0. 1 t 7 .  A partition machine A l "  takes r as its state space and its 

elements are called blocks. 

Let (C < U )  c 5 u denote that a string c is a (proper) prefis of u.  

Dcnotc a distinguished subset of states called source states and a distinguished 

siibsct called target states with S C .Y and T C S respeccively. \\é shall term finite 

sysrerns [vit h such dist inguished subsets ST-systems. 

\té note that in the case where the sets S. T and S are identical a11 the definitions 

and resiilts belon- becorne consistent with their counterparts in j17j. In this sense the 

work in this chapter generalises (171. 

Definition 2.1. (ST-Controllability) 
(1)  (Strong ST-Controllable) .\I is said to be strongly ST-controllable if and only if 

for every r E S and for every y E T .  there exists u E 1' such that 6(1. u) = y. 

( 2 )  (Weak ST-Controllability) d l  is said to be weakly ST-controllable if and only if 
for every I E S there esists y E T and there exists u E X' such that 6(z, u) = y. O 

Clearly. strong ST-controllability (and hence weak ST- controllability) is a signif- 

icantly weaker property ihan standard controllability because the latter requires the 
accessibility of every state from every other state. 



2.2.2 THE ST-DYX.WICAL CONSISTEXCY RELATIOX XXD ST-IBC P-4RTITIOIi bIXCHCU'ES 

FIGURE 2.1. .An 8-state machine JIa 

Example 2.1. In the 8-state machine JC s h o w  in Figure 2.1. S = (1) and 

T = (8}.  Clearly. this ST-system is both strongly ST-Controllable and neakly ST- 
Cont rollable. c! 

\lé recali that a partztion a of a finite set S is a collection of pairwise disjoint 

subsets called blocks. S, C S. 1 5 i 5 [ T I .  such that S, r? SI = 0 for i $ j and 
. -, .Y = ";:,.Y,. .-\ partiu! ordrr relation 5 (finer than) on partitions of .Y is defined such 

tliat for two partitions. sl = (.Y:. Si. .... and ii? = (.Y:. .Y:. .... 'i;:21}. 5 :? 

if and only if for each block .Y: E ri. there is an .Y,? E 1 2  such that .Y: C -Y,?. where 

1 5 r 5 lai \ .  1 < j 5 1 ~ ~ 1 .  Le. a, is a refinement of T?. 

In  the esample above, for the two partitions r l  = {{l}. {2 .4} .  (3) .  {.Y;}. (6). { S } } .  
T? = ( ( 1 . 2 . 3 . 4 ) .  (3.6.7.8}}. we see that 71 5 r?. 

Definition 2.2. (I(S,. S. T ) ,  O(S,. S. T)) Consider a partition r = (SI. S2. .... 

S of the state set S of a finite state machine JI. In each block S, E a. 1 5 i 5 lnl. 

ive specify two subsets. respectively [(-Y,. S. T) and O(S,. S. T). which are termed the 

local entries (or in-set) and local ents (or out-set); these are defined respectively as 
follo~vs: 

I E I ( S , .  S. T )  e 2 E S n  .Y, or there exists I' E (S - S,). i.e. the cornpiement of 

.Y, in S. and there exists u E E such that 6(x1, u)  = 2; 
y E O(S,: S. T )  e y E T n .Y, or there exists y' E (.Y - -Yz) and there exists u E X 
such that 6(y. il) = y'. t3 
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In the partition ?; = {(l, 2.3,4}. 15. 6' 7, S}}  of Example 2.1: for = {1,2,3.  .L}, 
I (&.S .T)  = (1.3.4) and O ( S I , S , T )  = 12.31: for X? = {5.6.7,8}. I(.Y?.S,T) = 
{j. 6}  and O(&. S, T) = (6.7.8). 

K e  now shall define the appropriate generalisation of the notions of dynamical 

consistency and partition machines to ST-systems. 

Definition 2.3. (ST-Dynamical Consistency (ST-DC)) The relation of ST- 
dynamical consistency for an ordered pair of blocks (S,. .Y,) in a partition a is defined 

as F0l~01vs: 

(S,. .Y,) E a x r; is called ST-dynamically consistent (ST-DC) if one of the following 
cases holds: 

( a )  i = 1 .  For each I E [(.Y,. S. T )  

i 1) tliere esists y E O(S,.  S. T) and there exists ut., E 1' such that 
,i(x.ri:.,) E .Y, for al1 u:,, 5 u ,.,. and6(r .u t . , )  = y :  and 

( 2 )  for at least one such y. there esists z E I ( S , .  S. T )  and there esists 

u..,@h rhat d(g.s,.,) = :. 

\\é w i t c  u,., . u,, as u:. whcre . denotes concatenation. 

For every I E I (S,. S. T) there esists y E I(S,. S. T). and there esists 

some non-nul1 ut.,  E 1' such that 6[r .  u:,,) E S, for al1 u:., 5 ut+,  and 
&(i. u,.J = y. O 

I n  the c.ue r = 1 the condition above siniply requires that each input state of 

.Y, should have a non-empty controlled path nithin .Y, which makes it return to the 

in-set so as CO form a high level pseudo-cycle. This is postulated to obtain desirable 

properties For the formal language of high level transitions as defined below. 

Example 2.2. In Example 2.1. ({l. 2 .3} .  (4,6}) is ST-DC. Here the first parti- 
tion block is such that its in-set is equal to the whole block and the out-set is the pair 

of elements I2.3) .  The second block is such that its in-set is the element {6}. which 
is accessible in one step from {2}. and the out-set of {4.6} is the ahole set. But 

({l. 2 .3 ) .  {4}) . where {4}  is both an input and and out-set. is not ST-DC since {4) is 

not accessible in one step from the first set. -4 general ST-DC relation is represented 

in Fig. 2.2. in which we see displayed I-unreachable states (i.e those not reachable 
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t T  
FIGURE 2.1. (S,. .\) is ST-DC but not DC 

from the input states of S,) and O-inaccessible states (Le. those from which the 

oiitpiit srates of S, are not reachable) in the block .Y,. Ci 

.-\ hzgh leuel transttton (input) eoent L;' is defined. and denoted by L'(. if and only 

if (S,. S,) is ST-DC: in other tvords. for an- pair 1 .  j. L I  is defined if and on&- i f  

t he  (ionditions of Definition '2.3 hold. The term high level transition is to be takcn 

rclruive to the base machine .II. but no mention shall be made of this whenever the 

contesr is clear. Let 1" denote the collection of al1 such I;' for which ive note that 

the high level niill string c is an element of (X")'. 

In order to define the partitzon machme J I "  = (7.ZZ.&"} (based upon the 
partition 7 of JI). we define the state transition function J" : 7 x Y' + :: by 

J7(S,.L;') = 1,. S,.S E r.1 5 1.1 5 \T/. nhenever (.Y,. SI) is ST-DC. \\é may 

noir define d7 : 7 x @$) + ïï recursively as fo1loii.s: first set jT(.Y.. c )  = .Y,: then. 

for strings in (Y)' of length one. the definition of P' gives d'(.Y,. L;') = .Y, whenever 

(S,. .Y,) is ST-DC; finally. for strings L' in (Zr)' of length greater than one ive set 

d7(S, .  L*: . C)  = b"(S, .  C )  if 6"(S,: Lj;) = -Y, and if 6"('i,. C) is defined. Here -- indi- 

cates the concatenation of two strings. From this recursive definition Ive immediately 

obtain the follorving fact as a special case. 

Lemma 2.1. (Semi-Group Property) bT(S, :  FI . L) = 6"(dr(X,. L; ). Cr2) as 
long as d" (S,. Li) and dr(6"(S,: Li l ) .  U2) are defined. where -- means the concatenation 

of two sets. [7 



It  may be verified that when a chain of high level transitions is defined, it is the 

case that the appropriate generalisation of Definition 2.3 holds; that is to Say. for 
every state in the I-set of the initial block there exists a path through a chain of O 
and I state sets in the successive bIocks which terminates in the I states of the final 

block. I t  is to be noted that the definition of one step pseudo-cycles in Definition 2.3 
permits well defined chains of high level transition event strings to contain sets of 

pseudo-cycles. i.e. high level identity elements. 

For a given state space S and partition T. let S' denote the elements of ;i 

çontaining States lying in S. i.e.. .Y, E S" if S,nS + rd. and similarly let TT denote the 

ekments of 7 containing states in T. Le.. 1; E T' if 1; n T  # 0. Then we rnq give the 
A following definition of the controilability of the partition machine .UT = ( r .  Y, d2). 

Definition 2.4. (ST-Between Block Controllability) A partition machine 

-1 = ( 7 ,  y fj7) ;s 

( 1) strongly ST  brtuwn block controllublr (strongly ST-BBC) if it is the case that for 

every .Y, E S' and 1; E T". there esists a@€ (Y)' such that < > " ( s , . ~  = 1;: and 

121 ir*eakly ST hotuleet; hlock controllrzble (weakly ST-BBC) if it is the case that for 

cvery .Y, 5 S7. there esists a 1; E T" and there esists a L' E (Y)' such thac 

, j7(St. C-) = 1 ; .  5 

\\é note that ive ma' obtain iveak ST-BBC From strong ST-BBC by sirnply 

eschaq ing  a iiniversal quantifier for an esistential one. As  this applies to the results 

beiow Ive henceforth only discuss strong properties in detail and lm-e the derelopment 

of the analogous weak properties to the reader. 

Definition 2.5. (ST-In-Block Controllability) .\ block S,. 1 5 i 5 171 is ST- 
tn block controllable (ST-IBC) if and only if either &Y,. S. T) = 0 or O(S,.  S. T )  = 0 
or the following t a o  conditions hold conjointly: 

(1) For every r E I ( S , ,  S. T )  there exists y E O(S,? S. T). and there exists u E C' 
such that 6 ( x .  u') E S, for each u' < u. and 42. u)  = y. 

(2 )  For every y E O('i,: S. T) and for every r E O(S,, S: T) with z # y, there exists 

c E L-' such that S(y. c') E -Yi for each t.' < c. and &(y. u )  = r. Le.. the states in 

O( S,. S. T) are mutually accessible rvit h respect to S,. 
-4 partition a is said to be ST-in-block controilable (ST-IBC) if e v e q  block of ii is 

ST-IBC. CI 



In other words. any in-set state of an ST-IBC block -YK E ;7 must have an interna1 

trajectory going to an out-set state of .YK, and the exit States of .Y, must be rnutually 

accessible. Le.. S, is weakly ST-controllable and O(S,, S. T) is rnutually accessible 

with respect to S,. In the 8-state machine of Esample 2.1. the block (1 .2 .3 .4 )  is 

ST-IBC. although it is not IBC in the sense defined in (171. 

We observe chat in the standard case where S = T = S. ST-in block control- 

lability specialises to the standard IBC property because in this case a11 elements of 

an! block .Y, are mutually accessible. Further. in case S = T = S. ST-between block 

controllability clearly implies that the standard BBC property holds. 

Né let -;irc(S) represent the collection of a11 ST-IBC partitions of S and . \ l { fC( . I~ )  

tienote the collection of al1 partition machines of . I l  corresponding to partitions in 

Let - represent a one-step state (block) transition in .\l and .W. 

Theorem 2.1. If .UT zs an ST-ln-block controllable partztiorr muçhrne of .II. 

then SI' rs strongly (respectztdg. uieakly) ST-beticeen block controllable rf und  only t /  

J! t s  strongiy (respectzr.elg. weaMj) ST-controllable. 

Ke only prore the implications concerning strong ST-controllability as the weak 

case folloivs by an analogous argument. 

-: 

Giren JI" E .\!:7C(.ll). Assume .if is strongly ST-controllable and let us look 

at arbitra? blocks .Y, in S" and S, E TT. Sow consider any z E S, n S and 

y E .Y, n T :  then by Definition 2.1. ive know there is a trajectory from r to y. 

Suppose this trajectory traverses a chah of blocks in r .  in the order 1;. 1;. .... 1;. 
1 ; = .Y,. l* = .Y,. Because al1 of the blocks are ST-IBC it f o l l o ~ j  t hat the block pain 

(1;. 1 ; ) .  (1;. 1 ; ) :  ... . (l;+ &) satisfy the conditions to be ST-DC. Thus. we have well- 

defined high level transitions. br(ki- L;:) = 1;- 6"(), I j ? )  = 1;. .... d^"(li-l. Cf-') = 
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1;: and hence dX(I;, - 1;,? - ... -  if-^) = IL: Le.: M,ln is strongly ST-between block 

controllable. 

c=: 

Let .\17 be strongly ST-between block controllable. Consider an x E S and y E T.  
Then there must be some -Y, E Sr and .Y, E T" such that r E S, and y E SI. By 

Definit ion 2.4. ive know. t here is a (finite) sequence of events in .\f ". LG . L j - .. . - L*:-' 
from S, to SI. Let this sequence of block transitions correspond to a trajectory of 

blocks. 1; i 1; ... + I t .  1; = S, and 1; = X,. Because each pair of adjacent 

blocks li and 1;-l on the above trajectory of blocks are ST-DC. by Definition 2.3. 
there esists a trajectory Frorn r to some input state of .Yt. Because of the ST-in- 
block controllability of &. this input state must have an in-block trajectory leading 

to y E O(&. S. T). Thus. tve get a compiete trajectory from I to y. Hence. 11 is 

s t  rongly ST-cont rollable. - 
'A 

2.3. The T-trimmed ST-Machine and Its Associated ST-IBC 
Lat t ice 

For any g iwn ST-systern modelled by .II = (S. 5. d}. 1ve terni thc states in .Y 
wtiich arc not rcachabic from S S-rnuccesszble states. and term the states in ,Y froni 

u-tiich T is not rcachable T-CO-inaccesszble states. 

The S-inaccessible and T-CO-inaccessible states of FSLI J I  are irrelevant to the 

ST-control problem: this is because any path from a state in S to a state in T 
cannot p a s  through either of the S-inaccessible and T-CO-inaccessible states. From 

the point of ~ i e w  of ST-controllability. al1 the S-inaccessible or T-CO-inaccessible states 

may be deleted before we investigate the ST-control problem. This would yield a 

minimal realisation of -11. .W. by ahich ive mean every state of .\f' is S-accessible 

and T-CO-accessible. and hence there are no redundant states with respect to the 

ST-controllability problem for the resulting ST-system. In this chapter. however. 

it is sufficient to elirninate the T-co-inaccessible states of a finite state machine .II 
and ive denote the finite state machine obtained alter this T-trimming process by 

JI, = (Sc. L;. 6,) .  J I ,  is said to be the T-tnmmed FSSI of J I .  
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Definition 2.6. (Chain Union uC) The chah  union of two partitions ;rl and 

a? of S. denoted x ,  uC n?' is the least upper bound of nl and ~2 with respect to 5 
in the set of partitions of S. L 5 (3 

w 

The following aigorithm may be used to calculate the chain union of two par- 

titions. Each of the distinct blocks 2, of the partition ;rl uC fi, ai. a? E 7Ec(x). 
can be constructed recursively by setting 2, = un=, Z,,,, = rnax{l;il l . I - I } .  ahere 

Z,,, is giren by the following algorithm: Set ZIVi = -Y, for some S, E 7,. then for al1 

n. 1 < n < .V. 

Z,,, u {If E al : Z,,,nSf f J )  n odd. 
2t.n-t = 

Zi,nU ( 1 " E  7- : Z,,,nl" f d }  n even 

.llternatively. let ils define r - r' if  either I. r' E SI E ai. 1 5 r <_ I q l .  or 

r. r' E .YI2 E - 2 .  1 5 j 5 /z21. Then the equiralerice classes of the transition closiire 

of rhis relation are the blocks of a, uC 7 2 .  

The propercy of ST-in-block controllability ahich ire have defined above rcstricts 

the set of partitions in such a way that it is preserved under chain union. 

Theorem 2.2. For 7 , .  ;;? E Z!$~(JI,). the chain union of sl and 7- rs ST-IBC. 
L . P . .  7 ,  L~ 7 2  E rgC(. \ f t ) .  

Suppose r;, and a- are tivo ST-IBC partitions of S,. the T-trimrned finite state 

machine of S l .  let us look at their chah union 71 uC a? = {ZI. Za2. .... Zr}. First. ive 

prore that if .4 and B are ST-IBC. .4uB is ST-IBC whenever .4nB # 0. Ir is clear that 

I ( . W B . S . T )  c I( .-L.S.T)UI(B,S.T) a n d O ( d ~ B . S . 7 )  C O(.-l .S.T)uO(B.S.T) 
so that we need only consider the nontrivial cases when O(A. S. T )  u O(& S. T )  $0. 

After eliminating al1 states ahich are not T-CO-accessible. at least one of the out- 

put states of A or B is in -4 n B. This is shorvn as follows. Since we may suppose 

0(.4. S, T) f 0 (recall O(d. S. T) u O(B. S. T) f 0). without loss of generality, take 

I E .4 n B. y E 0(A. S. T) then there is an intemal path in -4 from z to y (since S, 
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case (a) case (b) 

FIGVRE S .3 .  ST-IBC is ciosed under chain union 

has been thinned. i.e.. al1 T-CO-inaccessible states in S have been eliminated. such 

rhar the srates left in .\d rnust have a trajectory to T ria an output state of its block: 

and al1 outpiit srates of -4 in an ST-IBC partition. are niutiially reachable). If (1) 

g E -4 n B. the above daim holds: otherwise if ( 2 )  y E .4 - (-4 ri B). t hen the path 

within -4 from L. to 9 of the form r -+ X I  + ... -+ g musc have a one step 

traiisition Iciiving B of the form b a. wiiere u E .4 - ( A  5 B ) .  b E -4 ?. B and 

h. ri E ( r .  r l .  ... r k .  g } .  Thus. b E O ( B .  S. T). so the conclusion follo~vs again. 

Sow consider thc case I ( A  u B. S. T )  + 0 and O(-4 u B.  S. T) + 0 (otherwise. 

.-\ L B is tririally ST-IBC). thereforc. we have two cases to analyse as loilows (see 

Fig. 2.3): 

Case (a) (O(.4. S. T)r iO(B .  S. T ) )  j 0. Let z E .-In B be such a cornmon output state 

of both -4 and B (see Fig. 2 4 3 ) ) .  Then. by the mutual accessibility of the output 

states in ST-IBC blocks. ail output states of O(.L S. T) and O(B. S. T) can communi- 

cate with each other through I. Hence. the second condition of Definition 2.5 holds. 

Since I(.4 u B. S. T )  C I(.-L. S. T )  u I (B.  S. T). every state in I(.4 ü B. S. T) can be 

driren to some state in O(A. S. T) or O(B.  S? T )  because -4 and B are ST-IBC: more- 
orer. i t  rnay be then driren to some state in O(.4 u B. S. T )  i; 0. Hence. it foliows 

that -4 u B is ST-IBC. 
Case (b)  ( O ( A  S. T) n O(B. S. T)) = 0. Without loss of generality. by symme- 

try we may assume t here exists t E O(A. S. T )  fl ( A  n B) (ive have shown above 

(0(A S. T) v O ( B .  S. T ) )  n ( A  n B) f 0) such that r @ O(B. S' T) (see Fig. 2.3(b)). 
Sow. since the states in 0(A u B. S. T) n (A n B) are output states of both -4 and B. 



I e O(.i u B. S. T) by the current hypothesis. Because we have already assumed that 

al1 T-CO-inaccessible states have been eliminated, x E B is T-CO-accessible implies 

that there is a trajectory in B From I to some output state of B. say 2. Sow Ive need 

t O consider the following two alternative situations: 

( b ) ( l )  If al1 output states of -4 are in ide  AnB.  then the current hypothesis of case (b)  

implies that none of the output states of -1 can be an output state of AU B. since such 

a state would be a common output state of -4 and B. Because O(.4 u B. S. T )  + 0. 
O( A u B. S. T )  C O ( B .  S. T ) .  But by the ST-IBC property of -4. every input state 

of A ha a trajectory to x E O(A. S. T) ri -4 n B and hence CO 2 E O ( B .  S. T ) .  Then 

bu the ST-IBC property of B. 2 has a trajectory to an element of 0(.4 u B. S. T ) .  
Hence. -4 LI B is ST-IBC. 
!b)(Z) If ( b ) ( l )  does not hold. there exist y E O(.-I.S.T) n ( A  - B). Clearly. al1 

output states of -4 are accessible to the elements of O ( B .  S. T) through I and 2 .  

since al1 output states of A. including I. are mutually reachable by Definition 2.5(b) 

(see Fig. '1.3(b)). But. bu the mutual accessibility of O(A. S. T). it is evident that 

ï E O(.-I. S. T) must have a trajectory connecting ir  to y E O(;I .S .T)  ri 1.4 - B )  
tlirough some s E O(  B.  S. T )  n (-4 TI B). Thus. al1 output states of B are accessible 

to  y rhrough s f O ( B . 5 . T )  by the mutual accessibility of the output states of a 

ST-IBC biock. Hence. al1 output states of -4 and output states of B are mutually 

accessible with respect to A c; B. Furthermore. since .4 and B al1 are ST-IBC. their 

input states have in-block trajectories leading to their output states and hence to a 

statc in  O( .4 L: B. S. T )  f 0. It follo~vs again that .4 LJ B is ST-IBC. 

By induction on n. the chain union -1 iiC î ~ ?  defined in Definition '2.6 is ST-IBC. 

Furthermore. -1 uC -2 is the l e m  upper bound of n, and iï? in the collection of 

ordinary partitions ordered by 5:  and. since it is ST-IBC. it is also the least upper 

bound of al and a? in the agc(S). I? 

In the light of Definition 2.5, a block containing only one state must be ST-IBC. 

since that state is either an input and output state. or one (or both) of the input or 

output (singleton) sets of this (singleton) block is the ernpty set. Thus. the partition 

-id , - - S must be an ST-IBC partition. This partition ntd acts as a lotver bound of 

al1 ST-IBC partitions. 



2.2-4 HEFURCHICAL CONTROL FOR ST-SYSTEMS 

Theorem 2.3. For tzuo ST-IBC partitions q, nz E d&C(hft) of an ST Jinite 

state machine, the greatest lower bovnd T I  n al E ~ g ~ ( i l / I ~ )  eziski. 0 

The proof is obtained by use of Theorern 2.2: in particular, the existence of the 
greatest iower bound of and r2 (?rl and 7r2 are ST-IBC) is established by noting 

that (i) the trivial partition (Le., the partition of singletons) lies in the set of ST-IBC 
partitions, and (ii) nl uC 7r2 is the least upper bound of and nz ([22]). 

We eextend the partial order of partitions to their corresponding partition ma- 
chines by defining LP 5 Mx2 if and only if xl 5 r ~ .  The following theorem is a 

straightfomard result of Theorem 2.2 and Theorem 2.3. 

Theorem 2.4. Al1 ST-IBCpartition machines of an STfinite state machine hit, 
ordered b y  5 ,  f o m  a lattice ( M ~ C ( M t ) ,  5 ,  uC, fl), denoted b y  HIBCsr, which takes 
the mac!iine Mid = iCI, as its bottom eiement. In case Mt is ST-IBC, then HIBCn 

has as top element the trivial partition Mir. O 

2.4. Hierarchical Control for ST-Systems 

-4s stated in the introduction, a feature of the ST-IBC lattice structure for any 

ST-system 61 is that it permits the construction of al1 possible sets of hierarchical 
feed back control systems (for ST-controllability problems) for the given machine. 

To be specific? parallel to the standard IBC hierarchical control probiem (see [l?]), 
once the underlying ST-IBC lattice of the thinned machine Mt has been constructed, 
one may select any c h a h  C from the base element Mld to the top element in the 
ST-IBC lattice HIBCsT. (This may or may not be the trivial partition machine 
depending on whether T is a mutually accessible set.). Then any set of partition 

machines lying dong such a c h a h  is called an ST-hiemrchical control structure. Con- 
cerning such a control structure we have the following theorem which is readily verified 
using the results established above. 

Theorem 2.5. For an ST-Controllable finite state machine M t ,  consider any 
pair of distinct elements 1%rt and Ar2, Art 5 iCp, in a hierarchical contml struc- 
ture ( M g c  ( d l , ) ,  5, uC, n) ; then Ar2 is ST-BBC and ST-IBC with respect to hlft . 
Further, any (necessarily solvable) state to state ST-controllabdity pmblem for Mt 
has a decomposition into a set of recursiuely defined, solvable, block to block ST- 
controllability probiems for a sequence of machine pairs ll.I;" and 1CI;"+', 1 5 n 5 
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(al (b) 

FIGURE 2.4. The j-state partition machine J I ;  of J 4  and its ST-IBC lattice 

.Y - 1. correspunding to the elements of the X-lrcel hierarchrcal control structure 

\ . U ~ ' ( . \ l i ) ,  5 .  kC. 7). .-i (hzerarchical fumily of) solutron (trujectones) to this set of 
problems gzws a solution to the onginal  ST-controllabtlity problrm. r: - 

Ttieorem 2.3  shows t hat an? ST-controllability prob!em ma? be decomposed into 

a seqiirrice of hierarchical control problems: these are such that the feedback con- 

rrollcr at an- level steers the level-n aggregated state (i.e. level-n partition machine 

state. containing the base level system state) along a trajectory solring the level-n 

partit ion T-reachability control problem. 

Uè obse r~e  that there may well be a wide choice of chahs in an- given ST- 

IBC lat tice and t hat this consequently facilitates the design of a hierarchical control 

systern: on the orher hand. any given machine JI has only one ST-IBC lattice and to 

alter ii the dynarnics of the base machine JI must themselves be altered. 

Example 2.3. Let us examine the 5-state machine shown in Figure 2.-t.(a): this 

is a partition machine of the mode1 JI8. in Esample 2.1. and ive choose S = {l. 2.4)  E 

JI5. T = {S}. \lé notice that .Ile is already trimmed with respect to T and that its 

corresponding ST-IBC lat t ice is given in Figure Zl . (b) .  
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In this lattice the rightmost chah of partitions from the  top to 

lattice is given by: 

FOR ST-SYSTELIS 

the bottom of the 

71 = .Y,, = {{{l. Z 4 } .  {3}. {S. ;}. {6}. {S} } } :  a? = {{{l. 'A}? {3}}. {{3 ,7} .  {6}, (S}} } :  

r3 = {{l. 2. -4. }. {3}. {{j. 7 ) .  {6}. {S)}} :  ira = S5 = ({l. L4} .  (3) .  ( 5 . 7 ) .  {6}. {S} } .  

In this chain we shall choose the sub-chain RI. z?. a4 as the  hierarchical control 

structure. In 7 , .  the trivial partition. we know that  S'l = T Y 1  = q. Sot ing the  

conrainmenc relations. ive have S = SZa = t 1 . 2 .  -1) c Sr= = {{l. 2.4}.  3} c ST1 = rl 
and T = T"' = { S }  C T"? C T r l  = I T ~  Since the partition -1 is ST-IBC. there is an 

interna1 trajectory from ST1 to TT' .  

For the partition machine of r2. ive know ({{l. 2 . 4 } .  3) .  ( ( 5 . 7 ) .  6.8}) is DC (rela- 

rive r i ,  7 , ) .  { { l .  L d } .  3 )  i { { 3 . 7 ) .  6.8). Xow the .W2 controller chooses the unique 

one step control eveent to drive SS'= to T":. This is realized (a t  the nest level of the con- 

trol hierarchy ) bu the .\.ira controller which has the choice of driving 5'' = ( ( 1 . 2 .  4 }  } 
to { 6 }  in one s e p .  or ST2 to { { S .  7 ) )  via { 3 } .  -4s far as the realization of this hier- 

archical control lm is concerned. the choice is arbitra- and mq- be determined by 

an!- well defined rule. 

Ar  the finest ( 7 , )  level. the controller terminates the path to TY4 by findins a 

path froni (Z. 7 )  to T = (3). Finally. espressing the corresponding ST-DC relations 

as the state to s ta te  one step transitions at the finest ( 7 4 )  level. we obtain {1.2.4} -. 
( 3 )  - (i.;} {6} -+ { S }  that  solves the ST-reachability problem. C 

I t  is worth noting thar al1 the results in this chapter apply to  those machines and 

parritions in n-hich the s ta te  set and in-set of the base machine are countably infinite 

and the set of blocks of an\- partition has finite cardinalit-. 



CHAPTER 3 

Hierarchically Accelerated Dynamic 
Programming 

3.1. Introduction 

K t  corisider finite state machines ivit h transition costs JI = (S. S. S. I } .  where 

S = II,,. x i .  1.'. XJ ...x - . }  is a finite state space. denotes a finite alphabet of evencs 

!controlsi. d is a (partial) state transition function defined on S x T. and the cost 

funçtion i : r x u i (0. x) associates each state and control action with a srricrly 

positive real value. The minimisation of the additive cost along al! possible paths 

(Le. trajectories) between an! two giten srates is a basic problem in man- contests. 

anci dynaniic prograrnming (DP)  is well knoivn t u  be a fundamental technique for its 

sohtion.  

Let thc cost indes d ( s .  t :  u ,  i )  be defined by 

nhere s = Il. t = r,.r,-i = d(1, .  u,). 1 < t 5 m - 1. \ië shall denote by uoo an? 

optimal conrrol minimising the cost index d(s.  t: u. 1) over al1 control sequences u of al1 

iengths m such that t is accessible Erom S .  If we represent a given finite state machine 

as a directed graph. this problem is a (aeighted edge) shortest path problem. -4 large 

number of algorithms have been developed to solve shonest path problems. including 

Dij kstra's algorithm. Ford's algont hm and Dij htra's Tao-tree algorit hm fsee [25]). 

to name a le\\-. The tirne complexity of these dgorithms naturally depends upon the 



size of the model: in general. the complexity grows non-linearly with the number of 

States in the system. and so the computational efficiency degrades significantly and in 

particular. they are not applicable to real-time problerns. We propose a hierarchical 

approach to dvnamic programming problems which. a t  the cost of a degree of sub- 

optimality. and subject to an initial investment in coostructing a control hierarchy. 

may reduce the cornputational complexity of solving any given shortest path problem. 

The ivork here is founded upon that in [l'Il. where hierarchical control systems 

are formulated in terms of the construction of partitzon machines via the notion of 

dynamically conszstent (DC) state aggregation. and on that in [15]. where the gener- 

alisation of r he previous results to source-target sysrems was presented. The HADP 
methodology proceeds by first decomposing a finite state dynamical system into hier- 

archicai layers of partition machines. Each trajectory optimisation problem (betneen 

a source-rarget pair in the base system wirh respect to the additive cost function) is 

rrpresrnted at the nest higher aggregated level using a specifically constructed cost 

funçtion: rhis process is iterated up to the highest defined aggregation lerel (for sim- 

pliciry of exposition. ive only consider tivo hierarchical layers in Sections 3.2. 3.3 and 

3.4 of this chaptcr). Tangibly related work can be found in 17:. where the authors 

proposeci an aggregare DP for acyclic networks without discussing the consistency 

of high and Ioiv lcvel models. Finally. the dynarnic programming (DP) solution to 

thr resulting higiiest level problem is then passed donn to the nest lotver I ay r .  In 

tiiat layer. a set of corresponding DP problems is solved. one in each of the blocks 

lying along the previoiisly derired optimal high level path. This process terminates 

at the bottom !cvel of the hierarchy. The analysis in Section 3.3 of this chapter gives 

conditions to ensurc that the procedure yields optimal. or near optimal. solutions to 

the original base level trajecrory optimisation problem. In Section 3.4. we proride 

estimates of the sub-optimality of the HADP method when the optimality conditions 

of Section 3.3 fail. 



3.3.2 BIERUiCHICXL CONTROL AS'D COXTROL COWISTEYCY 

3.2. Hierarchical Control and Cont rol Consistency 

In this section. ive give forma1 definitions of the notions of dynamical consistency 

([lï!. [15j) and control consistency (analogous to that defined in [68] and [TOI) for a 

class of hierarchical finite state machines.' 

Definition 3.1. (Dynarnical Consistency (DC)) An ordered pair of partition 
elernents (blocks) (Si. .Y2) is said to be dynamiculiy consistent (DC] (with respect 

to T) if for al1 I E .Yl. there esists u E 1' such that 6(r. u)  E .Y2 and for al1 c < u.  

8t1. r )  € -Y*. a 

.-\ two level hierarchy formed by .\I and its abstraction mode1 .\th = {-Yh. Li. dh}. 
where .Yh = 7. Uh is a set of high lerel control symbols. 6 is the abstract high l e ~ e l  

state (block) transition function. is denoted by {.\lm &}. 

High Information , 
Mh Leve 1 - High Level Conuoller i 

l b 

I 

v 
1 

In formation/DC Relation 

l 

Lou. . a I ( X  1 Information LOW Level , 

LVI 
Level ' 

.4E 

LL Controls ~onuoiicr 

FIGL'RE 3.1. Hierarchical controI structure 

.issume that ive have an abstraction -\th = { 7 .  Eh. d h }  of the given base mode1 

J I .  In the two level structure shown in Figure 3.1. the hierarchical control is car- 

ried out in a top-down fashion layer by layer. The high lerel controller employs the 

inforniation provided by J I h .  The function of JIh is to simplify JI while preserving 

i ts crit ical behavioural properties. This hierarchical control configuration achieves an 

objective in the following tvay: first. the low level control task is communicated to the 

high level. then the high level control is performed and the corresponding high level 
(abstract) control commands are passed to the low level controller. The function of 

Lon- level controllen is simply to realise the high level abstract commands in terms of 

specific low level state transit ions. 
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For simplicity. we denote a trajectory from z driven bu u as Trj (1 .  u)  and a high 

level trajectory from S, E ;: driven bu L' as Trj(X, .  C). If (1) for al1 r < zc < u. 

t here erist I - 5 II' 5 L' such t hat d ( r .  c) E &h (SI. 1 ') and 3 ( x .  w )  E dh (SI. M W ) .  and 

( 2 )  for al1 I '  < \ LW 5 L-. there exist c < zc < u such that d ( r .  L.) E dh(Si. L) and 

J ( I .  v) E dh(S1. II-). the trajectory T r j ( r .  u! is said to be contained in T r j ( S , .  L'). 

Definition 3.2. (Control Consistency) ..\ rivo level hierarchy {JI. JIh} is said 

to be control consistent (CC) if and only if the following two accessibility conditions 

hold: 
(1) For an? I E S, E :: and y E SI E : if there esists u E S' such that d j r .  u )  = y 

then there esists L' E X h m  such that Ljh(Si L') = .\; and Tr l ( r .  u j  is conrained in 

T r j ( S l .  U). 
( 2 )  For al1 X,. SI E 7 .  i f  there esists L- E Eho such that oh(S,. I ' )  = SI. then for 

al1 I E S,. there esists y E SI and u E 5' such chat (ip. u )  = y and T r l ( r .  u )  is - 
contained in Tr j  (S,. L w ) .  i 

This properry is analogous to that defined in [?O] in the hierarchical super~isory 

control contest: it ensures that if a low levei rask can be complcted b! a sequençe 

of rransitions. then the controlled dynamics of the Liigh lewl system are consisrent 

with these transitions: conversely. if the high Icvel controller steen a high Iewl stare 

tc, its targer. then the high leiel commands can be translated into realisable lotv level 

t rami t ions. 

Theorem 3.1. .4 t u o  lerel hterarchg { J I .  .Uh) i s  control conszstent (CC) t j  and 

only the follocr.ing hypotheses (H) are truc: 

i 1 i If thrre rrzst r E S, E 7 .  y i .Y i 7 .  IL E !: such that 6(r. u )  = y and T r j ( r .  u )  

rs suntaznrd in SJ,. thrn \S,. SI) rs <iynamzcallg conszstent. 

i Ji For d l  S,. .Y, E 7 .  zf there ezzsts I' E L. such that &(Sv L ' )  = SI. then (S,. XI) 
is dynamically conszstent. 

1 J /  For ail 1,. -Y, E 7 .  I /  (SI. .Y1) ZJ dynamzcdly conszstent. then there r m t s  L- E Ch: 
such that &(.Y, I ' )  = .Y,. 

H -.. CC 
Suppose the statements (1)-(3) hold. ive shall prove that (.\I. JIh) possesses the two 

properties of cont rol consist enc' 
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(1) For any r E *YJ E :: and y E -YJ E n. if there is u E 5' such that 3(1. u)  = y. 

denote Trj  (I. u )  = -1.1 ... :1.,, z2.l ... zn,l . . . z ~ . ~ ,  . where :1.1 = r. ZI,?. ... zi.,, E 1;  = 1,. 

. . . . ~ 2 . ~ :  E 1 i. .. . . and . ..:,,,, E 1; = -Y,. It is ciear thar u can be 

ren-ritten in terms of u = u , ~ ? . . . u , - ~  with each u, E E' such that &(r. u , )  = -2.1. 

J (z l s l .  u?) = qS1. .... and O ( Z ( , - , , . ~ .  u,J = y. 'iloreover. ive know that T r j ( r .  u l )  

is contained in -Y&. Tr j ( zZv2 .  u?) is contained in 1&. .... T r j ( ~ , _ ~ . ~ .  u,-l) is con- 

tained in I i - i X , .  By statement (1). (S,. 1 1 ) .  (1;. &). .... (1 k - l .  SI) are dynamically 

consistent and thus by statemenc (3). there are L-i. I'?. .... E Zh siich that 

j = I O 1 k n - 1. Therelore. &(S,.L-J; - - - L i - [ )  = S,. 
and T r l h ( S , .  L'i L . . . I-n-i) = SI& ...- y, contains T r j ( r .  u ) ) .  

This part follows straightforwardly from the relevant definitions. 

On the b a i s  of this theorem. ive conclude that the dynamics of the high level 

mode1 in a control consistent hierarchy are coincidental with the dynamicd consis- 

tency relations on the partition of the state space of the base model. Thus. ive define 

the dynarnics of JI" based on the dynarnical consistency relations on a x 7 .  To be 

specific. in JI" = ( 7 .  Y. 6"). if (Si. -Y,) is DC. then there esists L-: f 1" such that 

S .  * ) = -Y,. It is to be noted that Y" is a set of high level abstract control 

symbols and is not a set of irnplementable (base level) coatrol actions. 



Definition 3.3. (IBC Block).-\ partition block Si E n is in-block controllable 

(IBC) if for al1 r. y E -Y, there exists u E Cg such that d(x. u )  = y and for al1 L~ < u. 

J(I. U )  E .yI. a 

A partition ;T is an IBC partition if al1 its blocks are IBC. .\ theory of the striic- 

cure of partition machines for hierarchical control ((651. [lï], [15]) and its extensions 

to the hybrid and supervisory control cases respectively are to be found in [20]. [16]. 

. i13i . and [32]. In particular. this theory asserts that al1 IBC partition machines of 

.\I constitute a lattice L and an? chain frorn the top to the bottom of L provides a 

hierarchical control structure. where the terms base (level) and high level macliine 

tiare an obvious implication. 

Considrr a base systern J I  whicli may be represented by a directed graph. We 

observe that if S, is an [BC block. then for an? I. g E .Y, there esists uc E Z' such 

t h  d l r .  i d  = y. d(g.  r )  = I and for a11 u. < uc.  &(I. u.) E .Y,. This fact reveals 

t hat IBC partitions mal- be generated Iocally. through a search for circuits. Ré rnay 

first partition .\I into ni stibgraphs G,: r = 1.2. .... m. The following algorithm re- 

çiirsirely giws the masimal IBC block which contains a @en state s in a subgrapli G,. 

Algorithm for genemting the maximal IBC block S ( s )  containing s in G,  
i 11 Sct S i s )  = {i). 

( 2 )  If therr is a parh qr: ... I, in C, u-liich originates from r l  E S(s) and ends at 

r, E S ( s ) .  and r2.q. .... 1,-, 6 S(3). then S ( s )  = S(s) U ( r  I.]. .... Zn-[}: 
i 3  1 else. stop. C 

This algorithm has the same time complesity as depth-first search ([2$). 

Definition 3.4. (Controllability) .A finite stare machine .\I = (S. T. &}  is 
controllable if for any r. y E S. there esists u E X' such that d ( r .  u )  = y. a 

The controllability of .\Ir is sirnilari- defined. 

Theorem 3.2. [lï] If a is IBC. then  SI" is controllable af and only if A l  is 

controllable. 0 

Finally. we conclude the following result. 



3.3.2 HIERIRCHICXL COXTROL ASD COSTROL COSSISTEXCY 

Theorem 3.3. If T is IBC, then {.CI? M x )  is control consistent. 

Proof: 

Suppose 7 = (S1. -Y2' .... -Yirl} is IBC and .LIT is a parrition machine of JI based on 
- 
r l  . 
(1) Let r E S, E x and y E .Y, E i be two arbitra- states of M. If there es- 

ists u E Z' such that d(x. u)  = y. let u  = uou !..A, ( u t  E S for O < 1 < m).  

then Trj ( r .  u)  = ~ z l z ?  ... -,y. with d ( ~ .  u0)  = z ~ ?  um) = g and 6 ( z r .  u,)  = 2,-1. 

1 5 i 5 m - 1. Suppose 2, E Sn,. for some integers 1 5 n, 5 171. For convenience. 

set = r . z , , ~  = y  and no = i.n,-! = j .  

li'henever Sn, $ Sn,_,. it is the case that z, E Sn, and 6(:,. u t )  = :,-, E .Y n , , i .  

Bx the assumption that 7 is IBC. Sn, is IBC. Le. for an- srate r' E .Ynl. there esists 

L. E Km such t hat Q(2.  L.) = 2, and for al1 c' < c .  6(rt. c l )  E .Y,, . Let (L. = r u ,  . 
ihen  t j ( J ' .  1 , )  = J(:l. u,)  E Sn,_, . and for al1 w' < (c. D ( Y .  IL.') E Sn,. III other words. 

( .Ynl. .y,l_, ) is DC and t his holds for al1 n,. Therefore. t here is C; E 5' siich t har 

&y Sn,. L-J = *Y n,4,  . 

I f  .Yqt = Sn,-, . le t  L; = c. the empty string over the Y. we also have D'(.Y,,. C;) = 

L,-; 

Hençe. there esists a string in (1')'. i.e. L- = L*oL'I...L*m such that d7(S,. L ' )  = .Y, 

and clearly. T r l ( r .  u )  is contained in T r l ( S , .  L-). 

( 2 )  Let S,.X, be two arbitrary blocks in a. Suppose L* E (Y)' is a string of 

high level control symbols such that &"(Sa. L w )  = 1,. Denote L' = Li& ... L,  with 

I:k E X. 1 5 k 5 m. Foc simplicity. let nl = i. n,,~ = j .  I"(Sn,. Li) = S ,,+,. where 

Sn, E 7 and n, is some integer. 1 5 n, 5 la/. 

For an:; two states I E S, and y E .Y,. Ive now show there is a u E 1' such that 

b ( r .  U )  = y. Since 6"(-Y,,, . LI) = Sn,_, . i.e. (Sn=. .Ynt_,) is DC. then we know there 

esists r? E Sn, and there is u1 E Z' such that 6(1. ul) = 12 and for al1 u; < u2' 



6 u )  E Y = Y .  Subsequently, ive may take x, E ,Y,, for 2 < i < m + 1 such 
thac there exist u, E Z m 1  6(x,. u,) = x,4 and Trj(+,, u,) is concained in Sn, Sn,_, . 
Let c = ul IL?. . .u,? then b(z. c) = X,+I E Sn,-, = .Y,. Sloreover. because I; is IBC. 
SI is IBC. This implies that there exists tc E T* such that d(z,+ w )  = y and for 

al1 w' < W .  d ' ( ~ , - ~ .  w') E SI. Denote u = LW. clearly, 6(x. u) = y and Tr j (x .  u )  is 

contained in Tr j (S , .  C) = Sn,.Yn Sn,rL- 

In this chapter. unless otherwise indicated. al1 partitions r; are assumed to be 

IBC partitions and Alh = {.Yh. L h .  dh} will be used to denote the partition machine 

.\17 corresponding to 7 .  

3.3. Optimality Consistency 

. in oprinial control with respect to a start state x and a target state y. uoo(x .  y )  

is ;t seqiicrice of transitions such tliat g = d(x. uoo(r. y ) )  and for al1 c E C' with 

(j{ 1. r )  = y. d j r .  y: uo0(r. y). 1 )  5 d ( ~ .  g :  r .  1 ) .  Denote the set of optimal controls ni th  

respect to the start state r and the target state g by uyx. g ) .  Hence. if c <uo(r. y).  

Ar. y: u'''(I. g ) .  1 )  c d(x. r j :  c. 1 ) .  

Denote the set of high level optimal controls ivith respect t o  the start  block .Y, E a 

and the target block S, E i; by Uo(S, .  SI). 

Definition 3.5. (Optimality Consistency ( O C ( C h ) ) )  -4 two level hierarchy 

{.IL .Ifh} with a given low level cost function 1 is optirnality consistent (OC) if there 

esists a high level cost function Ch : r x E h  r Ri such that the folloiving conditions 

hold: 

(1) for an- two States I E S, E r. y E SI E r. if u €u0(r. y). then there is 

Le EUO(S,. SI) such that Tr j ( x .  u)  is contained in T r j ( S i .  L').  
(3 for an' two biocks S,.X1 E a. if Cl' E Uo(l , ,?i , ) ,  then for every z E SI and 
y E SI. there esists u EU'(X. y)  such that Trj(x. u )  is contained in Trj(X, .  C). a 

Definition 3.6. (Convex High Level Trajectories) -4 high level t ra jectop 

P ( S ; )  = SI& - - - .Y, is said to be conuez if either: 



(1) for al1 x E SI and al1 y E .Yn, P ( X ; )  does not contain any low level optimal path 

from I to y .  

( 2 )  or  for al1 I E S, and y E Sn, P ( S ; )  contains a low level optimal path from x to y. 

h high level mode1 .IIh is said to be conuex if al1 of its paths are conves. (3 

\lé note that the convexity property does not irnpl!; the lon lerel optimal path 

between a pair of states is unique: nor does it imply that the high level path contain- 

ing low level optimal paths between a pair of states is unique. 

1 1 1  states in a block S, can be classified into two disjoint caregories: (i)  boundary 

states aS, which have direct connections to or from elements in SC. and (ii) interior 
O O 

states 1, tvhich are elernents of 1, not in dS,. Le. S,= S, - &Y!. It turns out that 

the con\-exit' of paths is esclusively deterniined by their boiindary states. This is 

formulateci b?- the theorem below. 

Theorem 3.4. .4 htgh leuel path F ( S n )  = Six r...Sn contaznrng a l o u  lere l  

glohnlig optrrnnl puth /rom a statr! rn .Y! to  a d a t e  rn Sn is conter lf and only rf /or 

nl l  r E O ( S L )  und y E I(S,). there e n s t s  a low lrvel glubally optzmal path [rom r tu 

!j p h -  t m e  corituzned rn P ( S ; ) .  

Firsr. ive prove the sufficiency. Because 7 is IBC. the hierarchy {JI. J I h )  is CC. 
Therefore. for an! state r' E .YI and any state y' E Sn. there is a low level path 

contained in P ( S ; )  connecting I' and y'. Because. the set of controls with respect to 

r' and y' is not ernpty. the optimal control esists. Denote the low level global optimal 

path from I' to y' by Trj(r' .  u ) .  There is a state x'' E O(&) such that Trj(z t .  u)  

can be tvritten as x' w x" + 2 - y' where al1 states on 3 w y' are not in Si. Also. 

there is a state y" E &Yn) such that Trj(x' .  u) can be written as z' -, 2' -t y" I- y' 

ahere al1 states on z' - 2' are not in SI. By the condition that there is a low level 

jlobally optimal path from I' to y' path-sise contained in P(.Y;). denote this path 

as Trj(r" .  c ) .  Hence. 2 ?- T r j ( i t .  c )  - y'. which is path-wise contained in P ( S ; ) :  
has the same cost as Trj(r t .  u )  and thus is optimal. Since x' and y' are arbitraru, ae 



conclude that P ( X ; )  is convex. 

'-Only if' part is scraightforward by the definition of convexit. 

Theorem 3.5. I j  a two ievel hiemrchy { M .  JIh}  is ~ptimali ty consistent then 

{ J I .  .\lh} is contiez. 

Suppose a t a o  levei hierarchy {.K .IIh} is OC(Ch) .  Let T = S&2&,...-~l be an 

arbitrary trajectory of 14. In the non-emptj- case. if x E S, and y E .Y, are two states 

of JI and u E ~ ( L  y )  is an optimal low level controi sequence such that T r j ( r .  u)  

is contained in  T. then. bu Definition 3.1(1). we know there esists I' EUO(S,. S I )  

siich tliac Trl (r. U )  is contained in Trj(&.  C). That  is to sa!. T = Trj  (1,. I ' )  is an 

optimal high level path from S, to -Y,. 

Since T is an optimal high level path. by Definition 3.8(3). for any two states 

1' i .YI and y' E S?. t here esists u' EU'(X'. y') such that Trj(r t .  u') is conrai~cd in 

T. In or her tvords. chere is an optimal low level path from r' to y' contained in T. 
Sinco T is arbit rary. it folloivs t hat { J I .  .\ Ih } is conres. E 

Howewr. convesity does not imply optimality consistency. as is shown in the 

lollowing esample. 

Exarnple 3.1. In Figure 3.3 is shown a loiv level mode1 J I .  Each edge is labelled 

by the c o s  of its corresponding transition. .in IBC partition machine of . I l .  .\lh! is 
given by Figure 3.3. It is easy to verify that al1 (high level) paths of JIh are conves. 

Hoivever. as we shall show. no admissible high level cost functioa esists to make the 

hierarchy {JI. JIh} optimality consistent. 

Suppose to the contra-, there was a high levei cost function Ch such that 

{ J I .  JG} is OC(Ch) and the cost of transition from 'i; to X I  for a DC pair (S,, Xi) 
in .\lh is denoted by C(S,! SI).  



FIGURE 3.2.  -4 finite state machine .\I 

By the definition of optimalit- consistency. a high level path containing a low 

level optimal path lrorn a state in its first block to a s ta te  in its 1st block is optimal 

~ v i t h  respect to Ch. To be specific. r l  -+ s21 + ri (contained in SI -+ -Y? + &) 

is optimal and r i  ql -+ s.,? + ri (contained in SI -+ .S.+ i Si) is non-op~imai. 

FIGURE 3.3. .in IBC parricion machine 



(1) and (2) jointly give 

Similari- r3 + 142 -t rj (contained in .\; + .Y4 + .\;) is optimal and 

x3 - I?: i xzl  + 15 (contained in .Y3 + .Y2 + ~ j )  is non-optimal. hence 

Sow z3 + x2? -i zii (contained in .Y3 + .Y2 + -Ys) is optimal and r~ -+ 14: + 

r,, r,j (contained in -y3 -t *y4 + -15) is non-optimal. thus. 

Obvioiisly. ( 6 )  conrradicts ( 3 ) .  Tliiis Ch can not esist. r; Lir 

For r f Si E c and y E .Y, E T and a high level trajectory T = SlS2 -.Y,. let 

u-r(r. ! j )  be a set of sequences of loir l e re l  control actions satisfying: r Eur(s. y )  =. 

d( r. c i  = y and T r j ( r .  r )  is contained in T. 

Definition 3.7. (Minimal Cost &(S. y ) )  For an? x. y E and a stare and 

control cost function 1. we ma? define 
1 

&r. g )  = &(L y: l)=minU ( d ( x .  y: L'. 1) : 2' E U ~ ( Z .  y)}. CI 

The optimal ION- Level cost d ( r .  y: u. l ) .  where u €u0(r. y).  shall be denoted by 

doo (1. y ) .  and this shall be referred to as the global optimum value of d(q y: u. 2 ) .  



We rnay define a less restrictive version of optirnality consistency. which is that 
of optimality consistency with respect to an initial state s: 

Definition 3.8. (Optimality Consistency w.r.t. an Initial State s) .A tmo 

level hierarchy {M, J I h }  with a given low level cost function 1 is said to be optimality 

consistent with respect t o  an initial state s E Ss E T if there esists a high level cost 

function Ch : a x X h  cf R+ such that the following conditions hold: 
(1) For al1 t E S, E 7 .  if u €uo(s. t). then there esists L' E Uo((S. S,) such that 

T r j  (S. u )  is contained in T r j ( S s ,  Lw). and 

('2) For al1 t E S,. if L' EUO(S". S,). then there esists u d ( s .  t )  such that T r j  ( S .  u )  

is contained in T r j ( S 3 .  L ' ) .  G 

Definition 3.9. (Convexity w.r.t. an Initial State s) .-\ high level mode1 

.IG is said tu be conuez u.r.t. an initial state s. ivhere s E Ss E 7 .  if for al1 paths 

P(1;") = Y& . - - 1,. C .Ilh with 1; = 1'. 
31 E 1,. ~ u o U ( , s .  r )  €uU(s. r )  s. t .  Tr j (s .  s) C P ( I T )  
= Vy E 1;. 3uo0(s.  y )  ~uO(s .  y )  s.t. Tr j ( s .  y)  C P(IJ.  L 

\Yi t h t his weakened version of convesity. ive have. 

Theorern 3.6. 11 alf paths in Alh are conuez wtth respect to S .  then {.Il. . I lh}  i s  

opttrnulit y cons~stent uith respect to S. 

To prove the throrem. ive introduce a grapli called the optimal htyh-lerd path 

graph W .  r. t. s (OPG(Ss)) :  OPG(Ss) consists of al1 high level nodes and al1 edges 

that are on some high level path from .Ys to some node S,, where these paths each 

contain a loa lecel optimal path from s to a state in S,. Given the convexity w.r.t. 

s of al1 high level paths starting from .Y" we constmct the graph OPG(.Ys) by ar- 

bitrarily picking a state? say z. in each block and then finding al1 low level optimal 

paths from s to z .  The higb level paths containing these low Level optimal paths 
constirute OPG(SS) .  



FIGURE 3.4.  There are no circuits in O P G ( S s )  

'dé shall proïe that there are no circuits in the OPG(Ss) bu obtaining a contra- 

diçtiori by use of the convesity hypothesis. 

\ L i  let represent a one-step transition and let represent a sequence of 

transirions. Supposc there wcre a circuit betneen two distinct nodes I - and I I '  in 

OPG(SS' j .  narnely some path 1.- I I ' -  1.. By the definirion of OPG(Si ) .  I* - I I '  

and II' 1. are the terminal parts of high level paths containing low lerel optinial 

paths Ironi s to states in I I '  and I' respectively. Therefore. there must be low lrvel 

optimal paths from s to a node r E I ' contained in S' I ' and another from s to 

y E I '  contained in S' - I I -  - I -  (see Figure 3.4.).  

Let 1: E I* be a state such that the cost from s to r is the minimum with respect 

to al\ states in I* .  By convesity w.r.t S. since y E I*. n-e also conclude that there is 

a loir level optimal path from s via II'  ta r contained in Ss - II '  ?- I'. Denote a 

state in I I -  on such a low leïel optimal path bu r. By similar reasoning. we know 
there is a low lerel optimal path from s to r contained in S LI'. and there is a low 

level optimal path from s to r contained in S -- I '  - IL'. Denote a state in I.. on the 

latter path by t. 

\\é know that al1 segments on a Ion. level optimal path must also be globally 

optimal trajectories between their end points. Let &,(S. rj denote the cost of an 

optimal path s - I with respect to al1 low level paths h m  s to I contained in 



S Y I*, & ï ( ~ .  5) equals to the global optimum dOo(s, z). We also know that two 

optimal paths between the same pair of states have the same cost, i.e.. 

and 

Therefore. siibstituting (9 )  into (7).  it follows that 

dOo(s. I) = @'(S. t) i dOo(t. r )  i dOo(r. 1). 

Bt3caiise 1i.c h;iw made the assurnption that  @O(s .x )  is minimal with respect to ail 

States iri I -. 

cfI0(s. t )  2 dOO!.s. 1). 

Hericc 

d 'O(s .  t )  2 d O o ( s . ~ )  = &'(S. t )  i dOo(t. r )  + P0(r. 1). 

which then gives 

duo(t. r )  + &O(r.x) = O. 

This implies r = t = x. conrradicting I - f II'. 

K e  consider two distinct cases where the high l e ~ e l  paths that contain low level 

optimal paths from s to the states in any given block are respectively unique and not 

unique. 

First. let us assume that the high level paths that contain low level optimal paths 

from s to the states in any given block are unique. then OPG(XS) is a tree. In this 



3.3.3 OPTIAIALIT~~ CONSISTENCY 

case, circuits are clearly impossible in OPG(,YS). It is quite straightforward to see 

that by assigning each arc on this tree a cost 1. and al1 other edges of the high level 

graph which are not shown in OPG(.Ys) with cost infinit! (or a sufficiently large pos- 

itive number). ive obtain a high level cost function which presemes the partial order 

on blocks established by OC w.r.t.s. 

Second. consider the general case in ivhich the uniqueness of high level paths 

containing optimal lorv level paths does not hold. that is to sa'*, there may be multi- 

ple high level paths containing low level optimal paths frorn s to some given node in 

their last block. In this case. Ive invoke the result proved above to conclude there are 

no circuits in OPG(Ss ) .  To make the costs of the above rnentioned high level parh 

equal. we introduce a term depth. 

Define the depth of each node on OPG(S'). d e p ( S )  = 0. dep(ll') = mas(dep(l')+ 

1 for al1 I ' rvhich is a direct predecessor of II'}. -4s ae have proved. the depth of a 

node m u s  be finite because no circuit esists in OPG(SS). 

Sorv w cl~finc the cost of the arc I '  + I I -  by Ch(\: I '  i I V )  = dep(ll-) -dep i \ ' ) .  

tvtiich ~ r . e  note is srrictly greater than O. 

For al1 arcs I '  - I I '  not appearing in OPG(Ss). let Ch(\: \ *  + I I ' )  = x. 

Ir is clear chat under the so-defined Ch. the set of optimal high level paths from 

.Y3 to .Y, E 7 contains a lorv level optimal path from s to an'- state x E S,: and an' 

loir Ievel optimal path from s to an arbitra- state x E .Y, E T is contained in a high 

lewl optimal path from Ss to .Y,. Thus. ive conclude that {JI. J I h }  is optimality 

consistent trith respect to S .  (7 

Let us extend the notion of convexity with respect to a single start state s to  

that of conven'ty with respect tu S': given a high level trajectory T in {.LI, .LIh}, if 

for al1 r E S E r. T is convex with respect to x. then T is said to be convex with 

respect to Ss. Similariy, Ive extend the notion of optimality consistency with respect 

to s to optimaltty consistency with respect to Ss: a hierarchy (hl' :Wh) is optimality 



consistent with respect to SJ E a if {.LI: :LIh} is optimality consistent with respect to 

1. for al1 x E .Ys. 

Corollary 3.1. If a/[  paths in .LIh are conuex w2th respect to -ys. then {.\IV -\fh} 

is opt imal i ty  consistent with respect to  S?. C! 

3.4. P-HADP(Ch), HADP(Ch) and Their Sub-optimality Es- 
timates 

Recalling the treatrnent introduced in (151. we specify a subset called an in-set 

for each block of the high level model. 

Definition 3.10. (In-Sets) For a partition block S, E 7 in the partition 7. its 

rnput set. or tn-set. I ( S J  ir a subset of S, satisfying the following condition: 

71 E I (S t ) .  there esists r' S,. and there esists u E X such that d(r'. u) = r. 

QI,) is further refined according to the DC relations: for a pair of DC blocks 
A (.Y,. S,). ive set Il(S,) = ( r  E S, : 31' E S13u E E.J(z'. u )  = z}. 3 

In  particular. if  the initial and target states s E .Y, E 7 and t E S, E are 

itienrified. 1ve designate [(.Y,) = { s )  and I(S,) = {t}.  

-4 possible nieasure of the cost of a high level transition between blocks is the 

total cost in terms of the low level events required to trarerse this block from its 

in-set to the nest block. Define d(x. y: u. 1 )  with x E .Y,. y E I ,  (S,). and for al1 

c < u. J p .  u )  E .Y,. as a traverse cost from .Yt to SI. Because a block rnay have 

multiple in-set states. finding a single parameter representing the traverse costs may 

be impossible. Bearing this in mind. Ive define the bounds. 

Definition 3.1 1. ( D i ( X t ,  SI). Do' - (S , .  SI), D- (S,. SI)) If (A-,. SI) is DC. 
D + ( S t .  SI) 2 rnau{ey ,y (1. y) for al1 z E &Yt) and y E I , ( S , ) } .  

J 

D-/-(.Y,. SI) 2 mas, min,{d!!v,, (z. y) for ail z E I(S,) and y E IJS,)}. 

D - ( S , .  XI) 2 min{&-,, (1. y) for a11 z E I(.Y,) and y E I J S , ) } .  r2 

Clearly. we know that D g ( S , ?  .Y,) 1 D'/-(.Y,. .YI) 1 D-(.Yc, XI). If P(s;)AX-, 
&---Sn is a high levei path. then for al1 x E I(.Y1) and y E In-l ('i,), Zr=;' D-(.Yt- Sc+,) 



is a lower bound for dOp(sî)  (z, y). and E:=;' Di('l,, s i - 1 )  and T;:: D + / - ( . Y ~ ,  -Y,+l) 
give upper bounds dO,(,yT, (x. y). In t his sense, X Y ~ :  DL!- (.Y,! .\;il) is a consemative 

estirnate for the cost of the low level optimal control from an! L E I(Si) to y E -Yn. 

Let D ( P ( S ; ) :  Do'-) represent the D-'- cost of P ( S ; ) .  Le.. D ( P ( S i ) :  Dg''-) = 

D - ' - ( S , .  S,J and let D ( P ( S ; ) :  D-) represent the D- cost of P ( S ; ) .  .A - 
high level path is said to be D,-/--optimal if it has the minimal Di'- cost over 

al1 high lerel paths from SI to Sn. Suppose ne set the high level cost function 

in terms of D-, -. i.e.. let Ch (S,. L;' ) = D-! - (S i .  SI). If we perform dynamic 

programming with respect to this high level cost function. the D-/--optimal path 

P!(S!. Sn) = SIS? - - - Sm contains a possibly sub-optimal loir level solution be- 

tween the start state s in I ( & )  and the target state t in 1,. This is the case simply 

becausc an? hi& level path contains a (possibly sub-optimal) lon level parh by the 

definition of t h e  DC property. 

Let the Iiigti lerel cost Fiinction Ch : ( 7  - .Ys u .YL) x Z h  -i R- be given. For 

.j E .\" E r: and t E St  c 7 .  let I (SS)  = {s )  and I ( S t )  = { t } .  By virtiie of 

ttic special starlis of the start and terminal states s and t .  the ialue of C h ( S S .  L a i )  
itiiti Ch(.Yr. lf ) is taken to depend upon s and t  respectirely. ik observe that the 

dcfiriition of Ch entails that it is defined only for high level blocks and transitions 

corresponding ro DC pairs. 

After ilik preparatory step. ive have the two distinct schemes presented below 

for seeking a possibly sub-optimal low level path between the given start state s and 

target state t. For each of these. ive that the target state t is accessible from the start 

state s. but ri-e note thar the failure of these algorithms to converse provides a rapid 

test for precîse accessibility of t from S. 

The P-HA D P(Ch) -4lgorithm 
This algorithm seeks the low level optimal path with respect to the constraint of 
confinement in a high level optimal path (with respect to Ch) from -Ys to Sc: this is 

called the path-wise HADP or P-H.4DP for short. 



P- H;IDP(Ch) .4lgorilnm: 

(1) Set D i s ( l s :  -Ys) = O and Dis(.Y,; Ss) = cc for al1 .Y, E A such that SI # -Ys; 
(2 )  Dis(X,: S" = min{DD(X,; .Ys)iCh(.Y,, c) } for al1 S, E 7 such t hat dh ((S,. L-:) = 

St with some C-: E T h .  Find Dis(S, ; -Ys)  for al1 -Y, E 7. 

(3)  Find an optimal path frorn Ss to St in -LIh with respect to Ch. Denote this path 

by P o ( s s .  -yc: ch). 
(4) Denote the set of al1 States in the blocks on Po(S ' .  Sc: Ch) by -\opl. Set dis(s:  S) = 

O and d r s ( ~ :  s) = x for al1 I E .Y,, such that I + S. 

( 5 )  d l s ( g :  s)  = min{dis(x: s) + l(r. u ) }  for al1 z E S,,, such that d ( r .  u )  = y E .Y,, 

for some u E r. Find dtsix: s) for al1 I E .Y,,,. 
( 6 )  With dls(r:  s). find a low level optimal path from s to t in S,,,. r L: 

P-HADP shall stand for P-H.-\DP(D-'-). Le. the HADP procedure tvith D-,- 
taken as the high level cost function Ch. K e  note rhat if { J I .  J I h }  is OC with the 

high l c w l  cost fiinction Dg"-. P-H.-\DP(Dd - )  \vil1 generate the rriie low level opri- 

nial solutions. 

The HADP(Ch)  Algorithm 
This algorithm seeks a loa level sub-optimal trajectory contained block-~isc  in a 

high level optimal path PU(Ss.  Sc: Ch). The resulting algorithm is called block-use 

HADP.  or sirnply H A D P  for short. 

H.4 DP!Ch i -4iqonthm: 

(1)  Set D t s ( S S :  Ss) = O and D i s ( S , :  Ss) = x for al1 S, E 7 such rhat S, $ Ss: 
( 2 )  Dz.i(X1: Ss) = rnin(Dzs(S,: Ss)+Ch(St.  L-: j }  for al1 S, E - such that dh(Sl. Ce:) = 

S, with some L;' E E h .  Find Dis(S,:  Ss)  for al1 S, E T. 

( 3 )  Find an optimal path from Ss to  Sc in .\[h with respect to Ch. Denote this path 

bu P o ( S s .  Sc: Ch) .  
(4) Set P U ( S s . S t :  Ch)  = Y&...l, with 1; = Ss and 1, = Sc. Set 11 = S. Start  at 

i = 1. 

( 5 )  Set d i s j r , : ~ , )  = O and d i s ( x :  x,! = ûc for al1 z E k; u I,(I;-I). 
(6) dis(y: 1,) = rnin{dis(~: z,) + l(z. u)}  for al1 r E 1; such that d(x. u) = y E 

1; LJ I,(I;-l) with some u E 1. Find al1 dis(r: 2,) for z E 1; u I,(k;-,). 
( 7 )  Set I,,~ = arg minycrg(u.,i) dis(y: 1,). Find a low level optimal path from z, to 



zi+l path-wise contained in xk;+i. Denote this path by X i  - zi+i. 

(8) If zic1 = t, s - Q... - z,-~ -U t is the solution, stop; else set i = i + 1, repeat 5 
to 8. 0 

Similady, HADP shall denote HADP(D+/-), i.e. the scheme above with Ch taken 
to be Di'-. When Di/-(Y,, Y,+l) = D-(Y,, Y,+I), 1 5 i < n, HADP will generate 
the true Iow level optimal solutions. P-HADP(D-) and HADP(D-) are the similar 
processes with D- as Ch in the above procedures. 

The diameter of a block .Y8 with respect to its in-set I (,Y,) is defined as V (X,) = 

maz {b, (z, y) : z E I ( X i )  y E X,}. 

Definition 3.12. (Condition MM<,)For a two level hierarchy {A& dlh}, the 
condition h l l k ,  holds if the following is true: for any two blocks .Yl, ,Y, E r ,  r i t h  
s E S1. let 1; = XI and Y, = X,, then, whenever Po(Xp)  = X i S  ?...,Y, is a D-1-- 
optimal path. and P'(lim) = k;Y2...Ym is any path ahich is not D+/--optimal, it is 

the case that D ( P " ( X ; ) ;  D+I-) + V(&) < D(P(I;1); D-). 0 

Theorem 3.7. Let {Ml Mh)  be a two level IBC hierarchy. For any ,Y1, X, E n 

with s E Sl. assume that the high leuel D*l--optimal path from S1 to X,, is unBique. 

Then. 1\f~Lf<, implies the hierarchy {Ml AIh} is OC(D'1-) with respect to S. 

Suppose for a hierarchy {iCI. hlh}, the high Ievel cost function is given by Ch(&, U:) 
= oc/-(-y,, SI )  for every DC pair (xi, ,yl) with .Y, = bh(,Y,, ui). Under the assump 

tion that the condition MM<, holds, we prove {Ml AIh) is OC(DC'-) with respect 
to s E E r-  

(1) Let y E S, E n be an arbitrary state accessible from s, and let u E u O(s, y). 
Denote the high level path containing Tr j ( s ,  u) by P(Yy)  = 1; &.km, with I; = XI 
and = SI. There is an entry state z E I ( X j ) ,  such that ul E uo(s, z) and u2 E 

uO(z, y), where ulu2 = u. It is evident that D(P(YF); D-) 5 dO0(s,z). 

Piext, to obtain a contradiction, assume P ( q m )  is not D+/--optimal, Le. there 

is P(Z:)  = Z1Z2 ... Zl with Z1 = X I  and Zi = X, which differs from P(Y;") and is 



Di/--optimal. We shail prove by (forward) induction (on k) that there exists zk in 

1 < k < 1, such that dO,(,:)(s, r t )  5 D(P(z:);  D+/-). 

CC'hen k = 2, the above inequality holds by the definition of D+/-(&, Z). S u p  
pose it holds for k = p, 2 < p < 1. By the property of IBC blocks, every state in Zp+L 

is accessible from 2,. Denote dzpzp+, (r,, $+,) = arg minLErp(Zp+l) dOZpZp+, (zp, z). It is 
clear dzpS+i (2,. z&J < D'I- (z,, Zp,l). Hence? 

Therefore, it is straightforward to see that 

Then. by the assumption that h111<, holds for {hl,  Mh}. D(P(Zf); Dg/-) + 
D ( S , )  < D ( P ( I $ ) ;  D-), thus dO&,:,(s,z) < D(P(1im); D-). This leads to the con- 

tradiction that dO,(,:)(s, t) < dOo(s, z). Hence, P(Iim) is optimal. 

(2) Let P(1im) = Y&...l& be the unique high Ievel D-/--optimal path from 1; = SI, 
s E 1 ; .  to 1; = ,Y, and let y be an arbitraq- state in S,. Assume that u E uo(s. y)  

and Tr j ( s .  u)  is contained in P(Z:) = Z1Z2 ... Zl, ai th  Zl = Si and Zl = .Yl. which 

differs from P(1im). We rnay decompose u into u = ULU?,  where ul E uo(s, x), uz E 

uo(x. y)  with x E Iz , - ,  (ZJ is the last entry state into Zi on T r j ( s ,  y). Clearly. 

But by the condition .iIM<,, 

And clearly ive have, 

Thus! we reach the contradiction dOp(yLm;,)(s, 1) < dO0(s, 2). Therefore, P(kr) contains 
a loi- level optimal path T r j ( s ,  u) from s to y. Since y is an arbitrary state in ,Y,, 
the second part of the OC property is established. 



In spire of the information given in the theorem above, there stiil remains the 

problem thac if t here exist two or more high level optimal paths frorn Si to Sn: t hen 

in an optimisation procedure we have to investigate which of them actually includes 

the optimal low level solution. 

Let ~,(x,) = D - ( S L ,  -~l)/Dœ;-(S,. S,) for al1 S,. XI E a such that (S,, SI) is 
DC. 

Theorem 3.8. For arbitrary start state s E S, and target state t E A-,. let 

d " O ( . s .  t )  be the cost of the global iow leuel optimal path /rom s to t .  Po();. 1.: D-!-) be 

the D- ! - -op tmal  high level path from 1; = S, to 1, = SI. and let d H - 4 D P ( D - ' - ) ( s .  t )  

denote the cost of the H A  DP(D+) solution. Then 2/ the D-'- -optimal high leuel path 

contazns a global optzrnal solution. 

If  the D- --optimal high leve1 path contains a global optimal solution. 



If the Dy/--optimal high Ievel path does not contain a global optimal solution. 
ive define a parameter E to represent its closeness to the D--optimal high level path. 

Let Pa(l;. In: DT'-) be a Do/--optimal high level path from k; = .Y, to 1, = SI. 
and P"&. 2,: D-I-) be a D--optimal high level path from Z1 = S, to 2, = SI: 

Corollary 3.2. For arbi t ray  start state s E S, and target state t E SI. let 

dOo ( S .  t )  be the cost of the global lom level optimal path from s to t .  Po[l;. 1;: Dg'-) be 

the Do --optzmal high leuel path /rom 1; = S, to  1; = SI. and let dH-4DP(D-" ' (S .  t )  

denote the cost of the HADP(D-)  sofutton. Then 

\ \ e  define t h e  parameter o = 4 7 )  to be the supremum of the set of p (1  2 p > 0) 

satiseing D- (S,. .Y, ) 2 PD-; -  (S,. .\). for al1 t .  J .  such that (SI. -Y,) is DC. 

Let 11s clioose another version of closeness rneasure of D-#'--optimal high level 

patti P" tcj a high level path Poo which contains a low level optimal path from the 
1 

s a r t  state CO the rargt  state. namely. q = 1 Pa T: PoO1/l Pol. where / P" Pool is the 

number of blocks on both Po and Poo. and IPol is the total nurnber of blocks on Po.  
Denote a' =  min{^,(.^,) : SJ, is a segment of Po}. 

Corollary 3.3. For arbztrary start state s E S, and target date t c SI. lei 

@ ' ( S .  t )  be the çost of the global low level optimal path from s to t .  P O ( l ; .  ln: D- - )  be 

the D- --optimal hzgh lerel paih from 1 ;  = .Y, to 1, = .Y,. and let dH 4 D P ( D - ' ' - ~ ( . s .  t )  

drnote the cost of the H.-îDP(D') solutton. Then 

It is natural to look for properties of a state space partition T ahich permit the 
associated HADP(D-1-) and P-H.-\DP(DcI-) to generate near-optimal results. In 

parcicular. we seek partitions for which the D- and DL'- parameten are as close as 
possible: this is in order to reduce the variability of costs of block traversais cone- 

sponding to different in-set States. 



3-3.4 P-H,lDP(Ch). B,4DP(Ch) ,GD THEIR SLX-OPTL\I-4LITY ESTIlLiTES 

Theorem 3.9. For arbitrary start date  s E Si and target state t E -Yj, let 
dOo(s. t )  be the cost of the global low levez optimal path /rom s to t,, Po(-&. -Y,; D+'-) 
be the Do:--optimal high level path from .Yt to -Y, ? and let dW.4DP(D-'-!(s .  t )  denote 

the cost of the HADP('D*!-) solution. Then 

or. equzrulently. 

dH.4 D P( D-1'- 

) ( S .  t )  5 Û - ~ P ( S .  t ) .  

Proof: 

I t  is ciear that 



K e  observe that in case D ( P ( S ; ) :  D-) is not a tight estimate of e(x. Y) for 

I E I(&) and y E In-l(-y,). and if other knowledge of the least cost path or its 

value between Sl to Sn is available. bercer estimation ma! be achieved by exploiting 

this information. For example. if we know dOp(s;) (1. y )  for some x E -Yl and y E Sn. 

d0pcsr1(zt.y') 2 C$(~;)(I. y) - d S i ( ~ x ' )  - d S 2 ( y 1 . ~ )  for an' I I  E SI and y' E &. 
.Ill such information about loner bounds for dOp(s:i(rt. y') can be used to evaluate an 

HADP solution. 

3.5. Semi-dual System Graphç (Mid. Cid) 

In this section and the nest. ive discuss our approaches to the irnprovenients of 

the performance of HADP. This is a two-fold problem: increasing the accuracy of 

siib-optimality estimation and decreasing the number of blocks of partition machines 

and thus reducing the compiitational time. 

t r i  Section 4. ive have defined LI-(1, .  S, ) . D- - (  S,. .Yl ) and D- ( .Y,. .\;) as thc 

boiinds of the cosrs of Ion- k ~ e l  control driving the systern froni States in I(S,) ro 

states in I , ( S l  ). where (1,. S,) is a pair of DC blocks. As ive pointed out in Scction 

-4. the entry states of S,. I ( S , ) .  may be differentiated into a collection of siibsets 

according to the neiglibouring blocks. If a e  identif? the source and target block of a 

low Iewl path ro traverse a block .Y, (Le. .  usc the cosrs from l k (S1)  to I l ( x J ) .  rvtiere 

(1,. -Y1) and (.Yk. S,) arc DC) to dcfirie thosr bounds. wc arc able to ot~tairi niorc 

precise estimates of the  l o ~  lewl optimal cosr. 

Suppose there is more than one Sc block such that (.Yk. .Y,) is DC. then one 

needs to knorv nhich block is the predecessor of S, on a high level path in order to 

choose the correspooding bounds to estimate the cost. As a result. the transition 

1, + .Y, cannot be labelled by a single ~ a l u e  to carry out DP. 



k i n g  the notion of out-sets in Chapter 2. Ive may introduce a mode1 based on -16 

ra112d the semz-dual high lece1 machzne .\fid. K h e n e ~ e r  (.Y,. SI) is a DC pair in 3 f h .  
lct lis define the high level transition event symbol \ ;'. and denote the collection of 

al1 siich synibols by 1'. By the standing IBC hyporhesis. there esist paths frorn each 

r!crxwnt in I,(.Y,) to each elernent in @S,) and hence. in parricular. to pach elemmt 

in t h .  sirbsrt Ok(SJ) c O(Sl) consisting of elements n i t h  one t e p  transitions to .Yk. 
Define the set of edges E to be thc new collection of derived Iiigh level events E; .~ .  
each of nhicti corresponds to a set of paths in 1, frorn I ,(SJ) CO Oi,(XJ) and then 

ta 1, t Si.). The elernents E;.' E E are in one-to-one correspondence ivith the pairs 

( 1 il. I 1) E I - .r I - and the resulting finite state machine{\ *. E. 3':} is denoted by .\lhd. 

The algorithm beloiv formulates the HADP procedure based on .Ilid. Here the 

idea is. with ) f id .  it is feasible to  perform DP. After ive find an optimal solution 

nith respect to Alid. ive obtain a sequence of between block boundaries. and this in 

turn gives a sequence of high level blocks where a sub-optimal Ion level solution is 

contained. Taking between block b o u n d q  as,(S,) as a node representing a DC pair 

<Si. X I ) .  and taking the minimal cost between &,(SI) and a,, (&) as the high level 

event E;.*. ive c a m  out DP in the following fashion. 

Pm-pmcessing 
(1 j Convert JIh into .\[id: 
( 2 )  Define the high level cost function: for al1 1 <_ i. j. k 5 IL-1. if 6id(1.;'. E;'*) = L i .  



3.3.5 SEMI-DUAL SYSTEM GR-iPHS (Mld, Ch) 

cid(r;l. E;.*) = D,+'-(X,. *yk): 
(3) If the start state s E S, E 7 and the target state t E SI E r .  add two new 
elemenrs. the source node 12 and and the target node 1 ;' to 1.: I - = I ' iJ {I J. I ;}: 
(1) Add new transitions from I: and to I.: to E in the following Fa-: 

for al1 1 < k 5 jyi. if (S,. Sk) is DC. add E : . ~  to  E. and 6id(l. J. E:*) = 1;'. the cost 

of this rransition is Chd(\ :. E: .~)  = min{@s,,k ( S .  y )  for al1 y  E I l ( S k ) } :  
if (Si. SI) is DC. add a n e a  control syrnbol E:.' CO E. and did (liJ. E:.') = l ;'. the cost 

of this transition is Chd(\ ;'. E:,') = rna~{d0~ . (1. t )  for al1 I E Ii(S,)): 

Denclte the resulting mode1 tvith I y and I ;' added by Mid. C 

In other words. in the pre-processing ive set the start and target nodes in ac- 

rordance rvic h the start  jtate and the target state. and then set their corresponding 

transirions to the bouiidary of the DC pair (1,. .Yk) and from the boundary of the 

DC pair (Sc 1,). K i t h  these new nodes. ive are able to carry out DP ~vith .\I,'~. in 
order to find a jequence of blocks containing a sub-optimal low level path between 

the  start and target states. 

The Semi-dual HADP(D-.  - ) algorithm 
1 1 1  Set Dis( l J: I ;') = O: Set D i s ( \  ik: 1;') = x for a11 1: f i ;': 

1.2) Dts{  1): 1; ' )  = rnin{Cid(I;'. ~ ; . ' ) - ~ i s ( l ; ' :  II)} for al1 E : . ~  E E: find all Dts(l;k I I )  
for 1; ta :  

( 3 )  If  Disi 1;': 1:) = x ( î  is not reachable to t ) .  stop: else. find a shortesr path from 

II ro I; n-irh respect to Cid in .\lhd. Denote this optimal path by Pu(\*'. Y': D--). 
L e  i : )  = 1 0 - 1  with I;: =Il  and 1"- t-- ! = 11: 
( 4 )  Let II = s. Start frorn k = 1: 

( 5 )  If S,, = -Yj. Inezt = { t } :  eise In,=, = I,,(X ,,_, ): 
(6) Set dzs(r,: r ,)  = 0: set &(I: 1,) = x for al1 I E S,, u I J S  ,,+, ) and x f z,: 

( 7 )  d is (r :  I,) = min{dis(y: 1,) t 1 (y. u)} for al1 y E S,, such that there is u E 1 s- t .  

Sjy. u) = I: find al1 dis(r: r,) for r E Sc, u I,, (S ,,_, ): 
( 8 )  Let ~ c - i  = a r g m i n , ~ ~ , ( s  .,_, )a%-,~,- ,  ( )  f ind a shonest path from zl to 
r k - ;  path-[vise contained in S,,S,,-,. Denote this path by q -- xt-1: 
(9) If x k - ~  = t. i.e. t is reached. 11 12 - ... - zk-1 forms a low level solution. 



3.3.5 SEMI-DI-DCAL SYSTEM GRWHS (.\fid, Cid) 

stop: else. set k = k i 1. repeat step 5-9. O 

If we find the low level optimal path from s to t wirh respect to the high level 

optimal path obtained in s e p  1: the result gives a P-HADP algorithm solution. 

Theorem 3.10. For n high level path P ( S ; )  = Si&. -. Sn: with arbitrary start 

d a t e  s E .yi and target date t E !in. 

Let D- ( S,. ). 1 < i 5 n - 1 (the minimal between in-set cosr ) be realised by 
1 12. 

a seqiience of (not necessarily connected) segments SI = s y?. S2 = :? - z3 .  = 
1 

9, " Y,, S4 = Z.i V i j .  ---.  for 92. 22 E I ( S 2 ) :  !J3. -3 E I(.Yj): ... : !Jn-i. -ri-l E 

Linking yl. 93: tj4.  9,: ... and S. 2523. z . ) : . . . .  respectirely by optimal paths. Ive construct 

ru*o low level paths from s to t as: 

p!  = . S V  Y- 2-. ~ 3 - .  . ynel - t and 

p:! = a s  - 2: - 23 - ' ' :,,-i - t ,  

Hence ive obrain two low lerels pachs with alternate realisatims of D - ( S , .  
Denote the Iow level çosts of pl and p2 by d ( p l )  and d ( p ? ) .  then collecting the elements 

of S, together to give the  first sum below. ive obtain. 



Since G(s. t )  <_ d(pI) and &(s, t )  5 d(p2 ) .  we have 

Let us define the parameter 3 = 3(a)  to be the supremum of al1 p (1 2 p > 0) 

satisf'ying D;(S,. X I )  2 pD;(S,. .\;) for al1 k. i. j such that (Sk.S,) and (S,. -YJ) 
are DC. 

Theorern 3.11. For arbitrary stnrt state s E .Y, and target d a t e  t E SI. let 

P Y - S .  .YJ : D-) be the D--0pttma1 high leuel path from S, to .Y,. and dOpu(sl,SJ,D-) (S. t) 
be the cost of the P- H.4 DP(D-)  solution. then 

1 
5 ,( o( P ~ ( s , .  A-,: D - 1 :  D-) D( P ~ ( S , .  .Y,: D-): D-)) - dOUts. t )  - 

Sincit D ; ( S , .  1,) > 3D,(S,.S,) for al1 k .  i . j .  

D (p0 (X , .  S,: D-): D-) 3 J D ( P O ( S , J , :  D - ) :  D- ) .  

Hence. 



Definit ion 3.14. (Da (-Y,, SI)) The (arit hmetic) average between boundary dis- 

tance 2s defined as 

Theorem 3.12. Let P ( S n )  = SISI..Sn be a hzgh ferel path with s E SI and 

Let the elements of I l - ,  (.Y,)'.' be denoted {ri. ri. .... riIl- L i s t ,  }. 1 5 I 5 n. wliere 

I d & )  = ( P }  and I , - i ( S , )  = { t } .  We connect r: and r t L .  1 < 1 5 ~ I i - i ( S J .  
O 

1 5 k 5 I , ( S , - J  1 via the optimal low level path rj -- I:-' contained in S,S,-, with 

the cost o f ~ i , , , - ~ _ ,  (1;. ri-'). This gives a low ievel path from s to t path-wise concained 

in P ( S y )  nccessarily passing through 1,- 1 (S,). 1 < i < n. Because there are i I,(.Y,-,) ( 

gives a low lwel path frorn s to t .  Hence the total number of distinct paths of this type 

is n : = ,  i I t -  [.Y,) i. The siim of the costs of al1 these Ion level paths shall be denoted 
O n 

by S+ Since 1; - I;-' is on nk=t,k=,+k=z-L lL~(-ydl=(~~=I l ~ ~ - ~ ( - ~ ~ ~ i ) / ~ i ~ ~ - i ( - ~ ~ l i  

I ,  ( SI- ) ) dist incr low level pat hs from s to t of the form described above. i re  h a ~ e .  



Since & p ( ~ .  t j  is less than or equal to the cost of any of the above paths. 

T herefore. 

\Ve observe that D ( S .  .) is a valici candidate for a high level cost function Ch in 

t hc contest of semi-duai HADP algorit hnis. 

3.6. wST-IBC Partitions 

Evideritly. the nurnber of states in .\[id is usually strictl- grcater than niimber 

of states it i  .Ur, . therefore. performing HADP with .Ilid is more comples than with 

.\th. To coiintcract this affect ive shall weaken the IBC condition ivith the objective 

of decrrasing i: i and thus decreasing /Ch 1. For systerns for which a direction of flow 

from start States to target states is defined. Ise formulated in [IS! a generalisation 

of IBC partition called ST-IBC partition and within this frarnework ive derived a 

hierarchical control structure based on the lattice of ST-IBC partition machines. 

In [15]. the notion of the ST-IBC property of a block S, E 7 was defined as 

follows: if ( i )  there is a path interna1 to .Y, from every state in I ( S J  to every state in 

O(-\-,): (ii) al1 states in O(SJ  are mutuaily accessible by paths internai to .Y,: then 

S, is said to be ST-IBC. 

Soir- we ma? define a slightly different ST-IBC propeny of blocks by dropping 

the mutual accessibility of states in O (S,). 



3.3.7 APPLICATIOXS TO TEE BROKES MAh'HATT.4S GRlD PROBLE'cl 

Definition 3.15. (wST-IBC) .A partition block .Yi E r is weak ST-IBC (wST- 
IBC) if for any state x E &Yi) and an? state y E O(.&) there exists u E 1' such 
that d(x. u) = y and. for al1 u' < u, 3(z. ut )  E Si. 0 

Denote the partition machine based on an ST-IBC partition r as .\l& = {a. Xhr &}. 
The dynarnics of the ST-DC (see Chapter 2) partition machine JI& is defined by the 

ST-DC relations over r x a. i.e.. if (S,, X,) is ST-DC. then there esists L' E Z h  such 

t hat dh (S,. L-) = .Y,. 

Definition 3.16. (ST-Control Consistency) .l two level hierarchy (-11. JI&} 
is said to be ST-control consistent (ST-CC) if and only if the following t ~ o  accessibiliry 
conditions hold: 

(1) For al1 r E [(SI) E 7 and y E [(.Y,) E 7 if there exists u E 2' such that 

h(x. u )  = y then there esists L' E Eh' such that &(.Y1. L') = .Y, and Tr j ( r .  u )  is 

contained in T r j  (S,. Lw). 
( 2 )  For al1 .Y,. .Y, E r;. if there esists L' E Zh' such that &(.Y,. L'I = 1,. then for al1 

r E I(S,) .  there csists y E [(.Y,) and i l  E 5' such that d(z. u )  = y and T r j ( r .  u )  is 

contained in T r j ( S , .  Le). i2 

Theorem 3.13. If purtition 7 ts wST-IBC. the hierarchy {.\f. .U&} ts ST-CC. 

The proof is similar to that to Theorern 3.3. 

An algorithm to find a ivST-IBC block containing a given seed as an in-set state 

in a constraint can be fotind in [531. Partitioning S into a ivST-IBC partition :: is 

a process of high cornplesity. hence we use an algorithm to improve an  esisting IBC 
partition by generating a related nST-IBC partition. It functions by growing a giren 

IBC block into a WST-IBC block with respect to a giren constraint (see [53]). 

3.7. Applications to the Broken Manhattan Grid Problem 

K e  use a class of esamples called the Broken Manhattan Grid (BSIG) problems 

to illustrate the generation of hierarchical control structures and the operation of 

HADP algorithms. 
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High Level 

Middle Level 
. - 

/' *.-.. ..-. . * - - -  
_ _ - - .  

- - -  . _ _ - -  - - - - A : - -  

FIGURE 3.6. Three-level hierarchy for a Broken SIanhattan Grid problem 

Consider a graph nith a large number of nodes and edges. which are fornied by 

randornly renioving some nodes and edges frorn a regular grid. ..\ three-level hierarchy 

is constriicted for such a sysrem so chat the rniddle level mode1 is an IBC partition 

triachine of the low lerel model (i.e. it fornis an FSSI abstracting the broken grid 

irself): and the high level model is an IBC partirion machine of the rniddle level 

rnodel. 

- - Example 3.Z.-Cogider a %O0 - x500 - - - regular - - - grid - - - ( h - grid - is regular in the sense 
- - - - - - - - - - - - 

t ha t  ewry  node has  connections to its neighbouring nodes). Here Ive assunie each 

link has  unir cost. \ lé randomly rernot-e 10% of the nodcs and their connecring 

edgcs. -4 middlr lrvel block of the hierarchy is s h o w  in F igue  3.9. The simulation 

is done with C on a Silicon Graphics O? work station (CPC 1SOIIHz. main memory 

9611). In general. rernarkable accelerations for the sub-optimal path calculations using 

H.\DP(D--) have been obtained. For esample. when the start and target nodes are 

(1.1) and (499.499) respectively. the atomic full size DP takes orer 30K seconds to 

End an optimal path with a cost of 1060: the HADP(D+'-) described above gives a 
sub-optimal cost of 1165 ( les  than 10% higher) in less than 9 seconds. O 

Example 3.3. In this example. a 100x 100 unidirectional regular grid (this can 
be viewed as a directed graph and moreover. and. in fact. as a finite state machine) 
is given to represent a transportation aetwork. We assign the direction of Links as 

follows: odd-numbered vertical streets are north bound, even-numbered ones are 
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FIGURE 3.7.  .\ Broken Nanhattan Grid 

south hound: odd-numbereci horizontal streets are east bound. even-numbered ones 

are w s t  bound. Here Ive assume each Iink has  unit cost. Subsequently we randornly 

reniow 10% of the nodes and corresponding edges concerned with thern. This grid 

h G  someresembhce  t o l h e  !itanhattanarea.-When the  stan mcktarget ~ o d e s a ~ e  

( 10.99) and (99.88) respectivel~. (see Figure 3.8 for a high level block structure) the 

atomic full size DP takes over 53 seconds to find an optima! path with the cost of 112. 

We use the semi dual method to form a hierarchy. the D- cost of the D- optimal 

high ievel path is SS and the D-1- cost of the D'f- optimal high lerel path is 116. 

so the error of HADP solution is less than (116-SS)/S8<3?R of the global optimum. 

In fact. the HADP(D-/-) gives a sub-optimal cost 116 (<4% higher) in 3 seconds. O 

In a graph generated from a 88 x 88 regular unidirectional grid with 10% nodes 

randornly removed. we choose the start states as  1, 11 11, 22'22, 3333. 4466. 5666 and 
6666. and ive also set the target to be in the same set as above. Then. Ive car- 

out HADP with semi dual graph for the start target pair chosen from the above set 

respectively. The ratio of HADP cost and global optimum as well as the speed up 

of HADP are visualised in Figure 3.10 and 3.11. In Figure 3.12. the distribution of 



F ~ C C R E  3.8. .A block at the top level of Esample 3.2 

FIGURE 3.9. -4 block ar the middle level of Example 3.2 

û(S,. XI) is giren when the start state is 111 1 and the target state is 6666. 

A rough cornparison of the time cornplexity of HADP (with a two level hierar- 

ch-) and thar of standard DP for finite state machines in general reveals the drastic 

speed-up of computation obtained by HADP. Specifically. suppose ive take Dijkstra's 
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FICCRE 3.10. The ratio of the costs of HADP solution and global opriniuni 

..tame wucn w u w A O P  wi 

FIGL'RE 3.11. The ratio of the tirnes of HADP solution atomic search 

shorrest path algorithm which is of 0 ( n 2 )  for a graph wirh n nodes. If a partition 

@es nl equal-sized blocks. each with n? ion. lewl nodes (nl  x n2 = n) .  then the 

HADP algorithm has a time complexity O(n:) at the high level. and O(1 x n:) at 
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The distnbuaan of alpha 
O 7( 1 

FIGURE 3.12. The distribution of a in Esample 3.3 

the low Ittvel. Hrrr 1 is the number of blocks on the path obtained by the applica- 

tion of D P  to the higti level systeni. Therefore. the speed-up nia? be estimated by 

O(  ri')/ ( O ( n i )  -O( l -  ( n / n l ) ' ) ) .  In niany cases. 1 and nl  are bot h appmsimately eqiial 
7 

to ~ , n .  and hence an es t imate  of the increase of efficiency due to the use of HADP is 
0i ,hi. 

tticidentally. for B U G  problems. the effort needed to find an IBC block con- 

tairiing a giwn node c in a constraint with nj nodes is linear in n3. because every 

node in this constraint only need labelling twice to  see if it is reachable from and 

CO-accessible to c .  If  ive use n3 equal-sized constraints in the pre-processing. i.e.. 

R I  x n3 = n. the cime complexity of partition is ~ ( n g ) .  To get D- parameters for 

each block. we need O ( n l  x n.{ x (n? + ri4)') extra computations if each block has n4 

in-set States. However. when s and t change. only parameters concerned with S, and 

.Y, need to be modified and so the remainder of the pre-processing can be done off-line. 



CHAPTER 4 

Relational Multi-agent Finite State 
Machines (MA(R) FSM) 

4.1. Introduction 

In  t lie iireas of t ransportation nianagement. telecommunication networks and  

rnariufact uring sustems. man? problems involve mu1 t iple agents running interac t ively 

( . i4Oi). . Siich multi-agent systerns are distinguished from classical single agent systems 

iri t liar bot li task specificarions and cost functions ma? differ from agent to agent in 

t tie cooperati~e as well as in the competitive case. Due to the dynnmical interactions 

betit-een agents. and because of the inherent cornplexity of man! physical systerns. 

the analysis and control of multi-agent netnorli systerns often engenders problems of 

enorrnoiis corri pleni ty. 

In chis chapter. ire formulate the notion of a relational multi-agent finite state 

niachine. Consider a system of agents. each in the form of a forced event discrete 

event system. the dynamics of which are modelled by finite state machines. generally 

rienotecl II = {S. E. d}. K e  assume that the events always happen at  discrete tirne 

instants. A (state-euent) configuration of .II is a pair of states and erents (r. a). 

r E S . a  E 1. such that d(x. a)!. which is interpreted to mean that the system is 

in state z and is to take action (event) a. For n agents with rnodels JIl' JI2. .-.. -\In, 
where JI, = {S,. S,. 6,}, 1 5 i 5 n. their joint configuration at time instant k is a vec- 

toc c ( k )  = [ ( ~ ~ . 0 ~ ) .  ( ~ ? . a ? ) .  .... ( r , .~ , ) ] .  where s, E .Y,,cr, E X,. and 6,(x,.a,)! In the 

SI.A(R) FSSI formulation. the relation R is a subset of .YI x X I  x .y x S2 x ... x S, x 1,. 



The interaction betiveen n agents is represented by the collection of forbidden con- 

figurations R. that is to sa?. the dynamics respecting the prohibitions c ( k )  # 72. For 

any configuration c ( k )  a t  any time instant k E N .  

To motivate this notion. consider a simple system n i th  tivo interacting agents 

in the presence of synchronous events ((411, [47]). When two agents are at  states 

rl E SI. x? E .Y2 respectively. where there exists a synchronous event a  E Tl  n E2 
such that &l(rl. a)! and 6?(1?, a)!. their interaction forces either borh of the agents 

to rake a or neither of them to take a. In other words. for this sustem. R = 

{[(ri. 1 q  ). (q. a2)l((al = a ? ) ~  [(&(q. a,) !  A & ( x 2 .  al)!) v ( & ( q .  a?)!  A &(x2. a?) ! ) ]  

a1 E Y i .  ai E 5. II E Si, 12 E S?}. In rhis esample. we note that if a l  + a?. 

& ( r i .  a l ) !  but 4 ( 1 ~ . a ? ) ! .  then no transition is possible since the joint state cannot 
' f d ( q .  a, ) ! .  &[Q. a-)!. make n transition. and similarly in case al = a?, 

Other esamples of forbidden interactions betaeen two agents inciude rnutually es- 

clusive states: if q. rl cannot appear at  the same time. then for al1 al E T i .  a? E E?. 

:( q. a i ) .  ( I ~ .  a- ) ]  E Ri  : and niutually esclusi~e esenrs: if a l .  al cannot tiappen at  the 
S W ~ C  cime. then for al1 rl E SI. rl E .Y:. [(q. a l ) .  (2-. a?) ]  E R?. 

Ir1 i33j and [54.  the formulation of a notion called multi-agent product for finite 

state niachines and autornata is presented. where the interaction between agents ap- 

pa r s  in the form of synchronous events. 

In il;. a theory of rirned (finire) automaton is developed to mode1 the behaviour of 
reül-tirne systems. Timed words are infinite sequences of esents each associated a i t h  

a real-valued tinie. In hybrid systems. a set of guard conditions on the continuous 

states are imposed: oniy tvhen t hese conditions are satisfied can a discrete transition 

take place ([5]. 1431). A finite set of cloch are attached to a finite automaton to keep 

rrack of the elapsed time. In [69], a control theory of timed discrete event systems 

is presented based on Ramadge-Wonham supervisory control theo.: a special event, 

tzck. represents a quantum time elapse between transitions. -1 hierarchical control of 

timed discrete event systems is developed in [9]. Csually, timed models possess much 



greater complexity than untimed discrete event system models. 

-1 multi-agent system is said to be synchronised if al1 agents take actions simul- 

taneously. that is to Say, when a state transition happens in one agent. actions take 

place in al1 the other agents. One may riew this CO be a discrete clock shared by al1 

the agents. 

In this chapter. ive first discuss multi-agent systems synchronised bu a discrete 

time clock: t hen. second. a tirne counter is introduced to deal wit h rnulti-agent systems 

rvit h non-simultaneous agents. 

4.2. Synchronised Agents 

In  an e~ent-driven finite state machine. .\I = (S. S. 8). events happen at discrete 

time instants and each state transition takes one unit time ro complete. i.e.. thc lrre 

tzme of al1 events is 1. This ail1 be calleci a (systeni) quantum time unit sincr it is the 

cornmon indivisible minimum tirne for a system event to occur. The set of states S 
is partitioned into trunszent slates .Yr and stable states .Ys. A stable stale r E .Ys is 
one that can be kept a t  the subsequent state transition: this of course is represented 

by a self-loop. i.e.. there is s, E X such chat d(z. s,) = r. Transient stutes are those 

without self-loops which cannot be held a t  the subsequent state transition. Once 

the systern enters a transient state at  any instant k E .f\i. it takes the nest action 

immediately. that is to Say. the system will be in a distinct state at the instant k + 1. 

Definit ion 4.1. ((II M t )  The simultaneous product machine of n finite 

state machines .II, = {S,&6,). 1 < i 5 n. is a finite state machine denoted by 

(IIsm)Ei(.iI,) = {-Y. X. a). where 

S = S 1 x S 2 x . . . x S , . E = C I x X 2 ~ . . . x E , . a n d  



Example 4.1. In a game. at each discrete time instant. two players sirnultane- 

otisly make one of three gestures: scissors. hammer. cloth. This is a two-agent system 

with E = ii). Ci 

Definition 1.2. (i&r,);,,.\I,) T h e  reluttorral multr-agent product niachrnr (rrzth 

reiution R) (.lI.-I(72)j. of n finite stare machines JI, = (.Y,. X,. J,). 1 5 L 5 I I .  is a fi- 

nite state machine denoted by (\l-Aj:=i .\Il = (S. E. d}. where S = Si x S? x ... x 1,. 
= SI x 5 x ... :< C,. and - 

(Q. O? ) 
g 72 and tj,(.r,. O,)!. 1 5 r < r r .  

undehned ot herwise. 

Example 4.2. Suppose al1 streets in an area are one-way one-!anes. The actions 

an automobile m q  take at an intersection include: stop. go east-west bound and go 

south-north bound. Le. X = {a. 6. s}. This is shown in Figure 4.1. I f  two automobiles 

(modelled by .\IL = -1- = JI) meet at the same intersection. one of the automobiles 

has to stop for one (quantum) time unit. In this case. R = {([x~. cl]. [r?.a?]) lx1 = 

12.01. OZ E E . 6 L ( ~ I .  o1) # SI. & ( x ~ . o ~ )  = I?}. n 

.-\ rnuiti-agent system consisting of JIl. JI?. .... .\In. is said to be controllable. if 

( 1 1  -\II is controllable. Le.. for any States x. 1' E S. S = S1 x S? x ... x Sn. 



FIGURE 4.1. A Finite State Machine J I  = (S. T. d} 

there esists u E (Il x T2 x ... x Zn)'. such that 6(1. u)  = 1'. 

Ir is scraiglitforvard to see that JI, and .Ur are controllable i f  .\lili'1m.\12 is 

çontrollablc. This is because. for an' r .2  E Si. y. y' E S?. if there esists a se- 

qiieiice of input vectors . ] [ ) = [ul (r.xl). u2(y. y')] E ( x ) which 

drircs the two agenr system from [L gi to [g. y']. then. for JIl and JI2 respecti~ely. 

(jl (r. U !  (I. II)) = 1' and &(y. u 2 ( g .  y')) = y'. This is Formalised by the following 

lemma. 

1 stm n Lemma4.1. Let .\Il. 1s i 5 n bc n finite state muchines. If ( 1 1  ),=i.\Il is 

controllirble. .\Il ts controllable. 1 5 t 5 n. 0 

For a path p(r. y )  E S; between two States x E S, and y E S,. define its lrngth 

Ip(r. y )  / as the number of state transitions on p(x .  y).  .A circuit is defined to be a path 

p(r. y )  for which Ip(r. y) i  2 1 and I = y. The following theorem gives a necessaq and 

sufficient condition for a simultaneous product machine of tivo controllable finite state 

machines to be controllable. In the proof of this theorem. a "pumping!' technique is 

used (see [31]). 

Theorem 4.1. F o r  two controllable finite state machines :\Il and .II?. lSI/ 2 2 
or 11-j 2 2. .\I1ll"".\I2 is controllable if and only if there are circuits CI and C2 in 

SL. S? respectively satisfying lCll - IC21 = ki. 



FIGURE 4.2. -4 circuit in ,\II 

Consider arbitrary initial and final s t a te  pairs [r. y]. [r'. y'] E SI x .Y2. Suppose 

Cl aiid C2 are circuits in .11! and JI2 respectively and lCl 1 - IC2i = =1. With- 

out loss of generality. let ICI( - IC?I = 1. Denote Cl = 11 r? ... - r,+ 

11 = x,-~.x? ..... X, E Si. and C2 = y1 i 92 i ... +y,. y1 - - Y*. Y? .-. .  y,-l E S2. 
Sote char the states on these circuits are not necessarily distinct from one another. 

For an? r. r' E .Yi and y. y' E .Y2. becaiise of the controllability of .UI and .\-. 

thcre arc paths p , ( ~ .  r') = r i ... ri -+ 11 i zf i ... i 2 (see Figure 4.2) and 

p;(  g .  9 ' )  = g - ... 7 y; - 91 + yf -+ ... -+ y'. Clearly. by repeating circuit C? on 

pp(y. y'). ~ v e  ma! generace countably man! distinct parhs froni y to y'. Choose a path 

p.( g. .y1) such that  IpZ( y. y') i - \pl (S .  2)  1 = k > O. Hence there esisrs a path 

froni r CO r' in .\Il. and a path 

from y t o  y' in Jf?. Since lpi(x. x') 1 = Ipl (L x') 1 + (Ip?(y. y')l - Ip&. 9)  1 )  (Cil. 
i pk (g .  y')l = (p2(y. y')l + (Ip?(y. y')l - Ipl(r. . t f)l)lC& and (CI1 - IC?I = 1. it follows 

tha t  lp; (2. 1') 1 = Ip;(y. y') 1. Therefore. jointly, [pi  (r. z1),p;(y? y')] is a vector path 

frorn [x. y] to  [r'. y'] in ML ljstm.\l?. Because r .Y. y. y' are arbitrary. JI l  ils'm.b is con- 

t rollable. 



FIGURE 4.3.  Circuits in .\Il 

Conversely. suppose .\Il I l s t r n  JI? is controllable. Kithout  loss of generality. let 

i 2 2 .  Because MI is controllable. there esists a path 11 i r- in Ml.  for ahich 

r l  + Q.  By the controllability of .\Il jlflm.\.h. there is a path in .UIIISLrnJ& from 

Ir2. p l ]  to [rl. gl  ] for any y l  E .Y2. Becaiise rl # 12. this path is longer than 1. Let 

this path from jq. y?] to [q. yl j  be [ p , j r l .  1,). p?(gi .  p l ) ]  whose corresponding pair of 

paths in .\Il. .\- are pl(r2.rl). and p 2 ( g l .  y l ) .  / p l ( ~ .  ri)l = !p2(yi .  yl)l <_ I .  Then. 
Ci = r! - p! (i3. I I )  and C2 = p(k.  p i )  are two circuits in .\II and JI2 respectively. 

Obviously. Cl 1 - iC21 = 1. 5 

Corollary 4.1. For t s o  controllable finite state machines .\ll and .\&. tj /Szl 2 
2 and in .\Il there are czrcutts wtth 2 and 3 transztwns respectrcely. then . l l J l s t r n J ~  
t.i corttrolluble. 

Suppose in JI1. there is a circuit Cl = X I  i ri + 3, from 11 and back to zl  
with Length of 2. and there is a circuit C? = 12 -t 4 4 IF -+ Z? frorn 12 to 12 with 

ICI! = 3 (Figure 4.3). Because JIl is controllableo there is a path p(z1.x2) from zl 
to r?. and there is a path p(x2. I,) from 1 2  to XI. Let k = I p ( q .  x2)1 t Ip(z2.  q ) L  
Because .& is controllable and IM/ 2 2. n-e can obtain circuits longer than k by 

repeating cycles. Let C' be such a circuit in JI? and IC'I > k .  



If IC'I - k = 2m - 1 for some integer m > O, construct a circuit from 12 to  I? in 
I I I  as follo~vs: 

If (C'I - k = 2m for some integer m > O. construct a circuit from rl to IL in .\II 
as foll0\vs: 

Tlierclorc. by Theorem -1.1. .\Il /I"".\- is controllable 

So t c  that since a self-Ioop a t  a state generates circuits with arbitrary lengths. ive 

o i m i n  rile loilowing coroilary as a direct application of Corollary 4.1. 

CorolIary 4.2. For t s o  controllable Jinrte d a t e  machznes .\Il and SI2. i j  there 

L.. u statr in .\Il uzth a self-IOOP defined. then .\liilflm.\1? is controllabk. i 

\\é niay now make the important observation that since JII IIflm.\l? may be taken 

as a finite state machine JI'. and since for any other finite state machine .\lu ive may 

repeat the argument abore CO inductively obtain the results concerning ( Jlfim):=, .\Il 
for any n > 2 .  Set .\Il = JII and define finite state machines JI' = .\I'-'i("" J I t .  for 

2 <_ 1 5 n. By the associativity of II"". a necessary and sufficient condition for the 

controllability of (llflm):=,JI, is given by a test as to  whether there are two circuits 

in .Ut-' and .\IL with the length difference of 1. 2 5 i 5 n. 

Theorem 1.2. Let .\II: 1 5 i 5 n (n 2 2). be n controllable finite state ma- 

chines. Then (iI""):=,.U, ts controllable if and on$ if for any .\lIy there is a circuit 
C, such that there are. respectiuely. circuits C; in JI,. 1 5 j < n' j = i. and each 

iC:/ is CO-prime uith ICaj - 



Proof: 

==+ 

Suppose for any JI,. 1 5 i 5 n. there is a circuit C, such that there are circuits C; in 

JI,. 1 5 j < n. j f i. such that each IC;I is CO-prime with JCJ. For arbitrary circuits 

Ci and CJ. respectively, in .\Il and 31,. 1 5 i. j 5 n. i # j o  respectively. by repeating 

Ci iCjl times in .II, and repeating C; /Cil times in .\l1. Ive can obtain a circuit with 

length IC:IICJ! in .\I,IIS'm.\Il. As a result. in (Il"m)~,(.\la). 1 5 k 5 n - 1. there are 

circuits of lengt h I nf=, IC:-' 1. nhere 1 can be an arbitra- positive integer. hlso. bu 

repeating the circuit CL-, m times. ive can obtain a circuit with length mJCk-il in 

JIi.+ shere  m can be an arbitra- positive integer. 

By the running assumption. ICk-ll is CO-prime with all 1C;''l. 1 5 j 5 k. thus 

iC4-l is CO-prime with n:=, IC;"~. Therefore. there are integers 1,. 12 such that 

l l ( &  /c;-'') - lIICt-,l = I ([24]). Reciirsively applying Theorem 4.1. it follow 

t liat ( il " " )y=  JI, is controllable. 

Siippose (:/""):=,Jf, is controllable. By the associativity of IIst'". for arbitrary 1 .  

stm n I sim n l < ~ < n . ( i l " " ) : = ~ . \ I , = ( ( ! j  - - ) I l ) s m . l  B L e r n m . l . l  ),,,,,,.II, is 

controllablr. Thus. nccording to Theorem 4.1. t here are circuits Cf and C, respectirely 

in  ;l 5zrn ),=I.,=~ .\Il and JI, such chat liC'I - ICJl = 1. In other words. IC'j and IC,; 
are CO-prime. Clearly. since Cr is a circuit in Ml. there are circuits C, in 

.\(. correspondent to  C' with length ICI! = iCrl. 1 5 j 5 n. 1 f t .  Hence. \Cr\ and 

;Cl! are CO-prime. 1 5 j 5 K. j + i. C 

Theorem -1.2 is a necessary and sufficient condition for (II""):,, Ji, CO be control- 

[able. For ezample. in case n = 3. assume there are circuits in .\Il with length 1 

and 3. the lengrh of the only circuits in .IIz are 3m. the length of the only circuit in 

.II3 is -in. m. n E -IV-. Because there is a circuit in JIl IIst".\12 with length 3. which 

is CO-prime with 4. the length of a circuit in :LI3. Ml l / 5 1 m  Jl?llsrm JI3 is controllable. 

Suppose there were no circuit in .\II with length CO-prime with both 3 and 4. Since 
the lengths of the circuits in JI? lIStm.l13 are multiples of 12. the lengths of al1 circuits 

in .\II thus ivouid not be CO-prime with the length of a- circuit in J12113'*.\13. Hence. 

no circuits Cl in JII and C' in JI2llS1".\f3 such that IlCl[ - IC'II = 1. This contradicts 



Theorem 4.1. Therefore, there is a circuit in JII with iength co-prime with both 3 
and 4. 

The following theorem States that the controllability of a rnulti-agent system with 

7: f B is dependent on the state-to-state reachability of the state pain even in 72. 

Theorem 4.3. For tu10 controllable finlte state machmes .II1 and JI?. SIl 1 1  -a-\12 

1.5 controllublr zf and only if the follouiing two condittons holti: 

/ 1 )  .\Il /!"'".\12 LS controllable. 

1 2 )  Fur ang i ( r1 .o l ) .  (r2.02)]) E 72. there are sl = ala? ... ac E 5; and s? = blb  ?..hi, 
f Si such that [ ( J l ( ~ l . a l a ?  ...a,).a,-i).d2(r2. b l b  ?... b,).b,-Ji R. f o r  al1 1 < 2 < k. 
(2nd  SUC^ t h t  :ljl (q. s ! ) . ~ ( I ~ .  s?)] = [dl (1,. q). & ( x ~ .  02)j. 

The "ml!. if* direction folloivs immediately from the definirions. 

For the "if' direction. suppdse conditions 1 and 2 hold. For an- vector srates jr. y! 

and :r'. y']. brcause .\II \lflrn!.l2 is controllable. there is a conrrol u ( [ r .  yi. jr'. y']) = 
'iii(r.rtl. u 2 ( ( j ,  g'ji c (SI x 5). driving .\lljlst".\lz from [z. y]  to jr'. y'!. Denote 

Denoter ,  = & ( I . C ~ C  ,... c,) and y, =&(y .d ld  ?...dl). 15 i c n. w h e r e q  = x . y l  = Y - 
In = 1'. y, = y'. 

Bj- Condition (2) .  if there are an? I, and y,, 1 5 i < n. such that [(z,. G - ~ ) .  (y,. dT1)j 
c 72. there esists [si. si]. such that for all r l .  xl E ET. a E X and c?. IL? E Xi. b E X?. 



Replacing al1 such in u( [x .  y],  [r': y ' ] )  by [si, si], ive &tain a control se- 
quence u'iiz. Y]. [Y. y']) steering .\IIIl"m JI? from [x. y] to [x', y'] tvithout going through 
an? configuration in R. That  is to Say. u'([x! y]. [x'. y']) is a valid control from [I, y] 

CO [Y. y'] in .\Il iI-RM2. Hence. Ml 11 -RJI? is controllable. 13 

For two staces x E SI. y E .Y2. and two sequences of actions sl = a la  ?...a, E 5;. 
S- = blb  2 . . .bn  f X.t, if 

(dl(x. ala  ?...a,). a,J 

(&(Y. blb?-..b,) . b,-1) 

for al1 1 5 1 < n. w i t e  [(x. sl). (y. s?)] nR = 0. 

Ui. s h l l  apply the following theorern in Esample 4.4. 

Theorem 4.4. For Iwo controllable jh i t e  stute rnachrnes .\Il and JI2. .\fi 1 1  -R.i& 

rs cuntrollabk 11 crrd only tj the fol lowng three conditions are satrsfied. 

( 1 )  For al1 [(r.o!). ( 9 .  O?)] E R. there ensts [si. s?] E ( X i  x X?)' cchere s! = aln? ... a, 

and s? = b;b ?... b,. such that. 

and such that &(r. si) = di (r. 01); 

(2) For al1 [(I. 00. (y. O?)] E 72: there enst  y' E .Y and [si. sZ] E (X i  x 12)' where 

sl = ala? ... a, and sl = bL b?...b,, such thut: 

and such that 6'([2. y']. [si. s?]) = [dL(x. 01). &(y,  O?)]; 

(3) There ensts  x(] E S1 such that for al1 y, E X? und y? E -Y?: there erists [sl' s2] E 



(SI  x Y?)' where sl = ala? ... a,, and s? = b l b  *... b,,, such that 

These conditions can be paraphrased as follows: (1) means .\Il 1 1  -R.Uz can escape 

from R-configurations wit h the .\IL more reproduced with non-72-configuration rnoves: 

( '1 1 says al1 targets of R-configurations. [6! (x. o l ) .  8, (y. O,)]. can be reached from a 

pair of initial States [r. y'] with a sequence of non-72-configuration rnoves: (3) means 

tha t  .II! can loop at 2-0 while JIz mores from y1 to y? with non-72-configuration rnoves. 

Although al1 assumptions are made with JII. the active agent. the conclusion 

holds. symmer rically, if a11 conditions for JIL and J I 2  are swapped. 

Suppose the above conditions (1)-(3) are true. K e  shall demonstrate that these 

inipl!- the conditions of Theorern 4.3 and hence that JIl is controllable. 

Let rd E Si be the state in SI such that Condition (3 )  holds. Consider any 

forbidden configuration [(r .  01). (y. oz)] E R: because .\II is controllable. t here esists 

a finite sequence of actions s = aiaz ... a, E S; such that &(x.s)  = ro. 

Set i = 1. rl = x. yl = y. sl = c and s? = c (ive recall that c is an empty string. 

not a self-loop action). By Condition (1). rhere is [si. si] E (Tl x S)' such that 

JI (x. si) = 5, (rl.  a , )  and [si. s!] Steen the system from [x,. y,] to [dl (z,, a,)? b2(y t !  si)! 
with [(x,. 5 ; ) .  (Y, si)] n 72 = 0. 

Let 1 = 1 + 1. sl = slst and S? = si.  Denote x, = 6 1 ( ~ . ~ l ) '  y, = &(y.s2). Re- 
cursively continue this procedure until dl (z. si) = 20. We obtain [sl, s?] € (El  x S)' 



FIGCRE 4.4. -4 path in Ml lj,R112 from [L y] to [&(x. 0 1 ) .  &(y. O?) ]  

Sirnilarly. by Condition (2 ) .  working backwards from [dl (x. al). &(y. O?)]. ive can 

find [si. s6] E (ri x r2)' S U C ~  that d ( [ ~ ~ .  y,]. [sj. s 6 ] )  = [jl (1. 0 1 ) .  &(p. O?)] for some 

y, E 1:. and the path driven by [sj. does not go through 72. 

B! conditions (3). there is [s3.  S.^] E ( C l  x S)' such that d ( [ q .  &(y. s ? ) ] .  [s3 S.,]) = 

[zd. go; and [ (Q. sJ). (&(Y. s l ) .  s4)l n 72 = O. 

Therefore. Ji jr. y j .  s2.s4s6j) = [dl (I. O! 1. <j? ( y .  ol)] (see Figure 4.4) and it 

follows recursively that [(r. sls3si). (&(y s2s4.s6)] ri R = O. -4ccording to Theorern 

4.3. Ml -x JI2 is controllable. 

The "only i f '  direction follow imrnediately from the definitions. LI 

.-\ finite state machine JI is said to be controllable with respect to S' c C if al1 

srates of .Il are murually accessible via transition events restricted to 1'. Clearly. if 

JII!I-n.\& is controllable. and [(I. a). (y. b ) ]  E R for some r E SI. a E ri. y E S2 and 

b E 5. then .\Il and JI? m u t  be controllable with respect to S1 - {a) and 1 2  - {b}. 

If tn-O finite state machines Ml and JI? are controllable, the folloaing theorem gives 

a sufficient condition for .\fl 1 1  to be controllable. 

Theorem 4.5. For two controllable finite state machines .\Il and .1L. if there 

enst El c Xi.  E? c I2 such that R Ç (SI x El x x Z2) u(& x ZL x - Y  x E?). 
then .\Il ll-R.\12 is controllable if the follow'ng conditions are satisfied: 



(1) There ezist circuits Cl, Cz in Mi o r  hl2 with events in X - El and E2 - E2 
respectiuely. and ICI 1 - IC2 1 = f 1. 

(2) J I I  is controllable wzth respect to  Tl - El. 
(9)  .\& is controllable with respect to  1 2  - E2. 

Proof: 

It is sufficient to prore that JIl 11"'".\12 is controllable with respect to (Il - El) x 

(1- - &) ro demonstrate that .IIl ll-R.\h is controllable. and under hypotheses (1)-(3). 

tliis follows from Corollan. 4.1. E 

Example 4.3. Two finite state machines .\Il and JI? are s h o m  in Figure 4.5. 

A l i s  of t tie mutually exclusive events in JI! and JI2 are: 

i 1 j e w m  in  { a l .  h l .  d l }  and events in {b-. d-.  e 2 } :  

III ri uid events in  { a 2 .  b2.c2.d?}: 

( 3 i  events iri ( e l .  Il} and events in (b? .  d ? } .  

Tliiis. the interaction of .\Il and -1- is given by a forbidden set 

Set Et = {cl.dl} and E2 = { b 2 . d ? . e 2 } .  It is easy to verify that without El and 
E? respectively. JI  and .& are both controllable. And without El there are circuits 

rt Q + ri with length of 2. zl + 1 3  -+ x? -+ 11 r i t h  length of 3 in YI. By the 
t heorern above. -\Il 1 1  -E-\l? is controllable. 



FIGCRE 4.5 .  Two interact ing agents 

Let a finite state machine with cost be denoted by .lI = {S .  T. &. d } .  where 

ri : .Y x X 0 R- associates an evenc taken at a state with a non-negative cost. The 
joint  cost of a niulti-agent aystem configuration rnay be represented by a fiinction 

of the component costs. i.e.. d ( [ ( r l .  a l ) .  (12. u?) .  .... (1,. a,)j) = f ( d l ( r i .  a l ) . & ( q .  fi?). 

. . a ) )  f niay take different forms in various contests. The state to state 

optimal control problem of multi-agent systerns of the .\Id(R) FSII type can then 

in principle be solved by applying dynarnic programming in the JI.-L(RI model. 

Example 4.4. In Esample 4.2. two automobiles at sl and s? respectivelu are 

going to t L  and t 2 .  Suppose in M. d(1 .a)  = d ( r . 6 )  = 1. and d(z .s )  = 5 for al1 I E S. 

Since a task is completed after an automobile arrives at its goal. the joint cost of 

.\ti[-r,.\l takes the forrn 

If two automobiles meet at an intersection. one can continue while the other stops. 

t har is to  sa.  the first condition of Theorem 4.4 holds. For any [(n*. ol )! (n,. a?)] E 72. 



1 5 1 5 16. 01. f S. reset the second automobile to b&,. oz) and let it take action 

s while the first one takes 01 at  n,? the second condition of Theorem 4.4 is satisfied. 

K e  know that the first automobile may stay a t  any n, while the second one moves 

from nk to n,. 1 5 i. j. k 5 16. hence the third condition of Theorem 4.4 is true. 

Therefore. .\ljl-R.ll is controllable. that is to Say, for any [si. s 2 ]  [tl. t?]. the optimal 

control esists. For example. when [sl. s?] = [n6. n9]. [t!.  t?] = [nll. nlj]. one optimal 

control is [ababba. aaabas] with the joint cost of 11. cl 

Since a muiti-agent system has a much larger state space than its component fi- 
nite state machines. it is estremely useful if one can obtain an IBC partition machine 

of .\I.-I(R) based on partition machines of individual .VI's . This could be followed 

by successive aggregarion cycles. .Assume this significant step can be carried out for 

a s-stem -11-L(R). ive have the following application of the HADP to multi-agent 

systerns. 

H A D P  for hIA(7;) Systems 

L I Conipiite t h é  .\lAP/'Ri ( !l-r,ir=L=: -11, of n interacting finite s ta te  machines JI,. 1 < 
: < n. 
( '21  Siicccssiwly create a hierarchy of IBC partition machines with base machine 

i-d;=J,. 
( 3 )  Apply HADP to the  hierarchy. 5 

In tht? following corollary. Condition ( 2 )  irnplies the conditions (1)  and ( 2 )  of 

Theorerri 4.4. 

Corollary 4.3. Let Sl E ri and S? E 7 2  be IBC and the conditions (1 )  and (2) 

1 1 )  For any r E Si. y E .\;, Q E Z I . b  E E? such that &(z .a )  E XI. & ( y . b )  E .Y2 
und [(r .  a ) .  (y. b)j E R. there &ts 6' E Z2 such that &(y. b') E -1-2 and [ ( ~ a ) .  (y. b')] 

c 72- 
( 2 )  There ezists 1 0  E .Y1. c E Si such that S1 (q. C )  = 10 and for ail y E .Y2. b E E2 
such that &(r. b )  E -Y2. [(q. c ) .  (y. b ) ]  6 72. Then Si x -Y? is IBC. 

If S( E 71 and .Y; E n? let R(S:, -Y;) be the set of forbidden configurations 
restricted to .Y: x .Y,?. Le.. R(.Y. -Y;) = {[(z. a).  ( y .  b ) ]  E RI[L y! E .Y: x .y). 



Define Ti = {a E E,16(2. a)! for some z E SJ} for i = 1,2. 1 5 j 5 Ir, 1. According 

to Theorem 4.5. we obtain the corollary below. 

Corollary 4.4. If .Y: E TI and -Y,? E s? are IBC. a n d  there exist E! C T: 
and El? E such that for al1 x E .Y!' y E -Y,? . a E E:. b E T2 the configuration -1 

[jt. a ) .  (y. b ) ]  R(S!. -Y,?). and the following conditions hold. 

( 1 )  There exist circuits C(S!). C(S,?) in Si a n d  -Y2 un'th events in Tf - E: r ?  - E,? 
' -1 

respectively. a n d  [C'(Si) 1 -[C'(-Y,?) 1 = + 1. 

(2) S: is IBC with respect t u  Xt - E! . 

(3) .Y,? is IBC with respect tu  Z? - E;. 

Thcn .Y: x S,? is an IBC block of MII1-RJI?. @ 

If .Y,' x .Y,' is IBC. for al1 .Y: x S,? E al x r?. the dynarnics of an IBC partition 

machine of .\Il 1 1  -R.\lz based on x 7, are given by the DC relations between elements 

of r l  x 7 2 .  If there esists I E O ( S ! ) .  a E Si. such that 61 (2. a) E QI:). and there es- 

isrs [y. 6: E S;' x S:. & (y. b )  E 1:. [(r .  a) .  (y.  b ) ]  4 R then ([Si. Xi\;?j. [SC. Si2]) is DC. 

1.3. Events with Different Live Times 

Cp to this point. a11 events have been assumed to have the sarne live time. that 

is to s-. al1 transitions are assumed to take the same quantuni time unit (taken to 

bc 1 for convenience) to complete. K e  noa consider systems in ahich distinct events 

nia? have different live times. In a timed finire state machine -11 = (S. T. P. t } .  an 

event a E X is associaced with a time measurement t (o )  > O that indicates the live 

cime of an event. Although in practicc. events ma! occur at an- real-valued time. 

in this setting. a discrete-tirne dock is used. Hence. Ive assume that al1 events have 

durations t (a ) .  tvhich are integral multiples of the basic quantum time intemal which 

is again taken to be 1. 

In many cases. minimai time control problems for multi-agent systems are of in- 

terest. This is the problem of seeking a controlled path between two vector States 

that takes the minimal time to finish. In this section. a simplified clock structure. a 

tzme counter. is proposed to record the difference of live times of two events taken by 

two agents. With the help of such a time counter. a minimal time control problem for 



multi-agent systems may be transfered into a point to point shortest path problem 

and thus solved with HADP. 

For a svstem consisting of n agents rnodelled by finite state machines AI,, 1 5 
i 5 n. a time counter observes the progress of the running events in each of JI,. Since 

distinct events may have different live times. when the systerns -11, take erents in par- 

d e l .  the state transitions in n agents m e  not complete a t  the same time instant. The 

function of a time counter is to record the residual live times of the ej-ents being es- 

ecuted at AI,. 1 < j < n. j # i. a t  the moment an state transition in .Ut is completed. 

A tzme counter for two timed finite state machines .\II = ( S I .  XI. d l .  t l }  and 

= (.Y2. E?. 62.  t?} is a third finite state machine C'(.\Il. JI?) = {D,. 5 . 3 , .  t } .  The 
set of coiinter States. D, = {[(SI x {O. 1. '1. ... T?})u (Y? x {O. 1.2. ... Tl})] x {l. 2}} 
i(RESET). where Tl = mas( t l (a )  - t2(b). O}. T2 = rnax{t2(b) - tL (a ) .  O )  for al1 

n E E l .  6 E T2. and RESET is a distinguished state representing the reset of the 

coiinter io zero. .-\ state other rhan RESET is a triple consisting of an event and 

tno integcrs. wliich give information about the residiial l iw time for a running eveent 

that  is t~e ing  esecuted by an agent. The set of vector events is Tt  = [ ( X I  6 ( - } )  x S]  
Lir -! x (5: b ( - } ) ] .  where the s>.mbol - means that an agent is in the process of ese- 

çiiting an inconiplete event. The counter state transition function is defined as follotvs: 

(a. t i ( a )  - t2(b). 1). if t l (a )  - t-(b) > O 

RESET, if t l ( a )  - t?(b) = O 

(b . t? (b) - t l (a ) .2) .  i f t l ( a ) - t ? ( b ) < O  

if [a. bi E X I  x I?. 

and. 



4 - 4 3  EkXXTS WITH DEFEREST Lil'E TIMES 

Otherwise. 6, is undefined. The time measurement t : Dt x Et + N' is defined bu: 

and 

L - J  

onsid er two agents .\II and J/? interacting with one another with the forbidd 

relation denoted by R C 5 x X?. [a. bj E R means two events a E El and b E X2 are 

forbidden to happen at the same tirne. This is a simplified version of the forbidden 

çoiifigurat ions introduced earlier. 

Definition 4.3. (JI, (jl&).lI?) For two finite Stace machines .\II and .II2. their 

t m r d  multi-agent product machine Jli(/11_R).U2 = (.YL x .Y2 x Dt. XI - R. 6. t }. has 

t h e  statc transition function defined as follows: 

if [ a b ]  $72, a # -JJ + -. 6i(r.u)! and cL(y .b ) ! ,  



if a = -, &(y, b)! and [c? b] R, 

if b = -. &(x. a)! and [a. d ]  4 R. 

The  time counter records the residual live times of the events running in al1 of 

the agents. In .11L(II!.,)112. a state transition takes place whene~er a srate transition 

of one of the agents is cornpleted. 

The control problen? For ttvo interacting timed agents .UL. .U2. is to find a se- 

quenccs of (vector) events that steers the multi-agent systern from the start  (vector) 

statc jr. gj to the target state [I'. IJ'] such that the  system enters [r'. y'] at the same 

tinic point. Le.. find a path from [I. y. RESET] to  [t'. y'. RESET]  in .U1(II&)J12. 
The niinirrial timc çonrrol problenis for interacting timed agents can be solved with 

DP in r,hcir timed rnulti-agent product. 

Example 4.5. In .\II and -1- (Figure 4.6). t ( a l )  = t ( b l )  = t (b3)  = 1 and t ( a 2 )  = 

r ib? )  = 2 .  72 = 0. .Ifl/l&.U2 is shown in Figure 4.7. a 

Definition 4.4. .A timed multi-agent system .\IL II!.& is said to be controlfable 

if for an- States s = [r. g.  RESET] and t = [Y. y'. RESET].  there are a sequence of 

vector events that steer the system from s to  t. El 

Let -4 C A*- be a set of positive integers. denote the greatest common divisor of 

elements in -4 by gcd(.-l). 

Theorem 4.6. If R = 0 and there are circuits CL. C2 in .\IL and hl2 such that 

t(Ci) - t(C2) = gcd({lt(a) - t(b)lla E IL! b E x?}), then -\fL(I(!,R)-\f2 zs controllable. 



4.4.3 EbTXTS WTH DIFFEREST Ln72 TIMES 

C(M 1. M2) 

FIGCRE 4.6. Two interacting tinied agents 

Proof: 

Sirnilar to that of Theorem 4.1. 



CHAPTER 5 

Hierarchical Network Routing 

5.1. Introduction 

The solution of routing problems for cost-sensitive telecommunication and trans- 

portation networks has beconie critical for the provision of economic high quality 

simicc (i6]. [6$. [39!). Because (1) the network striictiire varies when traffic load 

c h i g e s .  arid ( 2  I multiple users compete for the limited resources (transmission chan- 

nels. biiffers. etc.). the network routing problem has much higher complesity tlian the 

conventional single agent optimal trajectory problem addressed in Chapter 3. For a 

single task. the routing objective is to find a path frorn its origin s to its destination 

t wit h the minimal cosi among al1 admissible paths. The multiple user nature of the 

ntitworks iinder consideration stiggests that traffic congestion ma! ive11 occur when 

the nurnber of flows carried on a link is close to its capacity: evidently rhis r n q  lead 

to poor ser~ice  quality and thus induce higher overall cost. 

In nctworks with heavy traffic. the available size of buffers and the capacity of 

links constant ly Vary over the t ime ([35]. [36!). In order to provide good service qual- 

ity as well as complete tasks. the dynamical routing needs to be fiesible. adaptive and 

functional in real-time (1671. [48]). To this end. hierarchicai controllers based on the 

network status are proposed to solve dynamical routing problems. In this chapter. a 

generalisation of the HADP algorithm is proposed to cope with the problem of multi- 

agent t irne-varying networ ks. The key notions introduced here are (1) dynamical high 

l e~e l  cost pattern. and (2) the state-dependent dynamical routing methods. 



.A (buffered) network is modelled by a directed gaph .  G = {Y! E: d! d. B. C}! 
rhere  .V is a set of nodes. E is a set of edges, d : 3 x E + 3 represents the con- 

nectivity relations (if e, € E is an edge from n, € .V to n, E .Y 6(n,.e,) = nc). 

d : E i 72- is a cost function mapping each edge to a positive real . B : -Y + JV? 
is a function rnapping each node to a positive integer. C : E -, A*- is a function 

mapping an edge to a positive integer. 

The cost function d ma? have differenr interpretations in various contem. B can 

be used to represents the maximal size of the buffer a t  a given node. and C ma! 
represent the maximal capacity of transmission of a given edge. Le.. the maximal 

number of indkidual Roas that can be handled bu the edge ac one time. 

-1 request r ( s .  t ) .  S .  t E .Y. s # t. is an ordered pair of nodes for nhich s represents 

an origin and t represents a destination. An (acyclic) route asszgnment for r is .  t )  is a 
rnapping R : r ( s .  t ) )  - { E - u @ } .  where ;i; is the network state a t  tirne instant k: 
and if R ( y k .  r ( s . t ) )  = ele? ... en E E-. then e ,  f e ,  when r # J .  and &\.s.ele? ... en) = t .  

A routine controller maps an element of .Y x .V to E* u {O}. Le.. when a reqiiest 

ri S. t )  ariscs at time k. the controller either assigns a route R ( y L .  (S. t ) )  E E- or 

ri.jrrts thc request according ro the curent  state of the network. which is modellerl 

by R(afk. ~ ( i .  t  1 )  = 0. 

In t his chapter. netrvorks are conceptually particioned into two classes: the link 

nctrvork systerns. denoted Lys. in which the capacity of nodes is assumed CO be infin- 

ity: and the buffered netrvork systerns. denoted BSs. in which the capacity of links is 

assumed to be infinity. Actually. LS and BS can be viewed as duals. or trvo elements 

which can be combined later. 

5.2. Incremental HADP 

5.2.1. Dynamics of Network Topology as a E'unction of Trafic Loading. 
Consider a network G = {X. E'6. d. B. C) in the class LX. in which the capacity 

of al1 nodes is assumed to be infinite. and hence the loading of t r a c  that can be 



handled by the network is constrained by the capacities of links. 

-4ssume that the requests can enter the network at any time instant but only one 

request arises a t  a time. Also assume that the request is assigned a route or rejected 

instaneously. Because the network routing controller under consideration is event 

(request) driven. only the ordering of requests is relevant. By mapping the ordering 

of the occurrences of the requests to positive integers, the time instant a t  which a 

request arrives can be relabelled by an integer. Hence. we refer CO an integer k as the 

rime that a request arises. instead of the value registered by a dock. 

For a requesc r ( s .  t ) .  if there are admissible paths (the current loading of any link 

on an admissible path is strictly less than its capacity) from s to the t. then one of 

these pachs is assigned to this request: otherwise. the loading of this request on any 

patli from the origin to the destination will lead to overflow. and thus the request is 

rejected. 

For a route assignment R(s.  t ) .  one unit of capacity of al1 links of R(s.  t )  is reserved 

for the esclusite use of r ( s .  t ) .  In  other words. if the requesr r(s. t )  is assigned a route 

Ri.5.t) at time instant k ( k  > O ) .  then for every link e of R(s .  t ) .  the arailable 

transmission capacity at  time instant k of e  is C k ( e )  = Ck-[ (e)  - 1. After a task is 

çompletcci on R(s.  t ) .  one unit of the capacity of a11 links of R(s.  t )  is released for the 

ilse of other requests. Hence. the capacity of a link is recursively giren by. 

where .-lk(e) is the number of routes containing link e which are assigned at  time k 

( - A k ( € )  is O or 1. since oniy one request is processed at any given k),  and L k ( e )  is the 

nurnber of tasks which have been completed on link e a t  time k. 



-4 local dynamical weighting corresponding to local trafic load may be used at 

a node to give higher preference to the link with relatively light trafic. and thus to 

avoid traffic congestion. One scheme we isolate is to set the load cost at a link e E E 

if CI;(€) = Co(e). d t ( e )  = d(e) .  
spare transmission capacity. In 

if i r  esists. In the computation 

an optimal path may of course 

When Ck(e)  = O. Le.. d c ( e )  = x. the link has no 

this case. an alternative of this link rvill be chosen 

of an additive minimum cost trajector- a node in 

be such that a link is chosen ~vhich does not have 

minimum cost at that node because it contributes to a globally optimal trajectory. .-\ 

frequently used form of the traffic-dependent transmission costs in the probabilistic 

setting is 

where EICo(r) - Ck(r). TI is the Erlang-B formula for T Erlangs offered to Co(e) - 

Iri a dyarnical network. the capacity information of the links is updated at eacli 

irisrant k irrimediately. when a route is assigned for a request or a t,uk is step-tvise 

i part ially ) conipietetf. The dynamical weights are also updated. \ lé shall denote 

the topology of a network .Y at time instant k bu Gk = (S. Ek. 6. Ck. d i } .  niiere 
.l Ek = {C E E/Ck(r j  > O } .  

5 2 . 2 .  T hroughput-Independent ST-IBC Partition Machines. Fm an 

ordered pair of distinct nodes (r. y )  E X x .Y let a subset E J I ,  y )  C E be such that 

there does not esist u E ( E  - Ec(zo  y))' such that 6(z. u) = y. EC(x. y) is called a cut 

n-ith respect to (z. y)  ([23]). In other words. a cut with respect to (x. y)  is a subset 

of edges that separate z from y. Denote the collection of al1 cuts for (1. y )  E .V x Y, 

r f g. bu m t ( x .  y). 

For two subsets of nodes. S: k- E Ec(dy, Y) is a subset of edges such that 

for al1 x E .Y and for al1 y E Y ,  I f y. there does not exist u E (E - EC(x. y))' 



d(r. u)  = y. Denote the collection of al1 such Ec(-Y. Y) by cut(.Y, Y ) 7  S: Y E 2". 

Define the minimal cut of x E S and y E S with respect to a subset of nodes 
A 2 S as f~llows. mincuts,(r. y) = ~ i n ( ~ , , ~ y x s , e e E ~ r , u ~  C(e)I&(z. Y) E cut(1. Y)}. 

2l For two subsets S. Y C Z C .V. mincutZ(X.  Y )  = min { ~ c E Z x Z . c E é , ~ S , I . ~  C(e)i 
E c ( S .  Y) E cut(S. Y)}. It is a basic result in graph theory that the maximal flmv 

from r to y with respect to S is equal to mincuts(x. y) ([23]). and this also holds 

for any subsets S. 1' C 2. 

For a sequence of links p = ele? ... e ,  E E'. define the path- wise capacity PC(p)  = 

rnin{C(e~)I l  5 i 5 n}. 

Suppose in  a network G. there are two subsets of nodes S C .Y and T 2 S. 
siich rhar  for :dl request r ( s .  t ) .  s E S and t E T. Let :: be a partition of S. the  set 

of nocics of a netnork G. Recall the definitions of in-sets and out-sets ([lj]). The 
p r o p m y  of t.tiroughput-independent ST-IBC for partition blocks as follorrs: 

Definition 5.1. ((TI-ST-IBC) A block .Y, E :: is throughput-rndependent ST- 
1BC (TI-ST-IBC) if 

(1)  71 E I(S,) .  3y E O(SJ sucli tha t  there is u E E'.  d ( r .  u )  = JI and Vc < u. 
 di^. IA E .Yt: 
( 2 )  YI. y E O(S, ) .  r f y. u&. y)  = { U  E E' such that J(x. u )  = y and Vc  < u. 

Ii1. r )  E S,} = O: 
( 3 )  YI. g E O(Si). there is c E us&. y )  such that P C ( c )  2 rnrncuts,(l(S,).  OiS,)). 

The first two conditions in Definition 5.1 are those for a block to be ST-IBC ([15]): 
the third condition ensures the ST-IBC property of a block to be preserved. regard- 

Less of the varying traffic load in the sense that there exists a path from r € O(S,) 
to  y E O(SJ whose capacity exceeds the maximal Bon from [(.Y,) to O(S,).  This 
property also implies that [(.Y,) n O(S,) = 0. 



Definition 5.2. ( I k ( X 1 ) )  For XI E T ,  the in-set of -Y, at time instant k. Ik(.\',) 
is a subset of I ( S J  such that for al1 z E I k ( X 1 ) .  

(1) 3 y S,. e E Ek such that 6(y. e) = x and. 
(:?) 3 2 E O ( S , )  such that 3 u  E E:. d(x. u)  = 2 and V c < u. 4(x. c i  E 1,. Q 

K i t h  the loading of trafic to 1,. some nodes in I ( X J  may not be accessible to 

any outset node with respect to SI. These nodes do not appear in I k ( S , ) .  Define 

I,.&\;) = {I f Ik(-yJ)I 3g E S, 2e E &.&(y. e )  = I}. -4s stated earlier. an- route 
assignment is acyclic. i.e.. for al1 e E E. e appears no more than once in R(s.  t ) .  

Lemma 5.1. If  SI  1s TI-ST-IBC and Ik(S,) + id. thrn for  al1 x E Ik(.\',) and 

for  u l l :  E O(S,) .  thrre rs p E E;. such that d ( 1 . p )  = z and for al1 q < p .  J ( r .  q )  E S,. 

Suppose S: is TI-ST-IBC. By the definition of Ik(.YI). for an arbitrary x E Ik(S , ) .  
t h e  is E O( .Yi). and u E Ei. sucli that O ( I .  u )  = : and for al1 c < u. &(r. L.) E SI.  

Lct z = bc a n  arbitrary node in O(S, ) .  According to Definition 5.1. thcrc 

is IL. E E.. such riiat d(y.  il.) = : and for al1 r < W .  J\g.  w )  E .Y, and PC(u9) > 
mmcut.\-, i li 1:). O ( S , ) ) .  

A parh from an! s E 5 to an- t  E T including a link niore than twice must involre 

a circuit. and thus can clearly be replaced by another acyciic route assignrnent. That 

is to sa-. for an? S. t E .Y if there is a path from s to t .  then there esists an acyclic 

R(s .  t )  E E'. So. for any link e E E. e is on R(s .  t )  at most once. 

By assumption. for al1 requests r(s.  t ) .  s E S. t E T. and it is al-s the case 

that R(s.  t )  goes through Si from I(Si)  to O(S,). Because u E E;. S U C ~  that 

Sir. U )  = z .  at time instant k. there are strictly less than rn~ncut.~, (&Y, ) .  O ( S i ) )  - 1 

route assignrnents going through Si from &Y,) to O ( S i ) .  Hence. for any edge e in 

.Y, x S,. at time k. e carries at most mincuts, ( I ( S , ) .  O(S,)) - 1 individual flows. 



5.3.2 I?r'CRESIEST,\L HADP 

Therefore. for any edge a in W .  a E Ek. That is to say p = uu E Ei.  6 ( x ' p )  = 2 and 

for al1 q < p. d ( r .  q )  E S,. 13 

.\ partition of -Y. 7. is said to be an throughput-independent ST-IBC partition 
if al1 its blocks are throughput-independent ST-IBC. Let a throughput-independent 

ST-IBC partition machine of G be denoted by Gh = {x. Eh. d h } ?  where Eh = {L;)j 
(S,. SI) is ST-DC (see Chapter 2 ) .  1 5 i. j < - lai}. and dh(.\;. L-:) = S,. 

5.2.3. Incremental HADP. Denote a two level hierarchy consisting of Gh 
and G by {G.Gh}.  In this section ive present an estension of HADP to {G. Gh}  
which mats  the rnulti-agent case under consideration. 

Definc d . ~ , ~ , . t ( r . g )  = min{d(u)lu E E; 5.t. 4(r. u )  = y and ': r < u.d(s. r )  E 

1,). The tiigh Icwl cost function DL'- is defined belon-. 

Tc, apply HADP. we first set up a Iiierarchy consisting of a low level network G 
and its TI-ST-IBC partition machine Gh. Then an initial route assignment is made 

by HADP( D- - 1 baied on {G. Gh} (see Chapter 3).  

Subsequently. at every time instant a request is received by the netaork. an ob- 

servation is made on the traffic loading (links reserved and reieased) and the link 

capacities of the entire system are updated. For a request r(st t )  arriving at  time k. 

the high level costs {DL!-} are recalculated (sirnilar to the treatrnent in Chapter 3).  
This latter step is formdised in the algorit hm below which hence generalises GE. 



Algon'thm 1 of Incremental HADP (IHADP) for r ( s ,  t) ut k > O 
(1) For each e E E. set Ck(e) = Ck-l (e) + Lk-1(e). where L k ( e )  is the number of 

tasks which have been completed on link e at tirne k. 
( 2 )  Caiculace dk(e) = (Co(e)/Ck(e))d(e) for each e E E. 
( 3 )  Calculate Ik(S,) for al1 S, E r. 

(4) Calculare D;'-(s,. -Yl) for al1 DC pairs (Sc. SI). 1 5 i. j < 1-1. c 

For request r ( s .  t ) .  let Ss and St be the blocks containing s and t respectively. 
If SS = S. seek an optimal path from s to t with respect to Ss. Otherwise. n e  firsr 

seek a high level optimal solution with respect to DL'- frorn S' to St in G:. Then. 

a low level solution is sought the process described in the algorithm formuiated 

beIow . 

Algorithm 2 of Incremental HADP ( I H A D P )  for ris. t )  at k > O 

i 1) If SS = Sc. seek an optimal path from s to t rrith respect to S I .  srop: else. set 

I,~.Y*) = (.+ rk(st) = ( t } .  

( 2 )  Calculate Di ' - (.Y,. .\>) for al1 DC pairs (.Ys. 1,) and (S,. .Yt). 1 5 1 .  j <_ r;!. 

i:3) Stit E,h = {lm! ; D L f  -(.Y,. SI) < x). 

(4 Seek a n  optimal path frorn Ss to .Yt in G:. Denote this path by 1; 1 ;  - ... 
1,. If no püth  from Ss ro St esisrs. stop. 

( 5 )  Let I I  = s and x, = t. 
(6) Srart from r = 1. if r < n - 1. seek ut  E El such that d ' j x , . ~ , )  E I,(I;-,) and 

di u )  = rninyEr,il;_,) dl;l;_,.c (x,. y). Set 1,-1 = d(x,. u,). Set r = 1 + 1. 

( 7 )  II I = n - 1. seek ut E E; such that d(x,. u,) = 1,. u1 u?.. . Un- is a loir lerel 

solution for r ( s .  t ) .  

(51 Set Ck(e) = Ck-1(e) - I for ail e E Ek on the resulting low lerei path. L 

Algorithm IHADP consists of algorithms 1 and 2 at every time instant k 2 1. 

Compared ni th the single task HADP. the extra cornputational time of the tirne- 

rarying HADP lies in steps 1 and 2 in the above algorithm. Clearly. these two steps 

may be carried out iocally for each DC block pairs and a t  each time instant k 2 1.. 



If these steps can be performed in paraIlel. a greater speedup of HADP is expected. 

The following basic theorem guarantees that if no high level solution exists in 

step 4. no low level solution exists in Gt for r ( s ' t ) .  

Theorem 5.1. Let î ï  be o TI-ST-IBCpartition O/.\: and .Ys # .Yt? then for any 

s E I (Ss)  and t E I (SC) .  there is u E E; such that d(s. u )  = t if and only ij there is 

I -  E CE:)' such that Sh(Ss. L') = -Yt. 

Suppose there is a high level path from Ss to SL with finite cost at time instant 

k .  Denore this path by 1; i 1; 4 ... -+ 1;. 1;  = Ss and 1; = 1'. (1 ; .  1;J 
is ST-DC and D,-( lJ;- l )  < x. I <_ r < n. That is to Say. in any 1;. for al1 

r E I k ( 1 ; ) .  thcre is r1 E I,*k(l;- l) .  such that d~ ;~ ;_ , , , (x .x ' )  5 D;'-(I;. 1;-[) < x (by 

Definition 5.31. I ,m(l; - i )  $ 0. 

For an! node 2 E I , - k ( i ; - i ) .  by Definition 5.2. there is y E O ( ) ; )  and e E Ek 
( d k ( i . )  < xi such t h a t  & ( g .  e )  = z .  Bu Lemma 5.1. since 1 ;  is TI-ST-IBC. for al1 

r f I i l ; ) .  E O&). there is u E EL such that S(r. u )  = y. and moreorer d(x. ue) = z 

(sce Figure 3.1 l .  Because d>;,k(x. y )  5 d ( u )  < x. dl;l;+,.&. 2) 5 d ( u e )  < x for ar- 

hitrary r r t&)  and 2 E i,.k(l;-l). 

Let rl = -5 and r ,  = t .  Starting from 1;. when i < n - 1. seek u, f E; such that 

8(1&. ut )  E 1,(1;-,) and d ( u )  = min,,r,il;+l~ dr;l;+&l. y) .  set I,,I = 6(r,. u t ) .  Khen 
1 = n - 1. seek u,  E E; such that d(r , .  u,) = 1,. It is clear that u ~ u ? . . . u , - ~  is a low 

level path from s to t and that d ( ~ ~ u ? . . . u , - ~ )  = x:> dl (u, )  < x. 

Converseiy. suppose at time k. there is a low level path p(s .  t )  from s to t with 

finite cosr. Denote the blocks containing this low level path b -  1;' 1;: -... 1; in order. 

1;  = Ss and 1,  = Sc .  Cleariy. Ik(S,) f 0 and there are I, E O(k;), y,,~ E I,(k;ci) 
and E ,  E Ek. 1 5 i < n. such that 6(2,. e t )  = y,,~. Because ii is TI-ST-IBC. it is 
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straightforward to see that an- (1,. .Y,) is ST-DC if there is a loir lerel path directly 

from .Y, to .Y,. Thus. (l;.l;,l) is ST-DC. 1s i 5 n -  1. 

FiIr an- r E Ik(l;j. by Lemma5.l. there is u E El such that d(x. U )  = I, E O ( \ ; ) .  
and moreorer Jp. ue,)  = y,-[ E I , ( l ; - I ) .  Thus. bu definition. D- ' - ( l ; .  1i-1) < x. 

Therefore. the cost of L* = L-:C:; ... L*z- ,  is finite and cjh(.YS. L-) = Sc.  

It is worth remarking thar if there is high levei solution For .Y' and Sc in G: 
when S' = S' or there is no solution for s and t with respect to .Ys when S' = S. 
r\ s. t )  is rejected at time instant k. This corresponds to the case that an overload is 

raking place in the nerwork. 

5.3. Multiple Objective Network Routing 

5.3.1. Network States of the Link Network Systems. Consider a net- 

nork G = {S. E. 6. d. C) in the class of LN. Suppose n requests with origin-destination 

pairs. r ( s , .  t , ) .  1 5 i 5 n. arrive at G simuItaneously. Assume that for each i. 

1 5 i 5 n. there is R(s , .  t,) E E' satisfying 



and sat isfying. 

(3.5.1 ) 

FIGURE 3.2. -4 simple network 

ivhere 3(e,.  r (  s,. t a ) )  is a unit cost set-members 

edgc e, and a path R(s,. t , ) )  defined bu. 

1 < j < F I .  
hip (or characteristic) function for an 

Then ive sa' that a caltd routzng {R ( s , .  t a ) .  1 < t < n) for these n  requests { r ( s , .  t , ) .  1 5 
r 5 n }  eszsts. 

\\'hm a valid routing esists for a set of requests { r  js,. t , ) .  1 < i 5 n }  . the optimal 

control objective is to minimise the overall cost 

For convenience. From now on. only the case n = 2 ni11 be discussed. but a11 con- 

clusions hereafter can be estended to n > :! with a little modification of the argument 

in each case. 

Example 5.1. A network is shown in Figure 5.2. Al1 links have a unit capaci t .  

The costs d(a)  = d (e )  = 3. d ( b )  = d(c) = d(d)  = 1. Two requests are r (nly  n,) and 
n .  n The optimal route for both requests is Ro(nl. n4) = bcd. But if this route 

is assigned to an? of the requests. the other is blocked. n 



The notion of (vector) network state c m  be used to represent the state of a 

network. -4 vector network state 7 = [c(el), c(e2). .... c(eiEl)]. O 5 c(e l )  5 C'(et) .  

1 5 i 5 1 El. is a vector with each element denoting the available capacity of an edge. 

The dynarnics of a routing process may be expressed as a finite state machine 

R P  = {r. EU{€}. c}. where ï = {O. 1. .... C(el)} x { O .  1. .... C(e?)} x ... x {O. 1. .... C(eiE;)} 
is the set of al1 network srates. c is a distinguished event corresponding to no transition 

taking place. K i r h  this notation. the state transition function 

A rouizny controller for a network G is a finite state machine RC(.Gj = {S x .Y x T. 
i E - {e}!  x \ E G {c}). p - d ' } .  where 

1 r 

and the  cost function df(ir.  y. y ! .  [el .  e?i) = d ( r .  e l ) t d ( y .  e?) whenever p( [r. y.  -J. [el .  e J ) !  
A 

( d ( r .  é )  = O for all I E .Y). 

If jTrj(sl .  ul). Trj(.s?. u?)]. . u l .  U? E ( E  u {c})., is a (vector) path from [sl.s2. 
[C(el).C(e?). .... C(e!Ei)]] to [tl. t 2 . i ]  in RC(G). n-here 7 E r may be any net- 
work state. then s ( ~ ~ .  ui) = t l  and 6(s2' u 2 )  = t?. Because p gives al1 admissible 

routing processes. ili and u? saris@ the capacity constraints (5.5.1). The optimal 

routing problem is thus convened to a problem of seeking a shonest path from 



5.5.3 MLXTIPLE O B J E C T M  ?;ETKORK ROCTISG 

[O.O. 1,O.O.n ,,n ,] 

FIGURE 5.3 .  .A roiiting controller for Esample 5.1 

Cie, ). C(e2). .... C(e:E:) \ ]  to a set of statcs { [ t l .  t? .  - ] lns  E T} in RC(G).  

A part of RC(G) for the nerwork G in Esamplc 5.1 is sho~vn in Figure 3.3. K e  

riow t h  al1 l e p l  non-blocking roiirings of the nerii-ork are represented by RC(G).  
.An optininl control for (ni. n , ]  and [n.,. n4! is [ad. bel [rith the ot-erall cost of S. 

5.3.2. Throughput IBC Partition Machines. Since RC(G) has a huge 

s a t e  space if ..TI and ;El of G are large. ive are interested in studying the application 

of hierarchical control (sprcifically. HADP) for finding the optimal routing for large 

G. in order to reduce the cornpurational cornplexity of DP procedure. 

Assurne thac the origins of al1 requests are in S C S. a subset of nodes in G. and 

the destinations of al1 requests are in T 9. We may directly partition LV x :V x r 
into ST-IBC partitions to obtain a high level model for RC(G) for which HADP is a p  

plicable. Alternatively. hierarchical routing cm be achieved by partitioning IV. which 

is much smaller than .Y x S x r (into some structures to be discussed) to form a high 

level network model Ch. Then ive may constmct a routing machine RCh(Gh) for this 



high l e ~ e l  netaork. RCh(Gh) and RC(G) form a hierarchy {RC(G),  l2Ch(Gh)} to 

apply HADP. Let r be an arbitrary partition of X .  C h  now present a formulation of 

1 - ST - DC and 2' - ST - DC relations over partition blocks. 

Definition 5.4. (1-ST-DC) .ln ordered pair of blocks S, E 7 and X, E r are 

1-ST- DC if: 
(1) V r  E l(S,) .  there is y E I , ( X , )  such that there is u E E'. 6(x. u)  = y and for a11 

c < u. d ( r .  r )  E Si: 

( 2 )  r n i n c ~ t ~ ~ , . ~ :  ([(S,). I , ( S j ) )  = 1. 0 

Clearly. i f  (S,. .Y,) is 1-ST-DC. (S,. X I )  is ST-DC. Furthermore. (1,. S I )  is 1- 

ST-DC implies that thcn only one flow entering S, at an- node in I(S,) can go 

throiigh .Y, to .Y, nithout causing an overflow. 

If  ri requesrs r ( s , .  t , ) .  t 5 t 5 n. are under consideration. for an!. link e E E sucii 

that C(e) 1 n. an acyclic route assignment {R(s , .  t , ) .  1 5 i 5 n} ni11 not lead to an 

~~verfloiv o n  c.  0111~ the links with capacity stricrly less than the number of reqiiests 

are critical to avoiding o~erfiow. Therefore. in case only 2 requests are under con- 

aideration at the same time. the links with capacity greater than 2 can be vietwd as 

being in  the sanie class. and 1ve shall use 3- to represent capacities which are greater 

than or equal to 2. 

Definition 5.5. (20-ST-DC) An ordered pair of blocks .Y, E 7 and -Yj E 7 are 

C S T - D C  if: 

( 1) V r  E I(S,). there is g E I , ( S 1 )  such that there is u E E'. d ( r .  u )  = y and for al1 

2. < u. d ( r .  r )  f .Y,: 
( 2 )  V [ r .  y] E I ( S , )  x I ( S , ) .  there is [r'. y'] E I , ( S , )  x I,(.Yl). such that there is 

[ u , .  u2i E Ew x Eo. &(I. u , )  = x f . P ( y .  u?) = y'. for al1 cl < ul.cz < u?. 6(r. c i )  E 

S,.&(g. r?)  E S,. and for al1 e E E. 3(e .  ul) + 3(e.  u?) 5 C(e). 12 

The first clause in the above definition States the standard condition for a pair of 

blocks to be ST-DC. The second clause indicates that if (Si' -Y,) is 2--ST-DC. then 

two individual flows entering .Yi at m y  two nodes in I (&)  can go through .Yi to .Yl 



FIGL'RE 5.4. S, is not '2--throughput IBC 

without causing an overflow. 

Definition 5.6. (1-throughput IBC) A block .Y, E a is 1-throughput IBC if: 

( 1 )  75  E I (SJ  and Vy E O(S, ) .  there is u E E' such that  d ( r .  u )  = y and for al! 

c U. ( j \ ~ . t ~ )  E Sc; 

( 2 )  m~ncut.~,(~(.~,j. O ( S , ) )  = 1. Z 

[ri a 1-rhroughput IBC block .Y: E 7 .  the elements in O ( S J  are not required ta  

he  niutually accessible bccause only one Bow from I ( S J  tu  O ( S , )  is possible. 

Definition 5.7. (5throughput IBC) -4 block .Y, E 7 is 2--throughput IBC 
if: 

(, 11 V r  E Ii -Y,) and Yy O(S, ) .  there is u E E' such that  S ( r .  u) = y and for al1 

r < u. 3 ' k  t.) E 1,: 

( 2 )  9'1. . yiT . E I ( S J  x I(S,) .  andV[rf. y']T E O(S,)  xO(S,). there is [ul. u2JT E E* x Em 
such that i(r. u,) = 1'. &(y. u ? )  = y'. Vu', < ut. u; < u?. +. u ; ) .  &(y. u ; )  E S,. and 

for al1 e E E. 3 ( e .  u , )  + 3(e.  u z )  5 C(e). a 

Example 5.2. If 1 I ( S , ) j  = 1. i.e.. I ( S , )  is a singleton. the condition mincut(z. y )  

2 2 .  for al1 x E [(.Y,). y E O(S,).  implies that ?il is 2+-throughput IBC. But when 
SI has more than one in-set node. this is not a sufficient condition for IC, to be 

îA-throughput IBC. In Figure 5.4. the capacities of links are as labelled. .Uthough 
rnincut(z,. y,) = 2 for al1 i 2  j = 1.2. no admissible control r i t h  respect to X, can 

drive the system from [rl . q] to [yl. y?]. ID 



FIGURE 5.5.  .An 1-throughput IBC block and its abstraction 

.A partition a is throughput IBC if al1 its blocks are either 1-throughput IBC or 

?-throughput IBC. In order to avoid ambiguity. an internal "valve" is placed in a 

1-rhroughput IBC to sivitch a Row to one of its succeeding blocks (see Figure 5 . 5 ) .  
Hence. two nodes. .Y:. .Y:. are used to abstract a 1-throughput IBC block .Y,. In  
cont ra t .  For a 2--throughput IBC block. i r  can be abstracted into a node when the 

number of rcquests is 2. 

Analogoiisly. if n > 2. blocks can be classified into 1-throughput IBC. 2-throughput 

IBC. .... n--throughput IBC. in accordance ivith their internal capacity to transmit 

Hows. And.  sirniiarly. an internal valve .Y: i Sz with capacity k is used to represent 

the transmission cnpacity of block .Y,. for a k-throughput IBC block S,. k < n. 

Lemrna 5.2. Let .Y, E T be a 1-throughput IBC block. fo r  any -Y, E n. if there 

tire r E 1,. y E SI. e E E such that c i (1 .e)  = y .  then (S,. 1,) rs 1-ST-DC. 

Suppose 1, E r is 1-throughput IBC. If E O(-&). y E I,(.Y,). and e E E such 
that B ( x .  e )  = y. by Definition 5.6(1). for al1 ,- E I(.'i,). there is u E E' such that 

a(:. u)  = z E O(S,)  and for al1 c < u. d(z. u )  E .Y,. Thus 6(z. ue) = y E I,(.Yl) and 

For al1 rx < ue. 6'(-. w )  E .Y,. This also implies rn~ncut.~,.~, (l(.\-,)' I,(.Yl)) 2 1. 
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Therefore. (S,. S,) is 1-ST-DC. E 

Lemma 5.3. Let SI E 7 be a 20-throughput I B C  block. For any SI E 7. if there 
are r E S,. y E .Y,. e E E such that d'(1.e) = y. then (S,. X I )  is either 1-ST-DC or 

2--ST-DC. 

Xssunie -Y, is '7--throughput IBC. Let r E O(S, ) .  y E I , ( S , ) .  and e E E be such 

tha t  tj[x. e )  = y .  B y  a similar argument  to that of the proof of Lemma 5 . 2 .  we know 

thirt the first condition for Definirion 5.7 is satisfied and r n ~ n c u t . ~ , ~ :  (O(S , ) .  I:(S,)) 2 
C k l  2 i .  

Evitiently. i t  is the case that either r n m c u t , ~ , ~ , ( O ( S , ) .  I,(S,)) 2 2 or rnincutg,.~: 

(O(.\,). I,(S,H = 1. If nilncuts1,~-, (O(S , ) .  I , ( S , ) )  2 2 .  then therc are ttvo cases: 

i i i I f  t h e  is r E O(S,) .  el E E such tiiat J ( r .  e l )  = y E I , ( S , )  and C(el)  2 2 .  
For an!. two noiics IL. rl E I(SJ (not necessarily dist inct) .  by Definition j .7 .  there 

are u l .  u? i E' such that d(xl. u l )  = S ( q .  u?) = x. and for ail r1 < u l .  r? < u?. 
[iiri. r i  ).J(x~. L-?) E SI. for al1 a E E. 3(a. u L )  - 3 ( a .  u ? )  5 C ( u ) .  Therefore 

:ille!. u2e1 j  drives t he  systeni from [ri. I?] to [y. y] r i a  [r. ri through SI. It is clear 

3 (e1 .  4q) 7 3(e1.  u?el) = 2 5 C(el). Hence. (SJ,) is 2--ST-DC. 

( 2 )  If there are S. i E O(S,) (not necessarily distinct). e l .  ez E E. el # e2. such 

that  J ( I .  e l )  = y E I , (X,)  and b(z'.e?) = y' E ?,(SI). It follows from Definition 

5.7 that  for al1 rl. r? E I ( S , ) .  there are UI. U? E E' such that S ( q .  u l )  = I and 

d \  I?. IL?) = if. and for al1 cl < ul. c? < U?. & ( q .  c l ) .  d ' ( ~ ? .  c?) E SI. and for ail 

a E E. .3(a u l )  - 3(a. I I?)  5 C'(a). Furthermore. [ulei. u2e2] drives the system from 
Lxl. r2; to [y. y'j ria [r. 1'1 through -Y, x SI. Ic is clear 3(el.  ule l )  = 1 5 C'(el) and 



When rnin~ut.~,~~,(Q(S,). [fi)) = 1. i r  implies that O,(.s,) = 1x1. I , ( S , )  = 

{y} and C(e) = 1. it is clear that (.Y,. S,) is 1-ST-DC. c! 

Let a be a throughput IBC partition of .V. The throughput IBC partition ma- 

chine of G based on r: is denoted by Gh = {?. Eh. Sh. Ch. Dh}. where 

7' = (S, E 7 )  SI is F t h r o u g h p u t  IBC) u {S:. -Y'?/ S, is 1-chroughput IBC}: 
Eh = ( I L - :  /(S,. .\;) is 2--ST-DC} u{L;'((S,. S,) is 1-ST-DC } u{(;/S, E a is 1- 

throughput IBC}. 

High level transitions 
The high level connectiïity ( transition) func t i o~  of G ~ s  defined as follows: for an! 

*Yt.  SI E T. 

ih; .Y!. L-J = .Y:' if S, is 1-throughpiit IBC: 
Ijh(  SI. L-:) = .Y,. if  (.Y,. .YJ) is 1-ST-DC or 2--ST-DC and S,. .Y, arc 2 - 4  hrougliptir 

IBC; 
iih( -Y;'. Le:) = if (-Yi. -Y,) is 1-ST-DC and S,. S, are 1-throughpiit IBC: 

S .  I L  = S .  if S .  Y )  is 1-ST-DC and 1, is 1-rhroughpiir IBC. SI is T- 
t  hroiigiipiir IBC: 
ih(S, .  I-; ' )  = -Y;. if (SL. -Y,\;) is 1-ST-DC or 2--ST-DC. .Y, is 2--througtipiir IBC. and 

1, is 1-throughput IBC. 

Hig h level capacit ies 
The high Ievel capacity of a 1-ST-DC connection is 1. the capaciry of a '2--ST-DC 
connection is 2. Le.. for a 1-ST-IBC pair (S,. S,). Ch(L;') = 1. for a 2--ST-IBC 
pair (S,. SI). Ch(L;') = 2. As stated eariier. there are two nodes representing a 

1-throughput IBC blocli S,: .Y! and -Y?. which are connected with a link C; with 

capacity of 1. i.e.. Ch(LJ = 1 for all 1-chroughput IBC S,. 

High level costs 
To calculate the high level costs. some modification of the in-sers is needed (see Sec- 

tion 3.4).  If s € .Y, and -Y, is a 1-throughput IBC block. -Ys = Si. If t E S, and 



S, is a 1 throughput IBC block. St  = SI. Let [sl. s?] E I ( .Ys l )  x I(Ss2).  In order 

to calculate high level costs. set I (Ssf  ) = {si}. 1 ( X s 2 )  = {s?) whenever -YSL $ -Ysl: 
otherwise. I ( S s l )  = {si. s2}: set I ( S t 1 )  = { t l } .  I ( .Y t2)  = ( t ? )  whenever 1'1 + St?: 

otherwise. I ( S t l )  = ( t l .  t ? ) :  if 1'1 = 1'2. I ( S S 1 )  = I ( P )  u [(Sc:) :  if Sti = Ssz. 
I ( X t l  ) = I ( S t ' )  u I ( S S 2 ) ,  

For an- 1,. S, E I. if (1;. -Y,) is LST-DC. DhK-:) A D - ( I l .  S I )  masz m a 9  

{d-y,s,  p. y )  Ir E I ( S , ) .  g E I , ( S , ) } .  if (.Y,. SI )  is 2--ST-DC. let DA([':) = 
ni;is(d(ul) d ( u 2 )  jV[rl .  r2j E I ( S , )  x I(S,).  [yl.  y?] E I , ( S , )  x I , ( . Y k ) .  (Si. -Yk) 1- 
or 2--ST-DC. and J(e. u l )  - J(e. u 2 !  5 C(e) for al1 e E E). Let D ~ ( ( L ; )  = 0. for d l  

1-throiighput IBC S, E 7 .  

The folloiving theorern is an a n a l o g  to Theorem 2.1. 

Proof 
I 

KP stidl p r o w  thac an? giwn hiqh level ~ a l i d  rout ing contains a loir lerel valici roiir- 

iris. Suppose thcre is a valid rotiting frorn ;.Y'! . .Ye! to ~S'I . .Yt:' in Gh. and denori? 

r t i t !  blot:ks on an oprimal path ( w i t h  respect to  Dh) in order by 1;. 1:. .... 1, E r; and 

Z ! .  &. ... Zn E r; respectively. where s i  E 1;. s2 E Zi. t !  E 1 ,  and t 2  E 2,. Becatise 

an  optimal patli with respect ti, Dh is acyclic. if i # j .  1 ;  + 1 ; .  Z, f 2,: and if 

1; = Zj .  there is no j' + j such that 1 ;  = Z,t. Hence. for each 1;. 1 5 1 5 m. if there 

is Z1 = 1; for some 1 5 j 5 n. then there are two indiridual flows in this routing 

going through 1; in Gh. and by Lemmas 5.2 and 5.3. 1; is a 2.-throughput IBC block. 

Set 3: = 51. .si = S.>. s i  = t l .  sa = t?. Search from i = 1 to i = m - 1 by increas- 

ing order. if 1; is such that there is 2, = 1;. then carry out the following procedure: 

(1) if sf . s i .  si-,. si-, are not set. arbitrarily choose [s; si] E QI;) x I ( Z J  and 



1 ' 
[5,+ ~ j - ~ ]  E I(k;-1) x I(Z,-l): 
( 2 )  denote by L'(k;. 2,) the set of [u f .  ui! E E' x E' such that 4 s : .  u! j = s!-,. <i(s?, u:) 
- - si-,. Vu; < u!.  ui < ui. d(sf. u ; )  1; .  S(s?. uh) E 2,. and for al1 e E E. 
4 e .  u : )  + 3 ( e .  u?) 5 C(e). Since 1; is Y-throughput IBC. I-(l;, 2,) + 0. Seek 
[ut" u j " ]  such that d(u tO)  + d(u j ° )  5 d ( u : )  + d(u? )  for al1 [u: .  ui] E L 7 ( 1 ; .  2)). 

Srarting from i = 1 to rn - 1 by increasing order. if each 1;  such that no 2, = 1; 
esists. repeat the following procediire: 

(1 )  i f  si. .5i_, are not set. arbitrarily choose s j  E I ( 1 ; )  and sf-, E 1(1;-,): 

( 2 )  no matter whether S, is l-throughpur IBC or T-throiighput IBC. by Defini- 

tions 5.6 and 5.7 .  there is 11: E E' such that J(s:. u f )  = s!-, and for al1 < o!. 

. . j 1 .  Denote t h e  set of all such uj by C(1;). Seek uj" E L' i l ; )  such rhat 

(11 IL:" 1 5 d(  J L ;  ) for ail u,' E L-\ 1 1. 

Sriirring from 1 = 1 to n - 1 by increasing order. for each Z, siiçh that no 
9 O 1 ; = Z,, csisrs. rtipeat thc process sirnilar to above. seek u; E L-(2, ). Also. d(  u;-') <_ 

. i l  - 1 1  1 6 )  4 id ,id 1 4 )  
.Ji ti. u i uj ... U A -  ) + 3 ( ~ .  U T  i r j  1 5 C(e) .  Therefore. i i l !  

i d  
i l ; - , iT  is a vnlid routing for :il.s2jT and [tl.t7IT in G. And 

and for al1 

\\é shall construct a high level valid routing based on any given low level valid routing. 

Suppose there is a valid routing [ul. u?] E Eo x E* from [si. s?] E .Y x i; to [ tL.  t?] E 

-Y x S. Denote the high level blocks containing the low level pat hs [p(sL. u ? ) .  p(s?. u 2 ) ]  



(3) (b) 

FIGCRE 5 . 6 .  p(s l .  u;) and p(s2. cl;) go through 1; no more than twice 

driven by u t  and u? . respectively. from sl and $2 .  respecrively by 1 ; .  1 i. .... lm E :: 

and Z l .  2'. ...Zn. E r;' by order. 

Sow ive prove tchere are valid routing ip(s1. u \ ) . p ( s - .  u ; ) ]  such that each oEp(sl. IL', ) 

iiri(i p( .j?. I I ! ,  ) goes through every 1 ;. 2,. 1 <_ r 5 m - 1. 1 <_ j 5 n - 1. no more than 

OIlc'C. 

For iiri arbitrary 1 ;. if  p ( s ! .  ( I I )  gocs throiigh 1; strictly more than oiicc. bwuisc  

: is rliri~ii$ipiit IBC. 1; is T-throughput IBC. D m x e  the first rnrry of pi . j , .  i r !  ) iri 

I ! \ ; , I  r. ctie last esit of p ( s t .  i l , )  in O ( I J  by 9 .  Let the scgnienr froni r cc, 9 of 

Ttiere arc two possible cases: 

! 1 i pt . s : .  I L - )  does not go through 1 ;  (see Figure i.6(aH. By definition 

sucti rhat d(x. u )  = y and for al1 ut < u.  6(r. u'j E 1;. Replace r c- 
p i s L . , r l ) .  denote the resulting path by p(.sl.uli p(r.u)). h ( s l . u l i  p 

is a valid routing for [sl. s?] and [ti. t& 

there is u E E' 
y by ptr. IL) for 

1. u 1 ) .  p p ? .  u2)! 

( 2 )  p(.j2. u? i goes through 1;  (see Figure 5.6(b)). denote the first entry of p(s t .  u l )  

in [ ( J i )  by 1'. the l a s  exit of p(s, .  u1J in O ( ) ; )  by y'. Let the segment from xt to 

,yr of p(.s.? u?) be denoted by i - y'. By definition. there is [u. ut] E Eg x E* such 

thac d(z. u )  = IJ and for all u t  < II. d(x. u t )  E 1;. d(xr. u t )  = y' and for ail U? < u t .  

( K .  U )  1 .  Noreover. for al1 e E E. 3(e.  u )  + 3(e .  u') 5 C(e). Replace z - y 

and r' - ytby p(x. U )  and p(r ' .  u t )  for p(s l .  uI) and p(sz. u?)  respectively. ne obtain 

$(.51. u l ;  p(x. u ) ) .  p( s2 .  u 2 i p ( i .  ut )$  a valid routing for [sl. s?] and [t l .  t& 



In this way. we can obtain a valid routing b(sl. il;). p(sz ,  u',)] for which p(sl, u; )  

and p(s2. uk) respectively go through each 1;: 1 5 i 5 m and each 2,. 1 < - j < - n 

at  most once. Rename the blocks containing p(sl. u;) and p(s2. uh) respectively by 
* .  I 1?. .... l i  and IVI. II;. .... I l i .  for ahich si E I;. t l  E 1.;. s2 E Il;. tl E II;. Bu 

Lemmas 5.2 and 5.3. if there is a loir level transition from S, to -Yl. (1,. SI) is 1- 

or ZST-DC.  Hence. ( L i .  1 ; 4  and (W,. al1 1- or 2--ST-DC. 1 5 i 5 k - 1. 

1 j 5 1 - 1. If p ( q .  u ; )  and p(s2. u;) both go through I; + Li,,. bu definition. 

(1;. is 2--ST-IBC. Therefore. I;  i II -+ ... + I i  and II; + I I>  i ... 4 II;  

forni a valid routing for [P. .Ys" to [P. S c 2 ]  in Gh. I I  

Let the optimal high level cosr for [XS!. S"] and [Sci. Sc2] be denote by D( 
, \' ': . Y"'. . ' -Yci . . Sc:]. Dhi . from the proof of the aboïe theorem. it is straightforward 

to sec. r tiwe is a low level routing with a cost less chan D( !.Ys\ . . \ - Q I .  [ S r i .  -Yc:j. D ~ ) .  

5.4. Hierarchical Dynamical Routing for Networks wit h Buffers 

5.4.1. Network States of Buffered Xetworks. Consider a neti~ork in the 

(-laas OS rcpresented by G = (S .  E.  d. d. B }  in ivhich the capacity of links ma' bc 

rtimglir CO h i ,  infinitc. The capacity of a notic. whicii r n q  be thoughr to be the sizc 

of a ImKcr. is (It~riotecl B(  n )  E .y-. for a q -  n E S. 

Stipposc the sysreni is event-driven. K e  shall map the ordering of the occurrences 
of t v n t s  to t h  positive integers. wtiich is quivalent to viewing that the systern dock 

iLi \)ring discrete-valued. Al1 esogenous everits (the arrivals of new messages) take 

pliicc. non-.sirnul taneously. Le.. at an! event-indesed (or marked) tirne instant ar most 

one new message arrives a t  G. Also assume that only one event (including control 

actions) happens at the a t ime instant. 

Let &(n) denote the total number of messages stored in the buffer of node n E X 
at a time instant k 2 1. At time k. if B(n t )  > Fk(n,) for n, E S. a new message 

rnsgk(n,). associated with a destination n, E .Y. n, + nt. may be accepted by the 

nerwork and be stored in the buffer at the node n,. This message msg(n,) can be 

eirher kept in the buffer at nt or sent to  ni E .Y if the following two conditions are 
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true: (1) there is a link e E E such that 6(n,, e)  = nl' and (2) &-(ni) < B ( q )  when 

ni f n,. If nl = n,. msg(n,) reaches its destination and leaves the network without 

entering the buffer ni; othenvise. it is to be stored in the buffer nl. 

.A (mutr iz )  network state. ahich bears the information on the number of messages 

rnt(r. j). 1 5 i. j < I.Vj. a t  node n, with destination as node n, at  time k is given bu. 

rnL(2. 1) O .... rn& !*Y/)  

... ... 

r n  1 ( S . )  ..- O 

n-iicrc r r l j  is ;iiivr.;iys O. A ciistinjuished state -*O = [O! . 5 . rtic zero niatris.  wi(liwrly 

rqmwrits  tlit! ntttrvork statc ivhere no messages are being hcid by the nrrlrork. 

Thrw ;ire nvc, clitsse~ of everits in a B S  rietwork G. i.r.. E = -4 J T. whtre 

1 4 = r = } Here a: means a new message genisq(n,) n-ith destiniition n: 

tbnters the network at node n,. 

i 2 J T = {t:,, there is a link in G lrom nt to ni .  ri ,  = n,. nt + n,}. Here & means 

t tiat a nicssage with destination nJ is transmitted from a node n, ria a link e l  to nk. 

It is clear that 1-41 = IXI ~(1x1 - 1). jT; = ( 

Obviously. <, is a control action. When an action f ,  is taken at time instant 

1. if nt = n,. m(c. j )  decreases by 1 while m(k .  j) increases by 1. Le.. rni,[(i. j )  = 

rni(i. j )  - 1 and mi-l(k. j) = mi@. j )  + 1: if a message anives at its destination. Le.. 

in case nk = n,. it leaves the network tvithout entering the buffer a t  nk. ml,&. j) = 
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rn& J )  - 1. f i - l ( k )  = Fi(k). .At time 1. if the buffer of n, is not full. a new message 

to n, may arrive a t  n, (n, # n,). The arrivals of new messages are sponcaneous. Sot  

every a;' is accepted bu the network: if necessary. al may be rejected. After a;' is 

accepted bu n, . mi increases by 1. i.e.. ml- ( i. j )  = ml ( i. j ) + 1. 

The dynamics of the buffered ne tuwk  d a t e  systems (BXS)  ma? be represented 

as a finite state machine. BSS(G)= (T. -4 u T. v). where r is the set of al1 network 

srares. l i é  note that a network state ( in  the product systern) is not a location in a 

nerwork. Here uk) = 5k-1. ut E .4 u T .  k 5 O. Esplicitly. 



5.5.4 HIERlRCHIC.4L Dk?;XlIIC-IL ROC'TnC FOR XETWOMS \VlTH BCFFERS 

5.42.  The Controllability of the Buffer Network State Systems. A 

netnork state is said to be BALS controllable ( to  if there is a finite sequence of 

actions in T t hat drive the network to ?o. 



: a message 

F ICCRE 5 .7 .  Setwork in deadlock if rni(l. 3)  = ml.('>. 1) = mk(3 .  2 )  = 1 

Uncontrollable network States include deadlocks and lire-locks. -4 dendlock is a 

siare of a nerwork in which the network cannot accept an! conrrol actions. In con- 

t r a s .  a lire-lock is a state such that the network ciln make some transi t ions in T but  

is r10t BSS crintrollable to -.o. 

Example 5.3. [rr  Fiprre 5 . 7 .  the nriticork stiite r s  

The cupactty of buffer o f  al1 nodes zs 1. This network is in a lzvr-lock because no 

message can be sent t o  its destination. CI 
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: a message 

FIGCRE 5.8. Setnork in a live-lock when m c ( l .  7 )  = mk j2.7) = 
nzk(6. 2 )  = m k ( i .  2) = 1 

To prevent the nerivork from entering deadlocks or live-locks. it is necessary that 

sonie arrivais of new messages should not be accepted. i.e.. if u ( - # ~  a i )  = - P I ; - ! .  k 2 O. 

stiçh chat - . k + i  is not BSS controllable. the message msg(n,)  shoiild be rejected and 

rior piit into the buffer at n,.  Given an initial netiwrk state -,I.,, . the control objective 

i'i to filid a srqiience o f  control actions in T that drive the nrttvork froni -.ka, t o  

tvtilcti tmi~miies the corn plet ion of all tasks. while avoiciing gct t in; into deadloçks or 

111-tt-lot.ks. 

.-\ nettvork G is said ti, be puth-uzse controliuble if for ail n t .  n: E S. rhere rsists 

;i piitli froni ri: io n:. 

Lemma 5.4. fj (L nctuork G = (S. E .  8. d. B )  is completdg pnth-uzse connrctrd. 

then BSSi'G 1 r s  ~fradlock free rf and only rf there t s  a node. n, E S. such thdt for ull 

n, E S. r = 1. thrre ts 4 E E. s.t .  J(n,.e;') = n,. 

For an' nettvork state ;t, f -;o. al1 messages at n, can be sent directly to their 

destinations n;. 1 j /JI. j + i. by control actions t f J .  In other iwrds. after 

t aking 
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Becnuse G is path-wise controllable. for an!- n, E S. n, = n t .  there is path from 

n t 1 .  Ler u,i  be the length of the shortest pa th  from n, to n, in terms of the 

niiniber of links. n, is said to be lu, j t e p  reachablr t o  n,. Let I< be the m u i r n u m  of 
/ .  

i l l L  for al1 1 5 1 5 iY[. j = 1. 

First. suppose the nodr n, is one step reachable to n, .  For a niessnge to n;i srored 

Ilt Tt;. 

i 1 I i f  k = r .  ;ht> conrrol action t;,: rnnkes that niessage reacli its destination and 1ttat-e 

tilt' ni~rxmrli: 

! 2 1 o r  ht.rn-iw. i c  niil!. be sent to nk via n ,  by taking tf.,tE,. 

In r tiis w y .  ;il1 niessages ar the nodes one stcp reacliable to ri, ciin he forwardcd to 

Rc(-iirsiwiy rirain off the messages in the buffers a t  the nodes n step reachable to 

1 1 , .  1 < :I 5 Ii. the B S S O  arrives at -.,j. Therefore. no deadIo& state esists for this 

r i i> tnurk .  

C 

Suppose no such n, esists. thar is to sa!. for any node n, f S. there is a node ni: 

which is 2 s e p  reachable from n,. In a network state such that B(n,) messages with 

destination nc, are in the buffer n, for a11 n, E 3. the network srate is in deadlock. 

This is because an' cmtrol action t:$ (k] 2 1 as assurned) will cause the overflow of 

the buffer of nl. 0 
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From the proof to Lemrna 5.4. it is evident that if there is n, E .\'such that n, is 

reachable to any other nodes in S in one step. the network state system BSS(G) is 
lire-Iock free. 

Let + represent a one srep transition in E. -1 ring is a non-trivial circuit 
R ! n )  = X I  - 12 i ... i r, -t 11. n > 1. such that for al1 1 5 i. j 5 n. if i f j .  

r ,  = 1,. An arc from x, ro I, is the part of R(n) from r,  to q. i.e.. .-lrc(r,. x,) = r,  - 
... -9 xJ . if a t  tirne 4. rn&. j )  < B(n,)  for a node n, E S. then an ernpty  

.Y buffer p l u e  is said to esist in n,. Sforeorer. B(n , )  - Cl;, mt,(i. j )  empty buffer 

places are said to esist in nt a t  time ko. 

k 
h p p w  at time instant k,,. XI=, (xGi mk&. j )  < IL=, B( n,  J. Thar is ro s e .  

there esisrs n, in RUi-1. such that there is an empty buffer place in n; at time instant 
Y 

ku i-e.. 1x,=, r n k , , ( j . l )  < Bin,). 

i 1) For an. 1 5 1 5 k. if i = j. then let k' = ka. Lemma 5.3(1) is obviously true. 

Uthenvise. R( k) consists of two paths .-lrc(n,. n,) and drc(n,.  n,). Rename the nodes 

in .Y such that Arc(n,. n,). the part of R(k) from n, to n,. is denoted by 
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where L.I = nI and r ,  = n,. 

Let 1 = n - 1. k' = ko. If r n c f ( l .  j) = B(ci) .  send an arbitrary message 

rnsg(rnl)  ar cl to  ci-1. Le.. let al = tzI: otherwise let al = 6. Hence. by tahng al. 

~ g : ~  rnk~-i( l . j )  < B ( Q ) .  If 1 > 0. set 1 = 1 - 1. k' = kf  i 1. repear the above proce- 

dure. Therefore. alter taking a,-la,-2 ... a l .  at tirne k' = ko + n - 1 .  (1;:; mkI (1.1) 

< B(c ,  ). An enipty place is thus geiierated in n, = rl  . 

This proçess creates an empty buffer place in nt based on an empty buffer place 

in n, on Rlkj and t d l  be denoted by CE(n ,  i n,. R(,k)). 

12j Fm an- niessage msg(m) in R ( k )  at ko. 1 5 rn k. without loss of generality. 

~ p p o s c .  i t  is in  n, for sorne 1 5 i 5 k. For an? node n, # TI,  in R I  A-). rename chc 

noilils in S siich tha t  .-lrc(n,. n,) is denoted by 

.-\cconiin;. tc, ( 1 l .  i f  iit kt,. the empty biiffer pliicc in r i .  thcri C E ( q  - r,.  R( k ) )  
i v i l l  <rrr:itr ;tri m p t y  plaw in the btiffer of r,. 1 <_ 1 5 ri after a finite tirrie. First. do 

C E [  - Q. Ri ki ) .  This ivill  not force riwy(ri)  to Icwr r~ because as tlir immetiiatc 

prrtltwssor of r.2 in R W .  1 . 1  cnn not be an intermediate nodc on .Arc[ r?. c l )  and thiis 

rio t l  . - , is iaken in CEl cr - c?. R(k)). Then take t;.,. .At time k2 - 1. there is an 

ixmpty I~iiffcr plaw in c l .  Therefore. take a sequence of actions CE(r1  - r1. R ( k ) ) t ; . ,  

C E (  r ,  - r i .  R ( k ) > t ; . ,  . . . C E ( C , _ ~  3 t,. R ( k ) ) t t  -,,. rnsg(n) is sent to r ,  and l e a ~ e  

the network. 

( 3 )  Since msy(m)  ivill not reach n, around R ( k ) .  i t  will not leave the network. Bu an 

analogous argument to the above. msg(m) can be sent to any node in R ( k ) .  Denote 

this process that a message msg(m) at n, is sent to an arbitrary node n, on R ( k )  by 

SOin, - n,. R (kH.  n 



Corollary 5.1. For G = {.Y E. 6. d. B } .  if al1 nodes in .V forms a r%g. i . e . .  

there 2s a circuit. nl -+ n? -t ... + n ! . ~ ,  + n l .  n, E X svch thut i + j .  n, j: n,. 

1 <_ i. j 5 IS(. then BiVS(G) is /ree of live-locks. 

.At a cinie instant kd. i f  the network G is in yi,. which is not a deadlock state. there 
' .VT 

musr be rf., E R. E r. such that  v(:k,. t:) = ' b - 1 .  Therefore. (x,=, mk,+ ( 1 .  ji < 
B r .  In  other words. an empty buffer place in n, is generated a t  tirne ku - 1. 

S i i p p o s ~  tha t  al1 nodes in -1' form a ring wirhout the repetition of an!- [iode. If  
;it  tirne A-:, t h e r ~  is an empry buffer place in rz,. then by Lemma 5 .5Q 'A an' niessage 

:t.irh iiiw,iiiatitiri r lq  i t t  T l n  a t  tirne k; can be sent ru  nk in finite sreps. 

T I !  - ri: - ... - nk - m i  - m,  - ... - m, if m l  = n i  and - 
ze E E.&nk.t.t = rri, 

PiP2 = 
n i - n 2 -  . . . -  n k - m ~ -  ...- m, if ml = nr; 

undefined ot herwise 

Lemma 5.6. If G is path-uue controilabie. then there is a czrcuit C rn G coc- 

enng  (111 nodes in S .  and C can be represented as a set of intersecttng nngs (&. 1 < 
1 5 n .  R, 7 &-, = id. 1 < r < n } .  
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FIGCRE 5.9. .A circuit with repetition of nodes 

5incr G ia path-irise controllable. for an' r. y .C .Y. th r r r  esists rr E E' sucli tiiat 

1 ) t  i- u 1 = il. .A (.ircuit tliat covers ;il1 nodes in S can btl coriarrircte~i in the follotving 
1v;ty: 

Lzt  Ci 1) = ni. r = 1. if  n is not included by Cil ) .  find u p j  E E' such thar, 

JITI: .  I L U ' I )  = ri:+ and riranote p ,  = p h , .  u, j :  otherwise. let p ,  = c .  C(z - 1) = C(l )p , .  

I F  1 < .Y . let i = i - 1: repéat the above procedure. Khen  i = ..y;. seck 

.Y E E' ~ c l i  that ji nt.  rii ' .Y;))  = ni .  u-here n' E .Y is the I i s r  node in C(  J j ) .  

CI .Y' - 11 = Ci .Y ) p ( i  nt .  IL( '.W) is siich a circuit. 

Renanie the nodes on Ci '.Y: - 1 i to be c,. 1 5 1 5 C -, ; .  Then if rt = 5 .  break 

d o m  C( - l i into t tm circuits CI and C2 such that  CI 17 C2 = { n t }  (Figure 5.9(a) 
and (b )  ) .  If tu-O nodes in CI. nk = nl. CI ma! be furrher broken down into CI.! and 

Cl.? such that  Cl " Ci.? = (nt}. If nt is in Cl . nl is in G. and n k  = nl. then ttvo 

circuits Ci r C2 = (n , .  n k }  (Figure 5.9(c) and (d ) ) .  Thus. by breaking doan circuits 

iviih reperition of n, into intersecting circuits without repetitions of n,. C(l-Vl + 1) 

çan be represented by a union of intersecring rings {&. 1 5 i 5 n  j R: F &i f 0. 
15 L < n ) .  ml 



Theorem 5.3. If ail nodes in 3 are o n  ( 4 . 1  5 i 5 nl f 0. i 5 i < r 2 ) .  

then a q  network s t ~ t e  ~ k ,  with 1;:: CE\ m;'($) 5 x!:: B ( n i )  - n. 2s a B!î/s con- 
trollable network state. 

r .YT 
suppose Ez=1 ,LI=, rn&. j j  5 B(n , )  -n .  Tha t  is to sa .  there are n ernpty 

buffer places in S a t  time kU. 

By Lemma 5.5i  1). for an' c,. c! in the sarne ring Rk. if rhere is an enipry buffer 

place in r,.  rhen after a finice time. by C E ( t ,  cl.  Rk). there ivill be an ernpty placc 

in r ; .  i . ~ .  an- empty buffer place can be circuiated around Rr. 

Furrherrnor~. i f  iar E R, r R-,. and therc is an empty buffer place in R, a t  k,,. 

rtien ;in empty buffer place m a -  be generated in ck afrer a finite rinir. and b!- the 

s i r r i c .  riwsori. an ernpty btitier place can be çreated in any node on RI-; cifter a finite 

: lnltl. 

Thtwfore. t he  n empty btiffer places ciin br csclianged betn-een intersecring rinqs. 

ha.iunii1 at a time instant A-' > k,,. each ring has an empty buffer place. 

For ;i message rnsg i n  R, with destination in another node in R,. by Lemnia 

i . j i  2 ; .  m q  can br sent to its destination since there is an ernpty buffer place in R, 

For a message rnsg in s E R, wir h destination in R,. j > i. Circulate the empty 

buffer places such that  there is an empty buffer place in cc@)  E Rc- Rk n Rt-i for 

each 1 < k 5 j. Then. by Lemma 5.5(3). rnsg can be sent to a node in u,(i) E Rn&+ 
b O + ) )  Since c,(i) fi, n &. SO(s + ~ ~ ( 2 ) .  &) wiil not change 

the empt>- buffer place in c&). That is t o  sa?. any message in R, can be circulated 

to R, RI-, and si11 has an empty buffer place (see Figure 5-10). Hence. msg 
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0: an arbinry message 

FIGCRE 5.10. .\Il nodes in -Y are on R, 

c m  bil sent to R,-: RI tliroiigh ... RI- 1 and then sent to irs destination. 

For il nitlssage r n q  in cl E R, ivirh destination in R,. 1 < 1 .  Circulate the ernpty 

t ~ i i f f r ~  pliiccs iiich that therr is ari enipty biiffer place in t , ( k )  E Rk- Rk - for 

wcti 1 5 k < 1 .  By an argiinienr analogous to the above. msg can be sent to RI? RI-! 
;mri rtien t c )  its destination. 

Tlitwforr. di rricssaçes can be sent ro their destinations. Le.. ii;, is BSS controi- 

! ; h l t a .  

L t a r  r z  i G )  i > t l  the niinirnnl riunibrr of rings for whicli there esists a circuit C cowr- 

in<  al1 riorlrs in .Y siicii t h a t  C is the set o f  rings. If at rime k,,. the nurnber of empty 

I~uf fe r  pliiccs I I I  G is strict\. Iess than d G ) .  the network is possibly in a lire-lock. 

tl.g.. the network stnte as shown in Figure 5.3. 

5 . 3  High Level Xetwork States of the Buffer Network Systems. 
In addition to directly applying HADP to the network state machine BSS(G). we 

presenr a formulation of hierarchical control by partitioning .Y. the set of nodes of 

G into IBC blocks to reduce the cornputational complexity of seeking the optimal 

control (a  shortest parh problem for network state representation BSS(G)). This is 

because the number of network States is usually much greater than that of the nodes 
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in the necwork. 

Let r; = {SI. S?. .... S.,:} be an IBC partition of .Y. Define the size of buffer 
1 

For a block S, E :: bu Bh(S,) = ~ n , i + - t  B(n,). The number of messages scored 

in .Y: with destination as nodes in -Y, (-Y, f S,) at  time instant k is - \ I k ( i . j )  = 

'7 jn, .\., .n,bSI mi (1. m) .  -1 high l e d  
bÿsed on DC relations orer  Y .  A high 

netaork G" {(s. E ~ .  .Oh. p. B h }  is defined 

level network state. 

Hiqh It1\-cI e v e n t s  incliidc: 

1 ! . = { A  = 1. 1 < 1.1 5 3): a new message with destination in S, i i r r iws at 

.Y:. .Y: = .Y,,. at time instant k,, - 1. if  the F;,(S,)  < &SI). 

4 - Th = {T:'.: 1 = j .  L = 1. (.Y,. S,) is DC 1 <_ i . 1 .  I 5 z } :  n message rr irh destina- 

t i im  in  S! is s r n t  froni S, to .Y, ar time instant k,) - 1. if  S, = Xk or F;, (S! 1 < Bi S, i .  

For i i  I~luck S, = { r i t  . 6. .... nfs ,  }. an tn-block neticork state with respecr to S, 

iit tinic instant A- bears  information about the number of messages with destination 

in ( r i t .  n;.  .... } G( 7 - {.Y!}) bein; processed at  node ni. 1 5 j 5 :-Y, . 

rnk(ni. n i )  ... mc(ni .  nl,-, ) 

O ... mt (ni. nl, ) - 1 .  

- 
... mk(n;. S.;) 
... r n k ( n ; .  S:,!) 
-.. 
... rnk(n;,,, . Sn,,) 



\Y here rnk ( ni. SI ) . mt ( n; . nf ) represent the nurnber of messages being processed at 

node n; nt tirne k with destination in block Sl and node ni E S, respecti~e!?. 

An control action t:, E T is said t o  be an in-block control action with respect to 

.Y, if boch n,  and n, are in 1,. 

Definition 5.8. An in-block nrtwork state of IBC blocii X, E 7 .  - .k(S,)  is said 

rc, bo a BSS in-block controllable state if. for al1 ni E S,. al1 ni E &Yl) and al1 

T I :  E 01 .Y, j. rhere is a finite sequence (length k t  - k) of in-block control actions ivitli 

respect to S, siich that 

, 1 I Fkliri:l < B ( n : ) .  and 

1 2 ;  if  .\[&JI > O. n($.Y1. Y) > O. and 
i l ] ;  v.." " .  m i , i n ~ . n ~ i  = u. 

u t = !  A n = .  

I L i n  H3C b l w k  S, is in a BSS in-hloi:l; controllablc s ia te  at n rinit. instant k.  

:iircr titkin: a iiiiirt. wqiicnçe of in-hioçk çontrol actions. rvithoiit rhe occiirrenw of 

i x ~ ~ x i i i ~  in .4h iind A. t h  t h c e  conditions ;tl>ove ivill bc t r u c  i 1) r h r e  r d !  b~ an 

t~ i i p ty  h~rfft-r place in itny giten in-set no&. ( 2  an- message to anot her hlock \vil1 bt. 
smt to an! g i w n  oiir-sec node. and ( 3  al1 messages witli destinations in S, will bt, 

srnt ICI t h i r  destinations. 

Theorem 5.4. Giwn un IBC hlock S, consisttny of k nng.5. .Y, i.s tn (1 B.VS 

rn-hlock controtluble state -&Y,) rf the total nurnber of messages rn S, at k rs k s s  

thun or equal t u  B h ( S , )  - k. 
Proof: 

Similar to  the proof of Theorem 5.3. 

Redefine the IBC partition machine G: = {T. Eh. dh. Dh. B:}. nhere BC(S,) = 
Bh(S, I  - a ( S , )  for al1 -Y, E 7 .  The network corresponding co G:. Jlh(G;) = 



{ T k .  .-lh u Th.  u h } .  The dynamics of .\lh(G:) are defined by 



if k # j and Jl(k 1 )  < B,h(Sc). 

-\f(l.l~i) 

Jf (k. 171) 

M ( i .  1 ~ 1 )  

O 

Theorem 5.5. Let Gh he an IBC purtrtzon rnuchzne of G.  r /  ut tzmr  rist tant k,,. 
O G i.5 rit (1 B.VS r:ontrollublr. niltwork stute. -lt,,(S,) 1s a BSS ln-block 

si~ritroiitddr .itutr for ul[ 1: E 7 .  thrn rs ri. B.V.5 controllable s ta t e  01 .\l(G). 

Suppose a t  time instant ko. .llh(G2) is in a BXS controllable network state r$. 
that is to sa'. there is a sequence of control actions in Th that drives .\lh(G:) from 

r4 to ra. Also suppose al1 bloch S, E r are in B'iS in-block controllable States at  ko. 

Because al1 messages in .Y, with destination in S, can be sent to their destina- 

tions. by Definition 5.8. it is equivalent to proving that eacb of the high level control 
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cornmands is realisable by low level controllers and after completing a high level con- 

trol command. I~ (S,) is stiil a BSS in-block controllable state. 

Let a message msg(1) with nl E Sk is held in S, at time k'. By definitions. 

for a high level command R;. it is defined at a state for some kt > ka il: (1) 

. & - i ( r .  k )  > O. (2)  (S,. .Y,) is DC. and (3) Fk-,(-Y,) < BC(S,). 

Since -+tl - (S,) is a BXS in-block conirollable state. by Definir ion 5.8. there is an 

oiitset node n: E O, (S,). such that at tirne kl > kt. after the in-block controller takes 

a seqtience of control actions with respect to S,. m:(S,. kl) > O. In other words. 

there is a message at ni with destination in SI. at  k!. 

Since ,:.Y,. S,) is DC. ni  E O,( 1,). there is e E E.  n', E I , ( S J  1. siicti rhar 
lji TI;,. F )  = ~7.;. 

Bix;iii5c! - . k t - l ( - S J )  is a BSS in-block controllablc stare. by Definition S.S. n: 5 

Iti 1,). siicti chat at time k2 > kt > k t .  after the in-block controller takes a sequence 

t ~ f  control actions with respect to 1,. Fk: (n:) < B( n!).  

Ttierrfore. at rinie k, = C? - 1. r' . is n-ell-drfincd. Let the I o n  lewl controller 
n:.n; 

rakr t h  çunrroi action r L  .. tlien nl.sg(l)  is a sent to block S, a i  k3. 
n!, .n; 

A t  k,. F ; J S ~ )  = F:o(.YJ - 1. evidently -.t,(S,) is BXS controllable after re- 

rnoïing a message frorn a BSS controllable state .ko(S,).  F;,(S,) = Fk,, (.Yj) - 1 

< - B:( 1,) < - Bh( -YJ )  - a(..VJ). by Theorern 5.4. -lk,(S,) is a BSs in-block control- 

lablc stctte. 

In case k = j. by Definition 5.8. msg(1) can be sent to ics destination by l o~v  level 

controller and hence leare the netrork. SI remains in BXS controllable state. 

Thus. is reachable. 



CHAPTER 6 

Future Research 

In this thesis LW present a hierarchical control frarnesork based on the notion of state 

aggregation via the dynamic consistency relations over the partition blocks of a given 

stnte space. Sorne suggestions for fut uro rcsearch are pi yen below. 

Tliroiiglioiit tiiis t li~sis th(> mat twniaticitl franitwork is dcterniinistic. iî t lir sys- 

r t m  stiitr trmsitions iirr alloired ro he prohiibilistic. for instance 1lari;ovi;in. thtm 

h c h  r l it ,  fiiridiimcntal issucs vf rhc constriiction of the DC rrilatioris rincl ttic ils- 

soctiittd pirr itiori miii:iiincs. and thp S O ~ I  tion of opt irnal control prot~lerns: l~rconir 

~-h;illt!nsin; issiit~s wir  hin the îrarnccrork of stoc-hastic systern t heory. 

6.1. Research Related to HADP 

A rda t  ion ro be irivestigated is the size of particion blocks and the ratio of çompii- 

taciorial rimes taken by HADP and atomic search (Le. search for an optimal control 

in the original sysrern). This will result in an optimal partition in the sense that one 

niultiple leve1 hierarchy has the greatest magnitude of acceleration by HADP among 

al1 hierarchies with the same number of Ievels. 

The relationship between the quality of a partition and the sub-optimality of the 

HADP mechod is given in Chapter 3. It is of great interest to investigate how to 

generate a partition within a given level of tolerance of optirnality. Recall that ail 

IBC partitions of a base finite state machine form a lattice. Through investigating 
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the relation of the degee  of optimality (statistical measurements might be used to 

represent this degree) and the position of a partition in the lattice. it is hoped that 

optimal partitions can be determined for which a two level HADP (consisting of the 

original syst em and a partition machine) will achieve solutions closest (on average) 

to the global optimum. 

In order to judge the quality of partition before applying HADP. a good estimate 

of the cosr of high level optimal solution becornes necessaru. The combinacorial nature 

of in-block paths ma! make these estimates ver? loose. A n  improvement of estimation 

of the error bounds mil1 definitelu lead to the improvement of the HADP rnethodology. 

6.2. Research Related to blulti-agent Systems 

Iri t h  iirialysis of rniilti-agent sFstcrns in Chapter 4. clle rtilation '72 is taken to htl 

i r i  a q w r a l  form. If  R is chosen to bt. a more specific relation (for instance. niut~ially 

~~sç l i i s iw i vn ts l  . more specific resiilts ivill hr d~rivable  about the ronsr riict ion of ;in 

IBC par t i t io~~.  

For rriiilti-agent systmis. dile to the hiige state space of the proriuct niaciiinc. in 

;iddi t ion ti, r hc hierarchicnl control prrscnted here. a hierarchical-decent ralisetl con- 

trol is n*ortli Itirther investigation. In  the proposed configtiration. each of a set of low 

controllcrs w r k s  on each of the agents. ivhile a high lewl controiler CO-ordinates rhe 

oprlrntions of low levcl controllers in a feedhack fashion. This will in turn shed sonie 

light on t iow ro partition the state space of each agent separately in order to obtain 

;in [BC partition of the product system. 

6.3. Research Related to Network Routing 

in Chapter 5 .  Ire discussed both link ne twrk  systems and buffer netwrli  systems 

separately. A possible duality of these two classes of networks should be formulated 

and analysed. h r e o v e r .  the more complicated systerns which combine the constraints 
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on both links and buffers are of course deserve further investigation. 

In real-time network. the information eschange sometimes is insufficient for the 

precise update of the network States. In the presence of uncertainty. the problem 

poses itself as CO how an irnproved IHADP should be formulated achieve an applica- 

ble routing reliabl-. 

Becaiise of the multi-agent nature of the nectvork. the concurrency of events is 

inwitable. In practice. a set of protocols are applied to each node in  a nework. Tliis 

is a version of decentralised control. Through the analysis n i th  the models proposed 

in Chapter 3. one of the objective?; might be to find a set of protocols which combine 

the decentralised and hierarchical controls to efficiently decide the route for a request 

ac a node riependent on the current network state. 
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APPEXDCS -1. C o i  HEXDER FILE 

APPENDIX A 

C++ Header File 

The application of the HADP methodology to the broken Manhattan grid systems 

isee Section 3.7)  is reaiised by Ct- code. Irs header file is listed beloiv. 

const int !4AXEDGES=50; 
const r n t  BOUNDARYNODES=60; 
const Int ?lAX=2147483647; 

T!ic initsimiil n u m h ~ r  of ed-s stsrting from one node is set to br 50. and  the  

mosinial nuniber of in-set nodes of a block a i th  respect to a DC relation is set to 

htl W. In other ivords. for an!- .Y, E 7 .  iw assume there are no more than 30 blocks 

.Y, f 7 s l c h  that each (1,. -Yj) is DC. K e  also assume il, ( -Yj ) i 5 60. 

struct Path{ 
i n t  c u r e n t  aode ; 
Path *next node ; 

)path; 
struct Node{ 

int label ; 



APPESDLY A. C i +  HEXDER FILE 

i n t  number-of ,edges ; 
i n t  edge [MAXEDGES] ; 

f l o a t  cos t  [MAXEDGES] ; 
f l o a t  Hcost [MAXEDCES] ; 

f l o a t  mcost [HAXEDCES] ; 

)node ; 
struct Block 

i n t  number-of a o d e s  ; 
Node node [100] ; 
i n t  
i n t  
i n t  
i n t  
i n t  
i n t  
i n t  

i n t  
Iblock; 

number-of i n s e t s  ; 
rnse t  [MAXEDCES] ; 

/ / the  index of an immediate successor 
//D+/- cos t  f o r  high l eve l  nodes 
/ /D+ cos t  for high level nodes 
//D- cos t  f o r  h igh l e v e l  nodes 

//the number of predecessor DC blocks 
//the index of a predecessor DC block 

nuber -o f  i n n o d e s  [MAXEDCES] ; 
innode [MAXEDGES] [BOUNDARYNODES] ; 

number-of-transitions; / / t h e  number of successor DC blocks 
t r a n s i t  ion [HAXEDGES] ; / / t h e  index of a successor DC block 
number-of -outnodes [MAXEDCES] ; 
autnode [MAXEDCES] [BOUNDARYNODES] ; 

A I h &  IS ;tri arr- of nodes. A striictiirc Block also bears the inforniariori i iboi ir  

t h  DC rchrions 4 t r am it ion1 and ihc in-rrc. out-sct nodcs of r i  b1oc.k. 

rnt Rand(1nt 1 ; / /geaerate  a random i n t e g e r  betxeen O ana int 

publrc : 

i n t  *ver tex ;  
publ ic  : 

G r i d ( i n t  length)  
{ size=length; vertex-eu in t [ s i ze*s izeJ  ; } 
void C r e a t e R a n d o ~ G r i d ( f 1 o a t )  ; 

/ /  ( d i r e c t e d l  Graph: an array [number-of nodes ]  of nodes 
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// node [il : absolute index in the Crid 

class Craph 

t 
public : 

int number-of liodes ; 
Node *node; 

public : 
Craph(int1; //constructor 
void Copy-Graph(Graph1 ; / /  copy a graph 
Craph(Grid1 ; //turn from a random grid 
Crapho ; 

-4 grid is an array of integers. for which 1 means that a vertes esists. -4 broken grid 

is crrittrd hy ranciomly removing a certain percentage of nodes (CreateAandorn-Grid 

(float) 1 from a regular grid. Tlien this broken grid is conwrted into a çrapti 

1 Graph(Grid)!. 

/ /  PartltlonGraph: a Graph used to generate a partition 
/ /  flrst generate an array of constraint (a  set of nodes) 
/ /  then find IBC isolated blocks in each constraint 
/ /  node [il . in-ïhich-block: the index of the block 
/ /  containmg this node 

class PartltlonGraph : public Graph 
! 

publrc: 
rnt *induhich-block ; 
int number-of -blocks ; 
n t  *ln-uhich-constraint ; 
Int econstraint; 
int nodesin-constraint ; 

public : 
Partit ionCraph(Graph , int , int 1 ; 

// int , int : number of constraints, Grid.size 
PartitionGraph(int) ; //int : Graph. number-of nodes 
void Partition(int ,int) ; 
// int, int : Grid-size, number of constraints 



void FindlBC(int)  ; //int : seed 

// find an IBC block containing the seed i n  t he  c u r e n t  cons t ra in t  
void Labelkedecessors ( i n t )  ; //int : seed 

To obbtin an [BC partition of a graph. ae first partition this graph into a given 

ncimber of regions (specified by constsaints). Then. wichin evey  region. ne ran- 

domly and sequentially choose seed nodes which are used for the construction of 

niasimal IBC blocks containing them in the remaining region. Uè nest label every 

node wirh the block index (in-uhich-block) which corresponds to the indes of the  

IBC block containing it. 

/ /  WorkCraph: a Graph used to calaculate shortest distances 
/ /  label [nodeindex] used i n  the  process of Di J k s t r a '  s algorithm 
/ /  t o  determine uhether a label is permanect 
/ / ~ ~ * 1 * ~ * ~ I ~ 8 ~ O * 8 ~ * 8 1 1 * 8 ~ 8 1 ~ I 8 8 ~ ~ 8 ~ ~ t ~ ~ ~ O 8 8 8 8 8 8 8 8 ~ 8 ~ ~ ~ ~ ~ ~ ~ S ~ ~ S 8 ~ ~ 8 ~ ~ a ~ U 8 ~  

class WorkGraph : public  Graph 

{ pubirc: 
int =distance ; 

protected:  
lnt =label; 
/ /  label: - 1 ,  unlebelled 0 ,  temporary 1: permanent 

publrc: 
XorkCraph(Graph1; / / t u r n  a Graph into a WorkGraph 
UorkCraph(int ; //create a UorkCraph v l t h  i n t  ncdes 
Path  *Shor tes tPa th( in t  , int) ; //(iat i n t ) :  (source target)  
v o i d  Shor tes tDis tance( in t  , int) ; / / label l ing process 
lnt Dlstance(int ,int) ; //return the shor tes t  distance 

Dijkstra's algorithm is used to find the shortest distance between a pair of start 

and target nodes (value returned by Distance (int , i n t  1 ). A shorresr path is then 

gken  by Shor tes t  S a t h ( i n t ,  int) . 

//*************************************~**************************~** 
/ /  TransferGraph: an array [number-of ,blocksl of blocks 
/ /  based on a PartitionGraph, find in-block s t ruc ture  



c l a s s  TransferGraph 

{ 
p u b l i c :  

int number-of -blocks ; 
Block eblock;  

public : 
Transf erGraph ( i n t )  ; / / i n t  : number-of -blocks 
void Transf e r % l o c k ( P a r t i t  ionCraph) ; 
i n t  AdjustBlockO ; //tm i n d i c e s  i n t o  l c c a l  
i n t  Number-of Aighernodes (1 ; 
/ / r e t u r n  t h e  number of high l e v e l  nodes i n  case of semiduai 
UorkGraph BlockGraph( i n t )  ; 
/ / m t  : the number of nodes i n  a block 
/ / t u r n  a block i n t o  a WorkGraph t o  c a l c u l a t e  c o s t s  

[il Transf erCraph.  ive record the in-block structures. 

Parr ~r ionGraph : : Par t i t  i o n  ( int ,  nt only labels rach node wi t  h tlic nanir of r hi. 

I11oi.k wnti i i r i ing it. 

1 1 1  i r a n s Ï e r B l o c k  (Part i ï i o n G r a p h )  . rhc internai s tructure of a bloçk 1 in-srr : alit- 

w t  1 is scr tip hy Transf e rE lock  (Part itionCraph) . 

/ /  HighPart l t ionCraph:  used t o  p a r t i t i o n  a high l eve l  
/ /  d l f f e r e n c e  f rom Pa r t i t i onGraph :  hou t o  decide  a block 
/ /  i n  uhich h igh  l e v e l  c o n s t r a î n t  
/ / * t*~8888 t8888888888888888*8888*88*88**8*88*888888*8*888*8888***88*8  

class HighPart i t ionGraph : pub l i c  Pa r t i t i onCraph  
p u b l i c  : 

iiighPartitionCraph(TransferGraph,int,int); 
//int, i n t  : C r i d . s ï z e ,  number of high l e v e l  c o n s t r a i n t s  

/ /  HigherGraph: graph-fike s t r u c t u r e  of middle /h ighes t  l e v e l s  
/ /  b l o c k f  rorn/block,to : indices of a pair of DC b locks  
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public : 
int *blockf rom; 
int ablock-to; 

public : 
HigherGraph(TransferCraph); 
void Costs(TransferGraph,int,int.int,int,int); 
//cost from I i  ( X - j  to 1-j (Xk) 
j :  index of the curent b l a c k ,  ( i , j ) :  index of this node 

k :  index of this edge, i: from vhich block, k: to which biack  
Block HighBlockGraph(int, PartitionCraph, Transferûraph,  

WorkGraph, int , int ; 

TransferGraph HighTransferGraph(PastitionCraph,TransferGsaph, 
WorkGraph, int , int ) ; 
Z'orkCraph Hodifyl;raph(TransferGraph,inr,inr.int,~nt); 
//recalculate costs concerning Xs and X t  
Parh *Find&ghSath(Transf e h  .YorMraph, 

VorkGraph, int , int , inr , int 1 ; 
//int,int.int,int: Xs, Xt. S. t 

Path *FindlouPath( TrznsferGraph, P a t h  . X E ,  x t l ;  
//int, int: s, t 

Path *LoïSath(TransferGraph,int,lnt,int.int B I ;  
/ / ~ n r .  int . lnt , int : blockf rom. block-to , s , Bz (next s 

veld CraphFileO; //=rire the graph lnto dot file 
1 .  
I r 

The i:onversion from a high lewl graph (an array of Blocks) to irs semi-duai 

grapli is carricd out by HigherGraph (T ransf erGraph) . For w e r y  node in senii- 

d i i d .  r herc are rivo correspondent integers: b l o c k f  rom and block- in .  which rogether 

reprrsilnt a pair of DC bIucks. 
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