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ABSTRACT

Parkinson’s disease (PD) is a severe neurodegenerative disorder afflicting
approximately 1% of the population over 60 years of age. PD is marked by progressive
sensorimotor disturbances that ultimately lead to disability and death. Currently there is
no cure for PD, but the symptoms can be adequately controlled by administration of L-
3.4-dihydroxyphenylalanine (L-Dopa). However, most patients develop intractable side
effects and with long-term use and no longer respond to L-Dopa. The inability of L-
Dopa to provide long-term benefits has stimulated the search for alternative strategies for
the treatment of PD. Selective lesions or chronic stimulation of basal ganglia structures
are currently being investigated. However, transplantation of DA-rich tissue to DA-
depleted areas of the brain may hold the greatest promise of a cure for PD. However,
before neural transplantation can be considered as a routine procedure for the treatment
of PD, some crucial issues need to be addressed. Two important issues relate to the
source of tissue for the treatment of PD and the establishment of the appropriate target(s)
for transplantation. In this work, I have specifically addressed those two issues.

[n the first study, I hypothesized that hNT neurons, derived from a human
teratocarcinoma, can be used for neural transplantation in a rodent model of PD.
Hemiparkinsonian rats received subsequent intrastriatal and intranigral grafts (double
grafts) of 1) medium only; 2) hNT; 3) hNT-DA; or 4} lithium chloride (LiCl) pretreated
hNT-DA neurons. Immunohistochemistry for the presence of tyrosine hydroxylase (TH)
revealed TH-immunoreactive (THir) cells in the hNT-DA and LiCl pretreated hNT-DA
groups. compared to no THir cells in the controis or animals with hNT neuronal grafts.
This experiment demonstrated that ANT-DA neurons survive and differentiate into THir
cells and LiCl pretreatment may enhance TH expression in hNT-DA cells. Although the
number of cells expressing TH was relatively small, there was still evidence of some
functional effects in animals with hNT-DA or LiCl pretreated hNT-DA neurons. This
work has demonstrated for the first time the potential of hNT-DA neurons to be used in
neural transplantation. In the second experiment, [ hypothesized that the intranigral
dopaminergic graft is important in the double graft strategy. Hemiparkinsonian rats were
subsequently transplanted with: 1) double fetal nigral grafts or; 2) intrastriatal grafts
alone. Nine weeks following transplantation, the animals were randomly subdivided into
four equal-sized groups and received either intranigral injections of 1) vehicle or; 2) 6-
hydroxydopamine (6-OHDA). Intranigral 6-OHDA injections in the double graft group
resulted in a significant reversal of behavioural recovery, which was not exhibited by any
of the other groups. Robust surviving THir intranigral grafts were observed in double
grafted animals with subsequent vehicle injections compared to only small grafts in
animals with subsequent 6-OHDA injections. This experiment demonstrates that the
intranigral graft has an important role in the recovery of double grafted animals.

The results of the above two experiments may have important clinical relevance
to the treatment of PD. The finding that non-fetal-derived cells (hNT neurons) can be
survive and express TH in vivo may diminish our dependency on fetal tissue. Based on
the work here and in previous studies by our laboratory that double grafts can restore
DAergic reinnervation of the striatum and substantia nigra and that the nigral target is
critical for behavioural recovery suggests that the double graft strategy may increase the
functional efficacy of neural transplantation for PD.
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Chapter 1:

Introduction

Parts of this chapter have been taken from works published in Brain Research Reviews
(2000) 32: 328-339 and the Dalhousie Medical Journal (1998) 26: 25-32.

1
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Overview and hypotheses

Parkinson's disease (PD) is a severe neurodegenerative disorder resulting from
the selective loss of the dopaminergic neurons of the substantia nigra pars compacta
(SNc). Degeneration of these neurons leads to a dramatic reduction in dopamine (DA)
levels in the striatum, which is the main target of the DAergic SNc neurons. The
mainstay of treatment for PD, involves the administration of the precursor to DA
biosynthesis, L-3.4-dihydroxyphenylalanine. Although L-Dopa is initially effective in
alleviating parkinsonian manifestations, the beneficial effects of L-Dopa often wear off
with time and there is the development of neuropsychiatric symptoms, motor fluctuations
(the ‘on-off” phenomenon) and abnormal movements or dyskinesias (Olanow et al.,
1996). Intractable side effects and the decreased efficacy of medical (drug) therapy for
PD over the long-term has stimulated the search for surgical alternatives for the treatment
of this devastating disorder. Of the surgical options currently being investigated, neurai
transplantation holds the greatest potential of a cure for PD. The results of clinical trials
reported thus far on neural transplantation are promising but several issues need to be
addressed before neural transplantation can be viewed as a treatment strategy for PD
(Olanow et al., 1996; Mehta et al., 1997). [n the present work, two critical issues in
neural transplantation have been investigated: 1) the use of alternative sources to fetal
tissue for neural transplantation of DA-rich cells; and 2) the optimal target site(s) for
neural transplantation.

My work has focussed in testing the following hypotheses in an attempt to answer

the questions stated above.



1) That hNT neurons, derived from a human teratocarcinoma cell line (NT2) can be
used for neural transplantation in the rat model of PD.
2) Reinnervation of the substantia nigra is important in a simultaneous intrastriatal

and intranigral (double graft) grafting strategy in the rat model of PD.

Parkinson’s disease

In 1812, James Parkinson first described a disorder characterized by bradykinesia,
gait and speech disturbances, tremor and a flexed posture, which became known as
Parkinson’s disease (Youdim and Riederer, 1997). Presently. PD afflicts approximately
1% of the Canadian population over the age of 60. PD results from the selective loss of
the dopamine (DA)-containing neurons, most predominantly being the DAergic neurons
of the SNc, that project predominantly to the striatum and are important in motor
function. When >80% of the neurons of the SNc have degenerated, the cardinal
symptoms of PD begin to emerge (Olanow et al.. 1996).

The cause of PD is currently unknown, but an [talian-American family has
recently been discovered in which their form of early-onset PD is inherited, and appears
to result from mutations in the a-synuclein gene (Polymeropoulos et al., 1997,
Papadimitriou et al.. 1999). Transcription of the a-synuclein gene liberates a protein that
has been hypothesized to integrate presynaptic signalling and be involved in membrane
trafficking (Clayton and George, 1999). Deletions or point mutations in the parkin gene,
which transcribes a protein of unknown function, involved in the expression of autosomal

recessive juvenile-onset Parkinsonism have also recently been identified in patients of



North African, European and Japanese descent (Hattor et al., 1998; Kitada et al., 1998;
Leroy et al., 1998; Abbas et al., 1999; Shimura et al., 1999). However, alterations of
a-synuclein or parkin expression have not been found to be universal to all PD cases
(Parsian et al., 1998; Wang et al., 1998; Lin et al., 1999; Scott et al., 1999; Shimura et al.,
1999).

In 1983, Langston and colleagues reported on the sudden onset of PD-like
symptoms in a group of 4 catatonic patients in California (Langston et al., 1983). Upon
further investigation it was discovered that each of these patients had developed
Parkinsonism following self-administration of a designer drug (Langston et al., 1983). In
the production of that designer drug, a neurotoxic side-product had formed, 1-methyl-4-
phenyl-tetrahydropyridine (MPTP). MPTP was discovered to be a selective neurotoxin.
destroying the DAergic neurons within the nervous system and has since been used in the
production of animal models of PD. When this neurotoxin was identified, researchers
hypothesized that PD may develop after years of exposure to environmental toxins.
Many studies have investigated whether there may be regional differences in PD
distribution or more specifically, whether there was an increased incidence of PD in
relation to a particular geographical region, occupation, drinking water, as well as other
possible factors (Semcuk et al.. 1995; Seidler et al.. 1996; Marder et al., 1998; Gorell et
al.. 1999). Thus far, the data obtained in those studies remains inconclusive as to whether
there may be a strong correlation between any of those factors and the incidence of PD.
Until the cause of PD is known, many researchers are studying ways in which to lessen
the degree of disability in this patient population. The most predominant treatment

modality currently in use is pharmacological therapy using L-Dopa.



Pharmacological treatment of PD

Since the 1960’s, the mainstay treatment for PD has involved the elevation of DA
levels through the administration of Sinemet®, a combination of L-Dopa and carbidopa.
L-Dopa, unlike DA readily crosses the blood brain barrier where it is enzymatically
converted to DA by DOPA decarboxylase (DDC) within the remaining DAergic neurons
and carbidopa inhibits DDC activity within extracerebral regions (Kopin, 1994). L-Dopa
administration is initially effective in relieving bradykinesia, rigidity and tremor, the
main symptoms in PD, however the clinical benefits of L-Dopa decrease with long-term
use and side effects often develop, which include dyskinesias and motor fluctuations, the
“on-off phenomenon” (Marsden and Parkes, 1977). With time, the length of time in the
*off” phase. a period of akinesia, increases and the “on’ phase, a period of activity,
decreases and is associated with severe dyskinetic or abnormal movements (Marsden and
Parkes. 1977). That reduction in clinical efficacy results from the continued progression
of the disease and further degeneration of the DAergic SNc neurons. Furthermore,
evidence has been compiled to suggest that L-Dopa may increase disease progression by
increasing DA toxicity, where free radicals are generated through the autoxidation of DA
(Mena et al.. 1992; Chiueh et al., 1994; Smith et al., 1994; Pardo et al., 1995).

Several other pharmacological treatments are currently being investigated
clinically, to slow the progression of the disease process or treat Parkinsonism.
Selegiline® or deprenyl, a monoamine oxidase type B (MAOQOg) inhibitor, is effective in
slowing the progression of the disease, increasing the time between positive diagnosis
and requirement of L-Dopa treatment, and in providing some amelioration of

Parkinsonian deficits (Parkinson Study Group, 1989; 1993; Tetrud and Langston, 1989;



Alain et al., 1991; LeWitt and the Parkinson Study Group, 1991; Lieberman and Fazzini,
1991; Myllyld et al., 1991; 1992; Brannan and Yahr, 1995;). Aside from depreny!’s
ability to enhance DA levels in the synaptic cleft, evidence has been compiled suggesting
that deprenyl may also be neuroprotective, independent of its ability to inhibit MAOg and
the degradation of DA (Ansari et al., 1993; Tatton, 1993; Ju et al., 1994; Mytilineou et al.,
1997). possibly by suppressing the generation of free radicals and oxidative stress or by
inducing superoxide dismutase activity (Cohen and Spina, 1989; Salo et al., 1992; Chiuch
et al.. 1994; Gerlach et al., 1994; Kitani et al., 1996; Tatton and Chalmers-Redman, 1996;
Wu et al.. 1996). Deprenyl has also been observed to enhance ciliary neurotrophic factor
expression by astrocytes (Seniuk et al., 1994). Catabolism of depreny! in the liver
liberates methamphetamine (Karoum et al., 1982; Engberg et al., 1991; Sziriki et al.,
1994), which enhances DA neurotransmission and may also provide some clinical
benefit. Administration of deprenyl does not prevent the progression of the disease or the
eventual need for L-Dopa therapy. The ability of other drugs to alleviate Parkinsonian
symptoms is presently being clinically investigated.

Other pharmacological therapies currently being evaluated in PD can be divided
into 3 main categories: glutamate and acetylcholine antagonists, and DA agonists.
Antagonists of the N-methyl-D-aspartate (NMDA) glutamate receptor have been
observed to be effective in reducing L-Dopa-induced dyskinesias and motor fluctuations
(Verhagen-Metman et al., 1998a; 1998b). Although no serious side effects in those
studies have been reported, further long-term studies are needed to evaluate the safety
and efficacy of NMDA antagonists. Anti-cholinergics have been successful in reducing

tremor but not akinesia or rigidity (Wasielewski et al., 1998; Schrag et al., 1999).



Furthermore, anticholinergic treatment has been linked to the appearance of dementia in
PD patients (Nishiyama et al., 1993; Pondal et al., 1996). The ergot derivatives
(bromocriptine, lisuride, pramipexole, ropinirole and pergolide) are agonists of the D
DA receptor and are effective in alleviating Parkinsonian symptoms, but unfortunately
for only short periods of time (1 year or less) in the majority of cases (Pezzoli et al.,
1995; Bayulkem et al., 1996; Guttman, 1997; Lieberman et al., 1997; 1998; Alarcon et
al.. 1998; Brooks et al., 1998; Korczyn et al., 1998; Barone et al., 1999). No severe side
effects were noted. Unfortunately, bromocriptine does not provide long-term benefit and
in more advanced PD cases, the simultaneous treatment of PD with L-Dopa and
bromocriptine affords no significant benefit over L-Dopa treatment alone (Alarcon et al.,
1998). Furthermore, the administration of apomorphine (a D\/D> DA receptor agonist) in
low doses has been observed to significantly ameliorate PD symptoms for up to 66
months, however the quality of *off” time and the intensity of dyskinesias remain
unaffected (Pietz et al., 1998; Ondo et al., 1999).

Overall, the above treatments are effective to varying degrees in treating PD or
slowing disease progression with some drugs being more effective than others in
alleviating specific subsets of parkinsonian symptoms. In the case of bromocriptine,
clinical benefits are short-lived. The administration of the other ergot derivatives,
apomorphine or NMDA antagonists are still in the early stages of clinical tnals and
further long-term studies of their effectiveness and safety in PD patient’s are required.
Therapeutic strategies involving anticholinergics and L-Dopa quite often lead to the
emergence of adverse side effects with long-term use. Currently, neurosurgical strategies

are receiving increased attention for the possible treatment of PD. Several different



strategies are currently being investigated. To fully understand the rationale for the
various neurosurgical techniques being tested, a brief review of the anatomy and

physiology of the basal ganglia in normal and Parkinson states follows.

Basal ganglia anatomy and physiology in normal and Parkinson states

The striatum is comprised of the caudate nucleus and the putamen and receives
topographically-organized motor-related inputs from the motor, supplementary motor,
association motor and somatosensory cortices as well as the frontal eye fields (Kunzle
1975; 1977: Kunzle and Akert, 1977; DeLong et al., 1986). However, the motor cortices
innervate several other basal ganglia nuclei as well. The motor, premotor and
somatosensory cortices project predominantly to the putamen, and the association
cortices to the caudate nucleus (DeLong et al., 1986). The descending glutamatergic
corticostriatal projections are excitatory upon striatal neurons (Kaneko & Mizuno, 1988),
which in tumm provide y-aminobutyric acidergic (GABAergic) efferent innervation of both
internal (GPi) and external segments (GPe) of the globus pallidus (Loopujit and Van Der
Rooy, 1985; Rajakumar, et al., 1994) and the substantia nigra (Loopujit and Van Der
Rooy. 1983).

PD pathology is marked by degeneration of the nigrostriatal pathway comprised
of the DAergic substantia nigra pars compacta (SNc) neurons projecting to the striatum.
The SNc receives excitatory innervation from motor and frontal cortices (Carter, 1982;
Schmidt, 1995) along with inputs from the amygdala, dorsal raphe nucleus (Vertes, 1991)
laterodorsal and pedunculopontine tegmental nuclei (Clarke et al., 1987; Gould et al.,

1989; Semba and Fibiger, 1992; Lavoie and Parent, 1994). DA released from the



nigrostriatal axons, binds to D, and D5 receptors in the striatum. D, receptors are
predominantly located upon striatonigral neurons, whereas D receptors are localized to
striatopallidal neurons (Robertson, 1992a; Robertson et al., 1992). Stimulation of
striatonigral D, receptors induces the release of GABA within the substantia nigra
(Robertson, 1992a; O’Conner, 1998). Stimulation of D receptors on the tonically-active
striatopallidal neurons inhibits the release of GABA within the GPi and GPe (Loopujit
and Van Der Rooy. 1985; Rajakumar et al., 1994; O’Connor, 1998) (Figure 1.1). The
sclective death of the DAergic projections upon the striatum would effectively abolish the
inhibitory drive of the striatum upon the substantia nigra and prevent the inhibition of
striatopallidal neurons (Figure 1.2).

Within the indirect pathway (striatum — GPe — STN — GPi — thalamus), both
projections from the GPe to the STN and GPi to the thalamus are inhibitory upon the
excitatory glutamatergic neurons comprising those nuclei (Kaneko and Mizuno, 1988,
Smith and Parent, 1988; Schmidt, 1995). An interesting and important feature of the basal
ganglia-motor circuit arises when considering the inhibitory pallidothalamic and
pallidosubthalamic projections. The tonically-active GABAergic neurons projecting
from the striatum to the GPi and GPe inhibit the GABAergic neurons of those structures
under resting conditions. This in turn leads to the increased excitatory drive of the
subthalamic nucleus upon the GPi and increased inhibition of thalamocortical efferents
(Schell and Strick. 1984; Nambu et al., 1988). Within the direct pathway (striatum —
SNr — thalamus), striatonigral efferents remain underactive and the tonically-active
nigrothalamic pathway continues to have an inhibitory influence upon the thalamus

(Kilpatrick et al., 1980; MacLeod et al., 1980; Kemel et al., 1988). During periods of



voluntary movement, D> stimulation inhibits the striatopallidal pathway disinhibiting
pallidothalamic and pallidosubthalamic pathways, allowing for the release of GABA
within the subthalamic nucleus via GPe projection neurons. Stimulation of the
striatonigral pathway would enhance GABA transmission within the SN, releasing the
inhibitory drive of pars reticulata neurons upon the thalamus and other nuclei such as the
superior colliculus, reticular formation and pedunculopontine tegmental nucleus
(DiChiara et al., 1979; Kemel et al., 1988; Ficalora and Mize, 1989; Spann and Grofova,
1991; Bickford and Hall, 1992; Yasui et al., 1996). Overall, the net effect would be that
the tonically-active thalamocortical neurons would be released from inhibition and free to
fire upon cortical neurons allowing for the continuance of motion (Figure 1.1).

With the loss of the DAergic nigrostriatal efferents, the circuit closely resembles
that of the resting condition even during periods of planned motor activity. With
decreased striatal innervation by the SNc, inhibition of the SNr decreases and inhibition
of the GPi and GPe remains (Figure 1.2). The constant inhibitory drive upon the GPe by
the striatum results in the continual firing of STN neurons and thus, tonic excitation of
GPi neurons. which in turn inhibit the thalamocortical projection neurons. Within the
direct pathway there is decreased inhibition of tonically-active GABAergic nigrothalamic
neurons. leading to increased inhibitory drive upon the thalamus. Thus, the overall
activity of direct and indirect pathways has a net inhibitory drive upon the thalamus
reducing excitation of motor cortical areas and preventing the continuance of motion
(Albin et al.. 1989) (Figure 1.2). This notion has been verified in Parkinsonian patients
(Rascol et al., 1992). Aside from tonic inhibition of the STN by the GPe, recent evidence

suggests that in PD patients there is also increased excitation of STN by the motor cortex



and parafascicularis nucleus of the thalamus (Levy et al., 1997), which would further
enhance the excitatory influence of the STN upon the GPi.

An explanation for Parkinsonian tremor closely relates to the abnormal
physiology of basal ganglia nuclei and their pathways. Subsets of thalamic (Lenz et al.,
1995) and GPi neurons (Hutchinson et al., 1997) have a firing rate at tremor frequency in
PD patients. The thalamic neurons lie anterior to the principal somatosensory nucleus,
ventralis caudalis, in an area identified as the optimal site for placement of lesions to
alleviate Parkinsonian tremor (Lenz et al., 1995).

The above model implicates the primary involvement of two structures in the
hypokinetic/akinetic and rigidity characteristics of PD; the STN and GPi. Two surgical
procedures have been incorporated to inactivate those overactive basal ganglia structures.
ablation and high-frequency stimulation. Ablation and high-frequency stimulation of the
thalamus has been observed to be mainly effective in treating tremor-dominant
Parkinsonism. In contrast. elevation of striatal DA levels and reconstitution of basal
ganglia anatomy and physiology through the transplantation of DA-rich tissue sources
into the brains’ of PD patients may offer the greatest opportunity of a cure for this

debilitating disorder.



Figure 1.1 Simplified schematic representation of basal ganglia circuitry and activity
during periods of active movement in humans. SNc = substantia nigra pars compacta;
SNr = substantia nigra pars reticulata; GPi = internal segment of the globus pallidus; GPe
= external segment of the globus pallidus; STN = subthalamic nucleus; D, and D> = D,
and D» dopamine receptors; thick arrows = increased activity; thin arrows = reduced

activity.
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Figure 1.2. Simplified schematic representation of basal ganglia circuitry and activity
during periods of active movement in patients with Parkinson’s disease. Broken arrows
= degenerated nigrostriatal pathway; see the legend of Figure 1.1 for further explanation

of abbreviations.
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Neurosurgical strategies for the treatment of PD
Thalamic Lesions and Stimulation

Stereotactic thalamotomy was the main treatment for PD until the late 1960’s and
largely disappeared as a therapeutic option with the introduction of L-Dopa (Tasker et al.,
1983). Thalamotomy is an ablative procedure that involves lesioning areas of the
thalamus comprised of neurons displaying tremor-like bursting activity, primarily the
ventral intermediate nucleus (Vim) or ventrolateral nucleus ot the thalamus (Lenz et al.,
1995) in PD patients. Ablation of the Vim appears to ameliorate Parkinsonian tremor.
Tasker and colleagues reported in 1983 that Vim thalamotomy had abolished tremor in
82% of 75 subjects at 2 years postoperatively. There was no observed reduction in
movement or speech deficits and only 7% of the patients presented persistent
complications. One year later, Matsumoto and coileagues (1984) reported on the long-
term follow-up (mean = 4.2 years) of 78 PD patients who underwent uni- or bilateral
ventrolateral thalamotomy. I[n 44 of these patients, no progression of the disease was
noted and in some patients there was a decrease in the L-Dopa dose administered. No
results were reported by this group concemning the extent of postoperative tremor.

[n more recent clinical trials, unilateral lesions of the Vim of the thalamus
decreased contralateral tremor in 100% of patients at 3 months postoperatively (Boecker
etal.. 1997) and in 86% of patients upon a 13 year follow-up (Jankovic et al., 1995). In
the latter study. the daily dose of L-Dopa administered had decreased in 35 of the 42
patients. In this study, postoperative complications were noted which included
contralateral weakness, dysarthria, and confusion. Bilateral thalamotomies are associated

with cognitive and speech disturbances and increased morbidity (Koller et al., 1997).
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The high percentage of patients presenting immediate (58%) and persistent (23%)
postoperative complications (Jankovic et al., 1995) demonstrates the need for an
alternative treatment of Parkinsonism in patients with medically intractable tremor. An
alternative to Vim thalamotomy is high-frequency thalamic stimulation, which reduces
the trequency of postoperative complications by being reversible.

[n 1987, Benabid and colleagues (1991) were the first to apply high-frequency
electrical stimulation of the thalamus for the treatment of PD and observed a significant
decrease in the severity of postoperative tremor. The mechanism by which high-
frequency stimulation inactivates a brain structure remains unknown. Several recent
studies have observed a significant decrease in tremor at 3 (Hubble et al., 1997; Koller et
al.. 1997), 6 (Defebvre et al., 1996) and 10 months (Pfann et al., 1996) and 1 (Koller et
al.. 1997) and 8 vears (Benabid et al.. 1996) following high-frequency stimulation of the
Vim. Although the severity of postoperative tremor was reduced, thalamic stimulation
has little beneficial effect on gait, bradykinesia or rigidity (Benabid et al., 1996; Defebvre
et al., 1996). In one study, 31.6% of patients undergoing this procedure demonstrated
minor reversible side effects (Benabid et al., 1996). In this same study, the researchers
reported a 30% reduction in L-Dopa dosages as compared to preoperative levels. Thus,
thalamic stimulation is a safer procedure than thalamotomy and is effective at reducing

the frequency of tremor and is most beneficial for patients exhibiting a tremor-dominant

form of PD.

Globus pallidus lesions and stimulation

[n Sweden during the 1950's, Lars Leksell improved upon an experimental
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surgical technique used in the 1930's for the treatment of PD, known as pallidotomy
(Laitinen et al., 1992). This surgical procedure involves inactivation of the globus
pallidus, which exhibits abnormal physiological activity in the Parkinsonian brain (Sterio
et al, 1994). Early lesions of the posteroventral GPi by Leksell greatly reduced resting
tremor, rigidity and bradykinesia in PD patients (Laitinen et al., 1992). Early
pallidotomies by Leksell and others were met with a variety of side effects, including
homonvmous hemianopsia, transient dysphasia and transitory hemiparesis. Despite the
dramatic alleviation of motor abnormalities, the side effects led to the abandonment of
this technique as a therapeutic option for the treatment of Parkinsonism.

With the advent of more advanced technology (ie., imaging techniques) and
improved surgical techniques (ie., computerized tomography-guided stereotactic
surgery), the possible treatment of PD by pallidotomy has resurfaced (Laitinen et al,,
1992). Since 1985, many PD patients have received this procedure for the treatment of
their Parkinsonian symptoms. Many researchers have observed a dramatic improvement
in speech and rigidity, and reduced time in the "off" state as well as the severity and
frequency of L-Dopa-induced dyskinesias up to 1 (Laitinen et al., 1992; Dogali et al.,
1993: facono et al., 1995; Lozano et al., 19935; Sutton et al., 1995; Baron et al.. 1996;
Kishore et al.. 1997; Kopyov et al., 1997a; Krauss et al., 1997; Lang et al., 1997,
Soukoup et al.. 1997) and 4 years (Fazzini et al., 1997) postoperatively. Pallidotomy has
been demonstrated to only occasionally result in a reduction of anti-Parkinsonian
medications and is less effective than thalamotomy for the treatment of tremor-dominant
PD (Tasker et al., 1997), although Laitinen and colleagues (1992) reported an almost

complete abolishment of tremor in 81% of patients.
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Stimulation of the GPi for Parkinsonian symptoms has recently been incorporated
as an alternative to GPi pallidotomy for the treatment of this disease. Pallidal stimulation
involves high-frequency stimulation of the venteroposterolateral GPi which effectively
inactivates this structure, in comparison to low-frequency stimulation which results in
enhancement of motor symptoms (Gross et al., 1997). As mentioned above, GPi
pallidotomy is occasionally met with varying transient and long-term side effects due
primarily to the close proximity of the optic tract to the GPi (Laitinen et al., 1992; Hanz
and DeSalles, 1997). GPi stimulation is beneficial by being reversible in that the
microelectrode can easily be repositioned if incorrectly placed. This was demonstrated
by Gross and colleagues (1997), where a patient reported a transient flash of light when
the stimulator was turned on, suggesting incorrect positioning of the electrode near the
optic tract.

[n the clinical studies reported thus far there has been a demonstrated reduction in
akinesia, rigidity, as well as decreased gait and speech disturbances up to 3 years
postimplantation (Siegfried and Lippitz. 1994; Davis et al., 1997; Gross et al., 1997,
Limousin et al., 1997; Pahwa et al., 1997; Tronnier et al., 1997). Gross and colleagues
(1997) reported a decrease in tremor in 4 of 5 patients up to 3 years postimplantation,
whereas other groups failed to report any changes or reduction in the frequency of tremor
(Davis et al., 1997; Limousin et al., 1997; Pahwa et al., 1997). A similar reduction in
rigidity and akinesia has been reported in MPTP-treated monkeys following GPi
stimulation (Boraud et al., 1996). Thus. it appears that GPi stimulation is similar to
posteroventral pallidotomies in that both procedures inactivate the GPi and similarly

reduce akinesia, rigidity and improve gait and speech disturbances. However, only GPi



stimulation is reversible.

Subthalamic nucleus

The results described above demonstrate that inactivation of the Vim is generally
only effective in reducing the frequency and severity of tremor in PD patients, whereas
tnactivation of the ventroposterolateral GPi is generally ineffective in reducing tremors
but is effective in improving overall motor function. Those observations led to the
identification of the STN as another possible important target site for inactivation. That
hypothesis is supported by the observation that STN neurons display a tremor-like
bursting frequency in PD patients (Rodriguez et al., 1998) and inactivation of that
nucleus in MPTP-treated monkeys, offers significant alleviation of tremor and an overall
enhancement of motor function (Wichmann et al., 1994; Guridi et al., 1996). Those
findings have led to clinical trials into the ability of subthalamic inactivation in treating
parkinsonism. The results reported thus far, indicate that either subthalamotomy or high-
frequency subthalamic stimulation is effective in improving overall motor function and
reducing tremor and required L-Dopa dosages up to 18 months postimplantation (Krack
et al.. 1997a; 1997b; 1998a; 1998b; Kumar et al., 1998a; 1998b; 1999; Limousin et al.,
1998 Brown et al., 1999; Moro et al., 1999; Yokoyama et al., 1999). Thus, inactivation
of the STN appears to be a technique that can be applied to a wide range of PD patients,
however this technique is only in its infancy and further studies are required to evaluate

the efficacy of STN inactivation in treating parkinsonism over longer periods of time.



Neural transplantation

Pallidotomy / pallidal stimulation and thalamotomy / thalamic stimulation are
surgical techniques that can only be applied to certain subsets of the PD patient
population. Unfortunately, lesions within the STN are irreversible and the long-term
effects of such lesions on patients have yet to be determined. On the other hand,
subthalamic stimulation may be the favoured technique in the future as it is reversible,
however over time the effectiveness of high-frequency stimulation in controlling
parkinsonian symptoms may deteriorate as has occasionally been observed with GPi
stimulation, resulting in frequent programming of the stimulator (Gross et al., 1997,
Pahwa et al., 1997). The above techniques have proved somewhat effective in treating
PD. however the greatest opportunity of a cure for PD may involve neurosurgical

restoration of the nigrostriatal pathway.

Animal experiments and clinical studies

The first attempt to transplant neural tissue from one organism to another was
reported in 1890 (Thompson, 1890). In 1890, Thompson reported on what he referred to
as the “successful” transplantation of feline cerebral cortical tissue into the cortex of
dogs. Unfortunately that study was done before the advent of immunosuppressive
therapies and the cortical grafts failed to survive. The first description of surviving
ncuronal grafts following transplantation was reported in 1905 (Saltykow, 1905). It was
reported that replantation of adult rabbit cortical autografts survived for up to 8 days
(Saltykow. 1905). Twelve years later the first clear evidence of interanimal neuronal

tissue survival was reported by Dunn (Dunn, 1917). In that study, rat neonatal cortical
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tissue was transplanted into cavities created within the cortices of littermates. Dunn’s
study (1917) was important in providing some evidence that the age of the donor tissue
and blood vascularization of the grafts may correlate with increasing cell survival. In
1940, the first attempt of fetal tissue transplantation was made (Le Gros Clark, 1940). [n
that study. Le Gros Clark suggested that, fetal grafts may have the best potential to
reestablish host architecture. The notion that transplanted neural tissue is capable of
innervating adjacent tissue was demonstrated by May (1949). In that study May (1949)
cotransplanted muscle and cerebellar tissue in the anterior chamber of the mouse eye.
Grafted cerebellar fibers were clearly seen to innervate adjacent mucle tissue (May,
1949). Halasz and colleagues (1963; 1965) later reported that transplantation of pituitary
gland within the medial basal hypothalamus of hyophysectomized rats reversed the
endocrine deficits in those animals following hypophysectomy (Halasz et al., 1963;
1965). Those two studies were the first to demonstrate that grafted tissue has the ability
to induce functional effects in the host animal. [t was well-established by the late 1970's
that fetal grafts integrated well within the host brain. reconstituted damaged pathways
and reinnervated denervated regions of the brain (Das, 1974; Bjérklund et al., 1976;
1979; Bjorkiund & Stenevi, 1977; 1979; Lund and Hauscha, 1979). The positive results
obtained in those experiments, provided the framework for applying fetal tissue
transplantation to animal models of neurodegenerative disorders.

By the early 1980’s, many studies reported the recovery of sensorimotor deficits
following transplantation of fetal DAergic tissue in the DA-depleted striatum of the
6-hydroxydopamine (6-OHDA) rat model of PD (Perlow et al., 1979; Bjérklund et al..

1980; Freed et al., 1980; Dunnett et al., 1981a; 1981b; 198ic; 1983a; 1983b). The study



by Perlow and colleagues (1979) demonstrated that DAergic tissue was required for
functional benefit, as intrastriatally grafted sciatic nerve afforded no significant benefit.
Furthermore, they also reported for the first time, the long-term survival and functional
benefits of intrastriatal tetal nigral grafts (10 months) in the lesioned rat. During this
period, Freed and colleagues (1981) reported that intrastriatal grafts of adrenal medullary
(AM) tissue as a source of catecholaminergic cells also produced functional benefit in the
rat model of PD although graft survival was poor. The main rationale for using AM
tissue in neural transplantation was that the tissue could be harvested from the patient’s
own body. thereby circumventing the ethical issues and the need for immunosuppressive
therapies that accompany fetal tissue use.

The first attempts at neural transplantation in PD sutferers involved the use of
AM tissue. The first transplantation of autologous AM cells into the caudate nucleus of a
parkinsonian patient was carried out in Sweden in 1982. Although no serious side effects
were noted. only moderate motor benefits were observed and only for a short period of
time (Backlund et al., 1985). In a subsequent study, only minor improvements in motor
function were again exhibited by two PD patients with intraputaminal AM autografts
(Lindvall et al., 1987). The most dramatic alleviation of parkinsonian symptoms
following unilateral transplantation of an AM autograft into the striatum was reported by
Madrazo and colleagues (1987). At 5 months posttransplantation, all anti-parkinsonian
medications were discontinued in one patient, rigidity and akinesia were absent
bilaterally and tremor was significantly attenuated. Although those findings attracted
great interest, 11 patients had received AM autografts but only the results of 2 patients

were actually reported. Of the remaining 9 patients, 2 had died with no evidence of graft



survival (Mehta et al., 1997). Following those positive results published in 1987, many
more trials were conducted into the efficacy of AM autografts in treating parkinsonism,
but none of those studies were able to replicate the findings of Madrazo and colleagues
(Allen et al., 1989; Bakay, 1989; Goetz et al., 1989; 1991; Kelly et al., 1989; Apuzzo et
al., 1990; Flores, 1990). In 1989, a study comparing AM grafts to fetal nigral grafts was
conducted in the rat model and demonstrated that grafted nigral cells exhibited better
survival and provided longer-lasting functional benefit than AM grafts (Brown and
Dunnett. 1989). In a study published a year later, AM cells were reported to switch from
their catecholaminergic phenotype in vivo (Waters et al., 1990). Those results largely led
to the abandonment of clinical studies e-valuating the efficacy of AM autografts in PD.
Neural transplantation research then shifted its focus to evaluating the feasibility of using
fetal nigral grafts to alleviate parkinsonism.

Since the early studies on fetal nigral transplantation in the rat model of PD, many
studies have demonstrated the survival of intrastriatal DAergic grafts within the host brain,
restoration of DA agonist-induced rotational asymmmetry (Bjoérklund et al., 1980; Dunnett
et al.. 1981b; 1986; Brundin et al., 1988; Robertson et al., 1991; Nikkhah et al., 1993;
Olsson et al.. 1995; Mendez et al., 1996; Apostolides et al., 1998), reinnervation of the DA-
depleted striatum by graft-derived THir fibers (Bjorklund et al., 1980; Dunnett et al., 1981a;
1981b; 1981¢; Bjorklund et al., 1983; Brundin et al., 1988; Rioux et al., 1991; Mendez et al.,
1996; Apostolides et al., 1998; Mehta et al., 1998) and the formation of synaptic contacts
between those fibers and host striatal neurons (Freund et al., 1985; Clarke et al., 1988;
Nishino et al., 1990; Mendez et al., 1991; 1992). Furthermore, normalization of DA levels

in the striatum (Schmidt et al., 1983; Nishino et al., 1990; Moukhles et al., 1994; Reum and
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Morgenstern, 1994, Earl et al., 1996; Hashitani et al., 1998), and partial to complete reversal
of biochemical deficits is often observed in striatal neurons following intrastriatal nigral
transplantation (Cadet et al., 1991; Segovia et al., 1991; Sirinathsinghji and Dunnett, 1991;
Mendez et al., 1992; 1993; Bal et al., 1993; Cenci et al., 1993; Abrous et al., 1994; Zeng et
al.. 1996).

Although those studies are very promising, the rat model of PD does not closely
resemble the human parkinsonian condition. A non-human primate model of PD was
developed with symptoms more closely resembling the human condition. MPTP-treated
parkinsonian monkeys develop the cardinal symptoms of PD: bradykinesia, tremor and
rigidity. Thus an animal model was available more closely resembling the human
condition in which to possibly evaluate the safety and efficacy of fetal nigral tissue
transplantation in non-human primates. [n the mid-1980’s, a few studies were published
suggesting that transplantation of fetal DAergic tissue to the striatum of MPTP-treated
monkeys provided significant improvement in parkinsonian symptoms (Redmond Jr et
al., 1986; Sladek Jr et al., 1986; 1987, 1988) and provided a strong rationale for in which
to commence clinical trials in human PD patients.

In 1987, the first report of fetal tissue transplantation in a PD patient was published
(Jiang et al., 1987). Since that first report over 200 patients have since received fetal nigral
transplants in several clinics around the world (Hitchcock et al., 1988; Lindvall et al., 1988;
1989; 1990; 1992; 1994; Madrazo et al., 1988; 1990a; 1990b; Freed et al., 1990; 1992;
Henderson et al., 1991; Spencer et al., 1992; Widner et al., 1992; Peschanski et al., 1994,
Wu etal., 1994; Freeman et al.. 1995; 1997; Kordower et al., 1995; 1996; 1997; Lopez-

Lozano et al., 1995; 1997; Defer et al., 1996; Kopyov et al., [997b; Levivier et al., 1997,
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Wenning et al., 1997; Lindvall, 1998; Bluml et al., 1999; Hagell et al., 1999; Hauser et al.,
1999). In 1988, Lindvall and colleagues reported on their experience with the transplantation
of 8-10 week old fetal ventral mesencephalon (FVM) in the caudate nucleus and putamen of
2 immunosuppressed patients with advanced Parkinson's disease (Lindvall et al., 1988). In
that tnal, the patients exhibited improved speed of movement and motor readiness
potentials. Postiron emission tomography (PET) scans demonstrated a slight increase in
flourodopa uptake in the grafted striatum [-year posttransplantation, suggesting survival of
the DAergic gratt (Lindvall et al., 1989). Lindvall and colleagues made minor adjustments
to the transplantation technique and in a subsequent study reported a significant
improvement in rigidity, reduced time spent in the *“off”" pertod and increased fluorodopa
uptake as evidenced on PET scans, 8 months following transplantation (Lindvall et al..

1990).

In 1992, three important studies were reported demonstrating functional benefit and
survival of DAergic grafts. In the first study. Spencer and colleagues (1992) transplanted
cryopreserved 7-11 week gestational age solid fragments of fetal tissue unilaterally into the
caudate nucleus of 4 immunosuppressed PD patients. In that study, it was reported that there
was significant bilateral improvement in motor tasks and activities of daily living (ADL) by
the patients. In the second study, Freed and colleagues (1992} transplanted 5 patients
bilaterally with solid fetal nigral grafts and 2 others received unilateral grafts, with every
other patient receiving immunosuppressive therapy. All 7 patients reported improvement in
ADL functions and 5 showed improvement on the neurological exam and at least 1 patient
exhibited a significant increase in fluorodopa uptake at 46 months following grafting. [n the

third study. Widner and colleagues (1992) reported on the results of 2 bilaterally



transplanted patients (6-8 weeks gestational age VM tissue) with MPTP-induced
parkinsonism. In those patients there was a significant improvement in motor function and

increased fluorodopa uptake.

Another important study was published by Freeman and colleagues in 1995. Four
PD patients received bilateral transplants of fetal nigral tissue in the putamen. A significant
enhancement of performance on the Unified Parkinson’s Disease Rating Scale and
fluorodopa uptake on PET scans were reported. The most compelling evidence for graft
survival and striatal reinnervation was reported following the unfortunate death of one of the
patients from causes unrelated to the transplantation surgery, 18 months following
transplantation (Kordower et al., 1995; 1996; 1997). Immunocytochemical analyses of the
brain. revealed that there were more than 200.000 surviving THir cells within the graft and
extensive reinnervation of the host putamen in a patch-matrix fashion by THir fibers.
Electron microscopy revealed numerous synaptic contacts between grafted and host
neurons. Sustained clinical recovery and continued reductions in L-Dopa dosages
administered have been reported for more than 5 years posttransplantation (Lopez-

Lozano et al., 1997; Wenning et al., 1997; Hagell et al., 1999).

Issues to be resolved in neural transplantation

Although the clinical findings thus far are promising, neural transplantation remains
an experimental procedure. Several issues have been identified that need to be resolved
before neural transplantation can be considered a routine therapeutic procedure for the
treatment of PD (Olanow et al., 1996; Mehta et al., 1997). Generally, these issues include

the relative short supply of fetal tissue and the optimal tissue age for transplantation.



Furthermore, as with any type of human-human transplant, there is always the risk of
disease transmission and graft immunorejection. Based on animal studies, the appropnate
age of the donor tissue is generally known (Simonds and Freed, 1990; Brundin et al., 1986;
Kondoh et al, 1996; Annett et al., 1997) and the probability of graft rejection can be lessened
with chronic administration of immunosuppressants (Brundin et al., 1988). However, there
is serious concern and questions surrounding the duration of time the immunosuppressive
therapy should be maintained following transplantation. as the aging patient is vulnerable to
infection and the immunosuppressant itself (Cyclosporine-A) has harmful side effects
(Bennett, 1998). The risk of disease transmission is minimal as the tissue is carefully
screened for viral pathogens prior to transplantation (Mehta et al., 1997). Although the
above issues are generally well controlled the relative short supply of suitable tissue for
transplantation limits the likelihood of neural transplantation to be incorporated as a routine
treatment strategy for neurological disorders. There is also poor survival of DAergic cells in
the host brain following transplantation (Bjorklund et al., 1980; Dunnett et al., 1981a;
1981b; Apostolides et al., 1998; Mehta et al., 1998). Although increasing DAergic neuron
survival is crucial for clinical efficacy in PD patients, the optimal target site(s) for DAergic
neurons to produce maximal clinical benefit also needs to be determined. Furthermore,
several important issues concerning the transplantation procedure itself also need to be

addressed.

Relative short supply of fetal tissue
One way to address the issue of a short supply of fetal tissue for transplantation

would be to enhance the survival of grafted DAergic neurons. Evidence from our laboratory



and other investigators have explored the ability of glial cell line-denived neurotrophic factor
(GDNF) and the GDNF-related molecule, neurturin (NTN) to promote the survival of
grafted dopaminergic cells (Rosenblad et al., 1996; 1999; Sinclair et al., 1996; Granholm et
al., 1997; Apostolides et al., 1998; Mehta et al., 1998; Sautter et al., 1998b; Sullivan et al.,
1998; Yurek, 1998; Wilby et al., 1999). In all of those studies, exposure of grafted DA
neurons to GDNF or NTN significantly enhanced cell survival. Similarly, brain-derived
neurotrophic factor (BDNF), insulin-like growth factor-1. basic fibroblast growth tactor
(bFGF) or combinations of the above have been shown to enhance the survival of nigral
DAergic neurons in culture and/or following transplantation (Steinbusch et al., 1990, Mayer
et al., 1993; Takayama et al., 1995; Zeng et al., 1996; Thajeb et al., 1997; Sautter et al.,
1998a; Zawada et al., 1998). It has also been considered that the grafted neurons may die
from increased intracellular concentrations of reactive oxygen species or by an apoptotic
mechanism. Prior exposure of nigral neurons to anti-oxidant and/or anti-apoptotic
molecules also increases the survival of nigral neurons in vitro and/or in vivo (Nakao et al.,
1994; Grasbon-Frodl et al., 1996; Othberg et al., 1997; Schierle et al., 1999). Although all
of the above factors promote the survival of nigral neurons in vitro and/or in vivo. a reliance
on fetal tissue is likely to be a major obstacle for the expansion of neural transplantation as a
therapeutic strategy for PD.

Finding an alternative tissue source to fetal-derived tissue for transplantation in PD
is of major importance. Many studies have been conducted to investigate the ability of
genetically-engineered cells of both neuronal and non-neuronal origin to overexpress TH in
promoting functional recovery in the rat Parkinson model (WolfF et al., 1989; Horellou et

al.. 1990a; 1990b; Fisher et al., 1991; Ishida et al., 1996a; Lundberg et al., 1996;
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Tornatore et al., 1996; Raymon et al., 1997; Leff et al., 1998; Fitoussi et al., 1998;
Segovia et al., 1998). Although, grafts of genetically-engineered cells inititially promote
functional recovery, this effect is short lasting as host cells transfected with various genes
often down-regulate expression of the foreign transgene (Palmer et al., 1991; Schinstine
et al., 1992; Leff et al., 1998; Lundberg et al., 1996). One way that experimenters may be
able to promote longer term expression of the foreign gene is for the transgene to be
linked to the promoter of a constitutively expressed protein (Schinstine et al.. 1992;
Fisher et al.. 1993; Tai and Sun., 1993; Trejo et al., 1999). Although this approach may
provide some functional benefit a better strategy may be the transplantation of neuronal
cells capable of reinnervating the denervated striatum.

Xenografts of porcine-derived FVM tissue have been observed to survive in the
neostriatum of PD patients for up to seven months (Deacon et al., 1997). Intrastriatal
grafts of fetal porcine tissue in 6-hydroxydopamine (6-OHDA)-lesioned rats have also
been shown to survive, provide functional benefit and reinnervate the host striatum
(Isacson et al., 1995; Galpem et al., 1996; Isacson and Deacon, 1996; Dinsmore et al., in
press). Although these results are promising, there is great concern over the possibility of
interspecies disease transmission (Isacson and Breakefield, 1997; Butler, 1998).

An exciting discovery for the field of neural transplantation has been the isolation
of stem cells in the adult brain. Stem cells are self-renewing and can be induced to
proliferate in vitro by exposure to mitogens such as, epidermal growth factor and
differentiate into neuronal and glial cell phenotypes following mitogen withdrawal and
exposure to the appropriate substrate and/or neurotrophic factors (Reynoids and Weiss,

1992; Weiss et al., 1996). The ability of stem cells to proliferate in culture is promising,
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as stem cells could provide a readily abundant supply of tissue for transplantation. Stem
cells have been observed to survive transplantation into the host brain (Svendsen et al.,
1996; 1997; Lundberg and Bjorklund; 1996; Olsson et al., 1997; Deacon et al., 1998;
Studer et al., 1998; Zigova et al., 1998). However, the behavioural recovery in animal
models of PD following intrastriatal transplants are variable (Svendsen et al., 1997;
Studer et al., 1998), which may relate to their low levels of TH expression in vivo
(Svendsen et al., 1996; 1997; Deacon et al., 1998). Thus, the future of these cells as an
alternative for transplantation relies on our ability to produce stem cell lines capable of
stably expressing a DAergic phenotype (Studer et al.. 1998; Wagner et al., 1999).

Other alternative cell lines that have been investigated include neuronal cells
derived from brain tumours expressing a DAergic phenotype. Those studies
demonstrated a significant reduction in DA agonist-induced rotational asymmetry (Hefti
et al., 1985; Bing et al., 1988; Manaster et al., 1992; Tresco et al., 1992; Adams et al.,
1996; Emerich et al., 1996). However, poor graft survival is commonly seen and there is
always a concern that those cells may revert to a neoplastic state (Hefti et al., 1985; Bing
et al.,, 1988). A recent promising development has been the discovery of a cell line
derived from a human teratocarcinoma or germ cell tumor, with neuron-like properties
(hNT) (Andrews, 1984; 1987; Lee and Andrews, 1986; Abraham et al., 1991 ; Pleasure et
al., 1992; Pleasure & Lee, 1993). The ability of those neurons to survive, express a
DAergic phenotype and promote functional recovery in the rat model of PD has been the

focus of the first part of my studies (Chapter 2).



Optimal graft placement

Evidence for the growth and survival of intrastriatal DAergic grafts and their
reversal of biochemical and locomotor deficits in animal models of Parkinson’s disease
(PD) is well documented. However, intrastriatal DAergic grafts fail to provide a complete
alleviation of symptoms in PD patients. Furthermore, intrastriatal grafts do not fully
alleviate complex sensorimotor deficits in the rat model (Nikkhah et al., 1993; Olsson et al.,
1995; Mehta et al.. 1998; Winkler et al., 1999) and restoration of the nigrostriatal pathway
has not been achieved by the current grafting strategy. To date, the main transplant strategy
has been to place nigral grafts not in their ontogenic site (substantia nigra) but in their target
area (striatum). However, restoration of nigrostriatal circuitry with DAergic neurons and
their dendrites in the SN and terminals in the striatum may be essential for more complete
alleviation of the variety of symptoms in PD (Robertson, 1992b). Previously it has been
demonstrated that DA is released from dendrites of SN¢ neurons in the SNr (Cheramy et al.,
1979: 1981). This dendritic release of DA is thought to be important in enhancing GABA
release through D DA receptors localized to the descending striatonigral fibers in the SNr
(Robertson. 1992a). reducing GABA transmission in the ventromedial thalamus (Gauchy et
al. 1987) and increasing locomotor activity (Jackson and Kelly, 1983a; 1983b).

Those observations suggest that the SN itself may be an important target site for
transplantation and intranigral DAergic grafts. Our laboratory has previously observed a
significant reduction in amphetamine-induced rotational behaviour in the rat model of PD
with simultaneous intrastriatal and intranigral DAergic grafts (double grafts) (Mendez et al..
1996). This reduction was superior to that of animals with intrastriatal grafts alone.

Although. the greater functional recovery may be attributed to better modulation of basal
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ganglia outflow, reinnervation of the SN may be crucial to improve graft-derived functional
recovery in double grafted animals. The role of the intranigral graft in promoting functional

recovery is the focus of the second part of my thesis (Chapter 3).
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Figure 1.3 - A schematic diagram illustrating the dendritic release of DA and the projections
of the SNr. GABA = y-aminobutyric acid; PPT = pedunculopontine tegmental nucleus; RF
= reticular formation; SC = superior colliculus; SNc = substantia nigra pars compacta; SNr =

substantia nigra pars reticulata.
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CHAPTER 2:

INTRASTRIATAL AND INTRANIGRAL GRAFTING OF hNT NEURONS IN

THE 6-OHDA RAT MODEL OF PARKINSON’S DISEASE

The results presented in the following chapter are currently in press in Experimental

Neurology.

36
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[ntroduction

The development of alternatives to fetal-derived cells for use in neural
transplantation is of critical importance in the future of transplantation strategies for the
treatment of neurodegenerative diseases such as PD. The ideal source of cells for the
treatment of PD would be a limitless supply of DA-producing cells capable of
reinnervating the host brain without the risk of immunorejection, disease transmission or
tumour formation. Currently, a number of possible cell sources of both neuronal and
nonneuronal origin are being studied. Xenografts of porcine-derived FVM tissue have
been observed to survive in the neostriatum of PD patients for up to 7 months (Deacon et
al., 1997). Intrastriatal grafts of fetal porcine tissue in 6-OHDA-lestoned rats have also
been shown to survive, provide functional benefit, and reinnervate the host striatum
(Isacson et al.. 1995; Galpern et al., 1996; Isacson et al., 1996). Other researchers have
focused on the development of genetically-engineered cell lines that overexpress TH
(Wolff et al., 1989; Horellou et al.. 1990a; 1990b; Fisher et al., 1991; Ishida et al., 1996b;
Lundberg et al., 1996; Tornatore et al.. 1996; Raymon et al., 1997; Fitoussi et al., 1998;
Segovia et al.. 1998) or neurotrophic factors that promote survival of DAergic cells
(Levivier et al.. 1995; Bilang-Bleuel et al., 1997). Despite these efforts, transplantation
of genetically-engineered cells in animal models of PD has not provided conclusive long-
term beneficial effects or reinnervation of the DA-depleted striatum. Another area that is
currently being explored by a number of investigators including our own [aboratory is the
use of neural stem cells, which have the capacity for neuronal differentiation and
migration (Reynolds & Weiss, 1992). Although there have been reports that

transplantation of embryonic-derived stem cell progeny survive, only a limited number of



THir cells were identified in the graft (Svendsen et al., 1996) suggesting that this
alternative is promising but not yet fully developed.

More recently, cell lines of immortalized tumor cells including a human
embryonal carcinoma-derived neuronal population (hNT) have been developed.
Transplantation of these hNT cells produced behavioural recovery from focal ischemia
{Borlongan et al., 1998a; Borlongan ¢t al., 1998b; Saporta et al., 1999) and quinolinic
acid-induced striatal lesions (Hurlbert et al., 1999). hNT neurons have also been grafted
into rats with experimental brain injury, however no significant improvement in
behavioural recovery was noted (Muir et al., 1999; Philips et al., 1999). hNT neurons are
derived from a human embryonic carcinoma cell line, NT2/D1 (Andrews, 1984). In
contrast to other teratocarcinoma cell lines, which are capable of differentiating into
neuronal, glial, and mesenchymal phenotypes, the NT2/D1 cells appear to be progenitor
cells which have a progeny restricted to the neuronal lineage (called hNT neurons)
following retinoic acid (RA) treatment (Andrews, 1984; 1987; Lee and Andrews. 1986;
Abraham et al., 1991; Pleasure et al., 1992; Pleasure and Lee, 1993). The hNT neuronal
progeny have been well characterized and it has been shown that these cells closely
resemble human neurons (Pleasure et al., 1992; Pleasure and Lee, 1993). Furthermore,
the hNT neurons bear glutamate receptor channels (Younkin et al., 1993), produce -
amyloid peptide (Mantione et al., 1995; Tumer et al., 1996; Wertkin et al., 1993; Cook et
al.. 1997), and express mRNA for glutamic acid decarboxylase, choline acetyltransferase,
and D, and D> DA receptors (Hurlbert et al., 1999). hNT neurons (Kleppner et al., 1995)
or their precursor, NT2 cells (Miyazono et al., 1995; 1996), transplanted into the brains of

immunodeficient nude mice survived for over 12 months without evidence of necrosis,
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apoptosis, graft rejection, or tumor formation. Survival of hNT neurons transplanted into
the cerebral cortex and hippocampus of cyclosporine-treated neonatal and adult Sprague-
Dawley rats has also been demonstrated (Trojanowski et al., 1993). These grafts survived
for up to 12 weeks and no tumor formation was observed. In a recent study, Konobu and
colleagues observed that hNT neurons populated the photoreceptor layer as a stratum
following epiretinal injections of the cells at 56 days and suggested that hNT neurons
may take on the morphology and function of photoreceptors (Konobu et al., 1998).

The purpose of the present study was to determine whether hNT neurons survive
when implanted into the striatum and substantia nigra (SN) of rats with unilateral 6-
OHDA lesions of the dopaminergic nigrostriatal pathway and to assess the ability of
these neurons to express TH and produce functional effects. We studied three ditferent
products of hNT neurons provided by Layton Bioscience, Inc. (Gilroy, CA). The
products tested include hNT neurons and two hNT hybrids: hNT-DA neurons and lithium
chloride (LiCl) pre-treated hNT-DA neurons. hNT neuron cultures were previously
treated with RA for 6 weeks and then replated at one-third of the density in the presence
of mitotic inhibitors, cytosine arabinoside, and fluorodeoxyuridine for 6 days. hNT-DA
neuron are hNT neuron cultures treated with RA for only 4 weeks followed by replating
and treatment with the same mitotic inhibitors. A shorter RA treatment time appears to
enhance the number of cells expressing TH (personal communication, Mike McGrogan,
Layton Bioscience, [nc.). The third product we used was LiCl pretreated hNT-DA
neurons. These are hANT-DA neurons in which LiCl was added to the culture for 6 days

during mitotic inhibitor treatment (personal communication, Mike McGrogan, Layton
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Bioscience, Inc.). LiCl has been shown to promote the expression of TH in hNT neurons

(Zigova et al., 1999).

Materials and methods
Study design

A total of 30 female Wistar rats (Charles River, St. Constant, Quebec, Canada)
were used in this study. All animals received unilateral 6-OHDA lesions of the right
nigrostriatal pathway and 27 rats later received intrastriatal and intranigral grafts (double
grafts) of hNT neurons. Three hNT neuronal products (hRNT neurons, hNT-DA neurons,
LiCl pretreated hNT-DA neurons) were transplanted in this experiment. Sixteen animals
received double grafts of hNT neurons, 7 received hNT-DA neurons, 4 received LiCl
pretreated hNT-DA neurons and 3 served as controls and received a lesion only.

Functional recovery was assessed by amphetamine-induced rotational behaviour.

Animals and 6-OHDA lesions

Twenty-seven female Wistar rats (Charles River) weighing 200 — 225 g, were
housed 2 animals per cage with food and water ad libim and allowed to acclimatize to
the animal care facility for 7 days before surgery. All animal procedures were in
accordance with the guidelines of the Canadian Council on Animal Care and the
University Council on Laboratory Animals. Rats were anesthesized intramuscularly with
3.0 mi/kg of a ketamine-xylazine-acepromazine anesthetic mixture (25% ketamine
hydrochloride; (Ketalean, MTC Pharmaceuticals, Cambridge, Ontario); 6% xylazine;

(Rompun, Miles Canada, Etobicoke, Ontario); 2.5% acepromazine maleate; (Wyeth-
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Averst Canada, Montreal, Quebec) in 0.9% saline and received two stereotactic injections
of 6-OHDA (Sigma Chemical Company, Chicago, IL) (3.6 ng of 6-OHDA HBr/ul in 0.2
mg/ml of L-ascorbate in 0.9% saline) into the right ascending mesostriatai dopaminergic
pathway at the following coordinates (mm): (1) 2.5 ul at anteroposterior (A/P): -4.0,
mediolateral (M/L): -1.2, dorsoventral (D/V): -7.8, toothbar: -2.4; and (2) 3.0 ul of 6-
OHDA at A/P: -4.0, M/L: -0.8, D/V: -8.0, toothbar: +3.4. The rate of injection was | ul/
min with the cannula being left in place for 5 min before being slowly retracted. Animals
were allowed to recover for 2 weeks in the animal care facility before being given an
amphetamine challenge (5.0 mg / kg, ip) and their rotational scores were collected over a
70 min period using a computerized video activity monitor programmed for rotational
behaviour (Videomex, Columbus Instruments, Columbus, Ohio). Only animals
exhibiting a mean ipstlateral rotational score of eight or more complete full body turns /
min were included in the study. Animals were tested for rotational behaviour at 3 and 6
weeks posttransplantation. Statistical analysis for between-group and within-group

differences was assessed at P<0.05 using a two-way ANOVA followed by Tukey’s post

lioc test.

Preparation and transplantation of hNT cell suspensions

The frozen hNT neurons were obtained from Layton Bioscience (hNT neurons,
hNT-DA neurons. and LiCl pretreated hNT-DA neurons) and stored at -80°C until the
time of transplantation. Two weeks following 6-OHDA lesions, rats were chosen for
transplantation if they exhibited a mean rotational score of eight full body turns per

minute. Beginning on the day of surgery, each animal received 10 mg of cyclosporin A /



kg of body weight ip for the duration of the experiment. Prior to transplantation, the hNT
neurons were quickly thawed by placing them in a water bath at 37°C. The cells were
then washed three times in DMEM / 0.05% DNase (Sigma Chemical Company). The
cells were suspended and the cell viability and suspension concentration calculated. The
trypan blue dye exclusion method, which stains dead cells blue and fails to stain live
cells, was used to assess cell viability (Table 1).

The cell suspensions were stereotactically injected both intrastriatally and
intranigrally using a technique previously described (Mendez et al., 1996; Mendez and
Hong, 1997). A specially designed capillary tip micropipette with an outer opening
diameter of 50-70 um is attached to a 2-ul Hamilton syringe and used to sterotatically
implant the desired number of cells at a rate of 100 nl/min into both the SN and the
striatum (400,000 cells / site). Each animal received a total of about 800,000 cells.
Injection of the cells into the dorsolateral striatum occurs at the following coordinates
(mm): (1) A/P: +1.3, M/L: -2.1, D/V: -53.5 and -4.3; (2) A/P: +0.6, M/L: -2.9, D/V: -3.5
and -4.3; and (3) A/P: +0.3, M/L: -3.7, D/V: -3.5 and -4.3; toothbar: -3.3; coordinates
from Bregma and dorsal surface of the skull and the SN at the following coordinates
(mm): 1) A/P: -4.8, M/L: -2.0, D/V: -8.3 and -8.1; 2) A/P: -5.0, M/L: -2.3, D/V: -8.2 and
-8.0; and 3) A/P: -5.3, M/L: -2.6, D/V: -8.1 and -7.9; toothbar: -3.3; coordinates from

Bregma and the dorsal surface of the skull.

Immunohistochemistry
At about 6 weeks, posttransplantation the rats were euthanized with an overdose

of a ketamine-xylazine-acepromazine mixture and perfused transcardially with 200 ml of



0.1 M phosphate buffer (PB) followed by 250 ml of 4% paraformaldehyde in 0.1M PB
for 10 min. The brains are then removed from the cranium to be postfixed with 4%
paraformaldehyde in 0.1M PB, overnight before being stored for 24 h in phosphate-
buffered saline (PBS) containing 30% sucrose. With the freezing microtome, 40-pm
coronal sections were cut and stored in Millonig’s solution (6% sodium azide in 0.1M
PB) until immunohistochemical processing of the sections could be performed.
Following processing sections were mounted in 0.1M PB on gelatin-coated slides and
coverslipped with permount. Estimates of surviving cell numbers were calculated in
every fourth section through the graft (6-10 sections per animal), using Abercrombie’s
formula (1946). The cell diameter used in the calculations for the Abercrombie’s formula
was l4pum, which was the average diameter measured of the THir cells. All data were
analvzed for between-group and within-group differences at P<0.05 using a two-way

ANOVA followed by Tukey’s post hoc test.

Tyrosine hydroxylase

Staining for the presence of TH was performed using the primary rabbit anti-TH
antibody (Ab;1:2500 Pel Freeze Biologicals, Rogers, AR) and the ABC-kit (Vector
Laboratories Canada, Inc., Burlington, Ontario, Canada). For this procedure the sections
were prewashed for 10 min in a solution of 10% methanol and 3% hydrogen peroxide
(H20,) and blocked in PB containing 0.3% Triton X-100 and 5% NSS for 1 h. The
sections were removed and incubated in a 1:2500 solution of rabbit polyclonal anti-TH
Ab for 16 h. To visualize Ab binding, 1:500 biotinylated swine anti-rabbit IgG Ab (Dako

Diagnostics Canada, Inc., Mississauga, Ontario, Canada) is used followed by a
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streptavidin-biotinylated horse radish peroxidase (HRP) complex kit. The peroxidase
activity was visualized by the addition of 3,3'-diaminobenzidine (DAB) and 3% H:0..

The sections were then washed in 0.1M PB before being mounted.

Human neural cell adhesion molecule

Staining for the presence of neural cell adhesion molecule (NCAM) was
performed using the primary mouse anti-human NCAM monoclonal antibody (Mocl;
1:1000 Dako Diagnostics Canada, Inc.) and the ABC kit. Briefly. the sections were
prewashed for 30 min in a solution of 10% methanol and 3% hydrogen peroxide and
blocked in PB containing 0.3% Triton X-100 and 5% normal horse serum for | h. The
sections were removed and incubated in a 1:1000 solution of monoclonal mouse anti-
NCAM (Mocl) Ab for 16 h. To visualize Ab binding, 1:250 biotinylated horse anti-
mouse [gG Ab (Vector Laboratories Canada, Inc.) was used followed by a streptavidin-
biotinylated HRP complex kit. The peroxidase activity was visualized by the addition of

DAB and H:O:.

Human neuron-specific enolase

Staining for the presence of human neuron-specific enolase (NSE) was performed
using the primary mouse anti-NSE monoclonal antibody (1:100; Vector Laboratories
Canada. Inc.) and the ABC kit. The sections were prewashed for 30 min in a solution of
10% methanol and 3% hydrogen peroxide and blocked in PB containing 0.3% Trton X-
100 and 5% NHS for | h. The sections were removed and incubated in a 1:100 solution

of mouse monoclonal anti-NSE Ab for 16 h. To visualize Ab binding, 1:200 biotinylated



horse anti-mouse [gG Ab was used followed by a streptavidin-biotinylated HRP complex

kit, DAB and H»0..
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Results
Survival of hNT neuronal grafts

All animals that received both intrastriatal and intranigral grafis of the hNT
neuronal products (Figure 1) had surviving grafts that were strongly immunostained for
the presence of both human NSE (Figures 2A, 2B, 3A and 3B) and human NCAM
(Figures 2C, 2D. 3C and 3D). Analysis of the hNT grafts by anti-NCAM
immunohistochemistry (Figures 2C, 2D, 3C and 3D) revealed a strong staining of the
entire graft area and darkly stained cell-like structures could clearly be seen within the
graft boundary. The overall strong immunostaining of the graft made the determination
of cell numbers impossible. NCAMir fibers extending beyond the graft-host interface
could be seen in many of the grafted animals. NSE immunohistochemistry (Figures 2A,
2B. 3A and 3B) produced a similar strong staining pattern, with what appeared to be
more darkly stained cells within the graft, but again counts could not be accurately
determined. NSEir fibers were seen extending beyond the graft-host interface at the [evel
of the striatum, and in some cases, fibers were observed to extend greater than 100 pm

into the surrounding host tissue.

Expression of TH by hNT neurons

Analysis of TH expression in animals with hNT neuron grafts (n=16) showed no
THir cells in either the striatum or the SN (Figures 2E and F). In 43% of animals with
grafts of hNT-DA neurons (n=3), readily identifiable THir cells within both the striatum
and the SN were observed. THir neurons appeared healthy and had processes extending

for variable distances in the host brain. However, fiber outgrowth was sparse both within
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the graft and in the host tissue surrounding the graft. In these animals, there were 435.12
+ 323.30 THir cells within the striatum and 393.68 + 204.70 within the SN (Figure 5).
THir cells were observed in 100% of animals with intrastriatal and intranigral grafts of
LiCl pretreated hNT-DA neurons (Figure 4). The mean (+ SD) number of THir cells
within the intrastriatal and intranigral grafts was 489.39 + 18.09 and 319.68 + 142.08,
respectively (Figure 5). There was no significant difference in the number of THir
neurons between the hNT-DA neuronal and LiCl pre-treated hNT-DA neuronal grafts
(P>0.05). Similarly, there was no significant difference in the number of THir cells

between the intrastriatal and intranigral graft locations (P>0.05).

Amphetamine-induced rotational behaviour

There was not a statistically significant reduction in amphetamine-induced
rotational behaviour at any of the time points tested regardless of the product implanted.
In animals maintained for 6 weeks with double grafts of either ANT-DA neurons or LiCl
pretreated hNT-DA neurons rotational behaviour exhibited a trend toward decreasing
rotations, but this did not reach statistical significance. There was a correlation between
surviving THir cells and rotational scores. Only animals that had surviving THir cells
(43% of the hNT-DA group and the LiCl pretreated hNT-DA group) had decreased
rotational scores while animals with no THir cells (hNT neuronal grafts and lesion only

groups) did not exhibit any reduction in mean full body turns (Figure 6).



Figure 2.1. Representative parasagittal section through a double hNT grafted rat brain

immunostained for human NSE (scale bar = 1000 um).
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Figure 2.1
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Figure 2.2. Representative coronal sections through the level of the stnatum and
substantia nigra of rats with double grafts of hNT neurons immunostained for the
presence of NSE (A and B). Adjacent sections were stained for the presence of NCAM
(C and D) and TH (E and F). Although grafts are visualized following immunostaining
for anti-NSE and -NCAM, note the absence of THir profiles in the grafted area on the

lesioned side of the brain. (scale bar =250 um).
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Figure 2.3. Higher power photomicrographs of intrastriatal and intranigral hNT neuronal
grafts immunostained for human NSE (A and B) and NCAM (C and D). Note the dark
staining of the graft that made counts of the number of surviving cells impossible (scale

bar = 150 um).
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Figure 2.4. [ntrastriatal (A-C) and intranigral (D-F) hNT-DA neuron grafts
immunostained for NSE (A and D). Adjacent sections were immunostained for the
presence of TH (B and E). C and F are higher power photomicrographs of B and E.
Note that THir fibers can be seen extending from the cell bodies. (scale bar = A and D;

250 pm; B and E. 500 um; C and F; 1000 pm).
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Figure 2.5. Bar graph demonstrating the mean (+ SD) THir cells found within the
intrastriatal and intranigral grafts of hNT neurons (white bars), hNT-DA neurons
(stippled bars) and LiCl pretreated (gray bars) hNT-DA neurons. No significant
difference in the number of cells was observed between the striatal or nigral location of
the grafts. No surviving THir cells were encountered in animals grafted with hNT
neurons. There was no significant difference in the number of THir neurons in rats
grafted with hNT-DA neurons or LiCl pretreated hNT-DA neurons. However, only 43%

of animals with hNT-DA neurons grafts contained THir neurons.
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Figure 2.6. The mean * standard deviation (SD) rotations per minute with amphetamine
challenge (5 mg/kg, ip), following 6-OHDA-induced lesions of the right ascending
dopaminergic nigrostriatal pathway (Lesion) and 6 weeks following double grafting of
medium only (white bars), hNT neurons (stippled bars), hANT-DA neruons (gray bars) and
LiCl pretreated hNT-DA neurons (black bars). Although a reduction of rotational
behaviour was observed in the hANT-DA neuron and LiCl pretreated hNT-DA neuron

groups, this reduction did not achieve statistical significance.
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Discussion
Graft survival

Immunostaining with anti-NCAM demonstrated that hNT neurons survive the
transplantation procedure. This observation is in agreement with previous studies
demonstrating survival of hNT neurons in vivo by using anti-NCAM
immunohistochemistry (Trojanowski et al., 1993; Kleppner et al., 1995; Miyazono et al.,
1995; 1996; Borlongan et al., 1998a; 1998b; Muir et al., 1999; Philips et al., 1999;
Saporta et al., 1999). In addition, we have shown that hNT grafts can also be visualized
with antibodies recognizing human NSE, which reflects the human origin of hNT
neurons, originally derived from a human teratocarcinoma. TH immunohistochemistry of
grafted hNT neurons demonstrated that the 6-week cultured hNT neurons fail to express
TH. whereas in 43% of the animals receiving hANT-DA and 100% of animals with LiCl
pretreated hNT-DA neuronal grafts there was evidence of THir neurons. The reason for
TH expression in only 43% of animals receiving hNT-DA neuronal grafts is unknown but
it is possible that these grafts may need time to mature and long-term studies are
currently underway in our laboratory to address this issue. It is also possible that these
cells need an additional factor such as LiCl to promote differentiation into a TH-
expressing neuronal phenotype (Zigova et al., 1999). This concept is supported by the
observation that 100% of animals grafted with hNT-DA neurons pretreated with LiCl had
surviving THir neurons.

All of the animals with grafts of LiCl pretreated hNT-DA neurons exhibited THir
cells within the grafts in the present study. A recent study reported that TH expression in

hNT neurons was increased six-fold in vitro following 5 days of exposure to LiCl
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(Zigova et al., 1999). Previous studies have also shown that in vitro lithium treatment
increased the expression of TH in SH-SYSY neuroblastoma cells (Chen et al., 1998) and
bovine adrenal medullary cells (Terao et al., 1992). Other strategies to enhance the
expression have also been used. Small increases in TH expression could be obtained
when hNT neurons were cultured in the presence of acidic fibroblast growth factor,
protein kinase pathway activators, and other coactivators (lacovitti and Stull, 1997).
Furthermore, Othberg and colleagues (1998) have also demonstrated a greater
enhancement of TH expression by hNT neurons when cocultured with porcine Sertoli
cells. Although these studies demonstrate an enhancement of TH expression in hNT
neurons in vitro, it has yet to be determined whether these cells continue to express TH in
vivo. There is also evidence that the hNT precursors, NT2 neurons, are capable of
transfection with foreign genes (Trojanowski et al., 1997; Kofler et al., 1998) and hNT
neurons are readily infected by vaccinia viruses (Cook et al., 1996), suggesting
alternative methods for enhancing TH expression in these cells.

Interestingly, the number of surviving THir neurons was not different when
transplanted in either the striatum or the SN. This suggests that the homotopic site (SN)
environment does not influence the phenotype of hNT neurons. [t has been reported that
the mouse caudoputamen may influence the differentiation of hNT neurons into a
dopaminergic phenotype (Miyazono et al., 1996), however, our study does not provide
evidence that the rat striatum may influence the hNT neurons to differentiate into TH
neurons to a greater extent when compared to the SN.

The fatlure of hNT neurons to provide functional recovery in the present study

may relate to the relatively low number of THir neurons and poor fiber outgrowth
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observed in surviving grafts. Fiber outgrowth and number of surviving THir neurons
strongly correlate with the extent of functional recovery in fetal grafts (Rioux et al., 1991,
Apostolides et al., 1998). It is possible that hNT cells mature at a slower pace than fetal

dopaminergic neurons and long-term studies may be necessary to test this hypothesis.

WNT neurons as an alternative tissue source for neural transplantation?

The optimal cell for transplantation in Parkinsonian patients would be one that is
not only abundant and readily available but also has the capability of synthesizing
dopamine and reinnervating the nigrostriatal dopaminergic system. hNT neurons have
some of these qualifications; they are readily available and able to proliferate in culture
(Andrews, 1984; 1987; Lee and Andrews, 1986; Abraham et al., 1991; Pleasure et al.,
1992; Pleasure and Lee, 1993). There is evidence that hNT neurons can survive
transplantation into the adult rodent brain (Trojanowski et al., 1993; Kleppner et al.,
1995). Reversal to their neoplastic phenotype has not been observed and the present
study has shown that hNT neurons survive transplantation into the striatum and SN,
integrate into the host, and express TH.

Although we have not shown that hNT neurons are capable of releasing
dopamine, there is evidence that hNT neurons are immunopositive for markers of
secretory activity in vitro (Pleasure et al., 1992). However, DA production may not be
enough for functional restoration in PD. [t is well known that grafting various cell lines
transfected with the tyrosine hydroxylase gene reduces DA agonist-induced behavioural
deficits in the Parkinson rat model (Wolff et al., 1989; Horellou et al., 1990a; 1990b;

Fisher et al., 1991; [shida et al., 1996; Lundberg et al., 1996; Tornatore et al., 1996;



Raymon et al., 1997; Fitoussi et al., 1998; Segovia et al., 1998). However, reinnervation
of the host brain may also be crucial for restoring complex sensortmotor deficits in
lesioned animals (Mendez et al., 1991; 1993; Rioux et al., 1991; Nikkhah et al., 1994;
Mehta et al., 1998). hNT neurons may have the capability of producing and secreting
dopamine and also reinnervating the host. This concept is supported by our observation
that hNT neurons express TH after implantation and extend processes into the host brain.
Further enhancement of host reinnervation could be accomplished by increasing the
differentiation of hNT neurons into THir cells and promoting their fiber outgrowth. Our
laboratory and several other investigators have demonstrated increased fiber outgrowth of
dopaminergic transplants using GDNF (Rosenblad et al., 1996; Wang et al., 1996,
Granholm et al.. 1997; Apostolides et al., 1998; Mehta et al., 1998; Wilby et al., 1999)
and BDNF (Yurek et al., 1996). It is possible that the addition of neurotrophic factors
such as GDNF or BDNF to hNT neurons may similarly increase survival of THir neurons

and induce fiber outgrowth.

Concluding remarks

This study has demonstrated that hNT neurons survive implantation, integrate into
the host brain, and express TH when grafted into the striatum or SN. Although THir
neurons were found in the striatum and SN, the numbers were relatively small and
expression of a TH phenotype appeared to be independent of the site of implantation
(striatum versus nigra). This study has also provided evidence that LiCl treatment may

be beneficial in enhancing TH expression of hNT neurons.



hNT neurons are promising as a possible alternative to fetal tissue for
transplantation in animal models of PD and may have potential clinical applications in
the future. However, before hNT neurons can be considered a reliable cell source in
experimental neural transplantation for PD, further improvements in enhancing TH

expression are needed.
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CHAPTER 3:

SIMULTANEOUS INTRASTRIATAL AND INTRANIGRAL DOPAMINERGIC
GRAFTS IN THE PARKINSONIAN RAT MODEL: THE ROLE OF THE

INTRANIGRAL GRAFT

The results presented in the following chapter have been submitted for publication

in the Journal of Comparative Neurology.
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Introduction

[n the past decade, clinical tnals of neural transplantation in which patients with PD
have received intrastriatal fetal ventral mesencephalon (FVM) grafts have been conducted
worldwide (Lindvall et al., 1989; 1990; 1992; 1994; Freed et al., 1992; Spencer et al., 1992;
Widner et al., 1992; Peschanski et al., 1994; Freeman et al., 1995; Kordower et al., 1995;
1996; 1998; Wenning et al., 1997; Bluml, et al., 1999; Hagell et al., 1999; Hauser et al.,
1999). Although the results reported in some transplanted patients are promising, clinical
improvements have been limited and have not reached a level to justify the use of neural
transplantation as a routine therapeutic procedure in PD. Although many variables
contribute to the efficacy of neural transplantation in PD (Olanow et al., 1996; Mehta et al.,
1997). optimal placement of the graft is likely a critical factor influencing the clinical
outcomes of neural transplantation in PD.

To date, the main transplantation strategy in experimental and clinical PD has been
to place dopaminergic grafts not in their ontogenic site (SN) but in their target area
(strtatum) (Bjorklund et al., 1980; 1983; Dunnett et al., 1983; Lindvall et al., 1989; Mendez
etal., 1991; Freed et al., 1992; Widner et al., 1992; Freeman et al., 1995). Although
intrastriatal dopaminergic grafts are capable of reinnervating the striatum, they fail to restore
the nigrostriatal circuitry (Doucet et al., 1989; Mendez et al., 1991). Furthermore, dendritic
DAergic control of SNr activity, which is important in the regulation of basal ganglia
outflow (Cheramy et al., 1979; 1981; Gauchy et al., 1987; Robertson, 1992a), can not be
achieved by intrastriatal grafts alone. Dopaminergic reinnervation of other nigral targets

such as the STN and globus pallidus GP is also lacking. Recent evidence in unilaterally
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6-OHDA-lesioned rats has shown that upregulation of cytochrome oxidase and c-fos gene
expression in the STN and GP is not normalized by intrastriatal grafts (Nakao et al., 1998).
The failure to restore basal ganglia circuitry by ectopically placed intrastriatal grafts may be
an important factor limiting the efficacy of fetal tissue transplantation in Parkinsonian
patients.

We have hypothesized that simultaneous intrastriatal and intranigral dopaminergic
grafts (double grafts) may provide a more complete restoration of the nigrostriatal circuitry.
This hypothesis is supported by the demonstration that double grafts promote some degree
of reconstruction of the nigrostriatal pathway and a quicker and more complete rotational
recovery in the rodent model of PD (Mendez et al.. 1996; Mendez and Hong, 1997).
Retnnervation of both the stnatum and SN may be essential to optimize graft-derived
functional improvement. We postulate that double grafts may be a superior strategy in
neural transplantation for PD. This notion is further supported by a recent study in which
enhanced recovery was observed in hemiparkinsonian rats with simultaneous intrastriatal
dopaminergic and intranigral GABAergic grafts (Winkler et al., 1999).

The present study was designed to investigate the role of the intranigral DAergic
graft in restoring function in 6-OHDA-lesioned rats transplanted with simultaneous
intrastriatal and intranigral grafts. The results of this study showed that the functional
recovery, achieved by rats implanted with double grafts was reversed by the subsequent
destruction of the intranigral graft. This observation strongly suggests that restoration of the
dopaminergic input to the SN by the intranigral graft is crucial for the functional recovery

observed in double grafted animals.
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Materials and methods
Experimental design

A total of 20 female Wistar rats (Charles River, St. Constant, Quebec), weighing
between 200 - 250 g, housed two animals per cage with food and water ad libitum were
used for this experiment. Unilateral 6-OHDA lesions of the right ascending nigrostriatal
pathway were performed in all of the animals (see First 6-OHDA Lesion below). Ten
animals received single intrastriatal grafts of FVM cells. The intrastriatally-grafted
animals were subdivided in 2 groups and received either a second 6-OHDA (STR-60H)
or vehicle (STR-VEH) injection in the SN 10 weeks after transplantation (Figure 1). Ten
animals received double grafts of FVM cells in both the striatum and SN. The double
¢rafted animals were also subdivided equally in 2 groups. One group (DBL-60H)
received a second 6-OHDA lesion in the region of the intranigral graft and the second
group (DBL-VEH) received an injection of vehicle in the same region 10 weeks after
transplantation (Figure 1). The time course of this study, from the day the animals
arrived, until their brains were processed for TH immunohistochemistry, is shown in
Figure 2. All animal procedures were in accordance with the guidelines of the Canadian

Council on Animal Care and the University Council on Laboratory Animals.

First 6-OHDA lesion
Rats were anesthesized, intramuscularly with 3.0 ml / kg of a ketamine-xylazine-
acepromazine anesthetic mixture (25% ketamine hydrochloride; Ketalean, MTC

Pharmaceuticals; 6% xylazine; Rompun, Miles Canada; 2.5% acepromazine maleate;
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Wyeth-Ayerst Canada; in 0.9% saline) and received two stereotactic injections of 6-
OHDA (Sigma Chemical Company) (3.6 pg of 6-OHDA HBr/ul in 0.2 mg/m! of
L-ascorbate in 0.9% saline) into the right ascending nigrostriatal DAergic pathway.
6-OHDA injections occurred at the following coordinates (mm): (1) 2.5 pul at A/P: -4.0,
M/L: -1.2, D/V: -7.8, toothbar: -2.4; and (2) 3.0 ul of 6-OHDA at A/P: -4.0, M/L: -0.8,
D/V: -8.0, toothbar: +3.4. The rate of injection was 1 pul/ min. and the cannula was left
in place for 5 min before slowly being retracted. Animals were allowed to recover for 2
weeks in the animal care facility before being given an amphetamine challenge (5.0
mg/kg, ip). Their rotational scores were collected over a 70-minute period using a
computerized video activity monitor programmed for measuring rotational behaviour
(Videomex V, Columbus Instruments). Only animals exhibiting a mean ipsilateral
rotational score of eight or more complete full body turns per minute were included in the

study.

Second 6-OHDA lesion

Nine to ten weeks following transplantation, grafted animals received a second
injection of 3.6 ug of 6-OHDA HBr/ ul in 0.2 mg/mi of L-ascorbate in 0.9% saline (0.9
ul / site) or vehicle (2 mg/ml ascorbic acid / 0.9% saline) (0.9 pl/ site) at the same co-
ordinates in which the intranigral graft was placed (see Transplantation below). All
injections of vehicle or 6-OHDA were performed at the following coordinates (mm): 1)
A/P: -4.8, M/L: -2.0, D/V: -8.3 and -8.1; 2) A/P: -5.0, M/L: -2.3, D/V: -8.2 and -8.0; and
3) A/P: -5.3, M/L: -2.6, D/V: -8.1 and -7.9; toothbar: -3.3; coordinates from Bregma and

the dorsal surface of the skull at Bregma.
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Rotational behaviour

Two weeks after the first 6-OHDA lesion, and every three weeks following
transplantation and the second 6-OHDA injection, rats were challenged with amphetamine
(5 mg/kg; ip) (Figure 2). Rotational behaviour was analyzed for 70 minutes following
amphetamine injection, using a computerized-video activity monitor system (Videomex,

Columbus Instruments).

Transplantation

Thirteen to fourteen day old rat fetuses were removed from pregnant female rats
under sodium pentobarbital anesthesis. Ventral mesencephalic tissue was harvested
under sterile conditions. The FVM tissue was washed 3 times in 0.05% DNase / DMEM
(DNase and DMEM: Sigma Chemical Company), placed for 20 mintues at 37°C in
DNase / DMEM / 0.1% trypsin (trypsin: Sigma Chemical Company) and then rinsed 4
times with 0.05% DNase / DMEM. The tissue was then mechanically dissociated until a
milky. homogeneous single-cell suspension was achieved. The Trypan Blue dye
exclusion method was used to assess cell viability and cell suspension concentration
(Table 1).

The cell suspensions were stereotactically injected into either the striatum alone
or both the striatum and SN incorporating the transplantation technique previously
described (Mendez et al., 1996; Mendez and Hong, 1997; Apostolides et al., 1998). A
specially designed capillary tip micropipette with an outer opening diameter of 50-70 um
is attached to a 2-ul Hamilton syringe and used to stereotatically implant the cell

suspension at a rate of 100 nl/min. The single grafted rats (STR-VEH, STR-60H)
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received 400,000 cells in the striatum and an equal volume of medium in the SN. The
double grafted animals received 400,000 cells in the striatum and 400,000 cells in the SN
for a total of 800,000 cells (Table 1). Injection of the cells into the dorsolateral striatum
occured at the following coordinates (mm): 1) A/P: +1.3, M/L: -2.1, D/V:

-5.5and -4.3; 2) A/P: +0.6, M/L: -2.9, D/V: -5.5 and -4.3; and 3) A/P: +0.3, M/L: -3.7,
D/V: -5.5 and -4.3; toothbar: -3.3; and the SN at the following coordinates (mm): 1) A/P:
-4.8, M/L: -2.0, D/V: -8.3 and -8.1; 2) A/P: -5.0, M/L =-2.3, D/V = -8.2 and -8.0; and 3)
A/P: -5.3, M/L; -2.6. D/V: -8.1 and -7.9; toothbar: -3.3; coordinates from Bregma and the

dorsal surface of the skull at Bregma.

Tyrosine hydroxylase immunohistochemistry

Staining for the presence of TH was performed using the primary rabbit anti-TH
antibody (1:2500 Pel Freeze Biologicals) and the ABC-kit (Vector Laboratories Canada,
Inc.). For this procedure, sections were prewashed for 10 min in a solution of 10%
methanol and 3% hydrogen peroxide and blocked in PB containing 0.3% Triton X-100
and 5% normal swine serum for 1 h. The sections were removed and incubated in a
1:2500 solution of rabbit polyclonal anti-TH antibody for 16 h. To visualize antibody
binding, 1:500 biotinylated swine anti-rabbit [gG antibody (Dako Diagnostics Canada,
Inc.) was used followed by a streptavidin-biotinylated HRP complex kit followed by the
addition of DAB and H,0.. The sections were then washed in 0.1M PB, placed on

gelatinous slides and dehydrated before mounting and coverslipping in permount.
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Cell counts and statistical analysis

The total number of surviving THir cells was estimated using Abercrombie’s
formula (Abercrombie, 1946). The mean diameter was calculated for thirty cells selected
randomly within each experimental group. Cells were randomly selected by their
location within a 0.1 X 0.1 mm ocular grid placed over the graft. The diameters were
then calculated using a computer system equipped with Optimas image analysis software
(Optimas Corporation, Bothell, WA). The mean cell diameter was calculated for each
experimental group and substituted into Abercrombie’s equation. Sixteen to twenty
sections were counted in each animal.

Within and between group differences for amphetamine-induced rotational
behaviour was performed at P<0.05 using a two-way ANOVA followed by Tukey’s post
hoc test. Between group differences for THir cell survival were calculated at P<0.05
using a Student’s paired

T-test.



Figure 3.1. Schematic representation of the experimental groups involved in this study.
20 rats were used, and received either intrastriatal (n=10) or double DAergic grafts
(n=10). These groups were further subdivided and received either intranigral vehicle

(STR-VEH; DBL-VEH) or 6-OHDA injections (STR-60H; DBL-60H).
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Figure 3.2. Time-line representing the sequence of procedures conducted during the

duration of this experiment.
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Week Number Procedure

1 Habituation to Animal Care Facility

2 First 6-OHDA lesion

4 Post-lesion rotational behaviour testing

4-5 Transplantation

8 Rotational behaviour testing (3 weeks)

11 Rotational behaviour testing (6 weeks)

14 Rotational behaviour testing (9 weeks)

15 Second 6-OHDA lesion

18 Rotational behaviour testing (3 weeks)

21 Rotational behaviour testing (6 weeks)

24 Rotational behaviour testing (9 weeks)
25-26 Perfusion and immunohistochemistry

Figure 3.2
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Table 2. Details of the total cell number and viability transplanted in each group.

Group Cell Viability (%; + SD) Total Cells Implanted
STR-VEH 95.14 + 4. 41 ~ 400,000 (STR)
STR-60H 99.10+0.45 ~ 400,000 (STR)
DBL-VEH 95.00 + 4.24 ~ 800,000 (STR + SN)
DBL-60H 94.38 £ 4.63 ~ 800,000 (STR + SN)

STR = striatum

SN = substantia nigra
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Results
Effect of the First 6-OHDA Lesion

Injections of 6-OHDA within the nigrostriatal pathway resulted in a virtually
complete absence of THir cell bodies and fibers within the ipsilateral SN, medial
forebrain bundle and fibers within the ipsilateral striatum. 6-OHDA-lesioned animals
exhibited a strong clockwise circling behaviour when challenged with amphetamine 2

weeks following the lesion (Figure 3).

Transplants
a) Double grafts

[n double grafted animals with a subsequent vehicle injection (DBL-VEH), robust
surviving grafts were observed within the striatum and nigra (Figures 4; 5A, 5B; 6A, 6B).
These grafts were marked by the presence of many surviving THir cell profiles and fibers
within the graft. THir fibers were also seen extending beyond the boundary of the
intrastriatal graft, reinnervating the host striatum. In those animals, THir fibers
presumably originating from within the intrastriatal graft, extended caudally into the GP
and internal capsule along a trajectory towards the intranigral graft (Figure 4B).

In DBL-60H animals, robust grafts were observed in the striatum alone.
Numerous THir cell bodies and fibers were observed within the graft as well as good
fiber outgrowth into the host striatum (Figure 5C). However, the grafts in the SN were
very small (Figures 5D; 6C, 6D). Many of the remaining THir cells were dystrophic with
much shorter THir fibers compared to the intranigral grafts of DBL-VEH animals

(Figures 5B, 5D).
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b) Single grafts

Animals with intrastriatal grafts (STR-VEH, STR-60H) had healthy grafts with
numerous cell bodies and fibers within the graft and robust fiber outgrowth into the
surrounding host striatum. No THir cells were encountered in the SN in the group of

animals (STR-60H) receiving a second 6-OHDA lesion in the nigral area (Figure 6E,

OF).

¢) Cell counts

The mean (+SD) number of THir cells within the intrastriatal graft in the 4 groups
were: STR-VEH = 1077.17 + 500.39; STR-60H = 1290.12 + 409.40; DBL-VEH =
1054.26 + 254.49 and DBL-60H = 1402.93 + 635.25. There was no significant
difference in the number of cells within the intrastriatal graft in any of the groups (Figure
7). The mean (+SD) number of THir cells within the nigral region in the 4 groups were:
STR-VEH and STR-60H = 0; DBL-VEH = 915.33 + 244.94 and DBL-60H = 267.69 *
68.41. A significantly fewer number of surviving THir cells (P<0.01) within the

intranigral graft was observed in the DBL-60H group when compared to the DBL-VEH

group (Figure 7).

Behavioural recovery
a) Post-transplantation behavioural recovery

Nine weeks following transplantation there was a dramatic reduction in
amphetamine-induced rotational behaviour in all groups (P<0.0002) (Figure 3). The level

of recovery did not differ significantly among the groups.
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b) Effect of the second lesion

At 9 weeks after the second lesion, there was a significant elevation (P<0.001) in
the number of rotations in the DBL-60H group when compared to all other groups
(Figure 3). This elevation of rotational scores was also significant when compared to the
scores of the same group of animals obtained 9 weeks after transplantation. This reversal
in rotational recovery was observed at the earliest time-point, 3 weeks following the 2nd
lesion and was sustained for the duration of the study. No significant change in rotational
behaviour was observed in the other groups when compared to each other or their 9-week

post-grafting values.
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Figure 3.3. Graph demonstrating the mean (+ SD) amphetamine-induced full body turns /
minute for each group, 2 weeks following the initial 6-OHDA lesion (Lesion), 9 weeks
following transplantation (Graft) and 9 weeks following the second lesion (2nd Lesion).
*P<0.0002, compared to rotational scores after the first 6-OHDA lesion; **P<0.0003,
compared to rotational scores for all the groups 9 weeks post-grafting; ***P<0.001,
compared to all the groups following the 2nd lesion. STR-VEH = intrastriatally grafted
animals with a second vehicle injection; STR-60H = intrastriatally grafted animals with a
second 6-OHDA lesion; DBL-VEH = double grafted animals with a second vehicle

injection; DBL-60H = double grafted animals with a second 6-OHDA lesion.
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Figure 3.4 - Representative parasagittal section through a double grafted rat brain
demonstrating robust survival of intrastriatal and intranigral FVM grafts (A). Note the
halo of dense THir surrounding the intrastriatal graft. (B) and (C) are higher power
photomicrographs of the intrastriatal and intranigral grafts (B, C). In (B), note the THir

fibers, most likely from the intrastriatal graft, extending into the globus pallidus. Scale

bar: A =500 pm; B and C = 50 um.
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Figure 3.4
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Figure 3.5 - Representative coronal sections through double grafted rats (DBL-VEH;
DBL-60H) at the levels of the intrastriatal and intranigral grafts. Many surviving THir
cells and fibers can be observed within both intrastriatal grafts (A, C). A robust
intranigral graft can be seen in the DBL-VEH animal (B). A very small intranigral graft

can be seen after a second 6-OHDA lesion in a DBL-60H animal (D). Scale bar =100

L.



Figure 3.5
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Figure 3.6 — Representative coronal sections at the level of the substantia nigra of DBL-
VEH (A, B). DBL-60H (C, D) and STR-60H animais (E, F). A robust intranigral graft
ts seen in a rat with a subsequent intranigral vehicle injection (A. B). In contrast, double
gratted animals with subsequent 6-OHDA injections (DBL-60H) had very small grafts
(C., D). Animals with intrastriatal grafts and subsequent 6-OHDA injections (STR-60H)
had no surviving THir cells in the substantia nigra (E, F) Scale bar: A, C, E =500 um and

B, D. F =200 um.



Figure 3.6
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Figure 3.7 - Graph depicting the mean (+SD) surviving number of THir cells within the
intrastriatal and intranigral grafts. Significantly fewer cells were observed in the
intranigral graft of double grafted animals with a subsequent 6-OHDA injection (DBL-
60H) as compared to animals with a subsequent vehicle injection (DBL-VEH)

(*P<0.001).
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Discussion

In the current neural transplantation strategy for PD, the striatum has been
targeted as the optimal site for DAergic graft placement (Bjérklund et al., 1980; 1983;
Dunnett et al., 1983; Lindvall et al., 1989; Mendez et al., 1991; Freed et al., 1992; Widner et
al., 1992; Freeman et al., 1995). The main reason for this ectopic placement of DAergic
tissue is the apparent inability of grafts placed in the ontogenic location (SN) to grow
axons over long distances to reach their target (stnatum) (Bjérklund et al., 1983; Dunnett
et al.. 1989; Nikkhah et al., 1994a). However, this strategy has failed to restore
dopaminergic innervation to the SN or reconstruct the nigrostriatal pathway. The
inability of intrastriatal grafts to restore the dopaminergic nigrostriatal circuitry may be
an important factor limiting the clinical efficacy of fetal transplantation in parkinsonian
patients. We have previously demonstrated that simultaneous nigral grafts placed in both
the striatum and the SN (double grafts) induce a faster and more significant reduction in
rotational behaviour upon amphetamine challenge when compared to intrastriatal grafts
alone (Mendez et al., 1996). This beneficial effect could be partially attributed to an
increase in striatal reinnervation (Mendez and Hong, 1997) but may also result from
restoration of DAergic reinnervation to the host SN.

[n the present study we have demonstrated that the intranigral graft is important in
the behavioural recovery of rats receiving simultaneous intrastriatal and intranigral grafts.
Double grafted rats that received a second 6-OHDA injection in the region of the
intranigral graft exhibited a reversal of the rotational recovery achieved after
transplantation. This change in rotational behaviour correlated well with damage of the

intranigral graft by the toxin. Animals that received vehicle injections in the region of the
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intranigral graft had no reversal in the functional recovery gained after transplantation.
The reversal of rotational recovery can not be explained by possible damage to the
intrastriatal graft by the second 6-OHDA injection because all groups had healthy grafts
with no significant difference in the number of surviving THir neurons. Furthermore, the
increase in amphetamine-induced rotations appears to be directly attributed to the
destruction of the transplanted intranigral FVM cells and not to destruction of residual
host nigral DAergic cells that may have escaped the first lesion. This concept is strongly
supported by the observation that no detrimental effect in rotational behaviour was
detected in intrastriatally grafted animals that received subsequent intranigral 6-OHDA
injections.

[t is well known that dopamine is released within the SNr by dendrites of pars
compacta neurons (Cheramy et al.. 1979; 1981). Nigral dopamine is believed to enhance
GABA release from striatonigral efferents through presynaptic D; DA receptors
(Robertson, 1992a), reducing GABA transmission in the ventromedial thalamus (Gauchy
ctal, 1987) and increasing locomotor activity (Jackson and Kelly, 1983a; 1983b).
Furthermore, there is evidence that L-Dopa-induced rotational behaviour is dependent on
both striatal and nigral mechanisms (Robertson and Robertson, 1989). This observation is
compatible with studies of intranigral dopaminergic grafts which have been shown to
provide some recovery in Dy, D2 or D\/Ds DA receptor agonist-induced rotations, but not
amphetamine-induced rotational behaviour (Robertson et al., 1991; Nikkhah et al., 1994a;
Olsson et al., 19935; Mendez et al, 1996; Yurek et al., 1997).

Although we have shown that the intranigral graft has a role in the functional

recovery of transplanted animals, the mechanism by which the intranigral graft exerts that
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role is not clear. It is possible that the intranigral graft restores DAergic innervation to
nigra-innervated structures that are not reinnervated by the intrastriatal graft, such as the
STN. This notion is supported by a recent study in which c-fos immunoreactivity was
quantified in several basal ganglia structures in rats receiving intrastriatal DAergic grafts.
In those animals only the STN and GP remain overactive after transplantation and the
authors concluded that the striatal graft had failed to influence those structures (Nakao et
al., 1998). The STN is particularly important in basal ganglia function and has been
observed to be overactive in animal models of PD (Bergman et al., 1994; Hassani et al.,
1996; Nakao et al., 1998). Inactivation of the STN has been shown to reduce behavioural
deficits in human Parkinson patients (Krack et al., 1997a; 1997b; 1998a; 1998b; Kumar
et al., 1998a; 1998b; 1999; Limousin et al., 1998; Brown et al., 1999; Moro et al., 1999;
Yokoyama et al., 1999). It has previously been demonstrated that the STN recetves a
nigral-derived dopaminergic innervation (Lavoie et al., 1989; Hassani et al., 1997,
Cossette et al., 1999; Hedreen, 1999). DA is believed to exert an inhibitory control on
STN neurons through D, and D5 receptors (Campbell et al., 1985; Hassani and Feger,
1999). Thus, DAergic reinnervation of the STN may be important for reducing the
activity of this structure and providing enhanced functional recovery. We are currently
investigating the extent of DAergic reinnervation to the STN in double grafted animals
and the possible effect of 6-OHDA lesions of the intranigral graft on STN activity.
Reinnervation of both the striatum and the SN by FVM double grafis may allow
restoration of DAergic circuitry in the basal ganglia. It is well known that an intrastriatal
graft alone can restore rotational symmetry in 6-OHDA-lesioned rats which is also seen

in this study, in the single intrastriatal-grafted groups. However, an issue to be resolved is



the observation that the intrastriatal graft alone was not sufficient to maintain rotational
symmetry in double grafted animals in which the nigral graft was subsequently damaged.
It is possible that rotational symmetry in double grafted animals may be a result of the
reestablishment of DAergic regulation of the nigrostriatal circuitry by both grafts
(Mendez et al.. 1996; Mendez and Hong 1997). The removal of one graft, in this case the
intranigral graft may produce a break in the circuitry resulting in loss of the beneficial
functional effect. Restoration of basal ganglia circuitry may be necessary for more
complex behavioral recovery such as forelimb akinesia, sensorimotor orientation and
disengage behaviour in animal models of PD, which may be more relevant to the human
condition. Although restoration of DAergic regulation of the nigrostriatal circuitry may
be beneficial in the functional recovery of more complex sensorimotor function,
restoration of GABAergic reinnervation may also be important (Winkler et al., 1999).

[n our experiment it is possible that some degree of GABAergic reinnervation
may have occurred in the SN by the intranigral graft as transplanted nigral tissue likely
contains GABAergic cells from the SNr (Hattori et al., 1973; Ribak et al., 1976; DiChiara
et al.. 1979; Ficalora and Mize, 1989). In a recent study, Winkler and colleagues (i999)
observed that rats with intrastriatal dopaminergic and intranigral GABAergic grafts had a
significant attenuation of deficits in the forelimb akinesia test which was more
pronounced than in animals with intrastriatal DAergic grafts alone.

In summary, the results of this study suggest that the intranigral graft has an
important role in the behavioural recovery of double grafted animals. Restoration of

DAergic and possible GABAergic reinnervation to the striatum, SN and other nigra-



innervated structures such as the STN may be crucial for optimizing functional efficacy

in neural transplantation for PD.
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Summary of the work

The main findings of this work are; 1)} hNT neuronal grafts survive when
transplanted into the rodent model of PD. Furthermore, hNT neurons express TH and
hold promise as a possible altemative cell source for transplantation; and 2) simultaneous
intrastriatal and intranigral grafts appear to be a superior strategy for transplantation
based on previous work by our laboratory (Mendez et al., 1996; Mendez and Hong, 1997)
and the substantia nigra is an appropriate and important target for transplantation in the

rat model of PD.

Induction of TH expression in non-catecholaminergic cells

In chapter 2, TH immunohistochemical analysis of hNT neuronal grafts revealed a
small number of THir cells. The ability of hNT neurons to provide functional recovery in
the rat model of PD was described. A trend towards a reduction in amphetamine-induced
rotational behaviour was observed, but never reached significance. Although a
measurement of DA release was not performed or double-labeling for the presence of
dopa decarboxylase (DDC) (enzyme responsible for the conversion of L-Dopa to DA), it
was hypothesized that the poor functional recovery of the animals may relate to the
relatively few number of cells expressing TH. Research investigating the induction of
TH in non-catecholaminergic cells has resulted in the identification of various molecules
and approaches to induce TH expression.

The optimal tissue source for transplantation may be one that is capable of
producing and releasing DA and is neuronal in origin, capable of reinnervating DA-

depleted areas of the brain. One way to induce TH expression by non-catecholaminergic
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cells is through the insertion of a foreign TH transgene. Transplantation of cells with a
foreign TH transgene in the rat model of PD have been observed to produce only short-
term functional recovery (Wolff et al., 1989; Horellou et al., 1990a; 1990b; Fisher et al.,
1991; Ishida et al., 1996b; Lundberg et al., 1996; Tornatore et al., 1996; Raymon et al.,
1997, Leffet al., 1998; Fitoussi et al., 1998; Segovia et al., 1998), possibly due to a
down-regulation of foreign transgene expression (Leff et al., 1998; Ljungberg et al.,
1999; Trejo et al., 1999). The transgene may need to be inserted within the host DNA, in
a way enabling transcription of the transgene to be under the control of the promoter of a
constitutively expressed gene ensuring long-term transcription of the transgene (Trejo et
al., 1999). Insertion of foreign transgenes in the hNT genome has been reported
(Trojanowski et al., 1997; Kofler et al., 1998). Thus, this may be one way of producing a
stable TH-expressing hNT neuronal population. If hNT neurons exhibit long-term
expression of the TH transgene, further studies will be required to assess whether hANT
neurons are capable of synthesizing DA. An earlier study by Imaoka and colleagues
(1998), reported greater functional recovery in hemiparkinsonian rats following
intrastriatal virus-mediated co-transfer of both TH and DDC transgenes than when the
TH gene was transferred alone. Thus, co-transfection of hNT neurons with both TH and
DDC transgenes may be required for greater recovery.

A great deal of research has been generated on the factors responsible for
catecholaminergic neuronal differentiation. Factors such as sonic hedgehog (SHH)
protein, aFGF and basic fibroblast growth factor (bFGF), BDNF and LiCl have all been
reported to either enhance or induce TH expression in catecholaminergic and/or non-

catecholaminergic neurons, respectively. The SHH gene encodes a protein that is
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prevalent within the ventral midline of the developing CNS (Johnson et al., 1994; Ekker
et al., 1995). That protein has been observed to be sufficient in inducing DAergic and
other neuronal phenotypes in chick VM cultures (Wang et al., 1995). Wang and
colleagues (1995) hypothesized that SHH protein is a general ventralizing signal and the
phenotype induced by SHH may be determined by the receiving cells. Furthermore, the
transcription factor. Nurrl has been reported to induce TH transcription in hippocampal
neural progenitors independent of the presence of SHH protein by binding a response
element within the region of the TH gene (Sakurada et al., 1999). Furthermore,
coculturing multipotent neural stem cells overexpressing Nurrl led to greater than 80% of
cells expressing a phenotype indistinguishable from midbrain DAergic neurons (Wagner
ct al., 1999). Saucedo-Cardenas and colleagues (1998) have reported that although SHH
drives neural progenitors towards a midbrain DAergic phenotype, Nurr! is essential for
inducing a full midbrain DAergic phenotype from mesencephalic precursors. Although
the complete pathway in which induction of a nigral DAergic neuronal phenotype has yet
to be clearly described those results are promising. As the experiments in chapter 2 were
conducted with terminally differentiated neurons, the ability of up-regulation of Nurrl or
SHH protein expression to induce a DAergic phenotype in differentiated cell lines still
needs to be addressed.

The highest expression of bFGF in rat VM is observed from E16 to postnatal day
90 (P90) and of aFGF from P20 to P90 suggesting that aFGF and bFGF may have
functions in midbrain DAergic neurons at different developmental stages (Bean et al.,
1992). Thus, the FGF family of molecules may also be important for inducing or

maintaining a DAergic phenotype in VM neurons. In 1989, [acovitti and colleagues
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(1989) reported a 20-fold increase in catecholaminergic phenotype e.xpression (THir) in
cultured rat cortical cells in the presence of factors extracted from muscle, referred to as
muscle-derived factor (MDF). Furthermore, treatment of cerebellar and striatal neurons
and cells from the collicular plate of the aduit rat brain with MDF induced similar
increases in TH expression ([acovitti, 1991). aFGF was later found to be an important
component of MDF (Du et al., 1994) and further studies revealed that DA, protein kinase
A (PKA) and PKC pathway activators work synergistically to upregulate TH expression
and activity in DAergic and non-DAergic neurons (Stull and lacovitti, 1996; Du and
lacovitti, 1997a; 1997b). That mixture of factors is hypothesized to induce the
phosphorylation of mitogen activated protein kinase through FGF receptors and increased
transcription factor binding of the AP-1 regulatory element of the TH gene and a
concomitant decrease in levels of repressor proteins, effectively enhancing TH expression
(Guo et al.. 1998). Regardless of the mechanism, exposure of the DA-denervated
striatum of MPTP-treated mice to those factors for 14 days significantly enhances TH
activity (Jin and lacovitti, 1996). Furthermore, in the
6-OHDA rat model of PD, intrastriatal infusion of those factors significantly reduces
amphetamine-induced rotational behaviour, for up to 8 weeks, the longest time period
tested following infusion (Jin and lacovitti, 1995). The results of those studies are very
promising, outlining a technique to induce TH expression in non-catecholaminergic cells,
however treatment of hNT neurons with the above mixture provides only a small increase
in the number of THir neurons (lacovitti and Stull. 1997).

LiCl induces TH expression in frontal cortex, hippocampus and striatum in adults

rats following acute and chronic treatment, in vivo (Chen et al., 1998). LiCl promotes a
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similar enhancement of TH expression in cutured human SH-SY5Y neuroblastoma and
bovine adrenal medullary cells (Terao et al., 1992; Chen et al., 1998) but inhibits TH
expression in pheochromocytoma-12 cells (Presse et al., 1997). LiCl enhances the
activity of PKA (Terao et al., 1992) and regulates TH expression through the AP-1
transcription factor family (Chen et al., 1998). Furthermore, Zigova and colleagues
(1999) reported a significant increase of TH expression in hNT neurons in culture
following LiCl treatment. Our results suggest that LiCl pretreatment of hNT-DA neurons
may enhance the number of cells expressing TH following transplantation. In our
experiments all animals (n=4) with LiCl pretreated hNT-DA neuronal grafts contatined
THir cells compared to 43% (n=3 of 7) of animals with untreated hNT-DA neurons.
Stimulation of several signalling pathways (ie., PKA and calcium calmodulin-dependent
kinase pathways) may be required to enhance TH expression in hNT neurons (Nankova
et al., 1996). Further studies are required to assess whether treatment of neurons with the
above factors not only enhance TH expression but may concomitantly increase dopa
decarboxylase (DDC) expression and thus, DA production which may afford greater
clinical benefit than simply L-Dopa-producing cells. DA-producing cells may be
important as the disease progresses as a mechanism to convert L-Dopa to DA may not be
available as the endogenous neurons continue to degenerate.

[n summary, hNT neurons hold promise as an alternative source of cells for
transplantation in PD. However, increasing their ability to express TH is critical for hNT

cells to become a practical alternative to fetal VM tissue.
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Double DAergic grafts in the rat Parkinson model

Our laboratory has previously reported on the increased functional effects of
simultaneous intrastriatal and intranigral FVM grafts compared to intrastriatal grafts
alone (Mendez ¢t al., 1996). To determine the mechanism by which double grafts may
enhance amphetamine-induced rotational recovery, Mendez and Hong (1997) performed
a tracer study using fluorogold (FG) and HRP. Following intrastriatal FG injections,
11.5% of THir cells within the intranigral graft were also fluorescent. Those results
suggest that enhanced rotational recovery in double grafted animals may be partially
explained by increased striatal reinnervation, as the extent of striatal reinnervation
correlates well with the degree of functional recovery (Rioux et al., 1991; Apostolides et
al.. 1998; Winkler et al., 1999). Although increased striatal reinnervation may partially
explain the results, previous studies indicate that the SN may also be important for
functional recovery (Robertson, 1992b). Dendritic release of DA within the SNr
enhances the release of GABA by the descending striatonigral pathway (Robertson,
1992a). Furthermore, infusion of DA or DA agonists within the SN reduces GABA
release in the thalamus (Gauchy et al., 1987) and resuits in an overall increase in
locomotor activity in rats (Jackson and Kelly, 1983a; 1983b). Therefore, DAergic
reinnervation of the SNr may be necessary for regulating the inhibitory drive of SNr
projection neurons on target nuclei. The regulation of SNr neuronal activity may thus be
important for enhancing functional recovery and re-establishing normal basal ganglia
acitvity in PD patients.

Recently, Winkler and colleagues (1999) reported on a significant amelioration of

forelimb akinesia in the rat model of PD with simultaneous intrastriatal DAergic and
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intranigral GABAergic grafts. However, this recovery remained incomplete. Aithough
the double grafting strategy improved forelimb function, intrastriatal DAergic grafts were
more effective in reducing amphetamine-induced rotational behaviour and equally
effective to the double grafts in reducing apomorphine-induced rotational behaviour.
Furthermore, in that study as well as other’s, multiple intrastriatal deposits of nigral
suspensions were made (18 in total) greatly enhancing the extent of striatal reinnervation
(Nikkhah et al., 1993; Olsson, et al., 1995; Winkler et al., 1999). However, Winkler and
colleagues (1999) reported that the density of the THir fibers in the striatum were similar
in the single and double grafted groups and far greater than animals with partial lesions of
the nigrostriatal pathway, however the functional effects were similar to that of partially
lesioned animals. Those results suggest that complete reinnervation of the striatum may
not be essential for the restoration of complex sensorimotor behaviours. Reinnervation of
other DA-depleted nuclei such as the SN may be necessary for complex sensorimotor
behavioural recovery.

The observations that the intranigral DAergic graft extends fibers to the ipsilateral
striatum in double grafted rats (Mendez and Hong, 1997) and simultaneous intrastriatal
DAergic and intranigral GABAergic grafts ameliorate forelimb akinesia (Winkler et al.,
1999) made it imperative that we investigate whether the intranigral DAergic graft was
truly necessary for functional recovery. In chapter 3, the role of the intranigral graft in
double grafted animals is discussed. Ten weeks following transplantation, animals
received intranigral vehicle or 6-OHDA injections. In double grafted animals with
subsequent intranigral 6-OHDA injections, a reversal of amphetamine-induced rotational

recovery was observed. That reversal of recovery was not exhibited by double grafted



rats with subsequent vehicle injections or intrastriatally grafted animals with intranigral
6-OHDA injections. Those observations rule out the possibilty that neither the trauma to
the intranigral graft or SN nor the destruction of spared DAergic neurons of the first
lesion led to the increase in amphetamine-induced rotational behaviour. Those results
provide clear evidence that the intranigral DAergic graft is essential for functional
recovery in double grafted hemiparkinsonian rats.

Although an analysis of the effects of double grafts on complex sensorimotor
behavioural recovery was not performed. Preliminary results from our laboratory
indicate that double DAergic grafts may promote a quicker recovery in stepping test
performance, as early as 2 weeks following transplantation (Baker et al., in preparation).
Thus. a more complete amelioration of behavioural deficits in the hemiparkinsonian rat

may depend on restoring the DAergic innervation of other DA-depleted brain regions.

DA-denervated regions of the mammalian brain: Possible targets for neural
transplantation?

The SN contains approximately 80% of DAergic neurons in the central nervous
system. [t is well known that the main target area of those DAergic neurons is the
striatum (Andén et al., 1964; 1965; 1966). But further evidence has been generated
suggesting that the nigral DAergic neurons also innervate other areas of the brain. Early
studies revealed that THir fibers originating from the SNc / ventral tegmental area
extended into the nucleus accumbens, olfactory bulb, anterior olfactory nucleus, olfactory
tubercle. interstitial nucleus of the stria terminalis, lateral septal nucleus, central

amygdaloid nucleus, cingulate cortex, entorhinal cortex, inferior colliculus and
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hippocampus (Emson and Koob, 1978; for a review see, Moore and Bloom, 1978;
Olazabal and Moore, 1989; Cheung et al., 1998; Williams and Golman-Rakic, 1998)
(Figure 4.1). 6-OHDA lesions of the catecholaminergic terminals in the nucleus
accumbens, central amygdaloid nucleus, olfactory bulb, hippocampus and frontal cortex
have been reported to result in deficts in certain learning and memory paradigms, body
weight regulation, rewarding behaviours, motivation and taste aversion based on
olfactory cues (Lenard and Hahn, 1982; Fernandez-Ruiz et al., 1993; Rassnick et al,,
1993: Gasbarri et al., 1996; Morrow et al., 1999). However, destruction of noradrenergic
terminals in those structures can not be ruled out as a possible contributing factor to the
appearance of those deficits (Lenard and Hahn, 1982). A loss of DAergic innervation of
the frontal cortex has been hypothesized to possibly accentuate the depressive mood
exhibited by PD patients (Fibiger, 1984).

Furthermore, 6-OHDA injections into the nucleus accumbens and central
amygdaloid nucleus have been reported to result in DA agonist-induced locomotor
deficits (Deminiere et al., 1988; Simon et al., 1988; Herman et al., 1988).
Cotransplantation of FVM and fetal locus coeruleus, as a source of noradrenergic
neurons, within the nucleus accumbens and/or frontal cortex reduced amphetamine-
induced but not apomorphine-induced rotational behaviour, whereas grafts of FVM tissue
alone did (Cenci et al., 1994). However, skilled forelimb use remained unaffected (Cenci
etal., 1994). Abrous and colleagues (1993) reported no significant reduction in
amphetamine-induced and a small reduction in apomoporphine-induced rotational
behaviour by intra-accumbens nigral grafts. However, double DAergic grafts

(intrastriatal and intra-accumbens) provided significant rotational recovery following
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challenge with either DA agonist, however, skilled forelimb deficits again remained
unaffected (Abrous et al., 1993). Other studies have reported a significant reduction in
amphetamine-induced rotational recovery by intra-accumbens FVM grafts alone
(Brundin et al., 1987; Abrous et al., 1990; 1993; [shida et al., 1991).

Intrastriatal and/or intra-accumbens DAergic grafts in 6-OHDA-lesioned rats fail
to completely alleviate complex sensorimotor behavioural deficits, such as skilled
forelimb use, suggesting incomplete normalization of basal ganglia anatomy and
physiology. Several studies have demonstrated the existence of DAergic innervation of
the STN by SNc fibers (Lavoie et al., 1989; Hassani et al., 1997; Cossette et al., 1999,
Hedreen, 1999). There is also evidence that intrastriatal grafts fail to normalize STN
activity as indicated c-fos expression following apomorphine challenge (Nakao et al.,
1998). In 6-OHDA-lesioned rats, MPTP-treated monkeys, and PD patients subthalamic
inactivation promotes functional recovery (Anderson et al., 1992; Krack et al., 1997a;
1997b: 1998a; 1998b; Kumar et al., 1998a; 1998b; 1999; Limousin et al., 1998; Phillips
et al.. 1998: Brown et al., 1999; Moro et al., 1999; Yokoyama et al., 1999). Furthermore,
in normal rats intrasubthalamic nucleus microinjections of D, or D agonists reduce the
discharge rate of STN neuronal activity, whereas in 6-OHDA-lesioned animals, D,
agonists but not D, agonists reduce neuronal discharge rates in the STN (Hassani and
Feger. 1999). Blockade of STN D, but not D2 DA receptors in normal rats induces
akinesia (Hauber, 1998). Although it is not completely clear whether intrasubthalamic
DA has a net inhibitory or excitatory effect on subthalamic neurons, it is possible that the
STN may also be an important target site for DAergic grafts in PD. Currently, the ability

of double DAergic grafts (intrastriatal and intranigral) to normalize c-fos expression in
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the STN is being investigated in our laboratory. The results of that study should elucidate
whether the STN may be a possible target for transplantation in PD models.

[t is possible that several DA-denervated targets may need to be transplanted in
the basal ganglia for neural transplantation strategies to produce sustained beneficial
effects in Parkinsonian patients. It is clear that the current strategy of reinnervating the
striatum by ectopically placed DAergic grafts has not reached the clinical efficacy for
neural transplantation to be used as a routine therapeutic procedure for PD. Our work
promotes the idea of a multi-target transplantation strategy, which may have important

clinical implications in the future.



Figure 4.1 - Schematic diagram of the rat brain demonstrating the target nuclei of the
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DAergic projecton neurons of the substantia nigra (SN) / ventral tegmental area (VTA).

Am, amygdala; CC, cingulate cortex; EC, entorhinal cortex; EPN, entopeduncular
nucleus; FC. frontal cortex; GP, globus pallidus; HPC, hippocampus; IC, inferior
colliculus; NAc, nucleus accumbens; OB, olfactory bulb; SA, septal area; ST, stria

terminalis; STN. subthalamic nucleus; STR, striatum.
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Future Perspectives

The possible future perspective of the work described in this thesis are as follows:

1. hNT neurons were evaluated as a possible abundant alternative cell source for
transplantation. However, before hNT neurons can be considered as a possible
alternative to fetal tissue for transplantation, a technique must be developed to induce the
long-term expression of TH in those cells. That technique may involve the transfection
of hNT neurons with foreign TH transgenes or treating the neurons with several different
factors inducing differentiation of the hNT neurons into DAergic neurons. If a cell line
can be established exhibiting high levels of TH expression, the next step would be to
establish whether they synthesize and release DA and promote functional recovery in the

rat model of PD.

2. The optimal placement site for DAergic grafts was also addressed in this paper by
investigating whether the intranigral DAergic graft was truly essential for functional
recovery in double grafted rats. The observation that 6-OHDA lesions of the intramgral
DAergic graft in double grafted animals reverse the functional recovery obtained
following transplantation is interesting for several reasons. First, those results
demonstrate the importance of the intranigral graft in maintaining functional recovery in
double grafted rats. Intrastriatal DAergic grafts alone are sufficient to provide
amphetamine-induced rotational recovery in 6-OHDA-lesioned rats. However, the
observation that the second 6-OHDA lesion reverses the recovery in double grafted

animals, suggests that removal of the intranigral graft possibly results in changes within
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the basal ganglia nuclei which are not compensated for by the presence of the intrastriatal
graft. Presently, our laboratory is utilizing c-fos immunohistochemistry to elucidate
which structures within the basal ganglia may exhibit abnormal neuronal activity
following 6-OHDA lesions of the intranigral graft.

Our laboratory is presently investigating whether other DA denervated areas of
the brain, such as the STN may also be important target sites for neural transplantation to
alleviate the complex sensorimotor deficits observed in animal models of PD. It is
possible that a multi-target grafting strategy may be a superior strategy in neural
transplantation for PD. The results of those experiments may prove important for the

future of neural transplantation in PD.
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