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Résumé

Cette thése présente des résultats de simulations numériques pour un écoulement
réactif laminaire et turbulent. De plus la thése inclut I'implantation d’un nou-
veau modele de combustion intégré au logiciel commercial Fluent. La combustion
est un phénomeéne trés complexe, pour la décrire on doit couvrir plusieurs sujets.
Dans ces travaux, les différents comportements physiques du fluide, considéré en
régime permanent, sont décrits par les équations de Navier-Stokes pour transport
de masse, quantité de mouvement et d’énergie. La méthode de calcul numérique
permet de décrire la turbulence et la cinétique chimique avec plusieurs modéles
appropriés. Une nouvelle méthode basée sur le modeéle du "eddy break up” est
proposée et développée pour permettre le calcul de coefficients autrement empirique

afin d’obtenir de meilleurs résultats en simulation numérique.

Tous les modeéles étudiés numériquement sont validés a ’aide de données expéri-
mentales. Dans le cas de la flamme laminaire, des méthodes & une ou plusieurs étapes
de réaction chimique sont comparées entre elles pour en assurer un choix judicieux.
Aussi des résultats pour un maillage structuré et non structuré sont présentés. Pour
la simulation avec turbulence, plusieurs modéles sont proposés avec des fonctions
de probabilité adiabatique et non adiabatique. Finalement un nouveau modéle est
ajouté dans le logiciel Fluent. Les résultats présentés sont tout a fait adéquats
démontrant une certaine amélioration pour un écoulement turbulent surtout pour

la prédiction des certaines substances formées par la combustion.
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Abstract

This thesis deals with the numerical simulation of the laminar and the turbulent
reacting flow including the implementation of a new combustion model in the Fluent

code.

Combustion is a very complex phenomenon. It involves many subjects. In
this work, the governing equations are the steady-state, Reynolds averaged Navier-
Stokes equations for mass, momentum, energy and scalar transport. Many physical
and chemical models involving turbulence, chemical kinetics, numerical method are
employed respectively. A new method based eddy break up model is proposed and
developed to calculate the varied coefficient for getting better results.

All models are studied numerically and compared with experimental data. In
the laminar combustion case, one-step and multi-step methods are studied. The
results for structured and unstructured grids are compared. In turbulent reaction
flow, various kinds of turbulent models are proposed. Adiabatic and nonadiabatic
probability density functions are used. The effect of changing coefficients is dis-
cussed. Finally, a code with a new model is inserted into Fluent. The calculated

results show that this model is suitable.

Jianyi Du Alain de Champfain
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Sommaire

La simulation numérique (CFD) est de plus en plus utilisée en combustion. Dans
la présente thése, des simulations numériques sont faites i partir d’un code de calcul
commercial pour faire différentes comparaisons entre des données expérimentales et
des modéles de la chimie et de la physique d’'un phénoméne de combustion. La
simulation numérique d’écoulements réactifs laminaires et turbulents est faite et
discutée. Les travaux incluent la modification d’un modéle de combustion existant

pour améliorer la simulation en ingénierie.

La turbulence est résolue en utilisant le modeéle standard k — ¢, le modéle basée
sur les contraintes de Reynolds (RSM) et le modele basé sur la simulation des grands
tourbillons (LES). Le modéle standard &£ —¢ est le plus fréquemment utilisé des trois,
par contre les modeles RSM et LES commencent & prendre un réle de plus en plus
important. Des résultats avec ces trois modeéles sont présentés. Plusieurs modeles
de combustion sont utilisés pour des flammes de diffusion turbulentes. Les modéles
avec vitesse de réaction finie et infiniment rapide sont considérés avec leurs avantages
et leurs désavantages. Pour le modéle avec réaction infiniment rapide, basé sur une
approche avec scalaire conservé, des fonctions de probabilités de densité sont utilisés
pour des systémes adiabatiques et non-adiabatiques. Pour le modéle avec réaction
finie, les équations du taux de réaction d’Arrhénius avec une étape et plusieurs étapes
de réaction sont utilisées et évaluées. Par adaptation, le maillage est optimisée
pour la solution de l’écoulement. Des maillages structurés et non structurés sont
employés. Les résultats calculés montrent bien qu’un maillage triangulaire peut

souvent donner moins de cellules que le maillage équivalent en quadrilatére.

il



Le modeéle de combustion sur la base d’Arrhénius par tourbillon rompu (EBU)
avec interaction de la turbulence est aussi étudié en détail. Dans ce modéle, développé
par Magnussen et Hjertager (1977), la formulation inclut un parametre empirique.
De part la combinaison du modele avec vitesse de réaction finie et celui avec réaction
a vitesse trés rapide sur la base d’une PDF, une nouvelle formulation pour ce
parameétre empirique a pu étre trouvée en fonction de la fraction de mélange et
de D’écart type, tel que proposé par Bilger (1996). Afin de surmonter la difficulté
d’implantation de ce concept dans le code de simulation Fluent, un nouveau modéle

a été proposé et développé pour obtenir de meilleurs résultats.

Tous les modéles sont étudiés numériquement et comparés & des données expéri-
mentales. Premiérement des cas de combustion laminaire sont étudiés avec des
méthodes a une étape et a plusieurs étapes de réaction; de plus des maillages
structurés et non structurés sont respectivement utilisés. Avec la méthode par
plusieurs étapes de réaction, la température adiabatique de lamme et la distribution
des espéces chimiques sont plus pres des valeurs expérimentales que la méthode a une
étape de réaction. Puis un exemple de combustion avec turbulence est présenté; des
fonctions de probabilité de densité adiabatique et non adiabatique sont employées
pour comparer aux méthodes de vitesse de réaction finie avec ’expérimental. Diffé-
rentes types de modéles de turbulence sont proposés. Il est démontré que le modéle
de contrainte de Reynolds (RSM) est légerement meilleur que le modele standard
k — e. Pour le modéle avec tourbillon rompu (EBU), ’influence sur les espéces
chimiques et la température est évaluée avec différentes valeurs des parameétres.
Une partie de code pecur le nouveau modéle de combustion est insérée dans Fluent
par ’entremise de fonctions définies par ’'usager. En comparant avec des données
expérimentales, les résultats pour le O, et le H,O sont meilleurs avec le nouveau

modéle qu’avec la méthode standard.

Jianyi Du Alain de Champlaift



Summary

Computational Fluid Dynamics (CFD) is used widely for the simulation of com-
bustion phenomena. In this dissertation, based on the governing equations from
physics and chemistry, numerical simulations of combustion are carried out using
a commercial code to make comparisons of various physical and chemical models
with experimental data. The numerical simulation of laminar and turbulent react-
ing flows is done and discussed. This work includes the modification of an existing

combustion model to improve engineering simulation.

Turbulence is solved by using the standard k — £ model, the Reynolds Stress
Model ‘(RSM) and the large eddy simulation (LES) model. The standard k — €
model is the most commonly used model, but RSM and LES models are starting to
take a more prominent role. The results with these three models are presented. Sev-
eral combustion models are used for turbulent diffusion flames. The fast chemistry
and finite reaction rate models with their advantages and disadvantages are consid-
ered. For the former, based on the conserved scalar approach, Probability Density
Functions (PDF) including adiabatic and nonadiabatic systems are used. For the
latter, Arrhenius rate equations including one-step and multi-step reaction equa-
tions are used and evaluated. By using solution-adaptive refinements, the resulting
mesh is optimal for the flow solution. Both structured and unstructured grids are
used. The calculation results show that a triangular mesh can often be created with

far fewer cells than the equivalent mesh consisting of quadrilateral elements.
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The Arrhenius based eddy-break-up model (EBU), including turbulence-combustion
interaction, is studied in detail. In this model, developed by Magnussen and Hjertager
(1977), the formulation includes an empirical parameter. With the combination of
the finite-rate reaction and PDF a new formulation for this empirical parameter
could be expressed as a function of mixture fraction and standard deviation. In
order to overcome the difficulty to implement the code of this concept, proposed by
Bilger (1996), in Fluent a new model is proposed and developed for getting better
results.

All models are studied numerically and compared with experimental data. First
the laminar combustion cases are studied, one-step and multi-step methods; struc-
tured and unstructured grids are used respectively. Using multi-step, the adiabatic
flame temperature and the chemical species distributions are closer to the experi-
mental value than that of one-step method. Then, a turbulent combustion example
is presented; adiabatic and nonadiabatic probability density functions are used to
compare with finite-rate methods and experiments. Various kinds of turbulent mod-
els are proposed. It is shown that the Reynolds Stress Model is slightly better than
the £ —e model. For the EBU model, the effect on chemical species and temperature
with different coefficient values is sought. A code for the new model is inserted into
Fluent through user-defined functions. By comparison with the experimental data,
the results of O, and H,O with new model are better than that with "standard”

method, and much closer to the experimental values.

Jianyi Du - Alain de Cha.mplyin
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Chapter 1

Introduction

Computational Fluid Dynamics (CFD) is now used widely for the simulation of
turbulent reacting flows. By solving the fundamental equations governing fluid flow
processes, CFD simulations provide information on important flow characteristics
such as pressure loss, flow distribution and mixing rates. A CFD analysis comple-
ments traditional testing and experimentation, providing added insight and confi-
dence in various designs. These considerations result in better designs, lower risk
and faster time to the marketplace for products or processes. CFD method increases
the understanding of complex combustion phenomena and reduce the amount of trial
and error required in design. The predictions of flow and combustion in complex
geometries require extensive computational time. The chemistry and turbulence-
chemistry interaction models must contain a simplified description yet accurate
enough to enable its incorporation in numerical combustion models. A series of
commercial CFD softwares, such as FLUENT, PHOENICS and CFD-ACE+ have
been developed to simulate turbulent reacting flows. FLUENT is a general purpose
CFD solver provided by Fluent Inc., Lebanon, NH, USA. It offers many physical



models to predict accurately laminar, transitional and turbulent flows, various modes
of heat transfer, chemical reaction, multiphase flows and other complex phenomena.
Either structured or solution-adaptive unstructured mesh can be used. One goal of
the present project is to check the accuracy of these models by comparing the results
with experimental data. On the basis of those models, it is the primary objective of
the thesis to develop a new model to implement in a CFD code using User-Defined

Function(UDFs) for getting better combustion simulation.

1.1 Purpose of the Thesis

Computational combustion and, more generally, the modelling of physical pro-
cesses which may involve fluid flow, chemical reactions with heat and mass transfer,
are interrelated disciplines that require a significant level of expertise to be effectively

applied to practical problems.

Chemical reactions usually involve many species and proceed through a large
number of finite rate reaction steps. These reaction rates are nonlinear functions
of the physical and chemical parameters. It is very difficult to obtain the reaction
equations and solve the equations. Of the various kinds of reaction models, the
fast chemistry reaction model is the most simple. In light of the fast chemistry
assumption approach, the reaction is so fast that fuel and oxidant can not co-exist
at any time in the same place. Only one conservation equation of mixture fraction
is solved, the convergence is easy. But it can not be extended to situations where
the finite rate chemistry is known to have appreciable effects, as for example, oxi-
dation of CO in gas turbine engines, formation of trace species (NO and soot) and
extinction conditions. In such cases the description involves a second variable to
be integrated. The closure of turbulence chemistry interaction involves the solution
for the transport equations of the mean value of the second variable together with
its fluctuations from which the joint PDF of the mixture fraction and the second

variable can be determined. The temperature and thermo-chemical variables are



averaged using this PDF and made available to the calculations through a look-up
table.

Turbulent flows are characterized by fluctuating velocity fields. These fluc-
tuations influence transport quantities such as momentum, energy, and species con-
centration, and cause these transport quantities to fluctuate as well. Since these
fluctuations can be of small scale and high frequency, they are too computationally
expensive to be simulated directly in practical engineering calculations. Instead,
the instantaneous governing equations can be time-averaged, ensemble-averaged, or
otherwise manipulated to remove the small scales, resulting in a modified set of
equations that are computationally less expensive to solve. However, the modified
equations contain additional unknown variables, and turbulence models are needed

to determine these variables in terms of known quantities.

There are many turbulence models. It is an unfortunate fact that no single
turbulence model is universally superior for all classes of problems. The choice of
turbulence model will depend on considerations such as the physics encompassed
in the flow, the established practice for a specific class of problem, the level of
accuracy required, the available computational resources, and the amount of time
available for the simulation. The purpose of this work is to discuss several turbulence
models including the standard k—e model, Reynolds Stress Model (RSM) and Large
Eddy Simulation (LES) model, which are popularly used in engineering to compare

between numerical and experimental results.

The computation of turbulent flows involving chemical reactions is one of the
most challenging numerical problems today. While significant advances in flow al-
gorithms have been made recently, numerical codes involving chemical reactions still
suffer from stability and convergence problems. The focus of the present project is
to develop further the Eddy-Break-Up(EBU) method. The proposed combustion
mode] is to consider the implementation of a simpler approach to consider partial
equilibrium in interaction with an improved Eddy-Break up turbulence model as

suggested by Bilger (1996) and to consider mixing effects that are different from



one combustor to another. The formulation was developed from an expression for
the loading parameter expanded from Longwell (1956), by Kretschmer and Odgers
(1972) to get an oxygen consumption efficiency and to relate that to a suitable
formulation for the combustion products. This formulation will be valid for a com-
bustor or each cell of a discretized combustor with a mixing rate fast enough to
resemble the well-stirred reactor that the original formulation from Kretschmer and
Odgers applied to a large degree. To account for different rates of mixing when
the combustor is not well stirred, the oxygen consumption rate has to be calculated
locally, i.e. at each cell volume, with a different expression. The Eddy-Break Up
combustion with mixing interaction model has been demonstrated by Bilger (1976)
with a theoretical basis. Using the turbulence kinetic energy and dissipation rate,
then the rate of consumption of oxygen can be calculated according to Bilger’s for-
mulation or a modification to the rate equation from Kretschmer and Odgers to

change the mixing rate appropriately.

The chemistry of combustion is notoriously complex involving literally hundreds
of free radical reactions and dozens of chemical species even for the simplest hy-
drocarbons (Frenklach, 1992). For example, in the case of the two-dimensional
methane-air combustor (Mazumder, 1997), the reaction source calculations using
Gear’s method and a single-step reaction (with five species, i.e., CH,, O,, CO,, H,0
and N,) used up 63% of the total CPU time. CPU limitations usually restrict the
chemical models that can be used. For turbulent flames, it is impossible to describe
turbulence and chemistry in complete detail, thus studies often focus on either the
fluid mechanics using reduced chemical mechanisms or the chemistry with simple

fluid models.

In order to provide better agreement between computed and experimentally ob-
served results, multi-step approaches can be used to satisfy the requirements over
wide range of operating conditions. In this thesis, the one-step, two-step and six-step
reactions are used in methane-air combustion. The purpose is to reach an optimal

approach between the calculating accuracy and calculating time.



In summary, the major works of the thesis include:
e Investigation of the different turbulent models,
e Survey structured grid and unstructured grid,
e Comparison between one-step and multi-step chemical reaction equations, and

e Develop the EBU model for diffusion combustion.

1.2 Outline of the Thesis

Chapter 2 gives a review of the existing methods of flow field simulation in a
combustor. In this chapter combustor construction, various kinds of combustion
models, numerical solution, chemical reaction models, coupling between turbulence

and chemical reaction, and radiation modelling are introduced.

Combustion involves many subjects. In Chapter 3 the basic theories in combus-

tion modeling are presented.

Chapter 4 gives an introduction to FLUENT, which is the commercial CFD code

used in all the calculations for this thesis.

The purpose of Chapter 5 is to present and discuss the solution of turbulent
reaction flow problems with the use of various kinds of numerical methods and tur-
bulent models. The k —¢ two-equation model is the most popular. Direct numerical

simulation and large eddy simulation are also widely used.

Chemical-reacting turbulent flows are highly challenging. In Chapter 6, several
combustion models for turbulent diffusion flames are summarized and a simplified

EBU model is presented.

In Chapter 7 the different combustion models are used to calculate laminar and

turbulent reacting flows. The results are compared with experimental data.

Finally, conclusions are drawn and some suggestions for future research work on

combustion model are presented.



Chapter 2

Literature Review

Gas turbines are widely used in modern industry to deliver shaft power or thrust
power. The combustor is part of the gas turbine. Figures 2.1 and 2.2 show two types
of gas turbine engime. The main goal of the combustor design is lower emissions with
less volume. Flow ffield simulation in the combustor is a challenging subject to both
academics and industries. It is of commercial importance to understand and to

predict various phenomena in the combustor.

Gas turbine combustion systems need to be designed and developed to meet
many mutually conflicting design requirements, including high combustion efficiency
over a wide operating envelope and low NO, emissions, low smoke, low lean flame
stability limits and good starting characteristics; low combustion system pressure
loss, low pattern factor, and sufficient cooling air to maintain low wall temperature

levels and gradients commensurate with structural durability.
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2.1 Combustor Construction

The design of a gas turbine combustion system is a complex process involving
fluid dynamics, combustion and mechanical design. For many years the combustion
system was much less amenable to theoretical treatment than other components
of the gas turbine, and any development program required a considerable amount
of trial and error. With the very high cycle temperatures of modern gas turbines
mechanical design remains difficult, and a mechanical development program is ine-
vitable. The rapid increase of Computational Fluid Dynamics in recent years has
had a major impact on the design process, greatly increasing the understanding of

the complex flow and so reducing the amount of trial and error required.

A typical combustion chamber is presented in Figure 2.3. In general, there
are three main regions in a combustor, they are called the re-circulation zone, the
secondary zone and the dilution zone. The re-circulation zone operates normally at
a rich mixture, the secondary adds air to weaken the mixture. More air is added in
the dilution zone to decrease the hot gas temperature for meeting the requirement

of turbine guide vanes.

The main purpose of this section is to show how the problem of design is basically
one of reaching the best compromise between a number of conflicting requirements,
which will vary widely with different applications. Aircraft and ground-based gas
turbine combustion systems differ in some respects and are similar in others. The
most common fuels for gas turbines are liquid petroleum distillates and natural gas,
and attention will be focused on combustion systems suitable for these fuels. In the
mid 1990s there was considerable interest in the development of systems to burn
gas produced from coal. Gasification requires large amounts of steam so that it is a

long-term option for modifying combined cycle plants currently burning gas.
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Figure 2.3  Combustion chamber with swirl vanes

In the early days of gas turbine design, major goals included high combustion
efficiency and the reduction of visible smoke. A much more demanding problem has
been the reduction of nitrogen oxides, and on-going research programs are essential
to meet the ever more stringent pollution limits while maintaining existing levels of

reliability and keeping costs affordable.

2.2 Combustion Models

Combustion models for gas turbine combustors are still not adequate to provide
reasonable flow field estimates to be useful for design purposes. The combustor
design process is still very empirical and requires great expertise to predict the

exhaust field for pollutant concentrations or temperature distribution.

The flowfield around and within the combustor liner is quite complex in that
it includes swirl, regions of re-circulation, fuel injection, atomization, fuel evapora-
tion, mixing, turbulent combustion, soot formation/oxidation, and convective and

radiative heat transfer processes.

There are various kinds of combustion model presented by investigators (Kretschmer,



1972, Rizk, 1992, 1995 and Sturgess, 1996). Mellor (1972) and Odgers (1974) made
reviews. Recently Oran (1991) and Chung (1993) presented new development in

combustion model. A lot of work about combustion modeling was done by Sloan

(1996).

There is more work required to improve present models. The first objective
is to look for a suitable reaction equation set with a reasonable number of steps.
The second is to get a better turbulence interaction with the chemical reaction by

improving the eddy-break up model.

2.3 Pressure-Velocity Coupling

In incompressible flow problems, another difficulty lies in the calculation of the
unknown pressure field, which can be related to the fact that only pressure gradients
appear in the momentum conservation equations. The pressure field is indirectly
derived from the compressibility constraint, i.e., continuity equation. Because of
this, if velocities and pressure are stored at the same location, when the central
differencing scheme is applied to both the continuity equation and the pressure gra-
dient terms in the momentum equations, it has been shown to produce nonphysical

oscillations in the pressure field, or checkerboard pressure field.

2.3.1 Staggered Grid Method

To eliminate the checkerboard pressure problem when using the primitive vari-
able formulation, several methods based on the different storage locations for veloc-

ities and pressure have been developed.

The staggered grid method has been used by Patankar and Spalding (1972).
The method consists in storing pressure at the main grid nodes in the discretized

calculation domain and staggering the velocity components relative to these nodes.
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Many CFD codes use this method. It is applied to the solution of complex flow
problems in curvilinear orthogonal and non-orthogonal grids (Karki and Patankar,
1988, Shyy and Vu, 1991).

2.3.2 Vorticity-Stream Function

Early work based on the vorticity-stream function formulation which satisfies
the incompressibility constraint identically, avoids the necessity of computing the
pressure. This formulation was adopted by Elkaim et al. (1993) using the control
volume finite element method on unstructured triangular grids for the simulation of
the turbulent reacting flows. However, difficulties occur in applying boundary condi-
tions on vorticity, and extension to three dimensions is not immediate. Due to these
difficulties, the primitive variable formulation is preferable. The differences between
the vorticity-stream function and primitive variable formulation are discussed by

Roache (1976).

2.4 Reduction of Chemical Reaction Models

Chemical reaction models describing the evolution of a mixture of chemical
species, usually with corresponding energy changes, are important components of
reactive-flow models (Oran, 1987). In most combustion systems, the species are not
in equilibrium and the precision of the overall model prediction depends on the accu-
racy of the representation of the chemical kinetics, among other factors. More reli-
able numerical results are obtained with more detailed reaction mechanisms, usually
at the level of a set of elementary reaction steps. Past interests, such as simulation
of engine knock (Warnatz, 1985), production NO, (Keller, 1988) and soot forma-
tion (Frenklach, 1987) require increasingly large reaction mechanisms, hundreds of
chemical reactions and species. Wang and Frenkilach (1997) have used a reaction

mechanism which consists of 527 reactions and 99 chemical species. However, the



computational capabilities for an accurate, full-scale gas dynamic/chemical-kinetic
simulation of these multidimensional reactive flows are not yet available (Espino,

1987, Biswas, 1997 and Hoffmann, 1998).

Although we have to wait until sufficient computational power and efficient nu-
merical integration techniques become available to make large-scale modeling fea-
sible, the technological needs and scientific interests will probably always outgrow
the increases in computational capabilities. The popular method is to reduce the
reaction mechanism. "Reduction” does not merely mean ”"simplification” of the
chemistry involved, but rather reduction in the complexity of the mathematical

form that describes the chemical transformations of a given reaction model.

There are two kinds of chemical kinetic modeling. The first is that the same
single-reaction mechanism must be used in all reactive-flow models, because different
parts of this reaction set become important at different conditions. For instance, it
is quite common that the rate-limiting step switches from one reaction to another
with the flame height. Omission (or reduction) of certain parts of the reaction
mechanism is viewed, then, as the loss of mechanism universality. Scientific progress
in this view is perceived as building and expanding a comprehensive reaction set to
cover the increasing number of experimental conditions. Obviously, one cannot
argue against universality of nature and, hence, against universality of the reaction
mechanism required to model it, because elementary processes, bond-rearrangement
in chemical reactions, energy transfer in molecular collisions, etc., are the same
regardless whether they occur in hydrogen, octane, or coal lames. However, current
advances in experimental techniques and theoretical methods rapidly expand the
present database of combustion chemistry. In principle, the kinetic database is
infinitely large, and the practical reality could happen in a not-too-distant future
(similarly to the presently unlimited thermodynamic database: thermodynamic
properties for any chemical compound can be estimated by group additivity or

quantum mechanical methods).

All conceivable chemical reactions with the associated rate parameters (available

12



experimentally, calculated theoretically, or simply estimated) constitute a reaction
data bank. Given a specific problem, a subset of the data bank should be taken to
assemble the reaction mechanism. The question is how to choose this reaction subset
such that it describes faithfully the dynamic behavior of a reactive-flow system.
This is, how does one reduce an extensive reaction mechanism to a minimum set
of reactions required to address a given problem. Moreover, this quantitatively
accurate subset can be reduced further to a different but much smaller reaction
set or, in general, to a different mathematical form that substantially decreases the
demand on computational capacity. The methodologies required to answer these

questions constitute the now-growing field of mechanism reduction.

The idea of mechanism reduction is not new. Introduction of the pseudo-steady-
state approximation for reactive intermediates led to analytical solution of nonlinear
reaction systems that otherwise could not be solved at that time. Expressing the
reaction events in terms of the outcome probability allowed the analysis and pre-
diction of the behavior of chain reactions. A rigorous mathematical formulation
for the problem of "lumping” in which chemical species are transformed into a few
dynamically equivalent "lumped classes”, was started in the 1960’s (Wei 1962). It
is important to realize that even the most detailed chemical reaction models used
presently in combustion are lumped model in the sense that the chemical species of
these models are actually lumped classes of energy-distributed species and the "ele-
mentary” rate coefficients used for the reactions of these lumped classes are certain

averages over the population of these energy-distributed species.

Odgers (1974) gave some of the various combustion systems that use multi-step
kinetic systems. The number of reactions varied from 6 to 24. Owing to the fact that
those models exhibit large errors of prediction when applied to other experimental
environments, Odgers concluded that as far as the engineer is concerned, the use of
a model will depend largely upon its predictive accuracy not necessarily its approach
to true representation. Maybe the simple reaction rate equations are more suitable

for engineering use.
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2.5 Perfect Gas

When the chemical reaction rate within the flow field is extremely slow, such
that fluid particles moving within the domain do not experience any change in the
chemical composition, it is referred to as a frozen flow. For flow fields where the
chemical reaction rates are extremely high, the reactions take place instantaneously.
Thus, reactions are completed before the fluid has a chance to move downstream.
Such a flow is called equilibrium flow or, more precisely, chemical equilibrium flow.
For any flow, the specific heats are function of both pressure and temperature.
Therefore, the ratio of specific heats is no longer constant and becomes a function of
temperature and pressure as well. The gas constant is also a variable due to changes

in the molecular weight of the mixture.

In reality, chemical reactions occur as particles are moving within the domain.
Therefore, in situations where the flow cannot be classified as either frozen or equi-
librium, it is referred to as nonequilibrium. For nonequilibrium flows, the perfect
gas equation of state still holds, except the gas constant is now a variable because

the molecular weight of the mixture is changing.

An important dimensionless parameter in combustion is the Damkéhler number,
Da. This parameter appears in the description of many combustion problems. The
Damkohler number represents the ratio of a characteristic flow or mixing time to a

characteristic chemical time; thus,

D characteristic flow time tmiz
a= — s S =
characteristic chemical time  t,,,

(2.1)

The evaluation of Da depends on the situation under study, in the same sense
that the Reynolds number has many particular definitions derived from its funda-

mental meaning as the ratio of inertia to viscous forces. When chemical reactions

14



rates are fast in comparison to fluid mixing rates, then Da >> 1, and a fast-chemistry
regime is defined. Conversely, when reaction rates are slow in comparison to mixing
rates, then Da < 1. Note that the characteristic rates are inversely proportional to

their corresponding characteristic times.

A molecule possesses a force field due to the electromagnetic actions of electrons
and the nuclei. When a domain composed of many molecules is considered, the
force field associated with each molecule affects other molecules in that it may act
as a repulsive force if molecules are very close to each other or as an attractive force
if they are relatively far apart. Under normal conditions, such as atmospheric, the
average distance between molecules of air is about 10 molecular diameters, resulting
in weak attraction forces. Now consider a fixed region and introduce more and
more molecules into this fixed region. As a result, the molecules are close. This
translates into conditions where the pressure is extremely high and/or temperature
is very low. Under this condition the intermolecular forces become important and
the gas is defined as a real gas. On the other hand, when the intermolecular forces
are negligible, the gas is defined as a perfect gas. For the majority of problems in
aerodynamics, the assumption of perfect gas is a valid one and is utilized extensively.
From an application point of view, the major difference between a real gas and a
perfect gas is the use of the equation of state. For a perfect gas, the equation of
state p = pRT is employed, whereas for a real gas, the van der Waals equation of

state expressed as

(p+ apz)(% —b) =RT (2.2)

is usually employed. Note that in the equation above @ and b are gas-dependent
constants. An important point to clarify at this time is the consideration of che-
mistry. Whether the flow under study is chemically reacting or not has nothing to
do with the assumption of perfect gas or real gas. Indeed, the equation of state for
a perfect gas is used extensively for chemically reacting gases. Such a chemically

reacting flow is considered a mixture of perfect gases. In this regard, the following

15



equation of state for a species s holds

p, =p,R,T (2.3)

where p, is the partial pressure contributed by species s; p, is the partial density
contributed by species s; and R, is the gas constant for species s defined as R, =
R/M where R is the universal gas constant; M is the molar mass of species; and T’
is the temperature. Modification to Equation (2.3) to include real gas consideration
may be accomplished by introduction of a so-called compressibility factor Z, such
that

ps = Zp,R,T (2.4)

where the compressibility factor Z is usually given as a function of reduced pressure
and temperature. Thus, when the compressibility factor is about one, the perfect

gas equation of state may be employed.

2.6 Rates of Reactions

All chemical reactions take place at a finite rate depending on the conditions
of the system. Some important conditions are (1) concentrations of the chemical
compounds, (2) temperature, (3) pressure, (4) presence of a catalyst or inhibitor
and (5) radiative effects. The rate of reaction may be expressed in terms of the
concentration of any reactant as the rate of decrease of the concentration of the
reactant (the rate of consumption of the reactant). It may also be expressed in
terms of product concentration as the rate of increase of the product concentration.
A conventional unit for reaction rate is mol/ m>sec. Although someone has to keep in
mind that concentration is a function of temperature and pressure without chemical

reaction.
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The law of mass action, which is confirmed by numerous experimental observa-
tions, states that the rate of disappearance of a chemical species is proportional to
the products of the concentrations of the reacting chemical species, each concentra-
tion being raised to a power equal to the corresponding stoichiometric coefficient.
Thus the reaction rate is given as

- N y
R=Ek]JICAl" (2.5)

=1

where k is the proportionality function called the specific reaction-rate parameter.
For a given chemical reaction, k is independent of the concentration C,, and depends

on the temperature.

The equation

E
k = BT®e (— = )
Xp R, (2.6)
is called the Arrhenius law. Here BT represents the collision frequency and the
exponential term is the Boltzmann factor. The activation energy E, is the energy
required for the reaction to occur. The values of B, ¢, and E, are based on the

nature of the elementary reaction.

The net rate of production of A; is

dC,,

N
e v — V)R = (v — vk J[C4]¥ (2.7)

=1

where v’ is stoichiometric coefficient for reactant and v” for product. When combus-

tion efficiency is less than 100 %, Kretschmer and Odgers (1972) gave the reaction

rate equation,

N k(m+1)[5(1 — ye)]*[p — ye]r—2e=o/ Tit<aT)
VPr — Rryel5(m +1) + 6 + ye|"[T; + eAT]~03

(2.8)
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2.7 Coupling between Turbulence and Chemical
Reaction

Although the techniques for defining the molecular diffusion of momentum, heat,
and mass are reasonably well established in a reacting flow, the same statement can-
not be made for our ability to describe the turbulent diffusion of these quantities.
Conventional approaches have included the use of algebraic eddy-viscosity models or
differential transport models. Several eddy-viscosity models have been used, in par-
ticular, the Cebeci-Smith model (Cebeci and Smith, 1974) and the Baldwin-Lomax
model (Baldwin and Lomax, 1978). The differential transport models include the
k — € turbulent kinetic energy model and its variants, (Jones and Launder, 1972)
a modified k& — € model that included a supersonic flow compressibility correction,
(Fabris, Harsha and Edelman , 1981; Hanjalic et al., 1979) and a multiple dissipation
length scale (k£ multiple €) model with a compressibility correction (Fabris, Harsha
and Edelman, 1981; Hanjalic and Launder, 1980) that addressed the existence of
multiple dissipation length scales that exist in the energy cascade of a turbulent
flow. In addition to these differential transport models, the algebraic Reynolds
Stress Models of Rodi (1972) and Sindir (1982) have also been considered for use
in modeling turbulent reacting flows. Sindir {1982) reviews all of these models. In
addition, he critically compares the models against several nonreacting flow experi-
ments prior to using the models for studying flows with reaction. He concludes that
forms of the algebraic Reynolds Stress Model produced the best agreement with
nonreacting data. He also found that the multiple dissipation length scale model

did not offer any advantage over the basic k — & model.

All of the turbulence models described earlier have a major disadvantage when
applied to reacting flowfields: they fail to account for the important coupling be-

tween the turbulence and the chemistry. Turbulent fluctuations in the fluid mechanic
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variables have a direct effect on the species production rates. The coup-ling between
these two fields occurs through the Arrhenius rate expression and the law of mass
action. The Reynolds averaging process applied to the governing equations elimi-
nates the direct effect of temperature and species fluctuations on species production
rates. For example, a positive temperature fluctuation would cause a decrease in the
size of exponential argument of the Arrhenius rate expression, with a corresponding
increase in the forward kinetic rate of a particular reaction. This would, in turn,
produce an increase in the time rate of change of the products of that reaction. More
importantly, if the reaction was at a critical point, where perhaps a small increase
in temperature would cause a reaction to enter an ignition stage, the entire species

distribution of the flowfield downstream could be changed.

Two promising ways for accounting for the effects of fluid and species fluctua-
tions on chemical reaction would be through probability density functions or direct
numerical simulation. The application of probability density function approach to
a reaction flow will be discussed in Chapter 6. Direct numerical simulation offers
another attractive approach for modeling a turbulent reacting flow. The method
has been used for several years to model laminar and turbulent flames accurately
(Smooke, 1989; Jou, 1989; Poinsot, 1996). With this approach, the Navier-Stokes
and species continuity equations are resolved down to the smallest scale features of
the flowfield. The size of those scales goes inversely with the Reynolds number of the
flowfield. Clearly, for the high Reynolds numbers, the smallest scales can become
quite small, necessitating a very fine computational grid to resolve them. Also, when
high-speed flow undergoes chemical reaction, additional scales are introduced by the
combustion process. Herein lies the principal difficulty of applying direct simulation
to a high-speed flow. The difficulty is not so much one of numerical algorithms as
it is of computer power. Highly accurate numerical algorithms are required, but
appropriate high-order finite-difference methods, finite-volume methods, or spectral
methods have been developed that satisfy that requirement. The large number of
computational grid points required to resolve the smallest scales in the flow requires

large computer storage, and, therefore, meaningful calculations can be carried out
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only on large memory machines. Recently, direct numerical simulation has emerged
as a new methodology. It has become an essential tool to understand and model
turbulent combustion. DNS numerically solves the set of equations describing tur-

bulent flames by resolving all chemical and flow scales (Vervisch, 1998). But DNS

is used only for simple problems that are not of industrial scale.

As an alternative to direct numerical simulation with its intensive memory re-
quirements, it is possible to model rather than compute the smallest scales. In this
approach, termed large-eddy simulation, the larger scales above a chosen wavelength
are still computed. The smaller scales below the cutoff wavelength are modeled, how-
ever, using a subgrid scale model. Large-eddy simulation is an attractive alternative
because only the larger-scale effects are computed, lessening the computer mem-
ory requirements for higher-Reynolds-number flows. Subgrid scale models must be
constructed, though, that give an accurate rendering of the physics of small-scale
phenomena. This is a difficult task. Work is under way to develop subgrid scale
models for nonreacting flow, e.g., the early work of Schumann {1975), later work
described by Speziale et al. (1987) and recent work of Misra (1997). Large-eddy
simulation is an attractive technique for modeling high-speed reacting flows. Lit-
tle has been done so far with this technique, but it warrants serious attention now

(Meneveau, 2000).

2.8 Numerical Solution

The three principal means of discretizing the governing equations are the use
of finite differences, finite elements, and finite volumes. In using finite differences,
the differential operators are approximated by making a Taylor series expansion of
the operators in term of differences on a grid and taking a finite subset. The finite-
element method basically consists of reducing the partial differential equations to a

set of ordenary differential equations or algebraic equations; one typically assumes
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an expansion of the function in terms of a basis. This could include polynomial fit-
ting. Finally, the finite-volume method involves integrating the governing equations
along the faces of control vokumes surrounding each node. This has the advantage
of satisfying the conservation laws in the difference equation. This is particularly
easy to do for continuity, momentum and energy equations which are written in di-
vergence, or conservation-law. In integrating over a volume, the divergence theorem
can be used on the second terms on the left-hand side to transform them into the
fluxes of each quantity across the enclosing surface. When the volume is that of
a primitive cell, this guarantees that flux leaving one cell flows into the adjacent
one, conserving the flux, both locally and globally. This leads to a set of algebraic
equations involving scalar texrms evaluated at the center of the cell and flux terms
at the cell boundaries. Thus, the PDE’s describing fluid flow are approximated by
large set of algebraic equations. That is true, of course, whatever discretization
method is used. Birkhoff (1983) has written an excellent review article that places

the numerical solutions of these equations in perspective.

The method most generally used for the solution of the nonlinear difference
equations is some variant of the Newton-Raphson multivariate procedure; this is
equally useful for sets of nonlinear equations. This technique generally requires the

evaluation of the Jacobian of the equations.

For the steady-state case, the Navier-Stokes equations are elliptic in the spatial
variables. If the problem is one-dimensional and there is no radiation, the Jacobian
is tridiagonal, and the solution method is easy (Richtmyer, 1967). The nonlinear
Gauss-Seidel method can also- be used, but it is not as good as Newton’s method for
this case. For the two-dimensional case there are five diagonals, and seven diagonals
in three dimensions, but the matrix is still sparse, and special methods can be used
to find the solution. The best way to solve them is by iterative techniques, rather
than "exactly”, because truncation errors can build up to prohibitive levels. When
radiation is included in the problem, every cell connects with every other (i.e., there

are no zero matrix elements), and no special solution methods are available.
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Explicit methods have the theoretical advantage of yielding exact results in one
pass; however, they may require exceedingly short time steps. Implicit methods are
more stable and permit much larger time steps, usually more than mzking up for the
fact that iterations are necessary for convergence to a solution. An early comparison

of explicit vs. implicit methods is given (Torrance, 1968).

Early in 1977, Ku et al wrote the program UNDSAFE to solve the Navier-
Stokes equations with local heating, in two dimensions. They solved the problem for
rectangular enclosures. They used the SIMPLE algorithm. The governing equations
and their boundary conditions are approximated with finite-difference equations
by a control-volume-based method. The computing cells are chosen so that their
boundaries coincide with physical boundaries. A staggered grid system devised by
Meng (1994) was chosen. In this system, the pressure is evaluated at the centers of
the cells while the velocity components and other scalar variables are evaluated at
the cell boundaries. Thus, the momentum equations are written for cells centered
at the boundaries of the basic cells. The convection-diffusion terms are discretized

by an hybrid scheme.

2.9 Radiation Modeling

Radiation is an important mechanism of energy transfer to the walls of large
combustion chambers. The difficulties associated with radiation modeling are the
multi-dimensional nature of the phenomena, the integral-differential nature of ra-
diative transfer equation, and the coupling between the radiative transfer equation
and the energy conservation equation (Chiu 1990). Unlike the flow field, which can
be solved directly by a spatial integration algorithm, for radiation, both spatial inte-
gration and angular integration have to be carried out. There are several radiation
models, such as Zonal (Hottel 1967), Monte-Carlo (Howell 1968), Flux (Gosman
1973) methods. The excellent reviews of various radiation models on combustion

system are given by Viskanta (1987) and Howell (1988).



2.9.1 Monte Carlo Method

The Monte Carlo method is based on a statistical approach. The exchange
factors are automatically calculated as the randomly chosen energy releases are
tracked through the domain for their lifetimes. This method can in principle be
programmed to include an exact simulation of all important processes (Howell 1988).
Applications may be found in Burns et al. (1992) and Gorner (1993), which illustrate
its geometry flexibility and ability to handle difficult problems.

The drawbacks of this method are that it requires long computation time to
obtain good results due to the method’s statistical approach. Another difficulty is
the grid size incompatibility, in which the computational element size required for
statistical accuracy in the Monte Carlo solution may not be compatible with the grid
size necessary for numerical solution of the energy equation, even given sufficiently

fast and cheap computation capability (Howell 1988).

2.9.2 Zonal Method

The Zonal method is based on the view factor and mean beam length concepts.
Essentially geometric in its approach, the domain is divided into a number of sur-
face and volume zones about which radiation balance and total energy balance are
formulated. Each zone is considered to be uniform in temperature and radiation
properties. The heat release and the flow patterns are specified in advance. Geo-
metric exchange factors (exchange areas) between each zone pair are supposed to

be known a priori.

The advantage of this method is that it can approach an exact solution for the
radiative fluxes as the number of zones is increased, and even for a relatively coarse

zone, it can give good results.
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The major difficulty of applying this method is the tedious evaluation of the
direct exchange areas. Attempts to improve the zonal method were made by Larsen
(1985) with an exchange factor method, by Naraghi (1988), with a continuous ex-
change factor method in participating media, by Saltiel (1991), with an exchange
factor method in non-homogeneous media, respectively. Considering the anisotrop-
ically scattering media, Yuen (1992) developed a Generalized Zonal method. How-
ever, there is a difficulty in matching the required grid sizes for radiation and fluid
flow field (Howell, 1988) and the calculation of the exchange areas remains very

difficult for complex geometries (Viskanta 1987).

2.9.3 Flux Method

In the flux methods, the angular variation of the radiant intensity in space is
assumed to be a certain functional form. The integro-differential radiative transfer
equations then reduce to a set of partial differential equations. The various flux
methods are classed as Flux Model, Spherical Harmonics method, Discrete Ordi-
nates (Sy) method according to the different functions (or weighting coefficients)
used. Because this class of methods is essentially a field method, they can easily be

incorporated into existing flow and reaction solvers.

2.9.4 Discrete Transfer Method

The discrete transfer method was proposed by Shah (1979). Firstly, the surface
of the enclosure is divided into subsurfaces, and the volume of the medium is divided
into cells; secondly, taking each subsurface as an hemisphere, the emitted radiation
is subdivided into beams, where each beam is assumed to have positive and neg-
ative propagation direction (Fluxes); finally, the beams are drawn hemispherically
from each subsurface in prescribed directions (similar to Monte Carlo method, in
random direction). The solution proceeds along individual rays of intensity, one at

a time, instead of solving for all the intensities in the field. It can be classified as
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the ray tracing method. A survey of ray tracing procedure are given by Glassner
(1989). This method can be considered as a combination of the Zonal method, Flux
Model and Monte Carlo technique. It retains their advantages while avoiding their

shortcomings.

Because the number of beams is specified in advance, it can be more economical
than the Monte Carlo solution which needs a lot of random beams to obtain good
results. It is flexible and able to handle complex geometries. In application to
absorption media, finer discretization can yield any desired degree of precision, and
even reproduce the exact solutions. For gas flames, where the scattering is small,
the method can provide excellent results as evidenced by the work of Meng et al.
(1992). When scattering is considered, a simple average is used in the discrete
transfer computations, unlike the Sy method which uses a more accurate numerical
quadrature. This will reduce the accuracy when this method is applied to solve

anisotropic scattering problem.

2.9.5 Emissivity Models

For the nongray medium, the spectral effect of the radiation has to be considered,
and the radiative transfer equation should be integrated over the entire wavelength
spectrum. Naturally, this will make the computation times prohibitive. Under some
situations this is not necessary; for example, in natural gas or oil fired combustors
only three species contribute significantly to the radiation in the infrared region.
These species are the products of the combustion, i.e. carbon dioxide, water vapour

and hot soot particles within the flame (Khalil, 1982).

A more useful approach to modeling the spectral properties of the gases is the
wide-band models of Edwards (1976), in which the band emittance of these gases
is considered as a function of total and partial pressure, path length and tempera-
ture. This method makes the band properties of the gas mixture relatively easy to

calculate, but the computation time is longer than the mixture of gray gas model
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of Hottel and Cohen (1958). Doherty (1988) incorporated the wide band model
into the computation of the nonhomogeneous combustion products by the discrete
transfer method, they showed a good agreement with the narrow band model results

for both spectral and total radiative intensities.

2.9.6 Other Methods

The radiative transfer equation can be solved by other methods, as the finite
element (FEM) (Fiveland, 1993) and finite volume method (FVM) (Raithby, 1990),
as well as boundary element method (BEM) (Bialecki, 1991).

The advantage of using FEM is that it offers the possibility of high accuracy, and
can be used with the same grid as for the flow and energy conservation equation.
Furthermore, it can be applied to complex geometries. Tan (1989) used the product-
integration method to solve radiation problems, significantly reducing the solution

time of FEM.

The FVM can give good accuracy on coarse grid. The intensity at the integration
points is determined from the solution of the radiative transfer equation using the
skewed upwinding procedure. It satisfies the global conservation constraints for
intensity and heat flux, hence prevents the occurrence of the "ray effect” encountered

in the Sy method (Chiu, 1990).

Using BEM, the integration is over the boundary, no volume integrals are present
in BEM, thus it requires fewer calculations (Bialechi, 1991). However, because the
ray-tracing method is used in BEM computations, it may suffer from the disadvan-

tages of the discrete transfer method when scattering has to be considered.
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Chapter 3

Basic Theories in Combustion

Modeling

Combustion is a very complex phenomenon. It involves many subjects, such
as fluid mechanics, heat and mass transfer, chemical kinetics, thermodynamics and
turbulence. Understanding of the fundamental concepts of these coupled processes

will be useful to solve combustion problems.

Combustion models for gas turbine combustors still need improvement to provide
reasonable flow field estimates to be useful for design purposes. The combustor
design process is still very empirical and requires great expertise to predict the

exhaust field for pollutants concentration or temperature distribution.
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3.1 Fluid Mechanics

3.1.1 Conservation of Mass

To derive the equation of continuity for each species in a multicomponent mix-
ture, we begin by making a mass balance over an arbitrary differential fluid element
in a binary mixture. We apply the law of conservation of mass of species A to a
volume element AzAyAz fixed in space through which a binary mixture of A and
B is flowing. Within this element, A may be produced by chemical reaction at a

rate wu(kgm™3sec™!). The various contributions to the mass balance are:

apA arhA: aThAy aThAz —
at +( 5z " oy ' oz )"“‘ 3-1)

This is the equation of continuity for component A in a binary mixture. The
quantities m 4., M4y, M4, are the rectangular components of the mass flux vector

m 4(kgm™2sec™!). In vector notation, the equation may be rewritten as

op, .
—az"+(v-mA)=wA (3.2)

Similarly, the equation of continuity for component B is

dp .
—at—a +(V-m,) =w, (3.3)

Addition of Equations {3.2) and (3.3) gives

g—’: +(V-pv)=0 (3.4)

which is the equation of continuity for the mixture. In arriving at Equation (3.4),
we have made use of both the reaction m, + m, = pv and the law of conservation

of mass in the form w, + w, = 0. For a fluid of constant mass density p, Equation
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(3.4) becomes

T-v=0 (3.5)

The development given above could have been made equally well in terms of
molar units. If {24 is the molar rate of production of A per unit volume, then the

molar analog of Equation (3.2} is

aC .
S TV n, =04 (3.6)
where n is molar flux and
a
g;'*‘V’PAV:V'PDABVYA*FwA (3.7)
finally
0Ca .
2 TV Cav =V -CDup VXa+Qa (3.8)

where v* is molar-average velocity. If no chemical reaction occur, w4,wp, 4,15
are all zero. If in addition v is zero in Eq.(3.7) or v* is zero in Eq.(3.8), we get

9C4
5 = Dap v*Ca (3.9)

which is called Fick’s second law of diffusion. This equation is generally used for
diffusion in solids or stationary liquids and for equimolar counterdiffusion in gases.

This equation is similar to the heat-conduction equation.

For a multicomponent system, Eq. (3.2) becomes
dY:p

7+v -pY,—(v-{-V,-) = w; (310)
?Xi+v.}q+lv.vai=ﬂ t1=1,2,...,N (3.11)

at P P
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In a general multicomponent system, there are N equations of this kind. The
addition of these equations gives the equation of continuity for the mixture. Any one
of these N equations may be replaced by the equation of continuity for the mixture
in any given problem. The fact that these are N-1 independent equations for Y;

corresponds to the fact that only N-1 of the Y; are independent.

3.1.2 Conservation of Momentum

The basic assumption is that we are dealing with continuous, isotropic, and
homogeneous media. We shall consider that special case of a Newtonian fluid,
that is, a fluid exhibiting a linear relationship between shear stress and rate of

deformation, resulting in the Navier-Stokes equation.

The momentum equation can be derived in terms of stress using three different
approaches. The basis for any derivation of the momentum conservation equations

is Newton’ second law of motion.

__d(mv)
SF= = (3.12)

Where three approaches are used:

a) Infinitesimal Particle. Consider a fluid particle as it moves through space
relative to some fixed coordinate system. Equation (3.12) describes the motion of
the particle. The acceleration of that particle is then related to various particles
at "fixed points” in the flow field. Thus, we relate the motion of a particle to the

observation of conditions of various particles at a fixed point in space.

b) Infinitesimal Control Volume. Consider a cubical infinitesimal volume element
fixed in space. Then, equate the net momentum flux out of the control volume plus
the time rate of change of momentum in the control volume to the net force on the

mass within the control volume.
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c) Finite Control Volume. Consider a gas-permeable control volume of finite

size. This control volume can have any arbitrary shape and is fixed resulting in

an equation involving only volume integrals. It is argued that the conditions must

be satisfied for the integrand, since the integration is arbitrary. This results in the

desired differential momentum equation.

With three similar but basically different approaches, the same momentum equa-

tion in terms of stress can be obtained:

_Bu.- 8u,- _ 80'_.,',- N
p [u]aitj + ot ] = 627_7' + P Z(Y;cfk)i

k=1

3.1.3 Comnservation of Energy

Similarly, we can get the energy equation,

oT 0
o0y |5+ (97| = 2 — (0 9p - sy

N
V - (pcpDTVY;) =V - (pC,DVT) = = Hpwi

k=1

where the stagnation energy E as

E:e-{-%u-u

3.2 Chemical Kinetics

(3.13)

(3.14)

(3.15)

Chemical kinetics deal with the quantitative study of the rates of chemical reac-

tions and of the factors upon which they depend. It deals with the interpretation of
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the empirical kinetic laws in terms of reaction mechanisms. All chemical reactions,
whether hydrolysis or combustion, take place at a definite rate, depending on the
conditions of the system. Some important conditions are: concentrations of the
chemical compounds, temperature, pressure, presence of a catalyst or inhibitor and

radiative effects.

3.2.1 One-Step Chemical Reactions

A one-step chemical reaction of arbitrary complexity can be represented by the
following stoichiometric equation:

N N
S viA - D v A; (3.16)

=1 =1

where v! are the stoichiometric coefficients of the reactants, »{ the stoichiometric
coefficients of the products, A the arbitrary specification of all chemical species, and
N the total number of compounds involved. If a species represented by A; does not
occur as a reactant, then v/=0; if the species does not occur as a product, then v

=0.

Successful combustion system modeling depends on a correct description and
coupling of the pertinent fluid mechanic, turbulent, heat transfer and chemical pro-
cesses entailed. Until recently, hydrocarbon chemistry has frequently been described
by very simple expressions. However, it is becoming increasingly apparent that suc-
cess in understanding a significant portion of present combustion problems depends

on a detailed and correct understanding of the hydrocarbon chemistry.

The simplest mechanism and the one which is the most convenient for numerical
modeling is the one-step overall kinetic mechanism. This approach considers the

oxidation process to occur directly to CO, and H,0:

C.H., + (n+ %)o2 = nCO, + ZH,0 (3.17)
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The advantage is immediately obvious that only 4 chemical species are involved in
the formulation. Since it is a linear function of the amount of fuel which is reacted,
the heat release calculation is also quite simple. Unfortunately, this mechanism
does not account for the characteristics of hydrocarbon oxidation. The formation of

intermediate hydrocarbons and CO is not taken into account.

3.2.2 Multi-Step Chemical Reactions

By using the above one-step chemical reaction, the total heat of reaction is over-
predicted. At adiabatic flame temperatures typical of hydrocarbon fuels (~2000K)
substantial amounts of CO and some H, exist in the combustion process. Their pres-
ence lowers the total heat release and consequently the adiabatic flame temperature

is below the values predicted by the one-step method.

One-step mechanism can be modified by using two- or multi-steps. For example,

a two-step method (Westbrook, 1981) with hydrocarbon fuels results in:

C.H,, + (g + %”—) 0, = nCO + T'H,0 (3.18)
CO + %oz & CO, (3.19)

No prediction is made as to the formation of intermediate species. This mech-
anism still does not account for the time delay in the initial release of a significant

amount of energy.

A detailed chemical kinetic reaction mechanism (Westbrook and Pitz, 1984) is
developed to describe the oxidation and pyrolysis of propane and propene. The
mechanism consists of 163 elementary reactions among 41 chemical species. New
rate expressions are developed for a number of reactions of propane, propene and
intermediate hydrocarbon species with radicals including H, O and OH. The mecha-

nism is tested by comparisons between computed and experimental results in shock
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tubes and the turbulent flow reactor. The resulting comprehensive mechanism ac-
curately reproduces experimental data for pressures from 1 to 15 atmospheres, com-
bustion temperatures from 1000 to 1700 K and fuel-oxidizer equivalence ratios from
very lean to pyrolysis conditions. The mechanism also predicts correctly laminar

flame properties for propane and propene and detonation properties for propane.

A more detailed reaction mechanism is used by Wang and Frenkilach (1997) for
studying laminar premixed flames. The reaction mechanism consists of 527 reactions
and 99 chemical species. The rate coeflicients were either taken from literature or
estimated based upon analogous reactions. It was shown that the reaction model
predicts reasonably well the concentration profiles of major and intermediate species
and aromatic molecules in a number of acetylene and ethylene flames reported in

the literature.

3.3 Thermodynamics

3.3.1 The Zeroth Law

There exists an intensive variable, the temperature

T =T(p,Vsn) (3-20)

When two bodies have the same temperature as a third body, they have the
same temperature as each other, and so will be in equilibrium if placed in thermal

contact.

3.3.2 The First Law

f&@ = f&W (for a cycle) (3.21)
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During any cycle a system undergoes, the cyclic integral of the heat is equal to
the cyclic integral of work.

E=H+ KE + PE (open system) (3.22)

where H is enthalpy, K F is kinetic energy and PFE potential energy.

1
KE = Emv2 (3.23)

PE = mgz (3.24)

Energy associated with internal energy, U, combined with the energy associated

with flow work, pV/, is represented by a property called enthalpy, H

H=U+pV (3.25)

Specific enthalpy is defined by

h=u+pv (3.26)

3.3.3 The Second Law

The state function called the entropy

§=S5(p,V,n) (3.27)

For a closed system that undergoes a change from one state of thermodynamic

equilibrium 1 to another state 2, the change in entropy is given by

y
S, — 8, = f1 ’ (—TQ—) (3.28)
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where rev implies any reversible path betwesen 1 and 2, §Q is the heat received

from or added to the system and T is the corresponding absolute temperature.

If the same system undergoes an irreversible or real process between the same

two equilibrium states 1 and 2,

2 (6Q2
S, — 85> /1 (T) (3.29)
In general,
5Q
> — .
ds > T (3.30)

3.4 Turbulence

As the turbulent motion is random and irregmular, it has a broad range of length
scales. In order to obtain theoretical solutions by solving three-dimensional, time-
dependent problems, we would have to consider computer storage capacity and use
some type of averaged quantities in turbulent lows. There are two different averag-
ing procedures commonly used, conventional timne averaging (also called Reynolds

averaging) and mass-weighted averaging (also called Favre averaging).

3.4.1 Conventional Time A veraging and Mass-
Weighted Averaging

In order to obtain governing conservation egquations for turbulent flames, it is
convenient to decompose instantaneous quantitiess into mean and fluctuating quan-
tities. In the conventional time-averaging proceduare, the mean quantity & is defined

by
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e lim L [ 3.31
- Z{/t., (t)dt (3-31)

At—oo

Clearly, the time average is useful only if it is independent of ¢.; then, the aver-
aged quantities are called statistically stationary. Physical quantities for stationary
mean flows can now be decomposed into two parts, related to the mean motion and

the fluctuation, or eddy motion:

ui(z;, t) = uy(z;) + ulfz;, t) (3.32)
p(zi,t) = p(z:) + P (20 1) (3.33)
p(zist) = p(z:) + p'(zirt) (3.34)

he(zir t) = Ro(z:) + hi(z:,t) (3.35)

T(z;,t) =T(z;) + T'(z;,t) (3.36)

where the average of fluctuating quantities, ¢’(t), is zero, thus

F=R=pg=T =0 (3.37)

In addition if f and g are two dependent variables and if s denotes any one of
the independent variables z, y, z and ¢, then the Reynolds averaging rule requires

that

(3.38)

I
I
~

f+9=F+79 (3.39)
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/fds = /Tds

(3.40)

(3.41)

(3.42)

and the conservation equations can be expressed in terms of the average and fluc-

tuation correlation quantities.

The continuity equation is

s 5. Ood

at am,- ail;"

The momentum equation for an incompressible fluid is

Bt T %z,| T "oz, T og,

{8&,- _ 812,-] op o [aﬁ,- __,}
p = 7

9z. °

J

where
—pu;u; is called the apparent or Reynolds stress.

A mass-weighted mean velocity can be defined as

- _ Py
P

Uu;

The velocity may then be written as

wi(zi, t) = G(zy) + u; (2, 1)

[

+ f;

(3.43)

(3-44)

(3.45)

(3.46)
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where u; (z;,t) is the superimposed velocity fluctuation.

h(z;,t) = h(z;) + k' (z;,t) (3.47)
Tz, t) = Ti(z:) + T: (20, 1) (3.48)
he(z:,t) = ky(z;) + by (zi0t) (3.49)
By time-averaging,
P = pit; + puy (3.50)
noticing
pu; = pT" = ph” = ph; =0 (3.51)

3.4.2 Navier-Stokes Equations

The equations of fluid motion in complete form which include the conservation
of mass, momentum and energy are referred to as Navier-Stokes equations. The
nondimensional Navier-Stokes equations in the Cartesian coordinate system in a

vector form are
0Q"  OE* OF-  0G" _09E; OF G
5t Vo "oy "o B T By T or (3.52)

where
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(3.54)
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.- _ 2 or*
= = T PrRe.(k—1)M3 0z
. _ p 1"
% = TPrRe_(k—1)MZ oy
. _ [ aT*
© = TPrRe_(k—1)MZ 0

Reynolds number:

Prandtl number:

3.5 Heat Transfer

3.5.1 Conduction

Fourier’s Law:

q" = —kVT = —kgradT

q" is the heat flux and k is thermal conductivity.

3.5.2 Convection

Newton’s Law of cooling:

q” = h(Ts - Too)

h: convection heat transfer coefficient.

(3.57)

(3.58)

(3.59)
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3.5.3 Radiation

Stefan-Boltzmann’s Law (for black body):

Eb = 0’:1-'4

E,: the total hemispherical emissive power;

o: Stefan-Boltzmann constant.

C]. oo usdu Cl 7r4 8 2 4
o = =——— o J. —W 'K
c Cé‘./o 1 Cil5 5.67 x 10 /m

where
C, = 27hc®* =3.742 x 107* W .m?

h
(:2=—k‘3=1.439><10-2 m-K

¢: the speed of propagation of the wave, ¢ = 2.998 x 108 m/s ;
h: Planck’s constant, k = 6.6256 x 10734]J +s ;
k: Boltzmann’s constant, £ = 1.3805 x 10~%® J/K

(3.60)

(3.61)
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Chapter 4

FLUENT IntroductionFiuent:1998)

FLUENT is a state-of-the-art computer program for modeling fiuid flow and heat
transfer in complex geometries. It provides complete mesh flexibility, solving flow
problems with unstructured meshes that can be generated from complex geometries
with relative ease. Supported mesh types include 2D triangular/quadrilateral, 3D
tetrahedral/hexahedral /pyramid/wedge, and mixed (hybrid) meshes. It can also

refine or coarsen the grid based on various flow parameters.

FLUENT is written in the C computer language and makes full use of the flexi-
bility and power offered by the language. Consequently, true dynamic memory
allocation, efficient data structures, and flexible solver control are all made possible.
In addition, FLUENT uses a client/server architecture, which allows it to run as
separate simultaneous processes on client desktop workstations and powerful com-
pute servers, for efficient execution, interactive control and complete flexibility of
machine or operating system types. All functions required to compute a solution and
display the results are accessible in FLUENT through an interactive, menu-driven

interface.
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4.1 Program Structure

The FLUENT package includes the following products:

FLUENT, the solver,

prePDF, the preprocessor for modeling PDF combustion,

GAMBIT, the preprocessor for geometry modeling and mesh generation,

TGrid, an additional preprocessor that can generate volume meshes from existing
boundary meshes, and

Filters (translators) for import of surface and volume meshes from CAD/CAE pack-
ages such as ANSYS, - DEAS, NASTRAN, PATRAN, and others.

Once a grid has been read into FLUENT, all remaining operations are performed
within the solver. These include setting boundary conditions, defining fluid prop-
erties, executing the solution, refining the grid and viewing and postprocessing the

results.

Fluent can use unstructured meshes which can reduce the amount of time gener-
ating a grid. FLUENT can also use block-structured meshes. Therefore it is capable
of handling both triangular and quadrilateral elements (or a combination of the two)

in 2D, hexahedral, pyramid, and wedge elements (or a combination of these) in 3D.

All types of meshes can be adapted in order to resolve large gradients in the flow
field, but the initial mesh is generated (whatever the element types used) outside
of the solver, using GAMBIT, TGrid, or one of the CAD systems for which mesh

import filters exist.
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4.2 Problem Solving Steps

The basic procedural steps are shown below.

1. Create the model geometry and grid,

2. Start the appropriate solver for 2D or 3D modeling,

3. Import the grid,

4. Check the grid,

5. Select the solver formulation,

6. Choose the basic equations to be solved: laminar or turbulent (or inviscid),
chemical species or reaction, heat transfer models, etc. Identify additional models
needed: fans, heat exchangers, porous media, etc,

7. Specify material properties,

8. Specify the boundary conditions,

9. Adjust the solution control parameters,

10. Initialize the flow field,

11. Calculate a solution,

12. Examine the results,

13. Save the results, and

14. If necessary, refine the grid or consider revisions to the numerical or physical

model.

4.3 Numerical Schemes

There are two numerical methods: segregated solver and coupled solver.

Using either method, FLUENT will solve the governing integral equations for the

conservation of mass and momentum, and (when appropriate) for energy and other



scalars such as turbulence and chemical species. In both cases a control-volume-

based technique is used that consists of:
Division of the domain into discrete control volumes using a computational grid.

Integration of the governing equations on the individual control volumes to con-
struct algebraic equations for the discrete dependent variables (‘unknowns’) such as

velocities, pressure, temperature, and conserved scalars.

Linearization of the discretized equations and solution of the resultant linear

equation system to yield updated values of the dependent variables.

The two numerical methods employ a similar discretization process (finite-volume),

but the approach used to linearize and solve the discretized equations is different.

4.3.1 Segregated Solution Method

Using the segregated solver, the governing equations are solved sequentially (i.e.,
segregated from each another). Because the governing equations are non-linear
(and coupled), several iterations of the solution loop must be performed before a
converged solution is obtained. Each iteration consists of the steps illustrated in

Figure 4.1 and outlined below:

1. Fluid properties are updated, based on the current solution. (If the calculation

has just begun, the fluid properties will be updated based on the initialized solution.)

2. The u, v and w momentum equations are each solved in turn using current

values for pressure and face mass fluxes, in order to update the velocity field.

3. Since the velocities obtained in Step 1 may not satisfy the continuity equa-
tion locally, a ‘Poisson-type’ equation for the pressure correction is derived from the
continuity equation and the linearized momentum equations. This pressure correc-
tion equation is then solved to obtain the necessary corrections to the pressure and

velocity fields and the face mass fluxes, such that continuity is satisfied.
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4. Where appropriate, equations for scalars such as turbulence, energy, species,

and radiation are solved using the previously updated values of the other variables.

5. When interphase coupling is to be included, the source terms in the appro-
priate continuous phase equations may be updated with a discrete phase trajectory

calculation.
6. A check for convergence of the equation set is made.

These steps are continued until the convergence criterias are met.

> Update properties

\ 4

Solve momentum equations

L 4
Solve pressure-correction (continuity) equation.
Update pressure, face mass flow rate

i

Solve energy, species, turbulence and other
scalar equations

No Y Yes
Converged?

Figure 4.1 Overview of the Segregated Solution Method



4.3.2 Coupled Solution Method

Using the coupled solver, the governing equations to include continuity, momen-
tum, and (where appropriate) energy and species transport are solved simultaneously
(i-e., coupled together). Governing equations for additional scalars will be solved
sequentially (i.e., segregated from one another and from the coupled set). Because
the governing equations are non-linear (and coupled), several iterations of the solu-
tion loop must be performed before a converged solution is obtained. Each iteration

consists of the steps illustrated in Figure 4.2 and outlined below:

\4

Update properties

Solve continuity, momentum, energy and
species equations simultaneously

4

Solve turbulence and other scalar equations

\ 4

Converged?

No

v Yes

(Stop)

Figure 4.2  Overview of the Coupled Solution Method

1. Fluid properties are updated, based on the current solution. (If the calculation

has just begun, the fluid properties will be updated based on the initialized solution.)
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2. The continuity, momentum, and (where appropriate) energy and species equa-

tions are solved simultaneously.

3. Where appropriate, equations for scalars such as turbulence and radiation are

solved using the previously updated values of the other variables.

4. When interphase coupling is to be included, the source terms in the appro-
priate continuous phase equations may be updated with a discrete phase trajectory

calculation.
5. A check for convergence of the equation set is made.

These steps are continued until the convergence criterias are met.

4.4 Setting Physical Properties

An important step in the setup of the model is the definition of the physical prop-
erties of the material. Material properties include: density and molecular weights,
viscosity, heat capacity, thermal conductivity, mass diffusion coefficients, standard

state enthalpies and kinetic theory parameters.

Properties may be temperature- and/or composition-dependent, with tempera-
ture dependence based on a polynomial, piecewise-linear, or piecewise-polynomial
function and individual component properties either defined by user or computed

via kinetic theory.

Material properties can be defined as functions of temperature. For most proper-
ties, a polynomial, piecewise-linear, or piecewise-polynomial function of temperature
can be used:

For piecewise-polynomial:

¢(T) = Al + A.2T -+ A3T2 + .- when Tmin,l <T < Tma:z;,l (4.1)
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¢(T) = B, + BT + B:«;T'2 +--- when Tm:’n,2 <T< Tmaz.2 (4.2)

where ¢ is the property. Temperature in the function is always in Kelvin.

4.5 Mixture Materials

The concept of mixture materials has been implemented to facilitate the setup
of species transport and reacting flow. A mixture material may be thought of as a
set of species and a list of rules governing their interaction. The mixture material

carries with the following information:
1) A list of the constituent species, referred to as “fluid” materials;

2) A list of mixing laws dictating how mixture properties (density, viscosity,
specific heat, etc.) are to be derived from the properties of individual species if

composition-dependent properties are desired;

3) A direct specification of mixture properties if composition-independent prop-

erties are desired;
4) Diffusion coefficients for individual species in the mixture;

5) Other material properties (e.g., absorption and scattering coefficients) that

are not associated with individual species;

6) A set of reactions, including a reaction type (finite-rate, eddy-dissipation, etc.)

and stoichiometry and rate constants.

Both mixture materials and fluid materials are stored in the materials database.
Many common mixture materials are included (e.g., methane-air, propane-air). Gen-
erally, all reaction parameters and many physical properties of the mixture and its
constituent species are defined in the database. The use of mixture materials gives
the flexibility to use one of the many predefined mixtures, modify one of these

mixtures, or create a new mixture material.
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4.6 Physical Models

Comprehensive modeling capabilities for a wide range of incompressible and com-
pressible, laminar and turbulent fluid flow problems are provided. A broad range
of mathematical models for transport phenomena (like heat transfer and chemical
reactions) is combined with the ability to model complex geometries. The range
of problems that can be addressed is very wide. Applications include laminar non-
newtonian flow modeling in process equipment, turbulent heat transfer in turboma-
chinery and automotive engine components, pulverized coal combustion in utility
boilers, compressible jets in process equipment, external aerodynamics, and com-

pressible reacting flow in solid rocket motors.

To permit modeling of fluid flow and related transport phenomena in industrial
equipment and processes, various useful features are provided. These include porous
media, lumped parameter (fan and heat exchanger), streamwise-periodic flow and
heat transfer, swirl, and moving reference frame models. The moving reference
frame family of models includes the ability to model single or multiple reference
frames. A time-accurate sliding mesh method, useful for modeling multiple stages
in turbomachinery applications, for example, is also provided, along with the mixing

plane model for computing time-averaged flow fields.

Another very useful set of models is the set of discrete phase models. These
models can be used to analyze sprays and particle-laden flows in equipment like
cyclones and aircraft-engine inlets. Several models {for multiphase flows are also
available, and can be used, for example, to predict jet breakup, the motion of liquid

after a dam break, cavitation, sedimentation, and separation.

The turbulence models provided have a broad range of applicability without the
need for fine tuning to a specific application, and they include the effects of other

physical phenomena, such as buoyancy and compressibility. Particular care has
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been devoted to addressing issues of near-wall accuracy via the use of extended wall

functions and zonal models.

Various modes of heat transfer can be modeled, including natural, forced, and
mixed convection with or without added complications such as conjugate heat trans-
fer, porous media, etc. The set of radiation models and related submodels for mod-
eling participating media are general and can take into account the complications
of combustion. A particular strength is its ability to model combustion phenomena
via eddy dissipation models or probability density function models. A host of other
models that are very useful for combustion applications are also available, including

coal and droplet combustion and pollutant formation models.

4.7 User-Defined Functions

User-defined functions can be used to enhance the standard features in a number
of ways. These functions can be used to customize: boundary conditions, source
terms, property definitions, patching of initial conditions, wall heat fluxes, radia-
tion scattering phase functions, surface and volume reaction rates, solution of user-

defined scalars, and discrete phase model body force, drag, source term, etc.

User-defined functions (UDFs) are written in the C programming language.
There are two types of user-defined functions: interpreted and compiled. Inter-
preted UDFs are translated at runtime from within a FLUENT session. Compiled
UDFs are compiled and grouped in a shared library using a Makefile before be-
ginning a FLUENT session. The shared library is then linked with the standard
FLUENT executable at runtime. The standard FLUENT executable will remain
unchanged, but we will be able to link one of any number of shared libraries to it

to form "effective” custom executables.

One advantage of using compiled UDFs is that they run much faster than intez-

preted UDFs. Another advantage is that compiled UDFs are given complete access
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to the solver. Interpreted UDFs, on the other hand, have limited access to the
solver and, for example, do not recognize C language structures. Interpreted UDF's

are architecture-independent, and as a result, are more convenient to use.

4.8 Solution-Adaptive Grid

The solution-adaptive mesh refinement feature allows to refine and/or coarsen
the grid based on geometric and numerical solution data. By using solution-adaptive
refinement, cells can be added where they are needed in the mesh, thus enabling
the features of the flow field to be better resolved. When adaption is used properly,
the resulting mesh is optimal for the flow solution because the solution is used to
determine where more cells are added. In other words, computational resources are
not wasted by the inclusion of unnecessary cells, as typically occurs in the structured
grid approach. Furthermore, the effect of mesh refinement on the solution can be

studied without completely regenerating the mesh.

Solution-adaptive grid capability is particularly useful for accurately predicting
flow fields in regions with large gradients, such as free shear layers and boundary
layers. In comparison to solutions on structured or block structured grids, this
feature significantly reduces the time required to generate a good grid. Solution-
adaptive refinement makes it easier to perform grid refinement studies and reduces
the computational effort required to achieve a desired level of accuracy, since mesh

refinement is limited to those regions where greater mesh resolution is needed.

The advantages of solution-adaptive refinement are significant. However, the
capability must be used carefully to avoid certain pitfalls. Some guidelines for

proper usage of solution-adaptive refinement are as follows:

1) The surface mesh must be fine enough to represent adequately the important
features of the geometry. For example, it would be bad practice to place too few

nodes on the surface of a highly-curved airfoil, and then use solution refinement
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to add nodes on the surface. Clearly, the surface will always contain the facets
contained in the initial mesh, regardless of the additional nodes introduced by re-

finement.

2) The initial mesh should contain sufficient cells to capture the essential features
of the flow field. In addition to having sufficient surface resolution to represent
the shape of the body, the initial mesh should also contain enough cells so that a
reasonable first solution can be obtained. Subsequent gradient adaption can be used

to sharpen the shock and establish a grid-independent solution.

3) A reasonably well-converged solution should be obtained before an adaption
is performed. If adapt to an incorrect solution, cells will be added in the wrong
region of the flow. However, careful judgment must be used in deciding how well to
converge the solution before adapting, because there is a trade-off between adapting
too early to an unconverged solution and wasting time by continuing to iterate when

the solution is not changing significantly.

4.9 TUnstructured Grids

Discretization of a domain can be accomplished either directly in the physical
space or on the transformed computational space. The choice will primarily depend
on the numerical scheme to be utilized as well as the domains of solution. The
finite difference equations approximating the partial differential equations are solved
within a rectangular grid system. For non-rectangular physical domain, a coordinate
transformation to computational space is required. The grid points are defined at
the intersection of equally distanced parallel lines within the rectangular (2-D) or
cubical (3-D) computational domain. There are corresponding grid points within
the physical space established by algebraic relations or differential

54



equations. The grid points can be easily identified and are usually designated by
the indices i, j and k in an orderly manner along the grid lines. This type of grid is
known as structured grid.

In addition to finite difference schemes, two other numerical schemes are available
for the solution of the conservation laws. These schemes are finite volume schemes
and finite element schemes. Both of these schemes are integral methods, that is,
the original differential equations are integrated on the physical domain. Therefore,
the grid system for the finite volume or finite element schemes are usually gener-
ated directly within the physical space. There exist various choices in the selection
of the volumes or elements. Thus, the domain of solution is usually divided into
triangles or quadrilaterals (or any other kind of polygons in 2-D, whereas pyramids
or tetrahedrons are used in 3-D). It is obvious that the grid points, in general, can-
not be associated with grid lines. Therefore, the identification of the grid points
must be individually specified. Such a grid system is known as an unstructured
grid system. The main advantage of the unstructured grid is that it can be used
easily to fit irregular, singly-connected domains, as well as multiply-connected do-
mains. The unstructured grid also can be coupled with grid refinement techniques
for the adaptive methods. However, unstructured grid generation is more difficult to
program, that is, the programmer needs a sound background in the data structure

arrangement and experience in the data book-keeping skills.

4.10 Boundary Conditions

Boundary conditions specify the flow and thermal variables on the boundaries
of physical model. They are, therefore, a critical component of simulations and it is

important that they are specified appropriately.
The boundary conditions are classified as follows:

Flow inlet and exit boundaries: pressure inlet, velocity inlet, mass flow inlet, inlet
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vent, intake fan, pressure outlet, pressure far-field, outflow, outlet vent, exhaust fan;
Wall, repeating and pole boundaries: wall, symmetry, periodic, axis;
Internal cell zones: fluid, solid (porous is a type of fluid zone);
Internal face boundaries: fan, radiator, porous jump, wall, interior.

Physical boundaries of a specified domain upon which boundary conditions are
generally required or where the values of the dependent variables must be determined
as a part of the overall solution can be categorized into five groups. They are: body
surface, far-field, symmetry line (or surface in 3D), inflow, and outflow boundaries.
Physical or numerical specification and implementation of the boundary conditions

along various boundaries are generally challenging.

4.10.1 Using Flow Boundary Conditions

There are 10 types of boundary cell types for the specification of flow inlets and
exits: velocity inlet, pressure inlet, mass flow inlet, pressure outlet, pressure far-field,

outflow, inlet vent, intake fan, outlet vent and exhaust fan.

4.10.1.1 Velocity Inlet Boundary Conditions

Velocity inlet boundary conditions are used to define the flow velocity, along
with all relevant scalar properties of the flow, at flow inlets. The total (or stag-
nation) properties of the flow are not fixed, so they will rise to whatever value is
necessary to provide the prescribed velocity distribution. The inflow velocity by
specifying the velocity magnitude and direction, the velocity components, or the

velocity magnitude normal to the boundary can be defined.

This boundary condition is intended for incompressible flows, and its use in
compressible flows will lead to a nonphysical result because it allows stagnation

conditions to float to any level. One should also be careful not to place a velocity
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inlet too close to a solid obstruction, since this could cause the inflow stagnation

properties to become highly nonuniform.

4.10.1.2 Pressure Inlet Boundary Conditions

Pressure inlet boundary conditions are used to define the fluid pressure at flow
inlets, along with all other scalar properties of the flow. They are suitable for
both incompressible and compressible flow calculations. Pressure inlet boundary
conditions can be used when the inlet pressure is known but the flow rate and/or
velocity is not known. This situation may arise in many practical situations, includ-
ing buoyancy-driven flows. Pressure inlet boundary conditions can also be used to

define a “free” boundary in an external or unconfined flow.

The pressure field (p,) and pressure inputs (p) or pg) include the hydrostatic
head, p,gz. That is, the pressure is defined as

P, = P9z + ps (4.3)
or
op, ps
B = Pod + (4.4)
Total pressure for an incompressible fluid is defined as
1 2
po =ps + 5plvl| (4.5)
and for a compressible fluid as
E—1 k/(k=1)
Po = Ps [1 + —2—M3} (4.6)

where

Do total pressure
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Ds static pressure
M, Mach number

k ratio of specific heats (¢,/¢y)

4.10.1.3 Mass Inlet Boundary Conditions

Mass flow boundary conditions can be used to provide a prescribed mass flux at
an inlet. The inlet total pressure is adjusted locally to achieve the velocity needed

to provide the prescribed mass flux.

Mass flow inlet boundary conditions are used in compressible flows to prescribe a
mass flow rate at an inlet. It is not necessary to use mass flow inlets in incompressible
flows because when density is constant, velocity inlet boundary conditions will fix
the mass flow. A mass flow inlet is often used when it is more important to match a
prescribed mass and energy flow rate than to match the total pressure of the inflow
stream. An example is the case of a small cooling jet that is bled into the main flow,
while the velocity of the main flow is governed primarily by a pressure inlet/outlet

boundary condition pair.

The adjustment of inlet total pressure might result in a slower convergence, so
if both the pressure inlet boundary condition and the mass flow inlet boundary

condition are acceptable choices, the latter should be chosen.

4.10.1.4 Pressure Outlet Boundary Conditions

Pressure outlet boundary conditions are used to define the static pressure at flow
outlets (and also other scalar variables, in case of backflow). The use of a pressure
outlet boundary condition instead of an outflow condition often results in a better

rate of convergence when backflow occurs during iteration.

Pressure outlet boundary conditions require the specification of a static (gauge)

pressure at the outlet boundary. The value of static pressure specified is used only



while the flow is subsonic. Should the flow become locally supersonic, the specified
pressure is no longer used; pressure will be extrapolated from the flow in the interior.

All other flow quantities are extrapolated from the interior.

4.10.1.5 Pressure Far-Field Boundary Conditions

Pressure far-field boundary conditions are used to model a free-stream compress-
ible flow at infinity, with free-stream Mach number and static conditions specified.

This boundary type is available only for compressible flows.

Pressure far-field conditions are used to model a free-stream condition at infinity,
with free-stream Mach number and static conditions being specified. The pressure
far-field boundary condition is often called a characteristic boundary condition, since

it uses characteristic information to determine the flow variables at the boundaries.

This boundary condition is only applicable when the density is calculated using
the ideal-gas law. Using it for other flows is not permitted. To effectively ap-
proximate true infinite-extent conditions, the far-field boundary must be placed far
enough from the object of interest. For example, in lifting airfoil calculations, it is
not uncommon for the far-field boundary to be a circle with a radius of 20 chord

lengths.

4.10.1.6 Other Boundary Conditions

Outflow boundary conditions are used to model flow exits where the details of
the flow velocity and pressure are not known prior to solution of the flow problem.
They are appropriate where the exit flow is close to a fully developed condition, as
the outflow boundary condition assumes a zero normal gradient for all flow variables

except pressure. They are not appropriate for compressible flow calculations.

Inlet vent boundary conditions are used to model an inlet vent with a specified

loss coefficient, flow direction, and ambient (inlet) total pressure and temperature.
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Intake fan boundary conditions are used to model an external intake fan with
a specified pressure jump, flow direction, and ambient (intake) total pressure and

temperature.

Outlet vent boundary conditions are used to model an outlet vent with a specified

loss coefficient and ambient (discharge) static pressure and temperature.

Exhaust fan boundary conditions are used to model an external exhaust fan with

a specified pressure jump and ambient (discharge) static pressure.

No slip velocity boundary conditions are used at the body surface. Therefore, the
surface velocity is imposed at the boundary. For most applications where there is no
relative motion between the solid surface and the fluid, the velocity components are
set to zero according to the no slip condition. If the surface is porous where fluid is
injected or extracted at some specified velocity, the injection or extraction velocity
is used. Usually the pressure at the surface is not known and must be determined
as a part of the overall solution. Generally speaking, the Neumann-type boundary
condition is imposed for the pressure. For this purpose a relation involving the

normal pressure gradient is obtained from the appropriate momentum equation.

4.10.2 Symmetry

For applications where the configuration and the domain of solution are sym-
metrical, the axis of symmetry (or surface of symmetry) may be used as a boundary.
The boundary location may be defined in two fashions. First, the boundary is set
on the axis of symmetry. In this case the net flow across the symmetry line is zero.
Therefore, the component of the velocity normal to the boundary is set to zero.
Furthermore, the shear stress along the axis of symmetry may be zero in some ap-
plications. Thus, the velocity gradient is set to zero. Second, the boundary may be
set below the axis of symmetry, in which case the symmetry of flow variables are

used as the required boundary conditions.
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4.10.3 Wall Boundary Conditions

Wall boundary conditions are used to bound fluid and solid regions. In viscous

flows, the no-slip boundary condition is enforced at walls.

4.10.3.1 Shear-Stress Calculation in Laminar Flow

In a laminar flow, the wall shear stress is defined by the normal velocity gradient

at the wall as

ov
T=Eg, (4.7)

When there is a steep velocity gradient at the wall, it must be sure that the grid

is sufficiently fine to accurately resolve the boundary layer.

Wall functions are a collection of semi-empirical formulas and functions that in
effect ‘bridge’ or ‘link’ the solution variables at the near-wall cells and the corre-
sponding quantities on the wall. The wall functions comprise 'laws-of-the-wall for

mean velocity and temperature’ and ’formulas for near-wall turbulent quantities’.

Two types of wall function: standard wall functions and nonequilibrium wall

functions are introduced.

4.10.3.2 Standard Wall Functions

The standard wall functions are based on the proposal of Launder and Spalding
(1974), and have been most widely used for industrial flows.

The law-of-the-wall for mean velocity yields

U" = ~In(By") (4.8)
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where
. _ UpCH4E?
Ur= —T:T- (4.9)
Cl/«ikl/?
yo= e P Ve - Ye (4.10)
and
K Von Karman’s constant (= 0.42)

E empirical constant (= 9.81)

Up mean velocity of the fluid at point P
kp turbulent kinetic energy at point P
Yp distance from point P to the wall

7 dynamic viscosity of the fluid

The logarithmic law for mean velocity is known to be valid for y= > 30 ~ 60. In
FLUENT, the log-law is employed when y* > 11.225.

When the mesh is such that y* < 11.225 at the wall-adjacent cells, the laminar

stress-strain relationship is applied that can be written as

Us =y (4.11)

It should be noted that the laws-of-the-wall for mean velocity and temperature
are based on the wall unit, y*, rather than y*(= pu,y/u). These quantities are

approximately equal in equilibrium turbulent boundary layers.

Reynolds’ analogy between momentum and energy transport gives a similar log-
arithmic law for mean temperature. As in the law-of-the-wall for mean velocity, the

law-of-the-wall for temperature employed comprises the following two different laws:

1) Linear law for the thermal conduction sublayer where conduction is important;
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2) Logarithmic law for the turbulent region where effects of turbulence dominate

conduction.

The thickness of the thermal conduction layer is, in general, different from the
thickness of the (momentum) viscous sublayer, and changes from fluid to fluid. For
example, the thickness of the thermal sublayer for a high-Prandtl-number fluid (e.g.,
oil) is much less than its momentum sublayer thickness. For fluids of low Prandtl

numbers (e.g., liquid metal), on the contrary, it is much larger than the momentum

sublayer thickness.

In the £ — € models and in the RSM (if the option to obtain wall boundary
conditions from the k equation is enabled), the k£ equation is solved in the whole
domain including the wall-adjacent cells. The boundary condition for k£ imposed at
the wall is

% _o (4.12)

where n is the local coordinate normal to the wall.

The production of kinetic energy, G, and its dissipation rate, €, at the wall-
adjacent cells, which are the source terms in the k equation, are computed on the
basis of the local equilibrium hypothesis. Under this assumption, the production
of k and its dissipation rate are assumed to be equal in the wall-adjacent control

volume.

Thus, the production of k& is computed from

Gh 7 oU . Tw
E~ Ty = Tw
By rcpC}‘“k}lg/zy,, (4.13)
and € is computed from
03/4k3/2
ep = 2L (4.14)

KYp
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Note that, as shown here, the wall boundary conditions for the solution variables
including mean velocity, temperature, k£ and € are all taken care of by the wall func-

tions. Therefore, one do not need to be concerned about the boundary conditions

at the walls.

The standard wall functions work reasonably well for a broad range of wall-
bounded flows. However, they tend to become less reliable when the flow situations
depart too much from the ideal conditions that are assumed in their derivation.
Among others, the constant-shear and local equilibrium hypotheses are the ones that
most restrict the universality of the standard wall functions. Accordingly, when the
near-wall flows are subjected to severe pressure gradients, and when the flows are in

strong nonequilibrium, the quality of the predictions is likely to be compromised.

The nonequilibrium wall functions offered as an additional option can improve

the results in such situations.

4.10.3.3 Nonequilibrium Wall Functions

The key elements in the nonequilibrium wall functions (Kim, 1995) are as follows:

1. Launder and Spalding’s log-law for mean velocity is sensitized to pressure-

gradient effects.

2. The two-layer-based concept is adopted to compute the budget of turbulent
kinetic energy (Gk,€) in the wall-neighboring cells.

The law-of-the-wall for mean temperature remains the same as in the standard
wall function. The log-law for mean velocity sensitized to pressure gradients is
[}‘ CYagz Cl/4g1/2
it S——— E‘o_“_;u. (4.15)
7-w/ p K M

where

~ ldp | . y Y—Yo , Y2
Y= [Pﬂ‘k”zln (yu) Rt (4.16)
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and y, is the physical viscous sublayer thickness, and is computed from

LY,
pCu e l?

Yo (4.17)

where y; = 11.225.

The nonequilibrium wall function employs the two-layer concept in computing
the budget of turbulent kinetic energy at the wall-adjacent cells, which is needed
to solve the k equation at the wall-neighboring cells. The wall-neighboring cells are
assumed to consist of a viscous sublayer and a fully turbulent layer. The following

profile assumptions for turbulence quantities are made:

0, < Yy
= y=y (4.18)
Twy Y > Yy
y 2
- k ’ < Yv
k= (yu) g SV (4.19)
k., Y>> Yy
2vk y <
e= ¥’ y" (4.20)
Ik
T Y >

where C; = kC3/4, and y, is defined in Equation (4.17).
u

Using these profiles, the cell-averaged production of k, Gk, and the cell-averaged
dissipation rate, £, can be computed from the volume average of G and ¢ of the
wall-adjacent cells. For quadrilateral and hexahedral cells for which the volume

average can be approximated with a depth-average,
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G = L yn‘l'ta—Udy
ynJo Oy
1 T2 Yn
= W In{Z2 .
Kyn pCLETE (yu) (4.21)
and
€ = 1 ynedy
Yn JO
1 [2v k2 (yn)
= —|—4+———In|ZT-}| k 4.22)
- [yu+ Cr n ” P ( )

where y, is the height of the cell (y, = 2y,). For cells with other shapes (e_g.,

triangular and tetrahedral grids), the appropriate volume averages are used.



Chapter 5

Mathematical and Physical Models

5.1 Introduction

The purpose of this chapter is to present and discuss the solution of turbulent
reaction flow problems with the use of various kinds of numerical methods and
turbulent models. Turbulence is commonplace. At high Reynolds number the flow
becomes turbulent. When chemical reactions occur in turbulence, the situation
is more chaotic. In order to achieve closure of the equations for turbulence in
reacting flow systems, various models have been proposed. Among them, the most
popular is the & — £ two-equation model. Recently, direct numerical simulations
and large eddy simulations have been applied to study chemically reacting flow.
In numerical methods, finite difference methods have been used most widely but
other methods such as finite volumes, finite element and spectral methods have

been applied increasingly in computational combustion.
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5.2 Turbulence Models

Various models have been proposed to achieve closure of the equations of tur-
bulence in reacting flow system. The most popular model is the standard k& — ¢
model of Launder and Spalding (1974), the turbulence kinetic energy & and its dis-
sipation rate € are calculated from transport equations in the fully turbulent flow
region, and the Reynolds-stress tensor is represented by an eddy viscosity model
constructed from k, ¢ and mean flow field. The turbulent eddy viscosity can be
determined from the transport equation of k and €. For wall bound flows, wall func-
tions are added to blend the fully turbulent region with the near wall region, because
of the predominance of viscous effects in that region. Used in conjunction with wall
functions, the £ — € model is reasonably well behaved, and has been applied to the

solution of many practical problems with a moderate amount of success.

5.2.1 Zero Equation Models

The zero equation models are equations wherein the turbulent fluctuating cor-
relations are related to the mean flow field quantities by algebraic relations. The
underlying assumption in zero-equation models is that local rate of production of
turbulence and the rate of dissipation of turbulence are approximately equal. How-
ever, they do not include the convection of turbulence. Obviously, it is contrary to
the physics of most flow fields, since the past history of the flow must be accounted
for. Nevertheless, these models are mathematically simple and their incorporation

into a numerical code can be accomplished with relative ease.

Generally, most models employ an inner region/outer region formulation to rep-
resent mixing length. A commonly used model utilizes an exponential function (van
Driest damping function) for the inner region, whereas the outer region is propor-

tional to the boundary layer thickness. Mathematically they are expressed as
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L= k(L — eV /4%y (5.1)

and

I, =C,6 (5.2)

where k is the Von Karman constant (~ 0.41), and A¥ is a parameter which depends
on the streamwise pressure gradient. For a zero-pressure gradient flow, it has a value
of 26. The constant C, in the equation is usually assigned a value of 0.08 ~ 0.09,
whereas § is the boundary layer thickness.

Another formulation commonly used for the outer region turbulent viscosity is

the Cebeci/Smith model expressed as

Ve = i (5.3)

where « is usually assigned a value of 0.0168 for flows where Rey (momentum thick-

ness Reynolds number) is greater than 5000 and é* is the kinetic displacement thick-

6t = [ °° (1 - ui) dy (5.4)

ness defined as

Recall that the Reynolds number based on momentum thickness is defined as

u.0
Rep = 2= (5.5)

fhe

where the momentum thickness 8 is

0= / (1 ——)dy (5.6)

The algebraic model described above requires information regarding the bound-

ary layer thickness and flow properties at the boundary layer edge. When the
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Navier-Stokes equations are being solve=d, it may be a difficult task to determine the
boundary layer thickness and the requimed properties at the edge. That is especially
the case when flow separation exists writhin the domain. However, when it is nec-
essary to determine the extent of the —viscous region within the domain, the total

enthalpy is usually used.

A turbulence model which is not writtten in terms of the boundary layer quantities
was introduced by Baldwin and Lomaxx (1978). The inner region is approximated

by

He = Plzl“-’l (5.7)

where w is the vorticity defined as

W= o= — = (5.8)

The outer region is approximated by

Bt = aﬁcc—thUdkcFchb (5.9)

where o is assigned a value of 0.0168 (a-s in the Cebeci/Smith model) and

. AV)?
Fuake = min [(ymixGmaz:) ’ (Cwakeymaz(G_))] (510)

A typical value for Cyq. is 0.25. In tthe above equation, the following definitions

are employed,

Gmer = maz (élwl) (5.11)
where ! is the mixing length and determined by the Van Driest function. The
difference between the absolute values of the maximum and minimum velocities
within the viscous region is denoted by MV. Fki.s is the intermittence factor defined

as
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Ymaz

Forn = |1 Cxiesy \° -
Kieb = [{ +5.5 —— (5.12)

and Ymaz is the y location where Gpqr occurs.

The Klebanoff constant Ckyep is determined from the following expression,

Corr = 2001312
Kieb = 3~ 01724 — B~ (5.13)
where
« __ Ymaz v
pm = or B2 (5.14)

and v* is the friction velocity. The velocity gradient in 8~ is calculated outside the
viscous region. Once the Klebanoff constant is evaluated, C_, is determined from

3 — 4Ckie

C.. —
P 2Ccieb(2 —3Ckies + Cep)

(5.15)

To model the eddy diffusivity, the Reynolds analogy may be used. Recall that
the Reynolds analogy assumes a similarity between the momentum transfer and heat

transfer. Therefore, a turbulent Prandt]l number is defined as

feCp
Pre=—=="2F (5.16)

For most flows, it is assumed that the turbulent Prandtl number remains constant
across the boundary layer. For air, Pr, = 0.9. Thus, the turbulent conductivity is

determined as

— %
k= b, (5.17)

where y. is provided by the turbulence models.
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5.2.2 Spalart-Allmaras One Equation Model

5.2.2.1 Spalart-Allmaras Model

In turbulence models that employ the Boussinesq approach, the central issue is
how the eddy viscosity is computed. The model proposed by Spalart and Allmaras
(1992) solves a transport equation for a quantity that is a modified form of the
turbulent kinematic viscosity. The transported variable in the Spalart-Allmaras
model, v, is identical to the turbulent kinematic viscosity except in the near-wall
(viscous-affected) region. The transport equation for v is

~ ~ ~ 2
Dv 1|0 ~ OV ov

~
v J

where G,, is the production of turbulent viscosity and Y, is the destruction of tur-
bulent viscosity that occurs in the near-wall region due to wall blocking and viscous

damping. o and Cj; are constants and v is the molecular kinematic viscosity.

The turbulent viscosity, u;, is computed from

pe=p fu (5.19)

where the viscous damping function, f,1, is given by
3
=X
ful — X3 + 031 (5.20)

and

(5.21)

=
I
e e
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The production term, G,,, is modeled as

G, =C,p Sv (5.22)
where
~ v
S=S5+ quz (5.23)
and
— 1 _ X
R (5:2¢)

Ci1 and £ are constants, d is the distance from the wall, and S is a scalar
measure of the deformation tensor. As in the original model proposed by Spalart

and Allmaras, S is based on the magnitude of the vorticity:

S= 29,’1'0,‘]' (5.25)

where §2;; is the mean rate-of-rotation tensor and is defined by

1 au_-,' au,-
Wi=3 (5: ) 5;) (5.26)

The justification for the default expression for S is that, for the wall-bounded
flows that were of most interest when the model was formulated, turbulence is found
only where vorticity is generated near walls. However, it has been acknowledged
that one should also take into account the effect of mean strain on the turbulence
production, and a modification to the model has been proposed (Dacles-Mariani et

al, 1995).

This modification combines measures of both rotation and strain tensors in the

definition of S:

73



S = |Qij] + Cproa min(0, [Sij| — ;1) (5.27)

where

Cproa = 2.0,  [Q] = /2Q;;Q5,  1Si] = 1/25:5S5:

with the mean strain rate, S;;, defined as

G L (04 Oui
Y7 2\0z;  Oz; (5.28)

Including both the rotation and strain tensors reduces the production of eddy
viscosity and consequently reduces the eddy viscosity itself in regions where the

measure of vorticity exceeds that of strain rate.

The destruction term is modeled as

Y,=C,pfu (g) 2 (5.29)
where
g=r+Cu (rs—r) (5.31)
r= ol (5.32)
S k2d?

The model constants Ce1,Ciz2, 05, Co1, Cut, Cw2, Cus, and & have the following

default values (Spalart and Allmaras, 1992):
Cbl = 01335, Cb2 = 0.622, O“; = 22/3, C,_,1 = 7.1,

Cwm1= Cbl/n?' + (1 + Cbz)/a':, Cw2=03, Cuz=20, k=041
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5.2.2.2 Wall Boundary Conditions

At walls, the modified turbulent kinematic viscosity, v, is set to zero.

When the mesh is fine enough to resolve the laminar sublayer, the wall shear

stress is obtained from the laminar stress-strain relationship:

u pury
—= (5.33)

Uy 73

If the mesh is too coarse to resolve the laminar sublayer, it is assumed that the
centroid of the wall-adjacent cell falls within the logarithmic region of the boundary
layer, and the law-of-the-wall is employed:

v _ 1, puy

ur K v

(5.34)
where x = 0.419 and E = 9.793.

5.2.3 £k — e Two-Equation Model

The convection of turbulence is not modeled in zero-equation models. Therefore,
the physical effect of past history of the flow is not included in simple algebraic
models. In order to account for this physical effect, a transport equation based on
the Navier-Stokes equation may be derived. When two such equations are employed,
it is referred to as a two-equation model. A commonly used two-equation turbulence
model is the £ — € model. The partial differential equations are derived for kinetic

energy of turbulence (k), and the dissipation of turbulence (&), where

k= % [u7 + 97 + w7 (5.35)
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and

E = Vg a.'BJ‘ 32:,- ( . )

5.2.3.1 The Standard k£ — ¢ Model

The standard k—e model(Launder and Spalding, 1972) is a semi-empirical model
based on model transport equations for the turbulent kinetic energy (k) and its
dissipation rate (¢). The model transport equation for k is derived from the exact
equation, while the model transport equation for £ was obtained using physical

reasoning and bears little resemblance to its mathematically exact counterpart.

In the derivation of the k — € model, it was assumed that the flow is fully
turbulent, and the effects of molecular viscosity are negligible. The standard & — ¢

model is therefore valid only for fully turbulent flows.

The turbulent kinetic energy, k, and its rate of dissipation, €, are obtained from

the following transport equations:

Dt & 4.\ Ok
pE—BZ[(#+Z) 3—%]+Gk+Gb—P5-YM (5.37)
and
De 7 g\ Oe € e?
pﬁ = a—z' [(ﬂ + Z) a—zh] + Clc‘E(Gk + C3.Gh) - Cz:P'Z' (5.38)

In these equations, G represents the generation of turbulent kinetic energy due
to the mean velocity gradients. G} is the generation of turbulent kinetic energy due
to buoyancy. Yas represents the contribution of the fluctuating dilatation in com-
pressible turbulence to the overall dissipation rate. Cs. is the constant considering

buoyancy. The turbulent viscosity, u;, is computed by combining k£ and ¢ as follows:

k2
Ht = PC“—S' (5-39)
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According to Launder and Spalding, the model constants

Cre=144, Cp=192, C,=009, 0,=10, 0,=13, Ca=1

These values have been determined from experiments with air and water for
fundamental turbulent shear flows including homogeneous shear flows and decaying
isotropic grid turbulence. They have been found to work fairly well for a wide range

of wall-bounded and free shear flows.

5.2.3.2 Transport Equations for the RNG k — £ Model

The RNG k — € model was derived using a rigorous statistical technique called
renormalization group theory (RNG). It is similar in form to the standard k — ¢

model, but includes the following refinements:

1) The RNG model has an additional term in its ¢ equation that significantly

improves the accuracy for rapidly strained flows.

2) The effect of swirl on turbulence is included in the RNG model, enhancing

accuracy for swirling flows.

3) The RNG theory provides an analytical formula for turbulent Prandtl num-

bers, while the standard k£ — & model uses user-specified, constant values.

4) While the standard k& — e model is a high-Reynolds-number model, the RNG
theory provides an analytically-derived differential formula for effective viscosity
that accounts for low-Reynolds-number effects. Effective use of this feature does,

however, depend on an appropriate treatment of the near-wall region.

These features make the RNG k —& model more accurate and reliable for a wider
class of flows than the standard k¥ — € model. A more comprehensive description of

RNG theory and its application to turbulence can be found in (Choudhury, 1993).

The RNG k — ¢ model has a similar form to the standard £ — £ model:
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Dt 0 ok
Phy = Bz, (a,,#eu B_z,) +Gr+ Gy —pe — Yy (5.40)
and
De 0 Je € e?
PB7 = 5 (orkurge) + OufCit OuG) = CurT =R (s.a)

In these equations, G represents the generation of turbulent kinetic energy due
to the mean velocity gradients. G} is the generation of turbulent kinetic energy
due to buoyancy. ¥Yjs represents the contribution of the fluctuating dilatation in
compressible turbulence to the overall dissipation rate. The quantities o and . are
the inverse effective Prandtl numbers for k£ and &, respectively. R will be discussed

later on in 5.2.3.5.

5.2.3.3 Modeling the Effective Viscosity

The scale elimination procedure in RNG theory results in a differential equation

for turbulent viscosity:

A

p2k ) v A
d ( =1.72 dv 5.42
VEHE Vi -1+, (542)

where

b= T C, = 100

Equation (5.42) is integrated to obtain an accurate description of how the effec-
tive turbulent transport varies with the effective Reynolds number (or eddy scale),

allowing the model to better handle low-Reynolds-number and near-wall flows.

In the high-Reynolds-number limit,

k2
pt = PCp? (5.43)
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where C), equals to 0.0845, derived using RNG theory. It is interesting to note that
this value of C,, is very close to the empirically-determined value of 0.09 used in the

standard k£ — £ model.

5.2.3.4 Calculating the Inverse Effective Prandtl Numbers

The inverse effective Prandtl numbers o and . are computed using the following

formula derived analytically by the RNG theory:

0.6321 0.3679

o — 1.3929 o +2.3929 -
a, — 1.3929 a, +239201 T u, (5.44)

where a, = 1.0. In the high-Reynolds-number limit (g, /#., < 1), ar = ac =
1.393.

5.2.3.5 The R Term in the ¢ Equation

The main difference between the RNG and standard £ — & models lies in the
additional term in the € equation given by

R= Cupn®(1 —n/n,) €2
1+ B3 k

(5.45)

where n = Sk/e, n, = 4.38, B = 0.012.

The effects of this term in the RNG & equation can be seen more clearly by

rearranging € equation as

De 0 Oe € . €°
p—m — —é;: (azl“ejj 'éz—.) + Cl;Z(Gk -+ C&Gb) - C2ep? (5-46)

where C3, is given by
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Cupn®(1 — /7o)
I

Cz‘e = C2= + (5.47)

In regions where n < 7,, the R term makes a positive contribution, and C3,
becomes larger than C,.. In the logarithmic layer, for instance, it can be shown
that n = 3.0, giving C3, ~ 2.0, which is close in magnitude to the value of C5, in
the standard k£ — £ model. As a result, for weakly to moderately strained flows, the
RNG model tends to give results largely comparable to the standard k& — € model.

In regions of large strain rate (n > 7,), however, the R term makes a negative
contribution, making the value of C3, less than Cs.. In comparison with the standard
k — € model, the smaller destruction of € augments €, reducing k and eventually the
effective viscosity. As a result, in rapidly strained flows, the RNG model yields a

lower turbulent viscosity than the standard k& — € model.

Thus, the RNG model is more responsive to the effects of rapid strain and
streamline curvature than the standard & — ¢ model, which explains the superior
performance of the RNG model for certain classes of flows. The model constants

C],; and 025 are
Clg = 1.42, 025 = 1-68

5.2.4 Reynolds Stress Model

Reynolds-averaged Navier-Stokes (RANS) equations are:

7]
5T B_:c.-(pu") =0 (5.48)

Du,— _ ap 8 6u; Buj 2 ._6u, _6_ —
"Dt = Bz + az; [p (3:1:,- + dz; :?;6"751:_1)] + (=puiu;) (549)

They have the same general form as the instantaneous Navier-Stokes equations,
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with the velocities and other solution variables now representing ensemble-averaged
(or time-averaged) values. Additional terms now appear that represent the effects of
turbulence. The Reynolds stress model (Gibson and Launder 1978, Launder 1989,
Launder et al 1975) involves calculation of the individual Reynolds stresses, m,
using differential transport equations. The individual Reynolds stresses are then

used to obtain closure of the Reynolds-averaged momentum Equation (5.49).

The exact form of the Reynolds stress transport equations may be derived by
taking moments of the exact momentum equation. This is a process wherein the
exact momentum equations are multiplied by a fluctuating property, the product
then being Reynolds-averaged. Unfortunately, several of the terms in the exact
equation are unknown and modeling assumptions are required in order to close the

equations.

In this section, the Reynolds stress transport equations are presented together

with the modeling assumptions required to attain closure.

5.2.4.1 The Reynolds Stress Transport Equations

The exact transport equations for the transport of the Reynolds stresses, puu;,

may be written as follows:

0 a 7] 1
5 PEE) a—“(PUku_ﬂE) = ~%er |PTs + p(6cjus + ;) |+

7

Local Time Derivative c‘jgc;;uccﬁon D.-TjETurbuEzt Dif fusion

Oz [ﬂ A ] - ("‘“"ax U ax,,) - pBoiu0 + gjud +
D"I.'i =M OICC“;;TD':}' fusion FPy; EStreas Production

Gi;=BuoyancyProduction

—2pQ jUms 1%mCikm
2 oy o, 2P Tk + W jem) (5.50)

F;j=Production by System Rotation

P\8z; " Ba:)

¢.,=Prcssure Strain  &ij —Dlaatpatlon

(au. 6u,) Y Ou; Gu;
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Of the various terms in these exact equations, C;j,D‘-['J-,P,—J-, and F;; do not re-

quire any modeling. However, DX, G;;, ¢:; and ¢;; need to be modeled to close the

179

equations.

5.2.4.2 Modeling Turbulent Diffusive Transport

DY can be modeled by the generalized gradient-diffusion model:

o kuru; Ougu;
T 17

However, this equation can result in numerical instabilities, so it has been sim-
plified to use a scalar turbulent diffusivity as follows (Lien and Leschziner, 1994):
DT — J (u‘ au,-uj)
ij

Oz, \o, Oz

(5.52)

where g, is the turbulent viscosity.

A value of or = 0.82 is derived by applying the generalized gradient-diffusion
model to the case of a plane homogeneous shear flow. Note that this value of oy is

different from that in the standard and realizable k£ — ¢ models, in which o= 1.0.

5.2.4.3 Linear Pressure-Strain Model

The classical approach to modeling ¢;; uses the following decomposition:

éi; = bisn + dij2 + b5 (5.53)

where ¢;;1 is the “slow pressure-strain” term, also known as the return-to-isotro
7 P PY

term, ¢;;,2 is called the rapid pressure-strain term, and ¢} is the wall-reflection term.
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5.2.4.4 Boundary Conditions for the Reynolds Stresses

At walls, the near-wall values of the Reynolds stresses and ¢ are computed from
wall functions. Explicit wall boundary conditions are applied for the Reynolds
stresses by using the log-law and the assumption of equilibrium, disregarding con-

vection and diffusion in the transport equations for the stresses.

Alternatively, the Reynolds stresses can be explicitly specified in terms of wall-

shear stress, instead of k:

” 2 2 7!
u u u u,u
=51, —2=10, 5+=23 Z2=10
u; uz 754 us

where u; is the friction velocity defined by u; = 1/1w/p, Tw is the wall-shear stress.

5.2.5 Computational Effort

In terms of computation, the zero equation model is the least expensive turbu-
lence model, since no turbulence transport equation is solved. In Spalart-Allmaras

model, only one turbulence transport equation is solved.

The standard k — € model clearly requires more computational effort than the
Spalart-Allmaras model since an additional transport equation is solved. The real-
izable k — £ model requires very little more computational effort than the standard
k — € model. However, due to the extra terms and functions in the governing equa-
tions and a greater degree of nonlinearity, computations with the RNG k£ — & model
tend to take 10-15% more CPU time than with the standard k—¢ model. Compared
with the £ — € models, the RSM requires additional memory and CPU time due to

the increased number of the transport equations for Reynolds stresses.

The standard k¥ — € model is known to be slightly over-diffusive in certain sit-
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uations, while the RNG k — € model is designed such that the turbulent viscosity
is reduced in response to high rates of strain. Since diffusion has a stabilizing ef-
fect on the numerics, the RNG model is more likely to be susceptible to instability
in steady-state solutions. However, this should not necessarily be seen as a disad-
vantage of the RNG model, since these characteristics make it more responsive to

important physical instabilities such as time-dependent turbulent vortex shedding.

5.2.6 Direct Numerical Simulation

Direct numerical simulation (DNS) refers to a class of three-dimensional, time-
dependent numerical solutions of the equations that govern the velocity, pressure,
temperature and species concentrations in a turbulent flow. In general, DNS re-
solves the dynamics of all of the length and times scales of the turbulence, and thus
introduces no modeling assumptions in its implementation. Since the pioneering
studies by Lily (1972) and Patterson (1971), DNS has grown into an important tool
for analyzing a broad range of complex turbulent processes because it provides the
investigator with information that may be difficult if not impessible to obtain from

a conventional experiment.

In direct numerical simulation, the instantaneous Navier-Stokes equations are
solved numerically by means of spectral and pseudospectral techniques. Frequently,
these simulations assume that the flow is periodic in one, two, or three directions,
which are treated by means of spectral Fourier methods. The results of these simu-
lations are not realistic because turbulent flows evolve in both space and time, and
the use of periodic boundary conditions implies that only the temporal evolution of
the flow is important. In addition, direct numerical simulation has been mainly ap-
plied to simple flows such as mixing layers with simple chemistry and low Reynolds
number flows (Givi et al. 1988). Direct numerical simulation of diffusion turbulent

flames may be found in Vervisch’ review (1998).

DNS has to take into account explicitly all scales of motion. It is theoreti-
cally possible to resolve the whole spectrum of turbulent scales directly. DNS is
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not, however, feasiblle for practical engineering problems. To understand the large
computational cost of DNS, consider that the ratio of the large (energy-containing)
scales to the small (energy-dissipating) scales is proportional to Rey /4. where Re, is
the turbulent Reynoslds number. Therefore, to resolve all the scales, the mesh size
in three dimensions will be proportional to Re?/ *. Simple arithmetic shows that, for
high Reynolds numb-ers, the mesh sizes required for DNS are prohibitive. Adding to
the computational ceost is the fact that the simulation will be a transient one with
very small time stepes, since the temporal resolution requirements are governed by

the dissipating scales, rather than the mean flow or the energy-containing eddies.

5.2.7 The Large Eddy Simulations

Turbulent flows are characterized by eddies with a wide range of length and
time scales. The largzest eddies are typically comparable in size to the characteristic
length of the mean flow. The smallest scales are responsible for the dissipation of

turbulent kinetic ene=rgy.

The conventional approach to flow simulations employs the solution of the Reynolds-

averaged Navier-Stokses (RANS) equations. In the RANS approach, all the turbulent

motions are modeled_, resulting in a significant savings in computational effort.

Conceptually, LES is situated somewhere between DNS and the RANS approach.
Basically, in LES, lar-ge eddies are resolved directly, while small eddies are modeled.

The rationale behindl LES can be summarized as follows:

e Momentum, mass, energy, and other passive scalars are transported mostly by

large eddies.

e Large eddies are= more problem-dependent. They are dictated by the geometries

and boundary «onditions of the flow involved.

e Small eddies arwe less dependent on the geometry, tend to be more isotropic,

and are consequently more universal.
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e The chance of finding a universal model is much higher when only small eddies

are modeled.

Solving only for the large eddies and modeling the smaller scales results in mesh
resolution requirements that are much less restrictive than with DNS. Typically,
mesh sizes can be at least one order of magnitude smaller than with DNS. Further-
more, the time step sizes will be proportional to the eddy-turnover time, which is
much less restrictive than with DNS. In practical terms, however, extremely fine
meshes are still required. It is only due to the explosive increases in computer hard-
ware performance coupled with the availability of parallel processing that LES can

even be considered as a possibility for engineering calculations.

The following sections give details of the governing equations for LES, present
the two options for modeling the subgrid-scale stresses (necessary to achieve closure

of the governing equations), and discuss the relevant boundary conditions.

5.2.7.1 Filtered Navier-Stokes Equations

The governing equations employed for LES are obtained by filtering the time-
dependent Navier-Stokes equations in either Fourier (wave-number) space or config-
uration (physical) space. The filtering process effectively filters out the eddies whose
scales are smaller than the filter width or grid spacing used in the computations.

The resulting equations thus govern the dynamics of large eddies.

A filtered variable (denoted by an overbar) is defined by
by — 4 G ’ d 4
¢(z) /D¢(w) (z,z')dz (5.54)

where D is the fluid domain, and G is the filter function that determines the scale

of the resolved eddies.

The finite-volume discretization provides the filtering operation:
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¥(z) = % fV ¢z)dz’, ' €V (5.55)

where V is the volume of a computational cell. The filter function, G(z, z'), implied
here is then

G(z,z") ={ VY for eV (5.56)

0 othervise

Since the application of LES to compressible flows is still in its infancy, the theory
is presented here for incompressible flows. Filtering the incompressible Navier-Stokes

equations, one obtains

dp  Opu;
% I 0 (5.57)

and

2(—.)+i(ﬂ.ﬁ‘.)— 0 aﬂ; _613__8*&,-
ot pui a..":j puitti) = 6:1:,- ”aa:,- oz; 6:Bj (5'58)

where 7;; is the subgrid-scale stress defined by

Tij = pUU; — PUU; (5.59)

5.2.7.2 Subgrid-Scale Models

The subgrid-scale stresses resulting from the filtering operation are unknown,
and require modeling. The majority of subgrid-scale models in use today are eddy

viscosity models of the following form:
1 —
Tij — §Tkk5ij = —2p,S5; (5.60)

where y. is the subgrid-scale turbulent viscosity, and S;; is the rate-of-strain tensor

for the resolved scale defined by
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5. = (2% 9%
Si = ( oz + 3:1:,-) (5.61)

There are two models for y;: the Smagorinsky-Lilly model and the RNG-based
subgrid-scale model.

5.2.7.3 Smagorinsky-Lilly Model

The most basic of subgrid-scale models was proposed by Smagorinsky (1963)
and further developed by Lilly (1966). In the Smagorinsky-Lilly model, the eddy

viscosity is modeled by

pe = pL3|S| (5.62)

where L, is the mixing length for subgrid scales and |S| = 1/(25:;5;)-

5.2.7.4 RNG-based Subgrid-Scale Model

Renormalization group (RNG) theory can be used to derive a model for the
subgrid-scale eddy viscosity (Yakhot et al, 1989). The RNG procedure results in an
effective subgrid viscosity, pess = i + ¢, given by

2# 1/3
pors =14+ 1 (1L ) (5:69
where
Hs = (Crng V1/3)2 V 2§ij-§£j (5.64)

H(x) is the Heaviside function:

z, >0

H(z) = { (5.65)

0, z<0
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V is the volume of the computational cell. The theory gives Crng = 0.157 and
C=100.

In highly turbulent regions of the flow (g: >> ), pess = g5, and the RNG-based
subgrid-scale model reduces to the Smagorinsky-Lilly model with a different model
constant. In low-Reynolds-number regions of the flow, the argument of the ramp
function becomes negative and the effective viscosity recovers molecular viscosity.
This enables the RNG-based subgrid-scale eddy viscosity to model the low-Reynolds-

number effects encountered in transitional flows and near-wall regions.

5.2.7.5 Boundary Conditions for the LES Model

The stochastic components of the flow at the velocity-specified inlet boundaries
are accounted for by superposing random perturbations on individual velocity com-

ponents as

T =< w; > +IY|T| (5.66)

where I is the intensity of the fluctuation, % is a Gaussian random number satisfying

% =0, and \/1[):;:1.

5.3 Computational Methods

The numerical methodologies are used to solve the partial differential equations
governing combustion phenomenon that include fluid dynamics, chemical thermo-
dynamics, chemical kinetics and heat transfer. The solution techniques must be
selected to achieve the best result. The most prominent computational methods
are finite difference methods, finite volume methods, finite element methods and

spectral methods. The finite difference methods, specially SIMPLE (semi-implicit
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method for pressure-linked equations), are the most popular techniques in combus-
tion simulation. The spectral methods are a new class of numerical algorithms.
The widespread application of spectral methods has been motivated because their

relatively higher numerical accuracy as compared to more conventional approaches.

5.3.1 The SIMPLE and SIMPLEC Techniques

A fully implicit method is the one described by Patankar (1980). In this tech-
nique, which was originally developed for incompressible flows, the momentum and
continuity equations are manipulated in such a manner that a Poisson equation is
obtained for the pressure. The resulting pressure equation replaces the continuity
equation, while the momentum equations are used to determine the velocity field.
The pressure and momentum equations are coupled through the pressure and ve-
locity components. Because of the coupling between the pressure and momentum

equations, the discretized forms of these equations are solved iteratively.

The SIMPLE method (Patankar, 1980) employs a sequential iteration in which
the equations for each variable are solved repeatedly in succession. Point or line
block iterative methods (Vanka, 1986) can also be used to solve for all the dependent

variables simultaneously.

The advantage gained by implicit discretization is no time-step limitation. It
is somewhat offset by the use of iterations that make time-dependent calculations
rather expensive because iterations must be performed at each time step. Moreover,
the iterative process may be slow or nonconvergent and under-relaxation may be

required.

SIMPLE technique is applicable to both incompressible and compressible flows,
since the pressure, rather than the density, is treated as a dependent variable. Be-
cause the density in incompressible flows does not appear at all in the continuity
equation as it does in compressible flows, the methods that calculate the pressure

from the equation of state and use the density as a dependent variable are not valid
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for incompressible flows. With SIMPLE, a Poisson equation for the pressure is ob-
tained, the continuity equation reduces to a compatibility condition for the velocity
field. The SIMPLE algorithm uses a relationship between velocity and pressure

corrections to enforce mass conservation and to obtain the pressure field.

If the momentum equation is solved with a guessed pressure field p*, the resulting

face flux J}‘

J; = J; +ds(p — P) (5.67)

does not satisfy the continuity equation.

where

A2
dy =27 (5.68)

ap

Consequently, a correction J} is added to the face flow rate J; so that the

corrected face flow rate J;

Jp=J;+J; (5.69)

satisfies the continuity equation. The SIMPLE algorithm postulates that J} be

written as

J; = di(pls — Pia) (5.70)

. .
where p is the cell pressure correction.

The SIMPLE algorithm substitutes the flux correction equations into the discrete
continuity equation to obtain a discrete equation for the pressure correction p' in

the cell:

a,p = Zbanbpnb +b (5.71)
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where the source term b is the net flow rate into the cell:
N, Jaces

b= S 3 (5.72)

nb

The pressure-correction equation may be solved using the algebraic multigrid(AMG)
method. Once a solution is obtained, the cell pressure and the face flow rate are

corrected using

p=p" +ayp* (5.73)
Jr = J} +ds(po — pua) (5.74)

Here a, is the under-relaxation factor for pressure. The corrected face flow rate

J; satisfies the discrete continuity equation identically during each iteration.

With SIMPLEC, the pressure-correction under-relaxation factor is generally set
to 1.0, which aids in convergence speed-up. The SIMPLEC procedure is similar
to the SIMPLE procedure outlined in SIMPLE. The only difference lies in the ex-

pression used for the face flow rate correction J}. As in SIMPLE, the correction

equation may be written as

Jr = J; +de(pg — Poa) (5.75)

where the coefficient d. is defined as
d. = pAj/(as — %anb) (5.76)

The use of this modified correction equation has been shown to accelerate conver-

gence in problems where pressure-velocity coupling is the main deterrent to obtaining

a solution.



5.3.2 Spectral Methods

The spectral methods (SPM) have been introduced and widely utilized in the
field of combustion, mostly in the area of turbulent combustion. The improved accu-
racy can, in some cases, allow the physical phenomenon to be "captured” with fewer
computational points, thereby allowing the physics of the problem to be simulated
with less severe restrictions on the degree of numerical discretization. In simulat-
ing turbulence, this feature is particularly appealing because there exists at high
Reynolds numbers a wide range of physical scales (Tennekes 1972) that must be
accurately and efficiently accommodated in order to achieve a successful simulation

(Zang et al. 1989).

Spectral solution of a partial differential equation involves the approximation
of the solution of the equation as a truncated series of known and predetermined
smoothing functions. For example, the approximate solution of a mixed initial
boundary value problem describing the transport of a variable U(z,t) involves the
approximation of the dependent variable U in terms of the Nth order-series expan-
sion of the type:

N
U(z,t) = 3 _ an(t)a(z) (5.77)

n=0

In this approximation, N is the truncation cut-off and represents a measure of
the resolution or the accuracy of the approximation. {¢,.(z)},n=0,1,... N are call
the basis functions (also referred to as the expansion functions or the trial functions)
and are prescribed a priori in such a way that the differential equation is satisfied
as closely as possible by the truncated series expansion. {a,(t)} are the expansion

coefficients, and their determination is the subject of spectral approximation.

The most familiar spectral approximations are those that represent the depen-
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dent variable in terms of Fourier-series expansion. For a one-dimensional function,

U(z) on z € [0, 2], the Fourier expansion is given by:

U(z) = Y. anexp(inz) (5.78)

n=—o0

with the test functions being the same as the basic functions but normalized to
satisfy the orthonormality condition;

. | :
an = 2—1;./; U(z)exp(—inz)dz (5.79)

The Fourier expansion function exp (inz) is primarily applied to periodic func-
tions in a normalized domain, z € [0, 27] (i.e., U(z +2xl) = U(z),l = 0, £1,+£2,...)
and exhibits a unique feature in that the nth coefficient of expansion a, decreases
more rapidly than any inverse power of n when U is sufficiently smooth. In the nu-
merical approximation of Equation (5.78) by a truncating method the infinite-series

expansion is truncated as

N/2-1

U(z)= D anexp(inz) (5.80)
n=-N/2

Note that the expansion coefficients used in this truncated expansion are essen-
tially the same as those obtained by infinite-series expansion. In Fourier spectral
methods the derivatives of the function can be calculated rather easily. They are
expressed by the analytic derivatives of the finite series that approximate the de-
pendent variable. For example, in both truncating and interpolating series the first

derivative is represented by

dU,(z) _ NEI* . .
—-2;(:—)-= Y~ inanexp(inz) (5.81)
n=—N/2

This procedure can be generalized for the evaluation of higher derivatives:
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N/2-1
_—d";U,E:E) = Y (in)"anexp(inz) (5.82)
z n=—N/2

Those equations provide more accurate estimate of the derivatives than the one
of the finite-difference discretization. The limitation of spectral approximations
is the difficulty in simulating complex geometries. By the way, this method is
invoked only for spatial discretization and not for temporal. This is similar to
finite element procedures. In numerical simulations of boundary-value, ordinary
differential equations, elliptic partial differential equations and spectral methods
may be implemented directly. For initial-value ordinary differential equations as
well as parabolic and hyperbolic partial differential equations, a complete algorithm
may include the combination of a spectral approximation for the spatial variations

and an appropriate finite difference procedure for representing the time derivatives.
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Chapter 6

Chemical Reaction Dynamics

Non-reacting turbulent flows are highly challenging to model. When chemical
reactions occur, the problems become even more complex, since the turbulent fluid
flow is further coupled with chemical kinetics and quite often with phase changes.
This is why the study of turbulent reacting flows is one of the most challenging fields
of engineering science. In this chapter, several combustion models for turbulent

diffusion flames are summarized and a simplified EBU model is presented.

6.1 Probability Density Function Model

In many problems of practical interest, the chemical reaction rates are fast so
that the reaction is completed as soon as the reactants are mixed. The classical
approach to the solution of these problems is to describe the mixing by obtaining
the solution for a conserved scalar. The fast chemistry assumption implies that the
instantaneous molecular species concentrations and temperature are functions only

of the conserved scalar concentration at that instant. The functions are nonlinear,
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however, and the central problem becomes that of linking the means and higher
moments of the species and temperature to those of the conserved scalar. This is
usually accomplished by considering the complete probability density function of

the conserved scalar.

Linear relationships among all the conserved scalars exist only when there are
two uniform reactant feeds. This restriction on the reactant feed only extends to
elemental composition; each feed may be in several streams each of which may have
any state of chemical aggregation, e.g., it may be partially reacted or pyrolyzed. If
enthalpies are to be included in the conserved scalar set, then the enthalpies of the
two feeds must be uniform. Uniformity here implies spatial and temporal constancy.

Whern there are three feeds there are two independent conserved scalars and so on.

6.1.1 Probability Density Function Modeling Approach

The mixture fraction/PDF modeling approach involves the solution of transport
equations for one or two conserved scalars (the mixture fractions). In this approach,
transport equations for individual species are not solved. Instead, individual compo-
nent concentrations for the species of interest are derived from the predicted mixture
fraction distribution. Reaction mechanisms, which may be unknown or exceedingly
complex, are not explicitly defined. Instead the reacting system is treated using in-
finitely fast chemistry (the flame sheet or “mixed-is-burned” approach), or chemical
equilibrium calculations. Physical properties of chemical species and equilibrium
data are obtained from the chemical database. Finally, the interaction of turbulence

and chemistry is accounted for with a probability density function or PDF.

6.1.2 Mixture Fraction

The basis of the mixture fraction modeling approach is that under a certain

set of simplifying assumptions the instantaneous thermochemical state of the fluid
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is related to a conserved scalar quantity known as the mixture fraction f. For a
binary system consisting of fuel and oxidizer, the mixture fraction can be written in
terms of the elemental mass fraction as Sivathanu and Faeth (1990):

& —&o
f= €kr ~— Exo

(6.1)
where {; is the elemental mass fraction for some element, k. Subscript O denotes
the value at the oxidizer (or air) stream inlets and subscript F' denotes the value at
the fuel stream inlets. £ might represent elemental carbon, for example. For simple
fuel/oxidizer systems, the mixture fraction can be stated more simply as the local

mass fraction of burned and unburned fuel.

If a secondary stream (another fuel or oxidant, or a nonreacting stream) is in-
cluded, the fuel and secondary mixture fractions are simply the mass fractions of the
fuel and secondary streams. The sum of all three mixture fractions in the system

(fuel, secondary stream, and oxidizer) is always equal to 1:

ffuel + fuc + fo;- =1 (6.2)

6.1.3 Transport Equations for the Mixture Fraction

As noted above, the mixture fraction, f, is a conserved quantity. Its value at each
point in the flow domain is computed through solution of the following conservation

equation for the mean (time averaged) value of f in the turbulent flow field:

a, — 0 - 0 (u:Of
F0D + (o) = - (£22L) 4 5. 6.3)

The source term, Sy, is due solely to transfer of mass into the gas phase from

liquid fuel droplets or reacting particles. In all other cases there are no sources of f.

In addition to solving for the mean mixture fraction, a conservation equation for
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the mixture fraction variance, f 2, is solved (Jones and Whitelaw, 1982):

O¢ 6:1:,

79 — 2 _
( pf?) + —(pu,f*) F - (" :9f ) + Cype (% ) - Cdp%f'z (6.4)

where the constants oy, C, and Cy take the values 0.7, 2.86, and 2.0, respectively.

The mixture fraction variance is used in the closure model describing turbulence-

chemistry interactions.

6.1.4 Various Forms of PDF Used in Turbulent Flames

Various forms of PDF have been adopted by different investigators in turbulent

combustion calculations. The commonly used ones are the following:

6.1.4.1 The Double Delta Function

The double delta function is given by

05, f=F-7?
p(f)=4 05 f=F+/7? (6.5)

0, elsewhere

with suitable bounding near f = 1 and f = 0. One example of the double delta
function is illustrated in Figure 6.1. As noted above, the double delta function PDF

is very easy to compute but may be less accurate than the alternate S-function PDF.

The double delta function is the most easily computed, while the S-function
is thought to represent most closely experimentally observed PDFs. The shape
produced by these functions depends solely on the mean mixture fraction, f, and

its variance, f'2.
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Figure 6.1  Example of the Double Delta Function PDF Shape

6.1.4.2 Clipped Gaussian Distribution

Lockwood and Naguib (1975) proposed and used a clippedl Gaussian distribution.

This model can be divided into three regions:

Region 1: (f = 0)

2
P(f,z:) = /_000 a—(z—i)—ﬁexp [—% (f ; “) E df (6.6a)

Region 2: (0 < f < 1)

O_—(Qi_Tlﬁexp [—% (f ; 'u)z] (6.6b)

Region 3: (f = 1)
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I” sy [“i’ (f - ”) } df (6.60)

The distribution is represented by the Gaussian function for the range 0 < f <
1., but the tails of the distribution are represented by é-function at f=0 and 1. It

should be noted that Lockwood and Naguib used Reynolds averaging in their work
instead of Favre averaging.

-}

plf)

T

o

Figure 6.2  Clipped Gaussian pdf in terms of mixture fraction

6.1.4.3 The 3-Function

The A-function PDF shape is given by the following function of f and T'?:

I e i
PO = T g (67)

where

(6.8)



and

B=(1-7F) [f(l ) 1] 6.9)

The integral in the denominator is called Beta function B(a, 8), which can be
expressed in terms of several Gamma functions as I'(a)T'(8)/T'(a + B).

Figures 6.3 and 6.4 show the form of the 8 function for two conditions of f and
=

6.1.4.4 Student’s t-Distribution

Student’s t-distribution (Speigel, 1975) can sometimes be used to assess experi-

mental uncertainties. The pdf of Student’s t-distribution has the following form:

p(t) = - (%1) 2\ (n+1)/2 (610)
vaaT (2) (1+£)

for —oo < t < 0. In the above equation, n is the number of degrees of freedom,

the mean p = 0, the variance

ot = for n>2 (6.11)

and
= X'vn 6.12
t=5 (6.12)

where x* is an independent random variable which has mean equal to zero and
variance equal to 0%. As n approaches oo, the Student’s ¢-distribution approaches

the normal distribution.
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Figure 6.3  The $ function (F = 0.3 and f? = 0.005)
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6.1.4.5 Alternative Formulation of the Clipped Gaussian
PDF

Kent and Bilger (1977) considered an alternative formulation of the clipped Gaus-

sian pdf whereby intermittence was utilized. They proposed the following formula:

p(f,z:) = [1 — I(z:)]6(F) + I(z:)pa(f, ) (6.13)

where p; (f, z;) is the pdf for turbulent flow, for which a clipped Gaussian distribution
was used, and I(z;) is the intermittence obtained from empirical correlation. They
found that nitric oxide concentrations are particularly sensitive to the form of the

pdf used.

6.1.5 Evaluation of PDF Model

The mixture fraction modeling approach has been specifically developed for the
simulation of turbulent diffusion flames and similar reaction processes in which tur-
bulent mixing is the limiting rate for reaction progress. For such systems, the PDF
method offers many benefits over the finite rate formulation. The mixture fraction
method allows intermediate species formation, dissociation effects, and the coupling
between turbulence and chemistry to be accounted for in a rigorous way. The method
is computationally efficient in that it does not require the solution of a large number
of species transport equations. The approach has the additional benefit of allowing
a more accurate estimation of the flow field mean density than is possible using the
finite rate formulation. Note that the mixture fraction approach can be applied to

reacting or non-reacting turbulent flows.

The mixture fraction approach can be used only when reacting flow system meets

several requirements. First, the mixture fraction approach requires that the flow be
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incompressible and turbulent. Second, the mixture fraction approach can only be
applied to diffusion reaction systems; it is not applicable to premixed or partially

premixed systems.

6.2 Chemical Equilibrium Model

The conservation species transport equation takes the following general form:

0 0 a ~
é?(pY;r) + a—x‘_(me;I) = —a—ziJ;',i + Ry + Si (6.14)

where Y is the mass fraction of species 7’. An equation of this form will be solved
for N-1 species where N is the total number of fluid phase chemical species present
in the system. Sy is the rate of creation by addition from. J;; is the diffusion flux of
species 7', which arises due to concentration gradients. The diffusion flux in laminar

flows can be written as

oYy
Jug = —PD:".mb—;

Here Dy ,, is the diffusion coefficient for species i’ in the mixture.

In turbulent flows, the mass diffusion is in the following form:

U ST S €4
J:',z— (th',m + SC:) ax‘_

where Sc¢; is the turbulent Schmidt number, (g:/pD,) (with a default setting of 0.7).

The reaction rates that appear in Equation (6.14) as source terms Ry can be
computed from Arrhenius rate expressions. Models of this type are suitable for
a wide range of applications including laminar or turbulent reaction systems, and

combustion systems including premixed or diffusion flames.
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6.2.1 Reaction Rate Calculations

The source of chemical species i’ due to reaction, Ry, is computed as the sum of

the reaction sources over the Ny reactions that the species may participate in:

Ry =M:> Ruy (6.15)
k=1

where M is the molecular mass of species i and R.v,k is the molar rate of cre-
ation/destruction of species i’ in reaction k. Reaction may occur in the continuous
phase between continuous phase species only, or at surfaces resulting in the surface
deposition or evolution of a continuous-phase species. The reaction rate, Ry, is
controlled either by an Arrhenius kinetic rate expression or by the mixing of the

turbulent eddies containing fluctuating species concentrations.

6.2.2 The Arrhenius Rate

Consider the kth reaction written in general form as follows:

N ) kfx N "
Y vigAn Py > vasAn (6.16)
=1 b,k d=1

N number of chemical species

vy  stoichiometric coefficient for reactant 2’ in reaction &
vpi  stoichiometric coefficient for product ¢’ in reaction &
A symbol denoting species 2’

ks;r  forward rate constant for reaction k

ky k backward rate constant for reaction k&
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Equation (6.15) is valid for both reversible and non-reversible reactions. For

non-reversible reactions, the backward rate constant kg is simply omitted.

The summations in Equation (6.15) are for all chemical species in the system,
but only species involved as reactants or products will have non-zero stoichiometric
coefficients; species that are not involved will drop out of the equation except for

third-body reaction species.

A
The molar rate of creation/destruction of species 7’ in reaction k, Ry «, in Equa-

tion (6.14) is given by

N ' N 14
Ro g = T(vie — vir k) (kf.k [1Cs)"* — ks T [Cj']n"'"‘) (6.17)
=1 j'=
where
Cj molar concentration of each reactant or product species ;' (kmol/m?)

Nk  Trate exponent for reactant ;' in reaction k
N+  rate exponent for product j' in reaction k

and I' represents the net effect of third bodies on the reaction rate. This term is

given by

N
L =3 vuCy (6.18)
J'

where «;/ is the third-body efficiency of the j'th species in the kth reaction.

The forward rate constant for reaction k, ks, is computed using the Arrhenius

expression

ksr = AxT*exp(—Ey/RT) (6.19)

where

Ak pre-exponential factor (consistent units)
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Br temperature exponent (dimensionless)
E; activation energy for the reaction (J/kmol)

R universal gas constant (J/kmol-K)

The values of v}z, v 1, 0% &, 05 ¢, Bk, Ak, Ei and 7j can be provided during the

problem definition.

If the reaction is reversible, the backward rate constant for reaction k, ks, is

computed from the forward rate constant using the following relation:

ko e = o~ (6.20)

where K} is the equilibrium constant for the kth reaction, computed from

o o Nr "
Ask AHk) ( D )Zk=l itk (6.21)

K, = —
s=exe (- ) (7
The term within the exponential represents the change in Gibbs free energy, and

its components are computed as follows:

AS; 3

7= ;(U‘Z.k —Yon) g (6.22)
AH X, , \hS
BT = 'g(v;,'k - vi’,k)f (6.23)

where S? and kY are, respectively, the standard-state entropy and standard-state
enthalpy (including heat of formation). These values are specified as properties of

the mixture material.

6.3 Eddy Dissipation Model

The influence of turbulence on the reaction rate is taken into account by employ-
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ing the Magnussen and Hjertager model (1977). In this model, the rate of reaction
R i is given by the smaller (i.e., limiting value) of the two expressions below:

a g YR

i k= v’-, M;lA —_———
R‘l " i’k pk v;-'t'kMR (6.24)
a £ Zp YP
Ry = v MuABp——F———
t’, t k Z;'Y v;"l'k.A{j' (6-25)
where
Yr represents the mass fraction of any product species
Yr represents the mass fraction of a particular reactant
M represents the molecular mass of species
A an empirical constant equal to 4.0
B an empirical constant equal to 0.5

The eddy-dissipation model relates the rate of reaction to the rate of dissipation
of the reactant- and product-containing eddies. (k/€) represents the time scale of
the turbulent eddies following the eddy-dissipation model of Spalding (1970). The
model is useful for the prediction of premixed and diffusion problems as well as for

partially premixed reacting flows.

6.4 Varied Coeflicient EBU Model

Three eddy-break-up models are presented respectively by Spalding (1970) and
Magnussen-Hjertager (1976). It is true that the Magnussen and Hjertager model is
more widely used. In this model there is a parameter A which is given a value of
4. In this section, this EBU coefficient A may be presented more adequately as a
PDF function to reflect its dependence with the local turbulence interaction with

combustion. The calculating accuracy is improved.
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Givi (1984) pointed out that there is no single constant value of A (in Givi’s
paper, it serves as H~!) that can be employed throughout the whole flow field both
axially and radially. Their results show that the value of A is a function of radial
distance and there is a peak at the shear layer where reactant consumption is most

important. The peak takes place at r = Do = 2R; where R; is the inner jet radius.

Brizuela and Bilger (1996) suggested that the EBU coefficient A may be com-
puted explicitly as a function of the mean and standard deviation of mixture fraction.

Higher accuracy is obtained.

6.4.1 Basic Principle

For a one-step chemical reaction such as

F+r0 — (r+1)P (6.26)

where r is the air:fuel ratio on a mass basis, O is the oxidant, F the fuel and P the

product.
Bro =Yr —Yo/r (6.27)
Brp =Yr+ Yp/(r+1) (6.28)
Pop =Yo +rYp/(r + 1) (6.29)

are conserved scalars. Y is the mass fraction.

The general mixture fraction can be defined as

B—5
f= 3, — B, (6.30)
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The subscripts 1 and 2 refer to the composition in the two feeds and B is a

Shvab-Zeldovich function. f is the mean of f.

When the feed materials are in exact stoichiometric proportion, let Equation

(6.30) B = Bro, and notice Yr =Yp =0

Bro = 0 (stoichiometric reaction) (6.31)
(Bro)1 = YF (pure fuel) (6.32)
(Bro)2 = Yo/r (pure oxidant) (6.33)

so,
fs= T—Y;Yi—i,; (6.34)

For fast chemistry or the one-step irreversible reaction, there will be no oxidant
present for mixtures richer than stoichiometric (f > f;) and no fuel present when
the mixture is weaker than stoichiometric (f < f,). Both will be zero when the
mixture is stoichiometric. This yields the functional relationships shown in Figure
6.5.

The constant

Y, =Yr+ %Yo = Yr/(1 - f) (6.35)

The standard deviation

g=Vf? (6.36)

The Heaviside function is defined as
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Figure 6.5 Composition structure functions
1 if 620 -
H(§) = (6.37)
0 if 6<0
The chemical-species conservation equation
oY; aY; a aY;
-t Phdtal A i— ) = w; 6.38
P ot TP g T Bk ( D axk) w (6.38)

Here Y; is the mass fraction of chemical species 7 that has a net chemical pro-

duction rate w;, p the density and ux the component of velocity in the coordinate

direction zj.



6.4.2 Mean Properties

6.4.2.1 Parameter J;

In Bilger’s model, J; is an important parameter. Its definition is:

n(E2D) = [F (B2 D) prog - L Dm- o)

where ﬁ( f; z) is the probability density function, g is standard deviation.

Jl (fs"f)
g

[/01 (f o ) By~ |, (f’;f ) ﬁ(f;:c)df]

£ us-
= [EL- (5 o] - E=S s -7y
- fgf[l—H(f, pi+ [ (=L f’)P(f,:v)df
= Lolug-pys [ (L) pin (6.40)
when f > f,, H(f, — f) = 0, from (6.39)
5= [ (EL) B = 0 (6.41)

when f < f,, H(f — f,) = 0, from (6.40)
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Totally

n= (%) Bf;x)df > 0

So, J; is non-negative.

6.4.2.2

or

The general Favre averaging form of mass fraction(Bilger, 1980):

for ?;

Yo =rY,(fs = f)

Y, =0

o

The Mass Fraction with f and J;

V@) = [ Ye(DB(fiz)df

when f < f,

when f > f,
Yo(f) =rYa(fe = DH - )
1 ~
[ ¥s(hB(si)ef

L aha- pBG2)s + [ 0 Bsia
rY, /0" (fo = P(f;2)df

(6.42)

(6.43)

(6.44)

(6.45)

(6.46)
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add to Equation(6.45)
Vo = YD -r%( - PDHG. =+, [ (- DB(Fi2)df
= Y +r, | [ - NP - (- PG~ P

= v+ vas [ [ (E2L) Ptriarar - L )
= o)+t (BL ) (6.47)
for Yr
YFr =0 when f < f,
Yr =Yo(f — fs) when f > f,
or
YE(f) =Y,(F— f)H(f - f.) (6.48)

% = [ VNP
= [To-Biadr+ [ v - 2B mes
Y, [ (F = £)BUs ) (6.49)

notice

Hf-f)+H(f,-fi=1 (6.50)

In spite of what f equals to, always there is one H and only one H equals 1, the
other equals 0.



H(f-f)=1-H(f.- ) (6.51)

into Equation(6.48)

YE()

Yo (F— £l — H(f. - f)]
Y, [(F - £) = (F = £)H(f. - )
Y, [(F—£)+(f, - HDH - D) (6.52)

1 ~ 1 ~ fs -
[ =By = [(F-£PUa)d — [(F = £)B(f50)df

= (F-f0+ [ (F - LB (6.53)

from (6.52) (6.53) into (6.49)

Yr = Y5(H) - Yo l(F = £)+(fs = DH(f. = D+ YL [(F - £2)
+ [ - B2
_ vl F Bl fs=f\Nsp nwe Fs=Foe 7
= &P+ Yoo | [ (L) Birions - £ Lais, - )
= Yi(]) + Yaod, (f-g—f) (6.54)
for f’;
Yo = (r+ )Y, f(1 - f,) when f < f,

Ye=(+1)Y,f,(1-f) when f > f,

or
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Ylg(f) = (T‘ + I)Ya[f(l - fa)H(fs - f) + fa(l - f)H(f_ fS)] (6“55)
%= G408, [a- ) [ B+ L0 - DPrio] - 650)

%= Y, 0= £ [ PG
1 ~ Ss ~
s ([a-pPuiaar - [“a-nPrioa)|
= 4y, [["PUod— £ [ P - 4 [0 - NP +
(r+ 1Y, [ [0 - DPF)]
[ fo 1s ~ -
= w+vn, [ B - [ 1= NP+ A0 - P

A [ B -1, " B(fi)dr + £, - f)]
= —(r+1)Y, [ [ = B~ 5.0 - f)] (6.57)
into (6.56)
Yo = Y5(H)—(r+ 1Y, [f0-f)H-H+ Q- HHEF-F)| -
(r+1)Y, [ [ = B - 1.0 - f)]
= YE() -+ DY, [f0 - f)H - D+ £0-F) - 0 - DES -
—f(1= D]+ + DY, [ [ G- nEe x)df]
= Y5 - G+ 0%, [ - PG - U= P = £ -F+ 710

= YE(H) - (r+1)Y, [ /0"(f, — HP(f;z)df — H(f, — F)(fs — f)]

= YE() - (r + \Yaodh (f’; f ) (6.58)

As J; is non-negative it is seen from Equations (6.47), (6.54) and (6.58) that the

effect of the turbulence is to increase the mean concentration of reactants above the



”laminar” value at the mean mixture fraction. The mean product concentration is

correspondingly reduced.

6.4.3 Bilger Model

The result of Bilger (1976) shows that the mixing-limited reaction rate is pro-
portional to the probability density of the mixture being stoichiometric.

In the EBU model, the rate of consumption of fuel,

oy = —Aﬁf’L% (6.59)

where Y7, is the limiting reactant mass fraction, i.e., the lowest of either mass fraction

Y or ¥,/r. Bilger used the preceding theory and got

_ gg_2pz(23)
A= 5 _Jl(zs) (6.60)

where z, = (f, — f) /g and p. is the pdf expressed in terms of the variable z, which is
a form of the mixture fraction f, centered and normalized using mean and standard

deviation. A typical value for C,, is 2.0, so

A= Pel=) (6.61)

6.4.4 Simplified Model

There exists a difficulty in FLUENT to apply Bilger’s model. In order to input
the coefficient A "Finite-Rate Reaction” must be chosen, when Equation (6.60) is
used to calculate A, the mean f and standard deviation g are needed which only
are obtained in "PDF”. But in FLUENT only one model, "Finite-Rate Reaction”
or "PDF”, is permitted to be used. By the way, in every iteration, the transport
equations about f and g are solved and get new A value, it spends a lot of CPU

time. There are several methods to overcome the difficulty.
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6.4.4.1 The Constant

In Magnussen (1977) model, A equals 4. Brizuela (1996) suggests that a value
of A = 2 may be taken as a flame brush average. He thought that this value will be
particularly accurate in the slightly rich region of the flame.

6.4.4.2 Brizuela Empirical Fit

Brizuela (1996) adopted an empirical fit method. Two equations are obtained

with satisfactory approximation.

wy wom—n [ 1 1 )—p

“e = A Y },o = + - .

PEYs ! (Y} Y, (6.62)
where m-n+p should be of order unity.
One more simplified form is:
—_— _E v f T }7,'

f=4p7 = =~ X

JEANE? (o0
Yo

6.4.4.3 The Improved Model

Since it is difficult to calculate Ji(z,), it is of interest to eliminate Jy(z;) in the
equation. In user-defined function file, we use the rate of consumption fuel wy to
find a suitable expression to eliminate the parameter A. We can directly solve for

@y

In Equation(6.59) Y, = gY, Ji(2), added into Equation(6.61)
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—_ P:(2s) _ €
wg = — Y, Ji(z)—
f Jl(za)pg B 1( )IC (6_64)
— <« €
= —pz(z")ngg;
where Y, is a constant.
pz(2s) = gP¢(fs) (6.65)
— < €
1 =—9"P(f:)pYs g (6.66)

Now, Equation(6.66) does not include J;(z;).

Differing from Equation(6.60), Equation(6.66) is not a function of the mean f.
Owing to a typical value of f, = 0.06 for the combustion of hydrocarbon fuels in air,
then in Equation(6.66), Ps(f,) is a constant if P; is given. We just need to know
the value of g. We assume the mixture standard deviation to be constant across the

flame brush, for example, g = 0.5, f; = 0.03. Then Equation(6.65) becomes

Wy = —0.0009P;( f,)ﬁYB-z— (6.67)
Ps may be:
1) The Gaussian form
. 1 _S!;f. )?
p(f) = ol (6.68)
and
1

p(fs) = or (6.69)
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when g = 0.03
p(fs) = \/_ o3 = 13298 (6.70)
2) B function
o) = ~E B prioay gy (6.71)

where the I'-function is defined as

1
I= /0 P-le~%ds (6.72)

When f, = 0.06,g = 0.03, we get

p(f,) = 12.897 (6.73)

The values of p(f,) are almost the same using a Gaussian or 8 form. We can let

p(f,) = 13.0. Finally

By = —0.0117,71/8% (6.74)

It is pointed out that we calculate simultaneously the user-defined rate, finite
chemical reaction rate and standard EBU rate. The slowest rate is used as the
reaction rate and the contributions to the source terms in the species conservation
and energy equations are calculated from this reaction rate. When Bilger’s model
is used, large values of the coefficient A such as 200 may be obtained. But this is
meaningless. The larger coefficient means the faster mixing. The time scale of the
chemical reaction, t., may reach same order of the time scale for molecular mixing,
tm- So when the Damkéhler number Da = t,,/t. = 1, the chemical reaction rate
must be considered. When ¢, > t,,, the chemical reaction rate is the source terms

and the variation of A does not affect the calculating results.
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Chapter 7

Computational Results and

Discussion

In this chapter, the different combustion models are used to calculate laminar
and turbulent reacting flows. The results are compared with experimental data.
For turbulent flow, three kinds of turbulent models, k — &, Reynolds stress and large
eddy simulation are tested. Magnussen and Hjertager(1977) model extended the
eddy-break-up model of Spalding (1971) to a turbulent diffusion flame.

7.1 Laminar combustion

7.1.1 Problem Description

The vertical cylindrical diffusion-lame burner is shown in Fig. 7.1. The burner

consists of two concentric tubes of radii 6.35 mm and 25.4 mm. The geometry for
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this test is shown in Figure 7.2. Fuel issues through the inner tube and air issues
through the outer. Methane is supplied at 5.7 mL/s, or the uniform inlet fuel velocity
is 0.0455 m/s, with a temperature of 300 K. Air is supplied at 187.7 mL/s, or the
uniform inlet velocity is 0.0988 m/s, with a temperature of 300 K. The experimental
apparatus and results are fully described by Mitchell (1980).

Mitchell (1980) points out that several investigators had analyzed the burner
and in most cases these simulations were partial and did not provide a complete
representation of the concentration, temperature and velocity fields established in

the laminar diffusion flame.

In the present computation, the reaction rates are computed by finite-rate for
laminar flow. The one-step, two-step and six-step reactions are used in methane

combustion.

for the one-step model

CH4 + 2 02 — C02 + 2H2O (7.1)

for the two-step model (Westbrook, 1981)

CO +10, - Co, (7.3)

for the six-step model (Hyer, 1991)

CH, + H,0 — CO + 3H, (7.3)

CO + H,0 — CO, + H, (7.6)
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002 -+ H2 - CO + Hzo (7.7)
H, + 3 0, = H,0 (7.8)
H,0 - H, + 1 0, ‘ (7.9)

The coeflicients (Hyer, 1991) for the Arrhenius rate are as shown in Table 7.1.

No. of Eq. Ag E, B
7.1 l.e+12 1.e408 0
7.2 5.012e+11 2.e4+08 0
7.3 2.239e+12 1.7e+4-08 0
74 4.4e+09 1.26e+08 0
7.5 3.0e-+08 1.26e+08 0
7.6 2.75e+10 8.37e+07 0
7.7 9.62e+10 1.26e+08 -0.85
7.8 7.45e+13 1.67e+08 -0.91
7.9 3.83e+14 4.12e+08 -1.05

Table 7.1 The Arrhenius rate coefficients

7.1.2 Results

The computed mesh is shown in Figures 7.3 and 7.4. It involves 9000 nodes.
The under-relaxation factors are different for different variables varying from 0.25
to 0.8. The calculating results for a two-step reaction are very close to the one-step,

so, in the figures only the one-step, six-step and experimental results are shown.



Radial composition profiles of CH,, O,, CO,, H,0, CO, H, and N, at several
axial locations are shown on Figures 7.5 - 7.10 and the test results for Mitchell(1980)
are also shown. Owing that the one-step method can not calculate CO and H,, the

comparison is done only between the six-step and test data.

Analysis of the CH, (Figure 7.5) shows that the two methods overpredict CH,4
and the calculated flame position is further from the burner plate than in the real
case. For O,, both results are the same (Figure 7.6) and the one-step model and the
six-step model overpredict the CO, concentration (Figure 7.7). From Figure 7.8, the
H,O profile first increases with radial distance, peaks at 8 mm in predicted result and
at 7 mm in experimental result, then decreases to zero. The comparison of CO, H,
and N, is shown in Figures 7.9-7.11. In general, the result of the six-step is slightly
better than the one-step results. The one-step model neglects the energy-absorbing
pyrolysis reaction and overpredicts the temperature by about 200-250K. The six-step
model is lower than the experimental result by 50-100K (Figure 7.12). The chemical
reaction model mainly affects the species and the temperature distribution and has
a little effect on velocity. Figures 7.13-7.17 show the temperature and velocity field
of the one-step model. Figures 7.18-7.21 depict the temperature and velocity fields
for the six-step model. It is pointed out that experimental CH, concentration at 1.2

cm is 30%, seems very low; but N, one is 50%, seems over-high.

It is observed that the predicted maximum temperature in the one-step model is
2326K, but in the six-step model, it is 1942K. The one-step mechanism assumes that
the reaction products are CO, and H;0, the total heat of reaction is overpredicted.
In the actual situation, some CO and H, exist in the combustion products with CO,
and H,O. This lowers the total heat of reaction and decreases the flame temperature.
The six-step mechanism includes CO and H,, so we can get more detailed chemical
species distribution. But in the six-step mechanism, more reaction equations are
computed, then more CPU time is spent and more difficult it is to convergence. In
our examples, for one-step and six-step, the numbers of iterations are respectively

626 and 5502.
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Figure 7.3  The structured grid

Figure 7.4  Detailed grid
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Figure 7.14  Temperature field for the one-step reaction

Figure 7.15  The core of temperature field, 7,,,,=2326K, one-step
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Velocity field for the one-step reaction

Figure 7.17  The detailed part of velocity field, one-step



Figure 7.18  Temperature field for the six-step reaction

Figure 7.19  The core of temperature field, T,,..=1942K, six-step

137



Hpprhinbeiinrboninr et

l““uunuuun“
““HHHHIHHH‘
““[HHIHHHHH
lU,IIHIIHIHH“'

r
}

|
11
ll
|

”””““”""HHHHIl|t
l ”“““”””Humu

111 i

vl*

W
ﬁhl

e

Figure 7.20  Velocity field for the six-step reaction

Figure 7.21

|
|
/
|

The detailed part for the velocity field, six-step

138



7.2 TUnstructured Grid

7.2.1 Problem Description

In this section, we will compare the results of structured and unstructured grids
with the same example as in Section 7.1. Both methods use the six-step chemical
reaction model. Figures 7.22 and 7.23 show the geometry and the unstructured mesh
which involves 2337 nodes. In comparison, there are 9000 nodes in the structured
mesh. This is because a triangular mesh allows cells to be clustered in selected
regions of the flow domain, whereas structured quadrilateral meshes will generally
force cells to be placed in regions where they are not needed. So a triangular mesh
can often be created with far fewer cells than the equivalent mesh consisting of

quadrilateral elements.

7.2.2 Comparison with Structured Grid

From Figure 7.24, the comparison with the CH, experimental result shows that
the unstructured and structured methods overpredict the CH, profile. It can be seen
that the unstructured method is better. Similarly, on the predicted O, distribution
along the radial direction, the magnitude of both methods has the same qualitative
trends as the experimental data (Figure 7.25). But the structured grid is closer to
experiment. The comparisons of CO, and H,O are given in Figures 7.26 and 7.27.
It is seen that the structured result is slightly better than the unstructured one. In
Figures 7.28-7.29, the predicted radial profiles of CO and H, are compared with the
test data. It is noted that at 1.2 cm, the maximum temperature location for the
unstructured is slightly closer to the experimental result (Figure 7.30). It is shown
that the velocity follows the trend of the test data (Figure 7.31). Figures 7.32-
7.33 show the temperature distribution for the unstructured method. In general,
the results with the structured and unstructured grids are a bit different, maybe it

causes this difference that different nodes are used.
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The unstructured grid

Figure 7.22

The detailed part for the grid

Figure 7.23
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Figure 7.32  Temperature field for the unstructured grid calculation

Figure 7.33  The core of temperature field, T,,,.=1930K



7.3 Turbulent Combustion

7.3.1 Problem Description

The test facility is shown in Figure 7.34. The combustor was oriented vertically
to minimize three-dimensional effects. The geometry for this test is a cylindrical
combustor with coaxial injectors, where the natural gas is injected by the primary
tube and the air through the secondary annulus, as shown in Figure 7.35. The
total pressure of the combustor is 94 kPa. In the fuel stream, the uniform inlet gas
velocity is 21.3 m/s and the flow rate is 2.982 g/s, with a temperature of 300 K. In
the air stream, the uniform inlet air velocity is 29.9 m/s and the flow rate is 36.3
g/s, with a preheated temperature of 589 K. The detailed test conditions to specify
boundary are given in Table 7.2. The compositions of fuel and air are shown in

Tables 7.3 and 7.4.

Inlet parameters Air Natural gas
Temperature (K) 589 300
Pressure (kPa) 94 94
M (kg/kmol) 28.9534 18.8766
p(kg/m?) 0.48634 0.7114
r (m) 0.0286 0.008
m (kg/s) 0.0363 0.002982
Velocity (m/s) 29.9 21.3

Table 7.2  The summary for the test conditions at the inlet of the combustor
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Mole fraction Mass fraction
CH, 0.84314 0.71857
C,Hg 0.070857 0.11319
N, 0.024286 0.036142
CO, 0.013238 0.030951

H, 0.00085714 9.1793E-05
Ar 0.047619 0.10106
Table 7.3  The fuel composition

Mole fraction Mass fraction
N, 0.7827 0.75729
0, 0.208 0.22988
Ar 0.0093 0.01283

Table 7.4  The air composition

The available experimental measurements for the natural gas combustion have
been carried out by Lewis and Smoot (1981) together with the numerical predictions
of Smith and Smoot (1981) using the chemical equilibrium combustion model with a
finite difference method. Nikjooy et al. (1988) have used the fast chemistry reaction
model and the finite-rate chemistry model with the finite volume method, Elkaim
et al. (1993) and McKenty et al. (1993) with the fast chemistry, PDF, eddy dis-
sipation, chemical equilibrium and micro-lame models with CVFEM, Meng (1994)
has used the classical approximation method and the direct iteration method with
four combustion models, i.e. fast chemistry, eddy dissipation, chemical equilibrium

and micro-flame model with SCVFEM.

In the present computation, a basic scheme is first built and named as "standard”

to compare with other ones. The steady-state, Reynolds averaged Navier-Stokes
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equations for mass, momentum, energy and scalar transport are used to describe
the flow physics. The density is obtained from the ideal gas law. The reaction
rates are computed by finite-rate/eddy-dissipation, i.e. for turbulent flows, both the
Arrhenius rate and the mixing rate are computed and the smaller of the two is used.
The standard k& — € turbulence closure model is adopted. The specific heat values
for the species are defined as piecewise-polynomial function of temperature. The

eight chemical reaction equations are (Hyer, 1991):

CH, + : O, — CO + 2H, (7.10)
CH, + H,0 — CO + 3H, (7.11)
CO + H,0 — CO, + H, (7.12)
CO, + H, — CO + H,0 (7.13)
H, + ; 0, — H,0 (7.14)
H,0 - H, + 3O, (7.15)
C,Hs + O, — 2CO + 3H, (7.16)
C,Hs + 2H,0 — 2CO + 5H, (7.17)

The coefficients (Hyer, 1991) for the Arrhenius rate are as shown in Table 7.5.
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No. of Eq. Pre-expo. Factor Acti. Energy Temp. Expo.
7.10 4.4e+09 1.26e+-08 0
7.11 3.0e+08 1.26e+08 0
7.12 2.75e+10 8.37e+4-07 0
7.13 9.62e+10 1.26e+08 -0.85
7.14 7.45e+13 1.67e+08 -0.91
7.15 3.83e+14 4.12e4-08 -1.05
7.16 4.2e+11 1.256e+-G8 0
7.17 3.0e+08 1.256e+-08 0

Table 7.5  The coefficients of Arrhenius rate in standard computation

The k — € model constants are:

Cre=144, C,,=192, C,=009, o =10, o =13

These values have been found to work fairly well for a wide range of wall-bounded

and free shear flows.

7.3.2 Results

The computational mesh is shown in Figures 7.36 and 7.37. It involves 4014
nodes. The under-relaxation factors are different for different variables varying from
0.15 to 0.5. For example, the energy equation is very difficult to converge, so the
factor is taken as 0.25. The inlet turbulent specification method is intensity and
length scale”. ”"Turbulence intensity™ is 10% and "Turbulence length scales” are 0.8

cm for fuel and 1.75 cm for air.

Radial composition profiles for CH,, O,, CO,, H,0, CO and H, at several axial
locations are shown in Figures 7.38 - 7.43 and the test results of Lewis and Smoot

(1981) are also shown. Those figures show that the calculated results are in agree-
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ment with experimental data. The error comes from two sides. Firstly, the models
include a 2D assumption, while the reaction rate equations and the x — & turbu-
lence closure are not perfect. Secondly, test data accuracy is limited. According to
Lewis and Smoot (1981), the oxygen atom balance errors ranged from -6% to +13%
and the carbon balance errors ranged from -26% to +30%. In brief, the results are
reasonable on the whole to use the base for more analysis and comparison with the
other models. Figures 7.44 and 7.45 show the temperature contours. For the mixing
region near the inlet, the temperature rises quickly. In the latter half of the com-
bustor, the temperature is mostly uniform. The comparison with experiment is in
Figure 7.46. In the Lewis paper, the C,Hg radial concentration profile is not avail-
able. Figure 7.47 shows the calculated C,Hg distribution along the radial direction.
Figures 7.48 and 7.49 depict the velocity field.

Fuel Stream
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Methane ——a - :;ynllor'
;Vlll . ’ ]
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Probe
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Interchangesble 152.4
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Exhaug! ——e——

Figure 7.34  Laboratory combustor (Lewis 1981, dimension in cm)
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Figure 7.35  Geometry of the coaxial combustor in Lewis (1981)
(R; = 0.8cm, R, = 1.1lcm, R; = 2.86cm, R = 10.16cm, L = 1.525m)

Figure 7.36 = The computational mesh

e

Figure 7.37  The detailed mesh
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Figure 744  Temperature field

1380 1800
———————
— ﬁ_\__\\
oy gy [ oa0 1180
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7.4 The Effect of Turbulence Models

7.4.1 Problem Description

This section shows mainly the effect of the turbulence models. The Reynolds

stress model and the large eddy simulation model are selected.

In Reynolds stress model, the pressure-strain term, ¢;; is modeled. The classical

approach to modeling ¢;; uses the following decomposition:

¢i; = Gija + bij2 + & (5.53)

The slow pressure-strain term, ¢;;1, is modeled as

£ 2
$ija = —Crpy [Tuj— §5ijk] (7.18)

with Cl = 1.8.
The rapid pressure-strain term, ¢;;2, is modeled as

2
bij2 = —Ca [(P.-,- +Fij+ Gy —Cyy) — 36;(P+ G — C)] (7.19)

where C; = 0.60, P;, Fi;, Gij, and C;; are defined in Equation (4.50), P = (1/2) P,
G = (l/?)Gkk, and C = (1/2)0}.-;,-.
The wall-reflection term, ¢, is responsible for the redistribution of the normal

stresses near the wall. It tends to dampen the normal stress perpendicular to the

wall, while enhancing the stresses parallel to the wall. This term is modeled as

k3/2
C[Ed

€ 3 3
—_ ’ —— —_ ——
:5;- = OIE (ukumnknm&-j - é-u,-uknjnk — Eujukn;nk)

v (7.20)

/ 3 3
+ C; (¢km,2nknm5ej - §¢ik,2njnk - §¢jk,2nink) Cd
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where C] = 0.5,C; = 0.3, n, is the z, component of the unit normal to the wall, d
is the normal distance to- the wall, and C; = C3/4/k, C,, = 0.09 and x = 0.41.

The Reynolds stresses at the wall-adjacent cells are computed from

uZ u? uZ _ upuy
= 1.09.8, = 0.247, = 0.655, — = 0.255

In LES model, the sub.grid-scale turbulent viscosity is modeled by the Smagorinsky-
Lilly(1966) model

pe = pL%|S| (5.62)

where L, is *he mixing length for subgrid scales and |S| = 1/(25:;5:;). L, is com-
puted using

L, = min(xd, C,V*/?) (7.21)

where £ = 0.42, C, is the Smagorinsky constant. d is the distance to the closest

wall, and V is the volumes of the computational cell.

Lilly derived a value of 0.23 for C, from homogeneous isotropic turbulence in
the inertial subrange. However, this value was found to cause excessive damping
of large-scale fluctuations. in the presence of mean shear or in transitional flows.

Cs=0.1 has been found to yield the best results for a wide range of flows.

7.4.2 Results and Discussion

In all figures, "RS” serves as "Re Stress model” and "LES” is "large-eddy simu-
lation”. Then "standard” serves as k—e& model. Figures 7.50-7.55 present computed
results which include RS and k — € models and measured radial mole fractions of
CH,, CO,, CO, O,, H,, H,0. Figure 7.50 shows the computed and the measured
CH, along the axial distamce. For CO,, the ¥ — € model results are better than RS



model (Figure 7.51). Same results are shown for CO using both models in Figure
7.52. But for O,, the RS model is quite higher than the test data. Figure 7.55 gives
the distribution of the H,O mole fraction, both model results are in good agreement
with experimental data. The temperature distribution for both models is similar
(Figure 7.56). From Figure 7.57, we deal with the large-eddy simulation results.
Overall, the results are not satisfactory. Specially, the predicted radial profile for
the CH, fraction is higher than the experimental and the standard calculated results
(Figure 7.57). But the predicted CO, and CO mole fractions are very low in Figures
7.58 and 7.59, it is difficult to see the line for LES. In most locations, the O, is not
in agreement with test data, specially at 63.2 cm, it is very high. A similar situa-
tion takes place for H,0, at 63.2 cm the fraction of H,0O is low (Figure 7.61). The
calculated temperature distribution is in Figure 7.63. The reason for the predicted
error may be that in this example, the flow velocity is not fast enough in which the

LES model is more suitable.
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Figure 7.50  Radial CH, mole fraction profiles at several axial locations
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7.5 PDF Combustion

7.5.1 Problem Description

The power of the mixture fraction modeling approach is that through calcula-
tion of a single conserved scalar field, f, other important scalars of interest can be
derived without solving individual transport equations to describe them. Given a
description of the reacting system chemistry, and certain other restrictions on the
system, the mixture fraction value at each point in the flow field can be used to
compute the instantaneous values of individual species mole fractions, density and
temperature. If, in addition, the reacting system is adiabatic, the instantaneous val-
ues of mole fractions, density, and temperature depend solely on the instantaneous

mixture fraction, f:

¢: = ¢i(f) (7.22)

for a single fuel/oxidizer system.

Many reacting systems involve heat transfer to wall boundaries by convective
and/or radiative heat transfer. In these systems, and in other systems as well, the
local thermochemical state is no longer related only to f, but also to H*. This is
true because the system enthalpy impacts the chemical equilibrium calculation and
the temperature of the reacted flow. Consequently, change in enthalpy due to heat

loss must be considered when computing scalars from the mixture fraction. Thus,

the scalar dependence becomes

¢: = ¢i(f, H) (7.23)

where H* is the instantaneous enthalpy.

In such nonadiabatic systems, turbulent fluctuations should be accounted for by

means of a joint PDF p(f, H*). The computation of p(f, H*) is not practical for
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most engineering applications, however. The problem can be simplified significantly
by assuming that the enthalpy fluctuations are independent of the enthalpy level.

When this is assumed, we again have p = p(f) and

7= [ 6 TNF (7.24)

Determination of f; in the nonadiabatic system thus requires solution of the

modeled transport equation for time-averaged enthalpy:

O i+ 2 (pum = O (ROET) | Oui
-B—E(pH )+ a—&(putH )= Bz, (cp 8_::::) + 7i; E + Sk (7.25)

where S}, accounts for source terms due to radiation, heat transfer to wall boundaries,

and heat exchange with the second phase.

In the presented work, B pdf shape is assumed for the probability distribution
function. Chemical equilibrium is computed by means of an algorithm for Gibbs’
free energy minimization. The adiabatic and nonadiabatic PDF models are used

and both results are compared with experimental data.

7.5.2 Results and Discussion

In all figures, "pdfa” is "adiabatic-PDF” and ”"pdfn” is "nonadiabatic-PDF”.
Figures 7.64-7.69 show the predicted radial mole fractions of CH,, CO,, CO, O,, H,
and H,0. There are disagreement with test results. From Figure 7.64 it is seen that
the mole fraction of CH, is overpredicted. The one of CO, is underpredicted. The
centerline predicted mole fraction of O, is zero. It is not satisfactory. The result
of H,O is closer to the experimental values (Figure 7.69) than other species. The
nonadiabatic model is just a little better than adiabatic one. The radial mixture
fraction distribution at four sections is presented in Figure 7.70. In both models, at
all section, the mixture fraction is overpredicted. It is noted that the convergence

of both models is very fast. For adiabatic it is less than 400 iterations (Figure
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7.71) and for nonadiabatic it is about 4000 (Figure 7.72). In "standard model”,
the convergent times is over 10000 iterations. So, PDF model spends less CPU
time than other models. The PDF model uses infinitely fast chemistry (with the
chemical equilibrium assumption) therefore with no need to know complex reaction
mechanisms. This is its main advantage. But most real chemical reactions are finite
without equilibrium, so the results with PDF model may cause larger errors than

with other models.
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7.6 Mixing Coefficient

7.6.1 Problem Description

In Section 7.3, we introduced ”Standard scheme” where "Eddy Break-Up” model
is used and the coeflicients A and B equal to 4 and 0.5 respectively that Magnussen
and Hjertager (1977) suggested initially. In general, mixing play a more important
role than chemical reaction in turbulent flow. It is worth to research the effect on
chemical species and temperature with different values of the coefficients. In the

standard scheme, the calculated CO fraction is higher than the experimental one

and the CO, fraction is lower. So, for reaction equation (7.12),

CO + H20 b 4 002 + H2

we use different A and B values, double or half of normal value. The detailed values

are seen in Table 7.6.

Schemes No. Changed A B
1 normal 4 0.5
2 AT 8 0.5
3 BT 4 1
4 AT BT 8 1
5 Al 2 0.5
6 B 4 0.25
7 AlB] 2 0.25
8 AT B 8 0.25
9 Al BT 2 1

Table 7.6  The coefhicients for different schemes
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7.6.2

Discussion

The calculated results are shown in Tables 7.7-7.14. It is seen that the distribu-

tions of CH, are not changed with the change of coefficients. The different schemes

provide the satisfactory prediction for O, and CO,. For H,0 and CO, increasing A

and B is better than decreasing A and B. But the whole field maximum temper-

ature is higher as increasing A and B. In general, the various effects of changing

coefficients A and B must be considered, current values of A and B are acceptable.

unit: mole fraction

182

x (cm) | test 1 2 3 4 5 6 7 8 9
9.5 50. 63. 63. | 63. | 63. | 63. | 63. | 63. | 63. 63.
24.6 17.5 30. 30. | 30. | 30. | 30. | 30. | 30. | 30. 30.
47.6 8. 11.5 11. 11. 11. 11. 11. 11. 11. 11.5
78.5 1. 1. 0 0 0 0 0 0 0 0
Table 7.7 The maximum CH, percentage at different locations with different schemes

unit: mole fraction

x (cm) | test 1 2 3 4 5 6 7 8 9
9.5 20. 20. 20. 20. 20. | 20. 20. 20. 20. 20.
24.6 18. 17. 17.5 | 17.5 | 17. | 17. 17. 17.5 | 17.5 | 17.5
47.6 8. 13.5 14. 13.5 | 14. | 13. | 13.5 13. 14. 13.
78.5 1. 1. 1. 1. 1. 105 | 05 0.5 0.5 0.5
Table 7.8  The maximum O, percentage at different locations with different schemes
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unit: mole fraction

x (cm) | test 1 2 3 4 5 6 7 8 9
9.5 6. 5. | 45 | 55 4.5 5.5 55 | 5.5 45 | 55

24.6 6.5 | 6.5 | 5. 7. 5.5 6.8 7. 6.5 5.5 7.
47.6 7. 10. | 10. 10. 10.5 | 10. 10. 10. | 10.5 | 10.
78.5 8. 10. | 11. | 10.5 11. 10. | 10.5 | 9.5 11. 9.5

Table 7.9  The maximum CO, percentage at different locations with different schemes

unit: mole fraction

x (cm) | test 1 2 3 4 5 6 7 8 9
9.5 13.5 | 13. 10. 12. 10. 12. 12. 12. 11. 12.
24.6 14. 15. 11. 13. 12. 14. 14. 13.5 12. 14.
47.6 14. 17. 17. 18. 17. 18. 18. 18. 17. 18.
78.5 16.5 | 14. | 16. | 16.5 | 16. | 20. | 20. | 20.5 | 18. | 18.5

Table 7.10  The maximum H,O percentage at different locations with different schemes

unit: mole fraction

x (cm) | test 1 2 3 4 5 6 7 8 9
9.5 0 0 0 0 0 0 0 0 0 0
24.6 0 0.15 0 0.2 0 0.25 | 0.15 | 0.25 0 0.25
2
4

47.6 1.6 0.7 | 1.6 | 0.6 2.4 1.6 3.5 0.6 2.4
78.5 3. 21433 {18 8.5 8.5 10. 5.2 6.5

Table 7.11  The maximum CO percentage at different locations with different schemes



unit: mole fraction
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x (cm) | test 1 2 3 4 5 6 7 9
9.5 0 0 0 0 0 0 0 0
24.6 0 0.5 0 0.5 0 05105 | 05| 02 ] 0.5
47.6 2. 4. | 45 | 4. 45 | 35 | 3.8 | 3.6 4. 3.6
Table 7.12  The maximum H, percentage at different locations with different schemes

test 1 2 3 4 5 6 7 8 9
- 2037 | 2314 | 2256 | 2327 | 2044 | 2060 | 2027 | 2045 | 2038
Table 7.13  The maximum temperature value for the whole field, K
Scheme 1 2 3 4 5 6 7 8 9
Tz - 0 0 0 -10 -20 -20 -10 -15
Table 7.14 The maximum temperature at 9.5 cmn comparison with scheme 1, K




7.7 User-Defined Reaction Rate

7.7.1 Problem Description

The geometry and physical conditions are the same as in Section 7.3. A new
improved reaction rate equation in Chapter 6 is used

£

Wy = —0.0117pY5

(6.74)

An extension to multi-step and reversible reactions is done here. There is only
one reactant in Equation (7.15), where the fuel and the oxidant are not distinguished.

So, the O, species is added with its stoichiometric coefficient equal to zero.

A user-defined function is adopted which calculates the Arrhenius reaction rate
(Equation (6.17)), the eddy-dissipation-model reaction rates (Equations (6.24) and
(6.25)) and Equation (6.74). It is named the "FEU Scheme”(finite-rate + eddy-
break-up + used-defined-function). The slowest rate is used as the reaction rate
and the contributions to the source terms in the species conservation and energy
equations are calculated from this reaction rate. The UDF file is seen in Appendix
B.

In order to efficiently reduce the numerical error in the digital solution, we use
grid refinement. Assuming the greatest error occurs in high-gradient regions, the
readily available physical features of the evolving flow field may be used to drive the
grid adaptation process. In practice, the convergence criterion for energy is the least.
In other word, the energy convergence controls the whole calculation. So, ”Total
Energy” is chosen as the gradient adaptation function. The initial grid, shown in
Figure 7.73, is coarse. Several adaptations are made after iterations 750, 1500, 3000
and 4000 iterations. The final grid is shown in Figure 7.74. The detailed grid sizes

are seen in Table 7.15. The solution is converged after 7104 iterations.
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Figure 7.73

The initial grid

Figure 7.74

The final grid
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original | 750 iter. | 1500 iter. { 3000 iter. | 4000 iter.
cells 2888 3932 4745 5138 5354
faces 5896 8158 9927 10799 11271
nodes 3009 4227 5183 5662 5918
Table 7.15  The change of grid sizes
7.7.2 Results

The main calculation results are shown in Figures 7.75-7.82. Comparison with
the "standard” from Section 7.3, Radial composition profiles for CH,, CO,, CO and
H, are nearly identical. For CH,, at axial locations of 9.5 cm, 17.5 cm, 24.6 cm,
32.7 cm, the distributions correspond with the "standard”, just at 63.2 cm there is
a slight difference (Figure 7.75). It is important that the calculated O, and H,O
compositions are closer to experimental results than the Standard scheme. From
figure 7.76, it is found that on the centerline the predicted O, species by FEU at
63.2 cm is very closed to the experimental data. In the new model (Figure 7.78),
at 9.5 cm, the H,O percentage is 0 on the centerline, then increases gradually along
radial direction to 12.6% near the wall, but it is just 10.4% in the standard, and is
lower than the experimental value of 15%. Similarly, at 17.5 cm, near the wall the
maximum H,0O percentage increases from 11.2% in the standard to 13.4%, closes to
the experimental results 13%. At 24.6 cm, the standard percentage is lower than 4%,
FEU increases 2%, but still lower than the test results about 2%. For CO, (Figure
7.77), CO (Figure 7.79) and H, (Figure 7.80), it can be seen that the results of the
FEU method are almost the same as that of the "standard”. Figures 7.81 and 7.82
present the temperature distribution. The calculated temperature is slightly low on
centerline and slight high near the wall. By comparison with the experimental data,
we have shown that the results of O, and H,O with FEU model are better than that
with "standard” method, for CH,, CO,, CO and H,, the results of both methods

are the same and close to the experimental values.
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Figure 7.81  Temperature field
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Conclusions

Various physical and chemical models have been used for the numerical simula-
tion of laminar and turbulent reacting flows in this thesis. The following conclusions

were obtained:

1. In the multi-step model, the presence of CO and H, lowers the total heat
release and the adiabatic flame temperature is below the values predicted by the
one-step method. The results are much closer to the real situation. With engineering
consideration for calculation time (or cost) and accuracy, it is recommended to adopt

the six-step model.

2. An unstructured mesh can often be created with far fewer cells than the

structured mesh consisting of quadrilateral elements under similar accuracy.

3. For simulation of turbulent combustion, using the "standard” scheme tur-
bulence closure models can provide quite good results. But there is quite an error
with chemical species composition. It is to point out that relaxation factors play an
important role in the convergence process. In general, under-relaxation factors are

chosen by experience, there are different optimum values with different cases.
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4. The Reynolds stress model is slightly better than the £ — £ model. In brief,
both model results are in good agreement with experimental data. In our examples,

the large-eddy simulation results are not satisfactory.

5. The probability density function (including adiabatic and nonadiabatic PDF)
models spend less CPU time than other models. The convergence is very fast. This
is its main advantage. Comparison with experimental results, the mixture fraction
is overpredicted. When the reaction is not with chemical equilibrium, the predicted

species radial mole fractions are more likely in disagreement with test results.

6. In general, mixing plays a more important role than chemical reaction in
turbulent flow. The change in the coefficients for the EBU model affects mainly the
CO and H,0 distributions. Increasing coefficients A and B is better than decreasing

A and B.

7. By combination of finite-rate reaction and PDF, the coefficient of EBU model
could be expressed as a function of mixture fraction and standard deviation. The
"FEU” Scheme is successfully applied to the prediction of turbulent reaction com-
bustion. The calculated chemical species mole fraction distributions are better than

that of "standard” method and close to the experimental values.

8. By using solution-adaptive refinement, the features of the flow field are better
resolved. When adaptation is used properly, the resulting mesh is optimal for the

flow solution. Computational resources can be utilized effectively.

9. Furture research work will be concerned with: (a) using complete Bigler’s
model and making comparison with simplified model; (b)calculating more examples
and validating the new model; (c) consideration of radiation effect; (d) adoption of

more reasonable multi-step chemical reaction equations.
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Appendix A Classification of Partial
Differential Equations

Most of the governing equations of fluid mechanics, combustion and heat transfer
are expressed as second-order partial differential equations (PDEs) and the solution
procedure of PDEs depends on the type of the equation. Therefore it is important

to study various classifications of PDEs.
To classify the second-order PDE, consider the following equation

¢ *¢ d%¢ a¢ ¢ _
azz+Baxay+06y2+D—a—x—+Ea—y+F¢+G—0 (A.1)

Where, in general, the coefficients A, B, C, D, E, F and G are functions of

A

the independent variables z and y and of the dependent variable ¢. Assume that
¢ = ¢(z,y) is a solution of the differential equation. This solution describes a surface
in space, on which space curves may be drawn. These curves patch various solutions

of the differential equation and are known as the characteristic curves.

The second-order PDE previously expressed as Equation (A.l) is classified ac-
cording to the sign of the expression (B? — 4AC). It will be

elliptic, if (B2 -4AC) <0 (A.2)
parabolic, if (B*—-4AC)=0 (A.3)
hyperbolic, if (B2 —4AC) >0 (A.4)

Note that the classification depends only on the coefficients of the highest order

derivatives.
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Appendix B The UDF file

#include “"udf.h"

DEFINE_VR_RATE(n6_rate, c, t, r, vk, yk, rate, rr_t)
{

real minR = 1.e+20, numerator = 0., denom = 0.;
real AA=4.0;

real ccon=0.0117;

real ci, ri, r2;

real r3, ciO, yb, cr, ywi, yw2,r0;

int 1i;

float prod, conc;

% to calculate standard EBU rate ri %
{

for(i=0;i<r->n_reactants;++i)
if (r->stoich_reactant[i] != 0.)

{
ci = C_R(c,t)*yk[r->reactant[i]]/wk[r->reactant{il];

SETMIN(minR, ci/r->stoich_reactant([i]);
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for(i=0;i<r->n_products;++i)
{
ci = C_R(c,t)*yk[r->product[i]]/wk[r->product[i] J;
numerator += ci*wk[r->product{il];

denom += r->stoich_product[i]l*wk[r->product[il];

rl = r->Amix * C_D(c,t)/C_K(c,t) * MIN(minR, r->Bmix *numerator/denom) ;

% to calculate finite vhemical reaction rate r2 %

{
prod = 1.;
for(i=0; i<r->n_reactants; i++)
{
conc = C_R(c,t)*yk[r->reactant[i]]/wk[r->re=actant[i]];
prod *= pow(conc,r->exp_reactant[i]);
b e
r2 = r->A * exp(- r->E/(UNIVERSAL_GAS_CONSTANT*C_T(c,t)) ) =*
pow(C_T(c,t), r->b) * prod;
}

% to calculate user-defined rate r3 Y%

{

cr

r->stoich_reactant [1]*wk[r->reactant[1]];

cr = cr/(r~>stoich_reactant [0] *wk[r->reactant[0]]);
% cr: the air:fuel ratio ¥%
ywl = yk[r->reactant[0]]/wk[r->reactant[0]];

yw2 = yk[r->reactant[1]]/wk[r->reactant[1]];
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yb = ywi+yw2/cr; % to calculate constant Yb %

r3 = ccon * yb*C_R{c,t)*C_D(c,t)/C_K(c,t);
}

% to choose the slowest rate as the reaction rate %
r0 = MIN(ri,r2);
*rr_t = MIN(xr0,r3);





