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Abstract 

Neural networks have been successfully used to model a number of complex nonlinear sys- 

tems. Although neural net~orks  can create successful models of some nonlineax systems, 

they are known to ovedit the data in some other applications. Therefore, in order to 

use neural networks reliably, it is necessary to explore the conditions under which neural 

models perform equally well on the testing and training data sets. This calls for the design 

of the neural models that create a balance between the testing and training performances. 

The newly introduced Probably Approximately Correct (PAC) learning theory ad- 

dresses the issue of testing-training balance. However, conventional PAC learning only 

allows static modeling and cannot be applied to dynamic models. In this thesis, PAC 

learning is extended to more general Iearning schemes that handle dynamic modeling 

tasks. The resulting PAC paradigms are then applied to assess the learning properties of 

several families of dynamic neural nettvorks, including Radial Bases Functions Networks 

, single-hidden-layer Sigmoid Neural Networks, and Volt erra Networks. 

Another concern with the use of neural networks for some dynamic modehg tasks is 

the issue of stochastic stability. Little is known about the stochastic stability of many 

neural models used in practical applications. The lack of brnowledge over the stability of 

neural models further limits the use of such models. In this thesis, sufficient conditions for 

stochastic stability of different families of neural networks are presented, which address 

the above mentioned concern . 

Based on the resulting leaming frameworks, evolutionary algorithms are then pre- 

sented that search for a suitable suitable dynamic neural modeling which perform e q u d y  

well on testing and training data. The evolutionary algorithms are then used for model- 

ing of two applications. The first application deals with next-scan-estimation of a two- 

dimensional paper ba is  weight measurernent on a paper machine. In the second appli- 

cation, a neural model for a neuromuscuiar blockade system is developed. The results 

indicate that accurate and reliable dynamic neural models can be obtained, provided that 

the learning complexity of such models are controlled during the training procedure. 
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Chapter 1 

Introduction 

1.1 Background and Motivation 

Developing models from observed data, or function learning, is a fundamental problem 

in many fields, including statistical data analysis, signal processing, control, forecasting, 

and artificial intelligence. This problem is closely related to concepts such as function 

estimation, function approximation, system identification, and regession analysis. Re- 

cently, neural networks have become popular tools in nonünear function estimation due 

to their ability to Yearn" and "generalize" rather complicated functions. Multi-layer Sig- 

moid Neural Networks (SNN7s) are the most hequently used type of neural networks in 

practical applications. However, neural structures can ovedit the data, i.e. they may 

perform successfully on the training set of data and poorly on the testing one. This is 

mainly because the fact that in many applications the complexity of the neural models is 

allowed to grow freely during the training process. Therefore, it is necessary to evaluate 

and control the cornplexïty of neural models. 

Unfortunately, there exists a lack of knowledge over the cornputational complexity 

and generalization capabilities of almost al1 existing neural architectures and their training 

methods. This lack of knowledge has created a serious concern over using neural networks 

for sensitive applications where reliability plays a vital role. The need for reliable use of 

the computational capabilities of neural networks in modeling of complex system calls for 

a more solid approach towards the concepts of "learning", as well as its application to 

neural modeling. 

Informally speaking, learning theory addresses the ability of a mode1 to  deal correctly 

with the data which were not included in the training set, and the amount of calcda- 

tion required to perform the approximation process. The above concept, once applied to 
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neural networks, can evaluate the complexity of neural models and avoid overfitting. In 

other words, the learning theory c m  answer some fundamental questions such as: How 

confident c m  one be that the performance of a neural approxïmator developed to model 

an unknown function is within a pre-specified proximity fiom the actual unknown func- 

tion? What is the sufficient nurnber of samples required to train the network (normally 

referred to as sample complexity of network)? 1s a network k inherently "better" a t  

generalization performance than a network type B? Does a network type A require fewer 

training examples to achieve a given generalization performance than a network of type 

B? How would a new neuron added to a particular neural structure affect the o v e r d  

computational learning properties of the network? How are the learning properties of a 

neural network used for static modeling different from those of the same neural structure 

used for dynamic modeling? How can one ensure that the data are not overfitted by a 

neural model? PVhile these questions reflect legitimate concerns and can be found in the 

literature of many scientific and engineering fields, some will have to be further defined 

and specified if a precise answer is needed. For example, the word"bettef must be defined 

clearly. 

I t  is important to notice that experimental investigation or simulation results cannot 

be guaranteed to provide us with reliable answers to this type of questions; they tell us only 

about the generalization performance of specific networks applied to specific problems. 

Therefore, a more theoretical approach towards the concept of learning is required to 

address the computational performance of neural networks. 

In 1984, to formulate the idea of learning, Valiant [l], based on computational learning 

theory, proposed the Probably -4pproxirnately Correct (PAC) learning kamework to esti- 

mate the generalization capabilities of a given model. This concept created a foundation 

to assess the generalization properties of different modeling structures including neural 

networks [12], [13], [14]. However, due to some computational problems, evaluation of the 

PAC learning property for many types of models (including neural networks) remained 

as an intractable open problem. Some of these learning problems are still open, while a 

number of such problems were handIed as described below. 

A parallel development in the theory of empirical processes was to have a profound 



impact on learning theory. Vapnik and Chervonenkis, working on a theory o f  uniform 

convergence of relativ:: fiequencies to probabilities, introduced the concept of- Vapnik- 

Chervonenkis (VC-) dimension which proved to  be a useful tool in empincal estimation 

of actual probabilities of events [SI]. In 1989, the publication of the paper "Lemabil i ty 

and Vapnik-Chervonenkis Dimension" by Blumer et al. [4] represented another milestone 

in the development of learning theory. This paper made a connection between PAC learn- 

ing theory and some complexity rneasures including the VC-dimension. This l ink made 

evaluation of the PAC learning property for a family of functions tractable by appIlying the 

VC-dimension (or similar cornplexity rneasures) of the family, provided that the complex- 

ity measure of the family is finite. The resulting theory provided a theoretical foundation 

for comparing different models from the standpoint of generalization and compmtational 

capabilities. 

In the 1990s, there was a burst of publications on leaming properties of different 

families of neural networks using the ideas of PAC learning. A number of those  papers 

introduced upper bounds of VC-dimension and similar cornplexity rneasures for particular 

neural architectures in order to show that those families of networks are PAC learnable. 

Others found the families of neural networks for which complexity dimensions T e r e  not 

bounded, and consequently the families which failed to be PAC learnable ( [3], [8], [48], 

[17], [1817 Pl], [44, [4517 and [361)- 

Meanwhile, based on practical results, two families of neural structures have been  long 

known as the most successful architectures for modeling and control applicatimns. The 

two families are: 

0 Single-hidden layer Sigmoid Neural Networks (mhich is hereafter referrted to  as 

"SNN's" ) , and 

0 Generalized Single-Layer Networks (GSLN7s) mhich includes some popinlar sub- 

families of networks such as: Radial Basis Function Networks (RBFN's), andl Volterra 

networks. 

A school of researchers suggests that the general class of GSLN7s, using a defi-ed Least 

Mean Squared (LMS) method for training, is preferred over SNN's due to t h e  relative 



amount of computation involved in the training phase and the guaranteed convergence 

to the global optimum in the parameter space. For example, it is suggested in [46] that 

in the case of binaxy-output nettvorks, from the standpoint of PAC learning, GSLN's 

display a more desirable performance than SNN's, as they can be shown to require fewer 

examples to leam the unknown functions. However, the size of the parameter space is 

important and excluding the parameter space from the comparison process makes the 

results unclear. Some families of GSLN's (including RBFN7s) are not truly linear in the 

parameters in the strict sense and, depending on the set of parameters to be trained, the 

model may or may not be linearly parameterized. For example, in the case of RBFN's, if 

the training algorithm is allowed to update the width or the centers of the basis functions, 

the rnodel is no longer linear in its parameters. As a result, LMS can no longer be used for 

such cases and no guarantee over the convergence of the parameters to a globally optimal 

solution can be given. This w i l l  be further discussed in Chapter 2. 

In applications of neural modeling, even those with satisfactory results, attention has 

seldom been paid to important issues such as the accuracy of the approximation, confi- 

dence of convergence (of the model) to the unknown function, the possibility of overfitting 

the data, and the sample complexity of the algorithm. Therefore, results are useful for in- 

dividual cases, but seldom lead to general properties that might guide future work, This 

suggests that conventional PAC learning rnight be a usefui framework to address such 

issues in neural modeling. However the learning t heory literature indicates that almost 

al1 PAC learning results can be applied only to neural modeling of static systems. Since, 

in many applications, neural networks are used to create dynarnic models of unknown 

systems, it is desirable that learning theory be extended to include dynarnic modeling. 

This would enable a typical task of dynamic neural modeling to be considered as a learn- 

ing process and to evaluate PAC learning properties of the process. The most commonly 

used dynamic models in engineering applications are "Finite Impulse Response7' (FIR) 

and "Auto Regressive eXogenous" (ARX) models. In this thesis, new extensions of PAC 

leaming are introduced that include dynamic modeling (both FIR and ARX). The results 

of the new learning schemes are applied to dynamic modeling with difTerent famiIies of 

neural networks. 
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In the case of an ARX modeling task, it is also essential to deal with other issues 

such as stability, and the statistical dependency of the resulting processes. As will be 

shown later in the thesis, without addressing such issues, it is not possible to even define a 

meaningful learning paradigrn t hat includes an ARX mo deling t ask. Moreover , evaluating 

the stability of a system is an important part of a typical dynamic modeling task. Dynamic 

rnodels for which stability have not been guaranteed can not be used in many industria1 

applications. 

To show how the learning results c m  be applied in real world, two nonlinear systems 

will be modeled using neural models. The Ts t  system is the two-dimensional scanning 

sensor for monitoring the basis weight of the paper being produced in a typical paper 

machine. The basis weight sensors take the measurements as they move la terdy dong 

the moving sheet of paper being produced. These sensors are occasionally taken off- 

line for maintenance purposes or even failure. While the sensors are off-line, the paper 

machine is still running. As a result, for some time there are no direct readings of the basis 

weights for the paper being produced. Neural networks are applied to use the information 

before the sensors go off-line to estimate the basis weights while direct rneasurement is 

not possible. 

The second system to be modeled is a neuromuscular blockade system. In many 

surgical procedures, tmo types of drugs are used for anesthesia. The first dmg deals with 

unconsciousness of the patient and controls the patient's nervous system so as to make 

sure that the patient does not feel the pain. However, an unconscious patient may make 

involuntary muscle movernents. The second type controls the motion of muscles during 

the surgery. Such drugs block the neuromuscular activities of the muscles by generating a 

temporary paralysis in muscles, and so make sure that no unwanted motion occurs during 

the surgery. In this research, neural networks are used to mode1 the nonlinear relation 

between the quantity of the injected drug and the rate of paralysis (muscle relaxation). 

1.2 Contributions 

The main contributions of this thesis are as follows. 
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The definition of PAC learning is extended to new learning schemes which include 

FXR and ARX dwmamic modeling procedures. The resulting new learning schemes 

are then applied to different families of SNN7s and GSLN's, and the learning prop- 

erties of such neural models are assessed. The sample complexity (the size of a 

training data set which guarantees reliable modeling) of neural dynamic modeling 

nrith different families of SNN's and GSLN's is bounded. The specific bounds on 

the sample complexity, besides being useful for a systematic modeling task, give the 

form of the functional dependency between the accuracy, the statistical confidence, 

the characteristics of neural models and the size of the training data. These depen- 

dencies are then used to define meaningful cornplexity measures based on learning 

properties of a neural model. These dependencies together with the resulting corn- 

pie-xïty measures are even more practically useful than the bounds themselves, as 

described later. Also, using the bounds, the learning properties of dynamic neural 

modeling *th different families of neural networks are quantitatively compared. 

This comparison helps the user prefer one type of neural rnodels over the others. 

A set of sufficient conditions for stochastic stability of the sigmoid neural ARX 

models is presented. These conditions a l lm quantitative evaluation of stability for 

some important families of dynarnic neural models. 

Based on the functional dependencies obtained in the sample complexity bounds, 

new cost functions that create a balance between the empirical error and the learning 

complexity of different families of neural networks (both for FIR and ARX scenarios) 

are presented. These learning-based cost functions are shown to avoid oveditting of 

the data. 

Using the above rnentioned cost functions, new algorithms based on Evolutionary 

Programming (EP) are introduced that can be used to identiQ neural models of 

cornplex nonlinear systems using the learning and computational properties of the 

models. These algorithms minimize the learning-based cost functions and are used 

in modeling tasks where the available training data sets are small. The proposed 

algorithms are meant to avoid overfitting the data and to provide models that 

perform equally well against the training and testing data sets. 
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0 The EP-based algorithms for training of neural FIR models are used to predict the 

future basis weight scans of the paper in a typical paper machine. 

0 The EP-based algonthms for training of neural ARX models are used to successfully 

estimate the nonlinear behaviour of a neuromuscular blockade system. 

The outline of the thesis is as follows. 

Chapter 2: An extension of PAC learning which includes nonlinear FIR modeling 

is presented. Then, using the new learning scheme, the learning properties of two 

families of SNN's, two families of Radial Basis Functions (RBFN7s) and a family 

of Volterra networks are evaluated. These results include bounds on the sarnple 

complexity of FIR neural rnodeling with each of the neural structures. The learning 

properties of different families are d so  compared with each other. 

Chapter 3: In Chapter 3 the focus is given to the FIR modeling tasks, where 

a lirnited number of training data points are available. The learning results of 

Chapter 2 are used to generate EP-based algorithrns that generate neural models of 

such systems. In order to test the performance of the proposed a lgor i th ,  a number 

of numeric simulations are given in this chapter. 

Chapter 4: One of the proposed evolutionary algorithms developed in Chapter 3 is 

applied to predict the basis weight data on the scanning system of a paper machine. 

Chapter 5: This Chapter considers neural ARX modeling using SNN's. The stochas- 

tic stability, geometric ergodicity and geometric a-rnixing (strong m&g) properties 

of the SNWs are addressed, and a set of sufficient conditions for such properties is 

presented. Shen, the conventional PAC leaning scheme is extended to  learning 

with geometrically a-rnixïng data. This leads to a framework to assess the learn- 

ing properties of dynamic SNN7s. Based on the learning results, two evolutionary 

neural ARX modeling algorithm are presented and tested against a set of numeric 

examples. 
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Chapter 6: One of the EP-based algorithms is used for neurd ARX m o d e h g  of the 

neuromuscular blockade system. 

Chapter 7: The conclusions of the research dong with suggested future work are 

given. 

It is necessary to mention the following remarks regarding the thesis. 

Throughout the thesis, some exïsting lemmas or theorems have been mentioned and 

reviewed, In the case of such theorems and lemmas, the name of the person who 

presented and proved the theorem and the corresponding reference are mentioned a t  

the beginning of the statement. All other lemmas and theorems (i-e. the statements 

that do not start with a name) are the ones proposed and proved by us in this thesis. 

If a technique used for the proof of a theorem is inspired or motivated by a certain 

methodology introduced in other works, the name of the person and the reference 

to the work is mentioned before the theorem. 

Due to the complex notation used in some chapters of the thesis, it was necessary to 

modie  a very small portion of the notation used in chapter 3. More specifically, the 

notation is kept the same throughout chapters 2 , 3  and 4, while starting from chapter 

5, a few letters and symbols used in the previous chapters have been redefined to 

refer to new concepts. Also, notice that the notation used in chapters 5 and 6 is 

exactly the same. 

The main objective of the applications given in the thesis is to show that the in- 

troduced neural algorit hms can be used to mode1 industrial and biological systems. 

However, in none of the applications are neural networks claimed to be the best 

type of structures for modeling of the given systems. In other words, the applica- 

tions given here are only used to illustrate the performance of learning-based neural 

modeling. 



Chapter 2 

A Learning Framework For FIR Modeling 

2.1 Introduction 

In a modeling procedure an unknown function " f" is to be estimated to the prespecified 

accuracy "2' and statistical confidence "(1 -6)". In order to perform the estimation, using 

a set of input-output training data generated by the function f ,  an approximator function 

"h" is found to model f . The modeling of an unknown system f with a feedforward neural 

network h can be considered as a typical example of this procedure. Probably Approxi- 

mately Correct (PAC) learning theory, proposed by Valiant [l], relates the accuracy and 

confidence of the modeling task. PAC !earning and other similar learning schemes allow 

quantitative evaluation of the learning properties of rnodeling procedures in which the 

data are independently and identically distributed (i.i.d.) in accordance with a probabil- 

ity rneasure P. The available results in PAC learning theory are applicable only to static 

modeling tasks as they make use of Hoeffding's inequality [52] which is applicable only 

to i.i.d. data [20], [19]. However, in many real modeling procedures, the assumption of 

data being i.i.d. is violated. As indicated in [39], one important group of applications to 

which the results of learning theory with independent data are not directly applicable is 

"Nonlinear Finite Impulse Response" (NFIR) modeling, where the output depends on the 

present as well as the past inputs. As a result, in an NFIR model, the inputs a t  times "t" 

and "t + 1" are correlated and consequently dependent [31], [32]. The importance of FIR 

models comes from the fact that dynamic systems c a .  often be efkiently approximated 

by appropriate FIR models. The main contribution of the present chapter is the extension 

of the PAC learning theory to modeling of NFIR procedures. 

This chapter also establishes the learning properties of a general family of neural mod- 

els. These learning properties are in the form of inequalities that relate the accuracy and 

statisticd confidence of the models to the number of training data used for modeling. 
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Among difFerent neural FZR models, feedforward neural networks and radial basis func- 

tions have been applied in many modeling applications. However, despite the popularity 

of feedforward neural networks, the training methods available for such neural models 

are relatively complicated and the convergence to the optimal set of weights (parameters) 

is not guaranteed. In the case of RBFN7s, provided that only the weights of the basis 

functions are to be trained, the optimization procedure becomes a linearly pararneterized 

one. As a result, for such RBFN7s simple minimization techniques can be used in training 

the model. Moreover, such minimization methods guatantee convergence to the optimal 

set of parameters- -4s a result, radial basis functions networks have recently been used 

in different modeling applications [38], [25], [47]. It can be observed that restricting the 

optimization procedure to the weights of the basis functions reduces the computational 

capabilities of RBFN's but is necessary for linear dependency. Including other parameters 

of RBFN7s (such as the ones that change the basis functions) optimization process rnakes 

such models suffer from the same problems as mentioned for SNN's. 

In this chapter, the learning properties of RBFN's, SNN7s, Volterra networks, and sim- 

ple linear models are assessed and upper bounds for the sample complexity (the minimum 

size of the training data) for NFIR modeling using such neural structures are presented. 

The chapter is organized as follows: Section 2.2 gives the basic definitions of the PAC 

leaming theory. The idea of PAC learning with i.i.d- data is extended to  PAC learning 

with m-dependent data in Section 2.3. Sections 2.4, 2.5, 2.6 give specific results on the 

learning properties of FIR modeling using general families of RBFN's, SNN's, Volterra 

Networks, and linear rnodels respectively. The main results of these sections (on learn- 

ing properties of different families of neural networks) are given in Theorems (2.4-1.1)) 

(2.4.2.l), (2.5.1. l ) ,  (2.5.2. l), (2.6.l), and (2.7.1). In Section 2.8, the results of previous 

sections are applied to a typical task of FIR modeling, and the results of modeling with 

different neural structures are presented. Section 2.9 describes the concept of model-ftee 

learning, which extends the results of the previous chapters. The main results of this sec- 

tion are given in Theorem (2.9.1). In Section 2.10 the results of the chapter are discussed. 

Section 2.11 gives the sumrnary of the chapter. 
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In this section, some of the basic concepts of stochastic learning theory, including m- 

dependence, PAC learning with i.i.d. data and the empïrical risk minimization algonthm 

[50], are reviewed. 

The fkst concept to be defined here is "a-algebra". 

Definition 2.2.1 Suppose X i s  a set. A (nonempty) collection S of subsets of X i s  said 

to be a O-algebra i f  it satisfies the followzngs. 

1. S is  closed under complementation; Le., if -4 E S,  then AC E S. 

2. S is  closed under countable union; i-e., Ai E S for i = 1, 2,. . ., then UZ, Ai E S. 

The smallest O-algebra of subsets of X that contains every closed subset of X is called 

the "Borel a-algebra" . 

The following elements will be used throughout the chapter: 

O A set X, 

O A O-algebra S of subsets of X, 

A fixed k n o m  probability measure P on the measurable space (X, S), 

O A function set F of rneasurable functions f : X + [-1/2,1/2]. [The interval 

[-1/2,1/2] can be replaced throughout by any bounded interval.] 

Now, consider a modeling task in which the unknown function f E F is to be es- 

timated. In order to perform the estimation, a set of training data is to be generated 

as: z, = {(xi, f (xi))):=,. Also, assume that each Xi is independently and identically dis- 

tributed according to the probability measure P. An algorithm An : (X x [-1/21/21)" -+ 
F, based on the training data zn7 generates a function h, E 3 as an approximator of f , 
1.e.: 
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L(f, zn) = A n  [(XI, f ( ~ 1 ) ) 7  - - - 7  (x*, f (xn))I 

P K  Iearning is defined as follows: 

Definition 2.2.2 Suppose that based on z,, where {xi, . . . xn) are i i d .  according to 

the probability P, the unknown function f is to be approximated by a function hn. Then, 

a fimction set 7 is said to be PAC learnable iff an  algorithm A, can be found based o n  

which for any E and 6; there exists "n" such that: 

where d p (  f, h,) is  a distance between f and h, defined in tenns of the probability P. 

Hereafter, assume that d p ( f 7  h) = Ep(l f (x) - h(x)  1). Wherever the meaning is clear 

the index n in A, and h, is dropped. 

Another useful concept in function learning is an ecover of a function set. 

Definition 2.2.3 A n  E-cover of a function set F is defined as a set of functions {gi)%l 

in 3 such that for any function f E F, there is a function gj where: d p (  f ,  g j )  < E .  

It should be noted that an E-cover for a function set 7 may or may not exist. If such 

a cover set exists, the cardinality (size) of the set depends both on the value of E and the 

function set F. 

An c-cover with minimal size is called a minimal ecover, and its cardinality is denoted 

as N(E,  F, d p ) .  A specific type of learning algorithm known as "the empirical risk mini- 

rnization algorithrn" is now defined: 
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Definition 2.2.4 Let É > O be specified, and let {g i )L l  be an €12-cover (not necessarily 

minimal) of F with respect to  d p .  

Then the empirical risk minimization algorithm is as follows. Consider a set of i.i.d. 

samples {xl, . . . , x, ) E Xn ,  distributed in  accordance with P. Define the cost functions: 

& = Xy=l I f  (z j )  - gi(zj)l , i = 1,. . . , p. Now, the output of the algorithm is  a funetion 
A 

h = gl S U C ~  that: J ,  = minlci5,ji. 

The last concept to be d e h e d  is m-dependence. 

Definition 2.2.5 A sequence of r.v.s (k;-):=, i s  said to  be m-dependent iff for al1 j and 

k, r.v.s q-and Yk are independent i f  Ij - kl > m. In other words, in a sequence of m- 

dependent r.v.s, the radius of dependency is  limited to the integer m. 

2.3 Extension of PAC learning to m-dependent cases 

The existing results in the P-4C learning theory are for the cases where input data are 

i.i.d., because the fundamental inequalities of the P.4C learning theoq- are based on Ho- 

effding's inequality, which is true only for C d  data. This inequality is stated. 

Theorem 2.3.1 ( Iloeflding [52] ) Suppose that (&)y=, is a sequence of independent 

zero-mean r.v.s such that ai 5 E;. 5 bi. Set:  SU^,,,^, - Ibi - ail = M ,  then: 

As mentioned before, in order to extend the learning theory to include learning with 

dependent data, it is necessary to find an inequality (similar to Hoeffding's inequality) to 

be used for m-dependent data. Using Hoeffding's inequality, a new inequality to bound 

the summation of a sequence of m-dependent r.v.s is now obtained. The method used for 

the proof is inspired by the proof of the central b i t  theorem for a sequence of dependent 
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data by Iosifescu et al. in [35]. 

Theorem 2.3.2 Suppose (I;:):='=, is a sequence of m-dependent zero-mean r.v.s such that 

ai 5 I;- 5 bi , m 2 1 and ~ u p , , ~ ~ ,  - 1 bi - ail = M . Then assuming that n = k ( m  + 1) 

(where k is an integer), tue have: 

Proof: 

The proof starts with defining the following new variables : 

where: 1 5 j 5 m + 1. Notice that 5' is a sum of independent r x s .  Aise observe that: 

Now, define the following events: 

Showing the cornplement of an event E as E ~ :  

Rom the definition of Evj7s and Hoeffding's inequality: 
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Now (2.8) and (2.9) give (2.4) or equivalently: 

which concludes the proof. O El O 

Notice that if there exists no integer k such that: n = k(m + l), by defining k as: 

k = ln/(m + l)], a similar approach can be follomed to extend the result of the theorem 

to such cases. However, since generally in modeling applications: n >> (m + l), the 

new term is negligible compared to the other parts, and as a result, the assumption of 

k = n/(m + 1) being an integer may merely result in gathering a few more data points. 

It is important to notice that since in the proof of Theorem 2.3.2, no assumption has 

been made on the distribution of the data, the resulting inequality is distribution-free. 

This characteristic of the above theorem makes the results applicable to the learning tasks 

where the distribution under which the data are generated is unknown. 

Theorem 2.3.2 provides a bound for the probability of the summation of a sequence of 

m-dependent r.v.s which can be applied to extend the definition of the conventional PAC 

learning to the PAC learning with m-dependent data as described below. 

Definition 2.3.1 Suppose that tn = {(xi> f is a sequence of input-output data 

where (xl, . . . , xn) is an  m-dependent sequence, rnarginally distnbuted according to  the 

probability measure P E P. Then, with the rest of the assumptions exactly the sarne as 

the ones made in Definition 2.2.2, a function set F is said to be "PAC learnable with 

rn-dependent data7' iff a n  algorithm A can be found based on which for any E and 6, there 

exists "n" such that: 
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Notice that in practice, one can only calculate the empirical distance between f and h 

based on the available data points. The main objective of the learning theory is to have a 

quantitative evaluation over the true distance between f and h ,  i.e. d p (  f ,  h). Therefore, it 

is necessary to relate the true distance d p  (f, h) to the empincal distance between the two 

functions. Next, a lemma is proved that applies Theorem 2.3.2 to evaluate the closeness 

of the mean value of a function to its empirical mean- 

Lemma 2.3.1 Suppose C : X + [O,  11 is a meusurable function with respect t o  a O- 

algebra S and P is  a probabilîty measure on (X,S). A sequence uf training data has 

been generated as: x i  ( x ~ ) ) }  where input data is a sequence of m-dependent r.v.s 

identically distn'buted in accordance with P. If the mean value, E&), and the empirical 

mean of C, Ê(<), are dejined as follows: 
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ProoE First define: Yi = Ç(xi) - E&) . Notice that the Yi's form a sequence of 

zero-mean m-dependent r.v.s to which Inequality (2.3.2) can be applied with M = 1 and 

a = ne. This will result in Inequality (2.13). Inequality (2.14) c m  be obtained in the 

same fashion, assuming I;- = Ep(Ç) - <(xi)- O O O 

Ne-xt, in order to further investigate the new learning paradigm, an algorithm -4 has to 

be defined. Here, a natural extension of "the empiricd minimization algorithm" is intro- 

duced, that operates over m-dependent input data. The definition of such an algorithm 

is straightfonvard and is defined exactly- the same as Definition 2.2.4, except that the 

algonthm accepts m-dependent rather than i.i.d. inputs. In this chapter, empiricd 

risk minimization algorithm" refers to the extended definition. 

Now, using the empirical risk minimization algorithm and the results of Lemma 2.3.1, 

the learning properties of a rnodeling procedure under the m-dependency of data is eval- 

uated. The proof provided here parallels the proof of a sirnilar learning task under i.i.d. 

data by Vidyasagar in [2] .  

Theorem 2.3.3 With the assumptions O, f Definition 2.3.1, the empirical risk minimiza- 

t ion  algorithm reszalts in PAC learning of F with m-dependent training data to the accuracy 

of E .  In particular: 

whenever: 

Proof: Since {gi):=, is an €12-cover for F; there exist an index t such that dp(  f ,  gt) 5 

€12. Without loss of generality, suppose that d p ( f , g q )  5 €12. Again, without loss of 

generality, suppose that the giYs are renumbered such that: d p ( f 7  gi) > E for i = 1, . . . , k 
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and dp(f,gi) 5 E for a' = k + 1 , .  . . ,q. Note that: k  5 q-1. Notice that the error involved 

in the empirical risk muiirnization algorithm would be introducing one of the gi's, where 

i = 1,.  . . , k, as the model h. Define jt = Ê(l f - gtl ) ,  and let the event E be as follows: 

E = {y, 5 3e/4 and =fi > 3614 , for  al1 i = 1,. . . , k) 

From the definition of 23, it is known that E C { d p (  f, h) 5 E ) .  Also: 

Now observe that, for each index i, the cost ji is the empirical mean of the function 

1 f (.) - g&) ( based on the available training set. Therefore, Lemma 2.3.1 can be used to 

evaluate the distance between Ji, the empirical mean, and dp(f, gi), the true mean of the 

function f (-) - gi (.) 1 : 

where n = k ( m  + 1). Now, since Ep(l f - gil) = d p (  f ,  gp) 5 €12, then: 

For ji 5 3 ~ / 4  where i = 1, . . . , k, following a similar procedure, the following inequaliQ 

is obtained: 
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Now, since k 5 q - 1, the maximum error involved in the overall learning process 

would be: q(m + l)exp [&] - In other words: 

which results to: 6 3 p(m + 1)exp [-ne2/8(m + l)]. Equivalently, when the values of E 

and 6 are fixed: n 3 (8(m + 1)/e2)ln- which concludes the proof. fi 

Theorem 2-3.3 provides a constructive method of approximation when the probability 

is fixed. The extension of the results for Iarger probability sets is straightforward and 

requires some knowledge of the probability set. Also, notice that similar results may be 

obtained for other definitions of d p ( f ,  h) such as the popular Ep[ f ( . )  - g(.)!2. 

The value q in Theorem 2.3.3 is an indication of the complexïty of the function set. In 

the case of the distribution-free learning (where no assumption regarding the probability 

distribution of data is made), the value of q can be related by another measure of com- 

plexity called "P-dimension7' , which is in turn an extension of Vapnik-Chervonenkis (VC-) 

dimension [49], [37]. Both q and P-dimension are essentially measures that describe the 

cardinality of an €12-cover of the function set. However, in order to construct an €12-cover 

of a function set, the prior knowledge of either q or P-dimension is not required. 

Example 1 Suppose that the desired accuracy and confidence of an approximation task 

are 0.08 and 0.92 respectively ( i e .  E = 6 = 0.08 1. Also assume that the cardinality of 

a 0.04-cover of the function set with accordance to d p  is Zess than 10'' ( i e .  q < 101°) 

and m = 2. Using Equation (2.15): n 2 99938, rneanéng that 99938 data points in the 

empirical risk minimization algorithm zuould provide the desired accuracy and confidence. 

As mentioned before, the parameter q in Inequality (2.16), plays a vital role in esti- 

mation of the overall sample c o m p l e e  and must be further investigated in the case of 

modeling with neural networks. Assume that the €12-cover used is minimal. In that case, 

q c m  be replaced by N ( ~ / 2 , 3 ,  dp) .  As can be seen, N ( E / ~ ,  7, d p )  depends on the prob- 



CHAPTER 2. A LEARNING: FRAMEWORK FOR F I R  MODELING 20 

ability measure P, and in case of a ked-distribution learning procedure, pnor knowledge 

of P is required to bound N(e/2:  3, d p ) .  

In generating a set of input-output data to be used for training of a nonlinear model, 

the input samples must cover all the domain of the input. If it is possible to control 

the training input data, a set of uniformly distributed input data would be a reasonable 

approach. The uniform distribution scatters the input samples over the input domain 

and is often used in practice. Uniformly distributed input data are then applied to the 

unknown system and the resulting input-output data set is used for training. In the 

following section, unifordy distributed input data are considered in order to obtain more 

specifk learning bounds. 

Next, N(E,  F, d p )  (as an indication of sample complexity) is expressed in t e m s  of the 

Lipschitz constant of the function set for uniformly distributed data. Consequently, the 

sample complexity is related to the Lipschitz constant of the function set, which in tum 

can be expressed in terms of the function set parameters. The following lemma is based 

on Example 2 in [6] and Example 6.8 in [2]. 

Lemma 2.3.2 (Kolmogorov [6]) Let 7 consist of al1 functions: 

that satisfy f ( O )  = O ,  where or, B E R and d is the dimension of the input variable. Also 

assume that there exists a finite L such that for al1 f E 3: 

where: 

Now, let P represent a uniform distribution over [cr,Pld, and define d p  as above. 

Then: 
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Lemma (2.3.2) provides an upper bound of N ( E ,  F, d p )  for a function set once an 

upper bound on the Lipschitz constant of the family is knom. In the following sections, 

the learning properties of some important families of RBFN1s7 SNN's, Volterra Networks 

and linear models are studied by finding upper bounds on the Lipschitz constants of those 

families, and so investigating the sample complexity of the functions sets. 

2 -4 Learning of RBFN's With Uniformly-Distributed m-Dependent Data 

A lemma, inspired by [53] and [40], to bound the Lipschitz constant of a general f d y  

of RBFN's is now given- 

Lemma 2.4.1 Suppose a set of RBFN's 3 has members expressed as: 

where: 2 is the number of neurons (basis functions), a = (al7 . . . , ai) fonns the weight 

vector of the network with lail < -fi&, < ca for all i, Qi(-)'s are the bounded diflerentiable 

radial basis functions in which ri = [lx - ciIl, and y is the center of the ith basis function. 

Define: 

and form the vector 7 = (171, . . - , q). Further assume that: 

and: 
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A = suha,, xbi [ai(% < 00 . 

Then: 

1. The Lipschitz constant of the function set F is bozmded b y: 

L 5 -4d. 

2. For the function set F defined above: 

Proof: Note that: 

where )lx - yll is the Euclidean distance between x and y. Now, suppose that a h i t e  LE 

for 3 can be found such that: 

Setting L = J ~ L , :  

This shows that once an upper bound for LE is available, an upper bound for the 

Lipschitz constant L can be found. In order to find an upper bound for LE, note that 
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for a bounded differentiable b c t i o n  such as the defined neural network f ,  the value 

supcE[a,B]d [IV f (C) II bounds the variation of the function f over a11 the domain and dong  

all the directions, Le.: 

Now assuming that C = (Cl,. . . ,&) and r = I I <  - cJ: 

Consequent ly: 

LE 5 sup IIVf(C)II 5 A&. 
C E k 4  

And finally, (2.26) and (2.28) give: 

which gives a bound for the Lipschitz constant of the function set and proves the fbst part 

of the lemma. Nom combining Lemmas 2.3.2 and the bound on the Lipschitz constant, 

an upper bound for N(E,  T , d p )  for the function set 3 is found. Equation (2.25) is the 
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straightforward result of substituthg (2.29) uito (2 -24) -0 UU 

The bound on [d&(ri)/dril depends on the choice of basis functions. The main re- 

sult on the learning properties of RBFN's cornes as a combination of Theorem 2.3.3, and 

Lemma 2.4-1 as follows. 

Theorem 2.4.1 Consider a set of radial basis function neural networks F as dejined 

aboue. Assume that learning is  considered under  the assumption of m-dependency of the 

input training data that are uniformly distributed. Then  the empirical risk minimiza- 

taon algorithm, pe r foned  over a minimal €/a-cover, results in the PAC learning with 

m-dependency with the sample complexity bounded by: 

or equivalently: 

where e and 6 are the positive real numbers that d e t e m i n e  the  acczlracy and statistical 

confidence of the akjorithm, respectively. 

Proof: Knoming that the function set 3 has an E-cover mith fhite size, according 

to Theorem 2.3.3 the empirical risk minimization algorithm learns the model. Moreover, 

direct substitution of q in (2.16) with the upper bound for N ( E / ~ ,  3, d p )  indicated in 

(2.25 ) gives (2.30). OU0 

Theorem 2.4.1 provides a framework for learning of a neural modeling task, assum- 

ing that the data are uniformly distributed. In such a modeling task, the information 
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regarding the structure of the network (such as the nurnber of neurons and the size of 

the parameter space) is known, and the objective is to use a set of input-output samples 

to find the optimal values for the network's parameters. The empirical risk minimization 

algorithm provides a search rnethod that has an associated sarnple cornplexi@ 

Besides the specific bounds on the sarnple complexity, Theorem 2.4.1 gives the form 

of dependency betnreen the accuracy, the statistical confidence, the characteristics of 

RBFN's and the size of the training data. These dependencies can help define meaningful 

complexity measures based on learning properties of a neural model, as discussed in 

Chapter3. 

The above results can be further specialized if the basis functions are known. The 

following sub-sections deal with the learning properties of two popular families of such 

neural networks. These two families consider Gaussian, and Reciprocal Multiquadratic 

(RMQ) basis functions. 

2.4.1 Gaussian RBFN's 

A Gaussian RBFN is defined as: 

&(ri) = ex~(-bir: )  - exp(-bill~11~) (2.32) 

where O < bi < ca is the width (or scattering) parameter of the ith basis function. The 

second term normalizes each baçis function and guarantees that f (O) = O. For such a 

network, the following theorem can be proved. 

Theorem 2.4.1.1 Consider the neural model introduced in Lemma 2.4.1 and suppose 

that &(ri) 'S are given as (2.32). F o m h g  b as: 
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Then with al1 assumptions of Theorem 2-4.1, the empirical risk minimization algorithm 

with m-dependent data performed over a minimal ~ /2 -cover  results in the PAC learning 

with m-dependency and the sample complm-ty of the algorithm i s  given by: 

or  eqviualently: 

2 f i / l r b f , d ( B - a )  

6 2 2  [ 1 (m + 1 ) e q  [-na2/8(m + 1)] . 

Proof: For the Gaussian set of ba i s  fimctions: 

It can be seen that the maximum of the absolute value of the above function occurs 

at Iri 1 = 2 ~26' and the maximum itself is: 4%. Therefore: 

which results in (2.33). 000 
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2.4.2 RMQ RBFN's 

For RMQ basis functions: 

1 1 
4i (il) = da--- 

where O < bi < ca is the width (or scattering) parameter of the ith basis function. Similar 

to Gaussian functions, the second term normalizes each basis function so that f (O) = 0. 

The followïng theorem describes the learning properties of RJMQ RBFN's- 

Theorem 2.4.2.1 Consider the neural mode1 introduced in Lemma 2.4.1 and suppose 

that &(ri) 's are given as (2.35). 

Then  with the assumptions of Theorem 2.4.1 and defining b and Arbfn as in Theo- 

rem 2.4.1, the empin'cal risk minimization algorithm with m-dependent data performed 

over a minimal €12-cover results in the PAC learning with m-dependency and the sample 

complexity of the algorithm is given by: 

or  equivalently: 



Proof: For the introduced set of basis functions: 

The rn~xi.mum of the absolute value of this function also occurs at lril = &, and the 

maximum itself is: S. Therefore: 

which resdts in (2.36). Cl00 

In the next section, following a sirnilar approach, the Iearning properties of SNPj's are 

evaluated. 

2.5 Learning of Sigmoid Neural Networks With Uniformly-Distributed m- 

Dependent Data 

In this section, first an upper bound for the Lipschitz constant of a general family of 

three-layer sigmoid neural networks is calculated. This bound is then used to find an 

upper bound for the sample complexity of the family- 

Lemma 2.5.1 Consider a set of feedfomuard neural networks F whose members are ex- 

press ed as: 

where: O 5 O(.) 5 1 is a smooth sigmoid activation function, 1 indicates the number 

of neurons, ai's are the weights of the output layer and the uector bi defined as: bi = 

(bii, . . . , bid) represents the weights of the first layer. Further assume that: 

and: 



where the above "sup" is taken ouer the entire parameter space. Then: 

1. The Lipschitz constant of the function set F is bounded by: 

2. For the function set .? defined here: 

Proof: 

As in case of RBFN's: 

As in RBFN's, it is seen that once an upper bound for LE is available, an upper bound 

for the Lipschitz constant L can be found accordingly. Now: 
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NOW assuming that C = (Cl, . . . , cd) and u = x$, bijcj: 

Consequently: 

eqnarray* 

And hally, (2.39) and (2.41) give: 

which shows that L is a bound for the Lipschitz constant of the function set and proves 

the first part of the lemma. As to the second part, Equation (2.38) is a straightfonvard 

result of substituting (2.42) into (2.24) 000 

The assumption of Ido(u)/du1 being bounded is a requirement of the definition of 

sigmoid functions. 

The main result on Iearning properties of sigmoid neural networks cornes as a combi- 

n a t i o ~  of Theorem 2.3.3, and Lemma 2.5.1 as follows. 
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Theorem 2.5.1 Consider a set of feedforward neural networks F as defined above. As- 

sume  that learning is performed under the  assumption of rn-dependency of the inpu t  train- 

ing data that are unifonnly distributed. Then  the empirical risk minimization algorithm 

performed ouer a minimal €12-cover resvlts in the PAC learning with m-dependency and 

the  sample complexity of the algorithm is given by: 

o r  equiualently: 

d 
[ z v ~ s n n  ( B - Q )  

6 2 2  1 (rn + 1)exp [-nr2/8(m+ 1)] 

where E and 6 are the positive real numbers that de t emine  the accuracy and statistical 

confidence of the alg orithm, respectively. 

Proof: Knowing that the function set .F has an ecover with finite size, according 

to Theorem 2 -3.3 the empirical risk minimization algorithm learns the model. Moreover, 

direct substitution of q in (2.16) with the upper bound for N ( 4 2 ,  F, d p )  in (2.38 ) gives 

(2.43). 000 

Theorem 2.5.1 provides a fkamework for learning of a neural modeling task. As for 

RBFN's, it is assurned that the structure of the network is available, and the objective is to 

use a set of input-output samples to find the optimal values for the network's parameters: 

ai's and bg7s (also referred to as "weights"). The empirical risk minimization algorithm 

determines one of the search methods to  find the foresaid parameters. 

Besides the specific bounds on the sample complexity, Theorem 2.4.1 gives the form 

of dependency between the accuracy, the statistical confidence, the characteristics of 
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sigmoid neural networks and the size of the training data. These dependencies can help 

define meaningfd complexity measures based on learning properties of a neural model, 

as discussed in Chapter 3. 

The above results can be further specialized if the form of the sigmoid function is 

given. The follonring sub-sections consider some popular families of feedforward neural 

networks. 

2.5.1 %tan9' Sigmoid Functions 

First, consider neural networks that include the tan-'(.) or "atan" sigmoid functions. 

Thoerem 2.5.1.1 Consider the neural model introduced in Lemma 2.5.1. Further as- 

sume that: 

a (u)  = ! tan-' (u) 

Then  with al1 assurnptions of Theorem 2.4.1, the minimum ernpirical risk algorithm 

iwith m-dependent data performed over a minimal ~12-cover results in the PAC learning 

with m-dependency and the sample complexity of the algorithm i s  given by: 

or equivalently: 
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Proof: For the introduced sigmoid function: 

which results in: q = 3. Now following the results of Theorem 2.5.1 a bound for the 

sample complexity of the mode1 can be obtained as in (2.45).000 

2.5.2 Bipolar Exponential Sigmoid Functions 

Now the focus is given to neural networks that apply bipolar exponential sigmoid func- 
1-=-(-) tions of form W. 

Thoerem 2.5.2.1 Consider the neural mode1 introduced in Lemma 2.5.1. Further as- 

sume that: 

Then  with al1 assumptions of Theorem 2.4.1, the empiricad risk mznimzzation algorithm 

with m-dependent data perforrned over a minimal €12-cover resuEts in the P A C  learning 

with m-dependency and the sample complez i ty  of the algorithm i s  gzven by: 
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Proof: For the introduced sigmoid function: 

which results in: g = 112. Now folloming the results of Theorem 2.5.1 a bound can be 

obtained for the sample complexity of the mode1 as in (2.47).000 

2.6 Learning of Volterra Neural Networks With Uniformly-Distributed m- 

Dependent Data 

In this section; the learning properties of Volterra networks are discussed. Despite the 

similarities of Volterra nets to both RBFN7s and Sigmoid neural networks, due to the poly- 

nomial structure of Volterra networks, their learning characteristics should be discussed 

separately. As for the previous structures, h s t  an upper bound for the Lipschitz constant 

of a family of Volterra neural networks is calculated, and then this bound is used to find 

an upper bound for the sample complexity of the farnily. Although the basis functions 

in Volterra nettvorks are defined as hyper-polynornial of degree less than or equal to an 

arbitrary p, in this thesis, only the networks up to degree p = 3 are considered. The calcu- 

lation of the learning bounds for the networks of an arbitrary degree can be obtained in a 

similar manner with the cost of dealing with more complex notation and longer equations. 

Lemma 2.6.1 Suppose x = (Cl,. . . , C d ) .  Define the mernbers of a set of Volterra neural 

networks 3 as: 

d - C - C -  + c:=~ c;,- qiCiGCi f (x) = g=i=, aici + Cid xgibv ., 

where: ai 's, bij 's, and cijl 's are the weights of the network. Further assume that: 
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and: 

where the aboue "sup" is taken over the entire parameter space. Then: 

1, The Lipschitz constant of the finction set F is bounded by: 

2. For the function set F defined i n  this lernma: 

Proof: 

As in the case of RBFN7s and sigmoid neural networks, it can be seen that once an 

upper bound for LE is available, an upper bound for the Lipschitz constant L can be 

found accordingly. Also: 



If(x) -f(y)l 5 sup llVf(C)II - 
112 - pl1 re[atPld 

ICI 

This means that: 

Consequently : 

And finally, with a discussion similar to the ones given for RBFN's: 
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which shows that L is a bound for the Lipschitz constant of the function set and concludes 

the proof of the k s t  part. As to the second part, Equation (2.50) is a straightforward 

result of substituting (2.52) into (2.24). OCiU 

The main result on leaniing properties of Volterra neural networks cornes as a combi- 

nation of Theorem 2-3.3, and Lemma 2.6.1 as  follows- 

Theorem 2.6.1 Consider a set of feedfonuard neural networks .F as defined above. As- 

sume  that learning W perfomed under the assumption of m-dependency of the input train- 

ing data that are uniformly distributed. Define Aval as above. Then the empirical risk 

minimization algorithm perfoned ouer a minimal ~ /2 - cover  results in the PAC learning 

with m-dependency and the sample complexity of the algorithm is  given by: 

o r  equivalently: 

d 

6 2 2  ['Avo"olQ)I (m + i ) e q  [-nc2/8(m + i)] 

where E and 6 are the positive real numbers that  deternine the accuracy and statistical 

confidence of the algorithm, respectively. 

Proof: Knowing that the function set 3 has an ecover with finite size, according 

to Theorem 2.3.3 the empirical risk minimization algorithm learns the model. Moreover, 

direct substitution of q in (2.16) with the upper bound for N ( E / ~ ,  F, dd)  in (2.50 ) gives 

(2.53). O 0 0  
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In some system identification and control literature, the use of Volterra networks to 

model an unknown systems is referred to as nonlinear system identification. Historically, 

Volt erra polynomials were used in system ident Scation before ot her types of nonlinear 

models were widely used. In this thesis, the name 'honlinear system identification", is 

used in its wide sense. 

2.7 Learning of Linear ModeIs With Unifordy-Distributed m-Dependent 

Data 

Due to the importance of linear FIR models, and to compare the learning results of 

different neural structures with those of a simple linear model, h e a r  models are now 

considered. Consider a family of linear functions. Suppose x = (Ci, . . . , cd). Define the 

members of a set of linear models 3 as: 

The linear model is a special case of Volterra network where only the ai's are assumed 

to be non-zero. As a results, the bounds on the learning properties of a linear model c m  

be easily obtained as follows. 

Theorem 2.7.1 Consider a set of linear models F as defined above. A s s u m e  that  learn- 

ing  is performed under the assumption of m-dependency of the input  training data that  

are uni formly  distributed. Define Alin as: 

where the above "sup" i s  taken over the entire parameter space. Then t he  empirrical risk 

min imi ta t ion  algorithm perfonned over a minimal  €12-cuver results in t h e  PAC learning 

wi th  rn-dependency and the sample complexity of the algorithm is given by: 
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o r  equiualently: 

vhere  E and b are the positive real numbers that detennine the accuracy and statktical 

confidence of the algorithm, respectiuely. 

Proof: As mentioned above, linear models are special cases of Volterra networks, and 

as a result, the proof for this theorem parallels that of Volterra networks, and will not be 

given here. 000 

2.8 Using The Learning Results in a Typical Modeling Procedure 

In modeling of unknown systems, the structure as well as the parameter space of the 

neural mode1 is oken fixed. The characteristics of the parameter space, such as the 

number of neurons and the maximum size of the network's parameters, are fixed before 

training. The desired values of accuracy and statistical confidence are also pre-specified. 

The inequalities of the previous sections then determine a sufficient size of training data 

to guarantee the pre-specified levels of accuracy and confidence. 

The following examples further clarify the approach. 

Example 2.8.1 Suppose that the i i - d .  sequence (ui)Zl has been generated according to  

a u n i f o m  distribution ouer the interual of [O, 11. Also, assume that the stochastic process 

y(t), t = f, t, + 1,. . . , oo, depends on the random uan'ables through a function 

f, Le.: 
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Now define the random variable xt as: 

where X i s  [O, l I t 0 .  A s  a result, the xt 's  are to-dimensional t, -dependent random vectors 

and: 

Now consider an  NFrR modeling task for which f i s  assumed to  be an  unknoun  member 

of a family of atan SNN's. Wi th  the aboue fonnulation and using Theorem 2.5.1.1, the 

empirical risk rninimization algorithm applied to thés problem results in PAC leaming with 

to-dependent Enput data where: t, = rn and m = d. 

In order t o  have a better evaluation o n  the sarnple of the algorithm, let: t, = 2 , E = 

6 = 0.08, 1 = 10 and for al1 i: lail 5 0.1, lbil 2 0.1 which results toi A,, 5 0.0447. For 

the above'choices, according to Inequality (2-45), a bound for the sample complexity of the 

algorithm is: n 2 16225. This means that i f  the training set includes more than 16225 

samp le points, the algo ri thm guarantees the prespecified values of accurac y and confidence. 

The next example describes a similar identification task using a family of Gaussian 

RBFN's. IR order to compare the bounds on sample complexity of SNN's with those of 

RBFN7s, the cornparison must be made for networks with similar computational capa- 

bïlities. In other words, the number of hidden neurons as well as the size of parameters 

in both networks must be set to give similar modeling and approximation accuracies. In 

literature (see for example [10]), based on the results of applying both SNN's and RBFN's 

to the sarne applications, experimental rules have been presented to relate the structure 

of SNN7s and RBFN's that often result in similar performances. In other words, these 

rules relate the number of hidden neurons of SNN's and RBFN7s such that equivalent 

classification and modeling performances are achieved. According to the table given in 

[IO], assuming the same size of lail's and [bit's , RBFN7s normally ofken use almost 4 
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times as many neurons as SNN7s for the same level of accuracy. This ratio is attributed 

to  the fact that RBFN7s are local approximators, needing more neurons than in the case 

of non-locally distributed approximators such as SNN7s. However, since these are experi- 

mental d e s ,  and in order to have a more objective comparison, here it is assumed that 

atl the settings (the size of the parameter space and the number of hidden neurons) are 

the same, as indicated in the following examples. 

Example 2.8.2 Consider the identification task described in the previous example and 

assume that instead of a set of sigmoid finctions, a farnily of Gaussian REWN's are used. 

Further assume that: t. = 2 , E = b = 0.08 , Z = 10 and for al1 i.- lail 5 0-1, lbil 5 0.1 

which results in: Arbfn 5 0.3162. For the above choice of value., using Theorem 2.4.1 -1, 

the  modeling task i s  Zearnable and the sample complexity of the algorithm i s  bounded by: 

n 2 491710. 

As can be seen, according to our bounds, even for the same number of neurons, Gaus- 

sian RBFN's require more training data points than atan SNN's. The next example deals 

with the same procedure when RMQ basis fûnctions are used. 

Example 2.8.3 With al1 assumptions of Example 2.8.2 except using RMQ basis function 

for the network instead of Gaussian ones, using Theorem 2.4.2.1 one can show Mat the 

modeling task is  learnable. Furthemore,  in the case of the given numerical values in 

Example (2.8.2), an upper bound on  the sample complexity of the algorithm i s  given by: 

n > 109860. 

The results obtained above will be discussed in details in Section 2.10; however a simple 

comparison of the above bounds, indicates that based on these conservative bounds, SNN's 

exhibit more desirable learning properties and require fewer examples to learn a typical 

example. Cornparison of the above examples also shows that based on the results obtained 

in this chapter, from the standpoint of sample cornplexity, Gaussian RBFN's are the worst 

type of neural networks among the networks evaluated here. 
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Table 2.1: Bounds on sample complexity of different families of neural networks for dif- 
ferent mter lengths (m). 

It is insightful to observe the way sample complexity grows with the filter length 

"m". Ln order to see this, assume that the mode1 parameters are chosen as follows: 

E = 6 = 0.08 ,1 = 10 and for all i: 1 %  O lbil $ 0.1. Then, for different values for m 

and using the bounds obtained in this chapter, Table (2.1) for sample complexity bounds 

for different families of neural networks can be formed. 

Network 
Atm SNN 

Bipolar Exponential SNN 
Gaussian RBFN 

RMQ SNN 

As can be seen from the table, from the point of view of sampIe complexity, bipo- 

lar exponential SNN's and Gaussian RBFN7s are the most and least desirable forms of 

networks: respectively. The results of this table are further discussed in Section 2.10 . 

m=5 
37648 
35630 
988616 
224923 

m=2 
16225 
15216 

109865 
491710 

Another practically important issue in neural modeling is now addressed. The conven- 

tional form of PAC learning assumes that the data are generated by a non-noisy system. 

In many physical systems, either the data generating unit is a stochastic system (with 

no notion of any particular function set), or the output of the function set is accessible 

only after it is cormpted by additive noise. In such generd cases, an extension of PAC 

learning known as "Model-Free PAC Learning" is required. 

2.9 Model-Free P-4C Learning 

m=10 1 m=20 

The learning schemes described in the previous sections assume that h E 7. This may 

not be true in many real applications, as either F might be an unknown function set, 

or the data might be noisy. In such cases, another learning scheme called "model-free 

leaming" is a more realistic formulation. In this scheme, the approximator function comes 

from a known function set X, but no assumption is made about the function set of which 

the unknown function f is a member. Then, instead of tkying to estimate f directly, 

77357 
73657 

420693 
1820849 

164655 
157598 
820112 
3493081 



the algorithm estimates the function in 31 that best approximates f .  Among different 

formulations of cLmodel-fiee learning" , the one given by Vidyasagar in [2] seems to be the 

most accurately forrnulated one. The formulation imtroduced here parallels Vidyasagar's 

model-free learning, extending it to a more general type of learning (Le. learning with 

dependent data). The exact definition of model-fiee- learning, extended to cover learning 

with m-dependent data is given below: 

Definition 2.9.1 Introduce the following notation: 

Sets X, Y ,  U and a o-algebra S on X x Y. 

A f i e d  probability measure P on X. 

r A family of probability measures on X x Y ,  where al1 P E 7 have the same 

marginal probability P on X. 

A family X of rneasurable functions rnapping X znto U, called the "hypothesis class." 

A fvnction E : Y x U -+ [O,  11, called the  ('loss f inct ion.  " Based o n  the loss function 

1 ,  for each h E 7t define an  associated function lk : Y x U + [O,  11 by: 

and a family of functions Lx = { h  : h E x) 

With  each hypothesis function h and each probability measure P ,  associate a cost 

function: 

J W ,  P )  = J X X Y  Z[Y, WIWX, d ~ )  - 

Also, define the ~%ninimum achievable cost function" as: 

T ( P )  = inf J J[Y, h ( x ) l ~ ( d x ,  dy)  - 
hEX X x Y  
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Sarnples t, = {(xi, are generated where (xi):='=, is a sequence of m-dependent 

random variables d i s t n b ~ t e d  according to  P. Then, an algorithm is considered as a n  index 

family of mappings A,, where n > 1, An : ( X  x Y)" -t 3C and hn = A,(zn). 

T h e n  the algorithm i s  said to be "model-fiee probably approximately correct to  accuracy 

E with m-dependent data" i f  for any choice of E and 6, there exists '?in such that: 

If when n + m the above probability approaches zero, the algorithm is said to be 

"model-free probably approximately correct with m-dependent data". 

Next , define "the model-free empirical risk rninimization a lgor i th"  which is a natural 

extension of the empincal rïsk minimization to the model-fiee leaniing scheme. 

Definition 2.9.2 Suppose U defined in Definition 2.9.1 is a subset of 'R. Assume that 

the loss function defined in Definition 2.9.1 satisjîes a îmiform Lipschitz condition, i.e. 

there exists a finite constant ,u such that: 

Also, assume that a n  ~ ~ / p - c o u e r  {gl, . . . , g,) of X is available where €0 < E .  Next, 

calculate the empirical cost functions for al1 inembers of the  eo/p-cover, ie. find Ji's as: 
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Then, the output of the algorithm is g h  in the ~ ~ / p - c o v e r  with minimum empin'cal cost 

function, i. e- choose gio such that: 

Next, a theorem is proved that deals with learnability as  well as sample cornplexity of 

the model-free empincal risk minimization d g o ~ t h m .  

Theorem 2.9.1 Suppose: 

1. 7 is a family of probabilities with the propePty that every P E has the same 

marginal probability P on X .  

2. The hypothesis class X has the property that: 

N ( e ,  31, d p )  < oo, t/E > O 

3. A loss function 1 that satisfies the unzform Lipschitz condition of (2.61). 

Then (x, 7, Z) is model-free PAC leamable. In particular, given any E > O ,  choose 

{g,, . . . , g,} to be an ~ ~ - c o u e r  of 3t with respect to d p  for some €0 < E. Then the model-free 

ernpirical risk minimization algorithm applied to  { g l , .  . . g,}  is PAC to accuracy e, and 

the sample complexity of the algorithm is bounded by: 
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Proof: First prove that for all P E 7 and every hl, h2 E X: 

This can be proved as follows: 

Now let I' E 7 be arbitrary, and select h = h(q P )  such that: 

From the definition of J*(P) ,  one can assure that such an h does exist. Since 

Cgi7 - - . gq) is an ~~/fZp-cover of 31, h must be within a distance co/2p from a (possi- 

bly unknown) function in the cover set. Assume without loss of generality that the cover 

set is renumbered such that d p ( h ,  g,) 5 eo/2p7 which in turn implies that: 

Assume that the renumbering is such that: 
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n Note that k 5 q - 1. Now suppose a multi-sarnple set z, = {(xi? yi)):=L=I , where (xi),, 

is a sequence of m-dependent r.v.s identically distributed according to probabiliw P, is 

available. Based on this data set, the model-free empirical risk minimization algorithm 

introduces h, E {gi, . . . , g,) as the output of the model. Notice that the error involved 

in the algorithm would be introducing one of the gi7s, where i = 1, . . . , k, as hn. Let the 

event E be: 

From the definition of E, it c m  be seen that: E C {J(hn, P )  > J* ( P )  + E ) .  Now: 

Next , considering (2 -67) : 

Now, notice that j(gq, Zn) and J(gq, P )  are the empirical and true rneans of the func- 

tion 1,. Using Lemma 2.3.1 on the difference between the empirical and true means of a 

function, the above probability can be bounded as: 

In the same manner, other probabilities in (2.71), Le. the ones for 1 5 k, can be also 

bounded resulting in the same bound as above. Now, since k $ q - 1, the maximum error 

involved in the overall procedure would be: (m + 1) exp [-el. In other words: 

Pr{J(hn, P )  < J*(P)  + E) 5 (m + 1) exp [-8,m.: 
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This means that for any arbitras. choices of E and n, model-fiee PAC learning with 

6 2 ~ ( r n  + 1) exp [-&] is achievable. Equivalently, when E and 6 are fixed: 

which concludes the proof. 

As mentioned in the proof, q is the carclinality of a minimal ~~/p-cover of the function 

set. This means that the same procedure of calculating an upper bound of this value for 

different function sets as in the case of the standard PA4C learning paradigm yields similar 

results for the model-free PAC learning. In other words, for any of the previous results 

on different families of neural netmorks, the sample complexity of the model-free learning 

can be easily extended by replacing E with eo/p, where €0 can be chosen arbitrarily close 

to E.  Thus it is possible to avoid repeating all the proofs for the model-free learning case 

and simply use the inequalities of the standard PAC learning, as mentioned above. 

The model-fiee scheme provides a learning fÏamework that can handle modeling of 

non-functional stochastic sources of data assurning different types of loss functions. It 

also shows that when using a loss function with p = 1, the computational complexity of 

a standard PAC learning scheme is very close of that of a model-&ee one. This explains 

why even though the assumptions made in a standard PAC learning are more restrictive 

and less realistic, the learnuig properties of many algorithrns are normally assessed within 

the standard PAC, and the results are easily extended to the model-free framework. 

2.10 Discussion 

Considering the results of the previous sections as well as the Examples given above, the 

followings remarks can be made. 

1. With some modifications, all the results can be extended to PAC learning with 

other metric measurements of the distance f and h, such as the popular second or- 

der norm. The "model-free learning" paradigm allows the metric measure to belong 

to a family of rneasures rather than just being a particular f o m  of measure such as 



2. The bounds on sample complexity are sufficient bounds and not necessary ones, 

i-e. learning might be achievable with fewer number of training points. There- 

fore, the performance of different models cannot be confidently compared with each 

other merely based on the given bounds for the sample complexities. Nevertheless, 

the presented bounds provide some meaningful functionalities and dependencies be- 

tween the parameters of the models and the overall learning performance of the 

models. Also, the bounds on the sample complexity are d l  based on the extension 

of Hoeffding's inequality in the case of i.i.d. data to m-dependent variables. Since 

Hoeffding's inequality is known to give one of the tightest available bounds on sum- 

mation of random variables, one can expect the presented bounds to be reasonably 

close to the best achievable bounds with the available inequalities. However, nu- 

merical examples (such as the ones given in this chapter) reveal that the bounds 

are indeed conservative. 

3. The empirical risk minimization algorithm not only provides a fiamework for com- 

paring the sample complexity of different function approximation procedures, but 

also gives an insight to the behavior of "more practical" types of algorithms. As 

mentioned before, al1 the results presented above are for a standard form of the 

empirical risk minimization algo rit hm, where the availability of a minimal ~/Zcover 

is pre-assumed. However, the results obtained for the empirical risk minimization 

algorithm can be useful to describe the properties of other learning algorithms which 

do not require an ~/2-cover. Such algorithms perform empirical minimization over 

the entire family of 3 rather than the h i t e  set of minimal ~/2-cover. This can be 

interpreted as performing the standard empirical risk minimization where E + 0. 

Notice that al1 the results given above tell us that when E + 0, N ( E / ~ ,  3, d p )  + oo, 
and that such an algorithm will require an infinite number of training examples. 

However, the relative rates at which the required sample sizes grow for different 

models are more important than the exact value of the bound for each model. As 

an example, suppose that the sample cornplexity of the neural model A, with a 
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certain number of neurons and a certain size of parameters, grows faster than a 

model B mith some other structure and parameter space. Then, it can be expected 

that the neural model B requires less effort and fewer training data not only for the 

empïrical risk minimization algorithm but also for many algorithms that perform 

global optimization. This idea is further described in the next chapter. 

4- Tt is well-known that the models with larger complexity cal1 for greater sample 

complexities. The idea behind this belief cornes kom the fact that the cornputation 

time (and as a result the computational complexity) of an algorithm increases as the 

training algorithm processes more training data. Therefore, the sample complexity 

can be considered as an indication of the overal computational complexity of the 

model used for approximation. Considering the sample complexity as an indication 

of rnodel complexity is the fundamental idea of the structural risk minimization 

method (as described in the nevt chapter). 

5 .  The bounds given for al1 models indicate that the sample complexity depends not 

only on the number of neurons and the dimension of the input, but also on the size 

of the parameter space. This means that even without adding new neurons to the 

model, and only by increasing the size of the parameter space, one can achieve a 

more complex neural model. This is the main point a group of researchers including 

Bartlett [41] has been making since the early 1990's. They believe that the common 

trend of adding new neurons to  enhance the cornputational capabilities of neural 

networks without paying attention to the size of the parameter space may not be 

the best approach in neural modeling. They recommend that the computational 

performance of a neural network can be enhanced more systematically (from the 

point of view of learning theory) by keeping the number of the neurons the same 

and allowing the parameter space to grow larger. This will be further discussed in 

the next chapter. 

6. The above Examples give a frameworks to assess learning properties for the identifi- 
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cation of a dynamic system using NFIR models. It is known that in some practical 

applications, ABX dynamic systems can be effectively approximated with NFIR 

models [16]. However, some properties of ARX systems (including stability) can 

not be appropriately addressed with the NFIR approximators. 

7. In the bounds given by Theorems (2.4.1.1) and (2.4.2.1) for the sample complexity 

of FU3FNYs the effect of centers of the basis functions on the overall sample complex- 

ity cannot be observed explicitly. The results give the same bound for the sample 

complexity of two RBFN's that use the same parameters but have different centres. 

This can be regarded as one of the reasons for our bounds being very conservative. 

A more careful investigation of the Lipschitz constants of such families mith more 

assumptions on the input space as well as the centers might result in a set of bounds 

in which the centers play an explicit role. In order to obtain results that incorporate 

the centers into the bounds, assumptions on the way the centers are distributed over 

the input space would be made. By assuming a grid-type arrangement of the cen- 

ters, the above bounds c m  be further improved. However, such assumptions would 

make the results less general as the resulting bounds would be applicable only if the 

same grid arrangement is used to form the centers. 

8. The bounds for sample complexity of SNN7s and RBFN7s suggest RBFN7s require 

more training data than SNN7s. This is in contradiction with the results [46] that 

prefer GSLN's over SNN's. The main reason for this contradiction is that the 

bounds used in [46] for cornparison do not consider the size of the parameter space 

and are usually based on highly conservative assumptions. Most of the bounds used 

in [46] are the ones introduced for binary neural networks in which the values of the 

weights are disregarded. They also do not consider the fact the RBFN's normally 

(but not always) require more neurons (10 to 4 times) than SNN's to perform the 

sarne task of identification or classification with a similar level of accuracy. The two 

structures are compared only when the number of hidden neurons for both networks 

is assurned to be the same. As s h o m  in this chapter, even with the same number 
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of hidden neurons, based on our bounds, SNN's require fewer training data points. 

This observation is more compatible with the fact that RBFN's are more "local" 

than SNN7s, and aS a result, they might need more data points to reliably cover the 

entire input space. 

The use of bounds rather than actual values of sample complexity may not be a 

reliable approach for such a comparison. Note also that the types of approximations 

used in obtaining the above bounds have been slightly different from one neural 

structure to another. However, the comparison uses the best available results. This 

in turn indicates that if less conservative bounds are obtained, then the results of 

the comparison made in this thesis become more reliable- 

9. From Table 2.1, it can be seen that atan SNN's and bipolar exponential SNN's have 

close rates of growth in term of m. Also, these two structures are far superior to the 

RBFN7s, as far as sample complexity is concerned. Moreover, even with m = 20, the 

sample complexïties of these two structures are within the typical range of databases 

of many real applications such as biomedical and marketing systems. 

In order to sort the most popular forms of neural networks based on their learning 

properties, the diagram of Figure (2.1) can be used. This diagram shows that 

among the four structures compared in the diagram, bipolar exponential SNN's and 

Gaussian EU3FN7s are the most and the least preferred types of neural networks. 

Also, comparing RMQ and Gaussian RBFN7s, based on the bounds of Table 2.1 as 

well as the theoretical bounds given above, it can be observed that RMQ-RBFN7s 

exhibit a more desirable learning behaviour. This result is likely to be reliable since 

the process of obtaining the bounds is almost the same for both structures. The . 

only spot where the two bounds become different is a t  the final stage when the 71i7s 

are to be bounded, and even at  that point, the way the two values are bounded is 

reasonably optimal for both structures. 

The superiority of RMQ-RBFN's over the Gaussian RBFN's, and the fact they ex- 

hibit a better performance as far as the overfitting problem is concerned is reported 

in many practical applications, including [38]. Again, this superiority can be at- 

tnbuted to the fact that RMQ-RBFN's (for the same range of parameters bi7s) are 
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L B ipolar exponential SNN' s 

Atan S m ' s  

RMQ RBFN' s 

Gaussian RBFN's 

Figure 2.1: Sorting neural models based o n  their sample complexity 

less local than the Gaussian ones. If two nettvorks are trained with the same set of 

scattered data points, and tested against a set of data points that fall in between 

the scattered training points (and not particularly close to any of them), then the 

less local structures (Le. RMQ-RBFN's) create a better approximation. 

The above discussion encourages the use of RNQ-RBFN's. Since RMQ-RBFN7s 

have become the most popular RBFN's used in practical applications (see [38] for 

example), in the next section this family is chosen among the different families of 

RBFN's and used for the simulations. 

Considering the sample complexity bounds, a n d  using Table 2.1 and the diagram 

of Figure 2.1 the same type of comparison c a n  be performed between atan and 

bipolar exponential S N N k  It is found that from the point of view of learning, the 

bipolar exponential networks require slightly fewer training data points and might 

be preferred. However, no practical evidence was found the in the literature to 

support the above staternent. In order to comply with the trend of the practical 

applications, in the ne-ut section, atan SNN's axe chosen to represent the different 

families of SNN's. 

10. As for the linear and Volterra approximators, since linear models are special cases of 

Volterra networks, the cornparison is straightfosward. The nurnber of neurons in a 

linear mode1 is limited to the dimensionality of taie input, while in Volterra networks 
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it  also depends on the order of approximation. Thus, in a Volterra network, the 

higher the order of the input variables to be considered in the approximation process, 

the more neurons are added to the hidden layer. The computational capabilities as 

well as the need for more training data then increase accordingly. 

The bounds on the Volterra networks become more conservative as the order of 

the approximation is increased. This is due to the fact that for higher orders, the 

approximation of higher moments of the input wïth the corresponding orders of M 

becomes more conservative. This is not the case in other forms of neural networks. 

However, since in many real applications of VoIterra networks, the second order 

appro'uimation is used, the reported resdts might be more useful. 

Since the focus of the rest of the research is on SNN7s and FU3FN7s, no simulations 

are performed with Volterra or linear models. However, in the next section and 

during our description of the minimum complexity modeling, the characteristics of 

modeling with both VoIterra or linear models are covered. 

11. The value of these results goes beyond their theoretical significance. The size of the 

data set that results in PAC learning is a guide to practically useful results, and can 

therefore be used to guide a user towards the approximate mode1 and complexity. 

Furthermore, the functional dependence of the bounds upon model structure c m  

be used in designing cost fimctions that optimize both model accuracy and mode1 

compleAxïty during identification. This issue will be further addressed in the next 

chapter, 

2.11 Summary 

The main issues addressed in this chapter are as follows. 

Using Hoeffding's inequality for i.i.d. data, a new equality that bounds the summa- 

tion of a sequence of m-dependent r.v.s was derived. 

The definition of PAC learning paradigm and al1 its elements was extended to learn- 

ing with m-dependent data. 



CHAPTER 2. A LEARnrl'VG FRALMEWORK FOR FIR MODELRVG 55 

a Assuming that the data are identically distributed according to the uniforrn dis- 

tribution, the learning properties (including the sample cornplexlty) of a general 

rnodeling task were presented. 

a In the case of modeling with general families of RBFN's, sigmoid neural networks 

(SNN's) and Volterra networks, the sample complexity was evaluated in terms of 

the number of neurons as well as the size of the corresponding parameter space. 

a The learning properties of some specific m e s  of FU3FN's and sigmoid neural net- 

works were further specified, analyzed and compared with each other. 

a The obtained results on learning of different families of neural networks were applied 

to assess typical examples of nonlinear system identification with neural networks. 

The functional dependence of the bounds on sample complexity upon mode1 struc- 

ture can be used to design learning-based cost functions to be minimized during the 

training phase. 

The model-free PAC learning mith m-dependent data wa. defined. The general 

properties of such a scheme were evaluated and related to those of the standard 

P-4C learning framework. 



Chapter 3 

Learning and Practical FIR Modeling 

3.1 Introduction 

The modeling approaches described in the previous chapter suffer from the following 

short comings. 

1. None of the learning schemes searches for a model of the unknown function taking 

cornplexity into account as well as accuracy. In practice the algorithm should find 

an accurate model and at the same time avoid creating over-complex models. 

2. Both conventional and model-hee learning schemes require huge training data sets 

to assume learning, while in many applications the size of training set is srnall and 

fixed. Even if the leaming inequalities ask for more data points, obtaining new data 

may not be possible. 

Thus, a modeling task based on the previous approaches works best when some infor- 

mation about the complexity of the unknown function along with large training data sets 

are available. When such conditions can not be satisfied, a more sophisticated method 

has to be applied so as to provide the optimal set of parameters, as well as the minimal 

structural complexity given the size of the available data set [27], [28], [29]. 

One such method, introduced by Vapnik in [51], is knom as "structural risk rninimiza- 

tion." This dgorithm, adapted and tuned towards our formulation of neural modeling, 

is given in Section 1. Practical algorithms that create a degree of balance between the 

theoretical justification and practical limitations of a typical modeling task are then given. 

The chapter is organized as follows: Section 3.2 describes different versions of the 

structural risk minirnization algorithm. In Section 3.3, complexity measures for difFerent 
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families of RBFN's, sigmoid and Volterra neural models are found and the corresponding 

cost functions to be minimized during the training procedure are devised. The issue 

of the number of hidden neurons in dïfFerent neural models is discussed in Section 3.4. 

In Section 3.5, based on the idea of Evolutionary Programming (EP), algorithms are 

introduced that can be applied to rninimize the non-smooth cost function obtauied in 

Section 3.3. The proposed EP method, along with two systematic evolutionary methods 

for neural modeling, are presented. Section 3.6 describes the results of a nurnber of 

numerical simulations that test the performance of the proposed algorithms. The results 

of the chapter are discussed in Section 3.7. Finally, Section 3.8 gives the summary of the 

chapter. 

3.2 Structural Risk Minimization AIgorithrn 

The proposed neural rnodeling algorithms are extensions of the structural risk minimiza- 

tion algorithm [51], which is now described. Two versions of the structural risk mini- 

mization algorithm designed for neural modeling are given. In the following formulations, 

attention is focused on RBFWs and SNN's. Using the results of the previous chapter, 

similar algorithms can be devised easily for other neural networks. In the following for- 

mulations, the focus is given to RBFN7s while al1 the fomulations can be extended to 

SNN7s. 

In the first formulation, assume that for al1 functions in E lail& 5 M < oo where 

i = 1,. . . ,1 and M is a fixed radius of an assumed hyper-sphere of parameters la i l f i .  

Now, notice that: Arbf,(l) = ZM is an upper bound for xi=, lail Jb;. The assumption on 

the magnitude of the parameters makes the available learning bounds more conservative, 

but is necessary for the nested families of neural networks required by the structural risk 

minimization algorit hm. The first version of the structural risk minimization algorithm 

can be described as follows. 

Definition 3.2.1 Assuming the pre-specified values of the accuracy E ,  the confidence 

(1 - 6) ,  M and the size of the auadable set of training data la, "The Structural Risk 

Minirnization with Variable Structure Algorithm " is  descrïbed as the following steps: 
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Step I r  Consider a nested sequence of function sets Fl C FL+l, where FL is a family 

of RBFN's  with 1 neurons, where IL,, 5 2 5 n. Notice that ATbIn (2) i s  a fized value for 

the function set 31. 

Step 2: Find the largest natural number 1 such that the corresponding inequality of 

sarnple cornplexity i s  satisfied and narne it as "kn, 

Step 3: Perform the empincal risk minimization algorithm over the function set Fk. 

The resulting function (for the particular family of RBFN's  used in modeling) is the output 

of the algorithm. 

As can be seen, the structural risk rninimization Ends the simplest function set (within 

a certain nested family of function sets) t hat provides learning wit h the pre-specified values 

of accuracy and confidence, using a training data set with a fixed size. In other words, 

this method searches for the simplest possible candidate in UÏ,, FL to approximate the 

unknown function, considering the size of the available training data set. 

In order to define the second formulation, notice that a nested family of neural net- 

works can be generated assuming a k e d  number of neurons but grading the size of the 

parameter space. The nested family of functions with FP c FP+1 is thus formed assuming 

a fixed number of neurons Z but a nested parameter space. In order to formulate this 

idea, and develop an alternative to the previous algorïthm, fist consider a sequence of 

real numbers hfP7 p = 1,2, . . . , such that O < A.i, 5 n/lp+l. Next, for each integer p, 

define a set of functions in FP for which: lail Jb; 5 Mp. Then, with Rbf , (p )  = l M p  where 

O < Adp < a nested family of functions FP c FP+1 is formed. The second version 

of the structural risk minimization algorithm is: 

Definition 3.2.2 With  all assurnptions as in Definition 3.2.1, and assuming a sequence 

of non-decreasing values of Ml, &f2, . . . , M,,, , "The Structural Risk Minimization with 

Variable Parameter Sixe Algorithrn" is described by the following steps: 

Step 1: Consider a nested sequence of function sets Fp c 3p+1 where FP is a family of 

RBFN's  with 1 neurons and parameter size of Mp as described above. Notice that ATbfn@) 

is a fked value for the function set 3,. 



Step 2: Let "k;" Ee the largest integer p such that the corresponding inequality for 

sample complexity is satisfied, 

Step 3: Perform the empirical risk minimizution algorithm over the function set Fk. 

The resulting fitnction is  the output of the algorithm. 

Although the second method of generating the nested family gives no clear intuitive 

insight to the structural format of the nekvork, it can be seen that if the algorithm 

assumes an 1 that is "large enough" , the need to manipulate the network's structure is 

eliminated. Similar algorithms can be d e h e d  for sigmoid neural networks defining Mp 

as: 1 ai 1 1 bij 1 5 n/fP for al1 i and j. The discussion considers RBFN's, alt hough similar 

arguments can be made regarding the algorithms with sigmoid neural models. 

The following comments describe major disadvantages of the above algorithms. 

1. It can be seen that both algorithms search for a neural mode1 of the unknown 

function with some degree of minimal complexity. However, because of the use 

of conservative bounds the need for large training data sets remains as  the main 

disadvantage of both algorithms. Consider a hypothetical modeling procedure where 

only a few hundred training data points are available. The first method tries to 

find an upper bound for Z such that some levels of accuracy and confidence (e-g. 

E = 6 = 0.03) are guaranteed. Using the learnuig inequalities of the previous chapter 

for 1, the typical upper bound obtained for the above-mentioned typical values is 

well below 1 = 1. In other words, it will be found that according to our bounds 

there is no mode1 structure for which PAC learning can be assured. 

2. In order to use either of the algorithms, some assumptions have to be made regarding 

either the number of hidden neurons or the size of the parameter space. For example, 

in the second algorithm, it might be difficult to guess wisat values of 1 are large 

enough for the problem at hand. Mso, the size of the step under which Mp has to 

be increased is an issue that requires further attention. 

3. Both algorithms bound A,bf, = lail fi using some assumption either on the 

structure or on the size of the parameter space. For example, the structural risk 



minimization with variable structure algorithm assumes a fked size of the parameter 

space, and uses the number of neurons to bound Arbfn for each function set in the 

nested family of function sets. However, there is no guarantees in either approaches 

that such assumptions result in tight bounds on Arbfn- 

The leaming results of the previous chapter thus may not be directly used for applica- 

tions with a small number of training data points. These formulations, although carefidly 

designed and theoretically correct, are successful only if the size of the training data set is 

large, since they depend on conservative bounds. Roughly speaking in all modeling tasks 

where the size of the training data is larger than a few thousand, the results of the learning 

results can be applied even though these results might be conservative estimates. Avail- 

ability of large data sets is the main characteristic of an emerging field of research called 

"data mining" . In a typical data mining procedure, the knomledge contained in a large 

database is to be ex-tracted using a certain type of algorithm. Two of the most important 

data mining applications are marketing analysis and image processing, where the quan- 

titative evaluation of the accuracy and confidence of the models is most important. For 

applications such as medicai image processing and hancial  analysis, where huge training 

data sets (typically with more than a few hundred thousands or a few million data points) 

are available, the above algorithm can be directly applied to create accurate and reliable 

models of data. However, there exist many applications in science and engineering where 

the size of the available training set never exceeds a few hundred points. 

Another issue that discourages the use of the empirical risk rninimization is the di6- 

cul@ of creating an e/2-cover of a function set. There exist specific procedures of forming 

function cover sets that are practically very tirne-consuming (see for example the pro- 

cedure given in Chapter 5, for a distribution-fkee version of forming such cover sets). 

Although an E-cover of a function set is not easy to form practically, the cardinality of a 

minimal cover, however, is known to be a highly informative indication of the cornplexity 

of a function family. 

To obtain insight into the performance of neural models of practical systems, the 

theoretical structure of the statistical learning theory is used as a guide to practical 

modeling methods. The more practical methods lack the exact theoretical guarantees 



provided by the learning theory. 

In the next sections, neural modeling algorithms are proposed that use the results of the 

statistical learning theory to provide some degree of coddence over the similarity of the 

testing and training performances of the algorithms. In order to do so, a complexity term 

is introduced for each neural structure and this term becomes part of a cost function to 

b e minimized during the training. 

Overfitting and poor testing performance are caused by the use of over-complex mod- 

els. In order to maintain a testing-training balance, the complexity of the model must be 

limited. The results of the statistical learning theory are used to present new measures 

of complexity that target the overfitting issue directly and provide an acceptable level of 

the testing-training balance. 

As mentioned before, given a fixed size of training data set, n, and a certain family of 

networks, the deviation of the testing performance from the training performance is set 

by E and 6. In order to avoid overfitting in an ideal case, both these parameters must be 

as small as possible, at the same time. However, korn the learning results of the previous 

chapter, it can be seen that with a fixed number of training data points, reducing the 

value of the one of these two parameters would increase the bound on the other one. This 

means that with a fixed model and fked number of training data, if higher accuracy is 

desired, one has to compromise the level of statistical confidence and vice versa. This 

issue parallels the bias-variance problem reported in the fields such as identification and 

modeling and asserts that often, both accuracy and confidence may not be minimized 

at  the same time. To create a systematic modeling algorithm, the main objectives of 

a typical modeling task must be used with the learning properties to create a balance 

between these two parameters. In order to do this, one of the two parameters is fixed 

and the complexity measure is based on the other one. Notice that for a h e d  level of 

disparity between the empirical error and the true error, S gives the amount of uncertainty 

over the model. Therefore, it seems that for a typical modeling application, S would be a 

good choice for a complexity measure to be minimized throughout the training process. 



Defining the cornplexity measure based on 6 d l  result in complexity measures that are 

closely related to the level of smoothnesç (Lipschitz constant), the size of the training 

set as well as the dimension of the input- This is not surprising, because modeling with 

functions that possess higher Lipschitz constants and larger dimensionality is known to 

be more cornplex and to require more data points. 

Assuming that E is constant, if 6 (or a non-decreasing function of this parameter) is 

minimized during the training procedure, a model will be found for which the likelihood of 

having the Merence between testing and training performances limited by E is maximized. 

-4t this point, consider a set of Gausssian RBFN's. Similar procedures that give similar 

results for other neural structures are described later. Now, consider Inequality (2.34): 

where: 

Assume that: a = O, 0 = 1. As mentioned in Chapter 2, the choices of a! and P are 

arbitrary and there is nothing special in the above choices. Also, note that the values of 

m, n, and 6 are fixed dunng the training procedure. If the value of E is given, the value 

of 6 (or ln(6)) is an indication of uncertainty of the model, i.e. minimizing h (6)  leads to 

models that are more reliable and perform more similarly on training and testing data 

sets. Therefore, define the cornplexity terrn Cg.,,,-, as ln@), or: 

This cornplexity measure gives an indication of the testing-training balance and shows 

how unreliable the training of such a network is. It is important to notice that the above 

measure combines the parameter-space complexity with the complexity due to the number 



of neurons (structural complexity), without making any assumptions on the structure or 

parameters. This means that any algorit hm that minimizes (3.2) addresses the parameter 

space complexity and the structural cornplexi@ at the same tirne. It can be observed 

that the complexity term introduced in (3.2) takes into consideration the size of available 

training data set n, the total dimension of input d, as well as the Lipschitz constant as 

an indication of srnoothness of the function set. 

Now, suppose that during the training algorithm the number of neurons 1 is fixed. 

Then the objective of the optimization algorithm is to include both the above complexity 

term and the empirical error in a cost fiinction, i-e. : 

In the above cost function, X is a weighting factor that determines the relative impor- 

tance of the empirical error and the complexity term in the overall cost function. Lower 

values of X result in models that create small training errors but exhibit poor perfor- 

mance over the testing data. The higher values of X create a desirable testing-training 

balance with both testing and training errors undesirably increased (due to resulting large 

empirical errors). -4 practical approach in choosing the value of X is described later in 

this chapter. The function l(. ,  .) is chosen to be a loss function that satisfies a uniform 

Lipschitz condition as defined in (2.61). 

The function introduced as J,,,-, is not a practical objective function since it 

includes a term Arbfn that nests the parameter space. In other words, for a chosen value 

of ATbf,, the space in mhich the parameters are allowed to Vary is restricted. Then a higher 

value of Arb fn defines a new parameter space which includes the previous space. In practice 

it is very difficult to create such a nested sequence of function sets based on a term such as 
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Arb fn  and then search for the simplest h c t i o n  set with satisfactory performance. -41~0, 

performing minimization of the error for a fixed value of Abfn requires a solid method 

of constrained optimization to make sure that the resulting set of optimal parameters is 

indeed within the space specified by the prespecined value of Arbfn- These limitations 

make the entire process of optimization within each of the function sets impractical. 

In order to obtain a sub-optimal solution, compromise is necessary. An optimization 

algorithm that is capable of minimizing non-smooth functions over the entire parameter 

space allows the use of a more practical complexiv term which is formed by replacing 

&b fn with xf lail Jb;. During the consecutive iterations, the optimization algorithm now 

moves in favor of functions that fall within a smaller parameter space and as a result are 

less complex. This leads to the following more practical complexity tenn: 

and the corresponding cost function: 

In the new cost functioils, the values of ~f lai 1 Jb; are kept as small as possible without 

being concerned about the over-dl grading of the space through the h e d  values of Arbfn. 

Even with the relaxed definitions, since (3.5) is a non-differentiable function of the ai's 

and perhaps of the bi%, gradient-based minimization methods cannot be used for the 

optimization phase. Performing optimization over ai's and k's thus calls for an algorithm 

that can minimize nonlinearly and non-smoothly parameterized rnodels. The issue of 



minimizing such cost functions will be discussed later in this chapter. 

Next, following the same type of approach, complexiw terms and cost functions are 

defined for the neural structures discussed in the previous chapter. Just as for Gaussian 

FU3FN7s, complexity terms are introduced that reflect the functional dependency of ln(6) 

and contain information about the learning properties of the modeling task. 

Starting with RMQ-RBFN's, use Inequality (2.37) and apply the logaxithm on both 

sides to define the complexity term and the corresponding cost h c t i o n  as follows: 

and: 

(3-7) 

For an "atan" neural network, following a procedure similar to that of RBFN7s, define: 

and: 
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In the case of bipolar exponential sigrnoid functions: 

and: 

Finally for a family of second order Volterra networks as descrïbed in the previous 

chapter: 



where B is as defined as:. 

Based on this complexity term, define the folloming cost function: 

As mentioned above, the cornplicated form of these cost functions calls for an o p  

timization algorithm which can minimize non-differentiable nonlinear functions. Before 

describing the minimization algorithrns, some issues regarding the number of hidden neu- 

rons in different neural structures must be addressed. 

3.4 Number of Neurons in Hidden Layer 

As seen in the structural risk minimization algorithm, it is often necessary to define a 

range of values for the number of hidden neurons: l m  1 K. The upper limit n 

depends on the size of the training set and the dimension of the input, i.e. rr. = ~ ( n ,  d) . 



In practice, the number of parameters should be significantly srnaller that the number 

of training samples. This is an idea also supported by the resdts of the learning theory. 

However, the number of neurons done dues not determine the complexily of the network. 

As shown in the previous chapter, the size of the parameter space dong with the number 

of neurons dso  influence the cornptexïty. 

In practical neural rnodeling tasks, n(n, d) is often set as a multiple of the total number 

of parameters in the nekvork. This explains why in general i1 is also a function of d. For 

SNN's, since the number of parameters (which is the same as the number of weights) is 

equal to: (d + 1)1, follows that: 

where Q is an integer that is normally set to a nurnber between 2 and 10. The range 2 

to 10 cornes from the general idea of having 2 to 10 times as many training points as the 

parameters (see [IO] for example). Condition (3.14) suggests the following expression for 

~ ( n ,  d): 

A similar argument for the number of parameters for RBFN's, can suggest an appro- 

priate functional dependency for K. Notice that for a RBFN, the number of parameters 

does not explicitly depend on the dimensionality of the input and is equal to: 21. This 

suggests the following expression for K :  



3.5 Evolutionary Neural Modeling 

The cost functions introduced in the previous section are unsuitable for gradient-based 

optimization methods. On the other hand, evolutionary dgorithms are of'ten designed 

to optimize complicated non-differentiable cost functions. Like other types of optimiza- 

tion algorithms, t here are many different versions of evolutionary optimization methods. 

Evolutionary algorithms use 'hatural selection" , "reproduction", and "mutation" opera- 

tions to search among the members of a pool of possible solutions. During the process 

of natural selection, the members of a generation of species (Le. possible solutions) are 

evaluated based on their level of L%tness7' to the environment (i.e. by a cost function), 

and the best solutions are selected. Then these selected candidates are reproduced to 

create a new pool of solutions called "offspring". Finally, the candidates in the new 

pool of solutions are randomly mutated according to their level of fitness, i.e. the ones 

with better fitness are mutated less. Notice that due to the process of mutation the new 

solutions (offspring) are no longer the same as their parents, but somewhat similar to 

them. The resulting pool of candidates is now treated as the new generation of solutions 

and goes through the next evolution cycle. Some other evolutionary operations such as 

"cross-over" are also used in a family of evolutionary algorithms (including the Genetic 

Algorithm), that might help the process of evolution. The use of cross-over operation, 

however, requires creating chromosome strings for each of the solutions, which makes the 

entire process more computationally intensive. Also, there exist infinite methods to map 

the information of the network to a chromosome, while little is known on how these meth- 

ods inauence the optimization process. It is also claimed that the cross-over operation 

distorts the topology of the neural networks, and as a result may not be an appropriate 

operâtion when dealing with optirnization of neural networks. As a result, here the three 

fundamental operations of natural selection, reproduction, and mutation that form the 

basis of Evolutionary Prograrnming (EP). Perfonning optimization tasks using EP often 

calls for enormous computation time. This is considered as the main disadvantage of 

EP-based algorithms. 

EP algorithms can be easily designed for a particular problem so that better solutions 

of the problem are selected and reproduced throughout the process. A careful design of 



the algorithm can result in a faster approach to a sub-optimal solution. Here, the EP 

method is adapted to the training of a feedforward neural network as described below. 

First an EP method for the fixed-structure neural networks is introduced- This EP 

method first creates an initial generation of the networks, all with a fixed number of neu- 

rons. The cost function for each of the networks is then evduated. Networks with the 

lowest cost function are then selected and the rest of the models are discarded. Then, 

taking into account the cost function, the parameters of the selected networks are mu- 

tated. By adding a vector of normally-distributed random numbers with the variace 

proportional to the cost of the network, the selected networks are mutated. The muta- 

tion process d l  be further specified later in this chapter. Then the cycle is repeated by 

selecting the networks wïth the lowest cost function in the new generation. 

A second algorithm is used for variable-structure neural networks. At each stage of this 

algorithrn, the EP method with the fked-structure (as described above) is first performed 

for the networks with a certain number of neurons. After iterating for a number of 

generations, if the cost function is not decreasing fast enough as the new generations are 

produced, the method increases the number of neurons in the hidden layer and searches for 

the desirable network within the new structure, again using the fixed-structure algorithm. 

When even adding new neurons does not make the cost function decrease fast enough, 

the algorithm stops the search. Since increasing the number of neurons creates a nested 

family of functions, this method systematically searches for the simplest function of the 

nested family of the neural nettvorks that can provide us with the desired level of the 

defined cost function. 

The cost functions evaluated in the above algorithms are the ones defined in this 

chapter, based on the learning properties of each neural structure. The condition that 

determines the termination of the search is expressed in terms of the dope of the curve 

of the cost function versus the generation riumber. 

The proposed ked-structure algorithm can be described in more details as the fol- 

lowing stepwise procedure: 

De finition 3.5.1 Suppose n input-output training data are given. Consider  a f a m d y  of 
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neural networks with 1 neurons- Given a certain value of A, the objective i s  to find the 

simplest neural mode1 of the family thaf minzmzzes the cost function J. Also, assume that 

the s u e  of each generation is N, and that the integer Np is selected such that -NS = NIN, 

too is an integer. In  each selection procedure, select the best N, members of the networks 

of the generation. Set the values w, and wb as the mutation rates (annealing rates) of 

parameters ai's and bi 's, respectively. Define the dope of the curue "cost finction us. 

generation number" as: 

Slope = J(1,GenStep) - J(f ,Gens@- BackStep) 
BackStep 

where: J(1, GenStep) is the cost function of the network of generation GenStep with 

minimal cost finction and BackStep is the number of back steps, based on which the 

dope of the cost function curve is calculated. 

Also assume the minimum acceptable dope of the cost fùnction before the training is 

stopped is  given as MinSlope. The "evolutionary fixed-structure neural modeling algo- 

rithm" is performed as follows: 

Step O: Create N networks (each hauéng 1 neurons) to fonn the initial generation. In  

order to do so, randomly assign parameters ( ai's and hi's) of the networks to standard 

nomnally-distn'buted random numbers. 

Step 1: Evaluate the cost function for the networks of the present generation, i-e. find 

J for al1 networks of the pool. Also set: GenStep = 1 

Step 2: Select the best Ns networks that generate the smallest cost functions, and 

discard the rest. 

Step 3: In order to generate a new generation with N members, mutate each of N, 

remaining networks in  Np f o m s .  More specijïcally: 

where 1 5 r < p, variables Rand., and Randb, are normally distributed random vectors, 

and Jold is the value of the cost function calculated for the old network. 
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Step 4: Find the network that giues the smallest J ,  and name its cost function as: 

JbeSt. Assign J ( l ,  GenStep)  = Jbest If GenStep 5 BackStep,  zncrernent GenStep b y one 

and go to Step 2. Otherwise, calculate: 

Slope = J(1,GenStep) - J(1,GenStep- BackStep) 
BackStep 

Step 5: If Slope < &finSlope, increment GenStep by one and go to step 2; othenuise, 

Save the parameters of the best network of the pool, and introduce this network as the 

output of the algorithm. 

A simple flow chart of this algorithm is shown in Figure (3.1). 

The slope of the cost function curve versus generation number determines when the 

training is stopped, i.e. mhen producing new generations of solutions does not make the 

cost function decrease fast enough the a l g o r i t h  stops. Also, notice that the meights of 

each network are mutated according to the fitness (Le. the cost function) of the network. 

Paramet er BackStep deterrnines how many generations are being used to evaluate the 

slope of the cost function, while MinSlope gives the threshold value for the dope before 

the training is stopped. 

The variable-structure version, which includes the above algorit hm as its one special 

case, is a combination of the two versions of the structural risk minimization algorithm 

and can be describes as follows: 

Definition 3.5.2 Suppose n input-output training data are giuen. A nested family of 

neural networks is  f o n e d  of a family of neural networks with I l ,  5 1 5 K .  Given a 

certain value of A, the objective is to find the simplest neural mode1 of the nested family 

that minirnizes the cost function J. Also, assume that the size of each generation is  N, 

and that the integer Np is  selected such that N, = NIN, too is an integer. In each 

selection procedure, select the best N, membe~s  of the networks of the generation. Set  

the values w, and wb as the mutation rates (annealing rates) of parameters ai's and bi 's, 

respectively. Also assume the minimum acceptable slope of the cost function before the 

training is  stopped is  giuen as Mz'nSlope, and the number of back steps, based on which 



1 Populate a randorn generation of size 4 

Select best Ns networks 

I 

Mutate weights of  networks based on the cost functions 

Select the best network of  generation 

Figure 3.1 : Flow chart of fixed-structure evolutionary neural modeling 
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the slope of the cost function curve is  calculated, is set to BackStep. The "evolutionary 

variable-structure neural modeling" is perfonned as follows. 

Step O: Set  1 = Ilm. Also, set GenSlope to a negative nurnber with large absolute value, 

and JWt(4,) to a very large number. 

Step 1: If 1 > K - 1 or GenSlope 3 AdinSlope or J&(l) 2 Jm(l - 1)  go to Step 

6; otherwise 1 = 1 + 1. Create N networks (each having 1 neuron) to fonn the initial 

generation. I n  order to do so, i f  1 = km, randomly assign parameters ( ai's and bi 's) 

of the networks to arbitrary nurnbers. Otherwise use parameters of the last generation 

of networks with 1 - 1 neurons and add a new neuron with small randomly generated 

parameters to each of N networks. Evaluate the cost function for the networks of the 

present generation, i.e. find J for al1 networks of the pool. 

Step 2: Select the best Ns  networks that generate the smallest cost functions, and 

discard the rest. 

Step 3: I n  order to generate a new generation with N members, mutate each of N, 

remaining networks  il^ Np f o m s .  More speczfically: 

where 1 5 T 5 p, variables Rand., and Randb ,  are standard normally distributed random 

vectors, and Jold iS the value of the cost function calculated for the old network. 

Step 4: Find the network that gives the smallest J ,  and name a s  Jbest- Assign 

J(1, GenStep)  = Jbesl If GenStep < BackStep go to Step 2. Othenuise, calculate: 

Slope = J(1,GenStep) - J(1,GenStep-BackStep) 
BackStep 

Step 5: If  Slope < MinSlope go to step 2; othenuise, saue the parameters of the best 
J(1,GenStep -J 1 , l  network of the pool, set GenSlope = GenStei-, ' ) , Jopt(l) = J(1, GenStep),  and go to 

step 1. 

Step 6: Among the best networks with 1 and 1 - 1 neurons, find the one with the srnaller 

cost function, and iintroduce this network as the output of the algorithm. 
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As can be seen, in the evolutionary variable-structure neural modehg algorithm the 

number of hidden neurons is determined by the algorithm and throughout the training 

phase. The assumption of I l ,  = K reduces the second algorithm to the first one, and as 

a result, the first algorithm is a special case of the second one. The evolutionary h e d -  

structure neural modeling algorithm nill be used in simulations to show the practical 

importance of the cost functions in avoiding the overfitting problem, 

The above algonthms are presented in a general format, and when they are to be 

applied to a particular family of neural networks, some items must be fuaher specified. 

Here is a list of suggestions about the use of the algorithm to train SNN's and RBFN's: 

1. For SNN7s, al1 random numbers can be generated according to a zero-mean normal 

distribution with variance of 1. 

2. For RBFN's, the same form of random generator can be used. However, in order to 

avoid negative values of bi, a mechanism should be included in the algorithm that 

assigns bi to a small positive real number if the random generator tries to set bi to 

a negative value. 

3. In learning of variable-structure RBFN's, in order to make sure that families of 

neural networks are actually nested, the set of centers {ci, i = 1, . . . , 1 )  for a network 

of 2 neurons should be included in the set of centers for any network with 1 + 1 
neurons, for al1 Z. 

Some of the advantages of the above algorithms are as follows. 

1. The cost function to be minimized reflects the learning complexity of the mode1 and 

can create a balance between the testing and training performances of the resulting 

network. 

2. Algorithrns using gradient-based optirnization methods can get stuck in a local mini- 

mum, while the EP method used here is less susceptible to the local minima problem. 

3. The variable-structure algorithm performs optimization on both parameters and 

structure of the network at the same time and t&s to avoid overfitting. 



The disadvantages of the algorithm can be listed as follows. 

1. From the design of the algorithms, it can be seen that the form of the model is used 

only in evaluatim of the cost function and plays no role in the way the parameters 

are updated- This is in contrast to methods such as gradient-based algorithms where 

the exact form of the model is explicitly used in updating the weights of the model. 

This lack of attention to the exact model form rnakes EP algorithms applicable to 

wider families of optimization tasks, while it makes each particular optimization 

process less efficient and more time-consuming. 

2. Different choices of variables A, MinSlope, w,, urb and BackStep may result in 

different models. The designer must use a series of mns of dgorithms with diEerent 

settings to find the suitable set of the above variables. 

3. In both algorithms, the extensive use of random numbers throughout the learning 

process causes the entire process of learning to be a stochastic procedure. The end 

result of the training task may be different if different sets of random numbers are 

used. 

4. The evolutionary variable-structure neural modeling implicitly assumes the convex- 

ity of the curve of cost function versus generation number. This is because as soon 

as Jqt(l) > J&(l-  l), the algorithm stops and introduces the network with Z - 1 

neurons as the outpiit function. Considering the stochastic nature of the algorithm, 

it can be imagined that in some cases, if the algorithm is dowed to continue the 

search, a network with 2 + 1 or even more neurons can be found for which the cost 

function is smaller than that of the network with 1 - 1 neurons. 

5 .  Just like any other EP-based algorithm, the introduced neural modeling algorithms 

are computationally- intensive and require a significant amount of computation time 

to obtain a sub-optimal solution. 

The first disadvantage, on the other hand, allows the designer to have more control 

over the performance of the algorithm. The second disadvantage is characteristic of any 

randorn search and is the price paid to obtain some level of flexibility in dealing with local 
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minima. The only solution for the third disadvantage might be allowing the algorithm 

to continue the search for all I l ,  < Z 5 IE, m d  find the best solution after the search 

for al1 1 is done. This solution, although theoretically appealing, may not be desirable in 

many practical applications, as for larger values of 1 the search process becomes extremely 

tirne-consurning- 

3.6 Simulation Resdts 

In this section, simulation results using the proposed algorïthms in Fm modehg  of a 

simulated system are presented. In a l l  simulations, the Ioss function is defined as: 

In crder to generate the data, first generate a set of independently and uniformly dis- 

tributed r.v.s {i)", where O f Ci < 1 for al1 i. Then form a sequence of uniformly 

distributed m-dependent r.v.s XI, 22,. . . , ~ 4 0 0 ,  where: xi = (C , Ci+l), i = 1,. . . ,400, and 

m = 2. The system to be modeled is generated by a nonlinear function as follows: 

The 3-dimensional graph of this function for al1 values in [O 112 is shown in Figure 3.2. 

From the random samples described above, the first 100 samples are used for training of 

the network and the remaining points for testing. The neural structure which is used for 

modeling is a family of atan-SNN7s with 3 neurons. 

Assuming X = 0, the evolutionary fùred-structure neural modehg  algorithm is applied 

with 1 = 3 neurons to observe the resulting neural mode1 when the cost function is based 

only on the empirical error. Later in the second simulation, the results of this simulation 

are compared with a case where X is non-zero. The parameters of the algorithm are set 
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Figure 3.2: Three dimensional graph of function f 

Figure 3.3: (a) Cost function (left) , and (b) Complexity term (right) for Simulation 1 

as folloms: MinSlope = -1 x 10-8, BackStep = 1 0 0 0 , ~ ~  = wb = 0.01, X = 0, K = 

100, N = 50. 

With this choice of settings, the training curve of Figure (3.3) portrays the evolution 

of the best network of each generation. Figure (3.3.a) depicts the cost function for the 

best network of each generation versus the generation number. The cornplexity terrn 

Cat, for the best network of each generation is shown in Figure (3.3.b), which indicates 

that during the training and in order to find a better fit, the overalI size (magnitude) of 

parameters has increased. The performance of the resulting network is shown in Figure 

(3.4) with the actual (solid) and estimated (dashed) outputs for 50 points in the testing 



Figure 3.4: Actual (solid) and estimated (dashed) outputs for testing data (Simulation 1) 

set. 

Considering the best network of the h a 1  generation as the output of the algorithm, 

the training cost function (which is the purely averaged sum of absolute errors between 

the actual and estimated outputs) is 0.079, while testing the network against the rest of 

the data points (Le. the testing set) results in the empirical error of 0.097. Even though 

0.079 may not be a desirable level of accuracy, the significant difference of the testing and 

training errors seems to be a more important cause of concem. A testing error that is 

significantly larger than the training error shows that the model is not a reliable one and 

can mislead the user. In other words, the purpose of this simdation is not to find very 

accurate models but to exhibit the effect of using a learning-based cost function on the 

issue of test ing-t raining balance. 

3.6.2 Simulation 2 

In the second simulation, the same function, data, model, and algorithm as Simulation 

1 are used, but X is set to 0.001 rather than zero. The complexity term Catan is now 

included in the cost function. All the parameters of the algonthm (including al1 random 

numbers used for mutation as well as initialization of weights) are exactly as used in the 

previous simulation. 

Figures (3.5.a) and (3.5.b) depict the cost function and complexiw term Cotan Cumes 



Figure 3.5: (a) Cost function (left), and (b) Complexïty term (right) for Simulation 2 

of the learning task, respectively. The training cost function of the resulting neural model 

is 0.077 of which 0.070 cornes from the empirical error. This shows that the resulting 

empirical error is very close to that of Simulation 1. By comparing the complexity curve 

of Simulation 1 (Figure (3.3.b)) with that of Simulation 2 (Figure (3.5.b)), the significant 

difference between the magnitude of Cata, in the two cases c m  be seen. From Chapter 

2 it is known that the smaller Catan leads to a model that performs more similarly on 

testing and training data sets. Now, observe that the value of Cat, in Simulation 1 (Le. 

70) is considerably larger than that of Simulation 2 (Le. 6). This suggests that the neural 

model obtained in Simulation 2 might outperform that of Simulation 1 on the testing 

data. 

The neural rnodel of Simulation 2 is assessed using the same testing data set as for 

Simulation 1. The testing cost function for the resulting neural model is 0.081, which 

is close to the training cost. Although none of the errors may be small enough, the 

proximity of testing and training errors indicates that the cost function with non-zero 

X has helped the rnodel avoid overfitting. In order to assess the quality of modeling for 

the network of Simulation 2, in Figure (3.6) the actual and estirnated outputs of this 

model for the first 50 points of the testing set are depicted. Comparing Figures (3.4) and 

(3.6), one can observe the superiority of the neural model of Simulation 2 over that of 

Simulation 1, over the testing data set. This shows that the testing performance of the 
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Figure 3.6: Actual (solid) and estimated (dashed) outputs for testing data (Simulation 2) 

model of Simulation 1 is significantly less than its training performance, while the testing 

and training performances of the model obtained in Simulation 2 are very dose to each 

other. This further supports the idea that the use of the learning-based cost functions 

can avoid overfitting. 

In the next simulation, the same function and set of training data (with 100 data points) 

are used, but in this simulation, the evolutionary variable-structure neural modeling al- 

gorithm has been used. The algorithm assumes Zi, = 2 and rc = 50. Similar to the 

previous simulations, the remaining 300 points are used for testing evaluation, as before. 

The weighting factor X is set to 0.001, and the rest of the parameters are the same as the 

previous simulations. Figures (3 -7.a) and (3.7. b) show the cost function and complexity 

curves of this algorïthm, respectively. The sharpest falls of the cost function occur when 

neurons 4, 9, and 12 are added a t  iterations 26280, 72990, and 82898, respectively. 

The resulting network has 29 neurons in its hidden layer and its training cost function 

is 0.038 . For the testing phase, the cost function value increases to 0.043 which is slightly 

larger than the training cost error. Figure (3.8) shows the behaviour of the resulting 

model against the first 50 points of the testing set. A brief glance at Figure (3.8) shows 

that the resulting network outperforms the networks of Simulations 1 and 2 on the testing 



Figure 3.7: (a) Cost function (left), and (b) Complexïty term (right) for Simulation 3 
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Figure 3.8: Actual (solid) and estimated (dashed) outputs for testing data (Simulation 3) 

data, as far as training and testing error are concerned. 

In the next three simulations, RMQ-RBFN7s are used. A set of reasonable centers for 

the basis functions is chosen as follows. Set the first centre as: cl = (0.5 0.5). For the 

second center, choose q E [O 112 such that the distance between c? and cl is maximized. 

This would give us one of the vertices of [O 112. For c3, search for a two dimensional point 

in [O 112 whose distance horn the closest existing center is maximum. In this special case, 

another vertex of [O 112. The rest of the centers are selected in the same recursive manner, 

Le. find a point on [O 112 whose distance from the closest existing centers is maximum 

and add it to  the set of centers. This method of f o d n g  the centers makes sure that the 
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Figure 3.9: (a) Cost function (left), and (b) Complexity term (right) for Simulation 4 

centers are reasonably scattered over the two-dimensional cube [O 11'. 

In this simulation, ail the settings are exactly the same as Simulation 1, except that 

instead of using SNN, a family of RMQ-RBFN7s with 10 neurons is used. Also, set: 

X = O, w, = wb = 0.01 and N = 50. Figures (3.9.a) and (3.9.b) show the cost function 

and complexity curves of this leaning task. 

Looking at  Figure (3.9.b), notice that Cm, reaches a very large value throughout the 

training phase. Next, the mode1 is tested against the same testing data set as in previous 

simulations. The cost function for the training and testing sets of data are 0.0854 and 

0.0962 respectively. Again, as can be seen, the clifference between the testing and training 

errors for simulation with X = O is observable. Figure (3.10) shows how poorly the output 

is estimated for the testing set of data. 

In Simulation 5,  al1 the settings are exactly the same as Simulation 4, except that X = 

1 x Since the magnitude of the complexity term is large, the value of X is chosen 
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Figure 3.10: Actual (solid) and estimated (dashed) outputs for testing data (Simulation 
4) 

to be small so that "AC,,," remains comparable to the empirical error. A systernatic 

practical method of choosing an appropriate value for X is explained later in this chapter. 

Figures (3.11.a) and (3.11.b) show the cost function and complexity c w e s  of this 

learning task. The comparison of Figures (3.11.b) and (3.9.b) indicates that the com- 

plexity term of the network of Simulation 5 is smaller than that of Simulation 4. This 

suggests the theory that the difference between the testing and training cost functions 

for the mode1 in Simulation 5 must be less than that of Simulation 4. The value of cost 

function for the training and testing set of data are 0.0881 and 0.0930 respectively, which 

verifies our theory. The testing performance of the resulting network for the first 50 

samples is shown in Figure (3.12). 

3.6.6 Simulation 6 

In the next simulation, the same function set (RMQ-RBFN's) and set of training data 

(with 100 data points) are used, but in this simulation the evolutionary variable-structure 

neural modeling algorithm is applied. The algorithm assumes Zr,, = 5 and n = 150. Sim- 

ilar to the previous simulations, the remaining examples axe used for testing evaluation. 

From Simulation 5, one can guess that with X = 1 x 10-6, the smaller values of the 

empirical errors may not be achieved. As a result, in this simulation, the weighting factor 

is reduced to X = 1 x IO-?, while the rest of the pararneters are kept the same as the 
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Figure 3.11: (a) Cost hnction (top),and (b) Complexity term (bottom) for Simulation 5 
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Figure 3.12: Actual (solid) and estimated (dashed) outputs for testing data (Simulation 
5 )  
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Figure 3.13: (a) Cost function (left), and (b) Complexïty term (right) for Simulation 3 

previous simulation. Figures (3.13.a) and (3.13 .b) show the cost b c t i o n  and complexïty 

curves of t his algont hm, respect ively. 

The resulting network has 18 neurons in its hidden layer and its training cost hinction 

and empirical error are 0.0533 and 0.0428 , respectively. In the testing phase the values of 

the cost function and empirical error go up to 0.0628 and 0.0523 respectively, which might 

be still acceptable but slightly larger than the training ones. Clearly, obtaining srnall 

empirical errors (through reducing A) has aifected the ciifference between the training and 

testing errors. 

Figure (3.14) shows the behaviour of the resulting mode1 against the first 50 points of 

the testing set. The testing result indicate that the resulting network can be regarded as 

both accurate and repeatable. 

In this section, the simulations results are discussed. 

1. Al1 the simulations indicate that the EP algorithm is capable of performing opti- 

mization of non-smooth functions. Repeating any of the simulations with a difFerent 

initialization as well as random numbers that are used throughout the optimization 
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Figure 3.14: Actual (solid) and estimated (dashed) outputs for testing data (Simulation 
6) 

procedure results in relatively similar solutions. This demonstrates the robustness 

of the presented EP algorithm for the data originally generated. 

2. In all simulations, the choices of N,  BackStep, MinSlope, w,, wb and X di- 

rectly affect the resulting neural network. From the logic of the algorithm, it seems 

that larger values of N and BackStep together with smaller values of w,, wb and 

MinSlope will result in more reliable solutions. However, this requires a longer 

training process. 

3. Parameters w, and wb influence the extent to which the weights of the networks are 

mutated. In many EP-based algorithms such parameters are annealed throughout 

the training process, i.e. the values of w, and wb are reduced as the new generations 

are produced. This is the main idea of "Simulated Annealing" used in many EP- 

based algorithms. In all simulations, constant w, and wb are used, but these values 

can be chosen to follow sequences of non-increasing numbers. Using this annealing 

process, the results of al1 simulations might be further improved. However, to 

obtain a smooth annealing process, appropriate sequences of w, and wb must be 

used. Normally, such appropriate sequences are found throughout a process of trial- 

and-error . 

4. Throughout the simulations with a certain family of neural networks, it  was obsewed 

that using cost functions with non-zero X gives solutions that perform more similarly 
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over the training testing sets. Simulations with SNWs and RBFN's indicate that 

where the complexity terms are kept small (through selecting a non-zero A), the 

difference between the testing and training empirical error has been significantly 

reduced. This supports the use of the defined complexï@ measures in the cost 

functions and indicates that the learning-based complexity t e m s  avoid ovefitting. 

5. Considering the fact that the complexity terms used here are of order ln(6), and 

by looking a t  the values obtain for such complexity terms in our simulation, it 

can be observed that the bounds obtained in the previous chapter are extremely 

conservative. This suggests that the bounds may not be directly used unless the 

size of the training data set is large. 

6. As to the selection of X for a practical application of neural modeling with a fixed- 

structure, the following procedure can be suggested. First perform the modeling 

assuming X = O. Shen, use the set of parameters obtained from this procedure 

as the initial weights for a new training process with small A. If the value of the 

empirical error for the resulting network is still acceptable, use the parameters of 

the resulting network to initialize a new training process with even larger A. Repeat 

t his process unt il the resulting empirical error becomes unaccept ably large. This 

iterative method can give us a reasonabfe value for A. As to how the value of X has to 

be selected for a variable-structure neural modeling, one can start with the above- 

mentioned method for a network with a medium size of hidden layer. Then the 

appropriate X found for this network can be used throughout the variable-structure 

neural modeling. 

7. Similar simulations can be performed for other types of neural networks discussed 

in the previous chapter to assess the performance of the proposed cost functions as 

well as the evolutionary algorithms. Due to similarities between the neural networks 

used for the above simulations and the remaining neural structures, one can expect 

to obtain similar results from a set of similar simulations with the rest of the neural 

structures. 

8. Considering the magnitude of the complexity terms (and consequently values of 
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6), it  appears that either the results on SSN7s are less consenmtive t h a n  those of 

RBFN7s or the SNN7s are indeed easier to learn- As a result, in the n a d  chapter, 

SNN7s are used for a real modeling application. 

9. In order to test the variability of the proposed cost functions and evolutionary 

algorithms more thoroughly, al l  the above simulations have to be repeated several 

times for different training and testing sets as well as different sets o f  algorithm 

settings. This process, alt hough necessary for a solid statistical evaluation, takes a 

tremendous amount of computation time and is avoided here. 

3.8 Summary 

The results of this chapter can be summarized as follows: 

The consemative bounds presented here on the sample cornplexity of Nmnhear  FIR 

modeling procedures suggests that in many practical applications where the size of 

the training data is small, the results of the learning theory may not be used directly. 

New complexity measures of the neural models are introduced. They a r e  based on 

the learning complexity of the networks, and incorporate them into the test function 

to be minirnized throughout the trakring process. 

Two algorithms based on Evolutionary Programming are introduced and used to 

perform the optimization process. One of the EP methods assumes a h e d  structure 

for the neural network, while the other one searches through different srtructures to 

find an appropriate neural model. 

The simulation results indicate the relatively successful performance off both algo- 

rithms in a typical modeling procedure. 



Chapter 4 

Two Dimensional Sheet-Scanning System 

4.1 Introduction 

In sheet-forming processes, such as processes used in paper, steel and plastic sheet pro- 

duction, monitoring the quality of the produced sheet is an important and chdenging 

process. In the paper industry, as the sheet of paper is being produced, quantities such 

as basis weight (weight per unit area), moisture content and caliper (thickness) of the 

paper are measured using highly sophisticated and expensive sensors. Basis weight is 

considered to be the most important characteristic of the paper, and bas a vital role in 

assessing the overall performance of the paper machine. Because of the economic issues 

and the complexities involved wit h the re-starting of the paper machine, the production 

line is rarely shut down, even when the sensors are off-line. When a sensor M u r e  occurs 

or during the normal sensor calibration, paper is produced for which no valid measure- 

ment is available. In this chapter, the neural models are used to extrapolate folmard the 

measurements of paper basis weight before the sensor failure (or maintenance check-ups) 

occurs to estimate this quantity for the paper produced while the sensors are not operat- 

ing. It is necessary to realize that this chapter is not meant to claim that neural networks 

are the best models for estimation of paper machine data. It seems that the methods 

that consider the physical properties of the paper machine may be more successful in 

modeling of the paper machine data. This is mainly because when neural networks are 

used, al1 such knowledge is simply disregarded. Here, the main objective is to illustrate 

that the careful use of neural networks can avoid overfitting of the data for a complicated 

industrial system. Therefore, the use of neural network for such a system if the physical 

characteristics of the machine is known may not be the best modeling approach. 

This chapter is organized as follows. Section 4.2 briefly describes the main units of a 

paper machine and the procedure of scanning the paper basis weight. In Section 4.3, the 
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Figure 4.1: Schematic structure of a typical paper machine 

results of applying the presented systematic neural modeling to mode1 the basis weight 

are presented. Section 4.4 discusses the results of the chapter and is followed by the 

siimmary. 

4.2 Monitoring of Paper Quality in a Paper Machine 

In this section, the main components of a paper machine are described, as is the scanning 

mechanism of the basis weight sensors. Also some technical specifications are presented 

regarding our task of predicting the next weight scans. 

A typical paper machine, as shown in Figure (4.1), consists of diEerent units including 

the headbox, the dryer section, the press section and the reel. The headbox contains a 

nurnber of actuators that control the amount of fibre delivered on to a mesh conveyer 

(also called the wire). The fibre mat is dned throughout the dryer section, and passes 

the scanner where its ba i s  weight, moisture content (per unit square), and caliper are 

measured by the sensors. 

A basis weight sensor is normally composed of a transmitter and a detector of P- 
radiation that are mounted on the two sides of a closed rectangular fiame called "0- 

fiame". For each measurement, the transmitter located above the belt sends a signal 

with a known power. This signal is then attenuated according to the density and texture 

of the paper. The power of the signal received by the detector (mounted underneath the 

frame) depends on the weight as well as the moisture of the paper a t  that particular point. 
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Machine Direction 

Figure 4.2: Schematic structure of the scanning unit 

As shown in Figure (4.2), in a typical scanning system, the transrnitter and receiver move 

along a rail that is mounted on the fiame. As shom in Figure (4.2), as the paper moves 

in the machine direction (MD), the sensor scans the paper in a zigzag pattern. In each 

sweep of the paper, a number of measurements is taken by the sensors, which form one 

row of a measurements matrix M. Hereafter, each scan of the sheet is referred to as a 

row (in the measurement matrix) . 

Now, consider two consecutive rows "i - 1" and "in in the measurement matrix M. 

In the notation used in the following paragraphs, M(i, j) represents the basis weights of 

measured at row "i" and measurement point "j" (along j th  line in machine direction). 

From the zigzag nature of the scan, one c m  notice that the dependency between the values 

M(i, j )  and M(i + 1: j )  depends on j. Consider the correlation between M(i  - 1, j) and 

M(i, j )  : and compare that with the correlation between M(i- 1, j+200) and M(i, j+200), 

as shown in Figure (4.2). The correlation between the first pair (M(i - 1, j )  and M(i, j)) 

is expected to be greater than that of the second pair, as the points on the first pair 

are separated by a smaller distance. Now, compare the correlation between M(i, j) and 

M ( i  + 1, j), with the correlation between M(i ,  j + 200) and Mii  + 1, j + 200). As can be 

imagined, this time the correlation between the second pair will be larger. 

In the modeling of the scanning system, one has to take the above problem into con- 

sideration. However, since each scan takes about 30 seconds, in practice, two consecutive 

scans (whether they are separated by only a fraction of a second or by 32 seconds) are 
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Figure 4.3: Schematic control structure for a typical paper machine 

treated the same. As a result, in this research, this issue is ignored and different rows of 

the measurement matrix are treated similarly. 

A paper machine normally operates in a closed loop, Le. there exist separate control 

loops for each of the above mentioned quantities that control the variations of the corre- 

sponding quantity. In such a control system, as shown in Figure (4.3), the error between 

the sensor measurements (such as basis weight) and the set points are fed to a controller 

which generates appropriate control actions for the actuators so as to elirninate unwanted 

variations in the paper weight and moisture. 

If the sensors are taken off-line, the controller often stops generating new control input, 

and the activation of all actuators is set to some average value. M e  the sensors and 

controller are not operational, the system works in open loop. This period of open loop 

operation for a typical task of calibration might take up to a few minutes. Meanwl.de, due 

to the high speed of the paper machine (up to 150 km/hour), a huge amount of paper (up 

to 100 meters of paper with the width of 7 meters) is produced. Since no measurements 

are taken while the system operates in open loop, it is worthwhile to predict the behaviour 

of the system during this period. 
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4.3 Neural Modeling of Basis Weight 

The scans prior to the stoppage of the sca.nning system are used to predict the basis 

weights of the paper produced for up to five scans afterwards. The data set used here is 

taken fiom a mill and was provided by Honeywell-Measurex Devron Inc. 

The target value of the basis weight for the paper being produced is 300 grams per 

square meter (gsm) . The sheet is 7 meters wide and its weight is measured at  240 locations 

across the sheet. Some of the measurements on both edges are discarded, because they 

represent sensor readings mhile the sensor has passed the edges of the paper (see Figure 

(4.2)). Ornitting the fust 7 sensor readings on each edge leaves us with a matrix of 

measurements with 226 columns. The scanner completes an entire scan in 32 seconds. 

According to the engineers in the mill, most of the error variation cannot be eliminated 

by controlling the actuators and therefore the system essentially runs in open loop. As 

a result, the activation of the actuators (the control input) is treated as a source of 

disturbance and so is exchded kom our modeling. Moreover, during the estimation time, 

the control input is assumed to be a constant signal. Excluding the-control input from the 

estimation process enables us to train the mode1 in open loop (whvhile the sensors are on) 

and perform the prediction when the sensors are off-line, without having to be concerned 

about the change in the way the control input is generated. The available data set consists 

of 50 scans (rows) , which form a measurement matrix of the size M (i, j)50X227- 

The objective of the neural modehg is to estimate the next scans (rows) in the ma- 

chine direction from the previous measured scan in the cross direction. More specifically, 

M(i + k, j) is to be estimated using the values of at  M(i,  j - l), M(i, j) and M(i, j + l), 
where 1 5 k 5 3. The input vector (M (i, j - l ) ,  M i ,  j )  , M(i, j + 1)) is formed along 

the cross direction and for a k e d  i forms a sequence of m-dependent r.v.s with m = 3. 

The correlation between the reading along the cross direction is assumed to be negligible 

beyond three points. The extension to  higher assumed ranges of dependency is straight- 

forward, and it can be expected to result in better estimation performances a t  the expense 

of increased calculations- 

In order to see how the training and testing data are generated, consider a fixed k. 
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Rows i =1, 7, 13; 19, 25, 31, and 37 form the input, Le. for each i, set of vectors 

(Mi j - 1 ,  M i  j ) ,  M(i, j + 1)) is formed, where 2 5 j 5 225. The corresponding 

output for each of the above vectors is M(i + k, j). The training set is thus formed as 

the input-output data points generated by rows 1, 7, 13, and 19 as the input rows- The 

remaining data points will be used as the testing set. Since 1 < k 5 5, there will be five 

training sets and five testing sets to be processed separately. 

Specific rows are used in order to separate the inputs and the outputs completely. 

Notice that in a, real scenario where the sensors are taken off-line, the available information 

up to row i = io is used to estimate the next five rows. This means that the prediction is 

made for only rows io + 1, . . . , io + 5 ,  Le. the rnodel is not allowed to use our estimated 

values as the inputs to estimate the rows beyond five rows. These rules in generating the 

data guarantee that the rnodel is actually an FIR one and makes sure that no rneasurement 

has been used both as input and output information. 

Having generated the training and testing data sets for each value of k;  the evo- 

lutionary variable-structure neural rnodeling is applied to the corresponding training 

set. The parameters of the algorithm for al1 modeling tasks are chosen as follows: 

N = 50, w, = wb = 0.001, X = 0.0001, 11 ,  = 2, K = 100, E = 0.05, MinSlcvpe = 

-1 x IO-', BackStep = 1000 . In order to follow the exact structure of the theoretical 

results of the previous chapters and have a better insight to the level of error, the input 

variable is normalized to the interval of [O 113, and the output variable is mapped to the 

intenmi of [-$ $1. 

4.3.1 Simulation 1: One-Row- Ahead Psediction 

For k = 1, the resulting network has 6 hidden neurons in its structure. The training 

cost function and the empirical error are 0.0291 and 0.0238, respectively. Figure (4.4) 

depicts the evolution of the cost function and complexity term of the best network of 

each generation. As can be seen, the resulting complexity term Cat,, levels off at 53.1376. 

Next, this network is tested against the testing set which consists of rows 25, 31 and 

37 as the inputs and rows 26, 32, and 38 as the outputs. The actual and estimated basis 

weights for row 26 (Le. actual and estimated profiles of basis weight across the sheet) are 
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Figure 4.4: (a) Cost function (left), and (b) Complexity term (right) for Simulation 1 

shown in Figure (4.5.a). In order to see the prediction quality more clearly, the estimate 

and actucal basis weights of almost 57 points located in the middle of the profle are 

shown Fgigure (4.5.b). Similar profües are obtained for estimation of rows 32 and 38, 

which indicate that the estimation process can accurately predict the rows ahead. The 

testing empirical error (calculated over all estimated rows) is 0.0244, close to the training 

value. Also, notice that the estimated and the actual profiles are highly similar and the 

estimation process seems to be accurate. 

In order to see how neural networks help the prediction, here the results are compared 

with a rather trivial average modeling, in which M(i + k, j) is estimated as the simple 

linear average of M(i ,  j - l), M(i,  j), and M(i ,  j + 1), where k = 1. For this model, the 

value of the ernpirical error for the testing data is 0.0307 which is considerably larger than 

that of the neural model. This shows that the neural rnodel of Simulation 1 is not only 

reliable but also accurate (compared to a simple h e a r  estimation). 

The variability of the model can be tested by considering the standard deviation of 

the testing prediction error (Le. the actual output minus the estimated output) over 

different estimated rows. The calculated values of standard deviation for the prediction 

error of rows 26, 32 and 38 is 0.0326, 0.0361 and 0.0326 respectively. The close values of 

standard deviation for different rows indicates the similar performance of the algorithm 

over different rows of the data. 
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Figure 4.5: (a) Actual (solid) and estimated (dashed) normalized output across row 26 
(the entire profile) for Simulation 1 (b) Actual (solid) and estimated (dashed) normalized 
output across row 26 (the middle portion of the profXe) for Simulation 1 
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Figure 4.6: (a) Cost function (lefi), and (b) Complexity term (right) for Simulation 2 

4.3 -2 Simulation 2: Two-Row-Ahead Predict ion 

In this simulation, al1 the settings are the same as those of Simulation 1, except that 

k = 2, i.e. a two-row-ahead estimation is performed. The resulting network has 4 hidden 

neurons in its structure. The training cost function and the empirical error are 0 .O350 and 

0.0299, respectively. Figure (4.6) shows the curves of the cost function and complexity 

term. The resulting cornplexity term Cab, is 50.9978. 

In testing as with the previous simulation, rows 23, 31 and 37 are used to f o m  the 

inputs, while rows 27, 33, and 39 now form the outputs. The actual and estirnated profiles 

for row 27 are shown in Figure (4.7). The resulting testing empirical error (calculated over 

al1 estimated rows) is 0.0298 that is smaller than the training one. Also notice that the 

estimated and the actual profiles are still very similar and the estimation process seems 

to be acceptable. In this case, the empirical error of the trivial estimation on the testing 

data is 0.0431 which is significantly larger than the error of the neural model. 

The calculated values of standard deviation for the prediction error of rows 27, 33 and 

39 are 0.0395, 0.0422 and 0.0432 respectively. The closeness of the above values again 

shows the small variability of the algorithm over different parts of the data. 

The three-row-ahead and four-row-ahead estimations result in networks with 6 and 7 

neurons, respectively. The main results of these simulations are given in Table (4.1). 
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Figure 4.7: (a) Actual (solid) and estimated (dashed) nomalized output across r o w  27 
(the entire profile) for Simulation 2 (b) Actual (solid) and estimated (dashed) normaLized 
output across row 27 (the middle portion of the profile) for Simulation 2 
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Figure 4.8: (a) Cost function (left), and (b) Complexïty term (right) for Simulation 3 

4.3.3 Simulation 3: Five-Row-Ahead Prediction 

With all the settings the same as those of the previous simulations, a five-row-ahead 

estimation is now performed. Here, the rows 1, 7, and 13 are used to  form the inputs, 

and rc'ws 6, 12, and 18 to form the outputs. The resulting network has 9 hidden neurons 

in its structure. The training cost function and the empirical error are 0.0464 and 0.0413, 

respectively. Figure (4.8) shows the cuves of the cost function and complexity term. The 

resulting complexity t erm Cat,, reaches to 5 1.0522. 

In testing as with the previous simulations, rows 25, 31 and 37 are used to form the 

inputs, and rom 30: 36, and 42 to form the outputs. The actual and estimated profiles 

for row 30 are shown in Figure (4.9). The resulting testing empirical error is 0.0441 

and relatively close to the training value. The error of the trivial linear estimation for 

five-row-ahead prediction is 0.0571 . The calculated values of standard deviation for the 

prediction error of rows 30, 36 and 42 is 0.0578, 0.0576 and 0.0583 respectively. The 

closeness of the above values further indicates the small variability of the algorithm over 

difTerent parts of the paper machine data. 

Each of the above simulations takes about 210 minutes on a machine with 400 MHz 

Pentium II processor. 
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Figure 4.9: (a) Actual (solid) and estimated (dashed) normalized output across row 30 
(the entire profile) for Simulation 5 (b) Actual (solid) and estimated (dashed) normalized 
output across row 30 (the middle portion of the profile) for Simulation 5 

Prediction II Train. Cost 1 Train. En. 1 Test. Err. 1 Comp. Term. 1 Num. of Neurons II 

Table 4.1: Training cost function, training ernpirical error, testing empirical error and 
complexity term for one-row-ahead, two-row-ahead, three-row-ahead, four-row-ahead and 
five-row-ahead predictions. 



CNAPTER 4. TWO DI&fENSIONAL SHEET-SCAiWWVG SYSTEM 

4.4 Discussion 

Here, the results obtained in this chapter are discussed. 

1. From Table (4.1), it is seen that the quality of prediction deteriorates as further 

rows ahead are estimated. This may be explained by the fact that the outputs in 

closer rows are more highly correlated with the inputs and is thus to be expected. 

2. The results obtained from different simulations and shown in Table (4.1) indicate 

that the number of hidden neurons increases with the prediction interval. This shows 

that the prediction of further rows involves a more diflicult estimation process and 

requires more neurons. 

3. Performing the estimation with different algorithm settings (such as A, w,, w,, 

and N) may result in different neural models. However, it seems that Merent  

simulations with a fixed X result in models with relatively similar cost functions and 

complexity terms- 

4. The estimation process may be continued for the prediction of rows further than 

five rows; however the quality of the estimation c m  be expected to deteriorate. 

Since the predicted values rnight be the only information available on the produced 

paper, extending this estimation process even with a lower prediction quality may 

be useful. 

5 .  Once a neural model for the system is generated off-line, one can update the model 

through an adaptive process. In order to do so, some of the old training points 

must be replaced with the newly measured data and the training process may be 

kept running throughout the entire modeling task. Since each scan takes almost 32 

seconds, updating the model after every fem scans seems to be feasible, specially 

when fast computers are available. Since the paper machine is a time-variant process 

(especially after a machine start-up) , the adaptive approach is desirable. 

6. The accuracy of the estimation process is expected to improve if the input vectors 

are forrned of the information from the last two rows rather than merely the last 
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row as in the present formulation. The price to pay, however, is an increase in the 

computation tirne. 

7. In order to have more confidence over the simulation results, one may want to  re- 

peat the simulations using different sets of training and test data as well as different 

algorithm settings. Due to the fact that each run of the algorithm takes a consid- 

erable amount of time, repeating the simulations may be a more feasible task once 

fas ter machines are available. 

The chapter c m  be summarized as follows. 

The above simulation results indicate that the proposed evolutionary algorithms 

are capable of performing optimization in nonlinear and noisy real applications and 

generate useful estimates. 

The relatively close training and testing performances indicates that proposed com- 

plexity terms can successfully deal with noisy complex systems. 

While the sensors in the paper machine are taken off-line, it is possible to use neural 

networks to estimate the properties of the produced paper based on the previously 

recorded data. 



Chapter 5 

ARX Models: Stability and Learning 

5.1 Introduction. 

In a dynamic modeling task in the presence of additive noise, the output of a system is 

expressed as a function of the h i s t o ~  of the input as well as the output. In the case of a 

nonlinear ARY (also known as NARX), assuming that ut-q+l, ut-q+27 - . . ut-d describe 

the history of the input variable and yt-k, yt-k+~ . . . yt-l that of the output: 

where d, q - d - 1, k and Ct represent the degree of the input, the delay from the 

input to the output, the degree of the output and the additive noise on the system, te- 

spectively. -4lthough the mode1 can represent multi-dimensional models, here the single- 

input/single-output (SISO) case is considered. It is also assumed that ut and Ct are 

uncorrelated sequences of independent ly and identically distributed (i.i.d. ) random vari- 

ables. The Markov process formed as (5.1) includes a wide range of dynamic models 

used in engineering applications including dynarnic neural networks. One of the most 

important properties of a NARX model to be investigated is the stochastic stability of 

the model. Stochastic stabiliw not only guarantees the issue of boundedness of the out- 

put for bounded inputs, but dso establishes the necessary conditions for any definition of 

learning for .4RX models (as described later). The concept of stochastic stability has been 

addressed in the literature assuming difTerent definitions for stochastic stability, resulting 

in different sufficient stability conditions for NARX models. The concept of Lagrange 

stability [26] defines a notion of stability based on a Lyaponnov function defined in terms 

of the process. Kushner's work on stochastic stability [24],[23] has provided a more corn- 
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prehensive mathematical hmework for testing stochastic stability of discrete systems. 

Important results in this field come from the relation between the stochastic Lyapounov 

stability (as in Kushner's work) and the concept of geometric ergodicity [43], [22]. The 

results of this line of research not only provide simple practical notions of stochastic sta- 

biliiy, but also create a foundation for assessment of other statistical properties such as 

the learning properties of dynamic modeis [39]. In aJl learning paradigms presented for 

dynamic models, the assumption of processes being geometrically ergodic is treated as 

a fundamental requirement, i.e. learning properties of dynamic models can not be eval- 

uated unless the assumption of models being geometrically ergodic is verSed [30], [Il], 

[42]. This further calls for evaluation of geometric ergodicity for important families of 

nonlinear dynamic models. Here, the general results of [43] are applied to the special case 

of neural modeling with sigmoid neural networks and speciûc sufficient conditions under 

which the model is geometrically ergodic are presented. 

Here, first a set of sufficient conditions for geometric ergodicity of SNN's is obtained. 

Then, the results are used to assess the learning properties of neural ARX models. In 

order to do so, hrst, learning theory is extended to learning with strong mixing data. 

Then, specific upper bounds on the sample complexity of such models are given. Next, 

the learning properties of neural ARX are applied to define complexity measures (along 

with their corresponding cost functions) that can be used in practical applications. Fi- 

nally, using the evolutionary neural modeling algorithms introduced in Chapter 3. The 

performance of such cost functions is evaluated in a number of simulations. 

This chapter is organized as follows. Section 5.2 gives the basic dehitions of stochastic 

stability, as well as the existing results on the geometric ergodicity of a general family of 

NARX modeIs. Section 5.3 contains a set of sufficient conditions over the parameters of 

a sigmoid neural network, which guarantees the stochastic stability of the model. The 

main results of this section are given in Theorems (5.3.1) and (5.3.2). In section 5.4, 

PA4C learning theory extended to learning with a-mixïng data. In the same section, 

the resulting learning theory is applied to SNN's and the sarnple complexity of such 

learning tasks are bounded. Theorem (5.4.2) acts as the main theorem of this section. 

In Section 5.5 a distribution-fkee complexity measure of SNN's is introduced. Theorem 
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(5.5.1) contains the main results of this section. Section 5.6 uses the results of the previous 

section to describe learning-based algonthms that search for neural models with minimum 

complexïty. In Section 5.7, the simulation results of applying the proposed dgorithms on 

a Continuously-Stirred Tank Reactor (CSTR) are presented. The results of the chapter 

are discussed in Section 5.8, and hally, Section 5.9 summarizes the chapter. 

5.2 Basic Definitions of Stochastic Stability 

In this section, some of the basic concepts of geometric ergodicity as well as the existing 

results on the stochastic stability of NARX models are reviewed. Consider an integer 

'Y" and let Xt be a Markov chah  6 t h  the state space (P, B)7 where B is the Borel 

O-algebra. The t-stepahead transition probability of Xt is denoted by Pt (x ,  .4), i.e. : 

P t ( x ,  A) = P(Xt  E AIXo = x), x E RF, A E B. 

Now, the concept of geometric ergodicity is defined as follows. 

Definition 5.2.1 Xt i s  geornetrically ergodzc i f  there exz-sts a probability measure T o n  

(RP, B) ,  a positive constant p < 1, and a a-integrable non-negative measurable fanction 

a such that for any t: 

Definition (5.2.1) shows that geometric ergodicity is closely related to stability. Ac- 

cording t O (5.3), in a geometrically ergodic process, the transition probability approaches 

a (possibly unknown) well-behaved probabiüty measure a geometrically fast. 
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Here the definition of stochastic stabili@ is given: 

Deut ion  5.2.2 Consider a Markov c h a h  Xt as described above. The process is called 

stochastically stable i f f  there exists a non-negative and measurable function V (called a 

Lyapounov function), and constants c > O and O < p < 1 such that: 

The concept of stochastic stability is also referred to as ccstochastic Lyapounov stabil- 

ity". The Lyapounov function V and the way the stability condition is defined show why 

the name stochastic Lyapounov stability seems to be a more appropriate name for this 

concept. 

The following theorem by Mokkadem [5] is known to be the most general result on ge- 

ometric ergodicity of Markov processes and the way this property is related to stochastic 

stability. 

Theorem 5.2.1 (Mokkadem [5]) Suppose a Markou chain Xt is  stochastically stable as 

described in Definition (5.2-2). Then Xt is a geometrically ergodic process. 

Theorem (5.2.1) shows how geometric ergodicity relates to the concept of stochastic 

stability. Now, the notion of "a-miiwing" (also known as strong mDMg) is defined. This 

concept describes a type of stationary random process with exponentially weakening de- 

pendency. 

Definition 5.2.3 Let {yt}L,-, be a stationa7-y process. For -CO < t < M, let y? 

and yLm denote the 0-algebras of events generated by random variables {yi, t 2 i) and 

{yiy t 5 i ) ,  respectively. Define the strong minng coeficient ay (t) as: 
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Then {yt)g- ,  is called a-mirâng (strongly miking), if: 

iim ay(t) = o .  
t+oo (5.6) 

Moreover, suppose ag(t) approaches zero geometrically fast in t, ie.,  there exist: 

k,, k27 k3 > 0 

such that: 

ay (t) = kie -k3tk2 

Then, the process is cal led geometrically a-miring. 

Next, the focus is given to the existing results on the Markov process of form (5.1). 

Here, a theorem by Doukham [43], which presents a set of sufficient conditions for geo- 

metric ergodicity of the process (5.1) is reviewed. 

Theorem 5.2.2 [Doukham [43]] Conséder the process (5.1). Let: 

Assume that XtPi indicates the ith element of Xt. Also, assume the followings. 

1. There exist a number xo > O and non-negative constants Srl, . . . , .Slk, a locally 

bounded measurable function h : R + R+, and a positive constant c such that: 



~ U P ~ ~ X , ~ ~ ~ ~ , ,  I f  (X) 1 < ca (where llXtll is  the Euclidean n o m  of X t ) ,  and: 

Then, if the unique non-negative real zero of the "characteristic polynomial" P(z)  = 

p - . ~ i ~ ~ k - ~  - . . . - Gk is smaller than one, the process (5.1) is  geometfically ergodic. 

Moreover, if the process X is stationary, the process "y" (i.e. {yt)g-,) is geometrically 

a-mim-ng- 

Although the details of the long proof presented for this theorem (by- Doukham) are 

not repeated here, a bnef description of the general scheme of the proclf will be given. 

The proof starts with introducing a Lyapounov function of the form: 

Then the appropriate choices of Qj's and pj's to satisfy (5.4) are investigated. It is then 

proved that if al1 the assumptions made in the theorem hold, the condütion set on the 

zeros of the characteristic polynomial P ( z )  guarantees geometric ergodicity. As can be 

seen, the sufficient conditions set in Theorem (5.2.2) guarantee the stochastic Lyapounov 

stability as well as the geometric erogicity of the model. 

5.3 Geometric Ergodicity of Sigrnoid Neural Networks 

This section starts with the following lemma about the atan sigmoid neuml networks. 

Lemma 5.3.1 Suppose z E RP. Consider a farnily of sigmoid neural n-etworks F with 

members as follows: 



where: o(.) = 3 t a ü 1  (.) i s  a smooth sigrnoid activation funetion, 1 indicates the number 

of neurons, ai's (ai E R) are the weights of the output layer and the p-dimensional uectors 

bi 's defined as: bi = (bil, . . . , bip) represent the weights of the hidden layer. Then: 

Proof: From the definition of atan sigmoid neural networks: 

mhich concludes the proof. Cl O O 

The next Iemma gives a sirnilar bound for the bipolar exponential sigmoid networks: 

Lemma 5.3.2 Suppose x E RP. Consider a family of sigmoid neural networks F with 

members as follows: 
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l-e-(-) where: a(.) = is a smooth sigmoid activation function, 1 indicates the number of 

neurons, ai's (ai E R) are the weights of the output layer and M e  p-dimensional vectors 

bi 's defined as: bi = (bil, . . . , bip) represent the weights of the hidden layer. Then: 

Proof: From the definition of bipoiar exponential neural networks: 

which concludes the proof. 0 CI 0 

Now, the following theorems present a set of sufficient conditions for stochastic stabil- 

ity and geometric ergodicity of the families of sigmoid neural network discussed above. 

These conditions involve the known parameters of the network, and as a result can be 

easily tested during a practical modeling task. A family of atan sigmoid networks is to 

be addressed first: 

Theorem 5.3.1 Let Xt = g t - k + ~ ,  . . . yt-~,  ~ ~ - ~ + l ~  . . . ut-d, ) . Take 

y,, Ct and ut as defied in (5.1). Also assvrne that f is a sigmoid neural network as 
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defined in Lemma (5.3.1) with x = X where: p = q - d + k.  Further assume that 

E[lCtl] 5 il+ and E[lutl] 5 Mu. Define: 

where j = 1, . . . , k.  Let: M, = maxj W .  Also define the following characteristic polyno- 

mial: P(z )  = zk - uizk-l - . . . - wk. Then the sequence Xt is geometn'cally ergodic if the 

unique non-negative real zero of P ( z )  ès smaller than one. Also, i f  Xt is stationanj then 
CC 77 y is  geometrically a-m.ia;ing. 

Proof: In oïder to apply the results of Theorem(5.2.2), the existence of a real number 

xo such that the conditions of the theorem are satisfied has to be investigated. Lemma 

(5.3.1) shows that for any xo, suplXtl<,, - 1 f (Xt)I < m. Therefore the case where llXrll > xo 

is investigated. Assuming IIXtll > xo, there exïsts at least one index r such that: 

Xe-ut, hom Lemma (5.3.1): 

Nom, taking an arbitrary positive real number p > 0: 

Xom observe that: 
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T herefore: 

" the next step of the proof would be checking the second condition of and c =  P J&r 

Theorem(5.2.2). It suffices to  have: 

This means that it suffices to have: 

Now it can be seen that in order to satisfy Inequality (5.19), xa and p need only be 

chosen such that pxo is large enough to satisSr the inequality. Choose p sufficiently small 

(but non-zero) such that if the positive real root of P ( z )  with Qj = W j ,  (j = 1, . . . , k) is 

less than 1, the positive real root of P ( z )  with G j  = wj  + p, (j = 1, . . . , k )  is also less 

than 1. Then, choose xo suEciently larger so that Inequality (5.19) holds. Under such 

choices of xo and p, if the unique positive real root of P ( t )  Rrith Qj = w j y  ( j  = 1 , .  . . , k) 

is less than 1, al1 the conditions for geometric ergodicity are satisfied. Moreover, if Xt is 

stationary then "y" is geometrically a-mixing. O UO 

In the above theorem it is assurned that if the positive real root of P(P)  with 1C>i = 

uj, ( j  = 1, . . . , k) is less than 1, there exists p such that the positive real root of P(z)  with 

S>j = W j  + p, ( j  = 1, . . . , k) is aiso less than 1. This assumption requires that a very small 
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change in the coefficients of P(z )  does not change the location of the poles significantly, 

because p can be made arbitrarïly small (but not equal to zero) to avoid such a change. 

-4 similar resdt  c m  be obtained on a family of bipolar exponential networks, as follows. 

Theorem 5.3.2 Let Xt = (yt-k, Yt-k+l~ - . yt-1 , ~ t - ~ + l  , ~ t - ~ + 2 ,  . . - Ut-d> ) Take 

yt, ct and ut as defined in (5.1). Also assume that f is a sigmoid neural network as 

defined in Lemma (5.3.2) with x = Xt where: p = q - d + k. Further assume that 

E[lbl] < Mc and E[luil] < ALu. Define: 

where j = 1, . . . , k.  Also define the following characteristic polynomial : P(z)  = zk - 

wlzk-l - . .. - w k .  Then  the sequence Xt is  geometm'cally ergodic i f  the unique non- 

negative real zero of P(z )  is smaller than one. Also, if Xt i s  stationary then the process 
cc JJ y is geometrically cr -mzxing. 

Proof: Defining wj7s as in (5.20), the rest of the proof is the same as Theorem (5.3.1), 

and is not repeated here. 0 0 0 

Theorems (5.3.1) and (5.3.2) give s a c i e n t  conditions for the stability of the corre- 

sponding sigmoid networks, which can be easily tested. Having addressed the important 

properties of stochastic stability, geometric ergodicity and geometric a-mucing for a neu- 

ral ARX model, a learning scheme for dynamic neural modeling is now introduced. A 

learning theory which can be applied to ARX models provides a usefùl framework to 

assess properties such as sample complexity, overfitting and complexity of a model. 

5.4 Geometrically ai-Mixing PAC Learning 

Having described the conditions for stochastic stability and ai-mïxing of SNN's, the next 

step is to define a PAC learning scheme for leaming with geometrically a -mkhg  data. 

One c m  easily omit "geometrically" and define the learning scheme for a general family 



of learning tasks where data are a-mixing but not necessarily "geometrically a-mkïng". 

In order to specialize the results towards the geometric case, only geometrically mixing 

cases are addressed here. 

Definition 5.4.1 Suppose that z, is a set of input-output data where (xi, . . . , x,) is  a se- 

quence of geometrically a-mzxing r.vs , marginally distributed according to the probability 

measure P E P. Then, a fmction set F 2s said to be "PAC leamable with geometrically 

a-rnixing data according to the distance measure dp7' ifl an algorithm A can be found 

basecl on which for any E and 6, there exists n such that: 

sup Pr{& (f, h) 5 E }  2 (1 - 6) 
f E 3  

Hereafter, referring to the above property, where the meaning is clear,"according to 

the distance measure dpi' Will be dropped. The first step in obtaining some practical 

results involves bounds on the summation of a sequence of geometrically a-mi=cing ran- 

dom variables. The results presented by Modha in [16] can provide useful (somewhat 

conservative) bounds, as given below: 

Theorem 5.4.1 (Modha [16]) Suppose  ai}^=, is  a sequence of stationary and geomet- 

r i d l y  a-mixing zero-meun r.u.s (with the ki 's defined in (5.7)) such that lAil 5 M and 

E(lA1 1 2 )  5 Q. Also, define: 

where the u n a w  operatéons 1.1 and r.1 refer tu 'Lthe largest integer smaller than" and "the 

smallest integer greater than" a given number, respectively, 
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Then: 

Next, a Iemma is proved that applies Theorem 5.4.1 to evaluate the cIoseness of the 

mean value of a function to its ernpirical mean where the input is a sequence of geomet- 

rically a-mkxing r x s .  

Lemma 5.4.1 Let x E [-1 lId. Also assume a function Y : X + [O,  11. Suppose that a 

set of training data has been generated as: {(xi, Y(X~)));='=,, where output data is  a sequence 

of stationary and geometrically a-miring r.v.s. If the mean value and the empirical rnean 

of Y are defined as foliows: 

then: 

and: 
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Proof: First define: Ai = T ( x i )  - Ep(T)  . Notice that the AiYs form a sequence of 

zero-mean geornetrically a-mixing r x s  to which Inequality (5.23) can be applied with 

M = 2 and Q = 4. This will result in Inequality (5.25). Inequality (5.26) can be obtained 

in the same fashion, assuming Ai = Ep(T)  - T ( x i ) .  O O O 

Now, consider an extension of the empirical risk minimization algorithm to geometri- 

cally a-mixing random inputs. Since the definition of such an algorithm is straightforward, 

without writing the forrnal definition, PAC learning evaluation of the empirical risk min- 

irnization algorithm is next evduated. The following theorem is similar to the theorem 

proved for m-dependent learning. 

Theorem 5.4.2 Let x E [-1 lId. Also assvme a function Y as defined in Definition 

5.4.1. Suppose that a set of training data has been generated as: { (x i ,  T(X~)));='=,, where 

output data zs a sequence of stationary and geornetnkally or-mixing r.v.s. Also assume 

that there exists a finite set {gi}:,l which €12-covers F. Then  the minimam empirical 

risk results in PAC learning of 3 with geometrically a-mixing training data to the accuracy 

of E. In particular: 

whenever: 

Proof: If { g i ) g l  is an ~/Zcover for F, there exïsts an index t such that dp(f, gt) 5 

€12 .  Without loss of generality, suppose that dp ( f , g , )  5 €12 .  Again, without loss of 

generality, suppose that the gi's are renumbered such that: dp(f, gi) > e  for i = 1,. . . , k 

and dp(f, gî) < E for i = k + 1,. . . , e. Note that: k 5 ,g - 1. Notice that the error 

involved in the minimum empirical nsk algorithm would be introducing one of the giYs, 
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where i = 1,. . . , k, as the model h. Let the event E be as foilows: 

E = {& 5 344 and 4 > 36/4 , for al1 i = 1,. . . , k} 

From the definition of E, it is known that: E C {dp(f, h) 5 ~ / 2 ) .  -Usa: 

Now observe that, for each index i, the cost & is the ernpirical mean of the function 

1 f (.) - gi(.)l based on the available training set. Therefore, Lemma 5.4.1 c m  be used to 

evaiuate the distance between &, the ernpirical mean, and d p (  f, gi), the tnie mean of the 

function 1 f (.) - si(.) 1 - Now: 

where fi and kl are as defined before. Now, since Ep(l f - gel) = dp(f, g,) 5 ~ / 2 ,  then: 

For ji 5 3 4 4  where i = 1, . . . , k, following a similar procedure, the following inequaliQ 

is obtained: 
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Now, since k 5 e - 1, the maximum error involved in the overall leaming process 

[ -"" 1. In other words: wodd be: p ( l  + 4e-*ki)exp 64(2+&) 

sup Pr{dp (f, h) 5 E }  2 1 - e(l + 4e-2 kl)exp 
1 ~ 3  [64~:"+)]) 

which results in: 

In an approach similar to that of Chapter 1, as the next step, Q is bounded. However, 

this time no assumptions on the distribution of the data can be made, Le. the complexity 

measure e indicated in this chapter is a distribution-fkee one. This calls for a more careful 

analysis and results in more conservative bounds. 

5.5 Distribution-Free Complexity of SNN's Neural Models 

In this section, "en (the size of the ~/2-cover set of F) for SNN7s is bounded to construct 

a practical algorit hm t hat searches for a minimum-complexity neural model. First , some 

fundamental properties of sigmoid neural networks are evaluated. The following analysis 

follows the methodology introduced by Barron [7]. 

Consider a sigrnoid neural network with 1 neurons of the following general form: 

cf,, 

Mso, define: 

Now, let 0 = (a l , .  . . , al, bll, . . . , bld, . . . , bll,. . . , bld). For ri > O, i = 1,. . . ,1, a contin- 

uous parameter space Ol,,,...,, is taken to be the set of al1 such 0 for which lbill 5 ri. For 

any C > O, let l,..., ,,c c ,,...,, be the subset of parameters with lail 5 C. 
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Next, the precision of the above functions is controlled by controlling the resolution 

of the parameter space. For each E' > O and C > O, let 0L7r ,TL, . . . , r l , c  be a set of parameter 

points that bcovers 8iy,1...1,~c ; i-e. for every 0 in 0i7, ,...,,, c, there exists a 8" in O L , ~ , ~ ~  ,..., n , ~  

such that for i = 1,. . - , 1: 

Thus, the parameter points in: 

@ i , i , q  q , ~  

can be used to create a covering set: 

{ f i ( - .  6') : O* E @l,i,Tl ,... , T i ? c 1  

for the family of functions: 

Now, the Lipschitz constants of specific types of sigmoid functions used in the net- 

works are bounded, and then the precision of such function sets is assessed. 

Lemma 5.5.1 Suppose vo is the Lipschitz constant of  a sigrnoid function O(. ) .  As- 

sume that the conditions of (5.36) hold. Then f o r  any 6 in the continuous parameter 

set Ol,,...,,,c, there is a 0' in the discrete set Qi y,yc such that for any x E X :  
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and therefore: 

where fi(x, O )  E Fr, and: 

More specifically the bound on the left hand-side of the aboue inequality can be replaced 

by (1 + 2/a)&C for  ~ ( u )  = tan-'@), and (3/2)6C for o(u) = -. 

Proof: Take an arbitrary O  in Qi ,,,...,, c and choose O* E OSc ,,..-?,, c such that (5.36) 

holds. Consider the difference between a function fi(., O )  and its corresponding function 

Now, notice that for all x E [-1 lId and al1 k: 



From (3.41) and (5.42): 

As for the more specific results, note that frorn (2.5.1), for a t m  sigmoid functions: 

vo 5 $, and therefore the above function's accuracy can be further specified as: (2 ~-1) iC 

for this family of SNN's. 

For the bipolar exponential sigmoid network, h-orn(2.5.2), vo 5 which results in a 

more specific accuracy bound of giC for the function set. O O 0. 

In order to see the results of this theorem more clearly and with a notation similar 

to our formulation of 6-covers for function sets, define E = ( 2 1 ~  + 1)kC. Then the above 

theorem asserts that an ecover of 3l can be formed as: 

This indicates that the cardinality of the function covering set can be bounded by 

bounding the cardinality of the parameter covering set. Next, a bound on the cardinality 

of @ l ? i , ~ ~  ,...,T~?c is found. 



Lemma 5.5.1.1 Consider 0rs7T,7---,,7c as defined above. The cardinality of this set can 

be bounded as follows: 

Eqaivalently, for the set F: 

ProoE Consider a rectangdar grid at width i/d for the coordinates of bk, and width 

ÉCII for ak: for k = 1,. . . ,Z. Intersecting the grid with Ol ,,,...,, 7c yields the desired 

covering set satisfying the requirements of (5.36). Now the cardinality of this set is 

calculated. Notice that: 

is a Cartesian product of the constraint sets for the a's and b's. Therefore, the desired 

cardinality can be obtained as the products of the corresponding counts. First, the number 

of the grid points is bounded: 

where the grid points are spaced at width 6/d in each coordinate. Here it is claimed 

that the union of the small hypercubes that intersect S,, is contained in STk+,-. This is 
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because any point bk in this union has a distance less than E' fiom a point bk in S,,, where 

1 bk 1 5 1 & 1 + 1 bk - bk 1 5 ~k i- 6 which means bk E Sr,+& Since the volume of the union 

of the hypercubes is contained in S,,+&, the volume of the union can be bounded by the 

volume of S,,+(. From [7], it can be seen that the volume S,+c is (2 (T, + q ) d / d !  . 

Now, the volume of this union of hypercubes is the product of the number of the 

hypercubes and (g/d)d.  Therefore, the number of hypercubes that intersect Sr, is not 

greater than ( 2 d ( ~ ~  + C)/E')d/d! 5 ( 2 e ( r ,  + i ) /6 )d .  For 1 such parameter vectors bk, the 

total count is bounded by n L , ( 2 e ( r k  + C ) / C ) d .  In the same way, the count for the a& is 

not larger than (2e(l+ é ) / ~ ) ' .  Taking the product of the counts results in: 

mhich concludes the proof for 8i1i1,,--.,,,c. Considering that C = &, the bound for 

the function covering set is a direct result of (5.48). O O O 

Now, the problem of PAC leaming of a function set is further investigated. It  c m  

be seen that for FL (as defined above), the covering set required by the empirical risk 

minimization algorithm can be generated by the grid described above. This shows that 

the complexity measure Q can be bounded by Card(@Lü2,ri,-.-,s,~ ) . This observation leads 

to  the following t heorem. 

Theorem 5.5.1 Let Fl be as defined in 5.37. Suppose al1 the assumptions made in The- 

orem 5.4.2 hold. Also, assume that the €12-cover required in Theorem 5.4.2 is generated 

by a gn'd described in Lemma 5.5.1 -1. Then the empirical risk minimizution algorithm 

provides PAC learning with geometrically a-rnixing, Le. for any E and 6 there exist la such 

that: 

sup P r { d p ( f ,  h) 5 E )  2 1 - (2e(2(vo + ~ ) C + E ) / E ) '  x 
f EE 1 
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or equivalently: 

Proof: The proof cornes as a direct substitution of the bound calculated in Lemma 

5.5.1.1 for Card(F)  in Inequality 5.34. a00 

A brief glance at the results of the above theorem reveals that the introduced bounds 

are highly conservative. Also, in many real applications, the values of kl, k2 and k3 

may not be known. The direct use of the above bounds may fit applications where huge 

training data sets, dong with some information on the statistical nature of the data, ate 

available. In some applications, one may even want to first use the data to estimate kl, 

k2 and k3 and then apply the above bounds. Eowever, in many applications, the available 

training sets are small, and performing another estimation task, merely to find kl, k2 

and kg may not be desirable, as it requires another nonlinear estimation process besides 

the main function modeling. -41~0, even if the values of ki7s are estimated, the resulting 

bounds would not hold exactly due to the estimation error. 

As in the case of FIR modeling, one can easily extend the results of the above learning 

scheme to a more general paradigrn of modei-free learning. This enables the algorithm 

to deal with cases where data are noisy or the system that generates the data is not a 

neural network of known structure. Practically, any real application is a case of model-free 

learning and that is why this issue was addressed in Chapter 2 in details. Here, due to 

the significant similarities between m-dependent leaniing and a-mîxing Learning schemes, 

the model-free version of a-mixing learning is not formulated and merely used. In this 

chapter, the loss function 'V(., .)" used corresponds to the distance d p ,  Le. l(G, C2) is 
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defined as: 

As shown in Chapter 2, the overall effect of using other norms in the formulation is 

the appearance of a constant p (as defked in the model-fkee learning scheme of Chapter 

2) in the  results. The main reason for the popdarity of the L2 nonn is the existence 

of algorithms such as Least Mean Square (LMS) method for the linearly parameterized 

optimization tasks. However, for nonlinear optimization processes (including our t ask) , 
there may not be a substantial reason to prefer this n o m  over the others, as al1 gradient- 

based algorithms may get trapped in local minima when used against nonlinear functions. 

As a result, here, d p  (mhich corresponds to LI nom)  is used in simulations, and it is re- 

emphasized that any other distance measures that satisfy a uniform Lipschitz condition 

(as descnbed in Chapter 2) can also be used. 

5.6 Minimum Complexity ARX Neural Modeling 

Similar to Our approach for FIR modeling, new complexity terms based on the functional 

dependencies of the available bound for 6 (or more specifically ln(&)) are defined. A 

brief look a t  Inequality (5.49) shows that since kl, k2 and k3 are normally unknown (as 

described above), one can not define a cornplexity term that encompasses al1 the statistical 

aspects of the modeling procedure accurately. This means that, unlike FIR modeling, the 

complexiw measure created here will not be completely supported by the learning results. 

However, in order to create some reasonably accurate learning-based complexity terms, 

one can start fiom the bound on ln(6). Using (5.49): 
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Since the value of kt is often not available, one may exclude the t em:  In(1 + 4 ë 2 k 1 )  

h m  the complexity term. Although by omitting this term, some statidical characteristics 

of the data are disregarded, making assumptions on a variabIe that is unknomn to us is 

also avoided. As to the value of f i  things are more complicated, as described below. 

Here, some choices for k2 and k3 are âssumed that seem to be reasonable for a typical 

modeling application; however, these choices are by no means meant to be the best 

possible selections and c m  be replaced by any better estimated or assumed values. It 

has to be stressed again that the direct estimation of these values fiom the training data 

might give a better set of values for k2 and k3, but this would involve another estimation 

problem. In choosing the value of k2, set k2 = 1. This is because in most applications, 

the decrease in correlation of data is not too fast. As to CG3, this value is chosen to be: 

k2 = l / k  where k is the degree of the system (as defined in (5.1)). This way, it is ensured 

that the correlation decreases more slowly when the degree of the system is higher. These 

choices of k2 and kJi dong with (5.50) suggest the following complexity term: 

Replacing uo with the Lipschitz bounds given in this chapter can give specific complex- 

ity terms for "atan" and bipolar exponential neural networks. With a discussion similar 

to the one given in Chapter 3 for FIR modeling, it is preferred to use a more practical 

cornplexity measure by replacing C and r k  with c:=, lail and lbk I l ,  respectively. This 

gives the following practical complexity measure: 
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Based on the above complexity term, a cost h c t i o n  is defined as folIows: 

(5.50) 

As mentioned in previous chapters, higher values of X may give similar testing and 

training errors that are both too large, while the s m d e r  values of X may result in small 

training errors and large testing ones. The choice of X should be made according to the 

objectives of the specific application in hand dong with the suggestions made in Chapter 

3. 

In forming the above cost function, it is assumed that the process is geometric- a- 

e n g .  However, as mentioned before, this property can not be assumed easily and must 

be checked. If the output process is known to be stationary, then fiom the results given 

in this chapter, if the positive red root of the characteristic equation is less than one, the 

process is guaranteed to be geometrically ergodic, stochastically stable and geometrically 

a-mixing. In order to make sure that the positive real root is indeed less than one, the 

optimization process 

the training process. 

to the cost function, 

function becomes: 

can be extended to rninimize the magnitude of this root throughout 

In order to do so, it is suggested here that a new term be added 

i.e. assuming that PRR represents this root and y 2 0, the cost 

(5.51) 

The value y descnbes how important it is for us to ensure that the mode1 is indeed 
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Figure 5 -1: Schematic diagram of Continuously-Stirred Tank Reactor (CSTR) 

stable and geometrically a-muiing. In many applications, the geometrically a-mïxing 

condition may be assumed without checking. However, in many applications, the system 

to be modeled is known to be stable and it  is often desirable to  obtain "stable models" 

for "stable systems". Shen, one has to choose y large enough to make sure that PRR is 

actually less than one. Having a stable neural network that accurately models a stable 

system is considered to be a major objective in dynamic neural modeling. 

As in the FIR case, in order to minimize the complex cost function presented above, an 

optimization algorithm that can handle nonlinear and non-smooth cost functions must be 

used. The algorithrns used here are again variable-stmcture and ked-structure systematic 

evolutionary algorithms, as introduced in Chapter 2. In the next section, some simulation 

results obtained from the modeling of a simulated system are presented. 

5.7 Simulation Results 

In this section, ail "atan sigmoid neural network" is used for modeling of a simulated 

Continuously-Stirred Tank Reactor (CSTR) system under an ideal chernical-m&g as- 

sumption. A schematic of CSTR is shown in Figure (5.1). - 

A single irreversible, exothermic reaction, A + B: is assumed to occur in the reactor, 
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where -4 and B are two chemical species. The reaction takes place in a container of fixed 

volume and the product flow rate, input concentration, temperature and output flow rate 

are assumed constant at  their nominal values. Since in this section, an identification 

procedure is performed on the simulated CSTR system, the physical model of the process 

is given here. The process model consists of the following nonlinear ordinary differentid 

equations [38] : 

where Ca is the effluent concentratioo of species A, T is the reactor temperature, V is 

tank volume, q is feed flow rate, CAf is feed concentration, Tf is feed temperature, q, is 

coolant flow, Tc is coolant temperature, p and pc are densities, Cp and Cpc are special 

heats, ko is the pre-exponential factor, E/R is the exponential factor, -AH is the heat 

of reaction, and hA is heat transfer characteristics. During the simulation, the sampling 

time At  is assumed to be 1 minute. The nominal values of the above parameters are 

taken from [38], and shown in Table (5.1). 

In the identification (or modeling) procedure, CSTR is treated as a system with one 

input variable q, and one output variable Ca, Le. u = qc and y = CA. This selection 

of input-output is made since such a mode1 can be used to control the system. During 

the control phase, introduction of a coolant flow, q,, allows the manipulation of the 

reaction temperature and hence of the product concentration, CA. Other parameters of 

the rnodeling task are as follows: k = 2, d = 2, q = 4.  Such assumptions (taken from 

[38]) create a discrete input-output model of the system as follows: 



CHAPTER 5. N3.X ILIODELS: STABLLITY AND LEARNING 

n Variable II Svmbol 1 Nominalvalue II u I I  " I U 

II Tank volume 1 V 100 Z 

Table 5.1: Nominal pwameters of a simulated CSTR system. 

In the following simulations, in order to generate the input to the CSTR system, an 

u 

independent random sequence identically distributed according to a normal distribution 

1 

Q 
CA/ 
Tf 
QC 

TC 
P7 PC 

C&C' 
ko 

E / R  
-AH 

hil 
At 

Feed flow rate 
Feed concentration 
Feed temperature 
Coolant flow rate 

Coolant temperature 
Densities 

Speciüc heat 
Pre-exponential factor 

Exponential Factor 
Heat of reaction 

Heat transfer characteristics 
Sarnpling period 

with mean of 100 liters/minute and variance of 10 liters/minute has been generated. The 

output sequence yn at  each sarnple time is formed as the response of CSTR system to 

100 1 min-' 
1 mol 1-' 

350 K 
100 Z min-' 

350 K 
1000 g Z-I  

l ca lg - 'K- '  
7.2 x 10l0 min-' 

9.98 x 103 K 
2.0 x 105 cal mol-' 
7 x IO' min-' K-' 

the input plus a zero-mean normal random noise with variance of 0.1. In order to ease 

. 

modeling calculations and follow the fiamework of the theoretical results, the input and 

0.1 min 

output of the system have been normalized to the interval of [-1 11 mol/liter, as in [38]. 

The normalization process is based on the "ma-min" method, Le. for each variable x 

(which includes the noise), the normalized variable x,,, is computed as: 

This method of normalization violates our dependence assumptions in the strict sense 

as the values of max(x) and min(x)  (found based on a long record of the output) may 

occur at any point in time and thus influence the statistical dependency of the variables. 

However, in practice, this method is used for modeling of CSTR (see [38] for example) 

to create a rnapping of the output to the interval [-1 11, and therefore used. A set of 
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Figure 5.2: (a) Cost function (left), and (b) Complexity term (right) for Simulation 1 

input-output data of length 2000 has been generated of which the first 650 data points 

were used for training and the rest of the points for testing the rnodel. 

Notice that al1 the learning results of this chapter are generated when the empirical 

risk minimization algorithm along with the grading method of generating an €12-cover 

(introduced in this chapter) are used during the optimization process. However, when a 

very fast computer is not available, this optimization process may b e  too time consuming 

and is not applied here. It is necessary to relax the assumptions t a  use a more efficient 

optimization method. The optimization algorithms applied in the Eolloming simulations 

are those introduced in Chapter 3, using the new cost functions presented in this chapter. 

In the first simulation, using a family of atan SNN's with 5 neuroms, the evolutionary 

fked-structure neural modeling algorithm is applied to search for a neural network with 

three neurons, assuming that both X and -( are set to zero. The settings of the algorithm 

are as follows: MinSlope = -1 x 10-~, BackStep = 1000, w, = wb = 0.0005, X = O, y = 

O, N = 50, E = 0.05 . Figures (5.2.a) and (5.2.b) depict the evolution of the cost function 

and the cornplexity term, respectively. 

The training cost function for this simulation (which is the s a m e  as the empirical 
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Figure 5.3: (a) Positive 
1 (left), and (b) -4ctual 
Simulation 1 (right) 

real root of the best network of each generation for Simulation 
(solid) and estimated (dashed) outputs for the testing data for 

error) is 0.0368. As c m  be seen, the value of the complexity term incre~ses throughout 

the process of evolution and the final network has the complexity of 191.34. Figure (5.3.a) 

shows the evolution of the positive real root (PRR) of the charactelistic polynornial. As 

can be seen, PRR of the final neural model is 1.2678 , which is larger than one and the 

stability of the model, therefore, can not be guaranteed. Then the performance of the 

model is assessed against the testing data set. The testing empirical error is 0.0431, which 

is still small but sorrewhat larger than the training error. The estimation graph for the 

first 450 points is shown in Figure (5.3.b). In this figure, the actual (solid line) and the 

estimated (dashed Line) are cornpared to each other. 

It  is also important to notice that when PRR is larger than one (as in this simulation), 

none of the learning results used to define the cost function can be guaranteed. Desirable 

learning performance from such a simulation may not occur. 

5.7.2 Simulation 2 

In the second simulation, al1 the input-output points as well as  the settings are the same 

as the those of Simulation 1, except that X = 2 x 10-4 and y = 4 x 10-~ .  The resulting 

curves of the cost function and complexity term are shown in Figure (5.4). The training 



Figure 5.4: (a) Cost function (left), and (b) Complexity term (right) for Simulation 2 

cost function, empirical error, and complexity term for the resulting nehvork are 0.1092, 

0.0401, and 138.5287, respectively. From Figure (5.4.b), it can be observed that the 

complexity term does not rise as fast as in Simulation 1, and reaches a value smaller than 

the previous simulation. 

Figure (5.5.a) shows the location of the positive real root ( P m )  of the characteristic 

polynomial. The PRR for the resulting network is 1.0361, which is still larger than one 

and can not guarantee the stability. This suggests that the value of nt may have to be 

further increased (which will be implemented in the next simulation). In the testing phase, 

the testing empirical error of 0.0442 is obtained. As can be seen, the difference bettveen 

the testing and training errors in Simulation 2 is slightly smaller than that of Simulation 

1. The estimation cuve  for the first 350 points is shown in Figure (5.5.b), which indicates 

that the estimation quality decreases as the signal approaches the extreme boundaries of 

its interval. 

Although both testing and training empirical errors of Simulation 2 are larger than 

those of Simulation 1, the relative proximity of the testing and training values can be 

regarded as the significant characteristic of Simulation 2. 
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Figure 5.5: (a) Positive real root of the best network of each generation for Simulation 
2 (left), and (b) -4ctual (solid) and estimated (dashed) outputs for the testing data for 
Simulation 2 (right) 

5.7.3 Simulation 3 

In this simulation, the evolutionary variable-structure neural modeling with the following 

settings is applied: n/finSlope = -1 x 10-~, BackStep = 1000, w, = wb = 0.0005, X = 

2 x  IO-^, y = 7 x  IO-^, N = 50, 11,  = 2,  n = 100. 

Figure (5.6) shows the curves of the cost function as well as the complexity term of 

this simulation. The algorithm stops at 1 = 4; however, since the cost function of the 

network with two neurons is lower thm that of the one with three neurons, the algorithm 

introduces the final network with two neurons as the output h c t i o n .  The jumps in the 

complexity term when a new neuron is added play an important role in this selection 

(as expected). The jumps in the complexity curve correspond to the points where new 

neurons are added. Notice that the defined complexity term depends on the number of 

neurons directly and as a result adding a new neuron can make a significant change in 

the complexity. These sudden jumps in cornplexity term were not present in the case 

of FIR modeling. This is because the number of neurons 1 appeared in the complexity 

measures of FIR models only in the form of upper bounds of the summations over the 

weights of the model. Therefore, adding a new neuron with al1 its weights set to zero (or 

small values) would not cause a jump in the complexity tem. However, as mentioned 
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Figure 5.6: (a) Cost function (left), and (b) Complexity term (right) for Simulation 3 

above, the complexity terms defined for ARX models contain multiplicative term of I and 

therefore create the jumps. 

Also, notice that after adding a new neuron there always exïsts a period of rapid 

oscillations in the complexity curve. Oscillations can be reduced by choosing smaller 

values of w, and wb at the expense of having a slower training procedure. In other words, 

these variations are due to high values of adaptation parameters w, and zub and reducing 

the values of these parameters would reduce the variations, but would make the entire 

training process undesirably slow. 

The output network has the training cost function and empirical error of 0.1216 and 

0.0436, respectively. The complexity term for this network is 88.4046 . 
--.su 

Figure (5.7.a) shows the positive real root of the best network of each generation. As 

can be seen, the location of the real positive root for the output function is 0.8289, which 

is iess than one and therefore the resulting network is stable. Figure (5.7.b) depicts the 

performance of the network against the testing data. The empirical error for the testing 

set of data is 0.0458 . This value being close to the training value indicates that the mode1 

has avoided overfitting the data. 

The direct cornparison of the simulation results given here with those of the literature 

may not be possible as the cost function used in al1 existing simulations in the Literature 



Figure 5.7: (a) Positive real root of the best network of each generation for Simulation 
3 (left), and (b) Actual (solid) and estimated (dashed) outputs for the testing data for 
Simulation 3 (right) 

is the empirical error, calculated as the sum of the squared error (which is significantly 

different kom the one used here). Also, in some cases (such as [38]), it seems that 

the entire data set has been used for training and as a result the cornparison between 

the testing-training balance may not be possible. Moreover, in none of the literature in 

CSTR modeling is the issue of stability mentioned. However, judging from the overd  

form of the estimated and actual curves, it seems that the t r a c h g  error in [38] rnay be 

slightly smaller than the graphs given here. 

Each simulation in this section takes between 300 to 420 minutes on a computer with 

400MHz Pentiurn II processor. 

5.8 Discussion 

Here, the results of the chapter are discussed: 

1. The above simulations indicate that the proposed algorithm can provide -4RX mod- 

els that have relatively similar performances on the testing and training data. 

2. As can be seen in Simulation 1, without including the value of the positive real root 

into the optimization process, the algorithm may results in models whose stabiliw 
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is unknom. This encourages the use of non-zero y. However, the condition for 

stabiliQ is a sufficient one, and even when the condition is violated the model may 

still be stable- 

3. As in the FIR case, the resulting model depends on the algorithm settings, i-e. 

different values of N, w,, zub, A, y, BackStep and MinSlope would give different 

models of the training data. At the same time, one can use the above settings 

to implement the objectives of the modeling process. As an example, if a fast 

training process is desirable, srnaller values of N ,  higher values of w, and wb, and 

srnaMer values of Backstep can be used. Repeating the training process to find the 

"appropriate settings" may be a more reliable strategy. 

4. Since the number of hidden neurons 2 appears in the complexity term explicitly, one 

can expect to see a jump in the cost function when the variable-structure algorithm 

adds a new neuron to the structure. This jump seems to perfonn a vital role in 

evolutionary variable-structure neural modeling, as such a sudden jump in the cost 

function may easily stop the search. 

5. The bounds on the sample complexity are distribution-free, and as a result are 

highly conservative. Tighter bounds can be found assuming particular probability 

distributions (or even families of probability distributions), as in the case of FIR 

modeling. 

6. The idea of forming the covering set of a function family by grading the parameter 

space (introduced by Barron [7]) seems to be both feasible and practical. Although 

the process rnay be tedious and time-consuming, in some applications where relia- 

bility plays a more crucial role than the computation time, one may choose to use 

this process in order to gain confidence in the learning behaviour of the model. 

7. Modeling of the CSTR system (which is used in literature as a benchmark of nonlin- 

earïty) shows that both evolutionaq algorithms introduced here c m  model complex 

nonlinear dynamic systems. 



The results of this chapter can be briefly reviewed as follows. 

A new sufficient condition for stochastic stability, geornetrical ergodicity, and a- 

mixing properties of sigrnoid neural networks is presented. This condition is defined 

over the parameters of the network and can be easily evaluated. 

With sufficiently large values of y, stable neural models of CSTR system can be 

obtained. 



Chapter 6 

Modeling of Neuromuscular Blockade 

6.1 Introduction 

For a patient undergoing surgery, unconsciousness may not sufEce: as some muscles rnay 

move due to involuntarily rnuscular activities. In order to avoid such unwanted movement, 

drugs (such as atracurium) are injected to create muscle relaxation or neuromuscular 

blockade. The amount and timing of such injections play critical roles in overall medical 

procedures as too small a dose of the drug may not block the motion completely and 

an excessive dose of such drugs may cause long term neuromuscular disorder. Accurate 

identification and control of the neuromuscular blockade system is therefore important. 

Unlike the level of unconsciousness which cannot be measured easily, the level of muscle 

relaxation can be monitored on-line and non-incisively via evoked EMG responses. This 

has encouraged a number of researchers to develop experimental dynamic models for this 

nonlinear system. Al1 such models are based on the average values of some parameters 

that Vary significantly from one person to another. This variability, together with the 

nonlinear nature of the model, suggests that more sophisticated models such as neural 

networks might be used to provide more accurate estimation of the system. 

In this chapter, neural networks are applied to obtain a nonlinear model of the response 

of the neuromuscular blockade system to drugs such as atricuriurn. Since real data were 

not available, a parametric model based on the chemistry of the problem is used to 

simulate the actual system. Section 6.2 describes the entire process of neuromuscular 

blockade and the model which will be used. In Section 6.3, a sigmoid neural model 

is developed for the process, and the performance of the developed model is assessed 

against a set of testing data. Section 6.4 discusses the results, and Section 6.5 concludes 

the chapter. 



6.2 Muscle Relaxation and Neuromuscular Blockade 

Define ~ ( t )  a s  the input dose of the drug and ~ ( t )  as the plasma concentration of the 

drug. In Pharmacokinetics, it is shown (see 1151 for example) that after a dose of drug, the 

plasma concentration of arracurium deches rapidly in two exponential phases correspond- 

ing t o  distribution and elimination. The elimination compartment models a phenornenon 

referred to as "Hofman elimination" [9]. As a result, combining the two compartments 

together; one czn mode! the relation between ~ ( t )  and u ( t )  as a second order linear s y s  

tem. Based on the empiricd data gathered Erom different patients, the transfer function 

of this system is reported as [15]: 

where u(s) ar?d C,(s) repïesent the Laplace transforms of u(t )  and ~ ( t )  respectively, and: 

z = 0.0940 min-' 

pl = 0.3247 min-' 

p* = 0.2079 min-' . 

Similarly, to characterize different aspects of drug effect, a third cornpartment known 

as the "eEert ccmpartrnent" is introduced. This compartment is connected to the central 

cornpartment and relates %(f) to ce(t). The signal c,(t) determines how the effective 

concentration of the drug in blood varies through tirne. The effect compartment mhich 

describes the dynamics of effective concentration of the drug can be expressed as foilows: 

wheïe C,(s) represent the Laplace transform of c,(t), po = 0.9910 min-' and k = 



Including the delay between the central and effective cornpartments, the overall trans- 

fer hnction from u ( t )  to e&) can be expressed as follows: 

where the values of z, po, pz and pz are given above. 

Now, based on c&), one can calculate the desired output level of the neuromuscular 

blockade, narned as r (t) . This variable, which is normally expresse& as a number between 

O and 100 at each time t: indicates the level of blockade, i.e. 1û0 is regarded as M l  

muscular activity and O as fidl paralysis. The relation between express r ( t )  and c&) 

reveals the nonlinear behaviour of the system. Experimentally, it has been observed 

that the functional dependency between r ( t )  and c&) is mainly o f  saturation type. In 

Pharmodynamics, this saturation effect for atracurium is normally modeled by the HiII 

equation [9]: 

where ceso = 0.404rnl-' pg is the drug concentration a t  50 percent effect. The reported 

value for v in Hill's equation is 2.98 . 

The existence of this saturation element makes the entire process a nonlinear system 

and calls for the use of a nonlinear model to describe the system- In the next section, 

this system is modeled using SNN's. 

6.3 Neural Modeling of Neuromuscular Blockade 

Since real data from the neuromuscular blockade syst em were no* available, simulat ed 

data representing the actual system are formed using the model described above. Then, 



the training and testing of performance of our neural nets wiU be assessed using the 

resulting simulated data- 

The discrete model is assumed to have the following form: 

where the sampling time is assumed to be 20 seconds. This is due to the fact that in the 

actual system the input rate as well as the output measurements are updated every 20 

seconds. The delay of one minute between the input and the output traasiates to roughly 

a delay of 3 samples in the discrete model. 

In order to emulate the noisy nature of actual EMG measurement systems, a sequence 

of normally distributed random numbers ( ~ ( t ) )  "th mean of zero and variance of 3.5 

has been added to the output. The training and testing data sets are then normalized 

such that the variables r and u fa11 in the interval of [-1 11. The training and testing 

data set consist of 450 and 550 input-output samples, respectively. Since it is knom that 

the neuromuscular blockade is a stable system, i t  is desirable to ensure that the resulting 

neural model is stable (geometrically ergodic). -4s a result, in the following modeling task, 

a non-zero y is used. 

The evolutionary variable-structure neural modeling is used for the training. The 

settings of the algorithm are the following: N = 50, w, = zub = 0.0005, X = 0.0002, y = 

0.08, e = 0.05, MinSlop = -1 x IO9, BackStep = 1000, Zr,, = 2, n = 100 . 

The algorithm stops after generating a network with 3 neurons; however, due to the 

lower cost function of the last network with two neurons, the latter network is used as the 

output of the algorithm. This can be seen in Figure (6.1 .a), which shows the cost function 

evaluated for the best network of each generation. Due to the jump in the value of the 

complexity term, there exists a jump in the overall cost function that makes the three- 

neuron-networks too costly. The evohtion of the complexity term is shown in Figure 

( 6  The jump in the complexity term can be seen in this graph. The cost function, 

the empirical error and the complexity term for the resulting two-neuron network are 



Figure 6.1: (a) Cost fûnction (left), and (b) Complexity term (right) 

0.121 8, 0.0382, and 93.2590, respectively. 

Figure (6.2.a) shows the location of the positive real root of the characteristic poly- 

nomial of the best network of each generation. The value of the positive real root (PRR) 

for the resulting network is 0.8111, which indicates that the resulting network is stable. 

In Figure (6.2.b), the performance of the resulting network against the testing data set is 

depicted. 

The empirical error on the testing data is 0.0385, which is very close to the testing 

one. Mso, from Figure (6.2.b) one can see that the estimated curve closely tracks the 

actual one. 

In order to see the prediction performance of the neural model more clearly, in Figure ' 

(6.3), the auto-correlation of the prediction error is depicted. -4s c m  be seen, the only 

point with high correlation corresponds to zero shift of the signal. This shows that the 

error signal is merely a noise and contains little information. 

This can be further seen in Figures (6.4.a) and (6.4.b), where "the power spectral 

density" and "the cumulative integrated power spectral" of the error are depicted, re- 

spectively. As can be seen in Figure (6.4.a), the spectrum of the error is relatively Bat 

which resernbles that of a white noise. The srnall increase in the power of the signal 

a t  high frequency indicates that the model is less successful in prediction of high fie- 
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Figure 6.2: (a) Positive real root of the best network of each generation (left), and (b) 
-4ctual (solid) and estimated outputs for the testing data  (right) 

400 500 
Sample Shift 

Figure 6.3: Auto-correlation of the empirical prediction error 



Figure 6.4: (a) Power spectral density of the empirical prediction error (left), and (b) 
Cumulative integrated power spectral density of the empirical prediction error (right) 

quency variations. However, since most of the high frequency contents of the signal can 

be attributed to the added noise, this may not be a considered as a disadvantage of the 

model. 

Due to the noisy nature of signal and the jumpy form of the power spectral density, 

the curve of the cumulative integrated power spectral is sometimes considered as a more 

visually-appealing graph. The curve in Figure (6.4.b) shows the cumulative surnmation 

of the power spectral density for any given frequency. The closer this curve becomes to a 

straight line, the whiter the signal is. -4s can be seen, Figure (6.4.b) gives a curve which 

resembles a straight line which in turn indicates that the error signal is close to the white 

noise. 

Performing this simulation takes about 300 minutes on a computer with 400MHz 

Pentium II processor. 

6.4 Discussion 

Considering the results obtained in this chapter, the following remarks can be made. 

1. The higher values of y result in neural models with higher stability margins. How- 

ever, for such simulations, the empirical error of the resulting network might be too 



large. 

Since the neuromuscuIar blockade system is known to be a stable system, a non- 

zero y was used to ensure that the resulting network is stable. However, if having 

a neural model with unknomn stability status is still acceptable, one c m  set y = 0, 

which may result in networks with smder  empirical errors and even closer testing 

and training errors. 

The resulting network performs sirnilady on the testing and training data sets which 

further supports the idea of using learning-based cost functions. The fact that the 

testing and training errors are very close suggests that the value of X can be further 

reduced t O ob t ain even smaller ernpirical errors- 

Since the neuromuscular blockade system is known to be time-variant (Le. the 

parameters of the system change as the t h e  evolves), the model can be designed 

to follow the changes of the system assertively. Once a model is developed off- 

line and throughout a batch training procedure, it can be updated after a few 

samples by including the new measured data points in the on-line training process 

and disregarding some of the old training points. Assuming that the computations 

involved in updating the neural model can be performed in a few minutes using 

a fast computer, the adaptive version of the above modeling procedure is a more 

suitable approach, but needs to be confirrned throughout the implementation of the 

model on the actual system. 

-4 certain dose of atricurium causes different degrees of muscular paralysis on diEer- 

ent people so that different mode1 parameters may be needed for different patients. 

In order to deal with this problem, one can take an approach similar to the one de- 

scnbed in the previous rernark, i.e. using adaptive implementation of the algorit hm. 

This way, the modeling process starts with the parameters obtained from the data 

taken from different patients and updates the model throughout the process. Also, 

characteristics such as weight, age and gender can be used to create models that 

work for a ~ O U D  of ~ e o ~ l e  with certain similar characteristics. 



6. The neural model developed here can be use to design a nonlinear controller that 

generates the dmg dose input so as to provide a certain level of muscle relaxation- 

7. The performance of the neural modeling of the neurornuscular blockade can be best 

evaluated using actual data sets taken from the real systems used. 

-4 surnmary of the chapter is as follows. 

The neuromuscular blockade system can be modeled using neural networks. 

Due to the fact that the neuromuscular blockade systems is known to be stable, the 

methodoIogy used in this chapter is designed to give a stable mode1 of the system. 

The similar performance over the testing and training data suggests that the ob- 

tained neural model is a reliable one 



Chapter 7 

Conclusions and Future Works 

In this chapter, the main results of the thesis are briefly reviewed. The main contributions 

of the research can be listed as follows. 

1. The new inequality on the summation of a sequence of m-dependent r.v.s7 pre- 

sented in this thesis helped extending the conventional PAC with i i d .  to a more 

general fkamework of learning with m-dependent r x s .  This new paradigm of m- 

dependent learning allows the quantitative evaluation of the learning properties of 

FIR modeling procedures. Using the results of m-dependent PAC learning theory, 

the learning properties of the following families of neural FIR models are assessed: 

Gaussian RBFN's, Reciprocal Multi-Quadratic RBFN7s, at an SNN7s, bipolar expo- 

nential SNN's, Volterra NN7s as well as simple linear models. These results give 

bounds on the number of training data points which guarantees an accurate and 

reliable model and avoids overrfitting the data. These bounds are s h o m  to be most 

useful when the user has access to  large training sets. Moreover, the learning proper- 

ties of FIR modeling mith the above families of NN's are compared with each other. 

Although the comparison is based on the sufEcient bounds of the sample complex- 

ities, the results can still be used in selecting a neural structure. The comparison 

shows that Gom the standpoint of learning theory, bipolar exponential networks are 

the most desirable neural models. 

2. Based on the learning properties of neural FIR models and using the functional de- 

pendencies between the learning parameters, complexity t e m s  are introduced that 

reflect the complexity of learning mith such neural structures. Based on the resulting 

complexity terms for neural FIR models, a set of cost functions is constructed that 

creates a balance between the empirical error and the complexity of reliable learning 

of the model. This cost function can be used to avoid overfitting when the size of 
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the training data is small. For a ty-pical task of FIR modeling with small train- 

ing setsJ evolutionary neural modeling dgorithms are proposed that consider the 

leaniing properties of the model. This is done by minimizing the above mentioned 

cost functions and searching for appropriate structure as well as set of parameters 

that avoid overfitting. Simulation results testify to the suitable performance of the 

proposed algorit hms. 

The evolutionary variable-structure neural modeling algorithm is applied to FIR 

rnodeling of the paper machine's next-scan-estimation. This shows that when the 

sensors are off-line, for the first few scan lines, neural networks can use the previous 

information to estimate the future scans (rows). This shows that neural FIR models 

can be successfully used to approximate the industrial systems without overfitting 

the small training data, provided that an appropriate learning-based complexity 

measure is included in the cost function. 

-4 set of sufficient conditions for the important properties of stochastic stabifiw, 

geometric ergodicity, and geometric a-mïxing properties of two families of SNN's 

(atan and bipolar exponential) are presented. These conditions not only evaluate 

the important issue of stability for some important neural models, but also allow 

the extension of P K  learning to a more general learning scheme. Using these 

conditions, a new extension of the conventional PAC learning framework is presented 

that includes learning with geometrically a-mixing data. This provides a framework 

to assess the learning properties of a group of important neural ARX models. In 

order to obtain specific results, the PAC learning with geometrically a-mixing data 

is applied to evaluate the learning properties of atan and bipolar exponential SNN's. 

The results bound the number of training data points that parantees an accurate 

and reliable -4- model and avoids overfitting. These results are mainly applicable 

to the modeling tasks where the user has access to large data bases. 

Based on the learning properties of sigrnoid neural ARX models, complexity terms 

are introduced that reflect the complexity of learning Rrith such neural structures. 

Then, using the resulting complexity terms for sigmoid neural ARX models, new 

cost functions are constructed that create a balance between the empirical error and 
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the complexity of reliable learning of the model. For a neural ARX modeling task 

(using the above mentioned SNN7s) with s m d  training data sets, the evolutionary 

neural modeling (similar to that of FIR modeling) is introduced. By minimizing 

the above-mentioned cost functions, the algorit hm searches for suitable structure as 

well as parameters sets that avoid overfitting. Simulation results obtained from the 

modeling of a Continuously-Stirred Tank Reactor (CSTR) testiS to the successful 

performance of the proposed algorithms. 

6. The evolutionary ARK modeling algorithm is applied to the neuromuscular blockade 

system, which resdts in a neural model that learns the system without overfitting 

the data. This shows that neural ARX models are capable of approximating complex 

systems without overfitting the s m d  training data, provided that an appropriate 

learning-based complexity measure is included in the cost function. 

In continuation of our research the following future works may further improve our 

results. 

-4s mentioned in Chapter 2, in FIR learning with RBFN's, one can assume a h e d  

set of locations for the centers and based on that obtain tighter bounds for the 

sample of complexity. This will limit the results to the particular choice of centers 

but give more specific and less conservative bounds. 

A new algorithm based on the empirical risk minimization algorithm that is intro- 

duced in [33] and [34] has resulted in more practical search methods for learning 

with i.i.d. data. This a lgor i th ,  called 'ccanonical smooth estimation", is an exten- 

sion of the empirical risk minimization. The algorithm forms an empirical E-cover 

set rather than the probability based one. The sample complexity of this algorithm 

has been directly calculated based on the sample complexity of the empirical risk 

minimization. This suggests that it might be possible to use the results of this t h e  

sis to calculate the sample complexity of the canonical smooth estimation, which is 

more practical than the empirical risk minimization algorithm. 

In order to further evaluate the performance of the introduced cost functions in 
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dealing with the overfitting problem, one can perform many modeling simulations 

with different training and testing sets- 

More efEcient non-smooth optimization algorithms might be used to minirnize the 

cost functions used in the thesis. However, SIMPLEX and gradient-based algorithms 

have already been applied to the problem- The results indicated that the above 

methods are not as successful as the proposed E f  methods are. 

0 From the results of Chapter 4, it seems that the prediction of future rows can be 

extended to more than five rom ahead- A set of simulations on predictions of more 

rows can determine how many more rows can be accurately predicted. 

0 It may be possible to use the results of Tong [22] on the geornetric ergodicity and 

geometric strong mixing of nonlinear systems, to create results similar to the ones 

introduced for SNiL"s- A careful formulation of the probiem may result in a set of 

sufficient conditions on the weights of a RBFN that guarantees the above properties. 

-4s mentioned in Chapter 6, the use of actual neuromuscular blockade data taken 

from real patients in ARX neural modeling of the system can further assess the 

proposed algorithms- 
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