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ABSTRACT 
Parkinson's disease (PD) is a severe neurodegenerative disorder afflicting 

approximately 1 % of the population over 60 yean of age. PD is marked by progressive 
sensorimotor disturbances that ultimately lead to disability and death. Currently there is 
no cure for PD, but the syrnptoms cm be adequately controlled by administration of L- 
3,4-dihydroxyphenylalanine (L-Dopa). However. most patients develop intractable side 
effects and with long-term use and no longer respond to L-Dopa. The inability of L- 
Dopa to provide long-term benefits has stimulated the search for alternative strategies for 
the treatment of PD. Selective lesions or chronic stimulation of basal ganglia structures 
are currently being investigated. However, transplantation of DA-rich tissue to DA- 
depleted areas of the brain may hold the greatest promise of a cure for PD. However, 
before neural transplantation can be considered as a routine procedure for the treatrnent 
of PD. some crucial issues need to be addressed. Two important issues relate to the 
source of tissue for the treatment of PD and the establishment of the appropriate target(s) 
for transplantation. In this work, 1 have specifically addressed those two issues. 

In the f i n t  study, 1 hypothesized that hNT neurons. denved from a human 
teratocarcinorna. cm be used for neural transplantation in a rodent mode1 of PD. 
Hemiparkinsonian rats received subsequent intrastnatal and intranigrd grafts (double 
grafts) of 1) medium only: 2) hNT; 3) hNT-DA: or 4) lithium chloride (LiCl) pretreated 
hNT-DA neurons. Immunohistochernistry for the presence of tyrosine hydroxylase (TH) 
revealed TH-immunoreactive (THir) cells in the NT-DA and LiCl pretreated WT-DA 
groups. compared to no THir cells in the controls or animals with hNT neuronal grafts. 
This experiment demonstrated that hNT-DA neurons survive and differentiate into THir 
cells and LiCl pretreatrnent may enhance TH expression in NT-DA cells. Although the 
number of cells expressing TH was relatively small, there was still evidence of some 
hinctional effects in animais with NT-DA or LiCl pretreated NT-DA neurons. This 
work has dernonstrated for the fint time the potential of M - D A  neurons to be used in 
neural transplantation. In the second experiment. I hypothesized that the intranigral 
dopaminergic graft is important in the double graft strategy. Hemiparkinsonian rats were 
subsequently transplanted with: 1) double fetal nigral grafts or; 2) intrastriatai grafts 
alone. Nine weeks following transplantation, the animals were randomly subdivided into 
four equal-sized groups and received either intranigral injections of 1) vehicle or: 2) 6- 
hydroxydopamine (6-OHDA). intranigral 6-OHDA injections in the double graft group 
resulted in a significant reversal of behavioural recovery, which was not exhibited by any 
of the other groups. Robust surviving THir intranigral grafts were observed in double 
grafted animals with subsequent vehicle injections compared to only small grafts in 
animals with subsequent 6-OHDA injections. This experiment demonstrates that the 
intranigral graft has an important role in the recovery of double grafted animals. 

The results of the above two experiments rnay have important clinical relevance 
to the treatment of PD. The finding that non-fetal-derived cells (N neurons) can be 
survive and express TH in vivo may diminish our dependency on fetal tissue. Based on 
the work here and in previous studies by Our laboratory that double grafts can restore 
DAergic reinnervation of the striatum and substantia nigra and that the nigral target is 
critical for behaviourd recovery suggests that the double graft strategy may increase the 
functional efficacy of neural transplantation for PD. 

xii 
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Cbapter 1: 

Introduction 

Parts of  this chapter have been taken from works published in Bnin Research Reviews 

(1000) 32: 328-339 and the Dalhousie Medical Journal (1998) 26: 25-32. 
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Overview and hypotheses 

Parkinson's disease (PD) is a severe neurodegenemtive disorder resulting from 

the selective loss of the dopaminersic neurons of the substantia nigra pars cornpacta 

(SNc). Dejeneration of these neurons leads to a dramatic reduction in dopamine (DA) 

lewls in the striatum. which is the main taget of the DAergic SNc neurons. The 

mainstay of treatment for PD, involves the administration of the precunor to DA 

biosynthesis. L-3.4-dihydroxyphenylalanine. Although L-Dopa is initially effective in 

alleviating parkinsonian manifestations, the beneticial effects of L-Dopa oRen Wear off 

with tinic and there is the development of neuropsychiatrie symptoms, motor tluctuations 

(the 'on-O ff phrnomenon) and abnormal movements or dyskinesias (Olanow et al.. 

1 0 6 ) .  Intractable side effects and the decreased efficacy of medical (dmg) therapy for 

PD over the long-term has stimulated the search for surgical alternatives For the treatment 

of this devastating disorder. Of the surgical options currently being investigated, neural 

transplantation holds the greatest potential of a cure for PD. The results ofclinical trials 

reported thus far on neural transplantation are promising but several issues need to be 

addressed before neural transplantation can be viewed as a treatment strategy for PD 

(Olanow et al.. 1996; Mehta et al.. 1997). In the present work, hvo cntical issues in 

neural transplantation have been investigated: 1 )  the use of alternative sources to fetal 

tissue for neural transplantation of DA-rich cells; and 2) the optimal target site(s) for 

neural transplantation. 

My work has focussed in testing the following hypotheses in an attempt to answer 

the questions stated above. 



1) That hNT neurons. derived from a buman teratocarcinorna cell line (NT2) can be 

used for neural transplantation in the rat model of PD. 

2) Reinnervation of the substantia nigra is  important in a simultaneous intrastriatal 

and intranigral (double grrft) grafting strrtegy in the rat model of PD. 

Parkinson's disease 

In 1 S 12. James Parkinson first described a disorder charactenzed by bradykinesia. 

;ait and speech disturbances, tremor and a flexed posture, which became known as 

Parkinson's disease (Youdim and Riederer, 1997). Presently. PD afflicts approximately 

1% of the Canadian population over the agc of 60. PD results frorn the selective loss of 

the dopamine (DA)-containing neurons, most predorninantly being the DAergic neurons 

of tlis SNc. that project predominantly to the striatum and are important in motor 

iùnction. When >80% of the neurons of the SNc have degenerated, the cardinal 

syniptoms of PD begin to emerge (Olanow et al.. 1996). 

The cause of PD is currently unknown, but an Italian-American family has 

recently been discovered in which their form of early-onset PD is inherited, and appears 

to result from mutations in the a-spiidein gene (Polymeropoulos et al., 1997; 

Papadimitriou et al.. 1999). Transcription of the a-synirclein gene liberates a protein that 

has been hypothesized to integrate presynaptic signalling and be involved in membrane 

trafficking (Clayton and George, 1999). Deletions or point mutations in the parkin gene, 

which transcnbes a protein of unknown function. involved in the expression of autosomal 

recessive juvenile-onset Parkinsonism have also recently been identified in patients of 



North Afncan, European and Japanese descent (Hattori et al., 1998; Kitada et al., 1998; 

Leroy et al., 1998; Abbas et al., 1999; Shimura et al., 1999). However, alterations of 

cl-synuclein or parkin expression have not been found to be univenal to al1 PD cases 

(Parsian et al.. 1998; Wang et al., 1998; Lin et al., 1999; Scott et al., 1999; Shimura et al., 

1999). 

In 1983. Langston and colleagues reported on the sudden onset of PD-like 

symptoms in a group of 4 catatonic patients in California (Langston et al.. 1983). Upon 

liirthcr investigation i t was discovered that each of these patients had developed 

Parkinsonism following self-administration of a designer dnig (Langston et al.. 1983). In 

the production of that designer dmg, a neurotoxic side-product had formed. 1-methyl-4- 

phenyl-tetrahydropyridine (MPTP). MPTP was discovered to be a selective neurotoxin. 

destroying the DAersic neurons within the nervous system and has since been used in the 

production of animal models of PD. When this neurotoxin was identi fied, researchers 

hypothesized thai PD may develop after years of exposure to environmental toxins. 

Many studies have investigated whether there may be regional differences in PD 

distribution or more specifically, whether there was an increased incidence of PD in 

relation to a particular geographical region, occupation, drinking water, as well as other 

possible factors (Semciik et al.. 1995; Seidler et al.. 1996; Marder et al., 1998; Gorell et 

al.. 1999). Thus far, the data obtained in those studies remains inconclusive as to whether 

there may be a strong correlation between any of those factors and the incidence of PD. 

Until the cause of PD is known, many researchers are studying ways in which to lessen 

the degree of disability in this patient population. The most predominant treatment 

modality currently in use is pharmacological therapy using L-Dopa. 



PharmacoIogicil treatment of PD 

S ince the 1960's. the mainstay treatment for PD has involved the elevation of DA 

lewls throush the administration of Sinemet@, a combination of L-Dopa and carbidopa. 

L-Dopa. unlike DA readily crosses the blood brain bamer where it is enzymatically 

converted to DA by DOPA decarboxylase (DDC) within the remaining DAergic neurons 

and carbidopa inhibits DDC activity within extracerebral regions (Kopin, 1994). L-Dopa 

adniinis tration is ini tially effective in relieving bradykinesia, rigidity and tremor, the 

u term niain symptoms in PD, however the clinical benefits of L-Dopa decrease with Ion,- 

use and side e ffccts O Aen develop, which include dyskinesias and motor fluctuations, the 

"on-off phenornenon" (Marsden and Parkes, 1977). With time, the length of time in the 

'off phase. a penod of akinesia, increases and the 'on' phase. a period ofactivity, 

decreases and is associated with severe dyskinetic or abnormal movements (Marsden and 

Parkes. 1977). That rrduction in clinical efficacy results from the continued progression 

of the disrase and further degeneration of the DAergic SNc neurons. Furthermore. 

evidence has been compiled to suggest that L-Dopa may increase disease progression by 

increasing DA toxicity. whrre Free radicals are generated through the autoxidation of DA 

(Mena et al.. 1992; Chiueh et al., 1994; Smith et al., 1994; Pardo et al., 1995). 

Several other pharmacological treatments are currently being investigated 

clinically, to slow the progression of the disease process or treat Parkinsonism. 

SelegilineO or deprenyl, a monoamine oxidase type B (MAOe) inhibitor, is effective in 

slowing the progression of the disease, increasing the time between positive diagnosis 

and requirement of L-Dopa treatment, and in providing some arnelioration of 

Parkinsonian deficits (Parkinson Study Group, 1989; 1993; Tetrud and Langston, 1989; 



Alain ct al.. 199 1 ; LeWitt and the Parkinson Study Group, 199 1; Lieberman and Fazzini. 

199 1 ; Myllyla et al., 199 1 ; 1992; Brannan and Yahr, 1995;). Aside from deprenyl's 

ability to enhance DA levels in the synaptic cleR. evidence has been compiled suggesting 

tliat deprenyl may also be neuroprotective, independent of' its ability to inhibit MAOe and 

the degradation of DA (Ansari et al., 1993; Tatton, 1993; Iu et al., 1994; Mytilineou et al.. 

1997). possibly by suppressing the generation of free radicals and oxidative stress or by 

inducing superoxide dismutase activity (Cohen and Spina. 1989; Salo et al.. 1992; Chiueh 

et al., 1994; Gerlach et al., 1994; Kitani et al., 1996; Tatton and Chalrners-Redrnan, 1096; 

Wu et al.. 1996). Deprenyl has also been observed to enhance ciliary neurotrophic factor 

rspression by astrocytes (Seniuk et al.. 1994). Catabolism ofdeprenyl in the liver 

liberates methamphetamine (Karoum et al.. 1982; Engberg et al.. 1991; Sziraki et al.. 

1904). wliich enliancrs DA neurotransrnission and may also provide some clinical 

benefit. Administration of deprenyl does not prevent the progression of the disease or the 

eventual need for L-Dopa therapy. The ability of other drugs to alleviate Parkinsonian 

symptoms is presenrly being clinically investigated. 

Other pharmacological thenpies currently being evaluated in PD can be divided 

into 3 main categories: glutamate and acetylcholine antagonists. and DA agonists. 

Antagonists of the N-methyl-D-aspartate (NMDA) glutamate receptor have been 

obsen-ed to be effective in reducing L-Dopa-induced dyskinesias and motor fluctuations 

( Verhagen-Metman et al.. 1 WSa; l998b). Although no serious side effects in those 

studies have been reported, further long-term studies are needed to evaluate the safety 

and efficacy of NMDA antagonists. Anti-cholinergies have been successful in reducing 

tremor but not akinesia or rigidity (Wasielewski et al., 1998; Schrag et al.. 1999). 



Furthemore, an ticholinergic treatment has becn linked to the appearance of dementia in 

PD patients (Nishiyama et al., 1993; Pondal et al., 1996). The ergot derivatives 

(bromocriptine, lisundr. pramipexole, ropinirole and pergolide) are agonists of the D2 

DA receptor and are effective in alleviating Parkinsonian symptoms. but unfortunately 

for only short periods of time (1 year or less) in the majonty of cases (Pezzoli et al.. 

1995; Bayulkem et al., 1996; Guttman, 1997; Liebenan et al., 1997; 1998; Alarcon et 

al.. 1 998; Brooks et al., 1998; Korczyn et al., 1998; Barone et al.. 1999). No severe side 

effects arere noted. Unfortunately. bromocriptine does not provide long-term benefit and 

in more advanced PD cases, the simultaneous treatment of PD with L-Dopa and 

bromocriptine affords no significant benefit over L-Dopa treatment alone (Alarcon et al.. 

1998). Furthemore, the administration of apornorphine (a Di/D2 DA receptor agonist) in 

low doses lias been observed to significantly ameliorate PD symptoms for up io 66 

months. ho\vwer the quality of 'off timc and the intensity of dyskinesias remain 

unaffected (Pietz et al., 19%; Ondo et al., 1999). 

Overall, the above treatments are effective to varying degrees in treating PD or 

slowing disease progression with some drugs being more effective than others in 

alleviating specific subsets of parkinsonian symptoms. In the case of bromocriptine, 

clinical brnefits are short-lived. The administration of the other ergot derivatives, 

apomorphine or NMDA antagonists are still in the early stages of clinical trials and 

funher long-term studies of their effectiveness and safety in PD patient's are required. 

Thrrapeutic strategies involving anticholinergics and L-Dopa quite often lead to the 

emergence of adverse side effects with long-term use. Currently, neurosursjcal strategies 

are receiving increased attention for the possible treatrnent of PD. Several different 



strategies are currently being investigated. To fully understand the rationale for the 

various neurosurgical techniques being tested, a brief review of the anatomy and 

physiology of the basal ganglia in normal and Parkinson states follows. 

Basal gnnglia inriorny and physiology in normal and Parkinson states 

The striatum is comprised of the caudate nucleus and the putamen and receives 

topographicnlly-organized motor-related inputs from the motor, supplernentary motor. 

association iuotor and somatosensory conices as well as the Frontal eye fields (Kunzle 

1975; 1977: Kunzle and Akert, 1977; DeLong et al., 1986). However, the motor conices 

innrn-atr several other basal ganglia nuclei as well. The motor, premotor and 

somatosensory cortices project predorninantly to the putarnen, and the association 

cortices to the caudate nucleus (DeLong et al., 1986). The descending glutarnatergic 

corticostriatai projections are excitatory upon striatal neurons (Kaneko & Mizuno. 1988). 

whic h in tum provide y-aminobutyric acidergic (GAE3Aergic) efferent innervation of both 

intemal (GPi) and esternal segments (GPe) of the globus pallidus (Loopujit and Van Der 

Rooy, 1985; Rajakumar, et al.. 1994) and the substantia niga(Loopuj it and Van Der 

Rooy. 19Sj). 

PD patbology is marked by degeneration of the nigrostriatal pathway comprised 

of the DAsrgic substantia nigra pan compacta (SNc) neurons projecting to the striatum. 

The SNc receives escitatory innervation fiom motor and frontal cortices (Carter. 1982; 

Sclimidt, 1995) dong with inputs fiom the amygdala, donal raphe nucleus (Vertes, 1991) 

laterodorsal and pedunculopontine tegrnental nuclei (Clarke et al., 1957; Gould et al.. 

1989; Semba and Fibiger, 1992; Lavoie and Parent, 1994). DA released from the 



nigrostriatal axons, binds to Di and Dz receptors in the striatum. Di receptors are 

predominantly located upon striatonigral neurons, whereas D2 receptors are localized to 

striatopallidal neurons (Robertson, 1992a; Robertson et al., 1992). Stimulation of 

striatonigrai Di receptors induces the release of GABA within the substantia nigra 

(Robertson. 1 W h ;  O'Conner, 1998). Stimulation of D2 receptors on the tonically-active 

striatopallidal neurons inhibits the release of GABA within the GPi and GPe (Loopujit 

and Van Der Rooy. 1985; Rajakumar et al.. 1994; O'Connor, 1998) (Figure 1.1). The 

sclective death of the DAergic projections upon the striatum would effectively abolish the 

inhibitory drive of the striatum upon the substantia nigra and prevent the inhibition of 

striatopallidal neurons (Figure 1.2). 

Within the indirect pathway (striatum + GPe -+ STN + GPi + thalamus). both 

projections From the GPe to the STN and GPi to the thalamus are inhibitory upon the 

esci tatory glutamatergic neurons comprising those nuclei (Kaneko and Mizuno, 1988; 

Sniith and Parent, 1988; Schmidt, 1995). An interesting and important feature of the basal 

ganglia-motor circuit anses when considering the inhibitory pallidothalamic and 

pallidosub thalamic projections. The tonically-ac tive GAB Aergic neurons projec ting 

From the striatum to the GPi and GPe inhibit the GABAergic neurons of those structures 

undrr resting conditions. This in turn leads to the increased excitatory drive of the 

subthalamic nucleus upon the GPi and increased inhibition of thalamocortical efferents 

(Scliell and Stnck. 1984; Nambu et al., 1988). Within the direct pathway (striatum + 

SNr + thalamus). striatonigral efferents remain underactive and the tonically-active 

nijrothalamic pathway continues to have an inhibitory influence upon the thalamus 

(Kilpatnck et al., 1980; MacLeod et al., 1980; Kemel et al., 1988). During periods of 



voliintary movement. Dz stimulation inhibits the striatopallidal pathway disinhibiting 

pallidothalamic and pallidosubthalamic pathways, allowing for the release of GABA 

within the subthalamic nucleus via GPe projection neurons. Stimulation of the 

striatonigral pathway would enhancr GABA transmission within the SN, releasing the 

inliibitory drive of pars reticulata neurons upon the thalamus and other nuclei such as the 

supcrior col liculus. reticular formation and pedunculopontine tegmental nucleus 

(DiChiara et al.. 1979; Kemel et al., 1988; Ficalora and Mize. 1989; Spûnn and Grofova. 

199 1 ; Bickford and Hall, 1992; Yasui et al., 1996). Overall. the net effect ivould be that 

the tonically-active thalamocortical neurons would be released from inhibition and free to 

tire upon cortical neurons allowing for the continuance of motion (Figure 1.1). 

With the loss of the DAergic nigrostriata1 efferents, the circuit close1 y resembles 

tliat of the resting condition even during periods of planned motor activity. With 

dccreased striatal innervation by the SNc, inhibition of the SNr decreases and inhibition 

of tlic GPi and GPe rernains (Figure 1.2). The constant inhibitory drive upon the GPe by 

tlic striatum results in the continual firing of STN neurons and thus, tonic excitation of 

GPi neurons. which in tum inhibit the thalamocortical projection neurons. Within the 

direct pat hway there is decreased inhibition of tonically-active GABAergic nigrothalamic 

neurons. leading to increased inhibitory drive upon the thalamus. Thus, the overall 

activity of direct and indirect pathways has a net inhibitory drive upon the thalamus 

reducing excitation of motor cortical areas and preventing the continuance of motion 

(Albin et al.. 1989) (Figure 1.2). This notion has been verified in Parkinsonian patients 

(Rascol et al., 1992). Aside from tonic inhibition of the STN by the GPe, recent evidence 

suggests that in PD patients there is also increased excitation of SRI by the motor cortex 



and paratàscicularis nucleus of the thalamus (Levy et al.. 1997), which would further 

cnliancr the escitatory influence of the STN upon the GPi. 

An explanation For Parkinsonian tremor closely relates to the abnormal 

physiology of basai ganglia nuclei and their pathways. Subsets of thalamic (Lenz et al., 

1995) and GPi neurons (Hutchinson et al., 1997) have a firing rate ai tremor frequency in 

PD patients. The thalamic neurons lie antenor to the principal sornatosensory nucleus, 

\.entralis caudalis, in an area identified as the optimal site for placement of lesions to 

alleviate Parkinsonian tremor (Lenz et al., 1995). 

The above rnodel implicates the prirnary involvement of two structures in the 

hypokineticiakinetic and rigidity characteristics of PD; the STN and GPi. Two surgical 

procediires have been incorporated to inactivate those overactive basal ganglia structures. 

ablation and high-frequency stimulation. Ablation and high-frequency stimulation of the 

thalamus hns been observed to be mainly effective in treating tremor-dominant 

Parkinsonism. In contrat, elevation of stnatal DA levels and reconstitution of basal 

ganglia anatomy and physiology through the transplantation of DA-rich tissue sources 

into the brains' of PD patients may offer the greatest opportunity of a cure for this 

debili tating disorder. 



Figure 1.1 Simplified schematic representation of  basal ganglia circuitry and activity 

dunng periods of active movement in humans. SNc = substantia nigra pars compacts; 

SNr = substantia nigra pars reticulata; GPi = intemal segment of the globus pallidus; GPe 

= extemal segment of the globus pallidus; STN = subthalamic nucleus; DI and D? = DI 

and D2 dopamine receptors; thick arrows = increased activity; thin arrows = reduced 

aciivity. 



Figure 1.1 



Figure 1.2. Simplified schematic representation of basal ganglia circuitry and activity 

durin2 prtiods of active movement in patients with Parkinson's disease. Broken arrows 

= degenerated niyrostriatal pathway; see the legend of Figure 1 . 1  for further explanation 

o t' abbreviations. 



Figure 1.2 



Neurosurgical strategies for the treatmeot of PD 

Thalantic Lesioris art d Siimzrlatiort 

Stereotactic thalamotomy was the main treatment for PD until the late 1960's and 

largely disappeared as a therapeutic option with the introduction of L-Dopa (Tasker et al., 

1983). Thalamotorny is an ablative procedure that involves lesioning areas of the 

tliaianius cornprised of neurons displaying tremor-like bursting activity, primarily the 

ventral iiitcnnediate nucleus (Vim) or ventrolatenl nucleus of the thalamus (Lenz et al.. 

1995) in PD patients. Ablation of the Vim appears to ameliorate Parkinsonian tremor. 

Tasker and colleagues reported in 1983 that Vim thalarnotomy had abolished tremor in 

S% of 75 subjects at 2 years postoperatively. There was no observed reduction in 

niovement or speech deficits and only 7% of the patients presented persistent 

complications. One year later, Matsumoto and coileagues ( 1984) reported on the long- 

terni follow-up (mean = 4.2 years) of 78 PD patients who undenvent uni- or bilateral 

ventrolateral thalarnotomy. In 44 of these patients. no progression of the disease was 

notcd and in somr patients there was a decrease in the L-Dopa dose administered. No 

rcsults were reported by this group conceming the rxtent of postoperative tremor. 

[n inore recent clinical trials, unilateral lesions of the Vim of the thalamus 

decreased contralateral tremor in 100% of patients at 3 months postoprratively (Boecker 

et al.. 1997) and in 56% of patients upon a 13 year follow-up (lankovic et al., 1995). In 

the latter study. the daily dose of L-Dopa administered had decreased in 35 of the 42 

patients. In this study, postoperative complications were noted which included 

contralateral weakness, dysarthria, and confusion. Bilateral thalamotornies are associated 

with cogitive and speech disturbances and increased morbidity (Koller et al., 1997). 



The high percentage of patients presenting immediate (58%) and persistent (23%) 

postoperative complications (Jankovic et al., 1995) demonstrates the need for an 

altemative treatnient of Parkinsonism in patients with medically intractable tremor. An 

alternative to Vim thalamotomy is high-frequency thalamic stimulation. which reduces 

the frequency of postoperative complications by being reversible. 

In 1957. Benabid and colleagues ( 199 1 ) were the first to apply high-frequency 

elrctrical stimulation of the thalamus for the treatment of PD and observed a significant 

decrease in the severity of postoperative tremor. The mechanism by which high- 

freqiiency stimulation inactivates a brain structure remains unknown. Several recent 

stiidies have observed a significant decrease in tremor ai 3 (Hubble et al.. 1997; Koller et 

al.. 1997), 6 (Defebvre et al.. 1996) and 10 months (Pfann et al., 1996) and 1 (Koller et 

al.. 1997) and S years (Benabid et al.. 1996) following high-kqurncy stimulation of the 

Vini. .Al t hough the severity of postoperative tremor was reduced, thalamic stimulation 

has little beneficial effect on gait, bradykinesia or rigidity (Benabid et al.. 1996; Defebvre 

et al.. 19%). In one study, 3 1.656 of patients undergoing this procedure demonstrated 

rninor reversible side effects (Benabid et al., 1996). In this same study, the researchers 

reported a 30% reduction in L-Dopa dosages as compared to preopentive levels. Thus. 

thalamic stimulation is a saler procedure than thalamotomy and is effective at reducing 

the frequency of tremor and is most beneficial for patients exhibiting a tremor-dominant 

forni of PD. 

Glu6 ils pallidtis lesioiis ail d stitnulatioi 

In Sweden during the 1950ts, Lars Leksell improved upon an experirnental 



surgical technique used in the 1930's for the treatment of PD, known as pallidotomy 

( Laitinen et al., 1992). This surgical procedure involves inactivation of the globus 

pallidus, which exhibits abnormal physiological activity in the Parkinsonian brain (Sterio 

et al, 1994). Early lesions of the posteroventral GPi by Leksell greatly reduced resting 

tremor. rigidity and bradykinesia in PD patients (Laitinen et al., 1992). Early 

paIlidotomies by Leksell and others were met with a variety of side effects. including 

lion~onymous hemianopsia, transient dysphasia and transi tory hemiparesis. Despite the 

dramatic allcviation of motor abnormalities, the side effects led to the abandonment of 

this technique as a therapeutic option for the treatment of Parkinsonism. 

Wi th the advent of more advanced technology (ie.. imaging techniques) and 

improved surgical techniques (ie.. computenzed tomography-guided stereotactic 

siirgery). the possible treatment of PD by pallidotomy has resurfaced (Laitinen et al., 

1992). Since 1985. many PD patients have received this procedure for the treatment of 

tlieir Parkinsonian symptorns. Man y researchers have observed a dramatic improvement 

in speech and rigidity, and reduced time in the 'off state as well as the severity and 

frequency of L-Dopa-induced dyskinesias up to 1 (Laitinen et al., 1992; Dogali et al., 

1995; iacono et al.. 1995; Lozano et al., 1995; Sutton et al., 1995; Baron et al.. 1996; 

Kishore et al.. 1997; Kopyov et al., 1997a; Krauss et al.. 1997; Lang et al.. 1997; 

Soiikoup et al.. 1997) and 4 years (Fazzini et al., 1997) postoperatively. Pallidotomy has 

bern dsmonstratrd to only occasionally result in a reduction of anti-Parkinsonian 

medications and is less effective than thalamotomy for the treatment of tremor-dominant 

PD (Tasker et al., 1997), although Laitinen and colleagues ( 1992) reported an almost 

complete abolishment of tremor in 8 1% of patients. 



Stimulation of the GPi for Parkinsonian symptoms has recently been incorporated 

as an alternative to GPi pallidotomy for the treatrnent of this disease. Pallidal stimulation 

involves high-frequency stimulation of the venteroposterolateral GPi which effectively 

inactivates this structure, in cornparison to low-frequency stimulation which results in 

enhancement of rnotor symptorns (Gross et al., 1997). As mentioned above, GPi 

pallidotomy is occasionally met with varying transient and long-tenn side effects due 

primariiy to the close proximiiy of the optic tract to the GPi (Laitinen et al.. 1992; Hariz 

and DeSalles. 1997). GPi stimulation is beneficial by being revenible in that the 

niicroelcctrode can easily be repositioned if inconectly placed. This was dernonstrated 

by Gross and colleagues ( 1997)- where a patient reported a transient flash of light when 

the stirnulator \vas turned on, suggestinp incorrect positioning of the electrode near the 

optic tract. 

In the clinical studies reponcd thus Far there has been a demonstrated reduction in 

akinesia. rigidity. as well as decreased gait and speech disturbances up to 3 years 

postimplantation (Siegfried and Lippitz. 1994; Davis et al.. 1997; Gross et al., 1997; 

Limousin et al., 1997; Pahwa et al., 1997; Tronnier et al.. 1997). Gross and colleagues 

( 1997) reported a decrease in tremor in 1 of 5 patients up to 3 years postimplantation, 

\\.hereas other groups failed to report any changes or reduction in the frequency of tremor 

( D a ~ i s  et al.. 1997; Limousin et al., 1997; Pahwa et al., 1997). A similar reduction in 

rigidity and akinesia has been reported in MPTP-treated monkeys following GPi 

stimulation (Boraud et al.. 1996). Thus. it appears that GPi stimulation is similar to 

postsrovsntral pallidotomies in that both procedures inactivate the GPi and similarly 

reduce akinesia, rigidity and improve gait and speech disturbances. However, only GPi 



stimulation is reversible. 

Si~btltafatrtic tt iiclerrs 

The results described above demonstrate that inactivation of the Vim is generally 

only effective in reducing the frequency and severity of tremor in PD patients, whereas 

inactivation of the ventroposterolateral GPi is generally ineffective in reducing tremors 

but is effective in improving overall motor function. Those observations led to the 

identification of the STN as another possible important target site for inactivation. Thüt 

tiypothesis is supponed by the observation that STN neurons display a tremor-like 

biirsting frequency in PD patients (Rodriguez et al., 1998) and inactivation of that 

iiucleus in MPTP-treated monkeys. offen significant alleviation of tremor and an overall 

enhancernent of motor function (Wichmann et al., 1994; Guridi et al., 1996). Those 

findings have led to clinical trials into the ability of subthalamic inactivation in treating 

parkinsonism. The results reported thus far. indicate that either subthalamotomy or high- 

frequency subthalamic stimulation is effective in improving overall motor function and 

reducing tremor and required L-Dopa dosages up to 18 months postimplantation ( k a c k  

et al.. 1997a; 1997b; 199th; 1998b; Kumar et al.. 1998a; 1998b; 1999; Limousin et al., 

1998; Brown et al.. 1999; Moro et al., 1999; Yokoyama et al., 1999). Thus, inactivation 

of the STN appears to be a technique that can be applied to a wide range of PD patients, 

houever this technique is only in its infancy and further studies are required to evaluate 

the e fficacy of STN inactivation in treating parkinsonism over longer periods of time. 



Neural transplantation 

Pallidotomy / pallidal stimulation and thaiarnotomy / thalamic stimulation are 

surgical techniques that can only be applied to certain subsets of the PD patient 

population. Unfortunately, lesions within the STN are irreversible and the lon,- * term 

rffects of such lesions on patients have yet to be detemined. On the other hand, 

subtlialamic stimulation may be the tàvoured technique in the future as it is reversible, 

hoaever over time the effectiveness of hi&-frequency stimulation in controlling 

parkinsonian symptoms may deteriorate as has occasionally been observed with GPi 

stimulation, resulting in frequent programming of the stimulator (Gross et al.. 1997; 

P a h w  et al.. 1997). The above techniques have proved somewhat e ffective in treating 

PD. Iiowrver the greatest opportunity of a cure for PD may involve neurosurgical 

rcstoratioli of  the nigrostriatal pathway. 

.daimal c~vperirrriertts arid clhical stitdies 

The first attempt to transplant neural tissue from one organism to another was 

reportrd in 1890 (Thornpson, 1890). In 1890. Thompson reported on what he referred to 

as the "successful" transplantation of feline cerebral cortical tissue into the cortex of 

dogs. Un fortunatel y that study was done be fore the advent O l immunosuppressive 

therapies and the cortical grafis failed to survive. The first description of surviving 

neuronal yrafts following transplantation was reported in 1905 (Saltykow, 1905). It was 

reported that replantation of adult rabbit cortical autografts survived for up to 8 days 

(Saltykow. 1905). Twrlve years later the first clear evidence of interanimal neuronal 

tissue suwival was reported by DUM (Dunn, 19 t 7). In that study, rat neonatal cortical 



tissue was transplanted into cavities created within the cortices of littermates. Dun ' s  

study ( 191 7) was important in providing some evidence that the age of the donor tissue 

and blood vascularization of the gaRs may correlate with increasing cell survival. In 

1910. the first attempt of fetal tissue transplantation was made (Le Gros Clark, 1940). In 

tliat study. Le Gros Clark suggested thai, fetal grafis rnay have the best potential to 

reestablish host architecture. The notion that transplanted neural tissue is capable of 

innen~ating adjacent tissue was demonstraied by May (1949). In that study May ( 1949) 

cotransplantrd muscle and cerebellar tissue in the anterior chamber of the mouse rye. 

Grartcd cerebellar Fibers were clearly seen to innervate adjacent mucle tissue (May, 

1919). Halasz and colleagues ( l963; 1965) later reported that transplantation of pituitary 

gland witliin the media1 basal hypothalamus of hyophysectomized rats revened the 

cndocrine deficits in those animals following hypophysectomy (Halasz et al., 1963; 

1<)6j). Tliose two studies were the first to demonstrate that graited tissue bas the ability 

to induce functional effects in the host animal. It was well-established by the late 1970's 

that fetal ~ ra f t s  integrated well within the host brain. reconstituted damaged pathways 

and reinnenated denervated regions of the brain (Das, 1974; Bjorklund et al., 1976; 

1979; Bjorklund & Stenevi, 1977; 1979; Lund and Hauscha, 1979). The positive results 

obtained in those experiments. provided the framework for applying letal tissue 

transplantation to animal models of neurodegenerative disorders. 

By the early 1980TsT many studies reported the recovery of sensorirnotor deficits 

follouing transplantation of fetal DAergic tissue in the DA-depleted stnaturn of the 

6-hydrosydopamine (6-OHDA) rat mode1 of PD (Perlow et al., 1979; Bjorklund et al.. 

1 %O; Freed et al., 1980; Dumett et al., 198 la; 198 1 b; 198 Ic; L983a; 1983b). The study 



by Perlow and colleagues (1979) demonstrated that DAergic tissue was required for 

functional benefit, as intrastnûtally grafted sciatic newe afforded no signi ficant benefit. 

Furthemiore. they also reponed for the first tirne. the long-term survival and functional 

bcnrfits of intrastriatal fetal nigral grafts (10 months) in the lesioned rat. Dunng this 

period, Freed and colleagues ( 198 1 ) reported that intrastriatal gafts  of adrenal medullary 

(AM) tissue as a source of catecholarninergic cells also produced functional benefit in the 

rat rnodcl of PD although graft survival was poor. The main rationale for using AM 

tissue in neural transplantation was that the tissue could be harvested from the patient's 

own body. thereby circumventing the ethical issues and the need for immunosuppressive 

therapics that accompany fetal tissue use. 

The tint attempts at neural transplantation in PD sufferers involved the use of 

AiM tissrie. The first transplantation of autologous AM cells into the caudate nucleus of a 

parkinsonian patient was cm-ied out in Sweden in L982. Although no senous side effects 

were notcd. only modente motor benefits were observed and only for a short period of 

time (Backlund et al.. 1985). In a subsequent study, only minor improvements in motor 

hnction were again exhibited by two PD patients with intraputaminal AM autografis 

(Lindvall et al.. 1987). The most dramatic alleviation of parkinsonian symptoms 

following unilateral transplantation of an AM autograft into the striatum was reponed by 

Madrazo and colleagues ( 1987). At 5 months posttransplantation, al1 anti-parkinsonian 

medications were discontinued in one patient. ngidity and akinesia were absent 

bilaterdl y and tremor was signi ficantly attenuated. Although those findings attracted 

great interest. I I  patients had received A!!  autografis but only the results of 2 patients 

were actually reported. Of the remaining 9 patients, 2 had died with no evidrnce of graft 



survival (Mehta et al., 1997). Following those positive results published in 1987, many 

more trials were conducted into the efficacy of AM autograh in treating parkinsonism, 

but none of those studies were able to replicate the findings of Madrazo and colleagues 

(Allen et al.. 1989; Bakay, 1989; Goetz et al., 1989; 1991; Kelly et al., 1989; Apuzzo et 

al.. 1990: Flores. 1990). In 1989, a study cornparhg AM grafts to fetal nigral graRs was 

conducted in the rat mode1 and demonstrated that gafted nignl cells exhibited better 

survival and provided longer-lasting functional benefit than AM gafts (Brown and 

Diinnett. 1989). In a study published a year later. ALI cells were reported to switch from 

tlieir catectiolaminergic phenotype B vivo (Waters et al., 1990). Those results largely led 

to the abandonment of clinical studies evaluating the efficacy of AM autografts in PD. 

Neural transplantation research then shi fted its focus to evaluating the feasibility of using 

fetal nigral grafts to alleviate parkinsonism. 

Since the early studies on fetal nigral transplantation in the nt mode1 of PD, many 

studies have drmonstrated the survival of intrastriatal DAeqic gnfls within the host brain, 

restoration of DA agonist-induced rotational asymmmetry (Bjorklund et al., 1980; Dunnett 

et al.. 198 1 b; 1986; Brundin et al., 1988; Robertson et al., 199 1 ; Nikkhah et al., 1993; 

Olsson et al.. 1995; Mendez et al., 19%; Apostolides et al.. 1998). reinnervation of the DA- 

depleted striatum by grail-denved THir fibers (Bjorklund et al., 1980; Dunnett et al., 198 1 a; 

198 1 b; 198 1 c; Bjorklund et al., 1983; Bnindin et al., 1988; Rioux et al., 199 1 ; Mendez et al., 

1996; Apostolides et al., 1998; Mehta et al.. 1998) and the formation of synaptic contacts 

betwren those fibers and host striaial neurons (Freund et al., 1985; Clarke et al., 1988; 

Nishino et al., 1990; Mendez et al., 199 1; 1992). Furthemore, normalization of DA levels 

in the striatum (Schmidt et al., 1983; Nishino et al., 1990; Moukhles et al., 1994; Reum and 



Morgenstern. 1994; Earl et al., 1996; Hashitarii et al., l998), and partial to complete reversal 

O l biochemical de ficits is O Ren observed in striatal neurons following intnstriatal nigral 

transplantation (Cadet et al., 199 1; Sesovia et al., 199 1 ; Sirinathsinghji and Dunnett, 199 1 ; 

Mendcz et al.. 1992; 1993; Bal et al., 1993; Cenci et al., 1993; Abrous et al., 1994; Zeng et 

al.. 1996). 

Although those studies are very promising, the rat model of PD does not closely 

resemble the human parkinsonian condition. A non-human primate model of PD was 

developed with symptoms more closely resembling the human condition. MPTP-treated 

parkinsonian monkeys develop the cardinal symptoms of PD: bradykinesia, tremor and 

rigidity. Thus an animal model was available more closely resembling the human 

condition in wliich to possibly evaluate the safety and efficacy of fetal nigral tissue 

iransplantation in non-human primates. In the mid- 1980's. a few studies were published 

suggesting that transplantation of ktal DAergic tissue to the striatum of MPTP-treated 

monkeys providcd signifiant irnprovement in parkinsonian symptoms (Redmond Jr et 

al.. 1986; Sladek Jr et al.. 1986; 1987; 1988) and provided a strong rationale for in which 

to commence clinical trials in human PD patients. 

In 1987, the first report of Fetal tissue transplantation in a PD patient was pubiished 

(Jiang et al., 1987). Since that first report over 200 patients have since received fetal nigral 

transplants in several clinics around the world (Hitchcock et al., 1988; Lindvall et al., 1988; 

l9S9; 1990; 1992; 1994; Madrazo et al., 1988; 1990a; 1990b; Freed et al., 1990; 1992; 

Henderson et al., 199 1 ; Spencer et al., 1992; Widner et al., 1992; Peschanski et al., 1994; 

Wu et al.. 1994; Freeman et al.. 1995; 1997; Kordower et al., 1995; 1996; 1997; Lopez- 

Lozano et al., 1995; 1997; Defer et al., 1996; Kopyov et al., 1997b; Lrvivier et al., 1997; 



Wenning et al., 1997; Lindvall, 1998; Blum1 et al., 1999; Hagell et al., 1999; Hauser et al., 

1999). In 1958, Lindvall and colleagues reported on their expenence with the transplantation 

of 8-1 0 week old fetal ventral mesencephalon (FVM) in the caudate nucleus and putamen of 

2 immunosuppressed patients with advanced Parkinson's disease (Lindvall et al., 1988). in 

that trial, the patients exhibited improved speed of movement and motor readiness 

potcntials. Postiron emission tomography (PET) scans demonstrated a slight increase in 

flourodopa uptake in the graRed striatum 1 -year posttransplaniation. suggesting survival of 

tlic D . k r ~ i c  gnft ( Lindvall et al., 1989). Lindvall and colleagues made minor adjustments 

to the transplantation technique and in a subsequent study reported a significant 

improvement in rijidity. reduced time spent in the "off' period and increased fluorodopa 

uptake as widenced on PET scans, 8 months following transplantation (Lindvall et al.. 

I W O ) .  

In 1992. three important studies were reponed demonstrating functional benefit and 

survival of DAergic gratts. In the first study. Spencer and colleagues ( 1992) transplanted 

cryopresewed 7- 1 1 week gestational age solid fragments of fetal tissue unilaterally into the 

caudatc nucleus of4 in~rnunosuppressed PD patients. In that study. it was reported that there 

\vas significant bilateral improvement in motor tasks and activities ofdaily livins (.UL) by 

the patients. In the second study, Freed and coileagues (1992) transplanted 5 patients 

bilaterally with solid fetal nigral grafls and 2 othen received unilateral grafis, with every 

O ther patient receiving immunosuppressive therapy. Al1 7 patients reported improvement in 

ADL funciions and 5 showed improvement on the neurological exam and at least 1 patient 

exhibitrd a si gni ficant increase in fluorodopa uptake at 16 rnonths following grafiing. In the 

third study. Widner and colleagues (1992) reported on the results of 2 bilaterally 



transplanted patients (6-8 weeks gestational age VM tissue) with MPTP-induced 

parkinsonism. In those patients there was a significant improvement in motor function and 

increased fluorodopa uptake. 

Another important study was published by Freeman and colleagues in 1995. Four 

PD patients received bilateral transplants of fetal nigral tissue in the putamen. A significant 

enhancement of performance on the Unified Parkinson's Disease Rating Scale and 

fluorodopa uptake on PET scans were reported. The most compelling evidence for graft 

sunival and striata1 reinnervation was reported following the un fortunate death of one of the 

patients from causes unrelated to the transplantation sursery. 18 months following 

transplantation (Kordower et al., 1995; 1996; 1997). Immunocytochemical analyses of the 

brain. revealed that there were more than 200.000 surviving THir cells within the graft and 

extensive reinnervation of the host putarnen in a patch-matnx fashion by THir fibers. 

Electron microscopy revealed numerous synaptic contacts behveen grafied and host 

neurotis. Sustained clinical recovery and continued reductions in L-Dopa dosages 

adrninistered have been reported for more than 5 years posttransplantation (Lopez- 

Lozano et al.. 1997; Wenning et al., 1997; Hageil et al.. 1999). 

Issues to be resolved in neural trûasplaotation 

Although the clinical findings thus far are promising, neural transplantatior? remains 

an esperirnental procedure. Sevenl issues have been identified that need to be resolved 

br fore neural transplantation can be considered a routine thenpeutic procedure for the 

treatment of PD (Olanow et al., 1996; Mehta et al., 1997). Genenlly, these issues include 

the relative shon supply of fetal tissue and the optimal tissue age for transplantation. 



Furthemiore, as with any type of human-human transplant, there is always the risk of 

disrasr transmission and grafi imrnunorejection. Based on animal studies, the appropriate 

age of the donor tissue is generally known (Simonds and Freed, 1990; Brundin et al.. 1986; 

Kondoh et al, 1996; Annett et al., 1997) and the probability of gafi rejection can be lessened 

\vit11 chronic administration of irnmunosuppressants (Brundin et al., 1988). However, there 

is serious concem and questions surrounding the duration of time the irnrnunosuppressive 

thsrapy should be niaintained following transplantation. as the aging patient is vulnenble to 

infection and the immunosuppressant itsel f (Cyclosponne-A) has h m  hl side effects 

(Bennett. 19%). The risk of disease transmission is minimal as the tissue is carefully 

screcncd for viral pathogens pnor io transplantation (Mehta et al., 1997). Although the 

above issues are generally well controlled the relative short supply ofsuitable tissue b r  

tnnsplantation limits the likelihood of neural transplantation to be incorporated as a routine 

treatnlent strategy for neurological disorders. There is also poor survival of DAergic cells in 

the Iiost bn in  following transplantation (Bjorklund et al.. 1980; D U M ~ R  et al.. 198 la; 

198 1 b; Xpostolides et al., 1998; Mehta et al., 1998). Although increasing DAeqic neuron 

sunival is crucial for clinical efficacy in PD patients, the optimal target site(s) for DAegic 

neurons to produce maximal clinical benefit also needs to be determined. Furthemore. 

several important issues conceming the transplantation procedure itself also need to be 

addressed. 

Relative sliori suppl' of fetal tissue 

One way to address the issue of a short supply of fetal tissue for transplantation 

upould be to enhance the survival of grafted DAergic neurons. Evidence from our laboratory 



and otlier investigators have explored the ability of glial ce11 line-derived neurotrophic factor 

(GDNF) and the GDNF-related molecule, neun~irin (NTN) to promote the survival of 

grafted doparninergic cells (Rosenblad et al., 1996; 1999; Sinclair et al., 1996; Granholm et 

al.. 1997; Apostolides et al., 1998; Mehta et al., 19%; Sautter et al., 1998b; Sullivan et al., 

1998; Yurek, 1998; Wilby et al., 1999). In al1 of those studies, exposure of grafted DA 

neurons to GDNF or NTN significantly enhanced cell survival. Similarly, bnin-derived 

neurotrophic factor (BDNF), insulin-like growth factor-1. basic fibroblast growth factor 

(bFGF) or combinations of the above have been s h o w  to enhance the survival of n i p l  

D Aersic neurons in culture ancilor following transplantation (Steinbusch et al., 1990; Mayer 

et al.. 1993; Takayarna et al., 1995; Zeng et al., 1996; Thajeb et al., 1997; Sautter et al.. 

199Sa: Zainda et al.. 1998). It has also been considered tliat the gnfled neurons may die 

Iioni increüscd intracellular concentrations of reactive oxypn species or by an apoptotic 

iiiechanism. Prior exposure of nigral neurons to anti-osidant and/or anti-apoptotic 

molecules also increases the survival of nignl neurons irr vitro ancilor Ni vivo (Nakao et al.. 

1994; Grasbon-Frodl et al., 1996; Othberg et al., 1997; Schierle et al., 1999). Although al1 

of the above factors promote the survival of n i p l  neurons irz vitro ancilor in vivo. a reliance 

on fetal tissue is likely to be a major obstacle for the expansion of neural transplantation as a 

thenpeutic stntegy For PD. 

Finding an alternative tissue source to fetal-derived tissue for transplantation in PD 

is of niajor importance. Many studies have been conducted to investigate the ability of 

genetically-enginrered cells of both neuronal and non-neuronal origin to overexpress TH in 

promoting functional recovery in the rat Parkinson mode1 (Wolff et al., 1989; Horellou et 

al.. 1990a; 1990b; Fisher et al., 1991; Ishida et al., 1996a; Lundberg et al., 1996; 



Tornatore et al., 1996; Raymon et al., 1997; Leff et al., 1998; Fitoussi et al., 1998; 

Segovia et al., 1998). Although, grafts of genetically-engineered cells inititially promote 

functional recovcry, this effect is short lasting as host cells transfected with various genes 

O ften down-regulate expression of the fowign transgene (Palmer et al., 199 1 ; Schinstine 

et al.. 1991; Leff et al.. 1998; Lundberg et al., 1996). One way that experimenten may be 

able to promote longer tenn expression of' the foreign gene is for the transgene to be 

linkcd to the promoter of a constitutively expressed protein (Schinstine et al.. 1992; 

Fisher et al., 1993; Tai and Sun., 1993; Trejo et al., 1999). Although this approach may 

provide some functional benefit a better strategy may be the transplantation of neuronal 

cclls capable ot'reinnervating the denervated striatum. 

Xenografts of porcine-derived FVM tissue have been observed to survive in the 

neostriaturn of PD patients for up to seven months (Deacon et al.. 1997). Intrastriatal 

grafts of fetal porcine tissue in 6-hydroxydoparnine (6-OHDA)-lesioned rats have also 

been shown to survive, provide functional benefit and reinnemate the host striatum 

( Isacson et al.. 1995; Galpem et al., 1996; Isacson and Deacon, 1996; Dinsmore et al., i)i 

pt-ess). Although these results are promising, there is great concem over the possibility of 

interspecirs disease transmission ( lsacson and Breake field. 1997; Butler, 1 998). 

An exciting discovery for the field of neural transplantation has been the isolation 

of stem cells in the adult brain. Stem cells are self-renewing and can be induced to 

proliferate il, vitro by cxposure to mitogens such as, epidermal growth factor and 

differentiare into neuronal and glial ce11 phenotypes following mitogen withdrawal and 

rsposure to the appropriate substrate and/or neurotrophic factors (Reynolds and Weiss, 

1992: Weiss et al., 1996). The ability of stem cells to proliferate in culture is promising, 



as stem cells coiild provide a readily abundant supply of tissue for transplantation. Stem 

cells have been observed to survive transplantation into the host brain (Svendsen et al., 

1996; 1997; Lundberg and Bjorklund; 1996; Olsson et al., 1997; Deacon et al., 1998; 

Studer et al., 1998; Zigova et al., 1998). However, the behavioural recovery in animal 

models of PD following intrastnatal transplants are variable (Svendsen et al., 1997; 

Studer et al., 1998). which may relate to their low levels of TH expression il1 vivo 

(Svendsen et al.. 1996; 1997; Deacon et al., 1998). Thus, the future of these ceils ris an 

alternative For transplantation relies on Our ability to produce stem cell iines capable of 

stably expressing a DAergic phenotype (Studer et al.. 1998; Wagner et al.. 1999). 

Otlier alternative ce11 lines that have been investigated include neuronal cells 

dcrived From brain t umours espressing a D Arrgic phenotype. Those studies 

demonstratrd a significant reduction in DA asonist-induced rotational asymmetry (Hefti 

et al.. 1985; Bing et al., 1988; Manaster et al.. 1992; Tresco et al.. 1992; Adams et al., 

1996; Emerkh et al.. 1996). However, poor gnR survival is commonly seen and there is 

always a concem that those cells may revert to a neoplastic state (Hefti et al., 1985; Bing 

et al.. 1988). A recent promising development has been the discovery of a cell line 

derived from a humm teratocarcinorna or germ cell tumor, with neuron-like properties 

(hNT) (Andrews, 1984; 1987; Lee and Andrews, 1986; Abraham et al., 199 1 ; Pleasure et 

al.. 1992; Pleasure & Lee, 1993). The ability of those neurons to survive, express a 

DAersic phenotype and promote functional recovery in the rat mode1 of PD has been the 

focus of the first part of my studies (Chapter 2). 



Optii>i al gra@ place~tte~~t 

Evidence for the growth and survival of intrastriatal DAergic gatts and their 

reversal of biochemical and locomotor deficits in animal models of Parkinson's disease 

(PD) is well documented. However, intrastriatal DAergic g r ah  fail to provide a cornplete 

alle\iation of symptoms in PD patients. Furthemore, intrastriatal grafis do not fully 

alleviate cornplex sensonmotor deficits in the rat model (Nikkhah et al.. 1993; Olsson et al.. 

1995; Mehta et al.. 1998; Winkler et al.. 1999) and restoration of the nigrostriatal pathway 

has not bcen achieved by the current @ k i n g  strategy. To date. the main transplant strategy 

lias brrn to place nigral grafts not in their ontogenic site (substantia nigra) but in their tiirget 

arca (striatum). However. restoration of nigrostriatal circuitry with DAersic neurons and 

their dendrites in the SN and terminais in the striatum may be essential for more complete 

allcviation of the variety of symptoms in PD (Robenson, 1992b). Previously it has been 

demonstrated that DA is released fiom dendntes of SNc neurons in the SNr ( C h e m y  et al., 

1979; 198 1 ). This dendntic release of DA is thought to be important in enhancing GABA 

relcûse through Di DA receptors localized to the descending striatonigral fiben in the SNr 

(Robenson. 199%). reducing GABA transmission in the ventromedial thalamus (Gauchy et 

al. 1957) and increasing locomotor activity (Jackson and Kelly. 1983a; l983b). 

Those observations suggest that the SN itself may be an important target site for 

transplantation and iniranigral DAegic grafts. Our laboratory has previously observed a 

significant reduction in amphetamine-induced rotational behaviour in the rat model of PD 

with simultaneous intrasniatal and intranigral DAergic grails (double arafis) (Mendez et al.. 

1996). This reduction was supenor to that of anirnals with intrastriatal g-rafts alone. 

Although. the greater hnctional recovery may be attributed to better modulation of basal 



ganglia outflow. reinnervation of the SN may be crucial to improve grafi-denved functional 

recovery in double grafied animals. The role of the intranigral grafi in promoting functional 

recovery is the focus of the second part of my thesis (Chapter 3). 



Figure 1.3 - A schematic diagram illustnting the dendritic release of DA and the projections 

of the SNr. GABA = y-aminobutyric acid; PPT = pedunculopontine tegmentai nucleus; RF 

= reticular formation; SC = supenor colliculus; SNc = substantia nigra pan compacia; SNr = 

substantia niga  pars reticulata. 
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CHAPTER 2: 

INTMSTRIATAL AND INTFUNIGR4L CRAFTING OF hNT NEURONS IN 

THE 6-OHDA RAT MODEL OF PARKINSON'S DISEASE 

The results presented in the following cbapter are currently in press in Experimental 

Neuro logy. 



Introduction 

The development of alternatives to fetal-denved cells for use in neural 

transplantation is of critical importance in the future of transplantation strategies for the 

treatment of neurodegenerative diseases such as PD. The ideal source of cells for the 

treatnicnt of PD would be a limitless supply of DA-producing cells capable of 

reinnervüting the host brain without the risk of immunorejection. disease transmission or 

tumour formation. Currently, a number of possible ceIl sources of both neuronal and 

nonneuronal origin are being studied. Xenografts of porcine-denved FVM tissue have 

becn obsrrved to survive in the neostnatum of PD patients for up to 7 rnonths (Deacon et 

al.. 1997). lntrastriatal grafts of fetal porcine tissue in 6-OHDA-lesioned rats have also 

been s h o w  to survive. provide functional benefit. and reinnervate the host striatum 

( Isacson et al.. 1995; Galpem et al.. 1996; Isacson et al.. 1996). Other researchers have 

focused on the development of genetically-engineered ce11 lines that overexpress TH 

( Wolff et al., 1989; Horellou et al.. 1 99Oa; 1 WOb; Fisher et al., 199 1 ; Ishida et al., 1996b; 

Lundberg et al.. 1996; Tomatore et al.. 1996; Rayrnon et al., 1997; Fitoussi et al., 1998; 

Segovia et al.. 1998) or neurotrophic factors that promote survival of DAergic cells 

(Levivier et al.. 1995; Bilang-Bleuel et al., 1997). Despite these efforts, transplantation 

of gcnetically-engineered cells in animal models of PD has not provided conclusive long- 

trrm beneficial effects or reinnervation of the DA-depleted striatum. Another area that is 

currently being explored by a number of investigaton including our own laboratory is the 

use of neural stem cells. which have the capacity for neuronal differentiation and 

migration (Reynolds & Weiss. 1992). Although there have been reports that 

transplantation of embryonic-derived stem ce11 progeny suwive, only a limited number of 



THir cells were identi fied in the graR (Svendsen et al., 1996) suggesting that this 

alternative is prornising but not yet fully developed. 

More recently, ce11 lines of immortalized tumor cells including a human 

cnibryonal carcinoma-derived neuronal population (hWT) have been developed. 

Transplantation of these hNT cells produced behavioural recovery frorn focal ischemia 

( Borlongan et al.. 1998a; Borlongan et al., 1 WSb; Saporta et al.. 1999) and quinolinic 

acid-inducrd striatal lesions (Hurlben et al.. 1999). hNT neurons have also been grafted 

into rats wirh rxperimental brain injury. however no significant improvement in 

behavioural recovery was noted ((Muir et al., 1999; Philips et al.. 1999). hNT neurons are 

drrivcd from a liiiman embryonic carcinoma ce11 line, NT2D 1 (Andrews, 1994). In 

contrast to other teratocarcinorna cell lincs, which are capable of differentiating into 

neuronal. glial. and mesenchymal phcnotypes. the NTZ/DI cells appear to be progenitor 

cells which have a progeny restricted to the neuronal lineage (called hNT neurons) 

Followiny retinoic acid (RA) treatment (Andrews. 1984; 1987; Lee and Andrews. 1986; 

Abraham et al., 199 1 ; Pleasure et al., 1992; PIeasure and Lee, 1993). The hNT neuronal 

progmy have bcen well charactenzed and it has been shown that these cells closely 

rcsenible hunian neurons (Pleasure et al., 1992; Pleasure and Lee, 1993). Furthemore, 

the hNT neurons bear glutamate receptor channels (Younkin et al.. 1993). produce P- 

amyloid peptide (Mantione et al., 1995; Turner et al.. 1996; Wenkin et al., 1993; Cook et 

al.. 1997). and express mRNA for glutamic acid decarboxylase, choline acetyltransferase. 

and DI and D2 DA receptors (Hurlbert et al., 1999). hNT neurons (Kleppner et al., 1995) 

or their precursor, NT2 cells (Miyazono et al., 1995; 1996), transplanted into the brains of 

immunodeficient nude mice survived for over 12 months without evidence of necrosis, 



üpoptosis. gaf t  rejection, or tumor formation. Survival of hNT neurons transplanted into 

the cerebral cortex and hippocarnpus of cyclosporine-treated neonatal and adult Sprague- 

Dawley rats has also been demonstrated (Trojanowski et al., 1993). These gnfts survived 

for up to I I  weeks and no tumor famation was observed. In a recent study, Konobu and 

collzagues obsenfed that hNT neurons populated the photoreceptor layer as a stratum 

followin; epiretinal injections of the cells at 56 days aiid suggested ihat hNT neurons 

may takr on the morphology and function of photorecepton (Konobu et al.. 1998). 

The purpose of the present study was to determine whether hNT neurons survive 

when iniplanted into the stnatum and substantia nigra (SN) of rats with unilateral 6- 

OHDA lesions of the doparninergic nigrostriatal pathway and to assess the ability of 

tlirse neurons to express TH and produce functional rffects. We studied three different 

prodiiçts of hNT neurons provided by Layton Bioscience, Inc. (Gilroy. CA). The 

products tested include hNT neurons and two hNT hybrids: hNT-DA neurons and lithium 

chloride ( LiCl) pre-treated IiNT-DA neurons. hNT neuron cultures were previously 

treated with RA for 4 weeks and then replated at one-third of the density in the presence 

of mitotic inhibitors, cytosine arabinoside, and fluorodeoxyuridine for 6 days. hNT-DA 

ncuron are hNT nruron cultures treated with RA for only 4 weeks followed by replating 

and treatrnent with the same mitotic inhibitors. A shorter RA treatment time appears to 

rnliance the number of ceiis expressing TH (persona1 communication. Mike McGrogan, 

Layton Bioscience, Inc.). The third product we used was LiCl pretreated hNT-DA 

neurons. These are hNT-DA neurons in which LiCl was added to the culture for 6 days 

during mitotic inhibitor treatrnent (personal communication, Mike McGrogan, Layton 



Bioscience. Inc.). LiCl has been s h o w  to promote the expression of TH in hNT neurons 

(Zigova et al.. 1999). 

Materials and methods 

Stri d'y rlrsigri 

.A total of 30 female Wistar rats (Charles River. St. Constant, Quebec, Canada) 

were iised in this study. A11 animals received unilateral 6-OHDA lesions of the right 

nigrostriata1 pathway and 27 rats later received intnstnatal and intranigral grafts (double 

gratis) of hNT neurons. Three hNT neuronal products (hNT neurons, hNT-DA neurons. 

LiCl pretreated hNT-DA neurons) were transplanted in this expenment. Sixteen animals 

rcceived double yrafts of hNT neurons, 7 received hNT-DA neurons, 4 received LiCl 

pretreated IiNT-DA neurons and 3 served as controls and received a lesion only. 

Functional recovery was assessed by amphetamine-induced rotational behaviour. 

.-lriirrrals arid 6-OHDA fesiorrs 

Twenty-seven female Wistar rats (Charles River) weighing 200 - 215 g, were 

Iioustid 2 animals per cage with food and water t r d  Zibintni and allowed to acclimatize to 

the animal care facility for 7 days before surgery. Al1 animal procedures were in 

accordance with the guidelines of the Canadian Council on Animal Care and the 

University Council on Labontory Animals. Rats were anesthesized intramuscularly with 

3.0 miikg of a ketamine-aylazine-acepromazine anesthetic mixture (25% ketamine 

hydrochloride; (Ketalean, MTC Pharmaceuticals, Cambridge., Ontario); 6% xylazine; 

( Rompun. Miles Canada, Etobicoke, Ontario); 2.5% acepromazine maleate; (Wyeth- 



Xyerst Canada. Montreal, Quebec) in 0.9% saline and received two stereotactic injections 

of 6-OHDA (Sigma Chemical Company. Chicago, IL) (3.6 pg of 6-OHDA HBrIpI in 0.2 

iiighil of L-ascorbate in 0.9% saline) into the right ascending mesostriatal dopaminergic 

pathaay at the following coordinates (mm): (1) 2.5 pl at anteroposterior (NP) :  -4.0, 

niediolateral (M/L): - 1.2, dorsoventral (DIV): -7.5, toothbar: -2.1; and (2) 3.0 pl of 6- 

OHDA at NP: -4.0. M/L: -0.8, DIV: -8.0, toothbar: +3.4 The rate of injection was 1 pl ! 

min with the cannula being left in place for 5 min before being slowly retractrd. Animals 

were allowed to recover for 2 weeks in the animal care facility before being given an 

aniphctaniine challenge (5.0 mg f kg, ip) and their rotational scores were collectrd over a 

70 min pcriod using a computerized video activity monitor programmed for rotational 

bchaviour (Videomes. Columbus Instruments. Columbus. Ohio). Only anirnals 

eshibiting a mean ipsilateral rotational score of sight or more complete full body turns i 

niin were included in the study. Animals were tested for rotational behaviour at 3 and 6 

weeks posttransplantation. Statistical analysis for between-group and within-group 

di firences was assessed at P 4 . 0 5  using a two-way ANOVA followed by Tukey's posr 

Izoc test. 

Preparatiori air d rrarispla~itation of b NT ceil sirsperrsions 

The frozen hNT neurons were obtained from Layton Bioscience (hNT neurons, 

h W - D A  neurons. and LiCl pretreated hNT-DA neurons) and stored at -80°C until the 

tirne of transplantation. Two weeks foHowing 6-OHDA lesions, rats were chosen for 

transplantation if they eshibitrd a mean rotational score of eight full body turns per 

minute. Beginning on the day of surgery, each animal received IO mg of cyclosporin A / 



kg of body weight ip for the duration of the experiment. Prior to transplantation, the N T  

neurons were quickly thawed by placing them in a water bath at 37°C. The cells were 

then washed three times in DMEM 1 0.05% DNase (Sigma Chernical Company). The 

crlls were suspended and the ce11 viability and suspension concentration calculated. The 

trypan blue dyc exclusion method. which stains dead cells blue and fails to stain live 

cells. uas used to assess cell viability (Table 1). 

Thc c d  l suspensions were stereotactically injected both intrastriatally and 

intranigrally using a technique previously described (Mendez et al.. 1996; Mendez and 

Hong. 1997). A specially designed capillary tip micropipette with an outer opening 

diamrtcr of 50-70 Fm is attached to a ?-pl Hamilton syringe and used to sterotntically 

implant the dcsired number of cells at a rate of 100 nVmin into both the SN and the 

striatum (400.000 crlls i site). Each animal received a total of about 800,000 cells. 

Injection of the cells into the dorsolateral striatum occun at the following coordinates 

(mm): ( 1 ) N P :  4 . 3 ,  M/L: -2.1, D/V: -5.5 and -4.3; (2) NP: +O.G, WL: -2.9. DIV: -5.5 

and -4.3; and (3)  N P :  i O . 3 ,  ;ML: -3.7. D/V: -5.5 and -4.3; toothbar: -3.3; coordinates 

From Bregnia and dorsal surface of the skull and the SN at the following coordinates 

(mni): 1 ) iL'P: -4.8, M/L: -1.0. D/V: -8.3 and -8.1: 2) NP: -5.0, WL: -2.3. D/V: -5.2 and 

-8.0; and 3) N P :  -5.3, M/L: -2.6, DIV: -8.1 and -7.9; toothbar: -3.3; coordinates from 

Bregma and the dorsal surface of the skull. 

Imm i~~~oliistoclreriiistry 

At about 6 weeks, posttransplantation the rats were euthanized with an overdose 

of a ketamine-xylazine-acepromazine mixture and perfused transcardially with 100 ml of 



0.1 M phospliate buffer (PB) followed by 250 ml of 4% parafomialdehyde in 0.1M PB 

for 10 min. The brains are then removed from the cranium to be postfixed with 4% 

parafomialdehyde in O. 1 M PB, overnight before being stored for 24 h in phosphate- 

buffered saline (PBS) containing 30% sucrose. With the Freezing microtome, JO-pm 

coronal sections were cut and stored in Millonig's solution (6% sodium =ide in 0.1 M 

PB)  until immunohistochemical processin!: of the sections could be performed. 

Following processing sections were rnounted in 0.1 M PB on gelatin-coated slides and 

coverslipped with permount. Estimates of surviving cell nurnbers were calculated in 

cvery Fourth section throuph the graft (6-10 sections per animal). using Abercrombie's 

fomiula ( 1946). The cell diameter used in the calculations for the Abercrombie's formula 

was l-lpm, which was the average diameter measured of the THir cells. Al1 data were 

analyzed for betwren-group and within-group di fferences at PcO.05 using a two-way 

ANOV.4 followed by Tukey's post hoc test. 

Tyrositi e IiydroxyIass 

Staining for the presence of TH was performed using the primary rabbit anti-TH 

antibody (Ab; l:2500 Pel Freeze Biologicals, Rogers, AR) and the ABC-kit (Vector 

Laboratoies Canada, Inc., Burlington, Ontario. Canada). For this procedure the sections 

were prewashed for 10 min in a solution of 10% methanol and 3% hydrogen peroxide 

(H202) and blocked in PB containing 0.3% Triton X-100 and 5% NSS for 1 h. The 

sections were removed and incubated in a 1:2500 solution of rabbit polyclonal anti-TH 

Ab For 16 h. To visualize Ab binding, 1 500  biotinylated swine anti-rabbit IgG Ab (Dako 

Diagnostics Canada, Inc., Mississauga, Ontario, Canada) is used followed by a 



streptavidin-biotinylated hone radish peroxidase (HRP) complex kit. The peroxidase 

activity was visualized by the addition of 3,3'-diaminobenzidine (DM) and 3% H 2 0 2 .  

The sections were then washed in O. 1 M PB before being mounted. 

Hirnrari rreiiral ce11 adhesiort niolecidi? 

Staining for the presence of neural ce11 adhesion molecule ( N C M )  was 

prrfornied using the primary mouse anti-human NCAM monoclonal antibody (bloc 1 ; 

1 : 1000 Dako Diagnostics Canada, Inc.) and the ABC kit. Briefly. the sections were 

prcwashed for 30 min in a solution of 10% methanol and 3% hydrogen peroxide and 

blocked in PB containing 0.3% Triton X-100 and 5% normal horse senim for 1 h. The 

sections were removed and incubated in a 1 : 1000 solution o f  monoclonal mouse anti- 

NCXM (Moc 1 ) Ab for 16 h. To visualize Ab bindin;. 1250 biotinylated horse anti- 

mouse IgG Ab (Vector Labontories Canada, Inc.) was used lollowed by a streptavidin- 

biotinylated HRP complex kit. The peroxidase activity was visualized by the addition of 

DAB and H20S. 

Hu 111 a 11 11 ert roi1 -speci!c ertolase 

Staining for the presence of hurnan neuron-specific enolase (NSE) was perfomed 

using the primary mouse anti-NSE monoclonal antibody ( 1 : 100; Vector Laboratories 

Canada. Inc.) and the ABC kit. The sections were prewashed for 30 min in a solution of 

1 0 ° ~  methanol and 3% hydrogen peroxide and blocked in PB containing 0.3% T nton X- 

100 and 5% WS for 1 h. The sections were removed and incubated in a 1: 100 solution 

of mouse monoclonal anti-NSE Ab for 16 h. To visualize Ab binding, 1:200 biotinylated 



horse anti-mouse IgG Ab was used followed by a streptavidin-biotinylated HRP complex 

kit, DAB and HIOZ. 
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Results 

Sitrvival of II NT rieurort al grafs 

All animals that received both intrastnatal and intrmigral grafts of the hNT 

neuronal products (Figure 1 ) had surviving grafts that were strongly imrnunostained for 

the prrsence of both human NSE (Figures ZA. 2B. 3A and 3B) and hurnan NCAM 

(Figures ZC, ZD. 3C and 3D). Analysis of the hNT grafts by anti-NCAM 

immunohistochemistry (Figures ZC, 2D, 3C and 3D) revealed a strong staining of the 

entirc grafi area and darkly stained cell-like structures could clearly be seen within the 

graft boundary. The overall strong imrnunostaining of the graft made the detemination 

O f cell numbcrs impossible. NCAMir fibers extending beyond the gr&-host interface 

could be seen in many of the grafied animals. NSE irnmunohistochemist~ (Figures ZA. 

?B. 3.A and 3B) produced a similar strong staining pattern, with what appeared to be 

more darkly stained cells within the grafl. but again counts could not be accurately 

determinrd. NSEir fibers were seen extending beyond the gaft-host interface at the level 

ofthe striatum. and in some cases, fiben were observed to extend greater than 100 pm 

into the surrounding host tissue. 

Espressioa of TH by IL NT nerrrons 

Analysis of TH expression in animals with hNT neuron grafts (n=16) showed no 

THir cells in either the striaturn or the SN (Figures ZE and F). In 13% of animals with 

grafts of hNT-DA neurons (n=3), readily ideniifiable THir cells within both the striatum 

and the SN were observed. THir neurons appeared healthy and bad processes extending 

for variable distances in the host brain. However, fiber outgrowth was spane both within 



the graR and in the host tissue surrounding the grafi. In these animals, there were 435.12 

ir 323.30 THir cells within the stnatum and 393.68 f 204.70 within the SN (Figure 5). 

THir cells were observed in 100% of animals with intrastriatal and intranigral graRs of 

LiCl pretreated hNT-DA neurons (Figure 4). The mean (I SD) number of THir cells 

within the intrastriatal and intranigral grafts was 489.39 I 18.09 and 3 19.68 k 142.08, 

rcspectively (Figure 5). There was no significant difference in the number of THir 

neurons between the hNT-DA neuronal and LiCl pre-treated hNT-DA neuronal grafts 

(P>O.Oj). Similarly. there was no significant difference in the number of THir cells 

between the intrastnatal and intranigral graft locations (P>O.Oj). 

.4i~1pli~.rai1iiite-i11d11ced rotatiotial beliavioitr 

There was not a statistically significant reduction in amphetamine-induced 

rotational behaviour ai any of the time points tested regardless of the product implanted. 

In animals maintained for 6 weeks with double grafts of either hNT-DA neurons or LiCl 

prctreated hNT-DA neurons rotational behaviour exhibited a trend toward decreasing 

rotations. but this did not reach statistical significance. There was a correlation between 

suri-king THir cells and rotational scores. Only anirnals that had surviving THir cells 

(4% of the hNT-DA group and the LiCl pretreated hNT-DA group) had decreased 

rotational scores while animals with no THir cells (hNT neuronal gratts and lesion only 

groups) did not exhibit any reduction in mean full body tums (Figure 6). 



Figure 2.1. Rcpresentative parasagittal section through a double hNT grafted rat brain 

immunostained for human NSE (scalc bar = 1000 pm). 



Figure 2.1 



Figure 2.2. Represeniative coronal sections through the level of the stnatum and 

substantia nigra of rats with double graRs of hNT neurons immunostained for the 

presence of NSE (A and B). Adjacent sections were stained for the presence of NCAiM 

(C and D) and TH (E and F). Although grafts are visualized following immunostaining 

for anti-'ISE and -NCAM, note the absence of THir profiles in the grafted area on the 

lesioned side of the brain. (scale bar = 250 pm). 





Figure 2.3. Higher power photomicrographs o f  intrastriatal and intranignl hNT neuronal 

grafts inimunostained for hurnan NSE (A and B)  and NCAM (C and D). Note the dark 

staining of the graft that made counts o f  the number of surviving cells impossible (scale 

bar = 150 um). 



Figure 2.3 



Figure 2.4. Intrastnatal (A-C) and intranigral (D-F) N T - D A  neuron gnAs 

immunostainrd for NSE (A and D). Adjacent sections were immunostained for the 

prescnce of TH (B and E). C and F are higher power photomicrogaphs of B and E. 

Note that THir fibers can be seen extending from the cell bodies. (scale bar = A and D; 

3 0  p i ;  B and E. 500 Fm; C and F; 1000 pm). 



Figure 2.4 



Figure 1.5. Bar graph demonstrating the mean (+ SD) THir cells found within the 

iiitrastriatal and intranigral grafts of hNT neurons (white bars), hNT-DA neurons 

(stippied bars) and LiCl pretreated (gay  bars) hNT-DA neurons. No significant 

di ffrrence in  the number of cells was observed between the striatal or nigral location of 

the y-rifts. No survivins THir cells were encountered in animals grafted with hNT 

neiirons. There \vas no significant difference in the number of THir neurons in rats 

gafted with hNT-DA neurons or LiCl pretreated hNT-DA neurons. However. only 43% 

of animals with hNT-DA neurons grafts contained THir neurons. 
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Figure 2.5 



Figure 2.6. The mean f standard deviation (SD) rotations per minute with amphetamine 

challenge (5 mgkg, ip), followiny 6-OHDA-induced lesions of the right ascending 

dopaminergic nigrostriatal pathway (Lesion) and 6 weeks following double grafting of 

nicdium only (white bars), hNT neurons (stippled bars), hNT-DA neruons (gray bars) and 

LiCl pretreated hNT-DA neurons (black ban). Although a reduction of rotational 

behavioiir was observed in the hNT-DA neuron and LiCl pretreated hNT-DA neuron 

groups. this reduction did not ûchieve statistical significance. 



Figure 2.6 



Discussion 

Gra/r sitrvival 

Inimunostaining with anti-NCAM demonstrated that hNT neurons survive the 

transplantation procedure. This observation is in agreement with previous studies 

denioristrating survival of hNT neurons i ~ i  vivo by using anti-NCAM 

imniunoliistochemistry (Trojanowski et al., 1993; Kieppner et al., 1995; Miyazono et al.. 

1995; 1996; Borlongan et al., l998a; 1998b; Muir et al., 1999; Philips et al., 1999; 

Saporta et al., 1999). In addition. we have shown that hNT grafts c m  also be visualized 

witli antibodies recognizing hurnan NSE. which reflects the human origin of hNT 

nciirons. originally drrived from a human teratocarcinorna. TH imrnunohistochemistry of 

graftrd IiNT neurons demonstrated that the 6-week cultured hNT neurons fail to express 

TH. whereas in 43% of the animals receiving hNT-DA and 100% of animals with LiCl 

pretrcatrd hNT-DA neuronal grafts there was evidence of THir neurons. The reason for 

TH espression in only 43% ofanirnals receiving hNT-DA neuronal gnfts is unknown but 

i t  is possible thüt these grafts may need time to mature and long-tenn studies are 

currently undenvay in Our labontory to address this issue. It is also possible that these 

crlls need an additional factor such as LiCl to promote differentiation into a TH- 

espressing neuronal phenotype (Zigova et al., 1999). This concept is supponed by the 

observation that 100% of animals grafted with NT-DA neurons preireated with LiCl had 

sunriving THir neurons. 

Al1 of the animals with grafts of LiCl pretreated NT-DA neurons exhibited THir 

cells within the grafis in the present study. A recent study reported that TH expression in 

hNT neurons was increased six-fold in viiro following 5 days of exposure to LiCl 



(Zigova et al.. 1999). Previous studies have also shown that itz vitro lithium treatment 

increased the expression of TH in SH-SYSY neuroblastoma cells (Chen et ai., 1998) and 

bovine adrenal medullary cells (Terao et al., 1992). Other strategies to enhance the 

espression have also been used. Small increases in TH expression could be obtained 

whcn hNT neurons were cultured in the presence of acidic fibroblast growth factor. 

protein kinase pathway activators, and other coactivators (Iacovitti and Stull. 1997). 

Furthermore, Othberg and colleagues ( 1998) have also demonstrated a greater 

enhancement of TH expression by hNT neurons when cocultured with porcine Sertoli 

cc1 1s. Xlthough these studies demonstrate an enhancement of TH expression in hNT 

neurons irr virro, it has yet to be determined whether these cells continue to express TH iti 

i*ii90. Therc is also evidence that the hNT prectirsors. NT2 neurons, are capable of 

transfec~ion with foreign genes (Trojanowski et al.. 1997; Kofler et al.. 1998) and hNT 

ncurons are readily infected by vaccinia viruses (Cook et al., 1996), suggesting 

alternative methods for enhancing TH expression in these cells. 

Interestingly, the number of surviving THir neurons was not different when 

transplantrd in either the striatum or the SN. This suggests that the homotopic site (SN) 

environment does not influence the phenotype of hNT neurons. It has been reported that 

the mouse caudoputamen may influence the differentiation of hNT neurons into a 

dopaminergic phenotype (Miyazono et al., 1996). however, our study does not provide 

evidence that the rat striatum rnay influence the hNT neurons to differentiate into TH 

neurons to a greater extent when compared to the SN. 

The Failure of hNT neurons to provide functional recovery in the present study 

may relate to the relatively low number of THir neurons and poor fiber outgrowth 



observed in surviving grafts. Fiber outgrowth and number of surviving THir neurons 

strongly correlate with the extent of functional recovery in fetal grafis (Rioux et al., 199 1; 

Apostolides et al., 1998). It is possible that hNT cells mature at a slower pace than fetal 

dopaminergic neurons and long-term studies may be necessary to test this hypothesis. 

6:VT ,rertroris as nrr ultrrriative tissue source for rreural trarrsplantatiorr ? 

The optimal ceIl for transplantation in Parkinsonian patients would be one that is 

not only abundant and readily available but also has the capability of synthesizing 

dopamine and reinnervating the nigrostriata1 dopaminersic system. hNT neurons have 

some of thesr qualifications; they are readily available and able to proliferate in culture 

(Andrews, 1 984; 1 98'1; Lee and Andrews, 1986; Abraham et al., 1 99 1 ; Pleasure et al., 

1992; Pleasure and Lee, 1993). There is evidence that hNT neurons c m  survive 

transplantation into the adult rodent brain (Trojanowski et al., 1993; Kleppner et al., 

1995). Reversai to their neoplastic phenotype has not been observed and the present 

study lias sliown that hNT neurons survive transplantation into the striatum and SN, 

intrgrate into the host, and express TH. 

Although we have not shown that hNT neurons are capable of releasing 

dopamine, there is evidence that hNT neurons are immunopositive for markers of 

secretory activity in vitro (Pleasure et al., 1992). However, DA production rnay not be 

enough for functional restoration in PD. It is well known that graf'ting various ce11 lines 

transfecied with the tyrosine hydroxylase gene reduces DA agonist-induced behavioural 

deficits in the Parkinson rat mode1 (Wolff et al., 1989; Horellou et al., 1990a; 1990b; 

Fisher et al., 199 1 ; Ishida et al., 1996; Lundberg et al., 1996; Tomatore et al., 1996; 



Raymon et al.. 1997; Fitoussi et al., 1998; Segovia et al., 1998). However, reinnervation 

of the host brain may also be crucial for restoring complex sensorimotor deficits in 

lesioned animals (Mendez et al., 199 1 ; 1993; Rioux et al., 199 1 ; Nikkhah et a!., 1994; 

Mehta et al., 1998). hNT neurons may have the capability of producing and secreting 

dopamine and also reinnervating the host. This concept is supponed by our observation 

that hNT neurons express TH aRer implantation and extend processes into the host brain. 

Funher enhancement of host reinnervation could be accomplished by increasins the 

differentiation of hNT neurons into THir cells and promoting their fiber outgrowth. Our 

laboratory and several other investigators have demonstrated increased fiber outgrowth of 

dopaminergic transplants using GDNF (Rosenblad et al.. 1996; Wang et al., 1996; 

Granholni et al.. 1997; Apostolides et al., 1998; Mehta et al.. 1998; Wilby et al., 1999) 

and BDNF ( Y  urek et al.. 1996). It is possible that the addition of neurotrophic factors 

such as GDNF or BDNF to hNT neurons may similarly increase survival of THir neurons 

and induce fiber oiitgrowth. 

Con clirdi~tg r m a r k s  

This study has demonstrated that hNT neurons survive implantation, integrate into 

the host brain. and express TH when grafied into the striatum or SN. Although THir 

neurons were found in the striatum and SN, the numbers were relatively small and 

expression of a TH phenotype appeared to be independent of the site of implantation 

(striaturn versus nigra). This study bas also provided evidence thai LiCl treatment rnay 

be beneficîal in enhancing TH expression of hNT neurons. 



hNT neurons are promising as a possible alternative to Fetal tissue for 

transplantation in animal models of PD and may have potential clinical applications in 

the future. However, before hNT neurons can be considered a reliable ce11 source in 

experimental neural transplantation for PD. funher improvements in enhancing TH 

expression are needed. 



CHAPTER 3: 

SIMULTANEOUS INTRASTRIATAL AND INTUNIGRAL DOPAMINERGIC 

GRAFTS IN THE P.4IUUNSONIAN RAT MODEL: THE ROLE OF THE 

INTRANIGR4L GRAFT 

The results presented in the following chapter have been submitted for publication 

in the Journal of Comparative Neurology. 



Introduction 

In the past decade, clinical trials of neural transplantation in which patients with PD 

have received intrastriatal fetal ventral mesencephalon (FVM) p f t s  have been conducted 

worldwide (Lindvall et al., 1989; 1990; 1992; 1994; Freed et al., 1992; Spencer et al., 1992; 

Widner et al.. 19%; Peschanski et al., 1994; Freeman et al., 1995; Kordower et al., 1995; 

1996; 1998; Wenning et al., 1997; Bluml, et al., 1999; Hagell et al., 1999; Hauser et al.. 

1909). Although the results reported in some transplanted patients are promising, clinical 

irnprovements have been limited and have not reached a level to justiQ the use of neural 

transplantation as a routine therapeutic procedure in PD. Although many variables 

coniribute to the effïcacy of neural transplantation in PD (Olanow et al., 1996; Mehta et al.. 

1997). optimal placement of the graR is likely a critical factor influencing the clinical 

outcornes of neural transplantation in PD. 

To date, the main transplantation strategy in experimental and clinical PD has been 

to place dopaminersic not in their ontognic site (SN) but in their target area 

(striaturn) (Bjorklund et al., 1980; 1983; Dunnett et al., 1983; Lindvall et al.. 1989; Mendez 

et al.. 199 1 ; Freed et al., 1992; Widner et al.. 1992; Freeman et al.. 1995). Although 

intrastriatal dopaminergic grafts are capable of reinnervating the striaturn. they fail to restore 

the nigrostriatal circuitry (Doucet et al., 1989; Mendez et al., 1991). Furthemore, dendntic 

DAergic control of SNr activity, which is important in the regulation of basal ganglia 

outflow (Cheramy et al., 1979; 198 1 ; Gauchy et al., 1987; Robertson, 1992a), c m  not be 

achiewd by intrastriatal pfts alone. Dopaminergic reinnervation of other nigral targets 

such as the STN and globus pallidus GP is also lacking. Recent evidence in unilaterally 



6-OHDA-lesioned rats has s h o w  that upregulation ofcytochrome oxidase and egos gene 

expression in the STN and GP is not normaiized by intrastriatal gafls (Nakao et al.. 1998). 

The failure to restore basal ganglia circuitry by ectopically placed intnstnatal grafts may be 

an important factor limiting the efficacy of fetal tissue transplantation in Parkinsonian 

patients. 

We have hypothesized that simultaneous intrastriatal and intranigral dopaminergic 

gratts (double grafis) may provide a more cornplete restoration of the nigrosiriatal circuitry. 

This hypothesis is supported by the dernonstntion that double grafis promote some degree 

of reconstruction of the nigostriatal pathwq and a quicker and more complete rotational 

rccovery in the rodent mode1 of PD (Mendez et al.. 1996; Mendez and Hong, 1997). 

Reinnervation of both the stnaturn and SN rnay be essential to optimize graft-derived 

functional improvenient. We postulate that double gafis rnay be a superior strategy in 

neural transplantation for PD. This notion is funher supported by a recent study in which 

enlianced recovery was observed in herniparkinsonian rats with simultaneous intrastriatal 

doparninegic and intranigal GABAergic grafts (Winkler et al., 1999). 

The present study was designed to investigate the role of the intranigral DAergic 

gnft in restorinj function in 6-OHDA-lesioned rats transplanted with simultaneous 

intrastriatal and intranigal grafis. The results of this study showed that the hnctional 

recovery, achieved by rats implanted with double grafts was revened by the subsequent 

destruction of the intrani,gal grafi. This observation strongly suggests that restoration of the 

dopaminergic input to t!!e SN by the intranigral p f t  is crucial for the functional recovery 

obsened in double gafted animals. 



Materials and methods 

Experirtr etr ta1 desigr1 

A total of 20 female Wistar rats (Charles River, St. Constant, Quebec), weighing 

berween 200 - 250 g. housed two animals per cage with food and water ad libitum were 

used for this expenment. Unilatenl 6-OHDA lesions of the nght ascending nigrostriata1 

pathway were performed in al1 of the animals (see First 6-OHDA Lesion below). Ten 

aniiiials received single intrastriatal grafts of FVM cells. The intrastriatally-grafted 

animals were subdivided in 2 groups and received either a second 6-OHDA (STMOH) 

or vehicle (STR-VEH) injection in the SN 10 weeks aîler transplantation (Figure 1). Ten 

animals received double graRs of FVM cells in both the striatum and SN. The double 

grafted animals were also subdivided equally in 2 groups. One group (DBL-6OH) 

received a second 6-OHDA lesion in the region of the intranigral $raft and the second 

group (DBL-VEH) received an injection ofvehicle in the same region 10 weeks afier 

transplantation (Figure 1). The time course of this study, From the day the animals 

arrived. until their brains were processed for TH imrnunohistochernistry, is shown in 

Figure 2. Al1 animal procedures were in accordance with the guidelines of the Canadian 

Council on Animal Care and the University Council on Laboratory Animais. 

First 6-OHDA lesion 

Rats were anesthesized, intnmuscularly with 3.0 ml / kg of a ketamine-xylazine- 

acepromazine anesthetic mixture (25% ketamine hydrochloride; Ketalean, MTC 

Pliamaceuticals; 6% xylazine; Rompun, Miles Canada; 2.5% acepromazine maleate: 



Wyeth-Ayerst Canada; in 0.9% saline) and received two stereotactic injections of 6- 

OHDA (Sigma Chernical Company) (3.6 pg oF6-OHDA HBdpl in 0.2 mg/ml of 

L-ascorbate in 0.9% saline) into the nght ascending nigrostriatal DAergic pathway. 

6-OHDA injections occurred at the following coordinates (mm): (1) 2.5 pl at AIP: -4.0. 

M/L: -1  2. D/V: -7.8. toothbar: -2.4; and (2) 3.0 pl of 6-OHDA at NP: -1.0, M/L: -0.8, 

DIV: -8.0. toothbar: t 3 . 4  The rate of injection was 1 pl 1 min. and the cannula was lefi 

in place for 5 min before slowly being retracted. Animais were allowed to recover for 1 

weeks in the animal care facility before being given an amphetamine challenge (5.0 

mgkg. ip). Their rotaiional scores were collected over a 70-minute penod using a 

coniputerized video activity monitor programmed for measunng, rotational behaviour 

(Videornes V, Columbus Instruments). On1 y animals exhibiting a mean ipsilateral 

rotational score of ripht or more complete full body turns per minute were included in the 

study. 

Sc)corid 6-OHDA lvsiotr 

Nine to ten weeks following transplantation, =nfted animals received a second 

injection of 3.6 pg of 6-OHDA HBr 1 pi in 0.1 mplml of L-ascorbate in 0.9% saline (0.9 

FI ! site) or vehicle (1 mdml ascorbic acid / 0.9% saline) (0.9 pl i site) at the sarne co- 

ordinates in which the intranigral graft was placed (see Transplantation below). Ali 

injections of vehicle or 6-OHDA were performed at the following coordinates (mm): 1 ) 

.kP:  -4.S. M/L: -2.0, D N :  -8.3 and -8.1; 2) NP: -5.0. WL: -2.3, D/V: -8.2 and -8.0; and 

3)  NP:  -5 3, WL: -2.6, DN:  -8.1 and -7.9; toothbar: -3.3; coordinates from Bregma and 

the dorsal surface of the skull at Bregrna. 



Rotatiort al belr aviorr r 

Two weeks atter the first 6-OHDA lesion, and every three weeks following 

transplantation and the second 6-OHDA injection, rats were challenged with amphetamine 

( 5  mgAg; ip) (Figure 2). Rotational behaviour was analyzed for 70 minutes following 

amphetamine injection, using a computerized-video activity monitor system (Videomex. 

Columbus tnstruments). 

Tran splarttntiort 

Thirteen to fourteen day old rat fetuses were removed lrom pregnant female rats 

under sodium pentobarbital anesthesis. Ventral mesencephalic tissue was harvested 

under stenle conditions. The FVM tissue was washed 3 times in 0.05% DNase / DMEM 

(DNase and DMEM: Sigma Chemical Company), placed for 20 mintues at 37OC in 

DNasr ; DMEM / 0.1 % trypsin (trypsin: Sigma Chemical Company) and then rinsed 4 

times with 0.05% DNase / DMEM. The tissue was then mechanically dissociated uniil a 

milky. homogeneous single-celi suspension was achieved. The Trypan Blue dye 

exclusion method was used to assess ceIl viability and ce11 suspension concentration 

(Table 1 ). 

The ce11 suspensions were stereotactically injected into either the striatum alone 

or both the striatum and SN incorporating the transplantation technique previously 

descnbed (Mendez et al., 1996; Mendez and Hong, 1997; Apostolides et al., 1998). A 

specially designed capillary tip micropipette with an outer opening diameter of 50-70 Pm 

is attached to a 2-pI Hamilton syringe and used to stereotatically implant the cell 

suspension at a rate of 100 nümin. The single grafied rats (STR-VEH, STR-6OH) 



received 400,000 cells in the striatum and an equal volume of medium in the SN. The 

double ~rafted animals received 400,000 cells in the stnatum and 400,000 cells in the SN 

for a total of 8O0,OOO cells (Table 1 ). Injection of the cells into the dorsolateral stnatum 

occured at the Following coordinates (mm): 1)  NP:  +1.3, M/L: -2.1. D N :  

-5.5 and -1.3; 1) A/P: +0.6, WL: -2.9, DIV: -5.5 and -4.3; and 3) A/P: +0.3, WL: -3.7, 

DIV: -5 .5  and -4.3; toothbar: -3.3; and the SN at the following coordinates (mm): 1) NP: 

-4.8, M/L: -7.0, D/V: -8.3 and -8.1; 2) NP: -5.0, M/L = -2.3, D/V = -8.2 and -8.0; and 3) 

NP: -5.3. MIL: -2.6. D N :  -8.1 and -7.9; toothbar: -3.3; coordinates from Bregma and the 

dorsal surface of the skull at Bregma. 

Tjrosir i e 1iydro.rylase i t~ i  niitrco/iistuc~~e~~iist~ 

Staining for the presence of TH was performed using the primary rabbit anti-T H 

antibody ( 1 2500 Pel Freeze Biologicals) and the ABC-kit (Vector Laboratones Canada. 

Inc.). For this procedure, sections were prewashed for 10 min in a solution of 10% 

mcthanol and 3% hydrogen peroxide and blocked in PB containing 0.3% Triton X-100 

and 5% normal swine serum for 1 h. The sections were removed and incubated in a 

12500 solution of rabbit polyclonal anti-TH antibody For 16 h. To visualize antibody 

binding. 1 500  biotinylated swine anti-rabbit IgG antibody (Dako Diagnostics Canada, 

Inc.) was used followed by a streptavidin-biotinylated HRP complex kit followed by the 

addition 0lDA.B and H202.  The sections were then washed in O.1M PB, placed on 

gelatinous slides and dehydrated before mounting and coverslipping in permount. 



C d  coriirts aitd statistical atialysis 

The total number of surviving THir cells was estimated using Abercrombie's 

formula (.4bercrombie, 1946). The mean diameter was calculated For thirty cells selected 

nndomly within each experimental group. Cells were randomly selected by their 

location within a 0.1 X 0.1 mm ocular grid placed over the grafi. The diameters were 

thcn calculated using a cornputer system equipped with Optimas image analysis software 

(Optimas Corporation, Bothell, WA). The mean cr i1  diameter was calculated for each 

experimental group and substituted into Abercrombie's equation. Sixteen to twenty 

sections w r e  counted in each animal. 

W i thin and between goup di fferences for amphetamine-induced rotational 

beliaviour was perfomed at PcO.05 using a two-way ANOVA followed by Tukey's posr 

hoc test. Brtween group di fferences for THir ce11 survival were calculated at PcO.05 

using a Student's paired 

T-test. 



Figure 3.1. Schematic representation of the expenmental groups involved in this study. 

20 rats were used. and received either intnstriatal (n=lO) or double DAergic grans 

(n= l O ) .  These groups were further subdivided and received either iniranigral vehicle 

(STR-VEH; DBL-VEH) or 6-OHDA injections (STR-6OH; DBL-6OH). 



Figure 3.1 



Figure 3.2. Time-line representing the sequence of procedures conducted during the 

duratioii of this experiment. 



Figure 3.2 

Week Number Procedure 

1 

2 

4 

4-5 

8 

11 

14 

15 

t 8 

21 

24 

Habituation to Animal Care Facility 

First 6-OHDA lesion 

Post-lesion rotational behaviour testing 

Transplantation 

Rotational behaviour testing (3 weeks) 

Rotational behaviour testing (6 weeks) 

Rotational behaviour testing (9 weeks) 

Second 6-OHDA lesion 

Rotational behaviour testing (3 weeks) 

Rotational behaviour testing (6 weeks) 

Rotational behaviour testing (9 weeks) 

25-26 Perfusion and immunohistochemistry 



Table 2. Details of the total cell number and viability transplanted in each group. 

Group Cell Viability (%; t SD) Total Cells lmplanted 

STR-VEH 95.1 4 + 4.41 

STR-6OH 99.10 f 0.45 

DBL-VEH 95.00 i 4.24 

DBL-6OH 94.38 f 4.63 

- 400,000 (STR) 

- 400,000 (STR) 

- 800,000 (STR + SN) 

- 800,000 (STR + SN) 

STR = striatum SN = substantia nigra 



Results 

Effect of the First 6-OHDA Lesion 

Injections of 6-OHDA within the nigrostriatal pathway resulted in a virtually 

complrte absence of THir ce11 bodies and fiben within the ipsilateral SN, mediai 

forebrain bundle and fibers within the ipsilateral striatum. 6-OHDA-lesioned animals 

cxhibited a strong clockwise circling behaviour when challenged with amphetamine 2 

wceks following the lesion (Figure 3). 

Trartsplu/its 

a) Dorrbk grujs 

In double grafted animals with a subsequent vehicle injection (DBL-VEH), robust 

suniving ;rafts were observed within the striatum and nigra (Figures 1; 5A. SB; 6A, 6B). 

These grafts were marked by the presence of many surviving THir ceIl profiles and fibers 

within the graft. THir fiben were also seen extending beyond the boundary of the 

intrastriatal graft, reinnervating the host striatum. In those animals, THir fibers 

presumably originatins from within the intrastriatal gnR, extended caudally into the GP 

and interna] capsule along a trajectory towards the intranigral p f ' t  (Figure 4B). 

In DBL-6OH animals, robust grafts were observed in the striatum alone. 

Numerous THir crll bodies and fibers were observed within the graft as well as good 

fiber outgowth into the host striatum (Figure 5C). However, the graf'ts in the SN were 

very small (Figures 5D; 6C, 6D). Many of the remaining THir cells were dystrophic with 

much shorter THir fibers compared to the intranigral pifis of DBL-VEH animals 

(Figures jB. jD). 



b) Sirrgfe grajis 

Aninials with intrastriatal grans (STR-VEH, STR-6OH) had healthy graAs with 

numerous cell bodies and fibers within the graft and robust fiber outgrowth into the 

sunounding host siriatum. No THir cells were encountered in the SN in the group of 

anirnals (STR-6OH) receiving a second 6-OHDA lesion in the nigral area (Figure 6E, 

6F). 

c) Ceil coiitrts 

The mean ( iSD)  number of THir cells within the intnstriatal graft in the 4 groups 

were: STR-VEH = 1077.17 i 500.39; STR-6OH = 1290. I l  k 409.40; DBL-VEH = 

1054.26 ?: 251.49 and DBL-6OH = 1402.93 k 635.25. There was no significant 

differencc in the nurnber of cells within the intrastriatal grafi in any of the groups (Figure 

7). The mean (kSD) number of THir cells within the nigral region in the 4 groups were: 

STR-VEH and STR-6OH = O; DBL-VEH = 9 15.33 k 2411.94 and DBL-6OH = 267.69 ? 

OS .4 1 .  A signi ficantly fewer number of surviving THir cells (PcO.0 1 ) within the 

intranignl graft was observed in the DBL-6OH group when compared to the DBL-VEH 

yroup (Figure 7). 

Belr uviorr rai reco very 

a) Post-transplatitation befuwioural recovery 

Sine weeks following traiwplantation there was a drmatic reduction in 

amphetamine-induced rotational behaviour in al1 groups (Pc0-0002) (Figure 3). The level 

of recovery did not diff'er significantly among the groups. 



b) Effect of the secoird lesion 

.At 9 weeks after the second lesion, there was a significant elevation (P<O.OOI ) in 

the number of rotations in the DBL-GOH group when compared to al1 other groups 

(Figure 3). This elevation of rotational scores was also significant when compared to the 

scores of the sarne group of animals obtained 9 weeks after transplantation. This reversal 

in rotational recovery was observed at the earliest time-point, 3 weeks following the 2nd 

lesion and was sustained For the duration of the study. No significant change in rotational 

behaviour was observed in the other groups when compared to each other or their 9-week 

post-gri fting values. 



Figure 3.3. Graph demonstrating the mean (+ SD) amphetamine-induced full body tums / 

minute for each group. 2 weeks following the initial 6-OHDA lesion (Lesion), 9 weeks 

following transplantation (Graft) and 9 weeks following the second lesion (2nd Lesion). 

*P<0.0002. compared to rotational scores afier the first 6-OHDA Iesion; **P~0.0005, 

compared to rotational scores for al1 the groups 9 weeks post-gafiing; ***P<O.OO 1. 

compared to al1 the groups following the 2nd lesion. STR-VEH = intrastriatally gnfted 

aninials with a second vehicle injection; STR-6OH = intrastriatally grafted animals with a 

second 6-OHDA lesion; DBL-VEH = double prafted animals with a second vehicle 

injection; DBL-60H = double grafted animals with a second 6-OHDA lesion. 



Figure 3.3 



Figure 3.4 - Represrntative parasagittal section through a double grafted rat brain 

demonstrating robust survivai of intrastriatal and intranigral FVM grafts (A). Note the 

halo of dense THir surrounding the intrastriatal gratt. (B) and (C) are higher power 

photomicrographs of  the intrastriatal and intranigral grails (B, C). In (B), note the THir 

iibcrs. most likely from the intrastriatal graft, extending into the globus pallidus. Scale 

bar: .A = 500 pm; B and C = 50 pm. 



Figure 3.4 



Figure 3.5 - Representative coronal sections through double grafied rats (DBL-VEH; 

DBL-60H) at the levels of  the intrastnatal and intranigral grafts. Many surviving THir 

cclls and fibers c m  be observed within both intrastriatal grafts (A, C). A robust 

intranigral gratt can be sern in the DBL-VEH animal (B). A very small intranigral grafi 

can bo seon after a second 6-OHDA lesion in a DBL-6OH animal (D). Scale bar = 100 

p l .  



Figure 3.5 



Figure 3.6 - Representative coronal sections at the level o f  the substantia nigra of DBL- 

VEH (A. B). DBL-6OH (C, D) and STR-6OH animals (E, F). A robust intranigral graft 

is seen in a rat with a subsequent intranigral vehicle injection (A. B). In contrast, double 

grafted animals with subsequent 6-OHDA injections (DBL-6OH) had very small graRs 

(C. D). Animais with intrastnatal gratts and subsequent 6-OHDA injections (STR-6OH) 

lirtd no surviving THir cells in the substantia nigra (E. F) Scale bar: A, C, E = 500 Fm and 

B. D. F = 100 Cim. 



Figure 3.6 



Figure 3.7 - Graph depicting the mean ( tSD) surviving number of THir cells within the 

intrastriatal and intranigral grafts. Signi ficantly fewer cells were observed in the 

intranigral praft of double grafted animals with a subsequent 6-OHDA injection (DBL- 

6OH) as cornpared to anirnals with a subsequent vehicle injection (DBL-VEH) 

(*P<O.OOl). 





Discussion 

In the current neural transplantation stratcgy for PD, the striatum has been 

targeted as the optimal site for DAergic graR placement (Bjorklund et al., 1980; 1983; 

Dunnett et al., 1983; Lindvall et al., 1989; Mendez et al., 1991; Freed et al., 1992; Widner et 

al.. 1992; Freeman et al.. 1995). The main reason for this ectopic placement of DAergic 

tissue is the apparent inability of grafts placed in the ontogenic location (SN) to grow 

axons over long distances to reach their target (stnatum) (Bjorklund et al., 1983; Dunnett 

et al.. 1989; Nikkhah et al., 1994a). However, this strategy has failed to restore 

dopaminer~ic innervation to the SN or reconstntct the nigrostriatal pathway. The 

inability of intrastriatal graRs to restore the dopaminergic nigrostriatal circuitry may be 

an important factor iirniting the clinical efficacy of fetal transplantation in parkinsonian 

patients. We have previously demonstrated that simultaneous nigral grafts placed in both 

the striatum and the SN (double gnfts) inducc a faster and more significant reduction in 

rotational behaviour upon amphetamine challenge when compared to intrastriatal p f t s  

aione (Mendez et al., 1996). This beneficial rffect could be panially attributed to an 

increase in striatal reinnervation (Mendez and Hong, 1997) but may also result from 

restoration of DAergic reinnervation to the host SN. 

In the present study we have demonstrated that the intranigral graR is important in 

the behavioural recovery of rats receiving simultaneous intrastriatal and intranigral grafis. 

Double grafted rats that received a second 6-OHDA injection in the region of the 

intranigral graft exhibited a reversal of the rotational recovery achieved after 

transplantation. This change in rotational behaviour correlated well with damase of the 

intranigral graft by the toxin. Animals that received vehicle injections in the region of the 



intranigral graft had no reversa1 in the functional recovery gained aRer transplantation. 

The reversal of rotational recovery can not be explained by possible damage to the 

intrastriatal graft by the second 6-OHDA injection because al1 groups had healthy grafis 

with no significant difference in the number of surviving THir neurons. Furthermore, the 

increase in  amphetamine-induced rotations appears to be directly attributed to the 

destruction of the transplanted intranijnl FVM cells and not to destruction of residual 

host nignl DAergic cells that may have escaped the first lesion. This concept is strongly 

supponed by the observation that no detrimental effect in rotational behaviour was 

drtccted in intrastriatally grafied animals that received subsequent intranigral 6-OHDA 

injections. 

It is w l l  known that dopamine is released within the SNr by dendrites of pars 

compacta murons (Cheramy et al.. 1979; 198 1 ). Nigral dopamine is believed to enhance 

GABA release from striatonigral efferents through presynaptic DI DA receptors 

(Robertson. 1992a), reducing GABA transmission in the ventromedial thalamus (Gauchy 

ct al. 1957) and increasing locomotor activity (Jackson and Kelly, 1983a; 1983b). 

Furthermore. there is evidrnce that L-Dopa-induced rotational behaviour is dependent on 

both striatal and nigral mechanisms (Robertson and Robertson, 1989). This observation is 

compatible with studies of intranigral doparninergic graRs which have been showvn to 

provide some recovery in DI, D2 or DIID? DA receptor agonist-induced rotations, but not 

arnphctamine-induced rotational behaviour (Robertson et al., 199 1; Nikkhah et al.. 1994a; 

Olsson et al., 1995; Mendez et aI, 1996; Yurek et al., 1997). 

Although we have shown that the iniranigral grafl has a role in the Functional 

recovery of transplanted anirnals, the mechanism by which the in~anigral grafi exens that 



role is not clear. It is possible that the intranigral grafi restores DAergic innervation to 

nigra-innewated structures that are not reinnervated by the intrastriatal graA, such as the 

STN. This notion is supported by a recent study in which c-fos immunoreactivity was 

quantified in several basal ganglia structures in rats receiving intrastriatal DAergic grafts. 

In ihose animals only the STN and GP remain overactive aRer transplantation and the 

authors coiicluded that the striatal graR had failed to influence those structures (Nakao et 

a . .  998) .  The STN is particularly important in basal ganglia function and has been 

obsened to be overactive in animal models of PD (Bergman et al., 1994; Hassani et al.. 

1996; Nakao et al., 1998). Inactivation of the STN has been s h o w  to reduce behavioural 

deficits in human Parkinson patients (Krack et al., 1997a; 1997b; 1998a; 1998b; Kumar 

et al., 1998a; 1998b; 1999; Limousin et al., 1998; Brown et al., 1999; Moro et al., 1999; 

Yokoyama et al., 1999). It has previously been demonstrated that the STN receives a 

ni yral-derived dopaminergic innervation (Lavoie et al.. 1989; Hassani et al., 1997; 

Cossette et al., 1999; Hedreen, 1999). DA is believed to exert an inhibitory control on 

STN neurons through DI and Dz receptors (Campbell et al., 1985; Hassani and Feger. 

1999). Thus, DAergic reinnervation of the S M  may be important for reducing the 

activity of this structure and providing enhanced functional recovery. We are currently 

investigating the extent of DAergic reinnervation to the S M  in double grafted animals 

and the possible effect of 6-OHDA lesions of the intranigral graft on STN activity. 

Reinnervation of both the striahm and the SN by FVM double grafts may allow 

restontion of DAergic circuitry in the basal ganglia. It is well known that an intrastnatal 

graft alone can restore rotational symmetry in 6-OHDA-lesioned rats which is also seen 

in this study, in the single intrastriatal-grafied groups. However, an issue to be resolved is 



the observation that the intrastriatal graft alone was not sufficient to maintain rotational 

syrnmetry in double grafted animais in which the nigral graft was subsequently damaged. 

I t  is possible that rotational syrnmetry in double grafied animals rnay be a result of the 

reestablishment of DAergic regulation of the nigrostriatal circuitry by both grafts 

(Mendez et al.. 1996; Mendez and Hong 1997). The removal of one gnft, in this case the 

intranigral graft may produce a break in the circuitry resulting in loss of the beneficial 

functional effect. Restoration of basal ganglia circuitry rnay be necessary for more 

complex behavioral recovery such as forelimb akinesia, sensonmotor orientation and 

disengage behaviour in animal models of PD, which may be more relevant to the human 

condition. Although restoration of DAergic regulation of the nigrostriatal circuitry may 

be bcneficial in the functional recovery of more compiex sensonmotor function, 

restoration of GABAergic reinnervation rnay also be important (Winkler et al., 1999). 

In our expenment it is possible that sorne degree of GABAergic reinnervation 

may have occurred in the SN by the intranigral grafi as transplanted nigral tissue likely 

contains GABAergic cells from the SNr (Hattori et al., 1973; Ribak et ai., 1976; DiChiara 

et al.. 1 979; Ficalora and Mize, 1989). In a recent study, Winkler and colleagues ( i 999) 

observed that rats with intrastriatal doparninergic and intranigral GABAergic gafts had a 

significant attenuation of deficits in the forelirnb akinesia test which was more 

pronoiinced than in animals wi th intrastriatal DAergic gratis alone. 

In summary. the results of this study suggest that the intranigral gaft  has an 

important role in the behavioural recovery of double gnfied animals. Restoration of 

DAerpic and possible GABAergic reinnervation to the striatum, SN and other nigra- 



innervated structures such as the STN may be crucial for optimizing functional efficacy 

in neural transplantation for PD. 



CHAPTER 4: 

GENERAL DISCUSSION 



Summary o f  the work 

The main findings of this work are; 1) hNT neuronal graRs survive when 

transplanted into the rodent model of PD. Furthemore, N T  neurons express TH and 

hold promise as a possible alternative ce11 source for transplantation; and 2) simultaneous 

intrastriatal and intranigral grafts appear to be a superior strategy for transplantation 

based on prcvious work by our laboratory (Mendez et al., 1996; Mendez and Hong, 1997) 

and the substantia nigra is an appropriate and important target for transplantation in the 

rat model of PD. 

Induction of TH expression in non-catecholaminergic cells 

In chapter 2, TH immunohistochemical analysis of hNT neuronal gnfts revealed a 

small nurnber of THir cells. The ability of hNT neurons to provide functional recovery in 

the rat model of PD was descnbed. A trend towards a reduction in amphetamine-induced 

rotational behaviour was observed, but never reached significance. Although a 

nirasurement of DA release was not performed or double-labeling for the presence of 

dopa decarboxylase (DDC) (enzyme responsible for the conversion of L-Dopa to DA), it 

\vas hypothesized that the poor functional recovery of the animals may relate to the 

relat ively frw number of cells expressing TH. Research investigating the inductio~ of 

TH in non-catecholaminergic cells has resulted in the identification of various molecules 

and approaches to induce TH expression. 

The optimal tissue source for transplantation may be one that is capable of 

producing and releasing DA and is neuronal in origin, capable of reimervating DA- 

depleted areas of the brain. One way to induce TH expression by non-catecholaminergic 



cells is through the insertion of a foreign TH transgene. Transplantation of cells with a 

foreign TH transgene in the rat model of PD have been observed to produce only short- 

term functional recovery (Wolff et al.. 1989; Horellou et al., 1 WOa; 1 WOb; Fisher et al., 

1 99 1 ; Ishida et al., 1996b; Lundberg et al., 1996; Tomatore et al., 1996; Rayrnon et al., 

1997; Leff et al., 1998; Fitoussi et al.. 1998; Segovia et al., 1998). possibly due to a 

down-regulation of foreign transgene expression (Leff et al., 1998; Ljungbeg et al., 

1999; Trejo et ai.. 1999). The transgene rnay need to be inserted within the host DNA. in 

a way enabling transcription of the transgene to be under the control of the prornoter of a 

consti tutively expressed gene ensuring long-term transcription of the transgene (Trejo et 

al.. 1999). Insertion of foreign transgenes in the hNT genorne has been reported 

(Trojanowski et al., 1997; Kofler et al.. 1998). Thus. this may be one way of producing a 

u tenn stable TH-espressing hNT neuronal population. If hNT neurons exhibit Ion,- 

expression of the TH transgene. funher studies will be required to mess  whether hNT 

neurons are capable of synthesizing DA. An earlier study by Imaoka and colleagues 

( 1  998). reported greater functional recovery in hemiparkinsonian rats following 

ininstriaial virus-mediated CO-transfer of both TH and DDC transgenes than when the 

TH gene was transferred alone. Thus, CO-transfection of hNT neurons with both TH and 

DDC transgenes may be required for greater recovery. 

A great deal of research has been generated on the factors responsible for 

catecholaminergic neuronal diflerentiation. Factors such as sonic hedgehog (SHH) 

protcin. aFGF and basic fibroblast growth factor (bFGF), BDNF and LiCl have al1 been 

reported to either enhance or induce TH espression in catecholaminergic and/or non- 

catecholaminergic neurons, respectively . The SHH gene encodes a protein that is 



prevalent within the ventral midline of the developing CNS (Johnson et al., 1994; Ekker 

et al.. 1995). That protein has been observed to be sufficient in inducing DAergic and 

other neuronal phenotypes in chick VM cultures (Wang et al., 1995). Wang and 

colleagues (1995) hypothesized that SHH protein is a general ventralizing signal and the 

plienotype induced by SHH rnay be determined by the receiving cells. Furthemore, the 

transcription Factor. Nurrl has been reponed to induce TH transcription in hippocampal 

neural progenitors independent of the presence of SHH protein by binding a response 

element within the region of the TH gene (Sakurada et al., 1999). Furthermore, 

coculturing muhipotent neural stem cells overexpressing Nurrl led to greater than 80% of 

cells expressing a phenotype indistinguishable from midbnin DAergic neurons (Wagner 

et al.. 1 999). Saucedo-Cardenas and colleagues ( 1998) have reported that although SHH 

drives neural progeniton towards a midbrain DAergic phenotype, Nurrl is essential for 

i nducing a full midbrain D Aergic phenotype from mesencephalic precunors. Although 

the complete paihway in which induction of a nigral DAergic neuronal phenotype has yet 

to bc clearly described those results are promising. As the experiments in chapter 2 were 

conducted with terminally di fferentiated neurons, the ability of up-regdation of Nurrl or 

SHH protein expression to induce a DAergic phenotype in differentiated ce11 lines still 

needs to be addressed. 

The highest expression of bFGF in rat VM is observed from E l 6  to postnatal day 

90 (P90) and of aFGF from P20 to P90 suggesting that aFGF and bFGF may have 

functions in midbnin DAergic neurons at different developmental stages (Bean et al., 

1992). Thus, the FGF family of molecules may also be important for inducing or 

maintaining a DAergic phenotype in VM neurons. In 1989, Iacovitti and colleagues 



( 1989) reported a 20-fold increase in catecholaminergic phenotype expression (THir) in 

cultured rat cortical cells in the presence of Factors extracted from muscle, referred to as 

niuscle-derived factor (MDF). Furthemore, treatment of cerebellar and striatal neurons 

and cells from the collicular plate of the adult rat bnin with MDF induced similar 

increases in TH expression (Iacovitti, 1991). aFGF was later found to be an important 

component of MDF (Du et al., 1994) and hrther studies revealed that DA, protein kinase 

A (PKA) and PKC pathway activators work synergistically to upregulate TH expression 

and activity in DAergic and non-DAergic neurons (Stull and Iacovitti, 1996; Du and 

Iacovi tti. 1997a; 1 997b). That mixture of factors is hypothesized to induce the 

phosphorylation of mitogen activated protein kinase through FGF receptors and increased 

transcription factor binding of the AP-1 regulatory element of the TH gene and a 

concomitant decrease in levels of repressor proteins, effectively enhancing TH expression 

(Guo et al.. 19%). Regardless of the mechanism, exposure of the DA-denervated 

striatuni of MPTP-treated mice to those factors for 14 days significantly enhances TH 

activity (Jin and Iacovitti, 1996). Furthenore, in the 

6-OHDA rat mode1 of PD, intrastriatal infusion of those factors significantly reduces 

amphetamine-induced rotational behaviour, for up to 8 weeks, the longest time penod 

tested following infusion (Jin and Iacovitti, 1992). The results of those studies are very 

promising, outlining a technique to induce TH expression in non-catecholaminergic cells, 

however treatment of hNT neurons with the above mixture provides only a small increase 

in the number of THir neurons (iacovitti and Stull. 1997). 

LiCl induces TH expression in Frontal cortex, hippocarnpus and striaturn in adults 

rats following acute and chronic treatment, in vivo (Chen et al., 1998). LiCl promotes a 



similar enhancement of TH expression in cutured human SH-SY5Y neuroblastoma and 

bovine adrenal medullary cells (Terao et al., 1992; Chen et al., 1998) but inhibits TH 

expression in pheochromocytoma-Il cells (Presse et al., 1997). LiCl enhances the 

activity of PKA (Terao et al., 1992) and regulates TH expression through the AP-1 

transcription factor family (Chen et al.. 1998). Furthemore. Zigova and colleagues 

( 1999) reponed a significant increase of TH expression in hNT neurons in culture 

following LiCl treatment. Our results suggest that LiCl pretreatrnent of hNT-DA neurons 

may enhance the number of celis expressing TH following transplantation. In Our 

experiments al1 animals (n=4) with LiCl pretreated hNT-DA neuronal grafts contatined 

THir cells compared to 43% (n=3 of 7) of animals with untreated hNT-DA neurons. 

Stimulation of sevenl signalling pathways (ie., PKA and calcium calmodulin-dependent 

kinase pathways) rnay be required to enhance TH expression in hNT neurons (Nankova 

et al.. 1996). Further studies are required to assess whether treatment of neurons with the 

above factors not only enhance TH expression but rnay concornitantly increase dopa 

decarbosylase (DDC) expression and thus, DA production which may afford greater 

clinical bene fit than simply L-Dopa-producing cells. DA-producing cells rnay be 

important as the disease progresses as a mechanism to convert L-Dopa to DA rnay not be 

available as the endogenous neurons continue to degenerate. 

In sumrnary, hNT neurons hold promise as an alternative source of cells for 

transplantation in PD. However, increasing their ability to express TH is cntical for hNT 

cells to brcome a practical alternative to fetal VM tissue. 



Double DAergic grrfts in the rat Parkinson model 

Our laboratory has previously reported on the increased functional effects of 

simultaneous intrastriatal and intranigral FVM grafts compared to intrastriatal grafts 

alone (Mendez et al., 1996). To determine the mechanism by which double graRs may 

enliance am phetamine-induced rotational recovery, Mendez and Hong ( 1 997) performed 

a tracer study using fluorogold (FG) and HRP. Following intrastriatal FG injections, 

1 1.5% of THir cells within the intranigral graR were also fluorescent. Those results 

suggest that enhanced rotational recovery in double grafted animals may be partially 

explainrd by increased striatal reinnervation, as the extent of stnatal reinnervation 

correlates well with the degree of functional recovery (Rioux et al., 1991 ; Apostolides et 

al.. 1998; Winkler et al.. 1999). .4lthough increased striatal reinnervation may partially 

rxplain the results, previous studies indicate that the S N  may also be important for 

functional recovery (Robertson. 1992b). Dendntic release of DA within the SNr 

rnhances the release of GABA by the descending striatonigral pathway (Robertson, 

1 !Wh). Furthemore, infusion of DA or DA apnists within the SN reduces GABA 

release in the thalamus (Gauchy et al., 1987) and results in an overall increase in 

locomotor activity in rats (Jackson and Kelly, 1983a; 1983b). Therefore. DAergic 

reinnervation of the SNr rnay be necessary for regulating the inhibitory drive of SNr 

projection neurons on target nuclei. The regulation of SNr neuronal activity rnay thus be 

important for enhancing functional recovery and re-establishing normal basal ganglia 

acitvity in PD patients. 

Recently, Winkler and colleagues (1 999) reported on a signi ficant arnelioration of 

forelimb akinesia in the rat model of PD with simultaneous intrastriatal DAergic and 



intranigral GABAergic grafis. However, this recovery remained incomplete. Aithough 

the double jrafting strategy improved forelimb function, intrastriatal DAergic grafts were 

more effective in reducing amphetamine-induced rotational behaviour and equally 

effective to the double graRs in reducing apomorphine-induced rotational behaviour. 

Furthemore. in that study as well as other's, multiple intrastriatal deposits of nigral 

suspensions were made ( 18 in total) greatly enhancing the estent of stnatal reinnervation 

(Nikkhah et al.. 1993; Olsson. et al., 1995; Winkler et al., 1999). However. Winkler and 

colleagues ( 1999) reported that the density of the THir fibers in the striatum were similar 

in the single and double grafted groups and far greater than animals with partial lesions of 

the nigrostriatal pathway, however the functional effects were sirnilx to that of partially 

lrsioned animals. Those results suggest that complete reinnervation of the striatum may 

not bc essential for the restoration of complex sensonmotor behaviours. Reinnervation of 

other DA-depleied nuclei such as the SN may be necessary for complex sensonmotor 

behavioural recovery. 

The observations that the intranigral DAergic graft extends fibers to the ipsilateral 

striatum in double grafted rats (Mendez and Hong, 1997) and simultaneous intrastnatal 

DAcrgic and intranigral GMAergic gnfts  ameliorate forelimb akinesia (Winkler et al., 

1999) made it  imperative that we investigate whether the intranigral DAergic graR was 

iruly necessary for functional recovery. In chapter 3, the role of the intranigral gr& in 

double grafted animals is discussed. Ten weeks following transplantation, animals 

recei~ed intranigral vehicle or 6-OHDA injections. In double grafted animals with 

subsequent intranigral6-OHDA injections, a reversa1 of amphetamine-induced rotational 

recovery was observed. That reversa1 of recovery was not exhibited by double grafied 



rats with subsequent vehicle injections or intrastriatally grafied animals with intranigral 

6-OHDA injections. Those observations nile out the possibilty that neither the trauma to 

the intranignl graft or SN nor the destruction of spared DAergic neurons of the fint 

lesion led to the increase in amphetamine-induced rotational behaviour. Those results 

provide clear evidence that the intranigral DAergic graft is essential for functional 

recovery in double grafted hemiparkinsonian rats. 

Although an analysis of the effects of double graf'ts on complex sensorimotor 

behavioural recovery was not performed. Preliminary results fiom our laboratory 

indicate that double DAergic gaRs rnay promote a quicker recovery in stepping test 

performance, as early as 2 weeks following transplantation (Baker et al., i ~ i  prepurufiott). 

Thus. a more complete amelioration of behavioural deficits in the hemiparkinsonian rat 

niay drprnd on restoring the DAergic innervation of other DA-depleted brain regions. 

DA-denervated regions of the mammalian brain: Possible targets for neural 

transplantation? 

The SN contains approximately 80% of DAergic neurons in the central nervous 

system. It is well known that the main target area of those DAergic neurons is the 

striatuni (Andén et al., 1964; 1965; 1966). But funher evidence has been generated 

suggesting that the nigral DAergic neurons also innervate other areas of the brain. Early 

studirs revealed that THir fibers originating fiom the SNc / ventral tegmental area 

sxtended into the nucleus accumbens, olfactory bulb, anterior olfactory nucleus, olfactory 

tubercle. interstitial nucleus of the stria terminalis, lateral septal nucleus, central 

amygdaloid nucleus, cingulate cortex, entorhinal cortex, inferior colliculus and 



hippocampus (Emson and Koob, 1978; for a review see, Moore and Bloom, 1978; 

Olazabal and Moore, 1989; Cheung et al., 1998; Williams and Golman-Rakic, 1998) 

(Fijure 4.1 ). 6-OHDA lesions of the catecholarninergic teminals in the nucleus 

accumbens, central amygdaloid nucleus, olfactory bulb, hippocampus and frontal cortex 

have been reported to result in deficts in certain leaming and memory paradigms, body 

weight regdation, rewarding behavioun, motivation and taste aversion based on 

olfactory cues (Lenard and Hahn, 1982; Fernandez-Ruiz et al., 1993; Rassnick et al., 

1993: Gasbam et al.. 1996; Morrow et al., 1999). However, destruction of noradrenergic 

teminals in those structures c m  not be ruled out as a possible contributing factor to the 

appearance of those deficits (Lenard and Hahn, 1982). A loss of DAergic innervation of 

the frontal cortex has been hypothesized to possibly accentuate the depressive mood 

cxhibited by PD patients (Fibiger. 1984). 

Furthemore, 6-OHDA injections into the nucleus accumbens and central 

amygdaloid nucleus have been reported to result in DA agonist-induced locomotor 

deficits (Deminiere et al., 1988; Simon et al., 1988; Herman et al., 1988). 

Cotransplantation of FVM and fetal locus coemleus, as a source of noradrenergic 

neurons. within the nucleus accumbens and/or frontal cortex reduced amphetamine- 

induced but not apornorphine-induced rotational behaviour, whereas gnfis of FVM tissue 

alone did (Cenci et al., 1994). However, skilled forelimb use remained unaffected (Cenci 

et al., 1991). Abrous and colleagues (1993) reported no significant reduction in 

amp hetamine-induced and a small reduction in apomoporphine-induced rotational 

behaviour by intn-accumbens nigral grafts. However, double DAergic grafis 

(intrastnatal and intra-accurnbens) provided significant rotational recovery following 



challenge wi th either DA agonist, however, skilled forelimb deficits again remained 

unaffected (Abrous et al., 1993). Other studies have reported a significant reduction in 

amphetamine-induced rotational recovery by intra-accumbens FVM grafts alone 

(Brundin et al., 1987; Abrous et al., 1990; 1993; Ishida et al., 199 1). 

Intrastriatal and/or intra-accumbens DAergic grafts in 6-OHDA-lesioned rats fail 

to completely alleviate cornplex scnsorimotor behavioural deficits, such as skilled 

forelimb use, suggesting incomplete normalization of basal ganglia anatomy and 

ph ysiolopy. Several studies have demonstrated the existence of DAergic innervation of 

the STN by SNc fibers (Lavoie et al., 1989; Hassani et al., 1997; Cossette et al., 1999; 

Hedrcrn. 1999). There is also evidence that intnstriatal grafis fail to normalize S R I  

activity as indicated c-fos expression lollowing apomorphine challenge (Nakao et al.. 

1998). In 6-OHDA-lesioned rats, MPTP-treated monkeys. and PD patients subthalamic 

inactivation promotes functional recovery (Anderson et al., 1992; Krack et al.. 19973; 

1997b; l998a; l998b; Kumar et al.. l998a; 1998b; 1999; Limousin et al.. 1998; Phillips 

et al.. 1998; Brown et al., 1999; Moro et al., 1999; Yokoyama et al., 1999). Furthemore. 

in normal rats intrasubthalarnic nucleus microinjections of Di or D2 agonists reduce the 

disc harge rate of STN neuronal activity, whereas in 6-OHDA-lesioned anirnals, Di 

agonists but not D2 agonists reduce neuronal discharge rates in the STN (Hassani and 

Feger. 1999). Blockade of S M  DI but not D2 DA recepton in normal rats induces 

akinesia (Hauber, 1998). Although it is not cornpletely clear whether intrasubthalamic 

DA has a net inhibitory or excitatory effect on subthalamic neurons, it is possible that the 

STK may also be an important target site for DAergic grafts in PD. Currently, the ability 

of double DAergic grafts (intrastriatal and intranigral) to nonnalize c-fos expression in 



the STN is being investigated in our labontory. The results of that study should elucidate 

whether the STN may be a possible target for transplantation in PD models. 

Lt is possible that several DA-denervated targets may need to be transplanted in 

the basal ganglia for neural transplantation strategies to produce sustained beneficial 

r ffects in Parkinsonian patients. It is ciear that the current strategy of reinnervating the 

striatum by ectopically placed DAergic grafis has not reached the clinical eificacy for 

neural transplantation to be used as a routine therapeutic procedure for PD. Our work 

promo tes the idea of a multi-target transplantation sirategy, which may have important 

clinical implications in the future. 



Figure 4.1 - Schematic diagram of the rat bnin demonstrating the target nuclei of the 

DArrgic projrcton neiirons o f  the substantia nigra (SN) I ventral tegmental area (VTA). 

..\ni. amysdala; CC. cingulate cortex; EC, entorhinal cortex; EPN. entopeduncular 

nucleus; FC. frontal cortex; GP, globus pallidus; HPC. hippocampus; IC, infenor 

colliculus; NAc. nucleus accumbens; OB, olfactory bulb; SA, septal area; ST, stria 

terminalis; STN, subthalamic nucleus; STR, striatum. 



Figure 1.1 



Future Perspectives 

The possible future perspective of the work described in this thesis are as Follows: 

1. hNT neurons were evaluated as a possible abundant alternative ce11 source For 

transplantation. However, before hNT neurons can be considered as a possible 

alternative to fetal tissue For transplantation, a technique must be deveioped to induce the 

long-term expression of TH in those cells. That technique may involve the transfection 

of liNT neurons with Foreign TH transgenes or treating the neurons with several different 

factors inducing differentiation of the hNT neurons into DAergic neurons. If a cell line 

c m  be established exhibiting high levels of TH expression. the next step would be to 

establish whether they synthesize and release DA and promote functional recovery in the 

rat mode1 of PD. 

2. The optimal placement site for DAergic grans was also addressed in this paper by 

investigating whether the intranigral DAergic gral? was tmly essential for functional 

recovery in double graRed rats. The observation that 6-OHDA lesions of the intranigral 

DAergic graft in double grafted animals reverse the functional recovery obtained 

followin~ transplantation is interesting for several reasons. First. those results 

denionstrate the importance of the intranigral graft in maintaining functional recovery in 

double grafted rats. Intrastriatal DAergic grafts alone are sufficient to provide 

amphriamine-induced rotational recovery in 6-OHDA-lesioned rats. However, the 

observation that the second 6-OHD.4 lesion reverses the recovery in double grafted 

animals, suggests that removal of the intranigral grafi possibly results in changes within 



the basal ganglia nuclei which are not compensated for by the presence of the intrastriatal 

graft. Presently, Our laboratory is utilizing d o s  immunohistochemistry to elucidate 

which structures within the basal ganglia may exhibit abnormal neuronal activity 

following 6-OHDA ltsions of the intranigral graA. 

Our laboratory is presently investigating whether other DA denervated areas of 

the brain, such as the STN rnay also be important target sites for neural transplantation to 

alleviate the cornplex sensorimotor deficits observed in animal models of PD. It is 

possible tliat a rnulti-target grafting strategy may be a superior strategy in neural 

transplantation for PD. The results of those experiments may prove important for the 

future of neural transplantation in PD. 
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