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ABSTRACT

ABSTRACT

We base the notion of state aggregation for finite state machines (FSM) on the dy-
namical consistency (DC) relation ([17]) between the blocks of states in any given
state space partition 7. In this framework. we present the new notion of ST dynamical
conswstency (ST-DC)) for source-target (ST) FSMs where there is a preferred sense of
flow from a set of source states (S) to a set of target states (T). It is proven that if a
partition 7 is ST in-block controllable (ST-IBC). the partition machine of an ST FSM
M based on =. M7 (i.e. high level abstraction of M based on =). is controllable if
and only if M itself is controllable. We also prove that all ST-IBC partition machines
of M/ form a lattice and any chain from the top to the bottom of this lattice provides
a hierarchical feedback control structure.

This methodology is next extended to optimal control problems for discrete event
svstems (DES) modelled by finite state machines. A partition machines based scheme
called hierarchically accelerated dynamic programming (HADP) is introduced which
significantly speeds up the standard dvnamic programming procedure (up to several
orders of magnitude) at the cost of a certain degree of sub-optimality. We present
necessary and sufficient conditions for the HADP procedure to generate globally opti-
mal solutions and. further. give bounds on the degree of sub-optimality. An example
called the Broken Manhattan Grid (BMG) system is used to illustrate the implemen-
tation of HADP. and flexible and generalisable code for this example is described.

Many complex systems appear in the form of the product of multiple interacting
sub-systems. A formulation of multi-agent systems is presented where the dvnamics
of the agents are described by default specifications, of a sets of forbidden state-event
relational pairs. denoted R. Such systems are called relational multi-agent product
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ABSTRACT

systems (MA(R)). The application of the HADP methodology to relational multi-
agent product systems is analysed. A multi-machine system consisting of a time
counter and agents called a timed multi-agent relational product (TMA(R)) is formu-
lated.

To apply hierarchical control to the routing problem for networks, we consider
two conceptual classes of networks: first, link network systems (LN). and. second.
buffer network systems (BN). The notions of dynamical costs and network states are
introduced. In particular, the notion of throughput-independent ST-IBC (TI-ST-IBC)
partitions is used to formulate the incremental HADP (IHADP) methodology. For
the multiple objective optimisation problem of LNs. a notion of (vector) network state
is introduced to carry the information describing the available transmission capacity
of each link. For buffer network svstems, the notion of (matrmz) network states is

given.
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RESUME

RESUME

On fonde la notion d’aggrégation d'état pour les machines a état fini (FSM). in-
troduites dans la relation dynamiques consistantes ([17}) entre les blocs des états
d’une partition d'état =. Dans cette thése. on présente la nouvelle notion de ST.
consistance dynamique, (ST-DC) pour source-déstination (ST FSMs) ou le sens de la
circulation de l'état source (S) a I'état cible (T) est préferée. Ceci donne naissance a
une définition de la dynamique a haut niveau sur la machine finie correspondante a la
partition blocs donnée. Si une partition = est ST controllable en bloc (ST-IBC). une
partition machine d'une ST FSM )M basée sur #. M ™. est controllable si et seulemnent
st M est controllable. Cette définition prouveée. nous avons prouvé que si tous les
etats dans M sont co-accessibles 4 T. toutes les partitions machines ST-IBC de M/
provenant de la tréllis et de toute chaine de haut en bas de cette tréllis donne une
structure hiérarchique de commande d retour.

Cette méthodologie est élargie aux problems de commande optimale pour les
svstemes a évenement discret (DES) modelisés par des machines 4 état fini. Une
partition machine basée sur le schema applé programmation dynamique d hiérarchie
accelerée (HADP). qui accélére sensiblement la procedure de la programmation dy-
namique standard au cout d'un certain degré de sous-optimalité. est introduite. On
présente une condition suffisante et necessaire pour la procédure (HADP) afin de
genérer des solution globales et optimales. mieux encore, donner des limites du degrée
de sous-optimalité. Un exemple d’illustration d'une implémentation (HADP) est aussi
donné.

Plusieurs systemes complexes apparaisant sous la forme de sous-systéemes mul-
tiples interagis. Une formulation de systémes multi-agents est presentée ou les dy-
namiques des agents sont décrites. par des spécifications a default. notée R. Ce

iv



RESUME

genre de systéme est appelé systémes de produit multi-agent relationnel (MA(R)),
L’application d’'une méthodolgie HADP a ces systémes est analysée. Un systéme a

multi-machines 4 base de compieuis €t agents, appelé produit relationnel multi-agent
temporel (TMA(R)), est formulé.

Afin d’appliquer une commande hiérarchique. aux problemes de réseaux, on con-
sidere deux classes conceptuelles de reseaux: la premiere est les systémes a réseau
lie (LN) est la deuxieme est les systemes & réseau temporaire (BN). Les notions
de coutes dvnamique et états réseau. sont introduites. En particulier la notion
throughput-independent ST-IBC (TI-ST-IBC) partitions est utilisée pour formuler la
méthodologie (HADP) incrémentale pour des problems multiples d’optimisation de
LNs. Une notion d'état réseau (vzctor) est introduite afin de transporter |'information
décrirant la capacité disposible de transmission de chaque naud: pour les systemes a
reseau temporaire. la notion d'états @ réseau (matrice) est donnée.
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CLAIMS OF ORIGINALITY

CLAIMS OF ORIGINALITY

This thesis contains the following original contributions:

e A theoryv of hierarchical control for finite svstems with a preferred sense of
flow. The notions of ST-dvnamical consistency and ST-in-block controllability.
[Chapter 2

o A\ theoretical framework of hierarchically accelerated dvnamic programming
(HADP) for trajectory optimisation in very complex systems. including the
notions of optimality consistency. convex high level trajectories and semi-dual
high level graphs. {Chapter 3|

e Algorithms for the implementation of HADP and Incremental HADP. [Chap-
ters 3 and 3|

e The notion of relational multi-agent product finite state machines (M A(R)
FSMs). [Chapter 4]

® The notion of vector and matrix network states and their applications in hier-
archical network routing. [Chapter 5
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CHAPTER 1. INTRODUCTION

CHAPTER 1

Introduction

Traditional control problems concern continuous time and discrete time vector state
vaiued svstems which are usually modelled by differential and difference equations
respectively: on the other hand. discrete event syvstems (DES) are distinguished from
these traditional models in that the evolution of the finite set valued state of a DES
is driven by the occurrences of some sequence of events (134;. '21;. 60I).

Due to its conceptual simplicity and its vast range of applications. the finite state
machine model is one of the most basic formal mechanisms for DES models ({29].
‘12, '59'). Furthermore. principally because of the advances in and universal appli-
cation of computer svstems. discrete event svstems are applied in almost every aspect
of engineering ({401. [37]. [50]). In particular. as a foundation for research in hybrid
svstems (i.e. svstems which possess mixed continuous and discrete behaviours). it is
certainly foreseeable that DES theory will find an ever growing domain of application
('467. 110:. '11.. [57]. {38.. [62)).

Progress in digital computing technology has made possible the implementation of
many advanced algorithms. However. computational complexity due to high state di-
mension. and frequent information exchanges. make the control of large scale systems
extremely difficult ([4]. [30]): consequently. to manage the computational complexity
of control svnthesis. hierarchically structured information and control systems are
frequently emploved ([44]. [3]. [12]). By grouping together the states of the original
svstem. which in many applications has a huge cardinality and simpler dvnamics.
state aggregation will generate a system with a smaller set of (aggregate) states ([7].
(8. [2]). Thus. as a principal way to create an applicable hierarchy. state aggregation



CHAPTER 1. INTRODUCTION

plays a significant role in the analysis and control of large scale systems ([27}). This
observation motivated the research presented in this thesis.

The Hierarchical Control of ST FSMs

A notion of state aggregation for finite machines was introduced in [17] via the
concept of the dynamical consistency (DC) relation between the blocks of states in
any given state space partition 7. This formulation results in a definition of higher
level dvnamics on the finite (partition) machine M™ whose states correspond to the
given partition elements.

Chapter 2 of this thesis treats the more general case of Source-Target systems
(ST-systems) where there is a preferred sense of flow from a set of source states (S)
to a set of target states (T). A generalisation of the theory of [17] to ST-systems
is given which includes the generalisation of the notions of dvnamical consistency. in
block controllability and hierarchical feedback control on the associated hierarchical
latrices. The dynamics of a higher level machine M7 in a hierarchy {M. M7} are
defined in accordance with the ST-DC relations over the partition blocks of the lower
level model M.

A class of hierarchical control structures for ST-systems is presented based on the
notion of ST dynamical consistency (ST-DC). It is shown that when a partition 7 of
M possesses some particular properties. which are termed ST in-block controllability
(ST-IBC). the higher level finite state machine defined based on = is ST-controllable
if and onlyv if M is ST-controllable. Further. if M is T-trimmed. i.e.. every state
of M is co-accessible to T. the set ST-IBC partition machines of M forms a lattice
structure. and any chain from the top element to the bottom element of this lattice
provides a hierarchical control structure for M.

The material in Chapter 2 follows that in [14] and [15]. co-authored by P.E.
Caines. V. Gupta and G. Shen.

[JV]



CHAPTER 1. INTRODUCTION

Hierarchically Accelerated Dynamic Programming

Complex finite state systems arise in many contexts. in particular, optimal con-
trol problems for finite state machines have significant applications in transportation
management. manufacturing systems and telecommunication networks. The main
theoretical foundation and computational technique for finding optimal trajectories
in finite state systems is that of dynamic programming (DP)([45]. {8]. [51]). Conse-
quently. a large number of algorithms have been developed to solve DP problems. The
time complexity of these algorithms naturally depends upon the size of the models
involved: in general. complexity grows non-linearly (specifically. faster than quadrati-
cally) with the number of states in the system ([{25]). Hence computational efficiency
degrades significantly and. in particular, standard DP algorithms are not applicable
to real-time problems of practical interest.

Chapter 3 presents a scheme called hierarchically accelerated dynamic program-
ming (HADP) which significantly speeds up dynamic programming (by up to several
orders of magnitude) for discrete event svstems modelled by finite state machines at
the cost of a certain degree of sub-optimality.

The HADP methodology is based upon (possibly iterated) dynamical abstraction
of the given DES (by state aggregation) which generates a control consistent hierarchy
of finite state machines. We discuss necessaryv and sufficient conditions for the HADP
procedure to generate globally optimal solutions and. further. give bounds on the de-
gree of sub-optimality which can occur. Various approaches are proposed to improve
the accuracy of the sub-optimal solutions by using semi-dual high level graph while
reducing the computational time via the use of weakly ST-IBC partitions. Finally, an
example called the Broken Manhattan Grid (BMG) system is used to illustrate our
software implementation of HADP.

Some contributions in this chapter appeared in [55]. [56] ard [53]. co-authored
by P.E. Caines and G. Shen.
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Relational Multi-agent Systems

In a variety of situations, interacting agents are involved in an integrated environ-
ment ({41]. [64], [61]). The state transition of each agent takes place when an event
happens. and events in distinct agents may occur concurrently or non-simultaneously.
The behaviour of the individual agents is regulated by the interaction between all of
the agents which can be present in various forms.

Chapter 4 analyses the systems of interacting finite state machines via the pro-
posed models of multi-agent (MA4) product and titmed multi-agent (TMA) product.

A notion of a stmulteneous product of finite state machines for which the events
have the same execution duration (live time) is proposed. and the necessarv and
sufficient conditions for simultaneous product systems to be controllable are dis-
cussed. \When the interaction between agents is given in terms of a set of forbidden
(state-event) configurations R. the system of n interacting finite state machines /.
1l € ¢ < n.is modelled by ([|-z)7,M,. the multi-agent (relational) (MA(R)) prod-
uct of M,. The application of the HADP algorithm to (||-z), M, is formulated in
this chapter. and some preliminary results on the construction of the related control
hierarchies are also given. A time counter is used to observe the state transitions of
M,. 1 <1 < n. in case distinct events in M, have different live times. Finally. the
product system of the time counter and M,. 1 < i < n. the so called timed multi-agent
(relational) T M A(R) product is formulated.

Hierarchical Network Routing

Dynamical routing in a network is a way of providing flexibility to adapt to chang-
ing and volatile traffic demands. Traditionally, for very large networks, a multi-level
hierarchical routing is used to reduce the size of each routing table ([58]). With the
recent strides in microprocessing technology, dvnamic traffic management has become
practical ([48]) and state-dependent routing is used to increase network utilisation.
The key features of state-dependent routing include the explicit use of global network
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information and very short update cycle times.

In Chapter 3, we discuss the hierarchical routing methodologies within the con-
text of several network models.

To cope with the changing traffic load. the notion of a throughput ST-IBC par-
tition is used to form a stable hierarchical control structure. As each new request
(message) arises, the high level costs are recalculated according the the feedback of
the network state and HADP is applied for route optimisation. The resulting incre-
mental HADP (IHADP) algorithm is formulated in the first part of this chapter.

Consider a network of links for which the capacity of all nodes (viewed as buffers)
is assume to be infinite. If multiple requests arrive at the network at the same time
instant. the overall optimal solution may differ from the optimal solutions for indi-
vidual requests because of the constraints of the limited capacity of links. A vector
network state carries the information describing the available transmission capacity
of each link. For n requests. if we can derive a hierarchy consisting of the throughput
[BC partition machines of the original network. HADP may be applied.

Next we consider networks with buffers at the nodes and for which the capacity
of all links is assumed to be infinite. The notion of a matriz network state is given for
such networks. By decomposing an IBC block of a partition of the network nodes into
a set of intersecting rings. we obtain a method to ensure the in-block controllability of a
network state. Finally. we prove that when high level network is in a controllable state
and each of the partition blocks of the original network is in an in-block controllable
state. the original network is in a controllable state.
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CHAPTER 2

The Hierarchical Control of ST Finite
State Machines

2.1. Introduction

Hierarchically structured information and control systems occur for at least two
related reasons: first. the great complexity of many natural and designed systems
limits the ability of humans and machines to describe and comprehend them. and.
second. the inherent limitations on the information processing capacity of feedback
regulators result in the regulators (and possibly the controlled svstems) being organ-
ised in special. in particular hierarchical. configurations.

Many mathematical theories and engineering methodologies have been developed
as a response to these problems. Examples are readily found in the power distribution
industry and in large scale manufacturing industries. Further important examples are
found in the organisation and control procedures of the communications. rail. road
and air traffic systems. All of these examples involve some form of aggregation in state
space. and most involve some form of hierarchically structured flow of information
and control signals. Large social organisations such as governments and corporations
provide sociological examples of such structures, while systems which probably do
not displav these features are idealised markets and the unorganised target-seeking
behaviour of messages on the Internet as currently organised.



2.2.1 INTRODUCTION

Theoretical work on hierarchical control has a large literature and has connections
to. among other subjects, game theory, mathematical programming and optimal re-
source allocation. These topics were presented together with their connections to con-
trol theory in [30]. More recently, formulations of hierarchical control have appeared
in stochastic control [52], automated highway system studies [63] and within the su-
pervisory control formulation of discrete event system theory (e.g. [42], [49], [68]. [70]).

The work in this chapter follows that in [66], (17} and [65]. where a new notion
of state aggregation is introduced via the concept of the dvnamical consistency (DC)
relation between the sets of states constituting the members of any given partition =
of the state space. This formulation results in a definition of high level dynamics on
the finite (partition) machine M7™ whose states correspond to the given partition ele-
ments. The DC relation is then similarly defined on any further partition of the state
set of M™: and so on. The theoretical development in [17] gives the lattice structure
of the class of so-called in block controllable ([BC) partition machines. The noticn
of state aggregation given by the concept of the DC dvnamics of a partition machine
permits a natural construction of a large class of hierarchical control structures on
any given finite state machine. It is to be noted that in the purely graph theoretic
setting. without anv controlled dynamics. an idea related to that of DC dyvnamics is
to be found in [28].

Since there is a natural parallel between the formulation of levels in hierarchical
svstem theory and their definition in hvbrid svstem theorv. where discrete systems
play the roles of both models and controllers for finer continuous state systems. In {19]
and [18]. the theory of {17] is generalised to the hybrid case. and to [11].

In the analysis and design of hierarchical control systems. one is often interested
in the reachability of a set of terminal states from a initial (or start) set of states.
Many examples of systems with such a preferred sense of flow are to be found among
natural and designed systems. As a result. in this chapter. we consider a generalisation
of the theory of hierarchical control initiated in [17] to systems in which there are
distinguished source and target sets for the controlled flow.



2.2.2 THE ST-DYNAMICAL CONSISTENCY RELATION AND ST-IBC PARTITION MACHINES

2.2. The ST-Dynamical Consistency Relation and ST-IBC Par-
tition Machines

Consider a finite state machine, M = {\.X.d}, where .\ is a finite set of states,
¥ is a finite set of (forced) events, and 4 : .X x ¥ — X is the (partial) state transition
function of the svstem. We shall use the standard notion £* for the set of all finite
sequences (including the empty string €) of elements of ¥.

A partition 7= of the state space .\ of M is a collection of subsets of .\, namely,
*={X1.\o. ... X} satisfies (1) X = U';'l Xo (9 XNX,=0frl <i#j<iml
(3) \, #0. 1 <1 < |x]. A partition machine M~ takes 7 as its state space and its
elements are called blocks.

Let (v < u) v < u denote that a string v is a (proper) prefix of u.

Denote a distinguished subset of states called source states and a distinguished
subset called target states with § C .\ and T C .\ respectively. We shall term finite
svstems with such distinguished subsets S7-systems.

We note that in the case where the sets S. T and .\ are identical all the definitions
and results below become consistent with their counterparts in [17}. In this sense the
work in this chapter generalises [17].

Definition 2.1. (ST-Controllability)
(1) (Strong ST-Controllable) M is said to be strongly ST-controllable if and only if
for every r € S and for every y € T, there exists u € £* such that d(z,u) = y.
(2) (Weak ST-Controllability) M is said to be weakly ST-controllable if and only if
for everv r € S there exists y € T and there exists u € £* such that §(z,u) =y. O

Clearly. strong ST-controllability (and hence weak ST- controllability) is a signif-
icantly weaker property than standard controllability because the latter requires the
accessibility of everv state from every other state.



2.2.2 THE ST-DYNAMICAL CONSISTENCY RELATION AND ST-IBC PARTITION MACHINES

FIGURE 2.1. An 8-state machine My

Example 2.1. In the 8-state machine }/3 shown in Figure 2.1. S = {1} and

T = {8}. Clearly. this ST-system is both strongly ST-Controllable and weakly ST-
Controllable. 0

We recall that a partition = of a finite set .\' is a collection of pairwise disjoint
subsets called blocks. X, C X', 1 < ¢ < |7|. such that X\, "X, = @ for: # j and
X =UZ X\ A partial order relation < (finer than) on partitions of .\ is defined such
that for two partitions. 7, = {X{. X5.... X! .} and my = {\T. X3, \2 }o7y < m
if and only if for each block .\'! € 7. there is an X7 € =, such that X! C X
1 <i<|m!l. 1 €5 < |m| Le. = is a refinement of 7.

; where

[n the example above, for the two partitions 7; = {{1}.{2.4}.{3}. {5.7}. {6}. {8}}.
7y = {{1.2.3.4}. {5.6.7.8}}. we see that =, < m.

Definition 2.2. ([(.\X,.S.T), O(X,.S.T)) Consider a partition 7 = {\|. .\, ...
X5} of the state set X of a finite state machine /. In each block X, € 7. 1 <1 < |7].
we specify two subsets, respectively [(.X,,S.T) and O(.X;, S, T), which are termed the
local entries (or in-set) and local ezits (or out-set); these are defined respectively as
follows:
r€I(X,.5.T) <> z € SN X, or there exists 2’ € (. — Xj). i.e. the complement of
X, in X, and there exists u € £ such that é(z',u) = z;
y€ O0(X,,S.T) & y € TN X| or there exists ¥ € (X — X;) and there exists u € &£
such that §(y.u) =y’ a
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In the partition = = {{1,2,3,4}.{5.6,7.8}} of Example 2.1, for X, = {1,2,3.4},
[(X,.S.T) = {1.3.4} and O(X,,S,T) = {2.3}; for X» = {5.6.7.8}, [(X2,S.T) =
{5.6} and O(X3. S5, T) = {6.7.8}.

We now shall define the appropriate generalisation of the notions of dynamical
consistency and partition machines to ST-systems.

Definition 2.3. (ST-Dynamical Consistency (ST-DC)) The relation of ST-
dynamical consistency for an ordered pair of blocks (.X;. .X|)) in a partition 7 is defined
as foliows:

{(\.. X)) € 7 x 7 is called ST-dynamically consistent (ST-DC) if one of the following
cases holds:
(a) i # ). Foreach z € I[(X,.5.7)

t1) there exists y € O(X,.5.T) and there exists u,, € T* such that
d(r.ou),) € X, forall u), € u,,. and d(z.u,,) = y: and
(2) for at least one such y. there exists = € [(.\\,. 5.T) and there exists
Uy, @uch that d(y.u,,) = =

=

We write u,, - u,, as u}. where - denotes concatenation.
(b) 1=

For everv r € [(X,.S5.7) there exists y € [(.X,.5.T). and there exists
some non-null u,, € £* such that §(r.u},) € X, for all u;, < u,, and
dr.u,) =y. a

[n the case : = j the condition above simply requires that each input state of
X, should have a non-empty controlled path within .\, which makes it return to the
in-set so as to form a high level pseudo-cycle. This is postulated to obtain desirable
properties for the formal language of high level transitions as defined below.

Example 2.2. In Example 2.1. ({1,2.3}. {4.6}) is ST-DC. Here the first parti-
tion block is such that its in-set is equal to the whole block and the out-set is the pair
of elements {2.3}. The second block is such that its in-set is the element {6}. which
is accessible in one step from {2}. and the out-set of {4.6} is the whole set. But
({1.2.3}. {4}). where {4} is both an input and and out-set, is not ST-DC since {4} is
not accessible in one step from the first set. A general ST-DC relation is represented
in Fig. 2.2, in which we see displayed [-unreachable states (i.e those not reachable

10



2.2.2 THE ST-DYNAMICAL CONSISTENCY RELATION AND ST-IBC PARTITION MACHINES

1(X) )

‘—?

Ficure 2.2. (X,. ) is ST-DC but not DC

from the input states of .\',) and O-inaccessible states (i.e. those from which the
output states of .\, are not reachable) in the block .\,. m

A hugh level transition (input) event U/ is defined. and denoted by L7. if and only
if (X,..X}) is ST-DC: in other words. for any pair ¢.j. L7 is defined if and only if
the conditions of Definition 2.3 hold. The term high level transition is to be taken
relative to the base machine .M. but no mention shall be made of this whenever the
context is clear. Let £7 denote the collection of all such {7 for which we note that

the high level null string ¢ is an element of (X7)".

[n order to define the partition machine M™ = {x.X7.4"} (based upon the
partition = of \/). we define the state transition function 7 : =
SNLU) = X)L XX, € =1 € i) < =] whenever (.. .\}) is ST-DC. We may
now define 07 : = x \U™)Y = = recursively as follows: first set 67(.\,.¢) = X,; then.
for strings in (£7)° of length one. the definition of 47 gives ¢7(.\',..L7) = .|, whenever
(X.. X)) is ST-DC; finally, for strings U in (¥7)" of length greater than one we set
07(X,.L7-U) =67(X,,0) if §7( X, U]) = X, and if 67( X, L") is defined. Here -indi-
cates the concatenation of two strings. From this recursive definition we immediately

T x &7 = 7 by

obtain the following fact as a special case.

Lemma 2.1. (Semi-Group Property) §7(X,.0 - {3) = §7(07(X,. L}). (") as
long as 67(.\, L) and 67 (07(.X,, U1). U) are defined. where - means the concatenation
of two sets. G

11
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It may be verified that when a chain of high level transitions is defined, it is the
case that the appropriate generalisation of Definition 2.3 holds; that is to say. for
every state in the [-set of the initial block there exists a path through a chain of O
and [ state sets in the successive blocks which terminates in the [ states of the final
block. It is to be noted that the definition of one step pseudo-cvcles in Definition 2.3
permits well defined chains of high level transition event strings to contain sets of
pseudo-cycles. i.e. high level identity elements.

For a given state space .X' and partition =. let 57 denote the elements of «
containing states lying in S. i.e.. X, € S7if \,NS # 0. and similarly let T™ denote the
elements of 7 containing statesin T.i.e.. }, € T7 if },;NT # 0. Then we may give the
following definition of the controllability of the partition machine M~ 2 (7.7, 07).

Definition 2.4. (ST-Between Block Controllability) A partition machine
M7 =(x.7.07) is
(1) strongly ST between block controlleble (strongly ST-BBC) if it is the case that for_
every .\, € 57 and }) € T™. there exists a@e (£7)" such that 6"‘(.\',.@ = }): and
(2) weakly ST betweer. hlock controllable (weakly ST-BBC) if it is the case that for
every \, € 57, there exists a }, € T™ and there exists a I” € (£7)" such that
0T (N Uy =1 O

We note that we may obtain weak ST-BBC from strong ST-BBC by simply
exchanging a universal quantifier for an existential one. As this applies to the results
below we henceforth only discuss strong properties in detail and leave the development
of the analogous weak properties to the reader.

Definition 2.5. (ST-In-Block Controllability) A block X,.1 < i < |7|is ST-
in block controllable (ST-IBC) if and only if either I(X,.S.T) =0 or O(X,.S5.T) =0
or the following two conditions hold conjointly:

(1) For every z € I(.X|,S5.T) there exists y € O(X,,S.T), and there exists u € U*
such that é(z.u') € X, for each v’ < u. and é(z.u) = y.

(2) For every y € O(X,,S5.T) and for every z € O(X,,S,T) with = # y, there exists
v € U such that §(y.v') € X for each ¢’ < v. and §(y,v) = z, i.e.. the states in
O(X,.S.T) are mutually accessible with respect to .Xj.

A partition 7 is said to be ST-in-block controlleble (ST-IBC) if every block of = is
ST-IBC. a

@ 12
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In other words, any in-set state of an ST-IBC block .X; € 7= must have an internal
trajectory going to an out-set state of .X;, and the exit states of .X;, must be mutually
accessible, i.e.. X, is weakly ST-controllable and O(X,,S.T) is mutually accessible
with respect to .. In the 8-state machine of Example 2.1. the block {1.2.3.4} is
ST-IBC. although it is not IBC in the sense defined in [17].

We observe that in the standard case where S = T = X. ST-in block control-
lability specialises to the standard IBC property because in this case all elements of
any block .\, are mutually accessible. Further. in case S = T = X, ST-between block
controllability clearly implies that the standard BBC property holds.

We let =12€(X) represent the collection of all ST-IBC partitions of X and MAEC(1\[)
ST ST

denote the collection of all partition machines of M corresponding to partitions in

180X,

Let — represent a one-step state {block) transition in M and M~.

Theorem 2.1. If M7™ 1s an ST-in-block controllable partition machine of M.
then M7 15 strongly (respectively. weakly) ST-between block controllable if and only if
M s strongly (respectively. weakly) ST-controllable.

Proof:

We only prove the implications concerning strong ST-controllability as the weak
case follows bv an analogous argument.
]
Given M™ € MZIEBC(M). Assume M is strongly ST-controllable and let us look
at arbitrary blocks .X, in S™ and X, € T™. Now consider any £ € X, N S and
y € X;NT: then by Definition 2.1. we know there is a trajectory from r to y.
Suppose this trajectory traverses a chain of blocks in #. in the order ¥1.Y5..... Y.
Y1 = X.. Y, = X;. Because all of the blocks are ST-IBC it follows that the block pairs
(Y1.¥32).(¥3.13), ... (Yi_1. Yi) satisfy the conditions to be ST-DC. Thus. we have well-
defined high level transitions. 67 (Y. U}) = ¥2.67(¥2,03) = Y3.....07(Yeo  UF7Y) =

13
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Yi. and hence 67 (Y}, U3 - U2 - ... - Uf™') = Yi. i.e., M7 is strongly ST-between block
controllable.

h——N

Let M~ be strongly ST-between block controllable. Consider an z € S and y € T.
Then there must be some X; € S™ and .X; € T7 such that r € X, and y € X,. By
Definition 2.4. we know, there is a (finite) sequence of events in M™, U} - U3 -...-Uf!
from .X, to .X,. Let this sequence of block transitions correspond to a trajectory of
blocks. Y1 — Y3 ... = Y, }1 = X, and Yi = X,. Because each pair of adjacent
blocks }; and Y,., on the above trajectory of blocks are ST-DC. by Definition 2.3.
there exists a trajectory from r to some input state of .\';. Because of the ST-in-
block controllability of X, this input state must have an in-block trajectory leading
toy € O(X.S.T). Thus. we get a complete trajectory from r to y. Hence. M is
strongly ST-controllable. o

2.3. The T-trimmed ST-Machine and Its Associated ST-IBC
Lattice

For any given ST-svstem modelled by M = {X.X.d}. we term the states in X
which are not reachable from S S-inaccessible states. and term the states in .\ from

which T is not reachable T-co-inaccessible states.

The S-inaccessible and T-co-inaccessible states of FSN M are irrelevant to the
ST-control problem: this is because any path from a state in S to a state in T
cannot pass through either of the S-inaccessible and T-co-inaccessible states. From
the point of view of ST-controllability. all the S-inaccessible or T-co-inaccessible states
may be deleted before we investigate the ST-control problem. This would vield a
minimal realisation of M. M'. by which we mean every state of M’ is S-accessible
and T-co-accessible. and hence there are no redundant states with respect to the
ST-controllability problem for the resulting ST-system. In this chapter. however.
it is sufficient to eliminate the T-co-inaccessible states of a finite state machine M
and we denote the finite state machine obtained after this T-trimming process by
M, = (X,,0[,.08;). M, is said to be the T-trimmed FSM of M.

14
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Definition 2.6. (Chain Union U®) The chain union of two partitions 7, and
72 of X. denoted 7, UC 7, is the least upper bound of = ,.[ and 7, with respect to <
in the set of partitions of X. » o{u.ﬁ% L 4,,.,6 @ a

The following aigorithm may be used to calculate the chain umnion of two par-
titions. Each of the distinct blocks Z, of the partition 7, U m, 7. 72 € 752C(X).
can be constructed recursively by setting Z, = U 1 Ziny N = max{|m|,|72|}. where
Z,n is given by the following algorithm: Set Z,; = _\‘ for some X, € «,. then for all
nl<n<.V.

7 ZmU{\' € Ty Z,nﬂ ’l""‘j} nOdd.
Lt Zanu{Y'em:Z,,nY #3} neven

Alternatively. let us define r ~ z’ if either z.2" € \[' € 7. 1 <1 < |7y]. or
r.r' € .\';“ € 7. 1 € j < lm]|. Then the equivalence classes of the transition closure
of this relation are the blocks of 7, U¢ 7).

The property of ST-in-block controllability which we have defined above restricts
the set of partitions in such a way that it is preserved under chain union.

Theorem 2.2. For =;.m € 71BC()\,). the chain union of 7 and =» is ST-IBC.

e, T m e xi-?c(l[,)_
Proof:

Suppose 7 and 7, are two ST-IBC partitions of .\\,. the T-trimmed finite state
machine of M. let us look at their chain union =, U¢ 7y = {Z,.Z4..... Z,}. First. we
prove that if A and B are ST-IBC. AUB is ST-IBC whenever ANB # 0. It is clear that
[(AUB.S.T) C I(A.S.T)UI(B,S5.T)and O(AUB.5.T) C O(A.5.T)uO(B.S.T)
so that we need only consider the nontrivial cases when O(4.S. T)UOQ(B.S.T) # 0.

After eliminating all states which are not T-co-accessible. at least one of the out-
put states of 4 or B is in AN B. This is shown as follows. Since we may suppose
O(A.S,T) #0 (recall O(A. S, T)UO(B.S.T) # 0), without loss of generality, take
r€ ANB.y&€ O(A.S5.T) then there is an internal path in A from z to y (since X,

15
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case (a) case (b)

FiGURE 2.3. ST-IBC is closed under chain union

has been thinned. i.e.. all T-co-inaccessible states in .\’ have been eliminated. such
that the states left in .\'; must have a trajectory to T via an output state of its block:
and all output states of 4 in an ST-IBC partition. are mutually reachable). [f (1)
y € AN B. the above claim holds: otherwise if (2) y € 4 — (4 N B). then the path
within 4 from r to y of the form r — r, — ... — r, — y must have a one step
transition leaving B of the form 6 — a. wherea € A - (4N B).b € A" B and
h.a € {x.r,...Lx.y}. Thus. b € O(B.S.T). so the conclusion follows again.

Now consider the case [{AU B.S.T) # § and O(4 U B.S5.T) # 0 (otherwise.
A U B is trivially ST-IBC). therefore. we have two cases to analvse as follows (see
Fig. 2.3):
Case () (O(A.S.TYnO(B.S.T)) # 0. Let £ € AN B be such a common output state
of both 4 and B (see Fig. 2.3(a)). Then. by the mutual accessibility of the output
states in ST-IBC blocks. all output states of O(A.5.T) and O(B. S.T) can communi-
cate with each other through z. Hence. the second condition of Definition 2.5 holds.
Since [(AUB.S.T) C I(A.S.T)U I(B.S5.T). every state in [(AU B,S.T) can be
driven to some state in O(A.S5,T) or O(B.S5,T) because A and B are ST-IBC: more-
over. it may be then driven to some state in O(AU B,S.T) # 0. Hence. it follows
that AU B is ST-IBC.

Case (b) (O(A.S.T)NO(B.S.T)) = 0. Without loss of generality, by symme-
trv we may assume there exists z € O(A.5.7) N (A N B) (we have shown above
(OA.S.TYUO(B.S.T))n (AN B) #0) such that £ ¢ O(B.S,T) (see Fig. 2.3(b)).
Now. since the states in O(AU B.S5.7T) N (AN B) are output states of both A and B.

16
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z & O(AUB, S.T) by the current hypothesis. Because we have already assumed that
all T-co-inaccessible states have been eliminated, £ € B is T-co-accessible implies
that there is a trajectory in B from z to some output state of B, say z. Now we need
to consider the following two alternative situations:

(b)(1) If all output states of A are inside AN B, then the current hypothesis of case (b)
implies that none of the output states of .4 can be an output state of AU B, since such
a state would be a common output state of 4 and B. Because O(AU B.S.T) # 0.
O(AUB.5.T) C O(B,S5.T). But by the ST-IBC property of A. every input state
of A has a trajectory tor € O(A.S.T)Nn AN B and hence to : € O(B.S.T). Then
by the ST-IBC property of B. = has a trajectory to an element of O(4AU B.S.T).
Hence. AU B is ST-IBC.

(b)(2) If (b)(1) does not hold. there exist y € O(A.5.T) N (4 — B). Clearly. all
output states of A are accessible to the elements of O(B.S.T) through r and :.
since all output states of A. including r. are mutually reachable by Definition 2.5(b)
(see Fig. 2.3(b)). But. by the mutual accessibility of O(4.S.T). it is evident that
r € O(A.5.7) must have a trajectory connecting it to y € O(4.5.T) N (4 - B)
through some s € O(B.S5.T)N (4N B). Thus. all output states of B are accessible
to y through s € O(B.S.T) by the mutual accessibility of the output states of a
ST-IBC block. Hence. all output states of 4 and output states of B are mutually
accessible with respect to A U B. Furthermore. since 4 and B all are ST-IBC. their
input states have in-block trajectories leading to their output states and hence to a
state in O(4 U B.S.T) # 0. It follows again that AU B is ST-IBC.

Bv induction on n. the chain union 7; U 7, defined in Definition 2.6 is ST-IBC.

Furthermore. 7, U¢ 7, is the least upper bound of 7, and =, in the collection of
ordinary partitions ordered by <. and. since it is ST-IBC. it is also the least upper
bound of 7; and 7 in the 7{2(X). o

In the light of Definition 2.5, a block containing only one state must be ST-IBC.
since that state is either an input and output state. or one (or both) of the input or
output (singleton) sets of this (singleton) block is the empty set. Thus. the partition
74 = Y must be an ST-IBC partition. This partition 7*¢ acts as a lower bound of
all ST-IBC partitions.

17
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Theorem 2.3. For two ST-IBC partitions 7, m, € 7i8C(M,) of an ST finite
state machine, the greatest lower bound m, M, € wiBE(M,) ezists. a

The proof is obtained by use of Theorem 2.2, in particular, the existence of the
greatest lower bound of 7; and 7, (7, and 7, are ST-IBC) is established by noting
that (i) the trivial partition (i.e., the partition of singletons) lies in the set of ST-IBC
partitions, and (ii) 7, U€ , is the least upper bound of m, and m, ([22]).

We extend the partial order of partitions to their corresponding partition ma-
chines by defining M™ < M™ if and only if #; < m,. The following theorem is a
straightforward result of Theorem 2.2 and Theorem 2.3.

Theorem 2.4. All ST-IBC partition machines of an ST finite state machine M,,
ordered by <, form a lattice (MI2€(M,), <,UC,N), denoted by HIBCst, which takes
the machine M® = M, as its bottom element. In case M, is ST-IBC, then HIBCst
has as top element the trivial partition M]". a

2.4. Hierarchical Control for ST-Systems

As stated in the introduction, a feature of the ST-IBC lattice structure for any
ST-svstem M is that it permits the construction of all possible sets of hierarchical
feedback control systems (for ST-controllability problems) for the given machine.

To be specific, parallel to the standard IBC hierarchical control problem (see [17]),
once the underlying ST-IBC lattice of the thinned machine M, has been constructed,
one may select any chain C from the base element M}¢ to the top element in the
ST-IBC lattice HIBCsr. (This may or may not be the trivial partition machine
depending on whether T is a mutually accessible set.). Then any set of partition
machines lying along such a chain is called an ST-hierarchical control structure. Con-
cerning such a control structure we have the following theorem which is readily verified
using the results established above.

Theorem 2.5. For an ST-Ccntrollable finite state machine M,, consider any
pair of distinct elements M and M, M{' < M[?, in a hierarchical control struc-
ture (MEBC (ML), =,UC,N); then M is ST-BBC and ST-IBC with respect to M;*.
Further, any (necessarily solvable) state to state ST-controllebility problem for M,
has a decomposition into a set of recursively defined, solvable, block to block ST-
controllability problems for a sequence of machine pairs M{™ and M;"*', 1 < n <

18
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{1,2,4} {6}

{8}

{a) (b)

FIGURE 2.4. The 3-state partition machine M7 of M; and its ST-IBC lattice

N — 1. corresponding to the elements of the N-level hierarchical control structure
(MEBC(M,). <. U€.1). A (hierarchical family of ) solution (trajectories) to this set of
problems qives a solution to the orginal ST-controllability problem. C

Theorem 2.5 shows that any ST-controllability problem may be decomposed into
a sequence of hierarchical control problems: these are such that the feedback con-
troller at anv level steers the level-n aggregated state (i.e. level-n partition machine
state. containing the base level system state) along a trajectory solving the level-n
partition T-reachability control problem.

We observe that there mav well be a wide choice of chains in any given ST-
[BC lattice and that this consequently facilitates the design of a hierarchical control
svstem: on the other hand. any given machine M has only one ST-IBC lattice and to
alter it the dyvnamics of the base machine M must themselves be altered.

Example 2.3. Let us examine the 3-state machine shown in Figure 2.4.(a): this
is & partition machine of the model Mg, in Example 2.1. and we choose S = {1.2.4} €
Ms. T = {8}. We notice that Mj is already trimmed with respect to T and that its
corresponding ST-IBC lattice is given in Figure 2.4.(b).
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In this lattice the rightmost chain of partitions from the top to the bottom of the
lattice is given by:
Ner —{{{1 A} {3} 5. 7h {6} {8} 7o = {{{1.2.4}. {3}}. {{5. 7}. {6}, {8} } }:
= {{L.2.4. }. {3} {{5.7}. {6}. {8}}}: ms = X5 = {{1.2.4}. {3}. {5.7}. {6}. {8} }.

In this chain we shall choose the sub-chain =, 7.7, as the hierarchical control
structure. In 7. the trivial partition. we know that S = T™ = ;. Noting the
containment relations. we have S = §™ = {1.2.4} Cc S = {{1.2.4}.,3} Cc St =7,
and T =T = {8} C T™ C T™ = =,. Since the partition 7 is ST-IBC. there is an
internal trajectory from §™ to T™.

For the partition machine of =,. we know ({{1.2.4}.3}. {{5.7}.6.8}) is DC (rela-
tive to 7y). {{1.2.4}.3} — {{5.7}.6.8}. Now the .M7* controller chooses the unique
one step control event to drive 57 to T7:. This is realized (at the next level of the con-
trol hierarchy) by the .M™ controller which has the choice of driving $™ = {{1.2.4}}
to {6} in one step. or S to {{5.7}} via {3}. As far as the realization of this hier-
archical control law is concerned. the choice is arbitrary and may be determined by
any well defined rule.

At the finest {7,) level. the controller terminates the path to T™ by finding a
path from {3.7} to T = {8}. Finally. expressing the corresponding ST-DC relations
as the state to state one step transitions at the finest (7;) level. we obtain {1.2.4} —
{3} — {5.7} — {6} — {8} that solves the ST-reachability problem. -

[t is worth noting that all the results in this chapter apply to those machines and
partitions in which the state set and in-set of the base machine are countably infinite
and the set of blocks of any partition has finite cardinality.



3.3.1 INTRODUCTION

CHAPTER 3

Hierarchically Accelerated Dynamic
Programming

3.1. Introduction

We consider finite state machines with transition costs M = {X.Z.4./}. where
X ={rg.r;. 1. r3....r ..} is a finite state space. T denotes a finite alphabet of events
{controls). 0 is a (partial} state transition function defined on X x £. and the cost
function { : r x u — (0. x) associates each state and control action with a strictly
positive real value. The minimisation of the additive cost along all possible paths
{i.e. trajectories) between anyv two given states is a basic problem in many contexts.
and dvnamic programming (DP) is well known to be a fundamental technique for its

solution.

Let the cost index d{s. ¢: u.l) be defined by

m-1

d(s.t:u.l) = Z Iz, u,).

=1
where s = I,.t = I . Lo = 0(2,.w,).1 €1 €< m — 1. We shall denote by u? any
optimal control minimising the cost index d(s. t: u.{) over all control sequences u of all
lengths m such that ¢ is accessible from s. If we represent a given finite state machine
as a directed graph. this problem is a (weighted edge) shortest path problem. A large
number of algorithms have been developed to solve shortest path problems. including
Dijkstra’s algorithm. Ford's algorithm and Dijkstra’s Two-tree algorithm (see [25]).
to name a few. The time complexity of these algorithms naturally depends upon the



3.3.1 INTRODUCTION

size of the model: in general. the complexity grows non-linearly with the number of
states in the svstem. and so the computational efficiency degrades significantly and in
particular. thev are not applicable to real-time problems. We propose a hierarchical
approach to dvnamic programming problems which. at the cost of a degree of sub-
optimality. and subject to an initial investment in constructing a control hierarchy,

may reduce the computational complexity of solving any given shortest path problem.

The work here is founded upon that in [17]. where hierarchical control systems
are formulated in terms of the construction of partition machines via the notion of
dynamically consistent (DC) state aggregation. and on that in [15]. where the gener-
alisation of the previous results to source-target systems was presented. The HADP
methodology proceeds by first decomposing a finite state dvnamical system into hier-
archical layers of partition machines. Each trajectory optimisation problem (between
a source-target pair in the base system with respect to the additive cost function) is
represented at the next higher aggregated level using a specifically constructed cost
function: this process is iterated up to the highest defined aggregation level (for sim-
plicity of exposition. we only consider two hierarchical lavers in Sections 3.2. 3.3 and
3.4 of this chapter). Tangibly related work can be found in [7'. where the authors
proposed an aggregate DP for acvclic networks without discussing the consistency
of high and low level models. Finally. the dvnamic programming (DP} solution to
the resulting highest level problem is then passed down to the next lower laver. In
that laver. a set of corresponding DP problems is solved. one in each of the blocks
lving along the previously derived optimal high level path. This process terminates
at the bottom level of the hierarchy. The analysis in Section 3.3 of this chapter gives
conditions to ensure that the procedure vields optimal. or near optimal. solutions to
the original base level trajectory optimisation problem. In Section 3.4. we provide
estimates of the sub-optimality of the HADP method when the optimality conditions
of Section 3.3 fail.

N
n
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3.2. Hierarchical Control and Control Consistency

In this section. we give formal definitions of the notions of dvnamical consistency
([17]. [15]) and control consistency (analogous to that defined in [68] and [70]) for a
class of hierarchical finite state machines.

Definition 3.1. (Dynamical Consistency (DC))An ordered pair of partition
elements (blocks) (.\X,..X,) is said to be dynamicully consistent (DC) (with respect
to =) if for all £ € X|. there exists u € £* such that é(z.u) € X, and for all v < u.
dr.v) € X,. O

A two level hierarchy formed by M and its abstraction model My = {X,. 0. dn}.
where \; = x. [ is a set of high level control symbols. &, is the abstract high level
state (block) transition function. is denoted by {M. M,}.

High . Information |
Level My ———— = High Level Controller |
I j ‘
A |
~ Information/DC Relation ! HL Controls
Low M * {x} Information ~ Low Level .
) . v - -
Level : LL Controls Controller

FiGURE 3.1. Hierarchical control structure

Assume that we have an abstraction M, = {7.Z,.dx} of the given base model
M. In the two level structure shown in Figure 3.1. the hierarchical control is car-
ried out in a top-down fashion layver by layer. The high level controller employvs the
information provided by M. The function of M, is to simplify M while preserving
its critical behavioural properties. This hierarchical control configuration achieves an
objective in the following way: first. the low level control task is communicated to the
high level. then the high level control is performed and the corresponding high level
(abstract) control commands are passed to the low level controller. The function of
low level controllers is simply to realise the high level abstract commands in terms of
specific low level state transitions.

23
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For simplicity. we denote a trajectory from r driven by v as Trj(z.u) and a high
level trajectory from .\, € 7 driven by U as Trj(X,.U). If (1) forall v < w < u.
there exist 17 < W < U such that d(z.v) € 34(X;. V") and o(z. w) € dx(.X,. ). and
(2) for all 1" < 1" < U, there exist v < w < u such that é§(z.v) € & (X,.1") and
S(r.w) € 8p(X;. ). the trajectory Trj(z,u) is said to be contained in Trj(.\X,.0’).

Definition 3.2. (Control Consistency) A two level hierarchy { M. M, } is said
to be control consistent (CC) if and only if the following two accessibility conditions
hold:

(1) Forany r € X, € = and y € X, € 7 if there exists u € £° such that é(z.u) = y
then there exists " € ;" such that §y(X,.0) = X, and Trj(z.u) is contained in
Trp X, 0.

(2) For all X,. X, € =. if there exists " € £, such that 64(.\,.0’) = .X,. then for
all r € X,. there exists y € X, and u € T* such that d(r.u) = y and Trj(z.u) is
contained in Tr)(X,.0). z

This property is analogous to that defined in {70! in the hierarchical supervisory
control context: it ensures that if a low level task can be completed by a sequence
of transitions. then the controlled dvnamics of the high level system are consistent
with these transitions: conversely. if the high level controller steers a high level state
to its target. then the high level commands can be translated into realisable low level
transitions.

Theorem 3.1. A two level hierarchy { M. M} s control consistent (CC) if and
only the following hypotheses (H) are true:

(1) If thereenst r € X, € 7.y € X, € 7. u € T such that (r.u) = y and Trj(r.u)
1s contamned in X.X,. then (X,. X)) 1s dynamically consistent.

(2) For all X,. X, € =. 1f there exwsts U € Uy. such that 0x(X,. ) = X,. then (X X))
s dynamucally consistent.

131 For all X,. X, € =. 1f (\\. X} 15 dynamucally consistent. then there erists U € U,
such that §p( X,.0") = \,.

Proof:

H=CC
Suppose the statements (1)-(3) hold. we shall prove that {/. M.} possesses the two
properties of control consistency.
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(1) Forany r € X, € 7 and y € X, € 7. if there is u € £* such that i(z.u) = y.
denote Trj(r.u) = 21 y...21m; 32,1 3n 1 Snum, - Where 2y = . 210, ...21m, € Y1 = X
0efamy € Yoo woand zpy.zam, € Yo = X, It is clear that u can be
rewritten in terms of u = wjus...un_, with each u, € T* such that d(r.u;) = =2,
9(z21.u2) = Z31. .. and 8(Z(n-1)1. Un-1) = y. Moreover. we know that Trj(z. u;)
is contained in .\,}3. Trj{z2s.uy) is contained in Y5Y3. .... Trj(za-i1. Un-1) is con-
tained in Y, _;.X,. By statement (1). (X,.}3). (}5.}3).....(},-1. X)) are dynamically
consistent and thus by statement (3). there are ['|.05.....0,_; € I, such that
(Y. Uh) = Yioy for 1 < & < n — 1. Therefore. d5(N,. 0105 - - - Uaoy) = X
and Trpn( X, 000 - Uas) = XL Y50 X contains Trj(r.u)).

(2) For any \\. X, € 7. if there is " € I such that §,(\,.0") = X,. then we
denote Trjn(.X.0) = 1Yo Yo, with ¥y = X, and ¥, = X,. So. U may be
decomposed into L0 - - - U2y such that 9p(Ye. 0h) = Yo, for 1 <k < n-1. By
statement (21, (Y. Yio;) are dvnamically consistent. | < A < n -1 Ifr € X\
and y € .\, are arbitrarily given. according to the definition of dynamical con-
sistency. there are respective u, € &° and 1, € Y. 2 < & < n -1 such that
Nrouy) = i) = Igo1 .2 < k< n=20Lq . ttnoy) =y and Trj(r. u)
is contained Y1Yy Trj{re. ug) is contained in };}i...2 < & <€ n - 1. Hence.
Mrowguy - Un_y) = yand Trjlriugus -+ - uq_y is contained in Tryo X ). In
short. the two conditions for { M. My} to be CC are satisfied.

CC=H

This part follows straightforwardly from the relevant definitions. -

On the basis of this theorem. we conclude that the dvnamics of the high level
model in a control consistent hierarchy are coincidental with the dvnamical consis-
tency relations on the partition of the state space of the base model. Thus. we define
the dvnamics of M™ based on the dvnamical consistency relations on = x =. To be
specific. in M7 = {x.£7.67}. if (X. X,) is DC. then there exists L7 € 7 such that
07(X,.L7) = X,. It is to be noted that T~ is a set of high level abstract control
svmbols and is not a set of implementable (base level) control actions.

[ A]
U
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Definition 3.3. (IBC Block)A partition block X; € 7 is in-block controllable
(IBC) if for all .y € X there exists u € T such that §(z.u) = y and for all v < u,
d(r.v) € X, a

A partition = is an [BC partition if all its blocks are IBC. A theory of the struc-
ture of partition machines for hierarchical control ([65]. [17], [15]) and its extensions
to the hybrid and supervisory control cases respectively are to be found in [20]. [16].
{13} and [32]. In particular. this theory asserts that all IBC partition machines of
M constitute a lattice L and any chain from the top to the bottom of L provides a
hierarchical control structure. where the terms base (level) and high level machine
have an obvious implication.

Consider a base system M which may be represented by a directed graph. We
observe that if X, is an [BC block. then for any r.y € X, there exists ur € £* such
that d(r.u) = y.d(y.v) = r and for all w < wr. d(r.w) € X,. This fact reveals
that IBC partitions may be generated locally. through a search for circuits. We may
first partition M into m subgraphs G,. ¢t = 1.2.....m. The following algorithm re-
cursively gives the maximal IBC block which contains a given state s in a subgraph G..

Algorithm for generating the mazimal IBC block \'(s) containing s in G,
(1) Set X{s) = {5}

{2) If there is a path ryr,...z, in G, which originates from r; € X(s) and ends at
I, € X(s).and 1.1y ... 10 € X(3). then X(s) = X(s)U{z2. 23. ... It |

(3) else. stop. c

This algorithm has the same time complexity as depth-first search ([251).

Definition 3.4. (Controllability) A finite state machine M = {\.T.4} is
controllable if for any r.y € \X. there exists u € £* such that é(z.u) =y. a

The controllability of M7™ is similarly defined.

Theorem 3.2. [17] If = is IBC, then M~ is controllable if and only if M is
controllable. a

Finally. we conclude the following result.
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Theorem 3.3. If  is IBC, then {M, M7} is control consistent.

Proof:

Suppose 7 = {X]..X\s. ... Xipy} is IBC and M~ is a partition machine of M based on
(1) Let £ € X, € mand y € X, € 7 be two arbitrary states of M. If there ex-
ists u € T* such that §(z.u) = y. let u = youy...um (¢, € £ for 0 < ¢ < m).
then Trj(z.u) = rz123...2my. with (2. up) = 21, d(zm. um) = y and (3. u,) = 2,1,
1 <i<m-1. Suppose z, € X, . for some integers 1 < n, < |=|. For convenience.
Set 39 = I.Zm-y =y and ng = t. Ny = J.

Whenever X, # X\, _,. it is the case that z, € X;, and d(z,.u,) =52, € X
By the assumption that 7 is IBC. X, is IBC. i.e. for any state 1’ € .\;,. there exists
v € &° such that §(z'.v) = z, and for all ' < v.o(s'. ') € X,,. Let w = vy, .
then 8(r' w) = d(z. 1) € X, _,. and for all v’ < w.d(r'. u’) € X,,. In other words.
{Xn,.\,,_.,) is DC and this holds for all n,. Therefore. there is L, € £ such that
37X, . 0Y) = X,

LLTE

[fX,, =\, letl, = ¢ the empty string over the T7. we also have §*(.\',,. [} =
Xa_.-

Hence. there exists a string in (£7). i.e. " = [ol...00 such that 67(X,. 0) =
and clearly. Trj(z.u) is contained in Trj(\,.0").

(2) Let \X,..X, be two arbitrary blocks in =. Suppose " € (L") is a string of
high level control symbols such that 6*(\\,.L7) = X,. Denote " = ["|{%...L75 with
U € L1 <k < m. For simplicity. let ny = i. np.y = j. 07(X,,.0}) = X, . where
X, € 7 and n, is some integer. 1 < n, < |7}

For any two states r € .| and y € .\;. we now show there is a v € £* such that
d(z.u) = y. Since 07(.X,,.0) = X, _,. t.e. (Xn,.Xn.,) is DC, then we know there
exists I, € X, and there is u; € £* such that d(z,u;) = z; and for all uy < u,,

(1]
it |
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§(z.ub) € X,, = X;. Subsequently, we may take z; € X, for 2 <1 < m+ 1 such
that there exist u, € L°, d(z,.u;) = 1,5y and Trj(z;, u;) is contained in X, X, __,.
Let v = ujuy...um, then §(z.v) = zpr € X, = X,. Moreover, because 7 is [BC,
X, is IBC. This implies that there exists w: € £* such that §(zm+1. w) = y and for
all v’ < w. §(zm-y, ') € X;. Denote u = vu, clearly, d(z.u) = y and Trj(r.u)is
contained in Trj(X,.U) = X;, X, ....X

“*lmel”

a

In this chapter. unless otherwise indicated, all partitions = are assumed to be
IBC partitions and M, = {X;.L%.d,} will be used to denote the partition machine
M7 corresponding to .

3.3. Optimality Consistency

An optimal control with respect to a start state r and a target state y. u%(r.y)

is a sequence of transitions such that y = d(r.u%(z.y)) and for all v € £° with
Sir.v) = y. dir. y: w9 y). 1) < d(z.y:v.l). Denote the set of optimal controls with
respect to the start state r and the target state y by u(zr.y). Hence. if v €u’(z.y).

dir.yu®(roy). ) <d(z.y: v ).

Denote the set of high level optimal controls with respect to the start block .\, € =
and the target block .\, € = by U%(X,. X)).

Definition 3.5. (Optimality Consistency (OC(C))) A wwo level hierarchy
{M. My} with a given low level cost function { is optimality consistent (OC) if there
exists a high level cost function Cy :  x &4 — R~ such that the following conditions
hold:

(1) for any two states z € X, € 7.y € X, € =, if u €u’(z.y), then there is
U €U%X.,. X)) such that Trj(z.u) is contained in Trj(.X;.U).

(2) for any two blocks \;,.\, € =, if I' € U% X, X;), then for every z € X, and
y € X. there exists u €u’(z. y) such that Trj(z.u) is contained in Trj(X,.U). O

Definition 3.6. (Convex High Level Trajectories) A high level trajectory
P(XT) = X,.X3--- X, is said to be convez if either:
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(1) for all z € X and all y € X, P(XT]) does not contain any low level optimal path
from r to y.

(2)orforallz € X} and y € X, P(XT) contains a low level optimal path from r to y.

A high level model M, is said to be conver if all of its paths are convex. a

We note that the convexity property does not imply the low level optimal path
between a pair of states is unique: nor does it imply that the high level path contain-
ing low level optimal paths between a pair of states is unique.

All states in a block X, can be classified into two disjoint categories: (i) boundary
states d.\, which have direct connections to or from elements in .\'°. and (ii) interior
states ,{’, which are elements of .\, not in d.X,. i.e. ,{',: X, - 0.X,. It turns out that
the convexity of paths is exclusively determined by their boundary states. This is
formulated by the theorem below.

Theorem 3.4. A high level path P(XT) = X\ X,...\, containing a low level
globally optimmal path from a state in X, to a state in X, is conver if and only if for
all £ € O(\X}) and y € I{\,). there enists a low level globally optimal path from r to
y path-wise contained in P(\XT7).

Proof:

First. we prove the sufficiency. Because = is [BC. the hierarchy {\/. M,} is CC.
Therefore. for any state r' € .\ and any state y’ € X,. there is a low level path
contained in P{\T) connecting =’ and y'. Because. the set of controls with respect to
r’ and ¥’ is not empty, the optimal control exists. Denote the low level global optimal
path from 1’ to ¥’ by Trj(z’,u). There is a state " € O(X,) such that Trj(z’, u)
can be written as r’ ~ 1’ = z ~ y’ where all states on z ~ y’ are not in .X;. Also,
there is a state y” € I(.X,;) such that Trj(z’, u) can be written as £’ ~ ' = " ~ ¢/
where all states on ' ~ ' are not in .X;. By the condition that there is a low level
globally optimal path from z’ to y’ path-wise contained in P(X}), denote this path
as Trj(z".v). Hence. ' ~ Trj(z".v) ~ y'. which is path-wise contained in P(.XT),
has the same cost as Trj(z’. u) and thus is optimal. Since z’ and y' are arbitrary, we
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conclude that P(XT) is convex.

“Only if” part is straightforward by the definition of convexity. g

Theorem 3.5. If a two level hierarchy {M. My} is optimality consistent then
{M. My} is conver.

Proof:

Suppose a two level hierarchy { M. My} is OC(Ch). Let T = X, X, .Xi,....\, be an
arbitrary trajectory of M. In the non-empty case. if £ € .\, and y € X are two states
of M and u €u®(z.y) is an optimal low level control sequence such that Trj(z.u)
is contained in T. then. by Definition 3.1(1). we know there exists " €U°(X,. X))
such that Trj(r.u) is contained in Trj(\X,.0). Thatistosayv. T =Trj(X,.L") is an
optimal high level path from .\, to .\/,.

Since T is an optimal high level path. by Definition 3.8(2). for any two states
€ X and ' € Xa. there exists u’ €u®(r’. y') such that Trj(z'.u') is contaired in
T. In other words. there is an optimal low level path from 1’ to y' contained in T.

Since T is arbitrary. it follows that { . M,} is convex. c

However. convexity does not imply optimality consistency. as is shown in the
following example.

Example 3.1. In Figure 3.2 is shown a low level model M. Each edge is labelled
bv the cost of its corresponding transition. An IBC partition machine of M. My, is
given by Figure 3.3. [t is easy to verify that all (high level) paths of ./}, are convex.
However. as we shall show. no admissible high level cost function exists to make the
hierarchy { ). M} optimality consistent.

Suppose to the contrary, there was a high level cost function C, such that
{M. My} is OC(Ch) and the cost of transition from X to .X for a DC pair (.}, X;)
in M, is denoted by C(X,. .X;).
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FIGURE 3.2. A finite state machine M

By the definition of optimality consistency. a high level path containing a low
level optimal path from a state in its first block to a state in its last block is optimal
with respect to Cp. To be specific. 1, — 3 — r; (contained in X} = X3 = \35)
is optimal and r; — ry; — ry» — 5 (contained in \| — X; — X5) is non-optimal.
hence

X

X, Xy

Xs O Xs

FIGURE 3.3. An [BC partition machine ./,

C(.\’[. .\—3] + C(.\-g‘ .\'5) < C(.\-x. .\-4) -+ C(.\-.g. .\-5). (1)

Iy — 14 —r Is (contained in .\'| = X — \§) is optimal and z; — 12, — I —
Iy (contained in .\ — X3 = \\§4) is non-optimal, thus.

C(N1. Xy) + C(Xy. Xs) < C(X1, Xa) + C(X2. Xs). 2)
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(1) and (2) jointly give

C(Xa. X5) + C(Xy. Xo) < C(X4. X5) + C(Xa. Xe). (3)

Similarly. r3 — z;0 — I; (contained in X3 — .\y — .\;) is optimal and

I3 — Iy — Is — I (contained in X3 — X» — 1) is non-optimal. hence

C(X3. ) = C(X4. X5) < C(N5..0) + C(XL. XG). (4)

Now r3 — Iy — Is (contained in X3 = X» — \§) is optimal and z3 — 1y —
Iy — Is (contained in X3 — X} — .\§) is non-optimal. thus.

CIX}. X)) = CLXL2 X5) < C(X5. X)) + C(XL Xs). €

Jt
~—

(4) and (3) jointly give

CINL X5 = CLN X)) < CLYL X5) + CLXG XG). (6)

Obviously. (6) contradicts (3). Thus C, can not exist.

{1

Forr€ X, € mand y € X, € 7 and a high level trajectorv T = \| X - -~ X, let
ur(r.y) be a set of sequences of low level control actions satisfving: v €ur(r.y) =
d(r.v) =y and Trj(r.v) is contained in T.

Definition 3.7. (Minimal Cost d3(z.y)) For any r.y € .\ and a state and

control cost function [. we may define
d2(r. y) = d(z. y: 1) =min, {d(z, y: v. 1) : v €ur(z.y)}. w

The optimal low level cost d(z.y; u,!). where u €u®(z.y). shall be denoted by
d®®(r.y). and this shall be referred to as the global optimum value of d(z, y: u.l).

32



3.3.3 OPTIMALITY CONSISTENCY

We may define a less restrictive version of optimality consistency, which is that
of optimality consistency with respect to an initial state s:

Definition 3.8. (Optimality Consistency w.r.t. an Initial State s) A two
level hierarchy {M, My} with a given low level cost function ! is said to be optimality
consistent with respect to an initial state s € X'* € « if there exists a high level cost
function Cy : ¥ x £, — R™ such that the following conditions hold:

(1) Forall t € X, € 7. if u €u(s.t). then there exists [" € U%(X*. \) such that
Trj(s.u) is contained in Trj(X* [’). and

(2) Forall t € X,. if U €U\, X,). then there exists u €u®(s. t) such that Trj{s. u)
is contained in Trj(X*. 0. O

Definition 3.9. (Convexity w.r.t. an Initial State s) A high level model
My is said to be conver w.r.t. an initial state s. where s € X* € =, if for all paths
POYM) =1Yy - Yo C My with ¥ = X5,

Zr € Y, Zu%s. 1) eu’(s. o) st Trj(s.r) € P(YT)
= Yy € ¥, 3u(s.y) €ul(s.y) s.t. Try(s.y) C P(Y ).

]

With this weakened version of convexity. we have.

Theorem 3.6. If all paths in My are conver with respect to s. then { M. My} 15
optimality consistent with respect to s.

Proof:

To prove the theorem. we introduce a graph called the optimal high-level path
graph w.r.t. s (OPG(X*)); OPG(.X'®) consists of all high level nodes and all edges
that are on some high level path from .X* to some node .X,, where these paths each
contain a low level optimal path from s to a state in .X,. Given the convexity w.r.t.
s of all high level paths starting from .X°. we construct the graph OPG(.X*) by ar-
bitrarily picking a state, say z. in each block and then finding all low level optimal
paths from s to =. The high level paths containing these low level optimal paths
constitute OPG(.X").
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FIGURE 3.4. There are no circuits in OPG(.\'¥)

‘We shall prove that there are no circuits in the OPG(.\'*) by obtaining a contra-
diction by use of the convexity hypothesis.

We let — represent a one-step transition and let ~ represent a sequence of
transitions. Suppose there were a circuit between two distinct nodes 1™ and 1" in
OPG{X"*). namely some path 1"~ 1"~ 1", By the definition of OPG(.\"¥). I" ~ 11"
and 11"~ 1" are the terminal parts of high level paths containing low level optimal
paths from s to states in 11" and V" respectively. Therefore. there must be low level
optimal paths from s to a node r € 1" contained in \* ~ 1" and another from s to
y € V" contained in \'* ~ 1"~ 1" (see Figure 3.4.).

Let £ € 17 be a state such that the cost from s to r is the minimum with respect
to all states in {". By convexity w.r.t 5. since y € V", we also conclude that there is
a low level optimal path from s via ¥1” to r contained in \"* ~ [I" ~ |". Denote a
state in 11" on such a low level optimal path by r. By similar reasoning, we know
there is a low level optimal path from s to r contained in S ~ ", and there is a low
level optimal path from s to r contained in § ~ V"~ 1", Denote a state in V" on the
latter path by ¢.

We know that all segments on a low level optimal path must also be giobally
optimal trajectories between their end points. Let d%_, (s, z) denote the cost of an
optimal path s ~ z with respect to all low level paths from s to z contained in
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S ~ V', d%_-(s, 1) equals to the global optimum d%(s,z). We also know that two
optimal paths between the same pair of states have the same cost, 1.e..

d®(s.2) = dyai(s. 1) = d?x:«.-u'vv(s-f)

=d%_wis.r) +dd i (r.1) =d%s.r) +d%(r. 1)

and

d*(s.r) = d?(’»w(s- r)= d(.’\"»vuw(s- r)

=% (s.t) +dd gy (b 1) = d%(s.t) +d¥(t.r)

Therefore. substituting (8} into (7). it follows that

d®(s.r) = d%¥(s. t) + d°(t. r) = d®(r. 1).

Because we have made the assumption that d*(s.r) is minimal with respect to all
states in 17,

d%(s.t) > d%(s. 1).
Hence
d(s.t) > d®(s. 1) = d®(s.t) + dt. r) + °(r. ).
which then gives
d®(t.ry +d°(r.z) = 0.

This implies r = t = z. contradicting 1" # I},

We consider two distinct cases where the high level paths that contain low level
optimal paths from s to the states in any given block are respectively unique and not
unique.

First. let us assume that the high level paths that contain low level optimal paths
from s to the states in any given block are unique. then OPG(X?®) is a tree. In this
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case, circuits are clearly impossible in OPG(X?®). It is quite straightforward to see
that by assigning each arc on this tree a cost 1, and all other edges of the high level
graph which are not shown in OPG(.X*) with cost infinity (or a sufficiently large pos-

itive number). we obtain a high level cost function which preserves the partial order
on blocks established by OC w.r.t.s.

Second. consider the general case in which the uniqueness of high level paths
containing optimal low level paths does not hold. that is to say, there may be multi-
ple high level paths containing low level optimal paths from s to some given node in
their last block. In this case. we invoke the result proved above to conclude there are
no circuits in OPG(X'*). To make the costs of the above mentioned high level path
equal. we introduce a term depth.

Define the depth of each node on OPG(.X*). dep(S) = 0. dep(I}") = max{dep(V")+
1 for all 1" which is a direct predecessor of {}'}. As we have proved. the depth of a
node must be finite because no circuit exists in OPG(.\'?).

Now we define the cost of thearc 17 = H by Cp(V. V" —= V) = dep(17) —dep{17).

which we note is strictly greater than 0.

For all ares 17 — 1V not appearing in OPG(.X¥). let Co(1. 1 = 117) = x.

[t is clear that under the so-defined C,, the set of optimal high level paths from
X7 to X, € 7 contains a low level optimal path from s to anyv state r € .\: and anyv
low level optimal path from s to an arbitrary state £ € X, € 7 is contained in a high
level optimal path from X* to X,. Thus. we conclude that {M,\,} is optimality
consistent with respect to s. a

Let us extend the notion of convexity with respect to a single start state s to
that of convezity with respect to X*: given a high level trajectory T in {M, M}, if
for all z € X* € 7. T is convex with respect to z. then T is said to be convex with
respect to .\"*. Similarly, we extend the notion of optimality consistency with respect
to s to optimahty consistency with respect to X*: a hierarchy {M, M,} is optimality
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conststent with respect to X° € « if { M, My} is optimality consistent with respect to
z. forall r € X*.

Corollary 3.1. If all paths in My are conver with respect to X*, then {)M. M}
is optimality consistent with respect to X*. a

3.4. P-HADP(C:), HADP(C)) and Their Sub-optimality Es-
timates

Recalling the treatment introduced in [15]. we specify a subset called an in-set
for each block of the high level model.

Definition 3.10. (In-Sets) For a partition block X, € 7 in the partition =. its
input set. or wn-set. I(.\,) is a subset of .\, satisfving the following condition:
7r € I(X,). there exists ' € X,. and there exists u € T such that §(r'.u) = .

[{.X) is further reﬁned according to the DC relations: for a pair of DC blocks
(X). X)) we set [(X,) 2 {z€X,: 2r' € X,Zue 42 u) = 1} a

In particular. if the initial and target states s € \; € Tandt € \|, € 7 are
identified. we designate [{.X,) = {s} and [(X,) = {¢}.

A possible measure of the cost of a high level transition between blocks is the
total cost in terms of the low level events required to traverse this block from its
in-set to the next block. Define d(r.y:u.l) with r € X,. y € [,(X,). and for all
v < u.d(r.u} € X, as a traverse cost from X, to .X,. Because a block may have
multiple in-set states. finding a single parameter representing the traverse costs may
be impossible. Bearing this in mind. we define the bounds.

Deﬁnition 3.11. (D*(X,.X,).D7/~(X..X,), D7(X..X))) If (X.. X}) is DC,
D{X.. X)) = ma:({d”\ x,(z.y) forall z € I(X)) and y € L(X))}.
D-/-(X,.X)) = ma.\,mmy{dov x, (z. y) forall z € I(X;) and y € [,(.X;)}.
D-(X..X)) —mm{d“\\ (z.y) forall z € I(X;) and y € [,(X,)}. C

Clearly. we know that D*(X,, X;) > D*/-(X,, X;) > D~(X,, X)) If P(.\'{‘)-i-Xl
X:---X, isa high level path. then forallz € I(X;) and y € I,_;(XL,), Z:‘:]ID'(X,, Xis1)
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is a lower bound for d?,(x{.)(x,y) and L' D¥(X,, Xi+1) and £72/ D7/~ (X;, Xoay)
give upper bounds d‘},(x;.)(r,y) In this sense, £72/D*/~(X,, X;;,) is a conservative

estimate for the cost of the low level optimal control from any r € I(X}) to y € X,.

Let D(P(X7): D=/~) represent the D™/~ cost of P(X}). i.e.. D(P(X}): D*/~) =
St D7 (X, Xo.y) and let D(P(XT): D™) represent the D~ cost of P(X7). A
high level path is said to be D</~-optimal if it has the minimal D¥/~ cost over
all high level paths from X, to .\;. Suppose we set the high level cost function
in terms of D™ ", ie. let Cx(X,.L7) = D™/~(X..X,). If we perform dynamic
programming with respect to this high level cost function. the D~/~-optimal path
P°(X;.X.) = X\.\b - - - X, contains a possibly sub-optimal low level solution be-
tween the start state s in [(.X}) and the target state t in \',,. This is the case simply
because any high level path contains a (possibly sub-optimal) low level path by the
definition of the DC property.

Let the high level cost function C,, : ('. - XU\ x Zy — R be given. For

£ N €xandt € X' € = lec [(\X*) = {s} and [(X*) = {t}. By virtue of

the spectal status of the start and Lermlnal states s and t. the value of Cx(X*.017)

and Cy(X,.U'}) is taken to depend upon s and t respectively. We observe that the

definition of Cy entails that it is defined only for high level blocks and transitions
corresponding to DC pairs.

After this preparatory step. we have the two distinct schemes presented below
for seeking a possibly sub-optimal low level path between the given start state s and
target state t. For each of these. we that the target state t is accessible from the start
state 5. but we note that the failure of these algorithms to converse provides a rapid
test for precise accessibility of t from s.

The P-HADP(C,) Algorithm

This algorithm seeks the low level optimal path with respect to the constraint of
confinement in a high level optimal path (with respect to Cy) from X* to .X*: this is
called the path-unse HADP or P-HADP for short.
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P-HADP(C,) Algorithm:

(1) Set Dis(X*; X*) =0 and Dis(X,; X*) = oc for all X; € = such that X, # X*;

(2) Dis(X;: X*) = min{Dis(X,: X*)+Cr(X;,L7)} for all X, € 7 such that 5, (X,.L7) =
X, with some U7 € ¥,. Find Dis(X,; X*) for all \; € 7.

(3) Find an optimal path from .\'* to X'* in M, with respect to Cj. Denote this path
by PO(X*. X% Ch).

(4) Denote the set of all states in the blocks on P?(X'*, X*: Cy) by X,p. Set dis(s:s) =
0 and dis(r:s) = x for all £ € X,y such that z # s.

(5) dis(y:s) = min{dis(z:s) + {(z.u)} for all z € X,y such that §(z.u) = y € p
for some u € T. Find dis(z:s) for all £ € Xyp.

(6) With dis(z:5). find a low level optimal path from s to t in .\,p,. C

P-HADP shall stand for P-HADP(D~/~), i.e. the HADP procedure with D=~
taken as the high level cost function C,. We note that if {1/. M} is OC with the
high level cost function D~'~. P-HADP(D~ ~) will generate the true low level opti-
mal solutions.

The HADP(C,) Algorithm

This algorithm seeks a low level sub-optimal trajectory contained block-wise in a
high level optimal path P°(.\'*. X*:C4). The resulting algorithm is called block-uise
HADP. or simply HADP for short.

HADPI!Ch ) Algorithm:

(1) Set Dis(X?: X*) =0 and Dis(X,:.\*) = x for all .\, € 7 such that .\, # \'":
(2) Des(.X;: %) = min{ Dis( X, X*)+Ch(X,. 0})} forall X, € = such that 6, (.\,.L7) =
X, with some {7 € T,. Find Dis(X,: X*) for all X, € .

(3) Find an optimal path from .X* to X'* in M, with respect to Ci. Denote this path
by PYUNS. X:Ch).

(4) Set PO(X*. X% Ch) = Y15, Y, with ¥} = X*and ¥, = X'. Set z; = s. Start at
1 =1.

(3) Set dis(r,:r,) =0 and dis(z:z,) = oc for all z € Y, U [,(Yi.,).

(6) dis(y:r,) = min{dis(z:z,) + {(z.u)} for all £ € Y; such that §(z.u) = y €
Y, U L(Y,.)) with some u € . Find all dis(z: z,) for £ € YU [,(Yi.y).

(7) Set z,.1 = argminyey,(y,.,)dis(y:z,). Find a low level optimal path from z, to

39



3.3.4 P-HADP(C,), HADP(C:) AND THEIR SUB-OPTIMALITY ESTIMATES

z;+; path-wise contained in Y;Y;,,. Denote this path by z; ~ z;4;.
(8) If ;41 =t, s~ Ty... ~» T,_, ~» t is the solution, stop; else set ¢ =i + 1, repeat 5
to 8. m|

Similarly, HADP shall denote HADP(D*/-), i.e. the scheme above with C}, taken
to be D¥/~. When D*/~(Y;,Yi;1) = D=(Y;,Yis1), 1 € i < n, HADP will generate
the true low level optimal solutions. P-HADP(D~) and HADP(D™) are the similar
processes with D~ as C, in the above procedures.

The diameter of a block X, with respect to its in-set J(X;) is defined as D(X,) =
maz{d% (z,y) :z € I{X,) y € X.}.

Definition 3.12. (Condition MM<,)For a two level hierarchy {M, M,}, the
condition MM<, holds if the following is true: for any two blocks X, X, € #, with
s € X\, let Y; = X and Y, = X,,, then, whenever P%(X?) = X, X,...X, isa D*/~-
optimal path. and P'(Y™) = Y1Y,...Y,, is any path which is not D*/~-optimal, it is
the case that D(P°(X}); D*/~) + D(X,) < D(P(Y™); D7). o

Theorem 3.7. Let {M, M,} be a two level IBC hierarchy. For any X,, X, € =
with s € X|. assume that the high level D*/~-optimal path from X, to X, is unique.
Then, MM<, implies the hierarchy {M, My} is OC(D*/~ ) with respect to s.

Proof:

Suppose for a hierarchy { M, My}, the high level cost function is given by Ci (X}, U})
= D*/=(X,, X,) for every DC pair (X, X;) with X; = 8(X;, 7). Under the assump-
tion that the condition MM<, holds, we prove {M, M,} is OC(D*/~) with respect
tos€ X, en.

(1) Let y € X, € 7 be an arbitrary state accessible from s, and let u € u %(s, y).
Denote the high level path containing Trj(s,u) by P(Y{") = 1Y,..Y,, with Y] = X
and Y, = X. There is an entry state z € I(X]), such that u; € u’(s,z) and u; €
u’(z,y), where u u; = u. It is evident that D(P(Y[™); D7) < d%(s, ).

Next, to obtain a contradiction, assume P(Y™) is not D*/~-optimal, i.e. there
is P(Z}) = 2,Z,...Z; with Z, = X; and Z; = X; which differs from P(Y,") and is

40



3.3.4 P-HADP(C,), HADP(C,) AND THEIR SUB-OPTIMALITY ESTIMATES

D*/~-optimal. We shall prove by (forward) induction (on k) that there exists z; in
Ii-1(Zk), 1 < k <1, such that d°(z,‘ (s, 2z) < D(P(ZF¥); D*/7).

When k = 2, the above inequality holds by the definition of D*/~(Z,, Z2). Sup-
pose it holds for £ = p, 2 < p < [. By the property of IBC blocks, every state in Z,.;
is accessible from z,. Denote dz,z,.,(2p, 25,,) = argmin:ery(z,,,) d%pz’+l(z,,, z). Itis
clear dz,z,.,(2p. 5541) < D7/7(Zy, Zp41). Hence,

Ay o1y (5: 241) < Boan) (5. 55) + d2,2,0 (39 2541)
< D(P(Z2P); D™'7) + D¥/~(Z,. Z,.1) = D(P(ZP*Y); D¥/-).

Therefore, it is straightforward to see that

dpz1)(5.2) S dpzy(s.5) + d, (s 2) < D(P(2); D/7) + D(X;) < D(P(YT™): D7).

Then. by the assumption that MM<, holds for {M, M.}, D(P(Z}); D*/~) +
D(X,) < D(P(Y™); D™), thus &° P(Z!) (s,z) < D(P(Y™); D~). This leads to the con-
tradiction that d"(z( (s,z) < d®(s,z). Hence, P(}¥™) is optimal.

(2} Let P(¥™) = 11Y3...Y,, be the unique high level D*/~-optimal path from ¥} = X,
s € Y}. to ¥, = X, and let y be an arbitrary state in X,. Assume that u € u%(s,y)
and Trj(s.u) is contained in P(Z}) = Z,2,...Z;, with Z, = X, and Z, = Xj. which
differs from P(}™). We may decompose u into u = uu,, where u; € u%(s,z),u; €
u’(z.y) with z € I7_,(Z)) is the last entry state into Z; on Trj(s,y). Clearly.

D(P(2)); D7) £ d®(s,z) = dpzy)(s. 7).
But by the condition MM<j,
D(P(¥("): D*/7) + D(X,) < D(P(Z}): D7)
And clearly we have,
@3 ymy(s:7) < D(P(YT™); D*/=) + D(X;).

Thus, we reach the contradiction d‘},(ylm)(s, r) < d%(s,z). Therefore, P(¥[") contains
a low level optimal path Trj(s,u) from s to y. Since y is an arbitrary state in X,
the second part of the OC property is established. a
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In spite of the information given in the theorem above, there still remains the
problem that if there exist two or more high level optimal paths from X', to X}, then

in an optimisation procedure we have to investigate which of them actually includes
the optimal low level solution.

Let a,(\,) = D=(\,, X,)/D=/~(X..X,) for all X,. X, € 7 such that (X,,.\}) is
DC.

Theorem 3.8. For arbitrary start state s € \, and target state t € X, let
d*(s.t) be the cost of the global low level optimal path from s tot, PO(Y|.Y,: D™/7) be
the D=/~ -optimal high level path from ¥} = X, to Y, = X,. and let d#APPP™ 7)(5.¢)
denote the cost of the HADP(D™ ) solution. Then if the D'~ -optimal high level path
contains a global optimal solution.

n-1
dHADPIDT) (5 1y — (5. t) < Z (1 =a,- (Y))D™/ (Y. Yis)).

1=}

Proof:

n-1
a?1PPPT (5 ) <Y DTN Y L),

=1

If the D~ ~-optimal high level path contains a global optimal solution.

-1
sr)zz (YY),
=1

Because. D™ (Y,.Y,oy) 2 o (Y) D™ (Y. Yio).

dH-lDP(D ) ] dﬂo(b t)
n~-1
<Y (D77 (Yo Yirr) - D7(Y, Vi)
=1
n-1
<Y (1= @t (X)) D/ (Y, Yic).
=1



3.3.4 P-HADP(C)), HADP(Cx) AND THEIR SUB-OPTDMALITY ESTIMATES

If the D™/~-optimal high level path does not contain a global optimal solution,
we define a parameter £ to represent its closeness to the D~ -optimal high level path.
Let P9(}).Y,: D/~) be a D™/~-optimal high level path from ¥; = Y, to ¥, = X.
and PY(Z,.Zn; D7) be a D~-optimal high level path from Z; = X, to Z, = X:
then we define € = S0 D™(Z,, Zio1)/ S0 D7 (Y5, Yisy)

La=1

Corollary 3.2. For arbitrary start state s € X, and target state t € X, let
d®(s.t) be the cost of the global low level optimal path from s tot, PO(Y1.Y,: D™/") be
the D=~ -optimal high level path from Y] = X, to Y, = X,. and let d¥4PP(0™" )5 ¢)
denote the cost of the HADP(D~*) solution. Then

n-1
dfAOPOT (s £y = d®(s.8) < D (1 = Eaenn(Y)) D™ (Y1 Vo).
=1
C

We define the parameter a = a(x) to be the supremum of thesetof u (1 > x> 0)
satisfving D™(X,. .\}) > p D7 7 (. X)). for all 1. ). such that (\,..\,) is DC.

Let us choose another version of closeness measure of D~ ~-optimal high level
path P to a high level path P% which contains a low level optimal path from the
start state to the target state. namely. 7 2 [P° 1 P%|/1PY. where |PY N P} is the
number of blocks on both P® and P%. and |P°| is the total number of blocks on P°.
Denote a® = min{a,(.\,) : X,\| is a segment of P°}.

Corollary 3.3. For arbitrary start state s € X, and target state ¢t € X,. let
d®(s.t) be the cost of the global low level optimal path from s to t. P°(}.Y,: D~ ) be
the D~ ~-optimal high level path from ¥ = X, to ¥, = X,. and let dHADPID™ 735 1)
denote the cost of the HADP(D™) solution. Then

dHADPIDTY( —d®(s.¢) < (1 = na® = (1 = N)a)P°(},.Y,: D~/ 7).

a

It is natural to look for properties of a state space partition 7= which permit the
associated HADP(D*/~) and P-HADP(D*/~) to generate near-optimal results. In
particular. we seek partitions for which the D~ and D*/~ parameters are as close as
possible: this is in order to reduce the variability of costs of block traversals corre-
sponding to different in-set states.
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Theorem 3.9. For arbitrary start state s € X; and target state t € X, let
d®(s. t) be the cost of the global low level optimal path from s to t, P°(X,, X,: D*/~)
be the D=/~ -optimal high level path from X, to X,, and let d¥*PP(O™'")(5 1) denote
the cost of the HADP(D~/~ ) solution. Then

1 -
(8]

Ctdﬁo(s.t}.

@#APPO™ (5 1) = d¥(s.t) <

or. equivalently.
dHAPPOD™ ) (5 1) < o™ 1d%(s. ).

Proof:
[t is clear that

D(PY(X,.X;:D7):D™) < d%(s.t)
and
dHAPPIDT T 5 t) < D(PUN,.X,;: D™ 7). D™ 7).

Because P°(X,..\,: D~'7) is D~ ~-optimal.

DIPY(X,. X;:D™ ;D7 "y < DIP(X.X;:D"): D™ 7).
By the definition of a.

D(PY(X..X:D™):D™ ") < (%D(P"(.\',..\',: D™): D).

Thus.

dfTAPPD™ g 8 — d%(s. )
< D(PYN.X,;:D™"): D™ 7) = ds.t)
< D(P(X,. N D D™ 7) - d(s. t)

< lD(PG(.\',..‘(]: D™):D7) - d*(s.t)

R

< Lapo(s by = (s.ry = L2005 4

83

R+

(]
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We observe that in case D(P(XT): D7) is not a tight estimate of d%(z.y) for
r € I(X}) and y € I,_1(.X},). and if other knowledge of the least cost path or its
value between X} to X, is available. better estimation may be achieved by exploiting
this information. For example. if we know a"};.(‘\.?)(r. y) for some £ € X, and y € \,.
d?,(.\.ﬂ(.z:'.y’) > d‘},(_\.?)(r. y) —dx,(z.2') —dx,(y'.y) for any ' € X| and y' € X,.
All such information about lower bounds for d‘,’,(_\.?)(r’. y') can be used to evaluate an
HADP solution.

3.5. Semi-dual System Graphs (A4, C39)

In this section and the next. we discuss our approaches to the improvements of
the performance of HADP. This is a two-fold problem: increasing the accuracy of
sub-optimality estimation and decreasing the number of blocks of partition machines
and thus reducing the computational time.

[n Section 4. we have defined D™(X,..\,). D™ ~(X,. X,) and D7(X,. X)) as the
bounds of the costs of low level control driving the svstem from states in [(.\,) 10
states in [,(.X,). where (\\',. X)) is a pair of DC blocks. As we pointed out in Section
4. the entry states of .X,. [(.\\',). may be differentiated into a collection of subsets
according to the neighbouring blocks. If we identify the source and target block of a
low level path to traverse a block .\, (i.e.. use the costs from [ (.X,) to [,(.X,). where
{Xe. X)) and {Xi. \,} are DC) to define those bounds. we are able to obtain more
precise estimates of the low level optimal cost.

Definition 3.13. (D7 (N,.X,). D] ~(X,.X,). DI(X.. X))

If {Ne. X)) and (X,..X,) are DC.

D7 (X..\;) = max{dY% y (z.y) for all r € [(X,) and y € [,(\)}.

D, "N, X) = max, miny{d‘?\-“\.j(r.y) for all r € [,(X,) and y € [,(X))}.

D7 (N..X,) = min{d%  (£.y) for all r € [(\,) and y € L(,)}. -

Suppose there is more than one X; block such that (\X}..X,) is DC. then one
needs to know which block is the predecessor of .\, on a high level path in order to
choose the corresponding bounds to estimate the cost. As a result. the transition
X. — .\, cannot be labelled by a single value to carry out DP.
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FIGURE 3.5. (a) Mx (b)ase

Using the notion of out-sets in Chapter 2. we may introduce a model based on M/,
called the semi-dual high level machine M3¢. \Whenever (X,. X,) is a DC pair in /.
let us define the high level transition event symbol 1;7. and denote the collection of
all such symbols by 1". By the standing IBC hypothesis. there exist paths from each
element in [,(.\}) to each element in O(X) and hence. in particular. to each element
in the subset Ox(X,) C O(X) consisting of elements with one step transitions to .\.
Define the set of edges E to be the new collection of derived high level events E;‘k.
each of which corresponds to a set of paths in .X; from [,(.X}) to Ok(.Y,) and then
to [;(X%). The elements Ej"k € E are in one-to-one correspondence with the pairs
(17.V7) € U x 1" and the resulting finite state machine{}" E. 334} is denoted by M4

The algorithm below formulates the HADP procedure based on M. Here the
idea is. with M3, it is feasible to perform DP. After we find an optimal solution
with respect to M. we obtain a sequence of between block boundaries. and this in
turn gives a sequence of high level blocks where a sub-optimal low level solution is
contained. Taking between block boundary dy, (.\;) as a node representing a DC pair
{(X..X,). and taking the minimal cost between Jy,(.\,) and dx,(Xk) as the high level
event E;'k. we carry out DP in the following fashion.

Pre-processing
(1) Convert M, into M;e:
(2) Define the high level cost function: for all 1 < i.j.k < |VI].if 634(VY, E;‘k) = L;".
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C(V7 Ey%) = D7 (X0 X

(3) If the start state s € X, € 7 and the target state t € X; € 7, add two new
elements. the source node 17 and and the target node 1} to 17 V"= 17U {17, V]}:
(4) Add new transitions from 1 and to V} to E in the following way:

for all 1 < k < |=]. if (X,. Xi) is DC. add E** to E. and §{¢(V}. E*) = V¥, the cost
of this transition is C34(12. E*Y) = min{d% v, (s.y) for all y € L(Xi)}:

if (X;..\,) is DC. add a new control symbol E;" to E. and %(V/. E;'t) = 17. the cost
of this transition is C3¢(1}. Ej") = max{d‘}:(r‘ t) forall r € I,(X))}:

Denote the resulting model with 1§ and 17 added by Mg

l

[n other words. in the pre-processing we set the start and target nodes in ac-
cordance with the start state and the target state. and then set their corresponding
transitions to the boundary of the DC pair (\\,. .\x) and from the boundary of the
DC pair (X¢..X,). With these new nodes. we are able to carry out DP with M. in
order to find a sequence of blocks containing a sub-optimal low level path between
the start and target states.

The Semi-dual HADP(D~ ") algorithm

(1) Set Des(V}:17) = 0: Set Dis(VF:1}) = x for all VR

12) DestVE ) = min{ GV ES)+Dis(17:17)} forall 7 € E: find all Dus(1:17)
for Vf 1%

(3) If Des(VF: 1) = xc (s is not reachable to t). stop: else. find a shortest path from
1y to 17 with respect to Ci? in M2, Denote this optimal path by PO(17*. 1" D~ '~).
Let PP(A=. 18 D=7y = VU A0 with 1 =V and Vn =1T:

(4) Let ry = 5. Start from k= 1:

(3) If Xy, = X, Tneze = {t}else Loz = L (X, )t

{6) Set dza(r, ) = 0:set dis(z:z,) =x forallz € X, UL (X, _,)and T # 1:

(") a’zs(r 1) = min{dis(y: 1,) + {(y.u)} for all y € X, such that thereis u € T s.t.
3{y.u) = z: find all dis(z:z,) for z € X, UL, (X,.,):

(8) Let ri.; = argminger, (x,,_,) ",{-‘k‘\-‘k-‘ (z.z). Find a shortest path from z, to

Ii.; path-wise contained in X, YX,,_,. Denote this path by rg ~ z4.;:
(9) If 4., = t. i.e. t is reached. | ~~ I3 ~» ... ~ Ti.; forms a low level solution.



3.3.5 SEMI-DUAL SYSTEM GRAPHS (M4, C3¢)

stop; else. set k = k + 1, repeat step 5-9. a

If we find the low level optimal path from s to t with respect to the high level
optimal path obtained in step 4, the result gives a P-HADP algorithm solution.

Theorem 3.10. For a high level path P(XT} = X\ X1 -- X, with arbitrary start
state s € X'y and target state t € \,.
D(P(\X7):D7)+ D(P(XT): D™)
9 "

dp(s.t) <

Proof:

Let D7(X,.X,41).1 €1 < n—1 (the minimal between in-set cost) be realised by

. ~ A A RN
a sequence of (not necessarily connected) segments S| = s ~ y1. Sa = 23~ 3. S =

U3~ Y. S, = Iy~ s for vz € I(Xa)iyaoz3 € I{(Ng)ioiynoy snot € T(X2y).
Linking ys. y3: ys- ys:... and s. z2:23. 24:.... respectively by optimal paths. we construct
two low level paths from s to ¢t as:
pr=s5~Yyr~~y3---yYn- ~tand
D1 =S~y yee-

l'\..ot,

In-

Hence we obtain two low levels paths with alternate realisations of D=(.\,. \',.}).
Denote the low level costs of p; and p, by d(p,) and d(p,). then collecting the elements
of S, together to give the first sum below. we obtain.

n-1
dlpy) +d(p2) = (Z D™(X. Xiny)) + Y xa (5. 22) + %, x, (2. 43) + .

=1

n-1 n-1i
<Y DT(Xe X))+ ) DTN X))
=1 =1

= D(P(X}); D”) + D(P(X}): D).
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. Since d%(s.t) < d(p1) and d%(s,t) < d(pa), we have
D(P(X}):D*)+ D(P(XT): D7)
b .

dh(s.t) <

Let us define the parameter 3 = 3(x) to be the supremum of all u (1 > ¢ > 0)
satisfving D (X,. .\}) 2 uDg(X,. X)) for all &.i. ) such that (X, \}) and (X, X))
are DC.

Theorem 3.11. For arbitrary start state s € X, and target state t € \,, let

P°(X,. X, : D7) be the D~ -optimal high level path from X, to X,. and d%"(.\'...\',,o-;(s* t)
be the cost of the P-HADP(D~ ) solution. then

1

dpoix, v, p- (5. ) = d°(5.8) < —jjdoo(.s.t).

2

Proof:

' By Theorem 3.10.

dpox, x,.01(3:8) = d°(s.)

<

ol —

={(D(P°(X,.X,:D7): D7) + D(P*(X,.X;: D7): D7)) — d®(s.¢)
Since DZ(NX,. X)) > 3D7(X,. X)) for all &.u.j.
D(PY(X,.X,;:D7): D7) > 3D(P*X,.X,:D™): D7).

Hence.

d([)JO(.\""\'J:D—)(S. t) - dOO{S. t)

1+3 .
< _Ij—D(PO(\' X;:D7):D7) - d®(s. t)
< L2005 1)~ a(s.0)
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g

Definition 3.14. (Di(.\,, X;)) The (arithmetic) average between boundary dis-
tance is defined as

Z:eu(\' )(Zyer.(\',) X, (z.y))

De(X., X)) 2
H( L) TASAEIARA]

a

Theorem 3.12. Let P(\}) = X\ X2..X,, be a high level path with 5 € X} and
t € X, then db(s.t) < S Doy (X Xewy).

Proof:

Let the elements of [, 1( X.)? be denoted {r}.ri.. Il “\ ) }.1 <t < n. where
LX) = {s} and [, = {t}. We connect r} and il < g < (X))

1 <& < L(X,.;)] via the opnmal low level path I} 2 Ii_’l

contained in .\,.\',_; with
the cost of %y, _ (£}. r;""). This gives a low level path from s to ¢ path-wise contained
in P(X7') necessarily passing through [,_,(X,). 1 < i < n. Because there are |[,(.X,,)!
nodes in each [,_,(.\,). connecting anyv one state in [,_;(.\',) to any state in [,(.\',;
gives a low level path from s to t. Hence the total number of distinct paths of this type
is [T, 1£.-1(.X,)i. The sum of the costs of all these low level paths shall be denoted
by 8. Since ri < £y is on [Tos; cmskmso | oot (Ne) =TTy e XOD/ (Lot (X))
LN 20D dl:tmct low level paths from s to ¢t of the form described above. we have.

= Y (Y A=) B+

yi<lo(Ny) y22hi(N2) yacl2{\3)
+Y d%xa(Unotyn)-)
ynfl-\-l(-\"\)
n-— l”s l(\l“][(\l-—l

— ot [Trey 1= (X))
2 Z I T A T AR

1=1 =1

- 1'- X, L(X=y) +
n l 1 )lzl( 1 d\]‘_ \‘H(I 1-':: 1)

= (L1 “Z T (XM X))




3.3.6 WST-IBC PARTITIONS

n-1

= ([ 12e-1 (XD Dami (X, X))

=1

Since d%(s.t) is less than or equal to the cost of any of the above paths.

([T 1=t (XODdp(s.8) < Sar.

k=1

Therefore.

c

We observe that D (-.-) is a valid candidate for a high level cost function Cj in
the context of semi-dual HADP algorithms.

3.6. wST-IBC Partitions

Evidently. the number of states in M;? is usually strictly greater than number
of states in 1/, . therefore. performing HADP with /3¢ is more complex than with
M. To counteract this affect we shall weaken the IBC condition with the objective
of decreasing 7! and thus decreasing |Us]. For syvstems for which a direction of flow
from start states to target states is defined. we formulated in [15] a generalisation
of IBC partition called ST-IBC partition and within this framework we derived a
hierarchical control structure based on the lattice of ST-IBC partition machines.

In {15]. the notion of the ST-IBC property of a block .X; € 7 was defined as
follows: if (i) there is a path internal to .\, from every state in [(.Y,) to every state in

O{X,): (ii) all states in O(.X;) are mutually accessible by paths internal to .X,, then
X, is said to be ST-IBC.

Now we may define a slightly different ST-IBC property of blocks by dropping
the mutual accessibility of states in O(X;).
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. Definition 3.15. (wST-IBC) A partition block X; € = is weak ST-IBC (wST-
IBC) if for any state z € I(X;) and any state y € O(X;) there exists u € ¥* such
that §(z.u) = y and. for all v’ < u, d(z,u') € X.. a

Denote the partition machine based on an ST-IBC partition = as MZr = {7. L, ds}.
The dynamics of the ST-DC (see Chapter 2) partition machine M3} is defined by the
ST-DC relations over 7 x «. i.e. if (X,,.Y;) is ST-DC. then there exists L’ € &4 such
that 6, (\\,.07) = X,

Definition 3.16. (ST-Control Consistency) A two level hierarchy { M. M3}
is said to be ST-control consistent (ST-CC)if and only if the following two accessibility
conditions hold:

(1) For all € I(X,) € = and y € I(X,) € = if there exists © € I* such that
d(r.u) = y then there exists I” € ;" such that d,(X,.0") = X, and Trj(r.u) is
contained in Trj(X,. ().

(2) For all X,. X, € =. if there exists " € £,° such that ,(X,.L") = ;. then for all
r € I(\\,). there exists y € [(\,) and u € £ such that d(r.u) = y and Try(r.u) is

contained in Try(\X,.0"). C
. Theorem 3.13. [f partition = s wST-IBC. the hierarchy {M. Mip} s ST-CC.

The proof is similar to that to Theorem 3.3.

An algorithm to find a wST-IBC block containing a given seed as an in-set state
in a constraint can be found in {53]. Partitioning .\" into a wST-IBC partition 7 is
a process of high complexity. hence we use an algorithm to improve an existing [BC
partition by generating a related wST-IBC partition. It functions by growing a given
IBC block into a wST-IBC block with respect to a given constraint (see [53]).

3.7. Applications to the Broken Manhattan Grid Problem

We use a class of examples called the Broken Manhattan Grid (BMG) problems

to illustrate the generation of hierarchical control structures and the operation of
HADP algorithms.

(1]
[AV]
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High Level m /

Middle Level /o
v

Z

Low Leve},_,-"/—\ ja e //I

FIGURE 3.6. Three-level hierarchy for a Broken Manhattan Grid problem

Consider a graph with a large number of nodes and edges. which are formed by
randomly removing some nodes and edges from a regular grid. A three-level hierarchy
is constructed for such a system so that the middle level model is an IBC partition
machine of the low level model (i.e. it forms an FSM abstracting the broken grid

tself): and the high level model is an IBC partition machine of the middle level
model.

~ Example 3.2. Consider a 500x500 regular grid ( A grid is regular in the sense

that every node has connections to its neighbouring nodes). Here we assume each

link has unit cost. We randomly remove 10% of the nodes and their connecting
edges. A middle level block of the hierarchy is shown in Figure 3.9. The simulation
is done with C on a Silicon Graphics O, work station (CPU 180MHz. main memory
96M). In general. remarkable accelerations for the sub-optimal path calculations using
HADP(D~'") have been obtained. For example. when the start and target nodes are
(1.1) and (499.499) respectively, the atomic full size DP takes over 30K seconds to
find an optimal path with a cost of 1060: the HADP(D*/~) described above gives a
sub-optimal cost of 1165 (less than 10% higher) in less than 9 seconds. a

Example 3.3. In this example. a 100x 100 unidirectional regular grid (this can
be viewed as a directed graph and moreover. and, in fact. as a finite state machine)
is given to represent a transportation network. We assign the direction of links as
follows: odd-numbered vertical streets are north bound, even-numbered ones are
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FiGURE 3.7. A Broken Manhattan Grid

south bound: odd-numbered horizontal streets are east bound. even-numbered ones
are west bound. Here we assume each link has unit cost. Subsequently we randomly
remove 10% of the nodes and corresponding edges concerned with them. This grid
has some resemblance to the Manhattan area. When the start and target nodesare - — — — —
(10.99) and (89.88) respectively, (see Figure 3.8 for a high level block structure) the
atomic full size DP takes over 33 seconds to find an optimal path with the cost of 112.
We use the semi dual method to form a hierarchy, the D~ cost of the D~ optimal
high level path is 88 and the D=/~ cost of the D™/~ optimal high level path is 116.
so the error of HADP solution is less than (116-88)/88<32% of the global optimum.
In fact. the HADP(D*/~) gives a sub-optimal cost 116 (<4% higher) in 3 seconds. O

In a graph generated from a 88 x 88 regular unidirectional grid with 10% nodes
randomly removed. we choose the start states as 1, 1111, 2222, 3333. 4466, 5666 and
6666. and we also set the target to be in the same set as above. Then, we carry
out HADP with semi dual graph for the start target pair chosen from the above set
respectivelv. The ratio of HADP cost and global optimum as well as the speed up
of HADP are visualised in Figure 3.10 and 3.11. In Figure 3.12, the distribution of
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FIGURE 3.9. A block at the middle level of Example 3.2

a(.\,..Y,) is given when the start state is 1111 and the target state is 6666.

A rough comparison of the time complexity of HADP (with a two level hierar-
chy) and that of standard DP for finite state machines in general reveals the drastic
speed-up of computation obtained by HADP. Specifically, suppose we take Dijkstra’s
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FIGURE 3.10. The ratio of the costs of HADP solution and global optimum
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FIGURE 3.11. The ratio of the times of HADP solution atomic search

shortest path algorithm which is of O(n?) for a graph with n nodes. If a partition
gives n; equal-sized blocks. each with n, low level nodes (n; x n, = n). then the

HADP algorithm has a time complexity O(n3) at the high level, and O(l x n3) at
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The gistribution of alpha

B

P S YU S

— —_
— | et SN el DY

[}
Q2 Qq 02 o4 o6 os Al 12

FictrE 3.12. The distribution of a in Example 3.3

the low level. Here [ is the number of blocks on the path obtained by the applica-
tion of DP to the high level syvstem. Therefore. the speed-up may be estimated by
O(n*)/(O(n})+=O(l=(n/ny)?)). In many cases. [ and n; are both approximately equal
to 1. and hence an estimate of the increase of efficiency due to the use of HADP is
O(\/n).

Incidentally. for BMG problems. the effort needed to find an IBC block con-
taining a given node v in a constraint with n3 nodes is linear in n3. because every
node in this constraint onlv need labelling twice to see if it is reachable from and
co-accessible to ¢. If we use nj equal-sized constraints in the pre-processing. i.e..
ny X ny = n. the time complexity of partition is O(n%). To get D~ parameters for
each block. we need O(n, x ny x (na + ny)*) extra computations if each block has n,
in-set states. However. when s and ¢ change. only parameters concerned with .\ and
X need to be modified and so the remainder of the pre-processing can be done oft-line.

(S1}
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CHAPTER 4

Relational Multi-agent Finite State
Machines (MA(R) FSM)

4.1. Introduction

In the areas of transportation management. telecommunication networks and
manufacturing svstems. many problems involve multiple agents running interactively
({40}). Such multi-agent systems are distinguished from classical single agent systems
in that both task specifications and cost functions may differ from agent to agent in
the cooperative as well as in the competitive case. Due to the dynamical interactions
between agents. and because of the inherent complexity of many physical systems.
the analysis and control of multi-agent network systems often engenders problems of
enormous complexity.

[n this chapter. we formulate the notion of a relational multi-agent finite state
machine. Consider a svstem of agents. each in the form of a forced event discrete
event system. the dynamics of which are modelled by finite state machines. generally
denoted M = {\X.Z.4}. We assume that the events always happen at discrete time
instants. A (state-event) configuration of M is a pair of states and events (r.a).
r € X.a € T, such that &(z.a)!, which is interpreted to mean that the system is
in state r and is to take action (event) a. For n agents with models M;, M,, ... My,
where M, = {X,.%,.4,}, 1 < < n. their joint configuration at time instant k is a vec-
tor c(k) = [(z1.a1). (£2.@2). ... (Tn.an)]. where z; € X,,a; € &, and i(z,.qa,)! In the
MA(R) FSM formulation. the relation R is a subset of X; xE; x Yo xEyx .. x Xy x Ep.
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The interaction between n agents is represented by the collection of forbidden con-
figurations R. that is to say, the dyvnamics respecting the prohibitions ¢(k) ¢ R. for
any configuration c(k) at any time instant k£ € .

To motivate this notion. consider a simple system with two interacting agents
in the presence of synchronous events ([41], [47]). When two agents are at states
r, € X|. 1» € X, respectively, where there exists a synchronous event a € £, N ¥
such that d;(z;.a)! and d5(r2, a)l. their interaction forces either both of the agents
to take a or neither of them to take a. In other words. for this syvstem. R =
{{zr.a)). (rran)]l{a; # @A [(Gy(z1.a)! A da(za 1)) V(Ai(z1.a2)! A a(12. @2)!)]
a, € S, a2 € T4, 1y € X, 15 € Xa}. In this example. we note that if a; # a..
d(ry.a,)! but =d(x2.a;)!. then no transition is possible since the joint state cannot

make a transition. and similarly in case a, # a». # d(x;.ay). (3. a2)!

Other examples of forbidden interactions between two agents include mutually ex-
clusive states: if r,.r, cannot appear at the same time. then for all q; € £,. a; € T..
(r1.ap). (I a2)] € Ry: and mutually exclusive events: if a;.a, cannot happen at the
same time. then for all r; € X\. Iy € Xa. {(21.a1). (22.22)] € Ra.

In [33] and [54]. the formulation of a notion called multi-agent product for finite
state machines and automata is presented. where the interaction between agents ap-
pears in the form of synchronous events.

In(1]. a theory of timed (finite) automaton is developed to model the behaviour of
real-time svstems. Timed words are infinite sequences of events each associated with
a real-valued time. In hvbrid systems. a set of guard conditions on the continuous
states are imposed: only when these conditions are satisfied can a discrete transition
take place ([5]. [43]). A finite set of clocks are attached to a finite automaton to keep
track of the elapsed time. In [69], a control theory of timed discrete event systems
is presented based on Ramadge-Wonham supervisory control theory: a special event,
tick. represents a quantum time elapse between transitions. A hierarchical control of
timed discrete event svstems is developed in [9]. Usually, timed models possess much
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greater complexity than untimed discrete event system models.

A multi-agent system is said to be synchronised if all agents take actions simul-
taneously. that is to say, when a state transition happens in one agent. actions take
place in all the other agents. One may view this to be a discrete clock shared by all
the agents.

In this chapter. we first discuss multi-agent systems synchronised by a discrete
time clock: then. second. a time counter is introduced to deal with multi-agent svstems
with non-simultaneous agents.

4.2. Synchronised Agents

In an event-driven finite state machine. M = {X.£.0}. events happen at discrete
time instants and each state transition takes one unit time to complete. i.e.. the live
time of all events is 1. This will be called a (system) quantum time unit since it is the
common indivisible minimum time for a svstem event to occur. The set of states .\’
is partitioned into transient states X't and stable states Ns. A stable state r € X is
one that can be kept at the subsequent state transition: this of course is represented
by a self-loop. i.e.. there is 5s; € ¥ such that §(z.s;) = r. Transient states are those
without self-loops which cannot be held at the subsequent state transition. Once
the system enters a transient state at any instant k € A, it takes the next action
immediately. that is to say. the system will be in a distinct state at the instant & + 1.

Definition 4.1. ((||"™)%,M,) The simultaneous product machine of n finite
state machines M, = {X,,£,.0;}.1 € i < n, is a finite state machine denoted by
(IP™)m (M) = { X, .6}, where
Y=Xx\ox..xX,, =8 x5 x...x X, and
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(51.(1:1 Ul)
I o1 :
Iy o9 %2(z2. 02) S(r,.o).1<i<n
R T R N : . &(zo)1<i<n.
s ; On(Tn.0n)
" " | undefined. otherwise.

(8]

Evidently. (J[*™)™ M, = M| Ml|#™ 1™ M,

Example 4.1. [n a game. at each discrete time instant. two plavers simultane-

ously make one of three gestures: scissors. hammer. cloth. This is a two-agent system
with R = 0. C

Definition 4.2. ({({{-r)P,M.) The relational multi-agent product machine (with
relation R) (MA(R)). of n finite state machines M, = {\,.£,.4,}.1 <: < n.is a fi-
nite state machine denoted by (}|-g), M, = {\. .4}, where X' = X} x \px .. x .\,

= x% x ... xX, and

di(ry.72) (Ii1.01)
I o5} .
da(ra.02) (L1.04) L
| I og! ] . , € R and o,{r,.a). 1 <1< n.
ot e )= : :
' ' O2(Ln.Tn) (In.0n)
In Tn .
| undefined otherwise.

Example 4.2. Suppose all streets in an area are one-way one-lanes. The actions
an automobile may take at an intersection include: stop. go east-west bound and go
south-north bound. i.e. ¥ = {a.b. s}. This is shown in Figure 4.1. If two automobiles
(modelled bv M, = M, = M) meet at the same intersection. one of the automobiles
has to stop for one {(quantum} time unit. In this case. R = {([z\.1].[12.09]) |z, =
I3.01.00 € £.0,(z1.01) # 1. 83(La.09) # T2} a

A multi-agent system consisting of M. Mo, .... My, is said to be controllable. if

(ll-r)P_; M, is controllable. i.e.. for any states r.z' € X. X = X; x X3 x ... x X,
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FIGURE 4.1. A Finite State Machine M = {X. .4}

there exists u € (£, x £y x ... x ;)" such that §(r.u) = .

[t is straightforward to see that M, and ), are controllable if M [[*™)/ is
controllable. This is because. for anv z.r' € X|. y.y' € Xa. if there exists a se-
quence of input vectors u({z.y].[z".y']) = [ui(c.2'). ua(y.y')] € (£, x £5)° which
drives the two agent system from [z.y] to [y.y']. then. for M, and )M, respectively.
di(r.uy(r.r')) = ' and da(y. ua(y.y")} = y'. This is tormalised by the following
lemma.

Lemma 4.1. Let M,. 1 < ¢ < n be n finute state machines. If (I|*™)5_, M, is
controlluble. M, s controllable. 1 <1 < n. c

For a path p(r.y) € X7 between two states r € .\, and y € \,. define its length
!p(L.y)i as the number of state transitions on p(z.y). A circuit is defined to be a path
p{x.y) for which {p(z.y)| > 1 and z = y. The following theorem gives a necessary and
sufficient condition for a simultaneous product machine of two controllable finite state

machines to be controllable. In the proof of this theorem. a “pumping” technique is
used (see [31]).

Theorem 4.1. For two controllable finite state machines M, and M, |X| > 2
or |.Xa} 2 2. M||""™ M, is controllable if and only if there are circuits Cy and C, in
X1. X, respectwvely satisfying |Cy| — |Ca| = £1.
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C
X> Xa
X i X, Xy X

FIGURE 4.2. A circuit in M,

Proof:

Consider arbitrary initial and final state pairs [r.yl. [z'. '] € X'} x X3. Suppose
C, and C, are circuits in M, and M, respectively, and |Cy} - |Cat = =1. With-
out loss of generality. let |Cy| — |Ch] = 1. Denote C; = 7, ~ 1y — ... — I,_;.
IN =Inop. Iy In € Xp.and Gy =y, = Y2 = oo = Un. Y1 = Yn. Y2. o Yn=1 € X3.
Note that the states on these circuits are not necessarily distinct from one another.
For any r.r' € \X| and y.y' € \,. because of the controllability of M, and /..
there are paths p\(z.r') =1 = ..z} —» ry = z{ — ... = I’ (see Figure 4.2) and
By y)=y— .. =y, =y =y — .. =y Clearly. by repeating circuit C» on
Pa(y. y"). we may generate countably many distinct paths from y to y’. Choose a path
p2(y.y') such that [pa{y. ¥} = Ipi(r.2")] = & > 0. Hence there exists a path

!

plz.fY=r— .. =1 =-CC..C =z = .=
oo e’
k

from r to £’ in M;. and a path

Py y) =y — .. =2y 2 CCr.Cy >y = .. =y
k
from y to y' in Ma. Since |pi(z.2')| = |pi(z.2)| + (Ip2(y. ¥')| — |pu(z. Z)NCH].
sy ¥ ) = 1p2(y- ¥ + (Ip2(y. ¥')| = |p1(z. Z))Caf, and |Cy| — |Ca| = 1. it follows
that {pi(z.2')| = |ph(y.¥')|. Therefore, jointly, [p}(z.z"),p5(y.¥y')] is a vector path
from [z.y] to [z'. '] in M [|**™ ;. Because z.z’.y.y are arbitrary. M;{|*™ M, is con-
trollable.

63



4.4.2 SYNCHRONISED AGENTS

p(X1,X2)

X1
p(x2,X1)

FIGURE 4.3. Circuits in M/,

Conversely. suppose M;||*"™ M, is controllable. Without loss of generality, let
.\';' > 2. Because .M, is controllable. there exists a path z;, — . in M,. for which
I, # 2. By the controllability of M,{|**™\M,. there is a path in M, ||*™1/, from
Iy.y to iz oy for any y; € X,. Because r; # ). this path is longer than 1. Let
this path from jr3. y»! to [r1. y1] be {p1(za2. £1). pa(y1. y1)] whose corresponding pair of
paths in M. M, are pi(r2.11). and pa(y1.- ). Ipu(r2. £y)] = Ipayr. yi)| £ 1. Then.

Ci == = pi(r3.1,) and Ca = pa(y». y1) are two circuits in M, and ), respectively.
Obviously. |C| = Gyl = 1. o

Corollary 4.1. For two controllable finite state machines M, and M. f |.X5 >
2 and :n M, there are circuits with 2 and 3 transitions respectively. then M,i|*™ M,

ts controlluble.

Proof:

Suppose in M. there is a circuit C, = z; — | — z; from r; and back to 1,
with length of 2. and there is a circuit C, = z; — ), — 37 = z, from z, to z, with
ICy| = 3 {(Figure 4.3). Because ./, is controllable, there is a path p(z,.z,) from z,
to r2. and there is a path p(z:.z)) from z; to z;. Let k = |p(z,.12)| + |p(z2. 7))
Because M, is controllable and |M5| > 2. we can obtain circuits longer than & by
repeating cycles. Let C’ be such a circuit in M, and |C'] > k.
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If |C'| —k =2m - 1 for some integer m > 0. construct a circuit from 3 to z; in
M, as follows:

c" =p(z2.11) = Iy =, o1 - .. oI —ip(.rl.rg).

o~

2m

such that [C"] — |C"] = |p(z1. 22)| + 2m + |p(z2. 21)] = |C"} = 1.

If {C'l — k = 2m for some integer m > 0. construct a circuit from r; to r; in M,
as follows:

C" = p(r.12) = Iy = Iy = p(I2. L)) = I} = L. = I) = 1)
L S ~ — L

3 Am-1)

such that [C"' = |C") = {p(z,. 12)| + 2m + 1 + Ip(x2. 1))| = |C'] = L.

Therefore. by Theorem 4.1. M{|**™ M, is controllable. C

Note that since a self-loop at a state generates circuits with arbitrary lengths. we
obtain the following corollary as a direct application of Corollary 4.1.

Corollary 4.2. For two controllable finite state machines M, and M,. if there
s q state in My with a self-loop defined. then M, ||*™ )M, 15 controllable. c

\We mav now make the important observation that since M,{|**™ .\, may be taken
as a finite state machine M'. and since for any other finite state machine M" we may
repeat the argument above to inductively obtain the results concerning (||*™)7_, \/,
for anv n > 2. Set M! = )/, and define finite state machines M* = M*~1{[*™\/[,. for
2 <. < n. By the associativity of ||**™. a necessary and sufficient condition for the
controllability of (|[*™)7, M, is given by a test as to whether there are two circuits
in M*~! and M, with the length difference of 1. 2 < i < n.

Theorem 4.2. Let M,, 1 <1 < n (n > 2). be n controllable finite state ma-
chines. Then (||*™)_, M, s controllable if and only if for any M,, there is a circuit
C. such that there are, respectively. circuits C; in M,. 1 < j < n. j # i, and each
(Ci is co-prime wnth |C.
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Proof:
=

Suppose for any M,. 1 < i < n, there is a circuit C, such that there are circuits C; in
M;. 1 £j < n.j#i, such that each |C}| is co-prime with |C,|. For arbitrary circuits
C, and C. respectively, in M, and M;. 1 <1.j < n. i # j. respectively. by repeating
C, |C;] times in M, and repeating C; |C;| times in M,. we can obtain a circuit with
length |C}]|C)] in M,[[*™ M. As a result. in (]["™)5,(M,). 1 < & < n — 1. there are
circuits of length { [_[f=1 ICJ""I. where [ can be an arbitrary positive integer. Also, by
repeating the circuit Ci., m times, we can obtain a circuit with length m|Cx-,| in
M,-. where m can be an arbitrary positive integer.

By the running assumption. |Ci.| is co-prime with all le"[. 1 < < k. thus
Cik~1! is co-prime with 1"[f=l |Cf“|. Therefore. there are integers {,.(, such that
a!l('l-[;cz1 ;‘C;“li) — [3|Ce] = 1 ([24]). Recursively applyving Theorem 4.1. it follows
that (]**™)"_, )/, is controllable.

o—

Suppose ("™, is controllable. By the associativity of ||**™. for arbitrary &
< <n (P M= (™) )y, =) (1™ M. By Lemma 4.1 (197)] 2, M, i
controllable. Thus. according to Theorem 4.1. there are circuits C' and C, respectively
in (}"")_y =M, and A, such that [[CY] - |C:l| = 1. In other words. {C'| and |C}]
are co-prime. Clearly. since " is a circuit in ([|*™)7_, . M. there are circuits C; in

M, correspondent to C' with length [C,} = |C"|. 1 £ j £ n. ; # . Hence. |C} and
.C,lare co-prime. 1 < j < n.j#1 o

Theorem 4.2 is a necessary and sufficient condition for (||**™)1,.\/, to be control-
lable. For example. in case n = 3. assume there are circuits in M; with length 2
and 3. the length of the only circuits in M, are 3m, the length of the only circuit in
M; is 4n. m.n € N'™. Because there is a circuit in M, [|**™ M, with length 3, which
is co-prime with 4. the length of a circuit in Mz, M, |[*™M;|["™M; is controllable.
Suppose there were no circuit in M, with length co-prime with both 3 and 4. Since
the lengths of the circuits in Ma||**™ My are multiples of 12. the lengths of all circuits
in M, thus would not be co-prime with the length of any circuit in A ||"™M;. Hence.
no circuits C; in M, and C' in M, |}**™ M5 such that ||Cy] = [C'|| = 1. This contradicts
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Theorem 4.1. Therefore, there is a circuit in M, with length co-prime with both 3
and 4.

The following theorem states that the controllability of a multi-agent system with
R # @ is dependent on the state-to-state reachability of the state pairs given in R.

Theorem 4.3. For two controllable finite state machines M, and M,, M|~z
15 controllable if and only if the following two conditions hold:
i1) M 1P M, s controllable.
(2) For any {(ry.01).(Z2.02)]) € R. there are s, = aias...ar € £} and 55 = bby...b;
< &3 such that (& (1. a1aa...a,). 1) 02(Za. by ba.. b)) 021 )] € R. foralll <@ < k.

and such that :151(.{1.51).(5'_1(.1:3.5-_3)} = [(51(1?1.0’1).(53(.1'1.0-3)3.

h

Proof:
The “only if” direction follows immediately from the definitions.

For the "if " direction. suppose conditions 1 and 2 hold. For any vector states [z. y;
and r'.y". because M;}|*™1/, is controllable. there is a control u{[r.y].[z".y]) =

e ) ua(y Y € (S x To)° driving M {[*™ M, from [z.y] to {£'. y'}. Denote

r CiCH...C
tr.yl. ey = I
uliz-yl- 2yl [dldg...dn

Denote r, = 4;(r.c;¢a...¢,;) and y, = da{y.dida...d;). 1 <1 < n. where r, = z.y, = y.
In=I'.y.=y"

By Condition (2). if there are any z, and y,, 1 < i < n. such that [(2,. ¢i=1). (¥1: dis1)]
€ R. there exists [s}.s}]. such that for all v;.uw; € £l.a € T and v9. w2 € £5.b € X,

st = riawy. sh = vabwa and |vy] = [va).
Iis — (51 (‘rlf L'l),a) g R.
Yis1 (d2(yi. v2). b)

67
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Replacing all such [¢;+1, di+1} in u([z. y], [z’ ¥']) by [s}, s3], we obtain a control se-
quence u'{{z, y|. [z, y']) steering M;||*™ A, from [z.y] to {z’, y'] without going through
any configuration in R. That is to say, u'([z.y],[z’.y']) is a valid control from [z.y|
to [Z'.y'] in My|]-r Ma. Hence, M;||-r M2 is controllable. m

For two states z € X,y € X, and two sequences of actions s; = a;a»...a, € ¥i.
Sy = b]_bg...bn € SS if

(61(z.a1a2...qy). a;+1)
( .'J(y' blb'_’...bj). b]*-l)

for all 1 < < n. write [(z.5,). (y.52)] "R = 0.

g R.

We observe that for n finite state machines. M,. 1 < i < n.if (1) (J|*™)%, (M)
is controllable. and if (2) for any {(zy.a;).(Z2.@2). ....(Zn.an)] € R with d,(r,. a,)'.
1 < ¢ < n. there is a vector string [s). 59, ....8n] € &y x Cyx o x ol syl = 5o = ..
= '5q0. such that 8,(z,.s,) = d,(1,.a,) and {(z,.51). (L2.52). ... (L. 5,)] MR = 0 (that
is to say. there is a path in ({|<g)™ M, from [z,.Zs.....1,] to [8i{z). ). da(ry. @),

e On{Zn. an)}). (-r )iz, M, is controllable.

We shall apply the following theorem in Example 4.4.

Theorem 4.4. For two controllable finite state machines M, and M. M|l-r M
ts controllable if and only if the following three conditions are satisfied.

(1) For all{(r.0}).(y.01)] € R. there exists [s).52] € (E1 x Ta)* where 5, = ayaa...an

and s» = byba...b,. such that.
s r <o,
(y.52)

and such that é,(r.s,) = 4 (z.01);
(2) For all [(1.0}).(y.02)] € R, there enist y' € X, and [s,.52] € (E; x Ta)" where
5| = a1Qs...a, and §y = b1ba...b,, such that,

(z.51) NR =0.
(y'. 52)

and such that 8([z.y'). [5). s2]) = [01(z. 01). G2(y. 02)];
(3) There exists g € X such that for all y, € X, and y, € Xa, there ezists [s). 52] €
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(£, x ©9)° where s; = a1a5...a, and s, = b by...b,, such that

[ (z0. 51)

(y1.52) } nrR=0

and such that 0([zq. y1], [51. $a2]) = {Z0. ya]-

0

These conditions can be paraphrased as follows: (1) means M,||-zr.)/s can escape
from R-configurations with the M/, move reproduced with non-R-configuration moves:
(2) says all targets of R-configurations, [d,(z.d,).d2(y.02)]. can be reached from a
pair of initial states [r.y'] with a sequence of non-R-configuration moves: (3) means
that M/, can loop at rq while M/, moves from y, to y, with non-R-configuration moves.

Although all assumptions are made with ;. the active agent. the conclusion
holds. symmetrically. if all conditions for M, and M, are swapped.

Proof:

Suppose the above conditions (1}-(3) are true. We shall demonstrate that these
imply the conditions of Theorem 4.3 and hence that M, ||~z .M, is controllable.

Let ry £ X be the state in .\'| such that Condition (3) holds. Consider anv
forbidden configuration [(z.0,}. (y. ¢2)] € R: because M, is controllable. there exists
a finite sequence of actions s = a;a,...a, € ¥ such that d;{zr.s) = r,.

Seti=1.r1 =1y =y.s =¢and s, = e (we recall that ¢ is an empty string.
not a self-loop action). By Condition (1), there is {s}.s4] € (£, x £,)° such that
di(x.s}) = di(x:.a,) and [s. s}] steers the system from [z,.y,] to [01(z:, @), 0a(y:. s3)]
with {(z,.8}). (4. $3)]NR = 0.

Let 1 =1+ 1. s; = s;5} and s, = sj. Denote r, = é,(z.51), ¥; = da(y.s2). Re-

-")
cursively continue this procedure until 4,(z.s,) = z,. We obtain (s, 5] € (£} x £4)°
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[X,y [s1.5

(X0, 6(y.s 2]
[53,5 4]

[XO vYO] [S 5,8 6]

(3(x, a), 8(y,b)]

FIGURE 4.4. A path in M |{-rM> from [z.y] to [§,(z.0y). 02(y. 02)]

such that §({z. yi.{s1. s2]) = [£o.da(y. 52)] and [(£.51). (y.52)] "R =0.

Similarly. by Condition (2). working backwards from [§,(z.0}). da(y.o2)]. we can
find {s5.56; € (S; x £3)° such that &([zy. yol. [s5. 5s]) = [01(z.1). d2(y.02)] for some
yo € \s. and the path driven by [ss. 5] does not go through R.

By conditions (3). there is [s3.5,] € (E) x £1)* such that d({rq. da2(y. s2)]. [s3.84]) =
t.[u._n','oz and [(IQ.D‘_}). (Ls-g(y.b'g)‘S;]} NR = @

Therefore. 3([z. y]. [s515385. s25356]) = [01(1.01).d2(y.02)] (see Figure 4.4) and it
follows recursively that [(r.s,5355). (d2(y. s23456)] "R = 0. According to Theorem
1.3. M,il-z M, is controllable.

The “onlv if" direction follows immediately from the definitions.

8]

A finite state machine M is said to be controllable with respect to £’ C T if all
states of M/ are mutually accessible via transition events restricted to ¥'. Clearly, if
M;l|-r M> is controllable. and {(z.a),(y.b)] € R forsomer € X|.a € ¥,.y € X, and
b € T,. then M, and )M, must be controllable with respect to £, — {a} and £, ~ {b}.
If two finite state machines M, and M, are controllable, the following theorem gives
a sufficient condition for M;||-g.}> to be controllable.

Theorem 4.5. For two controllable finite state machines M, and M,, if there
erist E[ C Sl.Eg C Sg such that R g (.\’1 X El x ,\'g X Zg) U(.\’l X El x .X’g X Eg),
then M ||-rM> is controllable if the following conditions are satisfied:
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(1) There ezist circuits Cy,Ca in M, or M, with events in £, — E, end £, — E,
respectively, and |Cy| — |C,| = £1.

(2) M, is controllable with respect to £, — E;.

(3) My is controllable with respect to £, — E,.

Proof:

(L2 — E,) to demonstrate that M, |-z M, is controllable. and under hypotheses (1)-(3

[t is sufficient to prove that M, ||**™ M, is controllable with respect to (£, — E;) x
).
this follows from Corollary 4.1. '

Example 1.3. Two finite state machines M, and .\, are shown in Figure 4.5.

A list of the mutually exclusive events in M, and )/, are:
{1) events in {a,.b,.d,} and events in {bs.d,.e1}:
(2) ¢y and events in {as. ba.cy. da}:

(3) events in {e. fi} and events in {da.da}.

Thus. the interaction of M, and ./, is given by a forbidden set

R={ [{zi-a1).-(y2.82)]. {(zr @) (ya.d2)].  [(zi.@1)-(y1-€2)]
(L2 00) (yr.e2)] {(z2.01). (2. 82)].  [(22.61). (y3-da)].
(22.¢1) (Yar@2)]. [(z2.c)). (g2.02)].  [(£2.01). (y2. 2)].
(z2.01) (gs.da)]. [(z3.d1). (y1.€2)].  [(£3.d1). (2. ba)].
[(z3.d1). (y3.d2)]. [(z1.€1). (y2.02)].  [(z1.€1). (y3.da)].
(z3. fi). (g2, 02)]. [(z3. f1). (y3. da)]}

Set Ey = {c,.d,} and E; = {b2.d2,€2}. It is easy to verify that without E, and
E, respectively. M, and M, are both controllable. And without E|, there are circuits
Iy — ry; — 1; with length of 2, ; — 13 — 1, — z, with length of 3 in M|. By the
theorem above. M;||-g M is controllable.
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FIGURE 4.5. Two interacting agents

Let a finite state machine with cost be denoted by M = {\.T.4.d}. where

d: X x ¥ — R~ associates an event taken at a state with a non-negative cost. The

joint cost of a multi-agent svstem configuration may be represented by a function

of the component costs. i.e.. d{[(£;.a1)}. (L3.@2). ... (Tn.an)]) = fldi(L1.a,}.da(Ts. az).

.. dolIn.an)). f may take different forms in various contexts. The state to state

optimal control problem of multi-agent svstems of the M A(R} FSM tvpe can then
in principle be solved by applving dvnamic programming in the M/ 4(R) model.

Example 4.4. In Example 4.2. two automobiles at 5, and s, respectively are
going to t; and ¢t». Suppose in M. d(r.a) =d(z.b) =1.and d(z.s) =35 forall z € X.
Since a task is completed after an automobile arrives at its goal. the joint cost of
Mij—r M takes the form

d(I1.01)+d(Ig,Ug) ifl’[ #tl.lg F’tg
d([(x1.01). (£2.02)]) = { d(z).01) frzy#t.Ta=t.oa=5s .
d(zs.02) fry=tl.oi=s.IrFty
[f two automobiles meet at an intersection. one can continue while the other stops.
that is to say. the first condition of Theorem 4.4 holds. For any ((n;,01). (n:, 02)] € R.

12
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1 €1 <16, 0,.09 # 5. reset the second automobile to d»(n,. o) and let it take action
s while the first one takes o, at n;, the second condition of Theorem 4.4 is satisfied.
We know that the first automobile may stay at anv n; while the second one moves
from ne to n,. 1 < i.j.k < 16, hence the third condition of Theorem 4.4 is true.
Therefore. M||-zM is controllable. that is to say, for any [s,. 3. [t;. t2]. the optimal
control exists. For example. when [s;. sa] = [ns. ng|. [ti.¢a] = [ny;.n5]. one optimal
control is [ababba. aaabas] with the joint cost of 11. Q

Since a muiti-agent system has a much larger state space than its component fi-
nite state machines. it is extremely useful if one can obtain an [BC partition machine
of M A(R) based on partition machines of individual M,’s . This could be followed
by successive aggregation cycles. Assume this significant step can be carried out for
a system M A(R). we have the following application of the HADP to multi-agent
svstems.

HADP for MA(R) Systems

(1) Compute the MAPIR ) (I|.z)%, M, of n interacting finite state machines M,. 1 <
< n.

2} Successively create a hierarchy of [BC partition machines with base machine
(-r )=y M

(3} Apply HADP to the hierarchy. c

In the following corollary. Condition (2) implies the conditions (1) and (2) of
Theorem 4.4.

Corollary 4.3. Let X'| € =} and X, € 7, be [BC and the conditions (1) and (2)
hold:
(1) Foranyr € X|. y € X5, a € £1.b € &y such that 0,(z.a) € X|. d1(y.b) € X3
and {(r.a).(y.b)] € R. there erists ' € T, such that d2(y. V') € Xy and [(z.a). (y.b')]
€R.
(2) There erists 19 € X|. ¢ € £; such that §,(zg.c) = 1g and for ally € X5, be &,
such that 8,(z.b) € Xs. [(zg.¢). (y.b)] € R. Then X, x X, 15 IBC.

If X! € 7 and X7 € m, let R(X}, X?) be the set of forbidden configurations
restricted to X} x .\J ie. R(XL.X}) = {{(z.0).(y.0)] € Rl[z.y] € X! x X?}.
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Define £ = {a € %;|d(z.a)! for some z € X}} fori =1,2,1 < j < |m|. According
to Theorem 4.35. we obtain the corollary below.

Corollary 4.4. If X! € 7 and X} € =, are IBC. and there erist E! C T}
and E} € T3 such that for allz € X!,y € X7 , a € T!.b € T}, the configuration
[(z.a).(y.b) ] € R(X}, X?). and the following conditions hold.

(1) There ezist circuits C(X}). C(X7) in X, and X, with events in £} — E}, £~ E?
respectively, and |C(X})] =|C(\7})] = =1

(2) X! is IBC with respect to ! — E}.

(3) X7 is IBC with respect to £ — E?.

Then X! x X7 is an IBC block of M,||-rMa. a

If X! x X7 is IBC. for all X! x X? € | x 7. the dynamics of an IBC partition
machine of M, {|.zr M, based on 7| x 7, are given by the DC relations between elements
of =y x 5. [f there exists z € O(.X}).a € T!. such that §,(z.a) € [{\}). and there ex-
ists [y. bl € X7 x T3 da(y.0) € X7 [(x.a). (_/ b)] € R. then (X!, X1 [X;. \7]) is DC.

I

4.3. Events with Different Live Times

Up to this point. all events have been assumed to have the same live time. that
is to sav. all transitions are assumed to take the same quantum time unit (taken to
be 1 for convenience) to complete. We now consider svstems in which distinct events
may have different live times. In a timed finite state machine M = {X..4.¢t}. an
event ¢ € ¥ is associated with a time measurement t(g} > 0 that indicates the live
time of an event. Although in practice. events may occur at any real-valued time.
in this setting. a discrete-time clock is used. Hence. we assume that all events have
durations ¢(o). which are integral multiples of the basic quantum time interval which
is again taken to be 1.

In many cases, minimal time control problems for multi-agent svstems are of in-
terest. This is the problem of seeking a controlled path between two vector states
that takes the minimal time to finish. In this section. a simplified clock structure. a
time counter. is proposed to record the difference of live times of two events taken by
two agents. With the help of such a time counter, a minimal time control problem for

4
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multi-agent svstems may be transfered into a point to point shortest path problem
and thus solved with HADP.

For a system consisting of n agents modelled by finite state machines A/, 1 <
¢ < n. a time counter observes the progress of the running events in each of \/;. Since
distinct events may have different live times. when the systems M, take events in par-
allel. the state transitions in n agents mayv not complete at the same time instant. The
function of a time counter is to record the residual live times of the events being ex-
ecuted at M,. 1 £ ) < n. j # i. at the moment an state transition in \/, is completed.

A time counter for two timed finite state machines M, = {\|.Z,.4,.¢} and
My = {X,.Za.00. 2} is 2 third finite state machine C(M,. My) = {D,.Z,.4,.t}. The
set of counter states. D, = {[(£; x {0.1.2...To}Hu (5 x {0.1.2. .Th })] x {1.2}}
S{RESET}. where Ty = max{t|(a) — t2(b).0}. To = max{ta(b) — t,(a).0} for all
a € X.be X, and RESET is a distinguished state representing the reset of the
counter to zero. A state other than RESET is a triple consisting of an event and
two integers. which give information about the residual live time for a running event
that is being executed by an agent. The set of vector events is &, = [(Z,U{-}) x 4]
ST x (E3 U {- DI where the symbol — means that an agent is in the process of exe-
cuting an incomplete event. The counter state transition function is defined as follows:

) (@.ti(a) — talb). 1), if ty(a) — ta(b) > O
S (RESET. b :l) =4¢ RESET. if t{(a) —ta(b) =0
(b.ta(b) — ti(a). 2). if t,(a) — ta2(6) <0

if [a.0] € £y x &,

and.
(a,tl(a) —T,l), ift[(a) -7>0
d«anm{“])= RESET. ifti(a) =7 =0 .
B (b.7 — ti(a).2). ifty(a)=7<0

de((a.

:

.1).[;]>

(a.7 = ta2(b). 1).

RESET,
(67 t'l(b) =T 2)’

if 7 — t2(b) > 0
if 7 — ta(b) = 0
ifT—tg(b) <0

)

w
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Otherwise, 4, is undefined. The time measurement ¢ : D, x £, & A'* is defined by:

) = min(ti(a). ta(b)).

{RESET, [ ‘;

t((a.7. 1), ) = min(7, t2(b)).

and

t((b. T.2). ) = min(¢t,(a). 7).

Consider two agents M, and M, interacting with one another with the forbidden
relation denoted by R C £; x T,. [a.b] € R means two events a € &y and b € &, are
forbidden to happen at the same time. This is a simplified version of the forbidden

configurations introduced earlier.

Definition 4.3. (M (}|“x)M,) For two finite state machines M, and M. their
timed multi-agent product machine M(||“z) My = {X| x X3 x D;. &, - R.d.t}. has
the state transition function defined as follows:

01(.1.'.(1)
I
sl {Z]“ 32(y.b) a
RESET 0, (RESET. )
if [a.b] € R. a# —.b# —.d(z.a)! and d,(y.b)!,
I
I

- da(y. b
(| [Z])= sy

(c.7.1) de(s. 1: b ])
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if a = —, d2(y, b)! and [c, b} € R,

(51 (I. a)

I
a
o y ‘[b})= y a-x
(d.7.2) 6c(s{b J)

if b= —.4(r.a)! and [a.d] & R.

a

The time counter records the residual live times of the events running in all of
the agents. In M (l|%r)M.. a state transition takes place whenever a state transition
of one of the agents is completed.

The control problem for two interacting timed agents M. M,. is to find a se-
quences of (vector) events that steers the multi-agent svstem from the start (vector)
state {r.y! to the target state {z’. '] such that the system enters [z’. y/] at the same
time point. i.e.. find a path from [r.y. RESET] to [£'.y. RESET] in M{|| %) \a.
The minimal time control problems for interacting timed agents can be solved with
DP in their timed multi-agent product.

Example 4.5. In M, and M, (Figure 4.6). t(a,) = t(b;) = t(b3) = | and t(a,) =
tby) = 2. R =0. M||“5 M, is shown in Figure 4.7. )

Definition 4.4. A timed multi-agent system .\ }|%.z .}, is said to be controllable
if for any states s = [r.y. RESET] and t = [z'.y'. RESET). there are a sequence of
vector events that steer the svstem from s to ¢. g

Let 4 C A\~ be a set of positive integers. denote the greatest common divisor of
elements in 4 by ged(4).

Theorem 4.6. If R = @ and there are circuits C,.Cs in M, and M, such that
tHCy) — t(Cr) = ged({|t(a) — t(b)l|la € T,.b € Ta}), then M\(||* ) Ma is controllable.
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X
al| a»
X2
M,
[ba.1. 2] (as. 1, 1]
RESET
C(M, M>)

FIGURE 4.6. Two interacting timed agents

RESET

X
J [b:,1,2]
O 0

FIGURE 4.7. TMAP(M;. M)
Proof:

Similar to that of Theorem 4.1. a



3.5.1 INTRODUCTION

CHAPTER 5

Hierarchical Network Routing

5.1. Introduction

The solution of routing problems for cost-sensitive telecommunication and trans-
portation networks has become critical for the provision of economic high quality
service (761, 163.. 139]). Because (1) the network structure varies when traffic load
changes. and (2) multiple users compete for the limited resources (transmission chan-
nels. buffers. etc.). the network routing problem has much higher complexity than the
conventional single agent optimal trajectory problem addressed in Chapter 3. For a
single task. the routing objective is to find a path from its origin s to its destination
t with the minimal cost among all admissible paths. The muitiple user nature of the
networks under consideration suggests that traffic congestion mayv well occur when
the number of Hows carried on a link is close to its capacity: evidently this may lead
to poor service quality and thus induce higher overall cost.

In networks with heavy traffic. the available size of buffers and the capacity of
links constantly vary over the time ([35]. (36]). In order to provide good service qual-
ity as well as complete tasks. the dynamical routing needs to be flexible. adaptive and
functional in real-time ([67]. [48]). To this end, hierarchical controllers based on the
network status are proposed to solve dynamical routing problems. In this chapter. a
generalisation of the HADP algorithm is proposed to cope with the problem of multi-
agent time-varving networks. The key notions introduced here are (1) dvnamical high
level cost pattern. and (2) the state-dependent dynamical routing methods.
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A (buffered) network is modelled by a directed graph, G = {.\V,.E.é.d, B,C},
where .V is a set of nodes, E is a set of edges, d : N x E — N represents the con-
nectivity relations (if e, € E is an edge from n, € N to nx € N. §(n;.e,) = ng).
d: E = R~ is a cost function mapping each edge to a positive real . B: N = N7
is a function mapping each node to a positive integer. C : £ — N~ is a function
mapping an edge to a positive integer.

The cost function d may have different interpretations in various contexts. B can
be used to represents the maximal size of the buffer at a given node. and C may
represent the maximal capacity of transmission of a given edge. i.e.. the maximal
number of individual flows that can be handled by the edge at one time.

A request r(s.t). s.t € V. s # t.is an ordered pair of nodes for which s represents
an origin and ¢ represents a destination. An (acvclic) route assignment for rs.t) is a
mapping R : (= r(s.t)) = {E~U@}. where ~ is the network state at time instant :
and if R(~.r(s.t)) = ejer...en € E”. thene, # €, when 1 # ). and d(s.e1e2...65) = t.
A routing controller maps an element of V x N to E~ U {0}. i.e.. when a request
ris.t) arises at time k. the controller either assigns a route R(~.(s.t)) € E~ or
rejects the request according to the current state of the network. which is modelled
by R{~c.r(s.t)) =0.

In this chapter. networks are conceptually partitioned into two classes: the link
network svstems. denoted LNs. in which the capacity of nodes is assumed to be infin-
itv: and the buffered network syvstems. denoted BNs. in which the capacity of links is
assumed to be infinity. Actually. LN and BN can be viewed as duals. or two elements
which can be combined later.

5.2. Incremental HADP

5.2.1. Dynamics of Network Topology as a Function of Traffic Loading.
Consider a network G = {.NV, E,d.d, B.C} in the class LN, in which the capacity
of all nodes is assumed to be infinite. and hence the loading of traffic that can be
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handled by the network is constrained by the capacities of links.

Assume that the requests can enter the network at any time instant but only one
request arises at a time. Also assume that the request is assigned a route or rejected
instaneously. Because the network routing controller under consideration is event
{request) driven, only the ordering of requests is relevant. By mapping the ordering
of the occurrences of the requests to positive integers, the time instant at which a
request arrives can be relabelled by an integer. Hence. we refer to an integer & as the
time that a request arises. instead of the value registered by a clock.

For a request r(s.t). if there are admissible paths (the current loading of any link
on an admissible path is strictly less than its capacity) from s to the ¢. then one of
these paths is assigned to this request: otherwise. the loading of this request on any
path from the origin to the destination will lead to overflow. and thus the request is
rejected.

For a route assignment R(s.t). one unit of capacity of all links of R(s. ) is reserved
for the exclusive use of r(s.t). In other words. if the request r(s.t) is assigned a route
R(s.t) at time instant A (k > 0). then for every link e of R(s.t). the available
transmission capacity at time instant & of e is Ci(e) = Cr-1(e) — 1. After a task is
completed on R(s.t). one unit of the capacity of all links of R(s.t) is released for the

use of other requests. Hence. the capacity of a link is recursively given by.

Ci(e) = Ci_y(e) — Awle) + Li_1(e).

where A;(e) is the number of routes containing link e which are assigned at time &
{Ax(€) is 0 or 1, since only one request is processed at any given k), and L(e) is the
number of tasks which have been completed on link e at time k.
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A local dynamical weighting corresponding to local traffic load may be used at
a node to give higher preference to the link with relatively light traffic. and thus to
avoid traffic congestion. One scheme we isolate is to set the load cost at a link e € E
as
Cole)
di(e) = Wd(e)-
If Ce(e) = Cole). de(e) = d(e). When Ci(e) = 0. i.e., di(e) = . the link has no
spare transmission capacity. In this case, an alternative of this link will be chosen
if it exists. In the computation of an additive minimum cost trajectory, a node in
an optimal path may of course be such that a link is chosen which does not have
minimum cost at that node because it contributes to a globally optimal trajectory. A
frequently used form of the traffic-dependent transmission costs in the probabilistic
setting is
E[Cy(e). T)
Cole) — Cale). T]
where E{Cq(e) — Ci(e).T] is the Erlang-B formula for T Erlangs offered to Cy(e) —
Cile) channels ([48]).

di(e) = E

[n a dvnamical network. the capacity information of the links is updated at each
instant & immediately. when a route is assigned for a request or a task is step-wise
(partially) completed. The dyvnamical weights are also updated. e shall denote
the topology of a network .V at time instant & by G, = {.\V. Ei.d.Ci.di}. where
Ei 2 {e € E|Cile) > 0}.

5.2.2. Throughput-Independent ST-IBC Partition Machines. For an
ordered pair of distinct nodes {r,y) € V x .V, let a subset E.{r,y) C E be such that
there does not exist u € (E — E.(z,y))" such that é(z.u) = y. E.(z.y) is called a cut
with respect to (z.y) ([23]). In other words. a cut with respect to (z.y) is a subset
of edges that separate r from y. Denote the collection of all cuts for (z.y) € .V x .V,
I #y. by cut(z.y).

For two subsets of nodes, X,Y € 2V, E.(X,Y) is a subset of edges such that
for all £ € X and for all y € ¥, £ # y. there does not exist u € (E - E.(z.y))"
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.d(z.u) = y. Denote the collection of all such E.(X.Y) by cut(X,Y), X, € 2V,

Define the minimal cut of E X and y € X with respect to a subset of nodes
X C N as follows, mincuty (r.y) = mm{zee\x\ ecEnzy) ClE)Ec(z.y) € cut(r. y)}.
For two subsets X.Y C Z C N, mincutz(X.}Y) 2 min {3 eczxzece(xyy Cle)l
E.(X.Y) € cut(X.Y)}. It is a basic result in graph theory that the maximal flow
from z to y with respect to .\ is equal to mincutx(z.y) ([23}). and this also holds
for any subsets X\.} C Z.

For a sequence of links p = e es...e, € E*. define the path-wise capacity PC(p) =
min{C(e,)|l <: < n}.

Suppose in a network G. there are two subsets of nodes S C NV and T C V.
siuch that for all request r(s.t). s € Sand t € T. Let = be a partition of .V, the set
of nodes of a network G. Recall the definitions of in-sets and out-sets ([15]). The
property of throughput-independent ST-IBC for partition blocks as follows:

Definition 5.1. ((TI-ST-IBC) A block X, € = is throughput-independent ST-
[BC (TI-ST-IBC) if
(L) vr € I(X,). 3y € O(X,) such that there is u € E*. d(zr.u) = y and Yv < u.

Mr.oo)e Xg
(2)7r.y € O(N,). £ # y. ux,(z.y) = {u € E*® such that d(r.u) = y and Vv < u.
Jir.t ) SAWE Y

(3)¥r.y € O(\,). there is v € uy (z.y) such that PC(v) > muncuty, (I(X,). O(.X,)).
O

The first two conditions in Definition 5.1 are those for a block to be ST-IBC ([15]):
the third condition ensures the ST-IBC property of a block to be preserved. regard-
less of the varving traffic load in the sense that there exists a path from z € O(X))
to y € O(X,) whose capacity exceeds the maxirna.l flow from I(.X;) to O(X;). This
property also implies that /(.X,) N O(X,) = 0.
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Definition 5.2. ([(X,)) For X, € =, the in-set of X; at time instant k, I(X,)
is a subset of I(.\;) such that for all z € [(X,).
(1) 2 y € X,. e € E; such that §(y.e) = z and.
()2 :€O0(X,)suchthat Sue E;. d(z.u) =zand Vv < u. d(z.v) € X,. a

With the loading of traffic to .\, some nodes in /{.\,) may not be accessible to
any outset node with respect to .X,. These nodes do not appear in [,(.\\,). Define
LilX)) = {r € (X)) 3y € X, 3e € Ec.d(y.€) = r}. As stated earlier. any route
assignment is acyclic. i.e.. for all e € E. e appears no more than once in R(s.t).

Lemma 5.1. If X, 1s TI-ST-IBC and [(X,) # 0. then for all £ € [(\,) and
forall = € O(X,). there1sp € EL. such that §(x.p) = = and for allqg < p. §(r.q) € X,.

Proof:

Suppose .\, is TI-ST-IBC. By the definition of [;(.X,). for an arbitrary r € [ (.\,).
there is y € O(\,). and u € E}. such that 4(r.u) = z and for all v < u. d(z.v) € X,.

Let = = y be an arbitrary node in O(.X,). According to Definition 3.1. there
is w € E*°. such that d(y.w) = =z and for all r < w. diy.w) € X, and PC(uw) >
muncuty ([1X,). O(X))).

A path from any s € Stoany ¢t € T including a link more than twice must involve
a circuit. and thus can clearly be replaced by another acyclic route assignment. That
is to sav. for anv s.t € V. if there is a path from s to t. then there exists an acyclic
R(s.t) € E*. So. for any link e € E. e is on R(s.t) at most once.

By assumption. for all requests r(s.t), s € S. t € T, and it is always the case
that R(s.t) goes through X; from I(X;) to O(X,). Because u € E}. such that
d(z.u) = z. at time instant k. there are strictly less than mincut x ([(X;).0(X;)) -1
route assignments going through X; from I(X,) to O(X;). Hence, for any edge € in
X, x X,. at time k. e carries at most mincuty, (/(.X;),O(X,)) — 1 individual flows.
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Therefore. for any edge a in w, a € E. That is to say p = uw € E}. 6(z.p) = : and
for all g < p. 8(z.q) € X.. a

A partition of V. 7. is said to be an throughput-independent ST-IBC partition
if all its blocks are throughput-independent ST-IBC. Let a throughput-independent
ST-IBC partition machine of G be denoted by G" = {x. E* §"}, where E* = {L7|
(X,.X,) is ST-DC (see Chapter 2). 1 <1.j < |x{}. and 8*(X,.LU7) = X,.

5.2.3. Incremental HADP. Denote a two level hierarchy consisting of G*
and G by {G.G"}. In this section we present an extension of HADP to {G.G"}
which treats the multi-agent case under consideration.

Define dy,x, x(r.y) = min{d(u)lu € E{ s.t. d(r.u) = yand ¥ v < w.d(r.v) €
X.}. The high level cost function D_ ™ is defined below.

Definition 5.3. (D, ~(\.. )
D T(XN.. X)) = max, miny{ dy,x,x(2.9) 2 € LX)y € La(N))}

1

Define E = {L71D7 T(XN. X)) < x}. Gh = (= EF.6" D] "} ke N~

To apply HADP. we first set up a hierarchy consisting of a low level network G
and its TI-ST-IBC partition machine G*. Then an initial route assignment is made
by HADP(D~ ~) based on {G.G"} (see Chapter 3).

Subsequently. at every time instant a request is received by the network. an ob-
servation is made on the traffic loading (links reserved and released) and the link
capacities of the entire system are updated. For a request r(s,t), arriving at time k.
the high level costs {D; "} are recalculated (similar to the treatment in Chapter 3).
This latter step is formalised in the algorithm below which hence generalises G}.
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Algorithm 1 of Incremental HADP (IHADP) for r(s,t) at k>0

(1) For each e € E, set Ci(e) = Ci_1(€) + Lx—1(e). where Li(e) is the number of
tasks which have been completed on link e at time k.

(2) Calculate di(e) = (Co(e)/Cr(e))d(e) for each e € E.

(3) Calculate I;(X,) for all X; € 7.

(4) Calculate D;/'(.\’,.X_,) for all DC pairs (X,. .X}). 1 <i.j < |=l. C

For request r(s.t). let .X* and .X* be the blocks containing s and ¢ respectively.
[f X = X" seek an optimal path from s to t with respect to .X'*. Otherwise. we first
seek a high level optimal solution with respect to D:”_ from X to X* in G!. Then.
a low level solution is sought by the process described in the algorithm formulated
below.

Algorithm 2 of Incremental HADP (IHADP) for r(s.t) at k >0

(1) If X" = \"*. seek an optimal path from s to ¢t with respect to .X'*. stop: else. set
LX70) = (s} L(XY) = {t}.

{(2) Calculate D;"'(.\',..\']) for all DC pairs (\'*. .X}) and (X,. \"}. 1 <0 ) < izl
(3) Set £7 = {{7ID;"7(X.. X)) < x<}.

(4) Seek an optimal path from X'* to X in G. Denote this path by }] — 5 — .. —
¥,.. If no path from X'* to \'* exists. stop.

(3) Let r; = s and r, = ¢t.

(6) Start from ¢ = L. if i < n — 1. seek v, € E} such that d(z,.u,) € [,(},—;) and
diu) = minge/vio Dyivi, k (L y). Set ooy =4d(r,.u,). Set i =1+ 1.

(Y If ¢t = n -~ 1. seek u, € E} such that §(z,.u,) = . vjta...upy is a low level
solution for r(s.t).

{8) Set Ci(e) = Cx-1{e) — 1 for all e € E on the resulting low level path. c

Algorithm IHADP consists of algorithms 1 and 2 at every time instant k£ > 1.

Compared with the single task HADP, the extra computational time of the time-
varving HADP lies in steps 1 and 2 in the above algorithm. Clearly, these two steps
may be carried out locally for each DC block pairs and at each time instant &£ > 1..
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If these steps can be performed in parallel, a greater speedup of HADP is expected.

The following basic theorem guarantees that if no high level solution exists in
step 4. no low level solution exists in G, for r(s,¢).

Theorem 5.1. Let = be a TI-ST-IBC partition of N and X* # X, then for any
s € I(X¥) and t € I(X"). there is u € E} such that d(s.u) =t if and only if there is
U € (EM)® such that $*(X*.0) = X*.

Proof:

Suppose there is a high level path from .\'* to .\'* with finite cost at time instant
k. Denote this path by ¥} — Y5 — .. = },. ¥} = \®and }, = X' (Y. .Y..))
is ST-DC and D "(}..}iy) < <. 1 <1 < n. That is to say. in any },. for all
r € [ (Y)). there is 1 € [,x(Y,<1). such that dyy,_ .(z.2') < D;”'(Y,. Yio1) < x (by
Definition 3.3). [, x(Yi=1) # 0.

For anv node = € [, x(Y.-1). by Definition 3.2. there is y € O(};) and e € E;
(dile) < xi such that §(y.e) = =. By Lemma 3.1. since }; is TI-ST-IBC. for all
r € [iY,).y € OL\,). thereis u € E} such that §(r. u) = y. and moreover J(r. ue) = =
(see Figure 5.1). Because dy: (z.y) < d(u) < 2. dy;y_, x(L.2) < d(ue) < x for ar-
bitrary r € [(},) and = € [ ,(Yi.1).

Let r; = s and r, = t. Starting from }}. when i < n — 1. seek u, € E} such that
d(r.u,) € L(Yioy) and d(u) = minges,yvi) dyivie, k(L y). set 2,0y = 0(Z;. u,). When
t = n — 1. seek u, € E; such that é(z,.u,) = z,. It is clear that vjus...u,—; is a low
level path from s to ¢t and that d(u,us...un-1) = Z::Il di(u,) < 2.

Conversely. suppose at time k. there is a low level path p(s.t) from s to ¢t with
finite cost. Denote the blocks containing this low level path by Y, Y5, .... Y, in order,
11 = X% and ¥, = X% Clearly. () # 0 and there are z, € O(Y}), yis1 € Li(Yis1)
and e, € E*. 1 < i < n, such that §(z,.€;) = y;»;. Because 7 is TI-ST-IBC. it is
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FIGURE 5.1. dy,v, (1. 2) is finite

straightforward to see that any (X, X}) is ST-DC if there is a low level path directly
from X, to X,. Thus. (},.};.) isST-DC.1<i<n-1.

Forany r € [(};). by Lemma 3.1. thereis u € E such that d(r. v} = r, € O(})).
and moreover &(r.ue,) = y,.1 € [,(Y:~1). Thus, by definition. D~ 7(}..}Y,.) < x.
Therefore. the cost of " = L7L73...07_, is finite and ¢*(X*.0) = X' C

—

[t is worth remarking that if there is high level solution for X* and \* in G}
when X'* # X' or there is no solution for s and t with respect to \'* when \'* = \'*,
ris.t} is rejected at time instant &. This corresponds to the case that an overload is
taking place in the network.

5.3. Multiple Objective Network Routing

5.3.1. Network States of the Link Network Systems. Consider a net-
work G = {.\V. E.4§.d.C} in the class of LN. Suppose n requests with origin-destination
pairs. r(s,.t,). 1 < i < n, arrive at G simultaneously. Assume that for each .
1 <i < n.thereis R(s,.t,) € E* satisfying

(s, Ris,, t;)) = t..
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FIGURE 5.2. A simple network

and satisfving.
n

(3.5.1) Y 3(e,. Ris..t)) < Cley).
=1
1<j<IEL
where J(e,.r(s,.t,)) is a unit cost set-membership (or characteristic) function for an
edge e, and a path R(s,.t,)) defined by.

Je,. R(s,.t;))) =
(e;- Ris. t.)) 0 otherwise

{ 1 if e, is on R{s,.t,)

Then we say that a vaelid routing {R(s,.t,). 1 <1 < n} for these n requests {r(s,.t,).1 <
1 < n} ensts.

When a valid routing exists for a set of requests {r(s,.¢t,).1 <1 < n}. the optimal
control objective is to minimise the overall cost

id[R(s,.t,\).
=1

For convenience. from now on. only the case n = 2 will be discussed. but all con-
clusions hereafter can be extended to n > 2 with a little modification of the argument
in each case.

Example 5.1. A network is shown in Figure 5.2. All links have a unit capacity.
The costs d(a) = d(e) = 3. d(b) = d(c) = d(d) = 1. Two requests are r(n;,ny) and
r(n,.ny). The optimal route for both requests is R%(n;.ny) = bed. But if this route
is assigned to any of the requests. the other is blocked. |
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The notion of (vector) network state can be used to represent the state of a
network. A vector network state ¥ = [c(ey), c(ea),....c(eg)]- 0 < c(e,) < Cle).
1 <1 < {E| is a vector with each element denoting the available capacity of an edge.

The dynamics of a routing process may be expressed as a finite state machine
RP = {T.EU{e}.£€}. where[ = {0.1.....C(e;)} x{0.1.....C(ea)} x... x{0.1.....Cleig;) }
is the set of all network states. ¢ is a distinguished event corresponding to no transition
taking place. With this notation. the state transition function

{ -

I cler) ] o
, c(ea)
c(ea)
if c(e,) > 1
q =1 |eeg-1 | T3
cle,)
ce.g:) cee)
L clee) ] | undefined. if cle;) =0

if e, # €. otherwise. {(ns.€) = ns.

A routing controller for a network G is a finite state machine RC(G) = { N x.V'xT[,
(E _ {e}!' x (E {e}). p.d'}. where

d(r.e;)
- €1 (5(_!/82) . 6(.1.'.61)!&(5(_{/.63)!&6('-.8182)!
ool oy ) = o )
| oLe {(ns.ee)
undefined. otherwise
and the cost function d'({r. y. ~i. €. e2]) = d(r.€;)=d(y.e2) whenever p([z.y.~]. [e;. es])!

(d(r.¢€) 20forallze N

If Trj(si.up). Trj(sa. ua)]. cuy.ua € (E U {€})", is a (vector) path from [s. s,.
[C(ey).Clea)..... Cleg)]] to [ti.t2.~] in RC(G). where v € I may be any net-
work state. then d(s;.u;) = t; and §(s2,u2) = t.. Because p gives all admissible
routing processes. u; and u, satisfv the capacity constraints (5.3.1). The optimal
routing problem is thus converted to a problem of seeking a shortest path from
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(LLLLLn,n,]

(0.0.1,0.0.n ,n,]

FIGURE 5.3. A routing controller for Example 5.1

s1.92.[Cle)). Clea).....Cle:g)]] to a set of states {[t;.¢,.~]lns € ['} in RC(G).

A part of RC(G) for the network G in Example 5.1 is shown tn Figure 5.3. We
note that all legal non-blocking routings of the network are represented by RC(G).
An optimal control for [ny. n;] and [ny. ny] is [ad. be] with the overall cost of 8.

5.3.2. Throughput IBC Partition Machines.  Since RC(G) has a huge
state space if V| and |E| of G are large. we are interested in studying the application
of hierarchical control (specifically. HADP}) for finding the optimal routing for large
G. in order to reduce the computational complexity of DP procedure.

Assume that the origins of all requests are in S C .V. a subset of nodes in G. and
the destinations of all requests are in T C .V. We may directly partition N x ¥ x T
into ST-IBC partitions to obtain a high level model for RC(G) for which HADP is ap-
plicable. Alternatively. hierarchical routing can be achieved by partitioning .V. which
is much smaller than .V x N x I (into some structures to be discussed) to form a high
level network model G*. Then we may construct a routing machine RC*(G") for this
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high level network. RC"(G") and RC(G) form a hierarchy {RC(G), RC*(G")} to
apply HADP. Let = be an arbitrary partition of V. We now present a formulation of
1 - ST - DC and 27 — ST — DC relations over partition blocks.

Definition 5.4. (1-ST-DC) An ordered pair of blocks .X, € = and X, € 7 are
1-ST-DC if:
(1) Yr € I{X,). there is y € [,(.X,) such that there is u € £*. 4(z.u) = y and for all
v<u d(r.e) € Xy
(2) mincuty, x, (1(X)). [(X})) = 1. a

Clearly. if (X,. X)) is 1-ST-DC. (\\. X)) is ST-DC. Furthermore. (\,. X)) is I-
ST-DC implies that then only one flow entering .\, at any node in I(.X,) can go
through .\, to .\, without causing an overflow.

If n requests r(s,.t,). t < i < n. are under consideration. for any link e € E such
that C(e) > n. an acvclic route assignment {R(s,.t,).1 <t < n} will not lead to an
overflow on ¢. Only the links with capacity strictly less than the number of requests
are critical to avoiding overflow. Therefore. in case onlv 2 requests are under con-
sideration at the same time. the links with capacity greater than 2 can be viewed as
being in the same class. and we shall use 2~ to represent capacities which are greater
than or equal to 2.

Definition 5.5. (27-ST-DC) An ordered pair of blocks .\', € 7 and .\, € 7 are
2-.ST-DCif:
(1) ¥z € I(.X,). there is y € [,(.X,) such that there is u € E*. d(r.u) = y and for all
r<udr.r)Ee N
(2) Vlzr.yl € (X)) x I(X,). there is [z'.y'] € L(X,) x [,(.X}). such that there is
ui.uy) € E* x E*. 0(z.uy) = 2.0(y.ua) = . for all vy < uy.v7 < w2 8(z.1y) €
X,.d(y.vs) € X,.and for alle € E, 3(e, uy) + 3(e.uy) < Cle)- cC

The first clause in the above definition states the standard condition for a pair of
blocks to be ST-DC. The second clause indicates that if (X, .X;) is 27-ST-DC. then
two individual flows entering X; at any two nodes in I(X;} can go through .X; to X
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FIGURE 5.4. X is not 27 -throughput IBC

without causing an overflow.

Definition 5.6. (1-throughput IBC) A block X, € 7 is I-throughput [BC if:
(1) vr € [{X,) and Vy € O(X,). there is u € E* such that d(r.u) = y and for all
< udirory € o
(2} mincuty (I(X,).0(X,)) = L. c

[n a l-throughput IBC block .\, € =. the elements in O(X),) are not required to
be mutually accessible because only one flow from I(.\X\,) to O(.\,) is possible.

Definition 5.7. (2~-throughput IBC) A block .\, € 7 is 27 -throughput IBC
if:
(1) ¥r e It\,) ¢
v< o) € X
(N9t e (LX) = 1(X,). and Y[z, ']T € O(X,) xO(X,). thereis [u;. us|T € E*xE*
such that o(r.ul) = I 0(y.u2) =y Yu] < uyp.uy < up 8(z.u)).0(y. uy) € X, and
forall e € E. J(e.u} + 3(e. us) < C(e). a

and Yy € O(.X,). there is u € E* such that d(r.u) = y and for all

Ew(ample 5.2. IfI/(X))| = 1.i.e.. I(\X,) is asingleton. the condition mincut(z, y)

2. for all £ € I(X,).y € O(X,), implies that X, is 27 -throughput IBC. But when

.\, has more than one in-set node, this is not a sufficient condition for .X; to be
27 -throughput IBC. In Figure 5.4. the capacities of links are as labelled. Although
mincut(z,.y,) = 2 for all ¢,; = 1.2, no admissible control with respect to .X, can
drive the system from [z,. z,] to {y1, yo]- il
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X0

FIGURE 5.5. An l-throughput IBC block and its abstraction

A partition 7 is throughput [BC if all its blocks are either 1-throughput IBC or
27 -throughput IBC. In order to avoid ambiguity, an internal “valve” is placed in a
I-throughput IBC to switch a flow to one of its succeeding blocks (see Figure 5.3).
Hence. two nodes. X!. X2 are used to abstract a l-throughput IBC block X,. In
contrast. for a 27-throughput IBC block. it can be abstracted into a node when the
number of requests is 2.

Analogously. if n > 2. blocks can be classified into 1-throughput IBC. 2-throughput
IBC. .... n~-throughput IBC. in accordance with their internal capacity to transmit
flows. And. similarly. an internal valve X! — X7 with capacity & is used to represent
the transmission capacity of block .X,. for a A-throughput IBC block \X,. & < n.

Lemma 5.2. Let X, € 7 be a I-throughput IBC block. for any X, € =. if there
are 1 € X,. y € X). e € E such that §(r.e) = y. then (X,. X,) s 1-ST-DC.

Proof:

Suppose .\, € 7 is 1-throughput IBC. If z € O(X,). y € [,(.X,). and e € E such
that d(z.e) = y. by Definition 5.6(1), for all z € I(X,), there is u € E* such that
§(z.u) = r € O(X,) and for all v < u. d(z,v) € X,. Thus §(z.ue) =y € [,(X,) and
for all w < ue.d(z.w) € X,. This also implies mincuty, x, (1(.X.), L{X};)) > L.
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By Definition 5.6(2). mincuty, (I(X,).O(X;)) = 1. Thus._ mincutx, x, ({(X,). L(X,))
= min{ mincuty (I(X,). O(X})). mincutyx,x, (O(X,).L(X)))} < mincuty, (I(X,).
O(X,)) = L. So. mincuty,y, (I(X,). L(X,)) = 1.

Therefore. (X,. X)) is 1-ST-DC. cC

Lemma 5.3. Let X, € 7 be a 2~ -throughput IBC block. For any X, € =. if there
are r € \,. y € \,. e € E such that §(x.e) = y. then (\,. X,) is either 1-ST-DC or
2--ST-DC.

Proof:

Assume .\, is 27-throughput IBC. Let r € O(.\\!,). y € [,(.X)). and e € E be such
that d(r.¢) = y. By a similar argument to that of the proof of Lemma 3.2, we know
that the first condition for Definition 3.7 is satisfied and mincutx, x (O(X,). L(.X})) >
Cle)y > 1.

Evidently. it is the case that either muncuty x, (O(X,). [,( X)) > 2 or muncuty, X,
(OLNY. LX) = LI muncuty, x, (O(X,). (X)) > 2. then there are two cases:

) 2

) If there is r € O(X,).e; € E such that §(r.e;) = y € L{.\}} and C(e
3.7. there

€
For any two nodes r,.z, € I(.X,) (not necessarily distinct). by Definition 3.7.
are uj.u, € E° such that §(zy.u;) = (2. ua) = . and for all vy, < uj.t9 < us.
Jtrovy)olzyea) € Xy for all @ € E. Jla.uy) ~ J(a.uz) < Cla). Therefore
‘uie;. uzey! drives the system from [r;.z,] to {y.y] via [z. ] through \X,. It is clear

.j(fl. 71181) j(fl U\El) 2 < C(fl) Hence. (.\.,..\-J) is 27-ST-DC.

(2) If there are 1.1 € O(X,) (not necessarily distinct). e;.e2 € E. e; # e,, such
that d(r.e;) = y € (X)) and d(2".e;) = y' € L(X,). It follows from Definition
5.7 that for all r,.z, € I(X,). there are u;.u, € E* such that §(z;.u;) = z and
dira.ua) = ' and for all vy < wuj e < us. d(zy.01).9(z2.12) € X|. and for all
a € E. Ja.uy) + 3(a.uz) < C(a). Furthermore. {u,e,.use,| drives the system from
{r,. 1, to [y.y'] via [z.2'] through X, x X|. It is clear 3(e;.u,e;) = 1 < C(e;) and
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J(es. uses) =1 < C(ey). Hence, (X, X,) is 27-ST-DC.

When mincutx, x (O(X\). [,(X})) = L. it implies that O,(\,) = {z}. I(X)) =
{y} and C(e) = 1. it is clear that (X,..\}) is 1-ST-DC. a

Let = be a throughput IBC partition of .V. The throughput IBC partition ma-
chine of G based on 7 is denoted by G* = {z'. E* &*.C*. D"}. where
7 = {X, € 7} X, is 2 -throughput IBC} U { X. X?| X, is l-throughput IBC}:
E* = {{71(X,.X,) is 2--ST-DC} U{L|(X,. X,) is 1-ST-DC } U{UIX, € = is 1-
throughput IBC}.

High level transitions

The high level connectivity (transition) function of G" is defined as follows: for any
XN, e

SMXE L) = NEiE N, is 1-throughput [BC:

SMNL LT = X (N X)) is 1-ST-DC or 27-ST-DC. and \,. .\, are 2~ -throughpur
[BC:

MUY = XA (XL X)) is 1-ST-DC and \,. X, are l-throughput IBC:
SMNECY) = XG0 (NLLX) is 1-ST-DC and X, is 1-throughput [BC. X, is 2--
throughput [BC:

AN = \)l if (X,.X,} is 1-ST-DC or 27-ST-DC. X, is 27-throughput [BC. and
X, is 1-throughput IBC.

High level capacities

The high level capacity of a 1-ST-DC connection is 1. the capacity of a 27-ST-DC
connection is 2. i.e.. for a 1-ST-IBC pair {\,.X,). C*(}) = 1. for a 27-ST-IBC
pair (X,..X}). C*L7) = 2. As stated earlier. there are two nodes representing a
1-throughput IBC block X,: X! and X?. which are connected with a link L} with
capacity of 1. i.e.. C*(L’,) =1 for all 1-throughput IBC X,.

High level costs
To calculate the high level costs. some modification of the in-sets is needed (see Sec-
tion 3.4). If s € X, and X, is a l-throughput IBC block. X* = X!. If¢t € X, and
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X, is a 1 throughput IBC block. .X* = X2 Let [s1, 4] € I(X*!) x [(X*2). In order
to calculate high level costs. set [(.X*') = {s,}. I(X**) = {s2} whenever \'** # \'*%
otherwise. J(.X'*') = {sy.s:}: set [{(X*) = {t,}. [(X®) = {¢ta} whenever X't # \'2:
otherwise. [(.\") = {¢,. ta}: if X = X%, [(X%) = [(X) U [(X9):if X8 = X2,
[(X") = T(X")u T\,

For any \,..\, € 7. if (X,.X) is 1-ST-DC. DML7) 2 D(X,.X,) max, max,
{dyx(z.y) I € I(X)). y € L(X))}. If {X,.X,) is 27-ST-DC. let D*(7) = 3
max{d(u,) = d(us) ¥ir;. ) € I(X,) x I{X).[y1. 2] € LX) x L{Xe). (X X)) -
or 27-5T-DC. and J(e.u,) + J(e. us) < Cle) for all e € E}. Let D*(L,) = 0. for all
l-throughput IBC X, € =

The following theorem is an analogy to Theorem 2.1.

Theorem 5.2. Let G* = {7/, E*.§".C". D*} be a throughput [BC partition ma-
chine of G = {N.E.0.C.d}. Foranys € \"' € #/.5o € X't 2 7. ¢t & \' ¢

Tty 2 N g 7 there s a valid routing from {51,501 to (tity in G of and only of

there s a vald routing from (X1 X% to (N®1 X% n GM.

Proof:

—.

We shall prove that any given high level valid routing contains a low level valid rout-
ing. Suppose there is a valid routing from "\"**, \"?7 to "X, """ in G". and denore
the blocks on an optimal path (with respect to D*) in order bv Y1.Y5. ...}, € 7 and
Zy.Zs....2, € = respectively. where 5; € Y. 5o € Z;. ¢, € ¥, and ¢, € Z,. Because
an optimal path with respect to D" is acyclic. if ¢ # J. ¥, £ }Y,. Z, # Z,: and if
Y, = Z,. there is no ;' # j such that ¥, = Z,,. Hence. for each },. 1 <: < m. if there
is Z, = Y, for some 1 < j < n. then there are two individual flows in this routing
going through Y, in G". and by Lemmas 5.2 and 5.3. }; is a 2~ -throughput IBC block.

Set st = 5,. 5] = 3. s, =t,. 5% = ta. Search from i =1toi=m—1 by increas-
ing order. if Y, is such that there is Z, = Y. then carry out the following procedure:

(1) if s'. s s!_|.s°_, are not set. arbitrarily choose {s!.s%] € I(})) x [{Z,) and
17y t=1v7-1 { b J
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[sio1-57-1] € I(Yio1) x I(Z,):

(2) denote by U'(Y,, Z,) the set of [u;. u}] € E* x E* such that §(s}. u;) = s]_,. d(s?, u?)
= 57 Yu| < uluh < ul d(s}ul) € Y, d(slub) € Z,. and for all e € E.
Je.u}) + J(e.ul) < C(e). Since Y, is 27-throughput IBC. ['(};,Z,) # 0. Seek

[u¥ . u"] such that d(u!”) +d(u}) < d(u}) +d(u?) for all [u},u?] € U(Y.. Z)).
We note that d(ufa) + d(ufo) < DMU(Y, = Vo) + DMU(Z, = Z,-0).

Starting from : = 1 to m — | by increasing order. if each }; such that no Z, = ¥,
exists. repeat the following procedure:
(1) if s}, s1_; are not set. arbitrarily choose s! € I(}}) and s!_, € [(},.):
{2) no matter whether X, is l-throughput [BC or 27-throughput IBC. by Defini-
tions 5.6 and 3.7, there is u} € E* such that d(s!.u}l) = 5!, and for all ! < u}.
Jisiounl) € Y, Denote the set of all such u! by U'(1;). Seek u!” € [(1}) such that
dint vy < dnl) for all ) € U(Y)).

It is clear that d(u!”) < DMU(Y, = Yio)).

Starting from ) = 1 to n — | bv increasing order. for each Z. such that no
=] J A & j

. . . . 20 - N}

Y}, = Z, exists. repeat the process similar to above. seek u; € ((Z,). Also. d{ u]" ) <

Py
D"2,.Z,.,).

- Q 3 bl Q9 J 20
Clearly. Sts;.uiuy ub ) =t d(sa.uf ui ui_)) = to. and for all e € E.
LXS B V] A 99 4d r 0} W) J 93 Q0
Jieouy us ub ) F3e i w3l I} < Cle). Therefore. b ud b ui ey
). . . . . . Q Qq D}
ui_T is a valid routing for (5.5 and [¢;.t:]7 in G. And d(u}lu} ul_)+

ff(u_;')u:u”_ uiﬂ—l) S Dhuo({.\',ﬂ‘.\'jgl . [.\h“-\t_t’r)

f—d

We shall construct a high level valid routing based on any given low level valid routing.
Suppose there is a valid routing {u;. us] € E* x E* from [5,.5:] € N x NV to [t,.ta] €
N x \. Denote the high level blocks containing the low level paths {p(s;. u;). p(sa2. ua)]
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(a) (b)

FIGURE 3.6. p(s,.u}) and p(s..u,) go through Y] no more than twice

driven by u; and u, ., respectively. from s, and s,. respectively bv ¥7.}5. ... Y, € =
and Z,. Z»....Z,. € 7' bv order.

Now we prove there are valid routing [p(s;. u}).p(s,. uy)] such that each of p(s;. u})

and p(sy.uy) goes through every ¥,.Z,. 1 <:<m-1.1< j<n-1.no more than

ance.,

For an arbitrary Y. ifp(n i) goes through Y}, strictly more than once. because

7 15 throughput [BC. Y, is 27-throughput [BC. Denote the first entryv of pis,.u,) in

[\L) by r. the last exit of p(sy.uy) in O(Y]) by . Let the segment from r to y of
pisiouy) be denoted by £~ y.

There are two possible cases:

(1) p(52. u2) does not go through Y, (see Figure 3.6(a)). By definition. thereis u € E*
such that d(r.u) = y and for all v’ < u. d(zr.u") € },. Replace r ~ y by plr.u) for
pisy.ng). denote the resulting path by p(s;. uy| p(r.u)). [p(s,. uii p(r.u)}. p(sa. us)]
is a valid routing for [s;. -] and [¢). t,].

(2) p(s2.uq) goes through }, (see Figure 5.6(b)). denote the first entry of p(s,.u;)
in [(};) by . the last exit of p(s;.u;) in O(}}) by y'. Let the segment from z’ to
y' of p(s2. uy) be denoted by z’ ~ y'. By definition. there is [u.u'] € E* x E* such
that ¢(r.u) = y and for all u; < u. d(z.uy) € Y. &(2'. v') = ¢ and for all u, < v/,
d(z'.uy) € .. Moreover. for all e € E. 3(e.u) + 3(e.u’) < C(e). Replace z ~ y
and ' ~ y'by p(r.u) and p(z'.u') for p(s,.u;) and p(s2. u,) respectively. we obtain
P31 uy p(x.u)). p(s2. ualp(r’. u'))]. a valid routing for [s,. s2] and [t,. ta].
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[n this way, we can obtain a valid routing [p(s,, u}). p(sp, uh)] for which p(s,, u})
and p(s:. uy) respectively go through each ¥;,1 < i < m and each Z,.1 < j < n
at most once. Rename the blocks containing p(s,. u}) and p(s,.u5) respectively by
VioVao Ve and W Wh L W, for which s) € V1.4 € Vi. 50 € Wita € W By
Lemmas 5.2 and 5.3, if there is 2 low level transition from X, to X,. (X, X)) is 1-
or 27-ST-DC. Hence. (V.. Vi) and (. W ,_;) all 1- or 2°-ST-DC. 1 < i < k - 1.
1 < <1 -1 If p(s,.u]) and p(sa.us) both go through V; — V;_,. by definition.
(1,.Vi<1) i1s 27-ST-IBC. Therefore. 1} — 15 — ... = 1, and IV} = 115, = .. = 1I
form a valid routing for [X'*'. \'*2] to [\'". \'®] in G". c

Let the optimal high level cost for [X**. X'**} and [\, X'*?] be denote by D(
NUATEUINS L XRT DR, from the proof of the above theorem. it is straightforward

to see. there is a low level routing with a cost less than D( [\, X2 [\t {2 DA,

5.4. Hierarchical Dynamical Routing for Networks with Buffers

5.4.1. Network States of Buffered Networks. Consider a network in the
class BN represented by ¢ = {V. E.4.d. B} in which the capacity of links may be
thoughr to be infinite. The capacity of a node. which may be thought to be the size
of a buffer. is denoted B(n) € N'~. for any n € V.

Suppose the svstem is event-driven. We shall map the ordering of the occurrences
of events to the positive integers. which is equivalent to viewing that the svstem clock
as being discrete-valued. All exogenous events (the arrivals of new messages) take
place non-simultaneously. i.e.. at any event-indexed (or marked) time instant at most
one new message arrives at G. Also assume that only one event (including control
actions) happens at the a time instant.

Let Fi(n) denote the total number of messages stored in the buffer of noden € .V
at a time instant £ > 1. At time k. if B(n,) > Fi(n,) for n, € N. a new message
msgi(n,). associated with a destination n, € .N. n, # n,. may be accepted by the
network and be stored in the buffer at the node n,. This message msg(n,) can be
either kept in the buffer at n, or sent to n; € V if the following two conditions are
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true: (1) there is a link e € E such that d(n,.e) = n;, and (2) Fi(ru) < B(n;) when
ng # n,. lf n; = n,, msg(n,) reaches its destination and leaves the network without
entering the buffer n; otherwise. it is to be stored in the buffer n;.

A (matriz) network state. which bears the information on the number of messages

mi(i.J). 1 < i) <|V| at node n, with destination as node n, at time & is given by.

0 me(1.2) .. me(1.|N])
i me(2.1) 0 e M2V
:k =
me(INL L) me(JV0L2) 0
N

Filn) =Y me(i.j) < B(n,). forall 1 <0< 1V,
1=t
where m} is always 0. A distinguished state ~y = [0 v . v . the zero matrix. evidently

represents the network state where no messages are being held by the network.

. . . . AY
[t mav be proved by induction that the total number of network states is [ _,
WBin, - N
Cﬂln.

There are two classes of events in a BN network G. i.e.. E = 4 U T. where
(11 4 = {alin, # n,}. Here a] means a new message msg(n,) with destination n,
enters the network at node n,.
(2) T = {t/,. there is a link in G from n, to ng. n, # n,. nx # n,}. Here t/, means

that a message with destination n, is transmitted from a node n, via a link ef to ng.
[t is clear that 14} = | V] x(|.V]| = ). |[Ti = (|.V] - 1) x{E|

Obviously. ¢, is a control action. VWhen an action ¢/, is taken at time instant
[.if ng # n,. m(1. j) decreases by 1 while m(k. ;) increases by 1. ie.. m_ (i.j) =
my(t. J) — L and my_ (k. j) = my(k.j) + 1. if a message arrives at its destination. i.e..
in case ng = n,. it leaves the network without entering the buffer at ng. my (. j) =
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my(t.j) — L. Fioi(k) = Fi(k). At time (. if the buffer of n; is not full, a new message

to n, may arrive at n, (n, # n,). The arrivals of new messages are spontaneous. Not

every al is accepted by the network: if necessary,

J

a] may be rejected. After a] is

accepted by n,. m/ increases by 1. i.e.. my_y(i.j) = my(i. j) + L.

The dvnamics of the buffered network state systems (BNS) may be represented

as a finite state machine. BNS(G)= {I". AU T.v}. where [ is the set of all network

states. We note that a network state (in the product system) is not a location in a

network. Here vi~g.ux) = ~4oy. ue € AUT. k <0. Explicitly.

0
mi(e. 1)
[ Ml VLT
0
m (e D)
i mel N 1)
[0
me(l. 1)
me(i. 1)
eIV 1)

(B
—

mll.:

metl.2)

my(e.J)

mi(r. ) =1

mk(l._])

m (L. J)

if S,; my(t.1) < B(n,).
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m(l. 1)

| mal| N 1)

mk[l.l)
vl

me(e. 1)

me(iV 1)

m(l. 1)

mg(e 1)

me(' N 1)

Otherwise. v is undefined.

mi(l.j) + 1

me(1.|N]) |
mi (L. |V])
my (2. |.NVY)

0

if oy #n,.1e | #J. and Z::O me(l.n) < B(m).

me(l.])

meli. J)

me(1.0V]) ]

mi (L 1N)

ifnp=mn,. e =

5.4.2. The Controllability of the Buffer Network State Systems. A

network state is said to be BNS controllable (to ~g) if there is a finite sequence of

actions in T that drive the network to ~.
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3

@ : a message

FIGURE 5.7. Network in deadlock if m(1.3) = mg(2.1) = me(3.2) =1

Uncontrollable network states include deadlocks and live-locks. A deadlock is a
state of a network in which the network cannot accept any control actions. In con-
trast. a live-lock is a state such that the network can make some transitions in T but
is not BNS controllable to ~4.

Example 5.3. [n Figure 3.7. the network state s

0 01
=11 00
01090

The capacity of the huffers of all nodes s 1. This network s in a deadlock because

no actions cen he taken at this state.

In Figure 3.8. the network state us

(000000 1]
0000O0O0T1
0 000O0O00OQ0
~=10000000
00000O0O00
0100000
0100000
The capacity of buffer of all nodes is 1. This network is in a live-lock because no
message can be sent to its destination. a
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@® : amessage

Fictre 5.3. Network in a live-lock when mi(1.7) = m(2.7) =
me(6.2) = m(7.2) =1

To prevent the network from entering deadlocks or live-locks. it is necessary that
some arrivals of new messages should not be accepted. i.e.. if v(~.a]) = ;. k > 0.
such that ~,.; is not BNS controllable. the message msg(n,) should be rejected and
not put into the buffer at n,. Given an initial network state ~,. the control objective
15 to find a sequence of control actions in T that drive the netwark from -, to ~y.
which embodies the completion of all tasks. while avoiding getting into deadlocks or

live-locks.

A newwork G is said to be path-utse controlluble if for all n,.n, € N. there exists

a path from n, to n,.

Lemma 5.4. [fa network G = {N. E.d.d. B} 1s completely path-uwise connected.
then BNS(G 1 15 deadlock free if and only if there is a node. n, € N. such that for all
n, 2 N. 1= ). therewsel € E. s.t. d(n,.el) =n,.

Proof:

——

;

For anv network state ~y, # ~q., all messages at n, can be sent directly to their
destinations n,. 1 < j < V], j # i. by control actions ¢7. In other words. after
taking

l 1 g2 2 -1 -1 N N
tz.l"‘tx.l 120052 "'tz.x—Itu—l'“ t1__\'!”'t1,;.‘\'i'
Mg (t.1) My (2.2) Mg (2.iV1)
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the network state is

0 ka-‘Fko(!)(]“Q) e mk()-.-pgo(l)(l‘ i‘\’[)
Miy-Feyny(t — 1. 1) e Mg (8= 11V])
kg~ Figlt) = 0 0 0
mko-[:.‘o(n(i + 1. 1) mko-;’.‘oix)(i + L. ‘.\-I)
ml\'n-—Fko(l‘l(i‘\';! 1) mk.]ﬁ-Fg,o(l)(!'\'}' 2) 0 §

Because G is path-wise controllable. for any n, € \. n, # n,. there is path from
n, to n,. Ler 'u,| be the length of the shortest path from n, to n, in terms of the
number of links. n, is said to be |u,| step reachable to n,. Let A" be the maximum of

w, forall1 <) < ' NLj#1L

First. suppose the node n, is one step reachable to n,. For a message to n; stored
at n,.
t111f & = .. the control action ¢}, makes that message reach its destination and leave
the network:
121 orherwise. it may be sent to ng via n, by taking t5 5.
[n this wav. all messages at the nodes one step reachable to n, can be forwarded to
A £ p

thetr destinations.

Recursively drain off the messages in the buffers at the nodes n step reachable to
n,. 1 < n < K. the BNS{G) arrives at ~;. Therefore. no deadlock state exists for this

network.

Suppose no such n, exists. that is to sayv. for any node n, € V. there is a node n;,
which is 2 step reachable from n,. In a network state such that B(n,) messages with
destination ng, are in the buffer n, for all n;, € .V. the network state is in deadlock.
This is because any control action tf_’, (k, # | as assumed) will cause the overflow of
the buffer of n,. a
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From the proof to Lemma 5.4. it is evident that if there is n, € .V such that n, is
reachable to any other nodes in V in one step. the network state svstem BNS(G) is
live-lock free.

Let — represent a one step transition in E. A ring is a non-trivial circuit
Rn)=1 —-1,— ...z, 21.n>1lsuchthatforall 1 <i.j<n. ifi#].
I, # I,. An arcfrom 1, to z, is the part of R(n) from r, to r,. i.e.. Are(z,.1,) =1, —

. — r,. If at time A,. Z;lx mg,(i. j) < B{n,) for a node n, € N. then an empty
buffer pluce is said to exist in n,. Mloreover. B(n,)— Y"]‘\__lfl mi,(i.J) empty buffer

pa—]

places are said to exist in n, at time kq.

Lemma 35.5. Fora ring R(k) = n, — ns — ... = ng — n,. n, € N such that
v=gon, =0, 10 <o) < koafat ime instant kg, Y 1(?} ImhujJ<V . Bin,).
then the jnllowmg conditions are true:

‘1 Forany 1 <1 < k. there 1s a finite sequence of control actions in T such that at
a time instant K > ky. {Zj:x melt.)) < Bin,).

2o For any message msg(;) i R(k) at ky. 1 < ) < k. there 15 a fimite sequence of
control actions in T such that at a tune wnstant k' > k. 1t s sent to n,.

30 For any message msqgi)) i R(k) at ky. J > k. and for all 1 < < k. there s u
fnite sequence of control actions in T such that at a time instant ¥ > ky. 1t s sent

to mn;.
Proof:

Suppose at time instant Ag. )_ (')_' lmh t.J) < V" , Bin,). That is to say.
there exists n, in R(k). such that there is an empty buffer place in n; at time instant
. N .
koo e (3,0, me,(J. 1) < B(n,).

1) For anv 1 < : < k. if i = j. then let ¥’ = kg. Lemma 35.5(1) is obviously true.
Otherwise. R(k) consists of two paths Arc(n,.n;) and Arc(n,.n,). Rename the nodes
in .V such that Arc(n,.n,). the part of R(k) from n, to n,. is denoted by

Uy = U2 — ... > Up_j = Up.
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where vy = n,; and v, = n,.

Letl =n—1.4& =k If ZL‘:[I m(l. j) = B(v(). send an arbitrary message
msg(my) at r; to v-y. i.e. let @ = ]}, otherwise let ¢; = e. Hence. by taking q.
Sl meoi(lj) < Bly). If1> 0.set I =~ 1. &' = &' + 1. repeat the above proce-
dure. Therefore. after taking a,_1a,-2 ...a;. at time &' = kg +n — 1. (Z[:; my(1.1)
< B{vy). An empty place is thus generated in n, = 1.

This process creates an empty buffer place in n, based on an empty buffer place
in n, on R(k) and will be denoted by CE(n, — n,. R(k)).

(2} For any message msg(m) in R(k) at ks. 1 < m < k. without loss of generality,
suppose it is in n, for some 1 <1 < k. For any node n, # n, in R(k). rename the
nodes in .\ such that Are{n,. n,) is denoted by

Up = Uy — .~ Up] — Up.

where v = n, and v, = n,.

According to (1), if at &y. the empty buffer place in v,. then CE(¢; — v,. R(k))
will create an empty place in the buffer of ¢,. 1 < < n after a finite time. First. do
CEl(v; — ry. Rikyy. This will not force msg(n) to leave v; because as the immediate
predecessor of vy in R{A). v| can not be an intermediate node on Arcivs. t7) and thus
no t%, is taken in CE(r; — va. R(Kk)). Then take t},. At time &k, = 1. there is an
empty buffer place in v;. Therefore. take a sequence of actions CE(v; — vy. R(k))t5,
CEiva — vy RUKNES, .CE(vqay = v R(K))th_, .. msg(n) is sent to v, and leave
the network.

(3) Since msg(m) will not reach n,, around R(k). it will not leave the network. By an
analogous argument to the above. msg{m) can be sent to any node in R(k). Denote

this process that a message msg(m) at n, is sent to an arbitrary node n, on R(k) by
SO(n, — n,. R(k}). g
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there 1s a ctrcuit, ny — n, —

Corollary 5.1. For G = {N.E.d.d. B}. if all nodes in N forms a ring. i.e..
— ny = n.n, €N such that 1 # j. n, # n,.
1 <. j < |NI then BNS(G) is free of live-locks.

Proof:

hg—1 € [. such that U( kg~ tf.]

At a time instant ky. if the network G is in ~,. which is not a deadlock state. there
S N .
must be t¥ € R. - ) = “ko-1. Therefore. (3_ 2, mey—1(2. )
Bin,). In other words. an empty buffer place in n, is generated at time &y — 1.

Suppose that all nodes in .V form a ring without the repetition of anv node. If
at time Ay there is an empty buffer place in n,. then by Lemma 5.3(2}. any message
with destination ng at n, at time kg can be sent to ng in finite steps.

Hence. all messages will be sent to their destinations in finite time. That is to
say. ~y, 15 reachable to ~.

Clearly. if ¢ is Hamiltonian( 261). BNS(G) is live-lock free.

Define an operation concatenation over two paths: for anv py = n; — ny —
—ne = N py=my —my — .. —=m, £ \N° the concatenation of p; and p,.
Ny — Ny — ... — N —m —my— ... —m, ifm #nand
Ze € Eding.e) = my
ppr = .
My — Ny — .. =M — My = — M, if m, = ng
undefined

otherwise
Lemma 5.6. [f G is path-uise controllable. then there is a circuit C in G cot-

ering all nodes in N. and C can be represented as a set of intersecting rings {R,.1 <
t<n R, "R, ‘:@ l_<_z<n}

Proof:
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nj;
£a) (b)
C] CZ
n;
Cui
n,
N
Il ) C[ C:
C, n, C: n.

FIGURE 3.9. A circuit with repetition of nodes

Since G is path-wise controllable. for anv r.y € V. there exists n £ E* such that
Yerowr =y A circeuit that covers all nodes in .\ can be constructed in the following

Wiy

Let Ctl} = ny. ¢ = 1. if n,_; is not included by Ci1). find u(:) € E* such that
din,.u)) = n,.;. and denote p, = p(n,. u,): otherwise. let p, =¢. Cl2 = 1) = C:)p,.
[f+ < N.let ¢+ = ¢~ 1: repeat the above procedure. When : = '\, seck

we NV € E® such that S(n'. u('.N)) = n,. where n’ € N is the last node in C('.\V}).
CltN =11 =Ci N)p(in'. ut' ) is such a circuit.

Rename the nodes on C{'N' = 1ljtober,.1 €1 <|{Cy .. Thenif v, = v,. break
down C(!.V' = 1) into two circuits C; and C, such that C,NC, = {n,} (Figure 5.9(a)
and (b)). If two nodes in C;. ny = n;. C; may be further broken down into C;; and
Ci2such that C ;N Cra = {nk}. f ngisin C, . ngis in Cs. and ng = n;. then two
circuits C, N Ca = {n,.ni} (Figure 5.9(c) and (d)). Thus. by breaking down circuits
with repetition of n, into intersecting circuits without repetitions of n,. C(|.V| + 1)
can be represented by a union of intersecting rings {R,.1 <t < n| R, N R,_; # 0.
1 <1< n}. il
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Theorem 5.3. Ifallnodesin N are on {R_, 1<i<nRNR. #0.1<i<n}.

then any network state ~, with 3. ZNI mi (k) < ¥ B(n,) = n. is a BNS con-
trollable network state.

Proof:

Suppose Y% S P M2 < .Y B(n,)—n. That is to say. there are n empty
buffer places in .\ at time Aq.

By Lemma 5.3(1}). for any v,.v, in the same ring R,. if there is an empty buffer
place in v,. then after a finite time. by CE(v, — v;. Re). there will be an empty place
in v,. L.e. any empty buffer place can be circulated around R,.

Furthermore. if i € R, ™ R,-;. and there is an empty buffer place in R, at k.
then an empty buffer place may be generated in vy after a finite time. and bv the
same reason. an empty buffer place can be created in any node on R,_; after a finite
nme.

Therefore. the n empty buffer places can be exchanged between intersecting rings.

Assume at a time instant A° > ky. each ring has an empty buffer place.

For a message msg in R, with destination in another node in R,. by Lemma
3.3¢2}. msg can be sent to its destination since there s an empty bhuffer place in R,
at &',

For a message msg in vy € R, with destination in R,. j > i. Circulate the empty
buffer places such that there is an empty buffer place in v, (k) € Re~ R N Re_; for
each: < k < j. Then. by Lemma 3.5(3). msg can be sent to a node in v.(i) € R,NR,_,
by SO(v — vc(1). R). Since v (i) € R, N Ry, SO(vy — v.l1). R,) will not change
the empty buffer place in v.(:). That is to say. any message in R, can be circulated
to R. 7 R,.; and R,_, still has an empty buffer place (see Figure 5.10). Hence. msg
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)

msg

@®: anarbirary message

FIGCRE 3.10. All nodes in .V are on R,

can be sent to R,_, © R, through R,_,...R,_; and then sent to its destination.

For a message msg in v, € R, with destination in R,. j < 1. Circulate the empty
butfer places such that there is an empty buffer place in v, (k) € Ri— Ri ™ Ry for
cach j <& <. By an argument analogous to the above. msg can be sent to R," R, _;
and then to its destination.

Therefore. all messages can be sent to their destinations. i.e.. =, is BNS control-
lable.

]

Let ni() be the minimal number of rings for which there exists a circuit C cover-
ing all nodes in .V such that C is the set of rings. [f at time A;. the number of empty
buffer places in G is strictly less than a(G). the network is possibly in a live-lock.
e.g.. the network state as shown in Figure 5.3.

5.4.3. High Level Network States of the Buffer Network Systems.
In addition to directly applving HADP to the network state machine BNS(G). we
present a formulation of hierarchical control by partitioning .V. the set of nodes of
G into IBC blocks to reduce the computational complexity of seeking the optimal
control (a shortest path problem for network state representation BNS(G)). This is
because the number of network states is usually much greater than that of the nodes
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in the network.

Let = = {X|.Xs....\';;} be an IBC partition of .NV. Define the size of buffer

for a block X, € = by B*X,) = Zn_,é.\', B(n,). The number of messages stored
in .\, with destination as nodes in .\, (., # \,) at time instant & is M(i.)) =
S mzv nnzy, Me(l.m). A high level network G* = {z.E* ¢" D" B"} is defined
based on DC relations over 7. A high level network state.

0 Me(L2) . MR
a2 0 e M(2.17])
b=

MoCmil)y M(mi2) . 0

where FR\,) = Z;I M(e.)) < BMX,).forall1 <1< 7%

High level events include:
A = {4 2.1 <1y < =i} a new message with destination in X, arrives at
N Xy = X, at time instant Ay = L. if the F (X)) < B(.X)).
DT =T, 120 #L{X,.X)is DC 1<)l £ =i} a message with destina-
tion in Xy is sent from .\, to X at time instant Ay~ 1. if \'; = X or F&(,\'_.} < BIX,).

For a block X, = {nj.n4.....ni }. an wn-block network state with respect to |
at time instant & bears information about the number of messages with destination

in {nj.ni. ... ”z.\',,} {7 = {X,}) being processed at node n,. 1<y < X,

0 me(ny.ny) .. me(np.n'y )
(N = mi(nh. ni) 0 e Mg(ng.onty )
gelaVg) =
mi(niy .ni) mg(nly .nd) .. 0
mk(nli..\-l} mk(n‘[..\],,)
me(nh. Xy) . me(ns. Xiz)
me(niy . X1) . mi(niyg . X))
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Xy

(=i
Fi(n}) =Y me(nln) + Y mi(n). X)) < B(n).
=1 [EWED

where m(nj. .X;). mi(n}.n;) represent the number of messages being processed at

1

node n} at time & with destination in block .X; and node n} € X, respectively.

An control action th € T is said to be an in-block control action with respect to
X, if both n, and n, are in \',.

Definition 3.8. An in-block network state of IBC block .\, € 7. ~.(X,) is said
to be a BNS in-block controllable state if. for all n} € X,. all n} € [(.X,) and all
ni € O(X,). there is a finite sequence (length &' — &) of in-block control actions with
respect to .\, such that
1) Feni) < Binl). and
v20af Mt 0 > 00 mi X, &) > 0. and
13 S‘.’\“ Zn_\: mying.ni ) =0. -

-1
=1

fan IBC block X, is tn a BNS in-block controllable state at a time instant &.
after taking a finite sequence of in-block control actions. without the occurrence of
events in A" and A. the three conditions above will be true: (1) there will be an
empty buffer place in any given in-set node. (2) any message to another block will he
sent to any given out-set node. and (3) all messages with destinations in .\, will be

sent to their destinations.

Theorem 5.4. Given an [BC block X, consisting of k rings. X, s tn a BNS
in-block controllable state ~(X,) if the total number of messages tn X, at k s less
than or equal to B*(X,) - k.

Proof:
Similar to the proof of Theorem 3.3. a

Redefine the IBC partition machine G* = {x. E".¢" D" B%}, where B*(X,) =
B*X,) -~ alX}) for all X, € 5. The network corresponding to G*. M4(G*) =
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{The. 4" U T" "}, The dynamics of M*(G?) are defined by

[0 M2 . L ML|R])

S M D MG J) ... M=) | .4 =

[0 M{1.2) Lo ML)

=\
=

M1 e My =1 M

Mmoo 0]
if S, M k) < BYX,).

—_—k=1

[0 ALY L T ]

Mik. 1) o Mk Mk 7))
TE =

M 1) M)y o M=)

L.m . 1) 0

[0 ML) v MLz ]
ML Mikgi=1 . Mik 7
Mt e M- . M

L M(|= D 0 |
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if £ #jand 07 M(k. 1) < BA(X4).

[0 ML) MR ]
M(k. 1) _\[(..}c'.j) M(k.|=])
v T =
Mil1) e ML) e M(iF])
e T
T 0 M2 LML) ]
Mik. 1) .\1(.1‘\-.1) Mik.|z)
M 1) -\1(:.;‘]—1 M7
ew

£S5, M. < BA
Otherwise. v is nndefined.

Theorem 5.5. Let G" be an [BC partition machine of G. if at time instant ky.
C2 of MMG™ 15 in a BNS controlluble network state. ~i,(X,) s ¢ BNS m-block
controllable state for all X, € =. then ~;, 15 a BNS controllable state of M(G).

Proof:

Suppose at time instant ko. M*(G?) is in a BNS controllable network state [}e.
that is to say. there is a sequence of control actions in I" that drives M"(G?) from
Fﬁj to ['y. Also suppose all blocks X, € 7 are in BNS in-block controllable states at q.

Because all messages in .\, with destination in .\, can be sent to their destina-

tions. by Definition 5.8. it is equivalent to proving that each of the high level control
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commands is realisable by low level controllers and after completing a high level con-
trol command. ~,(-Y,) is still a BNS in-block controllable state.

Let a message msg(l) with n; € X* is held in X, at time &’. By definitions.
for a high level command Rf:]. it is defined at a state I‘QF for some &' > ko if: (1)
Me_((e.k) >0, (2) (X..X,) is DC. and (3) F&_((X)) < BXX)).

Since ~_((.X,) is a BNS in-block controllable state. by Definition 3.8. there is an
outset node n}, € O,(.\,). such that at time k; > k’. after the in-block controller takes
a sequence of control actions with respect to .X,. mi(\X,.k;) > 0. In other words.

there i5 a message at n} with destination in .X; at ky.

Since .\, \}) is DC. n} € O,(X,). there is e € E. nl € [,(X,). such that

Siont e) = nl
ynie) = nl.

Because =~ _((.X,) is a BNS in-block controllable state. by Definition 3.8. ni €
[,t X)), such that at time k> > &; > k', after the in-block controller takes a sequence
of control actions with respect to \\,. Fi,(nl) < B(nl).

Therefore. at time k3 = ky = 1. rit, . is well-defined. Let the low level controller

R

take this control action r! . then msg(l) is a sent to block X, at k;.

At by BLIYL) = FR(XL) = 1. evidently =, (.X,) is BNS controllable after re-
moving a message from a BNS controllable state = (X,). FL(X,) = Fi, (X)) =1

< B2X)) € BMY,) - a(X)). by Theorem 3.4. ~,(.X,) is a BNS in-block control-
lable state.

In case k = ;. bv Definition 3.8. msg(l) can be sent to its destination by low level
controller and hence leave the network. .\, remains in BNS controllable state.

Thus. ~g is reachable. m|
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CHAPTER 6

Future Research

[n this thesis we present a hierarchical control framework based on the notion of state
aggregation via the dyvnamic consistency relations over the partition blocks of a given
state space. Some suggestions for future research are given below.

Throughout this thesis the mathematical framework is deterministic. If the svs-
tem state transitions are allowed to he probabilistic. for instance Markovian. then
both the fundamental issues of the construction of the DC relations and the as-
soctated partition machines. and the solution of optimal control problems become

challenging issues within the framework of stochastic system theory.

6.1. Research Related to HADP

A relation to be investigated is the size of partition blocks and the ratio of compu-
tational times taken by HADP and atomic search (i.e. search for an optimal control
in the original system). This will result in an optimal partition in the sense that one
multiple level hierarchy has the greatest magnitude of acceleration by HADP among
all hierarchies with the same number of levels.

The relationship between the quality of a partition and the sub-optimality of the
HADP method is given in Chapter 3. [t is of great interest to investigate how to
generate a partition within a given level of tolerance of optimality. Recall that all

IBC partitions of a base finite state machine form a lattice. Through investigating
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the relation of the degree of optimality (statistical measurements might be used to
represent this degree) and the position of a partition in the lattice. it is hoped that
optimal partitions can be determined for which a two level HADP (consisting of the
original system and a partition machine) will achieve solutions closest (on average)
to the global optimum.

In order to judge the quality of partition before applving HADP. a good estimate
of the cost of high level optimal solution becomes necessarv. The combinatorial nature
of in-block paths may make these estimates very loose. An improvement of estimation
of the error bounds will definitely lead to the improvement of the HADP methodology.

6.2. Research Related to Multi-agent Systems

In the analvsis of multi-agent svstems in Chapter 4. the relation R is taken to be
in a general form. If R is chosen to be a more specific relation (for instance. mutually
exclusive events). more specific results will be derivable about the construction of an
[BC partition.

For multi-agent svstems. due to the huge state space of the product machine. in
addition to the hierarchical control presented here. a hierarchical-decentralised con-
trol is worth further investigation. In the proposed configuration. each of a set of low
controllers works on each of the agents. while a high level controller co-ordinates the
operations of low level controllers in a feedback fashion. This will in turn shed some
light on how to partition the state space of each agent separately in order to obtain
an [BC partition of the product system.

6.3. Research Related to Network Routing

In Chapter 3. we discussed both link network svstems and buffer network syvstems
separately. A possible duality of these two classes of networks should be formulated
and analvsed. Moreover. the more complicated svstems which combine the constraints
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on both links and buffers are of course deserve further investigation.

In real-time network. the information exchange sometimes is insufficient for the
precise update of the network states. In the presence of uncertainty. the problem

poses itself as to how an improved [HADP should be formulated achieve an applica-
ble routing reliably.

Because of the multi-agent nature of the network. the concurrency of events is
inevitable. In practice. a set of protocols are applied to each node in a network. This
is a version of decentralised control. Through the analvsis with the models proposed
in Chapter 3. one of the objectives might be to find a set of protocols which combine
the decentralised and hierarchical controls to efficiently decide the route for a request
at a node dependent on the current network state.
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APPENDIX A

C++4 Header File

The application of the HADP methodology to the broken Manhattan grid syvstems
isee Section 3.7) is realised bv C+= code. Its header file is listed below.

#include":10stream.h”
#include"fstream.h"
#include <math.h>
#include <time.h>
#include <sys/times.h>
#i1nclude <sys/types.h>
#1nclude <stdlib.h>

const int MAXEDGES=50;
const int BOUNDARYNODES=60;
censt int MAX=2147483647;

The maximal number of edges starting from one node is set to be 30. and the
maximal number of in-set nodes of a block with respect to a DC relation is set to
be 650. In other words. for any .\, € 5. we assume there are no more than 50 blocks
X, £ = such that each {X,. ) is DC. We also assume {/,(.\'})! < 60.

struct Path{
int current.mnode;
Path *next_node;
}path;
struct Node{
int label;
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int number_of.edges;

int edge [MAXEDGES]; //the index of an immediate successor
float cost [MAXEDGES]; //D+/~ cost for high level nodes
float Mcost[MAXEDGES]; //D+ cost for high level nodes
float mcost[MAXEDGES]; //D- cost for high level nodes

}node;

struct Block

{ int number _of nodes;
Node node([100];
int number_of_insets; //the number of predecessor DC blocks
int inset[MAXEDGES]; //the index of a predecessor DC block
int number _of _innodes[MAXEDGES] ;
int innode [MAXEDGES] [BOUNDARYNQDES] ;
int number_of _transitions; //the number of successor DC blocks
int transition(MAXEDGES]; //the index of a successor DC block
int number _of outnodes [MAXEDGES] ;
int outnode (MAXEDGES] [BOUNDARYNODES] ;

}block;

A block is an array of nodes. A structure Block also bears the informarion about

the DC relations (transition) and the in-set. out-set nodes of a block.

int Rand(int); //generate a random integer between 0 and int

//.tl.l‘ll't.'l.-‘t...'.-“‘.'-..'.‘..‘..ll‘l“"‘.'-..l‘...‘
// Grid: a sizessize array of vertices
i vertex[i]=0: it 1s removed
//i‘t'lll‘..l....‘t..“l-""‘l‘.‘.‘.“‘..““‘.““l“'lt...
class Grid
{
public:
int size;
int svertex;
public:
Grid(int length)
{ size=length; vertex=new int[(size=size]; }
void Create Random Grid(float);
-

I

//Il."‘..titl“t.‘"t."I“‘.““‘.“*-‘.‘C.#"."'..ttl‘ll“.‘.“‘.

// (directed) Graph: an array[number of nodes] of nodes
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// node[i]: absolute index in the Grid

// SEREEBEELLS LR LSS XL LS XSS EEE LS SXLSEXE LSS LSS SE SR AR BESE LI SRS SRR

class Graph

{

public:
int number _of _nodes;
Node snode;

public:
Graph(int); //constructor
void Copy-Graph(Graph); // copy a graph
Graph(Grid) ; //turn from a random grid
Graph();

A grid is an array of integers. for which 1 means that a vertex exists. A broken grid
is created by randomly removing a certain percentage of nodes {Create Random Grid
(float)} from a regular grid. Then this broken grid is converted into a graph
'Graph(Grid) !.

//t‘.t...l.t..‘l“.“.."."‘tt".'.‘..-"O-.‘S“‘-‘t.l"t.‘-ll‘l‘l..

// PartitionGraph: a Graph used to generate a partition
r first generate an array of constraint (a set of nodes)
/7 then find IBC isolated blocks in each comstraint
/7 node(i].in.which_block: the index of the block
// containing this node
//llttll‘l--tl-I-ltt"-t‘lltt‘-‘....t“."i.l....l'.".“‘l‘t‘t‘.t.‘-
class PartitionGraph : public Graph
!
public:

int =in_which_block;

int number _of blocks;

int =in_which.constraint;

int sconstraint;

int nodes.in.constraint;
public:

PartitionGraph(Graph,int,int);

// int, int : number of constraints, Grid.size
PartitionGraph(int); //int : Graph.number_of nodes
void Partition(int,int);

// int, int : Grid.size, number of constraints
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void Find IBC(int); //int : seed
// find an IBC block contairing the seed in the current constraint
void Label Predecessors(int); //int : seed

To obtain an IBC partition of a graph. we first partition this graph into a given
number of regions (specified bv constraints). Then. within everv region. we ran-
domly and sequentially choose seed nodes which are used for the construction of
maximal [BC blocks containing them in the remaining region. We next label every
node with the block index (in.which.block) which corresponds to the index of the
[BC block containing it.

//lt‘tl....‘!.'-..l'.l...“-‘.“t."...‘l“..t.‘t.t‘l.."l.t.‘-t.-....-l-

// WorkGraph: a Graph used to calaculate shortest distances
/7 labelfnode.index] used in the process of Dijkstra’s algorithm
// to determine whether a label is permanent

//...Illl-lll-ll“"l.'..l.".'..-.-U-CUC"..."."""‘C‘.I.“."I‘t-t..

class WorkGraph : public Graph

{ public:

int +distance;

protected:
int =label;
// label: -1, unlebelled 0, temporary !: permanent

public:
WorkGraph(Graph); //turn a Graph into a WorkGraph
WorkGrapa(int ); //create a WorkGraph with int ncdes
Path sShortest Path(int,int); //(int int): (source target)
void Shortest Distance(int, int); //labelling process
int Distance(int,int); //return the shortest distance

Dijkstra’s algorithm is used to find the shortest distance between a pair of start
and target nodes (value returned bv Distance(int,int)). A shortest path is then
given bv Shortest_Path(int,int).

//l‘“tl‘l‘t.‘"“l..‘tl““ltt.‘-"t"..i'.“"..-“'“.‘I.““.t‘.‘

// TransferGraph: an array(number.of blocks] of blocks
// based on a PartitionGraph, find in-block structure
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//.t“‘l"““".““‘"‘ll‘t‘.‘t.t‘..l.'t.-‘.t“tt‘t.-'t".“"‘..“
. class TransferGraph
{
public:
int number.of blocks;
Block =block;

public:
TransferGraph(int); //int : number.of _blocks
void TransferBlock(PartitionGraph);
int AdjustBlock(); //turn indices into lccal

int Number.of Highernodes();

//return the number of high level nodes in case of semidual
WorkGraph BlockGraph(int);

//int : the number of nodes in a block

//turn a block into a WorkGraph to calculate costs

[ TransferGraph. we record the in-block structures.
PartitionGraph::Partition(int,int) only labels each node with the name of the
block containing 1t
In TransferBlock(PartitionGraph). the internal structure of a block tin-set out-

. set1 15 set up by TransferBlock(PartitionGraph).

The caiculation of D~. D~ ~ and D~ costs of the high level transitions is per-
formied by HigherGraph: :Costs().

//ltl.‘tlttlll'l.'lt.“.‘.‘ll.l"‘“l..‘t.llll“““l-I.II.III."‘...

/7 HighPartitionGraph: used to partition a high level
// difference from PartitionGraph: how to decide a block
/7 in which high level constraint

//ltl'l.‘.“.‘...t.‘ll"“““.““““l""‘.O"l.“‘.‘..‘l’.‘t".‘l

class HighPartitionGraph : public PartitionGraph

{ public:
HighPartitionGraph(TransferGraph,int,int);
//int, int : Grid.size, number of high level constraints
b

//.‘l.‘tttl‘l-“..“'tt‘.t.t..‘l.‘.l“.'l"..“...l“".‘..l“"“.l-“‘

// HigherGraph: graph-like structure of middle/highest levels
// block from/block. to : indices of a pair of DC blocks
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//""‘."..‘.‘"‘.‘.t‘t.“"t.“"-.l“"'.“‘t‘t'l"‘..‘l...“'.“““
class HigherGraph : public WorkGraph
{
public:
int =block_from;
int =block_to;
public:
HigherGraph(TransferGraph);
void Costs(TransferGraph,int,int,int,int,int);
//cost from I.i(X_j) to I.j(Xk)
//): 1index of the current block, (i,j): index of this node
//(j,%k): index of this edge, i: from which block, k: to which block
Block HighBlockGraph(int, PartitionGraph, TransferGraph,
WorkGraph,int, int);
TransferGraph HighTransferGraph(PartitionGraph,TransferGraph,
WorkGraph, int, int);
WorkGraph Modify Graph(TransferGraph,int,int,int,1nt);
//recalculate costs concerning Xs and Xt
Path sFind High Path(TransferGraph,WorkGraph,
WorkGraph,int, int, int,int);
//int,int,int,int: Xs, Xt, s, t
Path sFind Low.Path( TransferGraph, Path =, int,:nt);
//int, int: s, t
Path sLow Path(TransferGraph,int,int,int,1nt &);
//int,int,int,1int:block from, block_to, s, &t(next s)

void GraphFile(); //<rite the graph into dot file

The conversion from a high level graph {an array of Blocks! to its semi-dual
graph is carried out by HigherGraph(TransferGraph). For every node in a semi-
dual. there are two correspondent integers: block_from and block.in. which together
represent a pair of DC blocks.
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