

National Library 1*1 of Canada
Bibliothèque nationale
du Canada

Acquisitions and Acquisitions et
Bibliographie Services services bibliographiques

395 Wellington Street 395, nie Wellington
OttawaON K1AON4 Ottawa ON K1A ON4
Canada Canada

Your fik Votre Mérenœ

Our file Notre refdrence

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retaùis ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts fkom it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la fome de rnicrofiche/nùn, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

Abstract

Neural networks have been successfully used to model a number of complex nonlinear sys-

tems. Although neural net~orks can create successful models of some nonlineax systems,

they are known to ovedit the data in some other applications. Therefore, in order to

use neural networks reliably, it is necessary to explore the conditions under which neural

models perform equally well on the testing and training data sets. This calls for the design

of the neural models that create a balance between the testing and training performances.

The newly introduced Probably Approximately Correct (PAC) learning theory ad-

dresses the issue of testing-training balance. However, conventional PAC learning only

allows static modeling and cannot be applied to dynamic models. In this thesis, PAC

learning is extended to more general Iearning schemes that handle dynamic modeling

tasks. The resulting PAC paradigms are then applied to assess the learning properties of

several families of dynamic neural nettvorks, including Radial Bases Functions Networks

, single-hidden-layer Sigmoid Neural Networks, and Volt erra Networks.

Another concern with the use of neural networks for some dynamic modehg tasks is

the issue of stochastic stability. Little is known about the stochastic stability of many

neural models used in practical applications. The lack of brnowledge over the stability of

neural models further limits the use of such models. In this thesis, sufficient conditions for

stochastic stability of different families of neural networks are presented, which address

the above mentioned concern .

Based on the resulting leaming frameworks, evolutionary algorithms are then pre-

sented that search for a suitable suitable dynamic neural modeling which perform e q u d y

well on testing and training data. The evolutionary algorithms are then used for model-

ing of two applications. The first application deals with next-scan-estimation of a two-

dimensional paper ba is weight measurernent on a paper machine. In the second appli-

cation, a neural model for a neuromuscuiar blockade system is developed. The results

indicate that accurate and reliable dynamic neural models can be obtained, provided that

the learning complexity of such models are controlled during the training procedure.

Table of Contents

Abstract ii

List of Tables vii

List of Figures viii

Acknowledgement xi

1 Introduction 1

1.1 Background and Motivation . - 1

1-2 Contributions - - 5

1.3 Thesis Outline - . 7

A Learning Framework For FIR Modeling 9

2-1 Introduction - ; - - - . - . . . 9

2.2 Definitions - - . 11

2.3 Extension of P.4C learning to rn-dependent cases 13

2.4 Learning of RBFN's With Uniformly-Distributed m-Dependent Data . . . 21

2.4.1 Gaussian RJ3FN7s - 25

2.4.2 RMQ RBFN's . 27

2.5 Learning of Sigmoid Neural Netmorks With Uniformly-Distributed m-Dependent

Data . 28

2.5.1 'Latan" Sigrnoid Functions . 32

2 -5 -2 Bipolar Exponential Sigmoid Functions 33

2 -6 Learning of Volterra Neural Networks With Uniformly-Distributed m-Dependent

Data . 34

2.7 Learning of Linear Models With Uniforrnly-Distributed m-Dependent Data 38

. 2.8 Ushg The Learning Results in a Typical Modeling Procedure 39

. 2.9 Model-Free PAC Learning 42

. 2.10 Discussion 48

. 2.11 Summary 54

3 Learning and Practical FIR Modeling 56

. 3.1 Introduction 56

. 3.2 Structural Risk Minimization Algorithm 57

. 3.3 Learning-Based Complexity Measures 61

. 3.4 Number of Neurons in Hidden Layer 67

. 3.5 Evolutionary Neural Modeling 69

. 3.6 Simulation Results 77

. 3.6.1 Simulation I 77

. 3-62 Simulation 2 79

. 3.6.3 Simulation 3 81

. 3.6.4 Simulation 4 83

. 3.6.5 Simulation 5 83

. 3.6.6 Simulation 6 84

. 3.7 Discussion 86

3.8 Summary . 89

4 Two Dimensional Sheet-Scanning System 90

. 4.1 Introduction 90

4.2 Monitoring of Paper Quality in a Paper Machine 91

4.3 Neural Modeling of Basis Weight 94

. 4.3.1 Simulation 1: One-Row-Ahead Prediction 95

4.3.2 Simulation 2: Two-Row-Ahead Prediction 98

. 4.3.3 Simulation 3: Five-Rom-Ahead Prediction 100

. 4.4 Discussion 102

4.5 Summary . 103

5 ARX Models: Stability and Learning 104

. 5.1 Introduction 104

. Basic Definitions of Stochastic Stability 106

. Geometric Ergodicity of Sigmoid Neural Xetworks 109

. Geometrically a-Mixing PAC Learning 114

. Distribution-Free Complexïty of SNN's Neural Models 119

. Minimum Complexity -4RX Neural ModeIing 126

. Simulation Results 129

. 5.7.1 Simulation 1 132

. 5.7.2 . Siniulation 2 133

. 5.7.3 Simulation 3 135

. Discussion - 1 3 7

. Summary 139

6 Modeling of Neuromuscular Blockade 140

. 6.1 Introduction 140

. 6.2 Muscle Relaxation and Neuromuscular Blockade 141

. 6.3 Neural Modeling ofNeuromuscular Blockade 142

6.4 Discussion -

6.5 Summary .

7 Conclusions and

Bibliograp hy

Future Works

List of Tables

2.1 Bounds on sample complexity of diEerent families of neural networks for

different filter lengths (m) . 42

4.1 Training cost function. training empirical error. testing empirical error and

complexity term for one.row.ahead. two.rowahead. three.row.ahead. four-

row-ahead and five-row-ahead predictions 101

5.1 Nominal parameters of a simulated CSTR system 131

vii

List of Figures

2.1 Sorting neural models based on their sample complexity 53

3.1 Flow chart of fked-structure evolutionary neural modeling 73

3.2 Three dimensional graph of function f . 78

3.3 (a) Cost function (left) , and (b) Complexity term (right) for Simulation 1 . 78

3.4 *4ctual (solid) and estimated (dashed) outputs for testing data (Simulation

1) * * . - - 79

3.5 (a) Cost function (left), and (b) Complexity term (right) for Simulation 2 . 80

3.6 Actual (solid) and estimated (dashed) outputs for testing data (Simulation

2) . 81

3.7 (a) Cost function (left), and (b) Complexity term (right) for Simulation 3 . 82

3.8 -4ctual (solid) and estimated (dashed) outputs for testing data (Simulation

3) . - . - . . - . + . . . 82

3.9 (a) Cost function (left), and (b) Complexity term (right) for Simulation 4 . 83

3.10 Actual (solid) and estimated (dashed) outputs for testing data (Simulation

4) . 84

3.11 (a) Cost function (top) ,and (b) Complexity term (bottorn) for Simulation 5 85

3.12 Actual (solid) and estimated (dashed) outputs for testing data (Simulation

5) . 85

3.13 (a) Cost function (left), and (b) Complexity term (right) for Simulation 3 . 86

3.14 Actual (solid) and estimated (dashed) outputs for testing data (Simulation

6) . 87

4.1 Schematic structure of a typical paper machine 91

4.2 Schematic structure of the scmning unit 92

4.3 Schematic control structure for a typical paper machine 93

(a) Cost function (left), and (b) Complexity term (right) for Simulation 1 . 96

(a) Actual (solid) and estimated (dashed) normalized output across row

26 (the entire profile) for Simulation 1 (b) Actual (solid) and estimated

(dashed) nomalized output across row 26 (the middle portion of the pro-

file) for Simulation 1 . 97

(a) Cost function (left), and (b) Complexity term (right) for Simulation 2 . 98

(a) Actual (solid) and estimated (dashed) normdized output across row

27 (the entire profile) for Simulation 2 (b) Actual (solid) and estimated

(dashed) nomalized output across row 27 (the middle portion of the pro-

file) for Simulation 2 . 99

(a) Cost function (left), and (b) Complexity term (right) for Simulation 3 . 100

(a) Actual (solid) and estimated (dashed) normalized output across row

30 (the entire profile) for Simulation 5 (b) Actual (solid) and estimated

(dashed) normalized output across row 30 (the middle portion of the pro-

file) for Simulation 5 . 101

Schematic diagram of Continuously-Stirred Tank Reactor (CSTR) - 129

(a) Cost function (left), and (b) Complexity term (right) for Simulation 1 . 132

(a) Positive real root of the best network of each generation for Simulation

1 (left), and (b) Actual (solid) and estimated (dashed) outputs for the

testing data for Simulation 1 (right) . . - - - . . 133

(a) Cost function (left), and (b) Complexity term (right) for Simulation 2 . 134

(a) Positive real root of the best network of each generation for Simulation

2 (left), and (b) Actual (solid) and estirnated (dashed) outputs for the

testing data for Simulation 2 (right) - 135

(a) Cost function (left), and (b) Complexity term (right) for Simulation 3 . 136

5 -7 (a) Positive real root of the best network of each generation for Simulation

3 (left), and (b) .4ctual (solid) and estimated (dashed) outputs for the

. testing data for Simulation 3 (right) 137

. 6.1 (a) Cost function (left), and (b) Complexity term (right) 144

6.2 (a) Positive real root of the best network of each generation (Left), and (b)

Actual (solid) and estimated outputs for the testing data (right) . 145

. 6.3 Auto-correlation of the ernpincal prediction error 145

6.4 (a) Power spectral density of the empirical prediction error (left), and (b)

Cumulative integrated power spectral density of the empirical prediction

. error (right) 146

Acknowledgement

1 would like to gratefdly acknowledge the financial support of the research and myself by

The Department of Electrical and Computer Engineering as well as The Pulp and Paper

Center of The University of British Columbia. 1 wodd also Like to thank HoneywelI-

Measurex Devron Inc. for providing me with the paper machine data. I also like to thank

the following individuals for their great help and support:

To my superclsors, Professors Michael S. Davies and Guy A. Dumont, thank you

for your guidance, encouragement, and your fkiendship.

0 To my supervisor, Professor Nancy E. Heckman, 1 deeply appreciate your helping me

with the mathematical aspects of the thesis and giving me your invaluable guidelines

and encouragement -

To my wife, my son, my parents and my wife's parents, thank you for all your

support, encouragement and patience during the period of completing this thesis.

O To my colleagues at ECE and PPC, Greg E. Stewart, Jan A. Bergstrom, Ahmed

A. Ismail, Stevo Mijanovic and Shahrarn Shirani, thank you for your advice, helpful

discussions and friendship.

Chapter 1

Introduction

1.1 Background and Motivation

Developing models from observed data, or function learning, is a fundamental problem

in many fields, including statistical data analysis, signal processing, control, forecasting,

and artificial intelligence. This problem is closely related to concepts such as function

estimation, function approximation, system identification, and regession analysis. Re-

cently, neural networks have become popular tools in nonünear function estimation due

to their ability to Yearn" and "generalize" rather complicated functions. Multi-layer Sig-

moid Neural Networks (SNN7s) are the most hequently used type of neural networks in

practical applications. However, neural structures can ovedit the data, i.e. they may

perform successfully on the training set of data and poorly on the testing one. This is

mainly because the fact that in many applications the complexity of the neural models is

allowed to grow freely during the training process. Therefore, it is necessary to evaluate

and control the cornplexïty of neural models.

Unfortunately, there exists a lack of knowledge over the cornputational complexity

and generalization capabilities of almost al1 existing neural architectures and their training

methods. This lack of knowledge has created a serious concern over using neural networks

for sensitive applications where reliability plays a vital role. The need for reliable use of

the computational capabilities of neural networks in modeling of complex system calls for

a more solid approach towards the concepts of "learning", as well as its application to

neural modeling.

Informally speaking, learning theory addresses the ability of a mode1 to deal correctly

with the data which were not included in the training set, and the amount of calcda-

tion required to perform the approximation process. The above concept, once applied to

CHAPTER 1. INTRODUCTION 2

neural networks, can evaluate the complexity of neural models and avoid overfitting. In

other words, the learning theory c m answer some fundamental questions such as: How

confident c m one be that the performance of a neural approxïmator developed to model

an unknown function is within a pre-specified proximity fiom the actual unknown func-

tion? What is the sufficient nurnber of samples required to train the network (normally

referred to as sample complexity of network)? 1s a network k inherently "better" a t

generalization performance than a network type B? Does a network type A require fewer

training examples to achieve a given generalization performance than a network of type

B? How would a new neuron added to a particular neural structure affect the o v e r d

computational learning properties of the network? How are the learning properties of a

neural network used for static modeling different from those of the same neural structure

used for dynamic modeling? How can one ensure that the data are not overfitted by a

neural model? PVhile these questions reflect legitimate concerns and can be found in the

literature of many scientific and engineering fields, some will have to be further defined

and specified if a precise answer is needed. For example, the word"bettef must be defined

clearly.

I t is important to notice that experimental investigation or simulation results cannot

be guaranteed to provide us with reliable answers to this type of questions; they tell us only

about the generalization performance of specific networks applied to specific problems.

Therefore, a more theoretical approach towards the concept of learning is required to

address the computational performance of neural networks.

In 1984, to formulate the idea of learning, Valiant [l], based on computational learning

theory, proposed the Probably -4pproxirnately Correct (PAC) learning kamework to esti-

mate the generalization capabilities of a given model. This concept created a foundation

to assess the generalization properties of different modeling structures including neural

networks [12], [13], [14]. However, due to some computational problems, evaluation of the

PAC learning property for many types of models (including neural networks) remained

as an intractable open problem. Some of these learning problems are still open, while a

number of such problems were handIed as described below.

A parallel development in the theory of empirical processes was to have a profound

impact on learning theory. Vapnik and Chervonenkis, working on a theory o f uniform

convergence of relativ:: fiequencies to probabilities, introduced the concept of- Vapnik-

Chervonenkis (VC-) dimension which proved to be a useful tool in empincal estimation

of actual probabilities of events [SI]. In 1989, the publication of the paper "Lemabil i ty

and Vapnik-Chervonenkis Dimension" by Blumer et al. [4] represented another milestone

in the development of learning theory. This paper made a connection between PAC learn-

ing theory and some complexity rneasures including the VC-dimension. This l ink made

evaluation of the PAC learning property for a family of functions tractable by appIlying the

VC-dimension (or similar cornplexity rneasures) of the family, provided that the complex-

ity measure of the family is finite. The resulting theory provided a theoretical foundation

for comparing different models from the standpoint of generalization and compmtational

capabilities.

In the 1990s, there was a burst of publications on leaming properties of different

families of neural networks using the ideas of PAC learning. A number of those papers

introduced upper bounds of VC-dimension and similar cornplexity rneasures for particular

neural architectures in order to show that those families of networks are PAC learnable.

Others found the families of neural networks for which complexity dimensions T e r e not

bounded, and consequently the families which failed to be PAC learnable ([3], [8], [48],

[17], [1817 Pl], [44, [4517 and [361)-

Meanwhile, based on practical results, two families of neural structures have been long

known as the most successful architectures for modeling and control applicatimns. The

two families are:

0 Single-hidden layer Sigmoid Neural Networks (mhich is hereafter referrted to as

"SNN's") , and

0 Generalized Single-Layer Networks (GSLN7s) mhich includes some popinlar sub-

families of networks such as: Radial Basis Function Networks (RBFN's), andl Volterra

networks.

A school of researchers suggests that the general class of GSLN7s, using a defi-ed Least

Mean Squared (LMS) method for training, is preferred over SNN's due to t h e relative

amount of computation involved in the training phase and the guaranteed convergence

to the global optimum in the parameter space. For example, it is suggested in [46] that

in the case of binaxy-output nettvorks, from the standpoint of PAC learning, GSLN's

display a more desirable performance than SNN's, as they can be shown to require fewer

examples to leam the unknown functions. However, the size of the parameter space is

important and excluding the parameter space from the comparison process makes the

results unclear. Some families of GSLN's (including RBFN7s) are not truly linear in the

parameters in the strict sense and, depending on the set of parameters to be trained, the

model may or may not be linearly parameterized. For example, in the case of RBFN's, if

the training algorithm is allowed to update the width or the centers of the basis functions,

the rnodel is no longer linear in its parameters. As a result, LMS can no longer be used for

such cases and no guarantee over the convergence of the parameters to a globally optimal

solution can be given. This w i l l be further discussed in Chapter 2.

In applications of neural modeling, even those with satisfactory results, attention has

seldom been paid to important issues such as the accuracy of the approximation, confi-

dence of convergence (of the model) to the unknown function, the possibility of overfitting

the data, and the sample complexity of the algorithm. Therefore, results are useful for in-

dividual cases, but seldom lead to general properties that might guide future work, This

suggests that conventional PAC learning rnight be a usefui framework to address such

issues in neural modeling. However the learning t heory literature indicates that almost

al1 PAC learning results can be applied only to neural modeling of static systems. Since,

in many applications, neural networks are used to create dynarnic models of unknown

systems, it is desirable that learning theory be extended to include dynarnic modeling.

This would enable a typical task of dynamic neural modeling to be considered as a learn-

ing process and to evaluate PAC learning properties of the process. The most commonly

used dynamic models in engineering applications are "Finite Impulse Response7' (FIR)

and "Auto Regressive eXogenous" (ARX) models. In this thesis, new extensions of PAC

leaming are introduced that include dynamic modeling (both FIR and ARX). The results

of the new learning schemes are applied to dynamic modeling with difTerent famiIies of

neural networks.

CHAPTER 1 , mTROD UCTION 5

In the case of an ARX modeling task, it is also essential to deal with other issues

such as stability, and the statistical dependency of the resulting processes. As will be

shown later in the thesis, without addressing such issues, it is not possible to even define a

meaningful learning paradigrn t hat includes an ARX mo deling t ask. Moreover , evaluating

the stability of a system is an important part of a typical dynamic modeling task. Dynamic

rnodels for which stability have not been guaranteed can not be used in many industria1

applications.

To show how the learning results c m be applied in real world, two nonlinear systems

will be modeled using neural models. The Ts t system is the two-dimensional scanning

sensor for monitoring the basis weight of the paper being produced in a typical paper

machine. The basis weight sensors take the measurements as they move la terdy dong

the moving sheet of paper being produced. These sensors are occasionally taken off-

line for maintenance purposes or even failure. While the sensors are off-line, the paper

machine is still running. As a result, for some time there are no direct readings of the basis

weights for the paper being produced. Neural networks are applied to use the information

before the sensors go off-line to estimate the basis weights while direct rneasurement is

not possible.

The second system to be modeled is a neuromuscular blockade system. In many

surgical procedures, tmo types of drugs are used for anesthesia. The first dmg deals with

unconsciousness of the patient and controls the patient's nervous system so as to make

sure that the patient does not feel the pain. However, an unconscious patient may make

involuntary muscle movernents. The second type controls the motion of muscles during

the surgery. Such drugs block the neuromuscular activities of the muscles by generating a

temporary paralysis in muscles, and so make sure that no unwanted motion occurs during

the surgery. In this research, neural networks are used to mode1 the nonlinear relation

between the quantity of the injected drug and the rate of paralysis (muscle relaxation).

1.2 Contributions

The main contributions of this thesis are as follows.

CHAPTER 1. INTRODUCTION 6

The definition of PAC learning is extended to new learning schemes which include

FXR and ARX dwmamic modeling procedures. The resulting new learning schemes

are then applied to different families of SNN7s and GSLN's, and the learning prop-

erties of such neural models are assessed. The sample complexity (the size of a

training data set which guarantees reliable modeling) of neural dynamic modeling

nrith different families of SNN's and GSLN's is bounded. The specific bounds on

the sample complexity, besides being useful for a systematic modeling task, give the

form of the functional dependency between the accuracy, the statistical confidence,

the characteristics of neural models and the size of the training data. These depen-

dencies are then used to define meaningful cornplexity measures based on learning

properties of a neural model. These dependencies together with the resulting corn-

pie-xïty measures are even more practically useful than the bounds themselves, as

described later. Also, using the bounds, the learning properties of dynamic neural

modeling *th different families of neural networks are quantitatively compared.

This comparison helps the user prefer one type of neural rnodels over the others.

A set of sufficient conditions for stochastic stability of the sigmoid neural ARX

models is presented. These conditions a l lm quantitative evaluation of stability for

some important families of dynarnic neural models.

Based on the functional dependencies obtained in the sample complexity bounds,

new cost functions that create a balance between the empirical error and the learning

complexity of different families of neural networks (both for FIR and ARX scenarios)

are presented. These learning-based cost functions are shown to avoid oveditting of

the data.

Using the above rnentioned cost functions, new algorithms based on Evolutionary

Programming (EP) are introduced that can be used to identiQ neural models of

cornplex nonlinear systems using the learning and computational properties of the

models. These algorithms minimize the learning-based cost functions and are used

in modeling tasks where the available training data sets are small. The proposed

algorithms are meant to avoid overfitting the data and to provide models that

perform equally well against the training and testing data sets.

CHAPTER 1. INTRODUCTION 7

0 The EP-based algorithms for training of neural FIR models are used to predict the

future basis weight scans of the paper in a typical paper machine.

0 The EP-based algonthms for training of neural ARX models are used to successfully

estimate the nonlinear behaviour of a neuromuscular blockade system.

The outline of the thesis is as follows.

Chapter 2: An extension of PAC learning which includes nonlinear FIR modeling

is presented. Then, using the new learning scheme, the learning properties of two

families of SNN's, two families of Radial Basis Functions (RBFN7s) and a family

of Volterra networks are evaluated. These results include bounds on the sarnple

complexity of FIR neural rnodeling with each of the neural structures. The learning

properties of different families are d so compared with each other.

Chapter 3: In Chapter 3 the focus is given to the FIR modeling tasks, where

a lirnited number of training data points are available. The learning results of

Chapter 2 are used to generate EP-based algorithrns that generate neural models of

such systems. In order to test the performance of the proposed a lgor i th , a number

of numeric simulations are given in this chapter.

Chapter 4: One of the proposed evolutionary algorithms developed in Chapter 3 is

applied to predict the basis weight data on the scanning system of a paper machine.

Chapter 5: This Chapter considers neural ARX modeling using SNN's. The stochas-

tic stability, geometric ergodicity and geometric a-rnixing (strong m&g) properties

of the SNWs are addressed, and a set of sufficient conditions for such properties is

presented. Shen, the conventional PAC leaning scheme is extended to learning

with geometrically a-rnixïng data. This leads to a framework to assess the learn-

ing properties of dynamic SNN7s. Based on the learning results, two evolutionary

neural ARX modeling algorithm are presented and tested against a set of numeric

examples.

CHAPTER 1. INTRODUCTION 8

Chapter 6: One of the EP-based algorithms is used for neurd ARX m o d e h g of the

neuromuscular blockade system.

Chapter 7: The conclusions of the research dong with suggested future work are

given.

It is necessary to mention the following remarks regarding the thesis.

Throughout the thesis, some exïsting lemmas or theorems have been mentioned and

reviewed, In the case of such theorems and lemmas, the name of the person who

presented and proved the theorem and the corresponding reference are mentioned a t

the beginning of the statement. All other lemmas and theorems (i-e. the statements

that do not start with a name) are the ones proposed and proved by us in this thesis.

If a technique used for the proof of a theorem is inspired or motivated by a certain

methodology introduced in other works, the name of the person and the reference

to the work is mentioned before the theorem.

Due to the complex notation used in some chapters of the thesis, it was necessary to

modie a very small portion of the notation used in chapter 3. More specifically, the

notation is kept the same throughout chapters 2 , 3 and 4, while starting from chapter

5, a few letters and symbols used in the previous chapters have been redefined to

refer to new concepts. Also, notice that the notation used in chapters 5 and 6 is

exactly the same.

The main objective of the applications given in the thesis is to show that the in-

troduced neural algorit hms can be used to mode1 industrial and biological systems.

However, in none of the applications are neural networks claimed to be the best

type of structures for modeling of the given systems. In other words, the applica-

tions given here are only used to illustrate the performance of learning-based neural

modeling.

Chapter 2

A Learning Framework For FIR Modeling

2.1 Introduction

In a modeling procedure an unknown function " f" is to be estimated to the prespecified

accuracy "2' and statistical confidence "(1 -6)". In order to perform the estimation, using

a set of input-output training data generated by the function f , an approximator function

"h" is found to model f . The modeling of an unknown system f with a feedforward neural

network h can be considered as a typical example of this procedure. Probably Approxi-

mately Correct (PAC) learning theory, proposed by Valiant [l], relates the accuracy and

confidence of the modeling task. PAC !earning and other similar learning schemes allow

quantitative evaluation of the learning properties of rnodeling procedures in which the

data are independently and identically distributed (i.i.d.) in accordance with a probabil-

ity rneasure P. The available results in PAC learning theory are applicable only to static

modeling tasks as they make use of Hoeffding's inequality [52] which is applicable only

to i.i.d. data [20], [19]. However, in many real modeling procedures, the assumption of

data being i.i.d. is violated. As indicated in [39], one important group of applications to

which the results of learning theory with independent data are not directly applicable is

"Nonlinear Finite Impulse Response" (NFIR) modeling, where the output depends on the

present as well as the past inputs. As a result, in an NFIR model, the inputs a t times "t"

and "t + 1" are correlated and consequently dependent [31], [32]. The importance of FIR

models comes from the fact that dynamic systems c a . often be efkiently approximated

by appropriate FIR models. The main contribution of the present chapter is the extension

of the PAC learning theory to modeling of NFIR procedures.

This chapter also establishes the learning properties of a general family of neural mod-

els. These learning properties are in the form of inequalities that relate the accuracy and

statisticd confidence of the models to the number of training data used for modeling.

CHAPTER 2. A LE-4R.lWG FRAMEWORK FOR FLR MODELING

Among difFerent neural FZR models, feedforward neural networks and radial basis func-

tions have been applied in many modeling applications. However, despite the popularity

of feedforward neural networks, the training methods available for such neural models

are relatively complicated and the convergence to the optimal set of weights (parameters)

is not guaranteed. In the case of RBFN7s, provided that only the weights of the basis

functions are to be trained, the optimization procedure becomes a linearly pararneterized

one. As a result, for such RBFN7s simple minimization techniques can be used in training

the model. Moreover, such minimization methods guatantee convergence to the optimal

set of parameters- -4s a result, radial basis functions networks have recently been used

in different modeling applications [38], [25], [47]. It can be observed that restricting the

optimization procedure to the weights of the basis functions reduces the computational

capabilities of RBFN's but is necessary for linear dependency. Including other parameters

of RBFN7s (such as the ones that change the basis functions) optimization process rnakes

such models suffer from the same problems as mentioned for SNN's.

In this chapter, the learning properties of RBFN's, SNN7s, Volterra networks, and sim-

ple linear models are assessed and upper bounds for the sample complexity (the minimum

size of the training data) for NFIR modeling using such neural structures are presented.

The chapter is organized as follows: Section 2.2 gives the basic definitions of the PAC

leaming theory. The idea of PAC learning with i.i.d- data is extended to PAC learning

with m-dependent data in Section 2.3. Sections 2.4, 2.5, 2.6 give specific results on the

learning properties of FIR modeling using general families of RBFN's, SNN's, Volterra

Networks, and linear rnodels respectively. The main results of these sections (on learn-

ing properties of different families of neural networks) are given in Theorems (2.4-1.1))

(2.4.2.l), (2.5.1. l) , (2.5.2. l), (2.6.l), and (2.7.1). In Section 2.8, the results of previous

sections are applied to a typical task of FIR modeling, and the results of modeling with

different neural structures are presented. Section 2.9 describes the concept of model-ftee

learning, which extends the results of the previous chapters. The main results of this sec-

tion are given in Theorem (2.9.1). In Section 2.10 the results of the chapter are discussed.

Section 2.11 gives the sumrnary of the chapter.

CHAPTER 2, A LEARfVING FRAMEWORK FOR FIR MODELING

In this section, some of the basic concepts of stochastic learning theory, including m-

dependence, PAC learning with i.i.d. data and the empïrical risk minimization algonthm

[50], are reviewed.

The fkst concept to be defined here is "a-algebra".

Definition 2.2.1 Suppose X i s a set. A (nonempty) collection S of subsets of X i s said

to be a O-algebra i f it satisfies the followzngs.

1. S is closed under complementation; Le., if -4 E S, then AC E S.

2. S is closed under countable union; i-e., Ai E S for i = 1, 2,. . ., then UZ, Ai E S.

The smallest O-algebra of subsets of X that contains every closed subset of X is called

the "Borel a-algebra" .

The following elements will be used throughout the chapter:

O A set X,

O A O-algebra S of subsets of X,

A fixed k n o m probability measure P on the measurable space (X, S),

O A function set F of rneasurable functions f : X + [-1/2,1/2]. [The interval

[-1/2,1/2] can be replaced throughout by any bounded interval.]

Now, consider a modeling task in which the unknown function f E F is to be es-

timated. In order to perform the estimation, a set of training data is to be generated

as: z, = {(xi, f (xi))):=,. Also, assume that each Xi is independently and identically dis-

tributed according to the probability measure P. An algorithm An : (X x [-1/21/21)" -+
F, based on the training data zn7 generates a function h, E 3 as an approximator of f ,
1.e.:

CHAPTER 2. A L E R N I N G FRAMEWORK FOR FIR MODELING

L(f, zn) = A n [(XI, f (~ 1)) 7 - - - 7 (x*, f (xn))I

P K Iearning is defined as follows:

Definition 2.2.2 Suppose that based on z,, where {xi, . . . xn) are i i d . according to

the probability P, the unknown function f is to be approximated by a function hn. Then,

a fimction set 7 is said to be PAC learnable iff an algorithm A, can be found based o n

which for any E and 6; there exists "n" such that:

where d p (f, h,) is a distance between f and h, defined in tenns of the probability P.

Hereafter, assume that d p (f 7 h) = Ep(l f (x) - h(x) 1). Wherever the meaning is clear

the index n in A, and h, is dropped.

Another useful concept in function learning is an ecover of a function set.

Definition 2.2.3 A n E-cover of a function set F is defined as a set of functions {gi)%l

in 3 such that for any function f E F, there is a function gj where: d p (f , g j) < E .

It should be noted that an E-cover for a function set 7 may or may not exist. If such

a cover set exists, the cardinality (size) of the set depends both on the value of E and the

function set F.

An c-cover with minimal size is called a minimal ecover, and its cardinality is denoted

as N(E, F, d p) . A specific type of learning algorithm known as "the empirical risk mini-

rnization algorithrn" is now defined:

CE-LWTER 2. A L E - M B - G FRAMEWORK FOR FIR MODELING 13

Definition 2.2.4 Let É > O be specified, and let {g i)L l be an €12-cover (not necessarily

minimal) of F with respect to d p .

Then the empirical risk minimization algorithm is as follows. Consider a set of i.i.d.

samples {xl, . . . , x,) E Xn , distributed in accordance with P. Define the cost functions:

& = Xy=l I f (z j) - gi(zj)l , i = 1,. . . , p. Now, the output of the algorithm is a funetion
A

h = gl S U C ~ that: J , = minlci5,ji.

The last concept to be d e h e d is m-dependence.

Definition 2.2.5 A sequence of r.v.s (k;-):=, i s said to be m-dependent iff for al1 j and

k, r.v.s q-and Yk are independent i f Ij - kl > m. In other words, in a sequence of m-

dependent r.v.s, the radius of dependency is limited to the integer m.

2.3 Extension of PAC learning to m-dependent cases

The existing results in the P-4C learning theory are for the cases where input data are

i.i.d., because the fundamental inequalities of the P.4C learning theoq- are based on Ho-

effding's inequality, which is true only for C d data. This inequality is stated.

Theorem 2.3.1 (Iloeflding [52]) Suppose that (&)y=, is a sequence of independent

zero-mean r.v.s such that ai 5 E;. 5 bi. Set: SU^,,,^, - Ibi - ail = M , then:

As mentioned before, in order to extend the learning theory to include learning with

dependent data, it is necessary to find an inequality (similar to Hoeffding's inequality) to

be used for m-dependent data. Using Hoeffding's inequality, a new inequality to bound

the summation of a sequence of m-dependent r.v.s is now obtained. The method used for

the proof is inspired by the proof of the central b i t theorem for a sequence of dependent

CHAPTER 2. A LEARNTNG F R A , ~ W O R K FOR FLR MODELING

data by Iosifescu et al. in [35].

Theorem 2.3.2 Suppose (I;:):='=, is a sequence of m-dependent zero-mean r.v.s such that

ai 5 I;- 5 bi , m 2 1 and ~ u p , , ~ ~ , - 1 bi - ail = M . Then assuming that n = k (m + 1)

(where k is an integer), tue have:

Proof:

The proof starts with defining the following new variables :

where: 1 5 j 5 m + 1. Notice that 5' is a sum of independent r x s . Aise observe that:

Now, define the following events:

Showing the cornplement of an event E as E ~ :

Rom the definition of Evj7s and Hoeffding's inequality:

CHAPTER 2. -4 LEARNLiVG FM&IEWOl?K FOR FEZ MODELLNG

Now (2.8) and (2.9) give (2.4) or equivalently:

which concludes the proof. O El O

Notice that if there exists no integer k such that: n = k(m + l), by defining k as:

k = ln/(m + l)], a similar approach can be follomed to extend the result of the theorem

to such cases. However, since generally in modeling applications: n >> (m + l), the

new term is negligible compared to the other parts, and as a result, the assumption of

k = n/(m + 1) being an integer may merely result in gathering a few more data points.

It is important to notice that since in the proof of Theorem 2.3.2, no assumption has

been made on the distribution of the data, the resulting inequality is distribution-free.

This characteristic of the above theorem makes the results applicable to the learning tasks

where the distribution under which the data are generated is unknown.

Theorem 2.3.2 provides a bound for the probability of the summation of a sequence of

m-dependent r.v.s which can be applied to extend the definition of the conventional PAC

learning to the PAC learning with m-dependent data as described below.

Definition 2.3.1 Suppose that tn = {(xi> f is a sequence of input-output data

where (xl, . . . , xn) is an m-dependent sequence, rnarginally distnbuted according to the

probability measure P E P. Then, with the rest of the assumptions exactly the sarne as

the ones made in Definition 2.2.2, a function set F is said to be "PAC learnable with

rn-dependent data7' iff a n algorithm A can be found based on which for any E and 6, there

exists "n" such that:

CEFAPTER 2. A L E d 4 M G FMALEWORK FOR FIR MODELING

Notice that in practice, one can only calculate the empirical distance between f and h

based on the available data points. The main objective of the learning theory is to have a

quantitative evaluation over the true distance between f and h , i.e. d p (f , h). Therefore, it

is necessary to relate the true distance d p (f, h) to the empincal distance between the two

functions. Next, a lemma is proved that applies Theorem 2.3.2 to evaluate the closeness

of the mean value of a function to its empirical mean-

Lemma 2.3.1 Suppose C : X + [O, 11 is a meusurable function with respect t o a O-

algebra S and P is a probabilîty measure on (X,S). A sequence uf training data has

been generated as: x i (x ~)) } where input data is a sequence of m-dependent r.v.s

identically distn'buted in accordance with P. If the mean value, E&), and the empirical

mean of C, Ê(<), are dejined as follows:

C H U T E R 2. A LEARNING FRA&fEWORK FOR FIR MODELUVG 17

ProoE First define: Yi = Ç(xi) - E&) . Notice that the Yi's form a sequence of

zero-mean m-dependent r.v.s to which Inequality (2.3.2) can be applied with M = 1 and

a = ne. This will result in Inequality (2.13). Inequality (2.14) c m be obtained in the

same fashion, assuming I;- = Ep(Ç) - <(xi)- O O O

Ne-xt, in order to further investigate the new learning paradigm, an algorithm -4 has to

be defined. Here, a natural extension of "the empiricd minimization algorithm" is intro-

duced, that operates over m-dependent input data. The definition of such an algorithm

is straightfonvard and is defined exactly- the same as Definition 2.2.4, except that the

algonthm accepts m-dependent rather than i.i.d. inputs. In this chapter, empiricd

risk minimization algorithm" refers to the extended definition.

Now, using the empirical risk minimization algorithm and the results of Lemma 2.3.1,

the learning properties of a rnodeling procedure under the m-dependency of data is eval-

uated. The proof provided here parallels the proof of a sirnilar learning task under i.i.d.

data by Vidyasagar in [2] .

Theorem 2.3.3 With the assumptions O, f Definition 2.3.1, the empirical risk minimiza-

t ion algorithm reszalts in PAC learning of F with m-dependent training data to the accuracy

of E . In particular:

whenever:

Proof: Since {gi):=, is an €12-cover for F; there exist an index t such that dp(f , gt) 5

€12. Without loss of generality, suppose that d p (f , g q) 5 €12. Again, without loss of

generality, suppose that the giYs are renumbered such that: d p (f 7 gi) > E for i = 1, . . . , k

C W T E R 2- A LEARNTNG FR4hfEWORK FOR FIR MODELING 18

and dp(f,gi) 5 E for a' = k + 1 , . . . ,q. Note that: k 5 q-1. Notice that the error involved

in the empirical risk muiirnization algorithm would be introducing one of the gi's, where

i = 1,. . . , k, as the model h. Define jt = Ê(l f - gtl) , and let the event E be as follows:

E = {y, 5 3e/4 and =fi > 3614 , for al1 i = 1,. . . , k)

From the definition of 23, it is known that E C { d p (f, h) 5 E) . Also:

Now observe that, for each index i, the cost ji is the empirical mean of the function

1 f (.) - g&) (based on the available training set. Therefore, Lemma 2.3.1 can be used to

evaluate the distance between Ji, the empirical mean, and dp(f, gi), the true mean of the

function f (-) - gi (.) 1 :

where n = k (m + 1). Now, since Ep(l f - gil) = d p (f , gp) 5 €12, then:

For ji 5 3 ~ / 4 where i = 1, . . . , k, following a similar procedure, the following inequaliQ

is obtained:

CNAPTER 2. A L E - W G FR4MEWORK FOR FLR MUDELITVG 19

Now, since k 5 q - 1, the maximum error involved in the overall learning process

would be: q(m + l)exp [&] - In other words:

which results to: 6 3 p(m + 1)exp [-ne2/8(m + l)]. Equivalently, when the values of E

and 6 are fixed: n 3 (8(m + 1)/e2)ln- which concludes the proof. fi

Theorem 2-3.3 provides a constructive method of approximation when the probability

is fixed. The extension of the results for Iarger probability sets is straightforward and

requires some knowledge of the probability set. Also, notice that similar results may be

obtained for other definitions of d p (f , h) such as the popular Ep[f (.) - g(.)!2.

The value q in Theorem 2.3.3 is an indication of the complexïty of the function set. In

the case of the distribution-free learning (where no assumption regarding the probability

distribution of data is made), the value of q can be related by another measure of com-

plexity called "P-dimension7' , which is in turn an extension of Vapnik-Chervonenkis (VC-)

dimension [49], [37]. Both q and P-dimension are essentially measures that describe the

cardinality of an €12-cover of the function set. However, in order to construct an €12-cover

of a function set, the prior knowledge of either q or P-dimension is not required.

Example 1 Suppose that the desired accuracy and confidence of an approximation task

are 0.08 and 0.92 respectively (i e . E = 6 = 0.08 1. Also assume that the cardinality of

a 0.04-cover of the function set with accordance to d p is Zess than 10'' (i e . q < 101°)

and m = 2. Using Equation (2.15): n 2 99938, rneanéng that 99938 data points in the

empirical risk minimization algorithm zuould provide the desired accuracy and confidence.

As mentioned before, the parameter q in Inequality (2.16), plays a vital role in esti-

mation of the overall sample c o m p l e e and must be further investigated in the case of

modeling with neural networks. Assume that the €12-cover used is minimal. In that case,

q c m be replaced by N (~ / 2 , 3 , dp) . As can be seen, N (E / ~ , 7, d p) depends on the prob-

CHAPTER 2. A LEARNING: FRAMEWORK FOR F I R MODELING 20

ability measure P, and in case of a ked-distribution learning procedure, pnor knowledge

of P is required to bound N(e/2: 3, d p) .

In generating a set of input-output data to be used for training of a nonlinear model,

the input samples must cover all the domain of the input. If it is possible to control

the training input data, a set of uniformly distributed input data would be a reasonable

approach. The uniform distribution scatters the input samples over the input domain

and is often used in practice. Uniformly distributed input data are then applied to the

unknown system and the resulting input-output data set is used for training. In the

following section, unifordy distributed input data are considered in order to obtain more

specifk learning bounds.

Next, N(E, F, d p) (as an indication of sample complexity) is expressed in t e m s of the

Lipschitz constant of the function set for uniformly distributed data. Consequently, the

sample complexity is related to the Lipschitz constant of the function set, which in tum

can be expressed in terms of the function set parameters. The following lemma is based

on Example 2 in [6] and Example 6.8 in [2].

Lemma 2.3.2 (Kolmogorov [6]) Let 7 consist of al1 functions:

that satisfy f (O) = O , where or, B E R and d is the dimension of the input variable. Also

assume that there exists a finite L such that for al1 f E 3:

where:

Now, let P represent a uniform distribution over [cr,Pld, and define d p as above.

Then:

CHAPTER 2. -4 LEARNlNG FR4fMEWOR.K FOR FIR MODELBVG

Lemma (2.3.2) provides an upper bound of N (E , F, d p) for a function set once an

upper bound on the Lipschitz constant of the family is knom. In the following sections,

the learning properties of some important families of RBFN1s7 SNN's, Volterra Networks

and linear models are studied by finding upper bounds on the Lipschitz constants of those

families, and so investigating the sample complexity of the functions sets.

2 -4 Learning of RBFN's With Uniformly-Distributed m-Dependent Data

A lemma, inspired by [53] and [40], to bound the Lipschitz constant of a general f d y

of RBFN's is now given-

Lemma 2.4.1 Suppose a set of RBFN's 3 has members expressed as:

where: 2 is the number of neurons (basis functions), a = (al7 . . . , ai) fonns the weight

vector of the network with lail < -fi&, < ca for all i, Qi(-)'s are the bounded diflerentiable

radial basis functions in which ri = [lx - ciIl, and y is the center of the ith basis function.

Define:

and form the vector 7 = (171, . . - , q). Further assume that:

and:

CHi1PTER 2. A LEA4R2VING FMMEWORK FOR FIR MOûELING

A = suha,, xbi [ai(% < 00 .

Then:

1. The Lipschitz constant of the function set F is bozmded b y:

L 5 -4d.

2. For the function set F defined above:

Proof: Note that:

where)lx - yll is the Euclidean distance between x and y. Now, suppose that a h i t e LE

for 3 can be found such that:

Setting L = J ~ L , :

This shows that once an upper bound for LE is available, an upper bound for the

Lipschitz constant L can be found. In order to find an upper bound for LE, note that

CNN4PTER 2. A LEARNIiVG FUfiIEWORK FOR FLR MODELLNG 23

for a bounded differentiable b c t i o n such as the defined neural network f , the value

supcE[a,B]d [IV f (C) II bounds the variation of the function f over a11 the domain and dong

all the directions, Le.:

Now assuming that C = (Cl,. . . ,&) and r = I I < - cJ:

Consequent ly:

LE 5 sup IIVf(C)II 5 A&.
C E k 4

And finally, (2.26) and (2.28) give:

which gives a bound for the Lipschitz constant of the function set and proves the fbst part

of the lemma. Nom combining Lemmas 2.3.2 and the bound on the Lipschitz constant,

an upper bound for N(E, T , d p) for the function set 3 is found. Equation (2.25) is the

CHAPTER 2. -4 LEA.R.NING FR4MEW'ORK FOR FIR MODELIIVG

straightforward result of substituthg (2.29) uito (2 -24) -0 UU

The bound on [d&(ri)/dril depends on the choice of basis functions. The main re-

sult on the learning properties of RBFN's cornes as a combination of Theorem 2.3.3, and

Lemma 2.4-1 as follows.

Theorem 2.4.1 Consider a set of radial basis function neural networks F as dejined

aboue. Assume that learning is considered under the assumption of m-dependency of the

input training data that are uniformly distributed. Then the empirical risk minimiza-

taon algorithm, pe r foned over a minimal €/a-cover, results in the PAC learning with

m-dependency with the sample complexity bounded by:

or equivalently:

where e and 6 are the positive real numbers that d e t e m i n e the acczlracy and statistical

confidence of the akjorithm, respectively.

Proof: Knoming that the function set 3 has an E-cover mith fhite size, according

to Theorem 2.3.3 the empirical risk minimization algorithm learns the model. Moreover,

direct substitution of q in (2.16) with the upper bound for N (E / ~ , 3, d p) indicated in

(2.25) gives (2.30). OU0

Theorem 2.4.1 provides a framework for learning of a neural modeling task, assum-

ing that the data are uniformly distributed. In such a modeling task, the information

CHAPTER 2, A LEMUVING FMMEWORK FOR FIR MODELLNG 25

regarding the structure of the network (such as the nurnber of neurons and the size of

the parameter space) is known, and the objective is to use a set of input-output samples

to find the optimal values for the network's parameters. The empirical risk minimization

algorithm provides a search rnethod that has an associated sarnple cornplexi@

Besides the specific bounds on the sarnple complexity, Theorem 2.4.1 gives the form

of dependency betnreen the accuracy, the statistical confidence, the characteristics of

RBFN's and the size of the training data. These dependencies can help define meaningful

complexity measures based on learning properties of a neural model, as discussed in

Chapter3.

The above results can be further specialized if the basis functions are known. The

following sub-sections deal with the learning properties of two popular families of such

neural networks. These two families consider Gaussian, and Reciprocal Multiquadratic

(RMQ) basis functions.

2.4.1 Gaussian RBFN's

A Gaussian RBFN is defined as:

&(ri) = ex~(-bir:) - exp(-bill~11~) (2.32)

where O < bi < ca is the width (or scattering) parameter of the ith basis function. The

second term normalizes each baçis function and guarantees that f (O) = O. For such a

network, the following theorem can be proved.

Theorem 2.4.1.1 Consider the neural model introduced in Lemma 2.4.1 and suppose

that &(ri) 'S are given as (2.32). F o m h g b as:

CHUTER 2. A LEARNZNG FRA&IEWORK FOR F m MODELING

Then with al1 assumptions of Theorem 2-4.1, the empirical risk minimization algorithm

with m-dependent data performed over a minimal ~ /2 -cover results in the PAC learning

with m-dependency and the sample complm-ty of the algorithm i s given by:

or eqviualently:

2 f i / l r b f , d (B - a)

6 2 2 [1 (m + 1) e q [-na2/8(m + 1)] .

Proof: For the Gaussian set of ba i s fimctions:

It can be seen that the maximum of the absolute value of the above function occurs

at Iri 1 = 2 ~26' and the maximum itself is: 4%. Therefore:

which results in (2.33). 000

CHAPTER 2. A LE-4RNING FRAMEWT/r/ORK FOR FIR MODELING

2.4.2 RMQ RBFN's

For RMQ basis functions:

1 1
4i (il) = da---

where O < bi < ca is the width (or scattering) parameter of the ith basis function. Similar

to Gaussian functions, the second term normalizes each basis function so that f (O) = 0.

The followïng theorem describes the learning properties of RJMQ RBFN's-

Theorem 2.4.2.1 Consider the neural mode1 introduced in Lemma 2.4.1 and suppose

that &(ri) 's are given as (2.35).

Then with the assumptions of Theorem 2.4.1 and defining b and Arbfn as in Theo-

rem 2.4.1, the empin'cal risk minimization algorithm with m-dependent data performed

over a minimal €12-cover results in the PAC learning with m-dependency and the sample

complexity of the algorithm is given by:

or equivalently:

Proof: For the introduced set of basis functions:

The rn~xi.mum of the absolute value of this function also occurs at lril = &, and the

maximum itself is: S. Therefore:

which resdts in (2.36). Cl00

In the next section, following a sirnilar approach, the Iearning properties of SNPj's are

evaluated.

2.5 Learning of Sigmoid Neural Networks With Uniformly-Distributed m-

Dependent Data

In this section, first an upper bound for the Lipschitz constant of a general family of

three-layer sigmoid neural networks is calculated. This bound is then used to find an

upper bound for the sample complexity of the family-

Lemma 2.5.1 Consider a set of feedfomuard neural networks F whose members are ex-

press ed as:

where: O 5 O(.) 5 1 is a smooth sigmoid activation function, 1 indicates the number

of neurons, ai's are the weights of the output layer and the uector bi defined as: bi =

(bii, . . . , bid) represents the weights of the first layer. Further assume that:

and:

where the above "sup" is taken ouer the entire parameter space. Then:

1. The Lipschitz constant of the function set F is bounded by:

2. For the function set .? defined here:

Proof:

As in case of RBFN's:

As in RBFN's, it is seen that once an upper bound for LE is available, an upper bound

for the Lipschitz constant L can be found accordingly. Now:

CHAPTER 2- -4 LEARBING FR4h/lEWORK FOR FI23 MODELING

NOW assuming that C = (Cl, . . . , cd) and u = x$, bijcj:

Consequently:

eqnarray*

And hally, (2.39) and (2.41) give:

which shows that L is a bound for the Lipschitz constant of the function set and proves

the first part of the lemma. As to the second part, Equation (2.38) is a straightfonvard

result of substituting (2.42) into (2.24) 000

The assumption of Ido(u)/du1 being bounded is a requirement of the definition of

sigmoid functions.

The main result on Iearning properties of sigmoid neural networks cornes as a combi-

n a t i o ~ of Theorem 2.3.3, and Lemma 2.5.1 as follows.

CHAPTER 2. A LEARNING FRAMEWORK FOR FIR MûDELING

Theorem 2.5.1 Consider a set of feedforward neural networks F as defined above. As-

sume that learning is performed under the assumption of rn-dependency of the inpu t train-

ing data that are unifonnly distributed. Then the empirical risk minimization algorithm

performed ouer a minimal €12-cover resvlts in the PAC learning with m-dependency and

the sample complexity of the algorithm is given by:

o r equiualently:

d
[z v ~ s n n (B - Q)

6 2 2 1 (rn + 1)exp [-nr2/8(m+ 1)]

where E and 6 are the positive real numbers that de t emine the accuracy and statistical

confidence of the alg orithm, respectively.

Proof: Knowing that the function set .F has an ecover with finite size, according

to Theorem 2 -3.3 the empirical risk minimization algorithm learns the model. Moreover,

direct substitution of q in (2.16) with the upper bound for N (4 2 , F, d p) in (2.38) gives

(2.43). 000

Theorem 2.5.1 provides a fkamework for learning of a neural modeling task. As for

RBFN's, it is assurned that the structure of the network is available, and the objective is to

use a set of input-output samples to find the optimal values for the network's parameters:

ai's and bg7s (also referred to as "weights"). The empirical risk minimization algorithm

determines one of the search methods to find the foresaid parameters.

Besides the specific bounds on the sample complexity, Theorem 2.4.1 gives the form

of dependency between the accuracy, the statistical confidence, the characteristics of

CHAPTER 2. A LEA4RNII\iG FRAiVfEWORK FOR FIR MODELING 32

sigmoid neural networks and the size of the training data. These dependencies can help

define meaningfd complexity measures based on learning properties of a neural model,

as discussed in Chapter 3.

The above results can be further specialized if the form of the sigmoid function is

given. The follonring sub-sections consider some popular families of feedforward neural

networks.

2.5.1 %tan9' Sigmoid Functions

First, consider neural networks that include the tan-'(.) or "atan" sigmoid functions.

Thoerem 2.5.1.1 Consider the neural model introduced in Lemma 2.5.1. Further as-

sume that:

a (u) = ! tan-' (u)

Then with al1 assurnptions of Theorem 2.4.1, the minimum ernpirical risk algorithm

iwith m-dependent data performed over a minimal ~12-cover results in the PAC learning

with m-dependency and the sample complexity of the algorithm i s given by:

or equivalently:

CHAPTER S. A LEE4RNING FRA&lEWORK FOR FLR MODELING

Proof: For the introduced sigmoid function:

which results in: q = 3. Now following the results of Theorem 2.5.1 a bound for the

sample complexity of the mode1 can be obtained as in (2.45).000

2.5.2 Bipolar Exponential Sigmoid Functions

Now the focus is given to neural networks that apply bipolar exponential sigmoid func-
1-=-(-) tions of form W.

Thoerem 2.5.2.1 Consider the neural mode1 introduced in Lemma 2.5.1. Further as-

sume that:

Then with al1 assumptions of Theorem 2.4.1, the empiricad risk mznimzzation algorithm

with m-dependent data perforrned over a minimal €12-cover resuEts in the P A C learning

with m-dependency and the sample complez i ty of the algorithm i s gzven by:

CHAPTER 2. A LEARiVING FRAMEWORK FOR F l R MODELmG

Proof: For the introduced sigmoid function:

which results in: g = 112. Now folloming the results of Theorem 2.5.1 a bound can be

obtained for the sample complexity of the mode1 as in (2.47).000

2.6 Learning of Volterra Neural Networks With Uniformly-Distributed m-

Dependent Data

In this section; the learning properties of Volterra networks are discussed. Despite the

similarities of Volterra nets to both RBFN7s and Sigmoid neural networks, due to the poly-

nomial structure of Volterra networks, their learning characteristics should be discussed

separately. As for the previous structures, h s t an upper bound for the Lipschitz constant

of a family of Volterra neural networks is calculated, and then this bound is used to find

an upper bound for the sample complexity of the farnily. Although the basis functions

in Volterra nettvorks are defined as hyper-polynornial of degree less than or equal to an

arbitrary p, in this thesis, only the networks up to degree p = 3 are considered. The calcu-

lation of the learning bounds for the networks of an arbitrary degree can be obtained in a

similar manner with the cost of dealing with more complex notation and longer equations.

Lemma 2.6.1 Suppose x = (Cl,. . . , C d) . Define the mernbers of a set of Volterra neural

networks 3 as:

d - C - C - + c:=~ c;,- qiCiGCi f (x) = g=i=, aici + Cid xgibv .,

where: ai 's, bij 's, and cijl 's are the weights of the network. Further assume that:

CHWTER 2. A LEARNDJG FRAMEWORK FOR FXR MODELllVG

and:

where the aboue "sup" is taken over the entire parameter space. Then:

1, The Lipschitz constant of the finction set F is bounded by:

2. For the function set F defined i n this lernma:

Proof:

As in the case of RBFN7s and sigmoid neural networks, it can be seen that once an

upper bound for LE is available, an upper bound for the Lipschitz constant L can be

found accordingly. Also:

If(x) -f(y)l 5 sup llVf(C)II -
112 - pl1 re[atPld

ICI

This means that:

Consequently :

And finally, with a discussion similar to the ones given for RBFN's:

CE4PTER 2. A LEARMNG FRAMEWORK FOR FLR MODELING

which shows that L is a bound for the Lipschitz constant of the function set and concludes

the proof of the k s t part. As to the second part, Equation (2.50) is a straightforward

result of substituting (2.52) into (2.24). OCiU

The main result on leaniing properties of Volterra neural networks cornes as a combi-

nation of Theorem 2-3.3, and Lemma 2.6.1 as follows-

Theorem 2.6.1 Consider a set of feedfonuard neural networks .F as defined above. As-

sume that learning W perfomed under the assumption of m-dependency of the input train-

ing data that are uniformly distributed. Define Aval as above. Then the empirical risk

minimization algorithm perfoned ouer a minimal ~ /2 - cover results in the PAC learning

with m-dependency and the sample complexity of the algorithm is given by:

o r equivalently:

d

6 2 2 ['Avo"olQ)I (m + i) e q [-nc2/8(m + i)]

where E and 6 are the positive real numbers that deternine the accuracy and statistical

confidence of the algorithm, respectively.

Proof: Knowing that the function set 3 has an ecover with finite size, according

to Theorem 2.3.3 the empirical risk minimization algorithm learns the model. Moreover,

direct substitution of q in (2.16) with the upper bound for N (E / ~ , F, dd) in (2.50) gives

(2.53). O 0 0

CNAPTER 2- A LEARN?TVG FRAMEWORK FOR FZR IZ/~ODELING 38

In some system identification and control literature, the use of Volterra networks to

model an unknown systems is referred to as nonlinear system identification. Historically,

Volt erra polynomials were used in system ident Scation before ot her types of nonlinear

models were widely used. In this thesis, the name 'honlinear system identification", is

used in its wide sense.

2.7 Learning of Linear ModeIs With Unifordy-Distributed m-Dependent

Data

Due to the importance of linear FIR models, and to compare the learning results of

different neural structures with those of a simple linear model, h e a r models are now

considered. Consider a family of linear functions. Suppose x = (Ci, . . . , cd). Define the

members of a set of linear models 3 as:

The linear model is a special case of Volterra network where only the ai's are assumed

to be non-zero. As a results, the bounds on the learning properties of a linear model c m

be easily obtained as follows.

Theorem 2.7.1 Consider a set of linear models F as defined above. A s s u m e that learn-

ing is performed under the assumption of m-dependency of the input training data that

are uni formly distributed. Define Alin as:

where the above "sup" i s taken over the entire parameter space. Then t he empirrical risk

min imi ta t ion algorithm perfonned over a minimal €12-cuver results in t h e PAC learning

wi th rn-dependency and the sample complexity of the algorithm is given by:

CHAPTER 2, -4 LEA.RïVlNG FRAMEWORK FOR Fm MODELllVG

o r equiualently:

vhere E and b are the positive real numbers that detennine the accuracy and statktical

confidence of the algorithm, respectiuely.

Proof: As mentioned above, linear models are special cases of Volterra networks, and

as a result, the proof for this theorem parallels that of Volterra networks, and will not be

given here. 000

2.8 Using The Learning Results in a Typical Modeling Procedure

In modeling of unknown systems, the structure as well as the parameter space of the

neural mode1 is oken fixed. The characteristics of the parameter space, such as the

number of neurons and the maximum size of the network's parameters, are fixed before

training. The desired values of accuracy and statistical confidence are also pre-specified.

The inequalities of the previous sections then determine a sufficient size of training data

to guarantee the pre-specified levels of accuracy and confidence.

The following examples further clarify the approach.

Example 2.8.1 Suppose that the i i - d . sequence (ui)Zl has been generated according to

a u n i f o m distribution ouer the interual of [O, 11. Also, assume that the stochastic process

y(t), t = f, t, + 1,. . . , oo, depends on the random uan'ables through a function

f, Le.:

CHAPTER 2. A LEARiVllVG FRAMEWORK FOR F l R AdODELING

Now define the random variable xt as:

where X i s [O, l I t 0 . A s a result, the xt 's are to-dimensional t, -dependent random vectors

and:

Now consider an NFrR modeling task for which f i s assumed to be an unknoun member

of a family of atan SNN's. Wi th the aboue fonnulation and using Theorem 2.5.1.1, the

empirical risk rninimization algorithm applied to thés problem results in PAC leaming with

to-dependent Enput data where: t, = rn and m = d.

In order t o have a better evaluation o n the sarnple of the algorithm, let: t, = 2 , E =

6 = 0.08, 1 = 10 and for al1 i: lail 5 0.1, lbil 2 0.1 which results toi A,, 5 0.0447. For

the above'choices, according to Inequality (2-45), a bound for the sample complexity of the

algorithm is: n 2 16225. This means that i f the training set includes more than 16225

samp le points, the algo ri thm guarantees the prespecified values of accurac y and confidence.

The next example describes a similar identification task using a family of Gaussian

RBFN's. IR order to compare the bounds on sample complexity of SNN's with those of

RBFN7s, the cornparison must be made for networks with similar computational capa-

bïlities. In other words, the number of hidden neurons as well as the size of parameters

in both networks must be set to give similar modeling and approximation accuracies. In

literature (see for example [10]), based on the results of applying both SNN's and RBFN's

to the sarne applications, experimental rules have been presented to relate the structure

of SNN7s and RBFN's that often result in similar performances. In other words, these

rules relate the number of hidden neurons of SNN's and RBFN7s such that equivalent

classification and modeling performances are achieved. According to the table given in

[IO], assuming the same size of lail's and [bit's , RBFN7s normally ofken use almost 4

C W T E R 2. A L E a n v G FRAMEWORK FOR FLR MODELING 41

times as many neurons as SNN7s for the same level of accuracy. This ratio is attributed

to the fact that RBFN7s are local approximators, needing more neurons than in the case

of non-locally distributed approximators such as SNN7s. However, since these are experi-

mental d e s , and in order to have a more objective comparison, here it is assumed that

atl the settings (the size of the parameter space and the number of hidden neurons) are

the same, as indicated in the following examples.

Example 2.8.2 Consider the identification task described in the previous example and

assume that instead of a set of sigmoid finctions, a farnily of Gaussian REWN's are used.

Further assume that: t. = 2 , E = b = 0.08 , Z = 10 and for al1 i.- lail 5 0-1, lbil 5 0.1

which results in: Arbfn 5 0.3162. For the above choice of value., using Theorem 2.4.1 -1,

the modeling task i s Zearnable and the sample complexity of the algorithm i s bounded by:

n 2 491710.

As can be seen, according to our bounds, even for the same number of neurons, Gaus-

sian RBFN's require more training data points than atan SNN's. The next example deals

with the same procedure when RMQ basis fûnctions are used.

Example 2.8.3 With al1 assumptions of Example 2.8.2 except using RMQ basis function

for the network instead of Gaussian ones, using Theorem 2.4.2.1 one can show Mat the

modeling task is learnable. Furthemore, in the case of the given numerical values in

Example (2.8.2), an upper bound on the sample complexity of the algorithm i s given by:

n > 109860.

The results obtained above will be discussed in details in Section 2.10; however a simple

comparison of the above bounds, indicates that based on these conservative bounds, SNN's

exhibit more desirable learning properties and require fewer examples to learn a typical

example. Cornparison of the above examples also shows that based on the results obtained

in this chapter, from the standpoint of sample cornplexity, Gaussian RBFN's are the worst

type of neural networks among the networks evaluated here.

CHAPTER 2. A LEARiWNG FRAI1/IEWvORK FOR FLR MODELLNG

Table 2.1: Bounds on sample complexity of different families of neural networks for dif-
ferent mter lengths (m).

It is insightful to observe the way sample complexity grows with the filter length

"m". Ln order to see this, assume that the mode1 parameters are chosen as follows:

E = 6 = 0.08 ,1 = 10 and for all i: 1 % O lbil $ 0.1. Then, for different values for m

and using the bounds obtained in this chapter, Table (2.1) for sample complexity bounds

for different families of neural networks can be formed.

Network
Atm SNN

Bipolar Exponential SNN
Gaussian RBFN

RMQ SNN

As can be seen from the table, from the point of view of sampIe complexity, bipo-

lar exponential SNN's and Gaussian RBFN7s are the most and least desirable forms of

networks: respectively. The results of this table are further discussed in Section 2.10 .

m=5
37648
35630
988616
224923

m=2
16225
15216

109865
491710

Another practically important issue in neural modeling is now addressed. The conven-

tional form of PAC learning assumes that the data are generated by a non-noisy system.

In many physical systems, either the data generating unit is a stochastic system (with

no notion of any particular function set), or the output of the function set is accessible

only after it is cormpted by additive noise. In such generd cases, an extension of PAC

learning known as "Model-Free PAC Learning" is required.

2.9 Model-Free P-4C Learning

m=10 1 m=20

The learning schemes described in the previous sections assume that h E 7. This may

not be true in many real applications, as either F might be an unknown function set,

or the data might be noisy. In such cases, another learning scheme called "model-free

leaming" is a more realistic formulation. In this scheme, the approximator function comes

from a known function set X, but no assumption is made about the function set of which

the unknown function f is a member. Then, instead of tkying to estimate f directly,

77357
73657

420693
1820849

164655
157598
820112
3493081

the algorithm estimates the function in 31 that best approximates f . Among different

formulations of cLmodel-fiee learning" , the one given by Vidyasagar in [2] seems to be the

most accurately forrnulated one. The formulation imtroduced here parallels Vidyasagar's

model-free learning, extending it to a more general type of learning (Le. learning with

dependent data). The exact definition of model-fiee- learning, extended to cover learning

with m-dependent data is given below:

Definition 2.9.1 Introduce the following notation:

Sets X, Y , U and a o-algebra S on X x Y.

A f i e d probability measure P on X.

r A family of probability measures on X x Y , where al1 P E 7 have the same

marginal probability P on X.

A family X of rneasurable functions rnapping X znto U, called the "hypothesis class."

A fvnction E : Y x U -+ [O, 11, called the ('loss f inct ion. " Based o n the loss function

1 , for each h E 7t define an associated function lk : Y x U + [O, 11 by:

and a family of functions Lx = { h : h E x)

With each hypothesis function h and each probability measure P , associate a cost

function:

J W , P) = J X X Y Z[Y, WIWX, d ~) -

Also, define the ~%ninimum achievable cost function" as:

T (P) = inf J J[Y, h (x) l ~ (d x , dy) -
hEX X x Y

CHAPTER 2, ,4 LEA.I?JVING FRAILiEW0R.K FOR FIR MODELING

Sarnples t, = {(xi, are generated where (xi):='=, is a sequence of m-dependent

random variables d i s t n b ~ t e d according to P. Then, an algorithm is considered as a n index

family of mappings A,, where n > 1, An : (X x Y)" -t 3C and hn = A,(zn).

T h e n the algorithm i s said to be "model-fiee probably approximately correct to accuracy

E with m-dependent data" i f for any choice of E and 6, there exists '?in such that:

If when n + m the above probability approaches zero, the algorithm is said to be

"model-free probably approximately correct with m-dependent data".

Next , define "the model-free empirical risk rninimization a lgor i th" which is a natural

extension of the empincal rïsk minimization to the model-fiee leaniing scheme.

Definition 2.9.2 Suppose U defined in Definition 2.9.1 is a subset of 'R. Assume that

the loss function defined in Definition 2.9.1 satisjîes a îmiform Lipschitz condition, i.e.

there exists a finite constant ,u such that:

Also, assume that a n ~ ~ / p - c o u e r {gl, . . . , g,) of X is available where €0 < E . Next,

calculate the empirical cost functions for al1 inembers of the eo/p-cover, ie. find Ji's as:

CHAPTER 2- A L E W G FRAMEWORK FOR FIR MODELLNG

Then, the output of the algorithm is g h in the ~ ~ / p - c o v e r with minimum empin'cal cost

function, i. e- choose gio such that:

Next, a theorem is proved that deals with learnability as well as sample cornplexity of

the model-free empincal risk minimization d g o ~ t h m .

Theorem 2.9.1 Suppose:

1. 7 is a family of probabilities with the propePty that every P E has the same

marginal probability P on X .

2. The hypothesis class X has the property that:

N (e , 31, d p) < oo, t/E > O

3. A loss function 1 that satisfies the unzform Lipschitz condition of (2.61).

Then (x, 7, Z) is model-free PAC leamable. In particular, given any E > O , choose

{g,, . . . , g,} to be an ~ ~ - c o u e r of 3t with respect to d p for some €0 < E. Then the model-free

ernpirical risk minimization algorithm applied to { g l , . . . g,} is PAC to accuracy e, and

the sample complexity of the algorithm is bounded by:

CHAPTER 2- -4 LEARNING FRAiVlEWORK FOR FIR MODELlï'VG

Proof: First prove that for all P E 7 and every hl, h2 E X:

This can be proved as follows:

Now let I' E 7 be arbitrary, and select h = h(q P) such that:

From the definition of J*(P) , one can assure that such an h does exist. Since

Cgi7 - - . gq) is an ~~/fZp-cover of 31, h must be within a distance co/2p from a (possi-

bly unknown) function in the cover set. Assume without loss of generality that the cover

set is renumbered such that d p (h , g,) 5 eo/2p7 which in turn implies that:

Assume that the renumbering is such that:

CE4PTER 2, A LEARNING FR4.MEWOR.K FOR FIR MODELING 47

n Note that k 5 q - 1. Now suppose a multi-sarnple set z, = {(xi? yi)):=L=I , where (xi),,

is a sequence of m-dependent r.v.s identically distributed according to probabiliw P, is

available. Based on this data set, the model-free empirical risk minimization algorithm

introduces h, E {gi, . . . , g,) as the output of the model. Notice that the error involved

in the algorithm would be introducing one of the gi7s, where i = 1, . . . , k, as hn. Let the

event E be:

From the definition of E, it c m be seen that: E C {J(hn, P) > J* (P) + E) . Now:

Next , considering (2 -67) :

Now, notice that j(gq, Zn) and J(gq, P) are the empirical and true rneans of the func-

tion 1,. Using Lemma 2.3.1 on the difference between the empirical and true means of a

function, the above probability can be bounded as:

In the same manner, other probabilities in (2.71), Le. the ones for 1 5 k, can be also

bounded resulting in the same bound as above. Now, since k $ q - 1, the maximum error

involved in the overall procedure would be: (m + 1) exp [-el. In other words:

Pr{J(hn, P) < J*(P) + E) 5 (m + 1) exp [-8,m.:

CHAPTER 2. A L E A W G FM21fEWOR.U FOR FIR MODELLNG

This means that for any arbitras. choices of E and n, model-fiee PAC learning with

6 2 ~ (r n + 1) exp [-&] is achievable. Equivalently, when E and 6 are fixed:

which concludes the proof.

As mentioned in the proof, q is the carclinality of a minimal ~~/p-cover of the function

set. This means that the same procedure of calculating an upper bound of this value for

different function sets as in the case of the standard PA4C learning paradigm yields similar

results for the model-free PAC learning. In other words, for any of the previous results

on different families of neural netmorks, the sample complexity of the model-free learning

can be easily extended by replacing E with eo/p, where €0 can be chosen arbitrarily close

to E. Thus it is possible to avoid repeating all the proofs for the model-free learning case

and simply use the inequalities of the standard PAC learning, as mentioned above.

The model-fiee scheme provides a learning fÏamework that can handle modeling of

non-functional stochastic sources of data assurning different types of loss functions. It

also shows that when using a loss function with p = 1, the computational complexity of

a standard PAC learning scheme is very close of that of a model-&ee one. This explains

why even though the assumptions made in a standard PAC learning are more restrictive

and less realistic, the learnuig properties of many algorithrns are normally assessed within

the standard PAC, and the results are easily extended to the model-free framework.

2.10 Discussion

Considering the results of the previous sections as well as the Examples given above, the

followings remarks can be made.

1. With some modifications, all the results can be extended to PAC learning with

other metric measurements of the distance f and h, such as the popular second or-

der norm. The "model-free learning" paradigm allows the metric measure to belong

to a family of rneasures rather than just being a particular f o m of measure such as

2. The bounds on sample complexity are sufficient bounds and not necessary ones,

i-e. learning might be achievable with fewer number of training points. There-

fore, the performance of different models cannot be confidently compared with each

other merely based on the given bounds for the sample complexities. Nevertheless,

the presented bounds provide some meaningful functionalities and dependencies be-

tween the parameters of the models and the overall learning performance of the

models. Also, the bounds on the sample complexity are d l based on the extension

of Hoeffding's inequality in the case of i.i.d. data to m-dependent variables. Since

Hoeffding's inequality is known to give one of the tightest available bounds on sum-

mation of random variables, one can expect the presented bounds to be reasonably

close to the best achievable bounds with the available inequalities. However, nu-

merical examples (such as the ones given in this chapter) reveal that the bounds

are indeed conservative.

3. The empirical risk minimization algorithm not only provides a fiamework for com-

paring the sample complexity of different function approximation procedures, but

also gives an insight to the behavior of "more practical" types of algorithms. As

mentioned before, al1 the results presented above are for a standard form of the

empirical risk minimization algo rit hm, where the availability of a minimal ~/Zcover

is pre-assumed. However, the results obtained for the empirical risk minimization

algorithm can be useful to describe the properties of other learning algorithms which

do not require an ~/2-cover. Such algorithms perform empirical minimization over

the entire family of 3 rather than the h i t e set of minimal ~/2-cover. This can be

interpreted as performing the standard empirical risk minimization where E + 0.

Notice that al1 the results given above tell us that when E + 0, N (E / ~ , 3, d p) + oo,
and that such an algorithm will require an infinite number of training examples.

However, the relative rates at which the required sample sizes grow for different

models are more important than the exact value of the bound for each model. As

an example, suppose that the sample cornplexity of the neural model A, with a

CHAPTER 2. A LEARlVZlVG E'RA-MEWORK FOR Fm L1IODELING 50

certain number of neurons and a certain size of parameters, grows faster than a

model B mith some other structure and parameter space. Then, it can be expected

that the neural model B requires less effort and fewer training data not only for the

empïrical risk minimization algorithm but also for many algorithms that perform

global optimization. This idea is further described in the next chapter.

4- Tt is well-known that the models with larger complexity cal1 for greater sample

complexities. The idea behind this belief cornes kom the fact that the cornputation

time (and as a result the computational complexity) of an algorithm increases as the

training algorithm processes more training data. Therefore, the sample complexity

can be considered as an indication of the overal computational complexity of the

model used for approximation. Considering the sample complexity as an indication

of rnodel complexity is the fundamental idea of the structural risk minimization

method (as described in the nevt chapter).

5 . The bounds given for al1 models indicate that the sample complexity depends not

only on the number of neurons and the dimension of the input, but also on the size

of the parameter space. This means that even without adding new neurons to the

model, and only by increasing the size of the parameter space, one can achieve a

more complex neural model. This is the main point a group of researchers including

Bartlett [41] has been making since the early 1990's. They believe that the common

trend of adding new neurons to enhance the cornputational capabilities of neural

networks without paying attention to the size of the parameter space may not be

the best approach in neural modeling. They recommend that the computational

performance of a neural network can be enhanced more systematically (from the

point of view of learning theory) by keeping the number of the neurons the same

and allowing the parameter space to grow larger. This will be further discussed in

the next chapter.

6. The above Examples give a frameworks to assess learning properties for the identifi-

CHAPTER 2. -4 L E m h T G FRi1MEWORK FOR FIR iMODELING 51

cation of a dynamic system using NFIR models. It is known that in some practical

applications, ABX dynamic systems can be effectively approximated with NFIR

models [16]. However, some properties of ARX systems (including stability) can

not be appropriately addressed with the NFIR approximators.

7. In the bounds given by Theorems (2.4.1.1) and (2.4.2.1) for the sample complexity

of FU3FNYs the effect of centers of the basis functions on the overall sample complex-

ity cannot be observed explicitly. The results give the same bound for the sample

complexity of two RBFN's that use the same parameters but have different centres.

This can be regarded as one of the reasons for our bounds being very conservative.

A more careful investigation of the Lipschitz constants of such families mith more

assumptions on the input space as well as the centers might result in a set of bounds

in which the centers play an explicit role. In order to obtain results that incorporate

the centers into the bounds, assumptions on the way the centers are distributed over

the input space would be made. By assuming a grid-type arrangement of the cen-

ters, the above bounds c m be further improved. However, such assumptions would

make the results less general as the resulting bounds would be applicable only if the

same grid arrangement is used to form the centers.

8. The bounds for sample complexity of SNN7s and RBFN7s suggest RBFN7s require

more training data than SNN7s. This is in contradiction with the results [46] that

prefer GSLN's over SNN's. The main reason for this contradiction is that the

bounds used in [46] for cornparison do not consider the size of the parameter space

and are usually based on highly conservative assumptions. Most of the bounds used

in [46] are the ones introduced for binary neural networks in which the values of the

weights are disregarded. They also do not consider the fact the RBFN's normally

(but not always) require more neurons (10 to 4 times) than SNN's to perform the

sarne task of identification or classification with a similar level of accuracy. The two

structures are compared only when the number of hidden neurons for both networks

is assurned to be the same. As s h o m in this chapter, even with the same number

CHMTER 2, -4 L E m U V G FR4hfEWORK FOR FLR MODELNG 52

of hidden neurons, based on our bounds, SNN's require fewer training data points.

This observation is more compatible with the fact that RBFN's are more "local"

than SNN7s, and aS a result, they might need more data points to reliably cover the

entire input space.

The use of bounds rather than actual values of sample complexity may not be a

reliable approach for such a comparison. Note also that the types of approximations

used in obtaining the above bounds have been slightly different from one neural

structure to another. However, the comparison uses the best available results. This

in turn indicates that if less conservative bounds are obtained, then the results of

the comparison made in this thesis become more reliable-

9. From Table 2.1, it can be seen that atan SNN's and bipolar exponential SNN's have

close rates of growth in term of m. Also, these two structures are far superior to the

RBFN7s, as far as sample complexity is concerned. Moreover, even with m = 20, the

sample complexïties of these two structures are within the typical range of databases

of many real applications such as biomedical and marketing systems.

In order to sort the most popular forms of neural networks based on their learning

properties, the diagram of Figure (2.1) can be used. This diagram shows that

among the four structures compared in the diagram, bipolar exponential SNN's and

Gaussian EU3FN7s are the most and the least preferred types of neural networks.

Also, comparing RMQ and Gaussian RBFN7s, based on the bounds of Table 2.1 as

well as the theoretical bounds given above, it can be observed that RMQ-RBFN7s

exhibit a more desirable learning behaviour. This result is likely to be reliable since

the process of obtaining the bounds is almost the same for both structures. The .

only spot where the two bounds become different is a t the final stage when the 71i7s

are to be bounded, and even at that point, the way the two values are bounded is

reasonably optimal for both structures.

The superiority of RMQ-RBFN's over the Gaussian RBFN's, and the fact they ex-

hibit a better performance as far as the overfitting problem is concerned is reported

in many practical applications, including [38]. Again, this superiority can be at-

tnbuted to the fact that RMQ-RBFN's (for the same range of parameters bi7s) are

CHAPTER 2. A LEARNING FMMEWORK FOR FIR MODELING

L B ipolar exponential SNN' s

Atan S m ' s

RMQ RBFN' s

Gaussian RBFN's

Figure 2.1: Sorting neural models based o n their sample complexity

less local than the Gaussian ones. If two nettvorks are trained with the same set of

scattered data points, and tested against a set of data points that fall in between

the scattered training points (and not particularly close to any of them), then the

less local structures (Le. RMQ-RBFN's) create a better approximation.

The above discussion encourages the use of RNQ-RBFN's. Since RMQ-RBFN7s

have become the most popular RBFN's used in practical applications (see [38] for

example), in the next section this family is chosen among the different families of

RBFN's and used for the simulations.

Considering the sample complexity bounds, a n d using Table 2.1 and the diagram

of Figure 2.1 the same type of comparison c a n be performed between atan and

bipolar exponential S N N k It is found that from the point of view of learning, the

bipolar exponential networks require slightly fewer training data points and might

be preferred. However, no practical evidence was found the in the literature to

support the above staternent. In order to comply with the trend of the practical

applications, in the ne-ut section, atan SNN's axe chosen to represent the different

families of SNN's.

10. As for the linear and Volterra approximators, since linear models are special cases of

Volterra networks, the cornparison is straightfosward. The nurnber of neurons in a

linear mode1 is limited to the dimensionality of taie input, while in Volterra networks

CEMPTER 2. A LEARNILVG FRA&fEWORK FOR FLR MODELING 54

it also depends on the order of approximation. Thus, in a Volterra network, the

higher the order of the input variables to be considered in the approximation process,

the more neurons are added to the hidden layer. The computational capabilities as

well as the need for more training data then increase accordingly.

The bounds on the Volterra networks become more conservative as the order of

the approximation is increased. This is due to the fact that for higher orders, the

approximation of higher moments of the input wïth the corresponding orders of M

becomes more conservative. This is not the case in other forms of neural networks.

However, since in many real applications of VoIterra networks, the second order

appro'uimation is used, the reported resdts might be more useful.

Since the focus of the rest of the research is on SNN7s and FU3FN7s, no simulations

are performed with Volterra or linear models. However, in the next section and

during our description of the minimum complexity modeling, the characteristics of

modeling with both VoIterra or linear models are covered.

11. The value of these results goes beyond their theoretical significance. The size of the

data set that results in PAC learning is a guide to practically useful results, and can

therefore be used to guide a user towards the approximate mode1 and complexity.

Furthermore, the functional dependence of the bounds upon model structure c m

be used in designing cost fimctions that optimize both model accuracy and mode1

compleAxïty during identification. This issue will be further addressed in the next

chapter,

2.11 Summary

The main issues addressed in this chapter are as follows.

Using Hoeffding's inequality for i.i.d. data, a new equality that bounds the summa-

tion of a sequence of m-dependent r.v.s was derived.

The definition of PAC learning paradigm and al1 its elements was extended to learn-

ing with m-dependent data.

CHAPTER 2. A LEARnrl'VG FRALMEWORK FOR FIR MODELRVG 55

a Assuming that the data are identically distributed according to the uniforrn dis-

tribution, the learning properties (including the sample cornplexlty) of a general

rnodeling task were presented.

a In the case of modeling with general families of RBFN's, sigmoid neural networks

(SNN's) and Volterra networks, the sample complexity was evaluated in terms of

the number of neurons as well as the size of the corresponding parameter space.

a The learning properties of some specific m e s of FU3FN's and sigmoid neural net-

works were further specified, analyzed and compared with each other.

a The obtained results on learning of different families of neural networks were applied

to assess typical examples of nonlinear system identification with neural networks.

The functional dependence of the bounds on sample complexity upon mode1 struc-

ture can be used to design learning-based cost functions to be minimized during the

training phase.

The model-free PAC learning mith m-dependent data wa. defined. The general

properties of such a scheme were evaluated and related to those of the standard

P-4C learning framework.

Chapter 3

Learning and Practical FIR Modeling

3.1 Introduction

The modeling approaches described in the previous chapter suffer from the following

short comings.

1. None of the learning schemes searches for a model of the unknown function taking

cornplexity into account as well as accuracy. In practice the algorithm should find

an accurate model and at the same time avoid creating over-complex models.

2. Both conventional and model-hee learning schemes require huge training data sets

to assume learning, while in many applications the size of training set is srnall and

fixed. Even if the leaming inequalities ask for more data points, obtaining new data

may not be possible.

Thus, a modeling task based on the previous approaches works best when some infor-

mation about the complexity of the unknown function along with large training data sets

are available. When such conditions can not be satisfied, a more sophisticated method

has to be applied so as to provide the optimal set of parameters, as well as the minimal

structural complexity given the size of the available data set [27], [28], [29].

One such method, introduced by Vapnik in [51], is knom as "structural risk rninimiza-

tion." This dgorithm, adapted and tuned towards our formulation of neural modeling,

is given in Section 1. Practical algorithms that create a degree of balance between the

theoretical justification and practical limitations of a typical modeling task are then given.

The chapter is organized as follows: Section 3.2 describes different versions of the

structural risk minirnization algorithm. In Section 3.3, complexity measures for difFerent

CHAPTER 3. LE-4RiVmG -4ND PRACTEAL FLR LMODELING 57

families of RBFN's, sigmoid and Volterra neural models are found and the corresponding

cost functions to be minimized during the training procedure are devised. The issue

of the number of hidden neurons in dïfFerent neural models is discussed in Section 3.4.

In Section 3.5, based on the idea of Evolutionary Programming (EP), algorithms are

introduced that can be applied to rninimize the non-smooth cost function obtauied in

Section 3.3. The proposed EP method, along with two systematic evolutionary methods

for neural modeling, are presented. Section 3.6 describes the results of a nurnber of

numerical simulations that test the performance of the proposed algorithms. The results

of the chapter are discussed in Section 3.7. Finally, Section 3.8 gives the summary of the

chapter.

3.2 Structural Risk Minimization AIgorithrn

The proposed neural rnodeling algorithms are extensions of the structural risk minimiza-

tion algorithm [51], which is now described. Two versions of the structural risk mini-

mization algorithm designed for neural modeling are given. In the following formulations,

attention is focused on RBFWs and SNN's. Using the results of the previous chapter,

similar algorithms can be devised easily for other neural networks. In the following for-

mulations, the focus is given to RBFN7s while al1 the fomulations can be extended to

SNN7s.

In the first formulation, assume that for al1 functions in E lail& 5 M < oo where

i = 1,. . . ,1 and M is a fixed radius of an assumed hyper-sphere of parameters la i l f i .

Now, notice that: Arbf,(l) = ZM is an upper bound for xi=, lail Jb;. The assumption on

the magnitude of the parameters makes the available learning bounds more conservative,

but is necessary for the nested families of neural networks required by the structural risk

minimization algorit hm. The first version of the structural risk minimization algorithm

can be described as follows.

Definition 3.2.1 Assuming the pre-specified values of the accuracy E , the confidence

(1 - 6) , M and the size of the auadable set of training data la, "The Structural Risk

Minirnization with Variable Structure Algorithm " is descrïbed as the following steps:

CHAPTER 3. LE-4R.ïVING AND PRACTEAL FIR MODELING 58

Step I r Consider a nested sequence of function sets Fl C FL+l, where FL is a family

of RBFN's with 1 neurons, where IL,, 5 2 5 n. Notice that ATbIn (2) i s a fized value for

the function set 31.

Step 2: Find the largest natural number 1 such that the corresponding inequality of

sarnple cornplexity i s satisfied and narne it as "kn,

Step 3: Perform the empincal risk minimization algorithm over the function set Fk.

The resulting function (for the particular family of RBFN's used in modeling) is the output

of the algorithm.

As can be seen, the structural risk rninimization Ends the simplest function set (within

a certain nested family of function sets) t hat provides learning wit h the pre-specified values

of accuracy and confidence, using a training data set with a fixed size. In other words,

this method searches for the simplest possible candidate in UÏ,, FL to approximate the

unknown function, considering the size of the available training data set.

In order to define the second formulation, notice that a nested family of neural net-

works can be generated assuming a k e d number of neurons but grading the size of the

parameter space. The nested family of functions with FP c FP+1 is thus formed assuming

a fixed number of neurons Z but a nested parameter space. In order to formulate this

idea, and develop an alternative to the previous algorïthm, fist consider a sequence of

real numbers hfP7 p = 1,2, . . . , such that O < A.i, 5 n/lp+l. Next, for each integer p,

define a set of functions in FP for which: lail Jb; 5 Mp. Then, with Rbf , (p) = l M p where

O < Adp < a nested family of functions FP c FP+1 is formed. The second version

of the structural risk minimization algorithm is:

Definition 3.2.2 With all assurnptions as in Definition 3.2.1, and assuming a sequence

of non-decreasing values of Ml, &f2, . . . , M,,, , "The Structural Risk Minimization with

Variable Parameter Sixe Algorithrn" is described by the following steps:

Step 1: Consider a nested sequence of function sets Fp c 3p+1 where FP is a family of

RBFN's with 1 neurons and parameter size of Mp as described above. Notice that ATbfn@)

is a fked value for the function set 3,.

Step 2: Let "k;" Ee the largest integer p such that the corresponding inequality for

sample complexity is satisfied,

Step 3: Perform the empirical risk minimizution algorithm over the function set Fk.

The resulting fitnction is the output of the algorithm.

Although the second method of generating the nested family gives no clear intuitive

insight to the structural format of the nekvork, it can be seen that if the algorithm

assumes an 1 that is "large enough" , the need to manipulate the network's structure is

eliminated. Similar algorithms can be d e h e d for sigmoid neural networks defining Mp

as: 1 ai 1 1 bij 1 5 n/fP for al1 i and j. The discussion considers RBFN's, alt hough similar

arguments can be made regarding the algorithms with sigmoid neural models.

The following comments describe major disadvantages of the above algorithms.

1. It can be seen that both algorithms search for a neural mode1 of the unknown

function with some degree of minimal complexity. However, because of the use

of conservative bounds the need for large training data sets remains as the main

disadvantage of both algorithms. Consider a hypothetical modeling procedure where

only a few hundred training data points are available. The first method tries to

find an upper bound for Z such that some levels of accuracy and confidence (e-g.

E = 6 = 0.03) are guaranteed. Using the learnuig inequalities of the previous chapter

for 1, the typical upper bound obtained for the above-mentioned typical values is

well below 1 = 1. In other words, it will be found that according to our bounds

there is no mode1 structure for which PAC learning can be assured.

2. In order to use either of the algorithms, some assumptions have to be made regarding

either the number of hidden neurons or the size of the parameter space. For example,

in the second algorithm, it might be difficult to guess wisat values of 1 are large

enough for the problem at hand. Mso, the size of the step under which Mp has to

be increased is an issue that requires further attention.

3. Both algorithms bound A,bf, = lail fi using some assumption either on the

structure or on the size of the parameter space. For example, the structural risk

minimization with variable structure algorithm assumes a fked size of the parameter

space, and uses the number of neurons to bound Arbfn for each function set in the

nested family of function sets. However, there is no guarantees in either approaches

that such assumptions result in tight bounds on Arbfn-

The leaming results of the previous chapter thus may not be directly used for applica-

tions with a small number of training data points. These formulations, although carefidly

designed and theoretically correct, are successful only if the size of the training data set is

large, since they depend on conservative bounds. Roughly speaking in all modeling tasks

where the size of the training data is larger than a few thousand, the results of the learning

results can be applied even though these results might be conservative estimates. Avail-

ability of large data sets is the main characteristic of an emerging field of research called

"data mining" . In a typical data mining procedure, the knomledge contained in a large

database is to be ex-tracted using a certain type of algorithm. Two of the most important

data mining applications are marketing analysis and image processing, where the quan-

titative evaluation of the accuracy and confidence of the models is most important. For

applications such as medicai image processing and hancial analysis, where huge training

data sets (typically with more than a few hundred thousands or a few million data points)

are available, the above algorithm can be directly applied to create accurate and reliable

models of data. However, there exist many applications in science and engineering where

the size of the available training set never exceeds a few hundred points.

Another issue that discourages the use of the empirical risk rninimization is the di6-

cul@ of creating an e/2-cover of a function set. There exist specific procedures of forming

function cover sets that are practically very tirne-consuming (see for example the pro-

cedure given in Chapter 5, for a distribution-fkee version of forming such cover sets).

Although an E-cover of a function set is not easy to form practically, the cardinality of a

minimal cover, however, is known to be a highly informative indication of the cornplexity

of a function family.

To obtain insight into the performance of neural models of practical systems, the

theoretical structure of the statistical learning theory is used as a guide to practical

modeling methods. The more practical methods lack the exact theoretical guarantees

provided by the learning theory.

In the next sections, neural modeling algorithms are proposed that use the results of the

statistical learning theory to provide some degree of coddence over the similarity of the

testing and training performances of the algorithms. In order to do so, a complexity term

is introduced for each neural structure and this term becomes part of a cost function to

b e minimized during the training.

Overfitting and poor testing performance are caused by the use of over-complex mod-

els. In order to maintain a testing-training balance, the complexity of the model must be

limited. The results of the statistical learning theory are used to present new measures

of complexity that target the overfitting issue directly and provide an acceptable level of

the testing-training balance.

As mentioned before, given a fixed size of training data set, n, and a certain family of

networks, the deviation of the testing performance from the training performance is set

by E and 6. In order to avoid overfitting in an ideal case, both these parameters must be

as small as possible, at the same time. However, korn the learning results of the previous

chapter, it can be seen that with a fixed number of training data points, reducing the

value of the one of these two parameters would increase the bound on the other one. This

means that with a fixed model and fked number of training data, if higher accuracy is

desired, one has to compromise the level of statistical confidence and vice versa. This

issue parallels the bias-variance problem reported in the fields such as identification and

modeling and asserts that often, both accuracy and confidence may not be minimized

at the same time. To create a systematic modeling algorithm, the main objectives of

a typical modeling task must be used with the learning properties to create a balance

between these two parameters. In order to do this, one of the two parameters is fixed

and the complexity measure is based on the other one. Notice that for a h e d level of

disparity between the empirical error and the true error, S gives the amount of uncertainty

over the model. Therefore, it seems that for a typical modeling application, S would be a

good choice for a complexity measure to be minimized throughout the training process.

Defining the cornplexity measure based on 6 d l result in complexity measures that are

closely related to the level of smoothnesç (Lipschitz constant), the size of the training

set as well as the dimension of the input- This is not surprising, because modeling with

functions that possess higher Lipschitz constants and larger dimensionality is known to

be more cornplex and to require more data points.

Assuming that E is constant, if 6 (or a non-decreasing function of this parameter) is

minimized during the training procedure, a model will be found for which the likelihood of

having the Merence between testing and training performances limited by E is maximized.

-4t this point, consider a set of Gausssian RBFN's. Similar procedures that give similar

results for other neural structures are described later. Now, consider Inequality (2.34):

where:

Assume that: a = O, 0 = 1. As mentioned in Chapter 2, the choices of a! and P are

arbitrary and there is nothing special in the above choices. Also, note that the values of

m, n, and 6 are fixed dunng the training procedure. If the value of E is given, the value

of 6 (or ln(6)) is an indication of uncertainty of the model, i.e. minimizing h (6) leads to

models that are more reliable and perform more similarly on training and testing data

sets. Therefore, define the cornplexity terrn Cg.,,,-, as ln@), or:

This cornplexity measure gives an indication of the testing-training balance and shows

how unreliable the training of such a network is. It is important to notice that the above

measure combines the parameter-space complexity with the complexity due to the number

of neurons (structural complexity), without making any assumptions on the structure or

parameters. This means that any algorit hm that minimizes (3.2) addresses the parameter

space complexity and the structural cornplexi@ at the same tirne. It can be observed

that the complexity term introduced in (3.2) takes into consideration the size of available

training data set n, the total dimension of input d, as well as the Lipschitz constant as

an indication of srnoothness of the function set.

Now, suppose that during the training algorithm the number of neurons 1 is fixed.

Then the objective of the optimization algorithm is to include both the above complexity

term and the empirical error in a cost fiinction, i-e. :

In the above cost function, X is a weighting factor that determines the relative impor-

tance of the empirical error and the complexity term in the overall cost function. Lower

values of X result in models that create small training errors but exhibit poor perfor-

mance over the testing data. The higher values of X create a desirable testing-training

balance with both testing and training errors undesirably increased (due to resulting large

empirical errors). -4 practical approach in choosing the value of X is described later in

this chapter. The function l(. , .) is chosen to be a loss function that satisfies a uniform

Lipschitz condition as defined in (2.61).

The function introduced as J,,,-, is not a practical objective function since it

includes a term Arbfn that nests the parameter space. In other words, for a chosen value

of ATbf,, the space in mhich the parameters are allowed to Vary is restricted. Then a higher

value of Arb fn defines a new parameter space which includes the previous space. In practice

it is very difficult to create such a nested sequence of function sets based on a term such as

CHAPTER 3. LEA1ZNING -4Nû PR4CTICm FLR MODELING 64

Arb fn and then search for the simplest h c t i o n set with satisfactory performance. -41~0,

performing minimization of the error for a fixed value of Abfn requires a solid method

of constrained optimization to make sure that the resulting set of optimal parameters is

indeed within the space specified by the prespecined value of Arbfn- These limitations

make the entire process of optimization within each of the function sets impractical.

In order to obtain a sub-optimal solution, compromise is necessary. An optimization

algorithm that is capable of minimizing non-smooth functions over the entire parameter

space allows the use of a more practical complexiv term which is formed by replacing

&b fn with xf lail Jb;. During the consecutive iterations, the optimization algorithm now

moves in favor of functions that fall within a smaller parameter space and as a result are

less complex. This leads to the following more practical complexity tenn:

and the corresponding cost function:

In the new cost functioils, the values of ~f lai 1 Jb; are kept as small as possible without

being concerned about the over-dl grading of the space through the h e d values of Arbfn.

Even with the relaxed definitions, since (3.5) is a non-differentiable function of the ai's

and perhaps of the bi%, gradient-based minimization methods cannot be used for the

optimization phase. Performing optimization over ai's and k's thus calls for an algorithm

that can minimize nonlinearly and non-smoothly parameterized rnodels. The issue of

minimizing such cost functions will be discussed later in this chapter.

Next, following the same type of approach, complexiw terms and cost functions are

defined for the neural structures discussed in the previous chapter. Just as for Gaussian

FU3FN7s, complexity terms are introduced that reflect the functional dependency of ln(6)

and contain information about the learning properties of the modeling task.

Starting with RMQ-RBFN's, use Inequality (2.37) and apply the logaxithm on both

sides to define the complexity term and the corresponding cost h c t i o n as follows:

and:

(3-7)

For an "atan" neural network, following a procedure similar to that of RBFN7s, define:

and:

CK4PTER 3. L E A ~ ~ G AND PR4CTICA.L FIR MODELLNG

In the case of bipolar exponential sigrnoid functions:

and:

Finally for a family of second order Volterra networks as descrïbed in the previous

chapter:

where B is as defined as:.

Based on this complexity term, define the folloming cost function:

As mentioned above, the cornplicated form of these cost functions calls for an o p

timization algorithm which can minimize non-differentiable nonlinear functions. Before

describing the minimization algorithrns, some issues regarding the number of hidden neu-

rons in different neural structures must be addressed.

3.4 Number of Neurons in Hidden Layer

As seen in the structural risk minimization algorithm, it is often necessary to define a

range of values for the number of hidden neurons: l m 1 K. The upper limit n

depends on the size of the training set and the dimension of the input, i.e. rr. = ~ (n , d) .

In practice, the number of parameters should be significantly srnaller that the number

of training samples. This is an idea also supported by the resdts of the learning theory.

However, the number of neurons done dues not determine the complexily of the network.

As shown in the previous chapter, the size of the parameter space dong with the number

of neurons dso influence the cornptexïty.

In practical neural rnodeling tasks, n(n, d) is often set as a multiple of the total number

of parameters in the nekvork. This explains why in general i1 is also a function of d. For

SNN's, since the number of parameters (which is the same as the number of weights) is

equal to: (d + 1)1, follows that:

where Q is an integer that is normally set to a nurnber between 2 and 10. The range 2

to 10 cornes from the general idea of having 2 to 10 times as many training points as the

parameters (see [IO] for example). Condition (3.14) suggests the following expression for

~ (n , d):

A similar argument for the number of parameters for RBFN's, can suggest an appro-

priate functional dependency for K. Notice that for a RBFN, the number of parameters

does not explicitly depend on the dimensionality of the input and is equal to: 21. This

suggests the following expression for K :

3.5 Evolutionary Neural Modeling

The cost functions introduced in the previous section are unsuitable for gradient-based

optimization methods. On the other hand, evolutionary dgorithms are of'ten designed

to optimize complicated non-differentiable cost functions. Like other types of optimiza-

tion algorithms, t here are many different versions of evolutionary optimization methods.

Evolutionary algorithms use 'hatural selection" , "reproduction", and "mutation" opera-

tions to search among the members of a pool of possible solutions. During the process

of natural selection, the members of a generation of species (Le. possible solutions) are

evaluated based on their level of L%tness7' to the environment (i.e. by a cost function),

and the best solutions are selected. Then these selected candidates are reproduced to

create a new pool of solutions called "offspring". Finally, the candidates in the new

pool of solutions are randomly mutated according to their level of fitness, i.e. the ones

with better fitness are mutated less. Notice that due to the process of mutation the new

solutions (offspring) are no longer the same as their parents, but somewhat similar to

them. The resulting pool of candidates is now treated as the new generation of solutions

and goes through the next evolution cycle. Some other evolutionary operations such as

"cross-over" are also used in a family of evolutionary algorithms (including the Genetic

Algorithm), that might help the process of evolution. The use of cross-over operation,

however, requires creating chromosome strings for each of the solutions, which makes the

entire process more computationally intensive. Also, there exist infinite methods to map

the information of the network to a chromosome, while little is known on how these meth-

ods inauence the optimization process. It is also claimed that the cross-over operation

distorts the topology of the neural networks, and as a result may not be an appropriate

operâtion when dealing with optirnization of neural networks. As a result, here the three

fundamental operations of natural selection, reproduction, and mutation that form the

basis of Evolutionary Prograrnming (EP). Perfonning optimization tasks using EP often

calls for enormous computation time. This is considered as the main disadvantage of

EP-based algorithms.

EP algorithms can be easily designed for a particular problem so that better solutions

of the problem are selected and reproduced throughout the process. A careful design of

the algorithm can result in a faster approach to a sub-optimal solution. Here, the EP

method is adapted to the training of a feedforward neural network as described below.

First an EP method for the fixed-structure neural networks is introduced- This EP

method first creates an initial generation of the networks, all with a fixed number of neu-

rons. The cost function for each of the networks is then evduated. Networks with the

lowest cost function are then selected and the rest of the models are discarded. Then,

taking into account the cost function, the parameters of the selected networks are mu-

tated. By adding a vector of normally-distributed random numbers with the variace

proportional to the cost of the network, the selected networks are mutated. The muta-

tion process d l be further specified later in this chapter. Then the cycle is repeated by

selecting the networks wïth the lowest cost function in the new generation.

A second algorithm is used for variable-structure neural networks. At each stage of this

algorithrn, the EP method with the fked-structure (as described above) is first performed

for the networks with a certain number of neurons. After iterating for a number of

generations, if the cost function is not decreasing fast enough as the new generations are

produced, the method increases the number of neurons in the hidden layer and searches for

the desirable network within the new structure, again using the fixed-structure algorithm.

When even adding new neurons does not make the cost function decrease fast enough,

the algorithm stops the search. Since increasing the number of neurons creates a nested

family of functions, this method systematically searches for the simplest function of the

nested family of the neural nettvorks that can provide us with the desired level of the

defined cost function.

The cost functions evaluated in the above algorithms are the ones defined in this

chapter, based on the learning properties of each neural structure. The condition that

determines the termination of the search is expressed in terms of the dope of the curve

of the cost function versus the generation riumber.

The proposed ked-structure algorithm can be described in more details as the fol-

lowing stepwise procedure:

De finition 3.5.1 Suppose n input-output training data are given. Consider a f a m d y of

C W T E R 3. LEA.RiVZVG AND PUCTICAL FIR MODELIWG 71

neural networks with 1 neurons- Given a certain value of A, the objective i s to find the

simplest neural mode1 of the family thaf minzmzzes the cost function J. Also, assume that

the s u e of each generation is N, and that the integer Np is selected such that -NS = NIN,

too is an integer. In each selection procedure, select the best N, members of the networks

of the generation. Set the values w, and wb as the mutation rates (annealing rates) of

parameters ai's and bi 's, respectively. Define the dope of the curue "cost finction us.

generation number" as:

Slope = J(1,GenStep) - J(f ,Gens@- BackStep)
BackStep

where: J(1, GenStep) is the cost function of the network of generation GenStep with

minimal cost finction and BackStep is the number of back steps, based on which the

dope of the cost function curve is calculated.

Also assume the minimum acceptable dope of the cost fùnction before the training is

stopped is given as MinSlope. The "evolutionary fixed-structure neural modeling algo-

rithm" is performed as follows:

Step O: Create N networks (each hauéng 1 neurons) to fonn the initial generation. In

order to do so, randomly assign parameters (ai's and hi's) of the networks to standard

nomnally-distn'buted random numbers.

Step 1: Evaluate the cost function for the networks of the present generation, i-e. find

J for al1 networks of the pool. Also set: GenStep = 1

Step 2: Select the best Ns networks that generate the smallest cost functions, and

discard the rest.

Step 3: In order to generate a new generation with N members, mutate each of N,

remaining networks in Np f o m s . More specijïcally:

where 1 5 r < p, variables Rand., and Randb, are normally distributed random vectors,

and Jold is the value of the cost function calculated for the old network.

C H - , T E R 3- LEARiV1B-G -4ND PRACTICAL FLR MODELING 72

Step 4: Find the network that giues the smallest J , and name its cost function as:

JbeSt. Assign J (l , GenStep) = Jbest If GenStep 5 BackStep, zncrernent GenStep b y one

and go to Step 2. Otherwise, calculate:

Slope = J(1,GenStep) - J(1,GenStep- BackStep)
BackStep

Step 5: If Slope < &finSlope, increment GenStep by one and go to step 2; othenuise,

Save the parameters of the best network of the pool, and introduce this network as the

output of the algorithm.

A simple flow chart of this algorithm is shown in Figure (3.1).

The slope of the cost function curve versus generation number determines when the

training is stopped, i.e. mhen producing new generations of solutions does not make the

cost function decrease fast enough the a l g o r i t h stops. Also, notice that the meights of

each network are mutated according to the fitness (Le. the cost function) of the network.

Paramet er BackStep deterrnines how many generations are being used to evaluate the

slope of the cost function, while MinSlope gives the threshold value for the dope before

the training is stopped.

The variable-structure version, which includes the above algorit hm as its one special

case, is a combination of the two versions of the structural risk minimization algorithm

and can be describes as follows:

Definition 3.5.2 Suppose n input-output training data are giuen. A nested family of

neural networks is f o n e d of a family of neural networks with I l , 5 1 5 K . Given a

certain value of A, the objective is to find the simplest neural mode1 of the nested family

that minirnizes the cost function J. Also, assume that the size of each generation is N,

and that the integer Np is selected such that N, = NIN, too is an integer. In each

selection procedure, select the best N, membe~s of the networks of the generation. Set

the values w, and wb as the mutation rates (annealing rates) of parameters ai's and bi 's,

respectively. Also assume the minimum acceptable slope of the cost function before the

training is stopped is giuen as Mz'nSlope, and the number of back steps, based on which

1 Populate a randorn generation of size 4

Select best Ns networks

I

Mutate weights of networks based on the cost functions

Select the best network of generation

Figure 3.1 : Flow chart of fixed-structure evolutionary neural modeling

CHAPTER 3- LEE4RNING AND PRACTICAL FIR MODELING 74

the slope of the cost function curve is calculated, is set to BackStep. The "evolutionary

variable-structure neural modeling" is perfonned as follows.

Step O: Set 1 = Ilm. Also, set GenSlope to a negative nurnber with large absolute value,

and JWt(4,) to a very large number.

Step 1: If 1 > K - 1 or GenSlope 3 AdinSlope or J&(l) 2 Jm(l - 1) go to Step

6; otherwise 1 = 1 + 1. Create N networks (each having 1 neuron) to fonn the initial

generation. I n order to do so, i f 1 = km, randomly assign parameters (ai's and bi 's)

of the networks to arbitrary nurnbers. Otherwise use parameters of the last generation

of networks with 1 - 1 neurons and add a new neuron with small randomly generated

parameters to each of N networks. Evaluate the cost function for the networks of the

present generation, i.e. find J for al1 networks of the pool.

Step 2: Select the best Ns networks that generate the smallest cost functions, and

discard the rest.

Step 3: I n order to generate a new generation with N members, mutate each of N,

remaining networks il^ Np f o m s . More speczfically:

where 1 5 T 5 p, variables Rand., and Randb , are standard normally distributed random

vectors, and Jold iS the value of the cost function calculated for the old network.

Step 4: Find the network that gives the smallest J , and name a s Jbest- Assign

J(1, GenStep) = Jbesl If GenStep < BackStep go to Step 2. Othenuise, calculate:

Slope = J(1,GenStep) - J(1,GenStep-BackStep)
BackStep

Step 5: If Slope < MinSlope go to step 2; othenuise, saue the parameters of the best
J(1,GenStep -J 1 , l network of the pool, set GenSlope = GenStei-, ') , Jopt(l) = J(1, GenStep), and go to

step 1.

Step 6: Among the best networks with 1 and 1 - 1 neurons, find the one with the srnaller

cost function, and iintroduce this network as the output of the algorithm.

CHAPTER 3- L.EAmWG AND PRACTEAL FIR MODELING 75

As can be seen, in the evolutionary variable-structure neural modehg algorithm the

number of hidden neurons is determined by the algorithm and throughout the training

phase. The assumption of I l , = K reduces the second algorithm to the first one, and as

a result, the first algorithm is a special case of the second one. The evolutionary h e d -

structure neural modeling algorithm nill be used in simulations to show the practical

importance of the cost functions in avoiding the overfitting problem,

The above algonthms are presented in a general format, and when they are to be

applied to a particular family of neural networks, some items must be fuaher specified.

Here is a list of suggestions about the use of the algorithm to train SNN's and RBFN's:

1. For SNN7s, al1 random numbers can be generated according to a zero-mean normal

distribution with variance of 1.

2. For RBFN's, the same form of random generator can be used. However, in order to

avoid negative values of bi, a mechanism should be included in the algorithm that

assigns bi to a small positive real number if the random generator tries to set bi to

a negative value.

3. In learning of variable-structure RBFN's, in order to make sure that families of

neural networks are actually nested, the set of centers {ci, i = 1, . . . , 1) for a network

of 2 neurons should be included in the set of centers for any network with 1 + 1
neurons, for al1 Z.

Some of the advantages of the above algorithms are as follows.

1. The cost function to be minimized reflects the learning complexity of the mode1 and

can create a balance between the testing and training performances of the resulting

network.

2. Algorithrns using gradient-based optirnization methods can get stuck in a local mini-

mum, while the EP method used here is less susceptible to the local minima problem.

3. The variable-structure algorithm performs optimization on both parameters and

structure of the network at the same time and t&s to avoid overfitting.

The disadvantages of the algorithm can be listed as follows.

1. From the design of the algorithms, it can be seen that the form of the model is used

only in evaluatim of the cost function and plays no role in the way the parameters

are updated- This is in contrast to methods such as gradient-based algorithms where

the exact form of the model is explicitly used in updating the weights of the model.

This lack of attention to the exact model form rnakes EP algorithms applicable to

wider families of optimization tasks, while it makes each particular optimization

process less efficient and more time-consuming.

2. Different choices of variables A, MinSlope, w,, urb and BackStep may result in

different models. The designer must use a series of mns of dgorithms with diEerent

settings to find the suitable set of the above variables.

3. In both algorithms, the extensive use of random numbers throughout the learning

process causes the entire process of learning to be a stochastic procedure. The end

result of the training task may be different if different sets of random numbers are

used.

4. The evolutionary variable-structure neural modeling implicitly assumes the convex-

ity of the curve of cost function versus generation number. This is because as soon

as Jqt(l) > J&(l- l), the algorithm stops and introduces the network with Z - 1

neurons as the outpiit function. Considering the stochastic nature of the algorithm,

it can be imagined that in some cases, if the algorithm is dowed to continue the

search, a network with 2 + 1 or even more neurons can be found for which the cost

function is smaller than that of the network with 1 - 1 neurons.

5 . Just like any other EP-based algorithm, the introduced neural modeling algorithms

are computationally- intensive and require a significant amount of computation time

to obtain a sub-optimal solution.

The first disadvantage, on the other hand, allows the designer to have more control

over the performance of the algorithm. The second disadvantage is characteristic of any

randorn search and is the price paid to obtain some level of flexibility in dealing with local

CHAPTER 3. LEARWNG AND PRACTEAL FIR MODELING 77

minima. The only solution for the third disadvantage might be allowing the algorithm

to continue the search for all I l , < Z 5 IE, m d find the best solution after the search

for al1 1 is done. This solution, although theoretically appealing, may not be desirable in

many practical applications, as for larger values of 1 the search process becomes extremely

tirne-consurning-

3.6 Simulation Resdts

In this section, simulation results using the proposed algorïthms in Fm modehg of a

simulated system are presented. In a l l simulations, the Ioss function is defined as:

In crder to generate the data, first generate a set of independently and uniformly dis-

tributed r.v.s {i)", where O f Ci < 1 for al1 i. Then form a sequence of uniformly

distributed m-dependent r.v.s XI, 22,. . . , ~ 4 0 0 , where: xi = (C , Ci+l), i = 1,. . . ,400, and

m = 2. The system to be modeled is generated by a nonlinear function as follows:

The 3-dimensional graph of this function for al1 values in [O 112 is shown in Figure 3.2.

From the random samples described above, the first 100 samples are used for training of

the network and the remaining points for testing. The neural structure which is used for

modeling is a family of atan-SNN7s with 3 neurons.

Assuming X = 0, the evolutionary fùred-structure neural modehg algorithm is applied

with 1 = 3 neurons to observe the resulting neural mode1 when the cost function is based

only on the empirical error. Later in the second simulation, the results of this simulation

are compared with a case where X is non-zero. The parameters of the algorithm are set

CN,4PTER 3. LE-4RNING ,41W PR4CTEAL FLR MODELITVG

Figure 3.2: Three dimensional graph of function f

Figure 3.3: (a) Cost function (left) , and (b) Complexity term (right) for Simulation 1

as folloms: MinSlope = -1 x 10-8, BackStep = 1 0 0 0 , ~ ~ = wb = 0.01, X = 0, K =

100, N = 50.

With this choice of settings, the training curve of Figure (3.3) portrays the evolution

of the best network of each generation. Figure (3.3.a) depicts the cost function for the

best network of each generation versus the generation number. The cornplexity terrn

Cat, for the best network of each generation is shown in Figure (3.3.b), which indicates

that during the training and in order to find a better fit, the overalI size (magnitude) of

parameters has increased. The performance of the resulting network is shown in Figure

(3.4) with the actual (solid) and estimated (dashed) outputs for 50 points in the testing

Figure 3.4: Actual (solid) and estimated (dashed) outputs for testing data (Simulation 1)

set.

Considering the best network of the h a 1 generation as the output of the algorithm,

the training cost function (which is the purely averaged sum of absolute errors between

the actual and estimated outputs) is 0.079, while testing the network against the rest of

the data points (Le. the testing set) results in the empirical error of 0.097. Even though

0.079 may not be a desirable level of accuracy, the significant difference of the testing and

training errors seems to be a more important cause of concem. A testing error that is

significantly larger than the training error shows that the model is not a reliable one and

can mislead the user. In other words, the purpose of this simdation is not to find very

accurate models but to exhibit the effect of using a learning-based cost function on the

issue of test ing-t raining balance.

3.6.2 Simulation 2

In the second simulation, the same function, data, model, and algorithm as Simulation

1 are used, but X is set to 0.001 rather than zero. The complexity term Catan is now

included in the cost function. All the parameters of the algonthm (including al1 random

numbers used for mutation as well as initialization of weights) are exactly as used in the

previous simulation.

Figures (3.5.a) and (3.5.b) depict the cost function and complexiw term Cotan Cumes

Figure 3.5: (a) Cost function (left), and (b) Complexïty term (right) for Simulation 2

of the learning task, respectively. The training cost function of the resulting neural model

is 0.077 of which 0.070 cornes from the empirical error. This shows that the resulting

empirical error is very close to that of Simulation 1. By comparing the complexity curve

of Simulation 1 (Figure (3.3.b)) with that of Simulation 2 (Figure (3.5.b)), the significant

difference between the magnitude of Cata, in the two cases c m be seen. From Chapter

2 it is known that the smaller Catan leads to a model that performs more similarly on

testing and training data sets. Now, observe that the value of Cat, in Simulation 1 (Le.

70) is considerably larger than that of Simulation 2 (Le. 6). This suggests that the neural

model obtained in Simulation 2 might outperform that of Simulation 1 on the testing

data.

The neural rnodel of Simulation 2 is assessed using the same testing data set as for

Simulation 1. The testing cost function for the resulting neural model is 0.081, which

is close to the training cost. Although none of the errors may be small enough, the

proximity of testing and training errors indicates that the cost function with non-zero

X has helped the rnodel avoid overfitting. In order to assess the quality of modeling for

the network of Simulation 2, in Figure (3.6) the actual and estirnated outputs of this

model for the first 50 points of the testing set are depicted. Comparing Figures (3.4) and

(3.6), one can observe the superiority of the neural model of Simulation 2 over that of

Simulation 1, over the testing data set. This shows that the testing performance of the

CK4PTER 3. LEARNING AND PRACTICAL FIR MûDELING 81

-0.2 1 t I
O 5 1 0 1 5 20 25 30 35 40 45 50

Sarnple Number

Figure 3.6: Actual (solid) and estimated (dashed) outputs for testing data (Simulation 2)

model of Simulation 1 is significantly less than its training performance, while the testing

and training performances of the model obtained in Simulation 2 are very dose to each

other. This further supports the idea that the use of the learning-based cost functions

can avoid overfitting.

In the next simulation, the same function and set of training data (with 100 data points)

are used, but in this simulation, the evolutionary variable-structure neural modeling al-

gorithm has been used. The algorithm assumes Zi, = 2 and rc = 50. Similar to the

previous simulations, the remaining 300 points are used for testing evaluation, as before.

The weighting factor X is set to 0.001, and the rest of the parameters are the same as the

previous simulations. Figures (3 -7.a) and (3.7. b) show the cost function and complexity

curves of this algorïthm, respectively. The sharpest falls of the cost function occur when

neurons 4, 9, and 12 are added a t iterations 26280, 72990, and 82898, respectively.

The resulting network has 29 neurons in its hidden layer and its training cost function

is 0.038 . For the testing phase, the cost function value increases to 0.043 which is slightly

larger than the training cost error. Figure (3.8) shows the behaviour of the resulting

model against the first 50 points of the testing set. A brief glance at Figure (3.8) shows

that the resulting network outperforms the networks of Simulations 1 and 2 on the testing

Figure 3.7: (a) Cost function (left), and (b) Complexïty term (right) for Simulation 3

-0.2 1
O 5 1 0 1 5 20 25 30 35 40 45

Sample Number

Figure 3.8: Actual (solid) and estimated (dashed) outputs for testing data (Simulation 3)

data, as far as training and testing error are concerned.

In the next three simulations, RMQ-RBFN7s are used. A set of reasonable centers for

the basis functions is chosen as follows. Set the first centre as: cl = (0.5 0.5). For the

second center, choose q E [O 112 such that the distance between c? and cl is maximized.

This would give us one of the vertices of [O 112. For c3, search for a two dimensional point

in [O 112 whose distance horn the closest existing center is maximum. In this special case,

another vertex of [O 112. The rest of the centers are selected in the same recursive manner,

Le. find a point on [O 112 whose distance from the closest existing centers is maximum

and add it to the set of centers. This method of f o d n g the centers makes sure that the

C W T E R 3. LEARNING AND PRACTICAL FIR MODELLNG

Figure 3.9: (a) Cost function (left), and (b) Complexity term (right) for Simulation 4

centers are reasonably scattered over the two-dimensional cube [O 11'.

In this simulation, ail the settings are exactly the same as Simulation 1, except that

instead of using SNN, a family of RMQ-RBFN7s with 10 neurons is used. Also, set:

X = O, w, = wb = 0.01 and N = 50. Figures (3.9.a) and (3.9.b) show the cost function

and complexity curves of this leaning task.

Looking at Figure (3.9.b), notice that Cm, reaches a very large value throughout the

training phase. Next, the mode1 is tested against the same testing data set as in previous

simulations. The cost function for the training and testing sets of data are 0.0854 and

0.0962 respectively. Again, as can be seen, the clifference between the testing and training

errors for simulation with X = O is observable. Figure (3.10) shows how poorly the output

is estimated for the testing set of data.

In Simulation 5, al1 the settings are exactly the same as Simulation 4, except that X =

1 x Since the magnitude of the complexity term is large, the value of X is chosen

CECAPTER 3. LEARiVIiVG AND PRACTEAL FIR MODELLNG

-0.5 I
O 5 7 0 15 20 25 30 35 40 45 50

Sample Number

Figure 3.10: Actual (solid) and estimated (dashed) outputs for testing data (Simulation
4)

to be small so that "AC,,," remains comparable to the empirical error. A systernatic

practical method of choosing an appropriate value for X is explained later in this chapter.

Figures (3.11.a) and (3.11.b) show the cost function and complexity c w e s of this

learning task. The comparison of Figures (3.11.b) and (3.9.b) indicates that the com-

plexity term of the network of Simulation 5 is smaller than that of Simulation 4. This

suggests the theory that the difference between the testing and training cost functions

for the mode1 in Simulation 5 must be less than that of Simulation 4. The value of cost

function for the training and testing set of data are 0.0881 and 0.0930 respectively, which

verifies our theory. The testing performance of the resulting network for the first 50

samples is shown in Figure (3.12).

3.6.6 Simulation 6

In the next simulation, the same function set (RMQ-RBFN's) and set of training data

(with 100 data points) are used, but in this simulation the evolutionary variable-structure

neural modeling algorithm is applied. The algorithm assumes Zr,, = 5 and n = 150. Sim-

ilar to the previous simulations, the remaining examples axe used for testing evaluation.

From Simulation 5, one can guess that with X = 1 x 10-6, the smaller values of the

empirical errors may not be achieved. As a result, in this simulation, the weighting factor

is reduced to X = 1 x IO-?, while the rest of the pararneters are kept the same as the

CK4PTER 3. LEARNI1VG AND PR4CTICAL FLR MODELDVG

Figure 3.11: (a) Cost hnction (top),and (b) Complexity term (bottom) for Simulation 5

-

-

-

-

-

-

-

-

-0.3
1

O 5 1 0 15 20 25 30 35 40 45
Sample Number

Figure 3.12: Actual (solid) and estimated (dashed) outputs for testing data (Simulation
5)

CHAPTER 3. LEARïWNG AND PRACTEAL FIR MODELLNG

Figure 3.13: (a) Cost function (left), and (b) Complexïty term (right) for Simulation 3

previous simulation. Figures (3.13.a) and (3.13 .b) show the cost b c t i o n and complexïty

curves of t his algont hm, respect ively.

The resulting network has 18 neurons in its hidden layer and its training cost hinction

and empirical error are 0.0533 and 0.0428 , respectively. In the testing phase the values of

the cost function and empirical error go up to 0.0628 and 0.0523 respectively, which might

be still acceptable but slightly larger than the training ones. Clearly, obtaining srnall

empirical errors (through reducing A) has aifected the ciifference between the training and

testing errors.

Figure (3.14) shows the behaviour of the resulting mode1 against the first 50 points of

the testing set. The testing result indicate that the resulting network can be regarded as

both accurate and repeatable.

In this section, the simulations results are discussed.

1. Al1 the simulations indicate that the EP algorithm is capable of performing opti-

mization of non-smooth functions. Repeating any of the simulations with a difFerent

initialization as well as random numbers that are used throughout the optimization

CHAPTER 3- LEARNING A N D PRACTIC. FLR MODELRVG 87

I
O 5 1 O 3 5 20 25 30 35 40 45 50

Simple Nurnbor

Figure 3.14: Actual (solid) and estimated (dashed) outputs for testing data (Simulation
6)

procedure results in relatively similar solutions. This demonstrates the robustness

of the presented EP algorithm for the data originally generated.

2. In all simulations, the choices of N, BackStep, MinSlope, w,, wb and X di-

rectly affect the resulting neural network. From the logic of the algorithm, it seems

that larger values of N and BackStep together with smaller values of w,, wb and

MinSlope will result in more reliable solutions. However, this requires a longer

training process.

3. Parameters w, and wb influence the extent to which the weights of the networks are

mutated. In many EP-based algorithms such parameters are annealed throughout

the training process, i.e. the values of w, and wb are reduced as the new generations

are produced. This is the main idea of "Simulated Annealing" used in many EP-

based algorithms. In all simulations, constant w, and wb are used, but these values

can be chosen to follow sequences of non-increasing numbers. Using this annealing

process, the results of al1 simulations might be further improved. However, to

obtain a smooth annealing process, appropriate sequences of w, and wb must be

used. Normally, such appropriate sequences are found throughout a process of trial-

and-error .

4. Throughout the simulations with a certain family of neural networks, it was obsewed

that using cost functions with non-zero X gives solutions that perform more similarly

CHAPTER 3. LEAHVING AiW PR4CTTCAL FIR MODELlNG 88

over the training testing sets. Simulations with SNWs and RBFN's indicate that

where the complexity terms are kept small (through selecting a non-zero A), the

difference between the testing and training empirical error has been significantly

reduced. This supports the use of the defined complexï@ measures in the cost

functions and indicates that the learning-based complexity t e m s avoid ovefitting.

5. Considering the fact that the complexity terms used here are of order ln(6), and

by looking a t the values obtain for such complexity terms in our simulation, it

can be observed that the bounds obtained in the previous chapter are extremely

conservative. This suggests that the bounds may not be directly used unless the

size of the training data set is large.

6. As to the selection of X for a practical application of neural modeling with a fixed-

structure, the following procedure can be suggested. First perform the modeling

assuming X = O. Shen, use the set of parameters obtained from this procedure

as the initial weights for a new training process with small A. If the value of the

empirical error for the resulting network is still acceptable, use the parameters of

the resulting network to initialize a new training process with even larger A. Repeat

t his process unt il the resulting empirical error becomes unaccept ably large. This

iterative method can give us a reasonabfe value for A. As to how the value of X has to

be selected for a variable-structure neural modeling, one can start with the above-

mentioned method for a network with a medium size of hidden layer. Then the

appropriate X found for this network can be used throughout the variable-structure

neural modeling.

7. Similar simulations can be performed for other types of neural networks discussed

in the previous chapter to assess the performance of the proposed cost functions as

well as the evolutionary algorithms. Due to similarities between the neural networks

used for the above simulations and the remaining neural structures, one can expect

to obtain similar results from a set of similar simulations with the rest of the neural

structures.

8. Considering the magnitude of the complexity terms (and consequently values of

C W T E R 3- LEARNTNG ABD PRACTEAL FIR MODELLNG 89

6), it appears that either the results on SSN7s are less consenmtive t h a n those of

RBFN7s or the SNN7s are indeed easier to learn- As a result, in the n a d chapter,

SNN7s are used for a real modeling application.

9. In order to test the variability of the proposed cost functions and evolutionary

algorithms more thoroughly, al l the above simulations have to be repeated several

times for different training and testing sets as well as different sets o f algorithm

settings. This process, alt hough necessary for a solid statistical evaluation, takes a

tremendous amount of computation time and is avoided here.

3.8 Summary

The results of this chapter can be summarized as follows:

The consemative bounds presented here on the sample cornplexity of Nmnhear FIR

modeling procedures suggests that in many practical applications where the size of

the training data is small, the results of the learning theory may not be used directly.

New complexity measures of the neural models are introduced. They a r e based on

the learning complexity of the networks, and incorporate them into the test function

to be minirnized throughout the trakring process.

Two algorithms based on Evolutionary Programming are introduced and used to

perform the optimization process. One of the EP methods assumes a h e d structure

for the neural network, while the other one searches through different srtructures to

find an appropriate neural model.

The simulation results indicate the relatively successful performance off both algo-

rithms in a typical modeling procedure.

Chapter 4

Two Dimensional Sheet-Scanning System

4.1 Introduction

In sheet-forming processes, such as processes used in paper, steel and plastic sheet pro-

duction, monitoring the quality of the produced sheet is an important and chdenging

process. In the paper industry, as the sheet of paper is being produced, quantities such

as basis weight (weight per unit area), moisture content and caliper (thickness) of the

paper are measured using highly sophisticated and expensive sensors. Basis weight is

considered to be the most important characteristic of the paper, and bas a vital role in

assessing the overall performance of the paper machine. Because of the economic issues

and the complexities involved wit h the re-starting of the paper machine, the production

line is rarely shut down, even when the sensors are off-line. When a sensor M u r e occurs

or during the normal sensor calibration, paper is produced for which no valid measure-

ment is available. In this chapter, the neural models are used to extrapolate folmard the

measurements of paper basis weight before the sensor failure (or maintenance check-ups)

occurs to estimate this quantity for the paper produced while the sensors are not operat-

ing. It is necessary to realize that this chapter is not meant to claim that neural networks

are the best models for estimation of paper machine data. It seems that the methods

that consider the physical properties of the paper machine may be more successful in

modeling of the paper machine data. This is mainly because when neural networks are

used, al1 such knowledge is simply disregarded. Here, the main objective is to illustrate

that the careful use of neural networks can avoid overfitting of the data for a complicated

industrial system. Therefore, the use of neural network for such a system if the physical

characteristics of the machine is known may not be the best modeling approach.

This chapter is organized as follows. Section 4.2 briefly describes the main units of a

paper machine and the procedure of scanning the paper basis weight. In Section 4.3, the

CHAPTER 4- TWO Drn/IENSIONAL SHEET-SC-G SYSTEM

Figure 4.1: Schematic structure of a typical paper machine

results of applying the presented systematic neural modeling to mode1 the basis weight

are presented. Section 4.4 discusses the results of the chapter and is followed by the

siimmary.

4.2 Monitoring of Paper Quality in a Paper Machine

In this section, the main components of a paper machine are described, as is the scanning

mechanism of the basis weight sensors. Also some technical specifications are presented

regarding our task of predicting the next weight scans.

A typical paper machine, as shown in Figure (4.1), consists of diEerent units including

the headbox, the dryer section, the press section and the reel. The headbox contains a

nurnber of actuators that control the amount of fibre delivered on to a mesh conveyer

(also called the wire). The fibre mat is dned throughout the dryer section, and passes

the scanner where its ba i s weight, moisture content (per unit square), and caliper are

measured by the sensors.

A basis weight sensor is normally composed of a transmitter and a detector of P-
radiation that are mounted on the two sides of a closed rectangular fiame called "0-

fiame". For each measurement, the transmitter located above the belt sends a signal

with a known power. This signal is then attenuated according to the density and texture

of the paper. The power of the signal received by the detector (mounted underneath the

frame) depends on the weight as well as the moisture of the paper a t that particular point.

CHAPTER 4- TWO DIMENSIONAL SHEET-SCmNING SYSTEM

Machine Direction

Figure 4.2: Schematic structure of the scanning unit

As shown in Figure (4.2), in a typical scanning system, the transrnitter and receiver move

along a rail that is mounted on the fiame. As shom in Figure (4.2), as the paper moves

in the machine direction (MD), the sensor scans the paper in a zigzag pattern. In each

sweep of the paper, a number of measurements is taken by the sensors, which form one

row of a measurements matrix M. Hereafter, each scan of the sheet is referred to as a

row (in the measurement matrix) .

Now, consider two consecutive rows "i - 1" and "in in the measurement matrix M.

In the notation used in the following paragraphs, M(i, j) represents the basis weights of

measured at row "i" and measurement point "j" (along j th line in machine direction).

From the zigzag nature of the scan, one c m notice that the dependency between the values

M(i, j) and M(i + 1: j) depends on j. Consider the correlation between M(i - 1, j) and

M(i, j) : and compare that with the correlation between M(i- 1, j+200) and M(i, j+200),

as shown in Figure (4.2). The correlation between the first pair (M(i - 1, j) and M(i, j))

is expected to be greater than that of the second pair, as the points on the first pair

are separated by a smaller distance. Now, compare the correlation between M(i, j) and

M (i + 1, j), with the correlation between M(i , j + 200) and Mii + 1, j + 200). As can be

imagined, this time the correlation between the second pair will be larger.

In the modeling of the scanning system, one has to take the above problem into con-

sideration. However, since each scan takes about 30 seconds, in practice, two consecutive

scans (whether they are separated by only a fraction of a second or by 32 seconds) are

CHAPTER 4. TWO DIMENSIONAL SHEET-SCANNRVG SYSTEhd

Control Input
(to ac tuators) Paper

ControUer Paper Machine ,

Sens or' s Measurernents 1
(fiom scanner)

Figure 4.3: Schematic control structure for a typical paper machine

treated the same. As a result, in this research, this issue is ignored and different rows of

the measurement matrix are treated similarly.

A paper machine normally operates in a closed loop, Le. there exist separate control

loops for each of the above mentioned quantities that control the variations of the corre-

sponding quantity. In such a control system, as shown in Figure (4.3), the error between

the sensor measurements (such as basis weight) and the set points are fed to a controller

which generates appropriate control actions for the actuators so as to elirninate unwanted

variations in the paper weight and moisture.

If the sensors are taken off-line, the controller often stops generating new control input,

and the activation of all actuators is set to some average value. M e the sensors and

controller are not operational, the system works in open loop. This period of open loop

operation for a typical task of calibration might take up to a few minutes. Meanwl.de, due

to the high speed of the paper machine (up to 150 km/hour), a huge amount of paper (up

to 100 meters of paper with the width of 7 meters) is produced. Since no measurements

are taken while the system operates in open loop, it is worthwhile to predict the behaviour

of the system during this period.

CHAPTER 4- TWO DIAMENSIONAL SNEET-SCANmG SYSTEM

4.3 Neural Modeling of Basis Weight

The scans prior to the stoppage of the sca.nning system are used to predict the basis

weights of the paper produced for up to five scans afterwards. The data set used here is

taken fiom a mill and was provided by Honeywell-Measurex Devron Inc.

The target value of the basis weight for the paper being produced is 300 grams per

square meter (gsm) . The sheet is 7 meters wide and its weight is measured at 240 locations

across the sheet. Some of the measurements on both edges are discarded, because they

represent sensor readings mhile the sensor has passed the edges of the paper (see Figure

(4.2)). Ornitting the fust 7 sensor readings on each edge leaves us with a matrix of

measurements with 226 columns. The scanner completes an entire scan in 32 seconds.

According to the engineers in the mill, most of the error variation cannot be eliminated

by controlling the actuators and therefore the system essentially runs in open loop. As

a result, the activation of the actuators (the control input) is treated as a source of

disturbance and so is exchded kom our modeling. Moreover, during the estimation time,

the control input is assumed to be a constant signal. Excluding the-control input from the

estimation process enables us to train the mode1 in open loop (whvhile the sensors are on)

and perform the prediction when the sensors are off-line, without having to be concerned

about the change in the way the control input is generated. The available data set consists

of 50 scans (rows) , which form a measurement matrix of the size M (i, j)50X227-

The objective of the neural modehg is to estimate the next scans (rows) in the ma-

chine direction from the previous measured scan in the cross direction. More specifically,

M(i + k, j) is to be estimated using the values of at M(i, j - l), M(i, j) and M(i, j + l),
where 1 5 k 5 3. The input vector (M (i, j - l) , M i , j) , M(i, j + 1)) is formed along

the cross direction and for a k e d i forms a sequence of m-dependent r.v.s with m = 3.

The correlation between the reading along the cross direction is assumed to be negligible

beyond three points. The extension to higher assumed ranges of dependency is straight-

forward, and it can be expected to result in better estimation performances a t the expense

of increased calculations-

In order to see how the training and testing data are generated, consider a fixed k.

CHAPTER 4- TWO DIMENSIONAL SHEET-SC04NNING SYSTElM

Rows i =1, 7, 13; 19, 25, 31, and 37 form the input, Le. for each i, set of vectors

(Mi j - 1 , M i j) , M(i, j + 1)) is formed, where 2 5 j 5 225. The corresponding

output for each of the above vectors is M(i + k, j). The training set is thus formed as

the input-output data points generated by rows 1, 7, 13, and 19 as the input rows- The

remaining data points will be used as the testing set. Since 1 < k 5 5, there will be five

training sets and five testing sets to be processed separately.

Specific rows are used in order to separate the inputs and the outputs completely.

Notice that in a, real scenario where the sensors are taken off-line, the available information

up to row i = io is used to estimate the next five rows. This means that the prediction is

made for only rows io + 1, . . . , io + 5 , Le. the rnodel is not allowed to use our estimated

values as the inputs to estimate the rows beyond five rows. These rules in generating the

data guarantee that the rnodel is actually an FIR one and makes sure that no rneasurement

has been used both as input and output information.

Having generated the training and testing data sets for each value of k; the evo-

lutionary variable-structure neural rnodeling is applied to the corresponding training

set. The parameters of the algorithm for al1 modeling tasks are chosen as follows:

N = 50, w, = wb = 0.001, X = 0.0001, 11 , = 2, K = 100, E = 0.05, MinSlcvpe =

-1 x IO-', BackStep = 1000 . In order to follow the exact structure of the theoretical

results of the previous chapters and have a better insight to the level of error, the input

variable is normalized to the interval of [O 113, and the output variable is mapped to the

intenmi of [-$ $1.

4.3.1 Simulation 1: One-Row- Ahead Psediction

For k = 1, the resulting network has 6 hidden neurons in its structure. The training

cost function and the empirical error are 0.0291 and 0.0238, respectively. Figure (4.4)

depicts the evolution of the cost function and complexity term of the best network of

each generation. As can be seen, the resulting complexity term Cat,, levels off at 53.1376.

Next, this network is tested against the testing set which consists of rows 25, 31 and

37 as the inputs and rows 26, 32, and 38 as the outputs. The actual and estimated basis

weights for row 26 (Le. actual and estimated profiles of basis weight across the sheet) are

CHAPTER 4. TTiVO DIA/fEErVSIONAL SHEET-SCANNING SYSTEM

Figure 4.4: (a) Cost function (left), and (b) Complexity term (right) for Simulation 1

shown in Figure (4.5.a). In order to see the prediction quality more clearly, the estimate

and actucal basis weights of almost 57 points located in the middle of the profle are

shown Fgigure (4.5.b). Similar profües are obtained for estimation of rows 32 and 38,

which indicate that the estimation process can accurately predict the rows ahead. The

testing empirical error (calculated over all estimated rows) is 0.0244, close to the training

value. Also, notice that the estimated and the actual profiles are highly similar and the

estimation process seems to be accurate.

In order to see how neural networks help the prediction, here the results are compared

with a rather trivial average modeling, in which M(i + k, j) is estimated as the simple

linear average of M(i , j - l), M(i, j), and M(i , j + 1), where k = 1. For this model, the

value of the ernpirical error for the testing data is 0.0307 which is considerably larger than

that of the neural model. This shows that the neural rnodel of Simulation 1 is not only

reliable but also accurate (compared to a simple h e a r estimation).

The variability of the model can be tested by considering the standard deviation of

the testing prediction error (Le. the actual output minus the estimated output) over

different estimated rows. The calculated values of standard deviation for the prediction

error of rows 26, 32 and 38 is 0.0326, 0.0361 and 0.0326 respectively. The close values of

standard deviation for different rows indicates the similar performance of the algorithm

over different rows of the data.

CHAPTER 4- TWO DIMENSIONAL SHEET-SCANNI1VG SYSTEM

-

-

-

-

d

-0.4 I 1 1 I 1 I

110 120 130 140 1 50 160 170 180
CD Sampte Number

Figure 4.5: (a) Actual (solid) and estimated (dashed) normalized output across row 26
(the entire profile) for Simulation 1 (b) Actual (solid) and estimated (dashed) normalized
output across row 26 (the middle portion of the profXe) for Simulation 1

CEFi1PTER 4. TWO DIn/IENSIOLVAL SHEET-SCANNVG SYSTEM

Figure 4.6: (a) Cost function (lefi), and (b) Complexity term (right) for Simulation 2

4.3 -2 Simulation 2: Two-Row-Ahead Predict ion

In this simulation, al1 the settings are the same as those of Simulation 1, except that

k = 2, i.e. a two-row-ahead estimation is performed. The resulting network has 4 hidden

neurons in its structure. The training cost function and the empirical error are 0 .O350 and

0.0299, respectively. Figure (4.6) shows the curves of the cost function and complexity

term. The resulting cornplexity term Cab, is 50.9978.

In testing as with the previous simulation, rows 23, 31 and 37 are used to f o m the

inputs, while rows 27, 33, and 39 now form the outputs. The actual and estirnated profiles

for row 27 are shown in Figure (4.7). The resulting testing empirical error (calculated over

al1 estimated rows) is 0.0298 that is smaller than the training one. Also notice that the

estimated and the actual profiles are still very similar and the estimation process seems

to be acceptable. In this case, the empirical error of the trivial estimation on the testing

data is 0.0431 which is significantly larger than the error of the neural model.

The calculated values of standard deviation for the prediction error of rows 27, 33 and

39 are 0.0395, 0.0422 and 0.0432 respectively. The closeness of the above values again

shows the small variability of the algorithm over different parts of the data.

The three-row-ahead and four-row-ahead estimations result in networks with 6 and 7

neurons, respectively. The main results of these simulations are given in Table (4.1).

CH;LPTER 4. TWO DIMENSIONAL SHEET-SC-LVNIIVG SYSTEM

-0.4 1 1 I I 1 I

110 1 20 130 140 1 50 160 170 180
CD Sample Number

Figure 4.7: (a) Actual (solid) and estimated (dashed) nomalized output across r o w 27
(the entire profile) for Simulation 2 (b) Actual (solid) and estimated (dashed) normaLized
output across row 27 (the middle portion of the profile) for Simulation 2

CHAPTER 4. TWO DIMENSIONAL SHEET-SCAhNNG SYSTEM

Figure 4.8: (a) Cost function (left), and (b) Complexïty term (right) for Simulation 3

4.3.3 Simulation 3: Five-Row-Ahead Prediction

With all the settings the same as those of the previous simulations, a five-row-ahead

estimation is now performed. Here, the rows 1, 7, and 13 are used to form the inputs,

and rc'ws 6, 12, and 18 to form the outputs. The resulting network has 9 hidden neurons

in its structure. The training cost function and the empirical error are 0.0464 and 0.0413,

respectively. Figure (4.8) shows the cuves of the cost function and complexity term. The

resulting complexity t erm Cat,, reaches to 5 1.0522.

In testing as with the previous simulations, rows 25, 31 and 37 are used to form the

inputs, and rom 30: 36, and 42 to form the outputs. The actual and estimated profiles

for row 30 are shown in Figure (4.9). The resulting testing empirical error is 0.0441

and relatively close to the training value. The error of the trivial linear estimation for

five-row-ahead prediction is 0.0571 . The calculated values of standard deviation for the

prediction error of rows 30, 36 and 42 is 0.0578, 0.0576 and 0.0583 respectively. The

closeness of the above values further indicates the small variability of the algorithm over

difTerent parts of the paper machine data.

Each of the above simulations takes about 210 minutes on a machine with 400 MHz

Pentium II processor.

CHAPTER 4- TWO DIMENSION. SHEET-SCAN.G SYSTEM

- --
1 IO 120 130 1 40 150 1 60 1 70 180

CD Sample Number

Figure 4.9: (a) Actual (solid) and estimated (dashed) normalized output across row 30
(the entire profile) for Simulation 5 (b) Actual (solid) and estimated (dashed) normalized
output across row 30 (the middle portion of the profile) for Simulation 5

Prediction II Train. Cost 1 Train. En. 1 Test. Err. 1 Comp. Term. 1 Num. of Neurons II

Table 4.1: Training cost function, training ernpirical error, testing empirical error and
complexity term for one-row-ahead, two-row-ahead, three-row-ahead, four-row-ahead and
five-row-ahead predictions.

CNAPTER 4. TWO DI&fENSIONAL SHEET-SCAiWWVG SYSTEM

4.4 Discussion

Here, the results obtained in this chapter are discussed.

1. From Table (4.1), it is seen that the quality of prediction deteriorates as further

rows ahead are estimated. This may be explained by the fact that the outputs in

closer rows are more highly correlated with the inputs and is thus to be expected.

2. The results obtained from different simulations and shown in Table (4.1) indicate

that the number of hidden neurons increases with the prediction interval. This shows

that the prediction of further rows involves a more diflicult estimation process and

requires more neurons.

3. Performing the estimation with different algorithm settings (such as A, w,, w,,

and N) may result in different neural models. However, it seems that Merent

simulations with a fixed X result in models with relatively similar cost functions and

complexity terms-

4. The estimation process may be continued for the prediction of rows further than

five rows; however the quality of the estimation c m be expected to deteriorate.

Since the predicted values rnight be the only information available on the produced

paper, extending this estimation process even with a lower prediction quality may

be useful.

5 . Once a neural model for the system is generated off-line, one can update the model

through an adaptive process. In order to do so, some of the old training points

must be replaced with the newly measured data and the training process may be

kept running throughout the entire modeling task. Since each scan takes almost 32

seconds, updating the model after every fem scans seems to be feasible, specially

when fast computers are available. Since the paper machine is a time-variant process

(especially after a machine start-up) , the adaptive approach is desirable.

6. The accuracy of the estimation process is expected to improve if the input vectors

are forrned of the information from the last two rows rather than merely the last

C E U T E R 4. TWO DI&IENSION.L SHEET-SC-4N.G SYSTEM

row as in the present formulation. The price to pay, however, is an increase in the

computation tirne.

7. In order to have more confidence over the simulation results, one may want to re-

peat the simulations using different sets of training and test data as well as different

algorithm settings. Due to the fact that each run of the algorithm takes a consid-

erable amount of time, repeating the simulations may be a more feasible task once

fas ter machines are available.

The chapter c m be summarized as follows.

The above simulation results indicate that the proposed evolutionary algorithms

are capable of performing optimization in nonlinear and noisy real applications and

generate useful estimates.

The relatively close training and testing performances indicates that proposed com-

plexity terms can successfully deal with noisy complex systems.

While the sensors in the paper machine are taken off-line, it is possible to use neural

networks to estimate the properties of the produced paper based on the previously

recorded data.

Chapter 5

ARX Models: Stability and Learning

5.1 Introduction.

In a dynamic modeling task in the presence of additive noise, the output of a system is

expressed as a function of the h i s t o ~ of the input as well as the output. In the case of a

nonlinear ARY (also known as NARX), assuming that ut-q+l, ut-q+27 - . . ut-d describe

the history of the input variable and yt-k, yt-k+~ . . . yt-l that of the output:

where d, q - d - 1, k and Ct represent the degree of the input, the delay from the

input to the output, the degree of the output and the additive noise on the system, te-

spectively. -4lthough the mode1 can represent multi-dimensional models, here the single-

input/single-output (SISO) case is considered. It is also assumed that ut and Ct are

uncorrelated sequences of independent ly and identically distributed (i.i.d.) random vari-

ables. The Markov process formed as (5.1) includes a wide range of dynamic models

used in engineering applications including dynarnic neural networks. One of the most

important properties of a NARX model to be investigated is the stochastic stability of

the model. Stochastic stabiliw not only guarantees the issue of boundedness of the out-

put for bounded inputs, but dso establishes the necessary conditions for any definition of

learning for .4RX models (as described later). The concept of stochastic stability has been

addressed in the literature assuming difTerent definitions for stochastic stability, resulting

in different sufficient stability conditions for NARX models. The concept of Lagrange

stability [26] defines a notion of stability based on a Lyaponnov function defined in terms

of the process. Kushner's work on stochastic stability [24],[23] has provided a more corn-

CHUTER 5. ARX MODELS: STABEITY AND LEARNING

prehensive mathematical hmework for testing stochastic stability of discrete systems.

Important results in this field come from the relation between the stochastic Lyapounov

stability (as in Kushner's work) and the concept of geometric ergodicity [43], [22]. The

results of this line of research not only provide simple practical notions of stochastic sta-

biliiy, but also create a foundation for assessment of other statistical properties such as

the learning properties of dynamic modeis [39]. In aJl learning paradigms presented for

dynamic models, the assumption of processes being geometrically ergodic is treated as

a fundamental requirement, i.e. learning properties of dynamic models can not be eval-

uated unless the assumption of models being geometrically ergodic is verSed [30], [Il],

[42]. This further calls for evaluation of geometric ergodicity for important families of

nonlinear dynamic models. Here, the general results of [43] are applied to the special case

of neural modeling with sigmoid neural networks and speciûc sufficient conditions under

which the model is geometrically ergodic are presented.

Here, first a set of sufficient conditions for geometric ergodicity of SNN's is obtained.

Then, the results are used to assess the learning properties of neural ARX models. In

order to do so, hrst, learning theory is extended to learning with strong mixing data.

Then, specific upper bounds on the sample complexity of such models are given. Next,

the learning properties of neural ARX are applied to define complexity measures (along

with their corresponding cost functions) that can be used in practical applications. Fi-

nally, using the evolutionary neural modeling algorithms introduced in Chapter 3. The

performance of such cost functions is evaluated in a number of simulations.

This chapter is organized as follows. Section 5.2 gives the basic dehitions of stochastic

stability, as well as the existing results on the geometric ergodicity of a general family of

NARX modeIs. Section 5.3 contains a set of sufficient conditions over the parameters of

a sigmoid neural network, which guarantees the stochastic stability of the model. The

main results of this section are given in Theorems (5.3.1) and (5.3.2). In section 5.4,

PA4C learning theory extended to learning with a-mixïng data. In the same section,

the resulting learning theory is applied to SNN's and the sarnple complexity of such

learning tasks are bounded. Theorem (5.4.2) acts as the main theorem of this section.

In Section 5.5 a distribution-fkee complexity measure of SNN's is introduced. Theorem

CHAPTER 5. ARX MODELS: STABLLITY AND LEARNLNG

(5.5.1) contains the main results of this section. Section 5.6 uses the results of the previous

section to describe learning-based algonthms that search for neural models with minimum

complexïty. In Section 5.7, the simulation results of applying the proposed dgorithms on

a Continuously-Stirred Tank Reactor (CSTR) are presented. The results of the chapter

are discussed in Section 5.8, and hally, Section 5.9 summarizes the chapter.

5.2 Basic Definitions of Stochastic Stability

In this section, some of the basic concepts of geometric ergodicity as well as the existing

results on the stochastic stability of NARX models are reviewed. Consider an integer

'Y" and let Xt be a Markov chah 6 t h the state space (P, B)7 where B is the Borel

O-algebra. The t-stepahead transition probability of Xt is denoted by Pt (x , .4), i.e. :

P t (x , A) = P(Xt E AIXo = x), x E RF, A E B.

Now, the concept of geometric ergodicity is defined as follows.

Definition 5.2.1 Xt i s geornetrically ergodzc i f there exz-sts a probability measure T o n

(RP, B) , a positive constant p < 1, and a a-integrable non-negative measurable fanction

a such that for any t:

Definition (5.2.1) shows that geometric ergodicity is closely related to stability. Ac-

cording t O (5.3), in a geometrically ergodic process, the transition probability approaches

a (possibly unknown) well-behaved probabiüty measure a geometrically fast.

CHAPTER 5- ARY MODELS: STilBILITY AND L E A W G

Here the definition of stochastic stabili@ is given:

Deut ion 5.2.2 Consider a Markov c h a h Xt as described above. The process is called

stochastically stable i f f there exists a non-negative and measurable function V (called a

Lyapounov function), and constants c > O and O < p < 1 such that:

The concept of stochastic stability is also referred to as ccstochastic Lyapounov stabil-

ity". The Lyapounov function V and the way the stability condition is defined show why

the name stochastic Lyapounov stability seems to be a more appropriate name for this

concept.

The following theorem by Mokkadem [5] is known to be the most general result on ge-

ometric ergodicity of Markov processes and the way this property is related to stochastic

stability.

Theorem 5.2.1 (Mokkadem [5]) Suppose a Markou chain Xt is stochastically stable as

described in Definition (5.2-2). Then Xt is a geometrically ergodic process.

Theorem (5.2.1) shows how geometric ergodicity relates to the concept of stochastic

stability. Now, the notion of "a-miiwing" (also known as strong mDMg) is defined. This

concept describes a type of stationary random process with exponentially weakening de-

pendency.

Definition 5.2.3 Let {yt}L,-, be a stationa7-y process. For -CO < t < M, let y?

and yLm denote the 0-algebras of events generated by random variables {yi, t 2 i) and

{yiy t 5 i) , respectively. Define the strong minng coeficient ay (t) as:

CHAPTER 5- ARX .!rMODELS: STABLZITY AND LEARNNG

Then {yt)g- , is called a-mirâng (strongly miking), if:

iim ay(t) = o .
t+oo (5.6)

Moreover, suppose ag(t) approaches zero geometrically fast in t, ie., there exist:

k,, k27 k3 > 0

such that:

ay (t) = kie -k3tk2

Then, the process is cal led geometrically a-miring.

Next, the focus is given to the existing results on the Markov process of form (5.1).

Here, a theorem by Doukham [43], which presents a set of sufficient conditions for geo-

metric ergodicity of the process (5.1) is reviewed.

Theorem 5.2.2 [Doukham [43]] Conséder the process (5.1). Let:

Assume that XtPi indicates the ith element of Xt. Also, assume the followings.

1. There exist a number xo > O and non-negative constants Srl, . . . , .Slk, a locally

bounded measurable function h : R + R+, and a positive constant c such that:

~ U P ~ ~ X , ~ ~ ~ ~ , , I f (X) 1 < ca (where llXtll is the Euclidean n o m of X t) , and:

Then, if the unique non-negative real zero of the "characteristic polynomial" P(z) =

p - . ~ i ~ ~ k - ~ - . . . - Gk is smaller than one, the process (5.1) is geometfically ergodic.

Moreover, if the process X is stationary, the process "y" (i.e. {yt)g-,) is geometrically

a-mim-ng-

Although the details of the long proof presented for this theorem (by- Doukham) are

not repeated here, a bnef description of the general scheme of the proclf will be given.

The proof starts with introducing a Lyapounov function of the form:

Then the appropriate choices of Qj's and pj's to satisfy (5.4) are investigated. It is then

proved that if al1 the assumptions made in the theorem hold, the condütion set on the

zeros of the characteristic polynomial P (z) guarantees geometric ergodicity. As can be

seen, the sufficient conditions set in Theorem (5.2.2) guarantee the stochastic Lyapounov

stability as well as the geometric erogicity of the model.

5.3 Geometric Ergodicity of Sigrnoid Neural Networks

This section starts with the following lemma about the atan sigmoid neuml networks.

Lemma 5.3.1 Suppose z E RP. Consider a farnily of sigmoid neural n-etworks F with

members as follows:

where: o(.) = 3 t a ü 1 (.) i s a smooth sigrnoid activation funetion, 1 indicates the number

of neurons, ai's (ai E R) are the weights of the output layer and the p-dimensional uectors

bi 's defined as: bi = (bil, . . . , bip) represent the weights of the hidden layer. Then:

Proof: From the definition of atan sigmoid neural networks:

mhich concludes the proof. Cl O O

The next Iemma gives a sirnilar bound for the bipolar exponential sigmoid networks:

Lemma 5.3.2 Suppose x E RP. Consider a family of sigmoid neural networks F with

members as follows:

CHAPTER 5- ARX MODELS: STABILITY AND LEARNZNG 111

l-e-(-) where: a(.) = is a smooth sigmoid activation function, 1 indicates the number of

neurons, ai's (ai E R) are the weights of the output layer and M e p-dimensional vectors

bi 's defined as: bi = (bil, . . . , bip) represent the weights of the hidden layer. Then:

Proof: From the definition of bipoiar exponential neural networks:

which concludes the proof. 0 CI 0

Now, the following theorems present a set of sufficient conditions for stochastic stabil-

ity and geometric ergodicity of the families of sigmoid neural network discussed above.

These conditions involve the known parameters of the network, and as a result can be

easily tested during a practical modeling task. A family of atan sigmoid networks is to

be addressed first:

Theorem 5.3.1 Let Xt = g t - k + ~ , . . . yt-~, ~ ~ - ~ + l ~ . . . ut-d,) . Take

y,, Ct and ut as defied in (5.1). Also assvrne that f is a sigmoid neural network as

CNAPTER 5. AR.X IMODELS: STABEITY AND LEARNING 112

defined in Lemma (5.3.1) with x = X where: p = q - d + k. Further assume that

E[lCtl] 5 il+ and E[lutl] 5 Mu. Define:

where j = 1, . . . , k. Let: M, = maxj W . Also define the following characteristic polyno-

mial: P(z) = zk - uizk-l - . . . - wk. Then the sequence Xt is geometn'cally ergodic if the

unique non-negative real zero of P (z) ès smaller than one. Also, i f Xt is stationanj then
CC 77 y is geometrically a-m.ia;ing.

Proof: In oïder to apply the results of Theorem(5.2.2), the existence of a real number

xo such that the conditions of the theorem are satisfied has to be investigated. Lemma

(5.3.1) shows that for any xo, suplXtl<,, - 1 f (Xt)I < m. Therefore the case where llXrll > xo

is investigated. Assuming IIXtll > xo, there exïsts at least one index r such that:

Xe-ut, hom Lemma (5.3.1):

Nom, taking an arbitrary positive real number p > 0:

Xom observe that:

CHWTER 5. -4RX MODELS: STABILITY AND LEARNING

T herefore:

" the next step of the proof would be checking the second condition of and c = P J&r

Theorem(5.2.2). It suffices to have:

This means that it suffices to have:

Now it can be seen that in order to satisfy Inequality (5.19), xa and p need only be

chosen such that pxo is large enough to satisSr the inequality. Choose p sufficiently small

(but non-zero) such that if the positive real root of P (z) with Qj = W j , (j = 1, . . . , k) is

less than 1, the positive real root of P (z) with G j = wj + p, (j = 1, . . . , k) is also less

than 1. Then, choose xo suEciently larger so that Inequality (5.19) holds. Under such

choices of xo and p, if the unique positive real root of P (t) Rrith Qj = w j y (j = 1 , . . . , k)

is less than 1, al1 the conditions for geometric ergodicity are satisfied. Moreover, if Xt is

stationary then "y" is geometrically a-mixing. O UO

In the above theorem it is assurned that if the positive real root of P(P) with 1C>i =

uj, (j = 1, . . . , k) is less than 1, there exists p such that the positive real root of P(z) with

S>j = W j + p, (j = 1, . . . , k) is aiso less than 1. This assumption requires that a very small

CE4PTER 5. Al3.X n/IODELS: STABILITY AND LEARNTIVG 114

change in the coefficients of P(z) does not change the location of the poles significantly,

because p can be made arbitrarïly small (but not equal to zero) to avoid such a change.

-4 similar resdt c m be obtained on a family of bipolar exponential networks, as follows.

Theorem 5.3.2 Let Xt = (yt-k, Yt-k+l~ - . yt-1 , ~ t - ~ + l , ~ t - ~ + 2 , . . - Ut-d>) Take

yt, ct and ut as defined in (5.1). Also assume that f is a sigmoid neural network as

defined in Lemma (5.3.2) with x = Xt where: p = q - d + k. Further assume that

E[lbl] < Mc and E[luil] < ALu. Define:

where j = 1, . . . , k. Also define the following characteristic polynomial : P(z) = zk -

wlzk-l - . .. - w k . Then the sequence Xt is geometm'cally ergodic i f the unique non-

negative real zero of P(z) is smaller than one. Also, if Xt i s stationary then the process
cc JJ y is geometrically cr -mzxing.

Proof: Defining wj7s as in (5.20), the rest of the proof is the same as Theorem (5.3.1),

and is not repeated here. 0 0 0

Theorems (5.3.1) and (5.3.2) give s a c i e n t conditions for the stability of the corre-

sponding sigmoid networks, which can be easily tested. Having addressed the important

properties of stochastic stability, geometric ergodicity and geometric a-mucing for a neu-

ral ARX model, a learning scheme for dynamic neural modeling is now introduced. A

learning theory which can be applied to ARX models provides a usefùl framework to

assess properties such as sample complexity, overfitting and complexity of a model.

5.4 Geometrically ai-Mixing PAC Learning

Having described the conditions for stochastic stability and ai-mïxing of SNN's, the next

step is to define a PAC learning scheme for leaming with geometrically a -mkhg data.

One c m easily omit "geometrically" and define the learning scheme for a general family

of learning tasks where data are a-mixing but not necessarily "geometrically a-mkïng".

In order to specialize the results towards the geometric case, only geometrically mixing

cases are addressed here.

Definition 5.4.1 Suppose that z, is a set of input-output data where (xi, . . . , x,) is a se-

quence of geometrically a-mzxing r.vs , marginally distributed according to the probability

measure P E P. Then, a fmction set F 2s said to be "PAC leamable with geometrically

a-rnixing data according to the distance measure dp7' ifl an algorithm A can be found

basecl on which for any E and 6, there exists n such that:

sup Pr{& (f, h) 5 E } 2 (1 - 6)
f E 3

Hereafter, referring to the above property, where the meaning is clear,"according to

the distance measure dpi' Will be dropped. The first step in obtaining some practical

results involves bounds on the summation of a sequence of geometrically a-mi=cing ran-

dom variables. The results presented by Modha in [16] can provide useful (somewhat

conservative) bounds, as given below:

Theorem 5.4.1 (Modha [16]) Suppose ai}^=, is a sequence of stationary and geomet-

r i d l y a-mixing zero-meun r.u.s (with the ki 's defined in (5.7)) such that lAil 5 M and

E(lA1 1 2) 5 Q. Also, define:

where the u n a w operatéons 1.1 and r.1 refer tu 'Lthe largest integer smaller than" and "the

smallest integer greater than" a given number, respectively,

CHAPTER 5. ARX MODELS: STABILITY -4ND LEARNING

Then:

Next, a Iemma is proved that applies Theorem 5.4.1 to evaluate the cIoseness of the

mean value of a function to its ernpirical mean where the input is a sequence of geomet-

rically a-mkxing r x s .

Lemma 5.4.1 Let x E [-1 lId. Also assume a function Y : X + [O, 11. Suppose that a

set of training data has been generated as: {(xi, Y(X~)));='=,, where output data is a sequence

of stationary and geometrically a-miring r.v.s. If the mean value and the empirical rnean

of Y are defined as foliows:

then:

and:

CHAPTER 5- -4RX IlIODELS: STABILITY AND LEARNLNG 117

Proof: First define: Ai = T (x i) - Ep(T) . Notice that the AiYs form a sequence of

zero-mean geornetrically a-mixing r x s to which Inequality (5.23) can be applied with

M = 2 and Q = 4. This will result in Inequality (5.25). Inequality (5.26) can be obtained

in the same fashion, assuming Ai = Ep(T) - T (x i) . O O O

Now, consider an extension of the empirical risk minimization algorithm to geometri-

cally a-mixing random inputs. Since the definition of such an algorithm is straightforward,

without writing the forrnal definition, PAC learning evaluation of the empirical risk min-

irnization algorithm is next evduated. The following theorem is similar to the theorem

proved for m-dependent learning.

Theorem 5.4.2 Let x E [-1 lId. Also assvme a function Y as defined in Definition

5.4.1. Suppose that a set of training data has been generated as: { (x i , T(X~)));='=,, where

output data zs a sequence of stationary and geornetnkally or-mixing r.v.s. Also assume

that there exists a finite set {gi}:,l which €12-covers F. Then the minimam empirical

risk results in PAC learning of 3 with geometrically a-mixing training data to the accuracy

of E. In particular:

whenever:

Proof: If { g i) g l is an ~/Zcover for F, there exïsts an index t such that dp(f, gt) 5

€12 . Without loss of generality, suppose that dp (f , g ,) 5 €12 . Again, without loss of

generality, suppose that the gi's are renumbered such that: dp(f, gi) > e for i = 1,. . . , k

and dp(f, gî) < E for i = k + 1,. . . , e. Note that: k 5 ,g - 1. Notice that the error

involved in the minimum empirical nsk algorithm would be introducing one of the giYs,

CHAPTER 5. ARX IMODELS: ST48EITY AND LEARNLNG

where i = 1,. . . , k, as the model h. Let the event E be as foilows:

E = {& 5 344 and 4 > 36/4 , for al1 i = 1,. . . , k}

From the definition of E, it is known that: E C {dp(f, h) 5 ~ / 2) . -Usa:

Now observe that, for each index i, the cost & is the ernpirical mean of the function

1 f (.) - gi(.)l based on the available training set. Therefore, Lemma 5.4.1 c m be used to

evaiuate the distance between &, the ernpirical mean, and d p (f, gi), the tnie mean of the

function 1 f (.) - si(.) 1 - Now:

where fi and kl are as defined before. Now, since Ep(l f - gel) = dp(f, g,) 5 ~ / 2 , then:

For ji 5 3 4 4 where i = 1, . . . , k, following a similar procedure, the following inequaliQ

is obtained:

C H M T E R 5- ARY IVIODELS: STABILITY AND LE4RNIiVG 119

Now, since k 5 e - 1, the maximum error involved in the overall leaming process

[-"" 1. In other words: wodd be: p (l + 4e-*ki)exp 64(2+&)

sup Pr{dp (f, h) 5 E } 2 1 - e(l + 4e-2 kl)exp
1 ~ 3 [64~:"+)])

which results in:

In an approach similar to that of Chapter 1, as the next step, Q is bounded. However,

this time no assumptions on the distribution of the data can be made, Le. the complexity

measure e indicated in this chapter is a distribution-fkee one. This calls for a more careful

analysis and results in more conservative bounds.

5.5 Distribution-Free Complexity of SNN's Neural Models

In this section, "en (the size of the ~/2-cover set of F) for SNN7s is bounded to construct

a practical algorit hm t hat searches for a minimum-complexity neural model. First , some

fundamental properties of sigmoid neural networks are evaluated. The following analysis

follows the methodology introduced by Barron [7].

Consider a sigrnoid neural network with 1 neurons of the following general form:

cf,,

Mso, define:

Now, let 0 = (a l , . . . , al, bll, . . . , bld, . . . , bll,. . . , bld). For ri > O, i = 1,. . . ,1, a contin-

uous parameter space Ol,,,...,, is taken to be the set of al1 such 0 for which lbill 5 ri. For

any C > O, let l,..., ,,c c ,,...,, be the subset of parameters with lail 5 C.

CHAPTER 5. ARX MODELS: STABILITY AND LEAR-WïIVG 120

Next, the precision of the above functions is controlled by controlling the resolution

of the parameter space. For each E' > O and C > O, let 0L7r ,TL, . . . , r l , c be a set of parameter

points that bcovers 8iy,1...1,~c ; i-e. for every 0 in 0i7, ,...,,, c, there exists a 8" in O L , ~ , ~ ~ ,..., n , ~

such that for i = 1,. . - , 1:

Thus, the parameter points in:

@ i , i , q q , ~

can be used to create a covering set:

{ f i (- . 6') : O* E @l,i,Tl ,... , T i ? c 1

for the family of functions:

Now, the Lipschitz constants of specific types of sigmoid functions used in the net-

works are bounded, and then the precision of such function sets is assessed.

Lemma 5.5.1 Suppose vo is the Lipschitz constant of a sigrnoid function O(.) . As-

sume that the conditions of (5.36) hold. Then f o r any 6 in the continuous parameter

set Ol,,...,,,c, there is a 0' in the discrete set Qi y,yc such that for any x E X :

CH-4PTER 5. ARX IMODELS: STABILIW AND LE-4RrVTNG

and therefore:

where fi(x, O) E Fr, and:

More specifically the bound on the left hand-side of the aboue inequality can be replaced

by (1 + 2/a)&C for ~ (u) = tan-'@), and (3/2)6C for o(u) = -.

Proof: Take an arbitrary O in Qi ,,,...,, c and choose O* E OSc ,,..-?,, c such that (5.36)

holds. Consider the difference between a function fi(., O) and its corresponding function

Now, notice that for all x E [-1 lId and al1 k:

From (3.41) and (5.42):

As for the more specific results, note that frorn (2.5.1), for a t m sigmoid functions:

vo 5 $, and therefore the above function's accuracy can be further specified as: (2 ~-1) iC

for this family of SNN's.

For the bipolar exponential sigmoid network, h-orn(2.5.2), vo 5 which results in a

more specific accuracy bound of giC for the function set. O O 0.

In order to see the results of this theorem more clearly and with a notation similar

to our formulation of 6-covers for function sets, define E = (2 1 ~ + 1)kC. Then the above

theorem asserts that an ecover of 3l can be formed as:

This indicates that the cardinality of the function covering set can be bounded by

bounding the cardinality of the parameter covering set. Next, a bound on the cardinality

of @ l ? i , ~ ~ ,...,T~?c is found.

Lemma 5.5.1.1 Consider 0rs7T,7---,,7c as defined above. The cardinality of this set can

be bounded as follows:

Eqaivalently, for the set F:

ProoE Consider a rectangdar grid at width i/d for the coordinates of bk, and width

ÉCII for ak: for k = 1,. . . ,Z. Intersecting the grid with Ol ,,,...,, 7c yields the desired

covering set satisfying the requirements of (5.36). Now the cardinality of this set is

calculated. Notice that:

is a Cartesian product of the constraint sets for the a's and b's. Therefore, the desired

cardinality can be obtained as the products of the corresponding counts. First, the number

of the grid points is bounded:

where the grid points are spaced at width 6/d in each coordinate. Here it is claimed

that the union of the small hypercubes that intersect S,, is contained in STk+,-. This is

CHAPTER 5. -4RX MOLIELS: STABLLITY AND LEilRNlNG 124

because any point bk in this union has a distance less than E' fiom a point bk in S,,, where

1 bk 1 5 1 & 1 + 1 bk - bk 1 5 ~k i- 6 which means bk E Sr,+& Since the volume of the union

of the hypercubes is contained in S,,+&, the volume of the union can be bounded by the

volume of S,,+(. From [7], it can be seen that the volume S,+c is (2 (T, + q) d / d ! .

Now, the volume of this union of hypercubes is the product of the number of the

hypercubes and (g/d)d. Therefore, the number of hypercubes that intersect Sr, is not

greater than (2 d (~ ~ + C)/E')d/d! 5 (2 e (r , + i) /6)d . For 1 such parameter vectors bk, the

total count is bounded by n L , (2 e (r k + C) / C) d . In the same way, the count for the a& is

not larger than (2e(l+ é) / ~) ' . Taking the product of the counts results in:

mhich concludes the proof for 8i1i1,,--.,,,c. Considering that C = &, the bound for

the function covering set is a direct result of (5.48). O O O

Now, the problem of PAC leaming of a function set is further investigated. It c m

be seen that for FL (as defined above), the covering set required by the empirical risk

minimization algorithm can be generated by the grid described above. This shows that

the complexity measure Q can be bounded by Card(@Lü2,ri,-.-,s,~) . This observation leads

to the following t heorem.

Theorem 5.5.1 Let Fl be as defined in 5.37. Suppose al1 the assumptions made in The-

orem 5.4.2 hold. Also, assume that the €12-cover required in Theorem 5.4.2 is generated

by a gn'd described in Lemma 5.5.1 -1. Then the empirical risk minimizution algorithm

provides PAC learning with geometrically a-rnixing, Le. for any E and 6 there exist la such

that:

sup P r { d p (f , h) 5 E) 2 1 - (2e(2(vo + ~) C + E) / E) ' x
f EE 1

CHAPTER 5. -4B.X MODELS: STABILITY AIW LEARNLNG

or equivalently:

Proof: The proof cornes as a direct substitution of the bound calculated in Lemma

5.5.1.1 for Card(F) in Inequality 5.34. a00

A brief glance at the results of the above theorem reveals that the introduced bounds

are highly conservative. Also, in many real applications, the values of kl, k2 and k3

may not be known. The direct use of the above bounds may fit applications where huge

training data sets, dong with some information on the statistical nature of the data, ate

available. In some applications, one may even want to first use the data to estimate kl,

k2 and k3 and then apply the above bounds. Eowever, in many applications, the available

training sets are small, and performing another estimation task, merely to find kl, k2

and kg may not be desirable, as it requires another nonlinear estimation process besides

the main function modeling. -41~0, even if the values of ki7s are estimated, the resulting

bounds would not hold exactly due to the estimation error.

As in the case of FIR modeling, one can easily extend the results of the above learning

scheme to a more general paradigrn of modei-free learning. This enables the algorithm

to deal with cases where data are noisy or the system that generates the data is not a

neural network of known structure. Practically, any real application is a case of model-free

learning and that is why this issue was addressed in Chapter 2 in details. Here, due to

the significant similarities between m-dependent leaniing and a-mîxing Learning schemes,

the model-free version of a-mixing learning is not formulated and merely used. In this

chapter, the loss function 'V(., .)" used corresponds to the distance d p , Le. l(G, C2) is

CXWTER 5- -MX MODELS: STBEX'ïY AND LEARNLNG

defined as:

As shown in Chapter 2, the overall effect of using other norms in the formulation is

the appearance of a constant p (as defked in the model-fkee learning scheme of Chapter

2) in the results. The main reason for the popdarity of the L2 nonn is the existence

of algorithms such as Least Mean Square (LMS) method for the linearly parameterized

optimization tasks. However, for nonlinear optimization processes (including our t ask) ,
there may not be a substantial reason to prefer this n o m over the others, as al1 gradient-

based algorithms may get trapped in local minima when used against nonlinear functions.

As a result, here, d p (mhich corresponds to LI nom) is used in simulations, and it is re-

emphasized that any other distance measures that satisfy a uniform Lipschitz condition

(as descnbed in Chapter 2) can also be used.

5.6 Minimum Complexity ARX Neural Modeling

Similar to Our approach for FIR modeling, new complexity terms based on the functional

dependencies of the available bound for 6 (or more specifically ln(&)) are defined. A

brief look a t Inequality (5.49) shows that since kl, k2 and k3 are normally unknown (as

described above), one can not define a cornplexity term that encompasses al1 the statistical

aspects of the modeling procedure accurately. This means that, unlike FIR modeling, the

complexiw measure created here will not be completely supported by the learning results.

However, in order to create some reasonably accurate learning-based complexity terms,

one can start fiom the bound on ln(6). Using (5.49):

CNAPTER 5. -4RY MODELS: STABEITY AND LEARN12VG 127

Since the value of kt is often not available, one may exclude the t em: In(1 + 4 ë 2 k 1)

h m the complexity term. Although by omitting this term, some statidical characteristics

of the data are disregarded, making assumptions on a variabIe that is unknomn to us is

also avoided. As to the value of f i things are more complicated, as described below.

Here, some choices for k2 and k3 are âssumed that seem to be reasonable for a typical

modeling application; however, these choices are by no means meant to be the best

possible selections and c m be replaced by any better estimated or assumed values. It

has to be stressed again that the direct estimation of these values fiom the training data

might give a better set of values for k2 and k3, but this would involve another estimation

problem. In choosing the value of k2, set k2 = 1. This is because in most applications,

the decrease in correlation of data is not too fast. As to CG3, this value is chosen to be:

k2 = l / k where k is the degree of the system (as defined in (5.1)). This way, it is ensured

that the correlation decreases more slowly when the degree of the system is higher. These

choices of k2 and kJi dong with (5.50) suggest the following complexity term:

Replacing uo with the Lipschitz bounds given in this chapter can give specific complex-

ity terms for "atan" and bipolar exponential neural networks. With a discussion similar

to the one given in Chapter 3 for FIR modeling, it is preferred to use a more practical

cornplexity measure by replacing C and r k with c:=, lail and lbk I l , respectively. This

gives the following practical complexity measure:

CHAPTER 5- ARX hI0DELS: STABEITY -4ND L E O W I N G

Based on the above complexity term, a cost h c t i o n is defined as folIows:

(5.50)

As mentioned in previous chapters, higher values of X may give similar testing and

training errors that are both too large, while the s m d e r values of X may result in small

training errors and large testing ones. The choice of X should be made according to the

objectives of the specific application in hand dong with the suggestions made in Chapter

3.

In forming the above cost function, it is assumed that the process is geometric- a-

e n g . However, as mentioned before, this property can not be assumed easily and must

be checked. If the output process is known to be stationary, then fiom the results given

in this chapter, if the positive red root of the characteristic equation is less than one, the

process is guaranteed to be geometrically ergodic, stochastically stable and geometrically

a-mixing. In order to make sure that the positive real root is indeed less than one, the

optimization process

the training process.

to the cost function,

function becomes:

can be extended to rninimize the magnitude of this root throughout

In order to do so, it is suggested here that a new term be added

i.e. assuming that PRR represents this root and y 2 0, the cost

(5.51)

The value y descnbes how important it is for us to ensure that the mode1 is indeed

CEL4PTER 5- ARX MODELS: STABILITY AND LE-G

% Tf e T,

Figure 5 -1: Schematic diagram of Continuously-Stirred Tank Reactor (CSTR)

stable and geometrically a-muiing. In many applications, the geometrically a-mïxing

condition may be assumed without checking. However, in many applications, the system

to be modeled is known to be stable and it is often desirable to obtain "stable models"

for "stable systems". Shen, one has to choose y large enough to make sure that PRR is

actually less than one. Having a stable neural network that accurately models a stable

system is considered to be a major objective in dynamic neural modeling.

As in the FIR case, in order to minimize the complex cost function presented above, an

optimization algorithm that can handle nonlinear and non-smooth cost functions must be

used. The algorithrns used here are again variable-stmcture and ked-structure systematic

evolutionary algorithms, as introduced in Chapter 2. In the next section, some simulation

results obtained from the modeling of a simulated system are presented.

5.7 Simulation Results

In this section, ail "atan sigmoid neural network" is used for modeling of a simulated

Continuously-Stirred Tank Reactor (CSTR) system under an ideal chernical-m&g as-

sumption. A schematic of CSTR is shown in Figure (5.1). -

A single irreversible, exothermic reaction, A + B: is assumed to occur in the reactor,

CHI1PTER 5. rlRX MODELS: STABLLITY AND LEARZL'IiVG 130

where -4 and B are two chemical species. The reaction takes place in a container of fixed

volume and the product flow rate, input concentration, temperature and output flow rate

are assumed constant at their nominal values. Since in this section, an identification

procedure is performed on the simulated CSTR system, the physical model of the process

is given here. The process model consists of the following nonlinear ordinary differentid

equations [38] :

where Ca is the effluent concentratioo of species A, T is the reactor temperature, V is

tank volume, q is feed flow rate, CAf is feed concentration, Tf is feed temperature, q, is

coolant flow, Tc is coolant temperature, p and pc are densities, Cp and Cpc are special

heats, ko is the pre-exponential factor, E/R is the exponential factor, -AH is the heat

of reaction, and hA is heat transfer characteristics. During the simulation, the sampling

time At is assumed to be 1 minute. The nominal values of the above parameters are

taken from [38], and shown in Table (5.1).

In the identification (or modeling) procedure, CSTR is treated as a system with one

input variable q, and one output variable Ca, Le. u = qc and y = CA. This selection

of input-output is made since such a mode1 can be used to control the system. During

the control phase, introduction of a coolant flow, q,, allows the manipulation of the

reaction temperature and hence of the product concentration, CA. Other parameters of

the rnodeling task are as follows: k = 2, d = 2, q = 4. Such assumptions (taken from

[38]) create a discrete input-output model of the system as follows:

CHAPTER 5. N3.X ILIODELS: STABLLITY AND LEARNING

n Variable II Svmbol 1 Nominalvalue II u I I " I U

II Tank volume 1 V 100 Z

Table 5.1: Nominal pwameters of a simulated CSTR system.

In the following simulations, in order to generate the input to the CSTR system, an

u

independent random sequence identically distributed according to a normal distribution

1

Q
CA/
Tf
QC

TC
P7 PC

C&C'
ko

E / R
-AH

hil
At

Feed flow rate
Feed concentration
Feed temperature
Coolant flow rate

Coolant temperature
Densities

Speciüc heat
Pre-exponential factor

Exponential Factor
Heat of reaction

Heat transfer characteristics
Sarnpling period

with mean of 100 liters/minute and variance of 10 liters/minute has been generated. The

output sequence yn at each sarnple time is formed as the response of CSTR system to

100 1 min-'
1 mol 1-'

350 K
100 Z min-'

350 K
1000 g Z-I

l ca lg - 'K- '
7.2 x 10l0 min-'

9.98 x 103 K
2.0 x 105 cal mol-'
7 x IO' min-' K-'

the input plus a zero-mean normal random noise with variance of 0.1. In order to ease

.

modeling calculations and follow the fiamework of the theoretical results, the input and

0.1 min

output of the system have been normalized to the interval of [-1 11 mol/liter, as in [38].

The normalization process is based on the "ma-min" method, Le. for each variable x

(which includes the noise), the normalized variable x,,, is computed as:

This method of normalization violates our dependence assumptions in the strict sense

as the values of max(x) and min(x) (found based on a long record of the output) may

occur at any point in time and thus influence the statistical dependency of the variables.

However, in practice, this method is used for modeling of CSTR (see [38] for example)

to create a rnapping of the output to the interval [-1 11, and therefore used. A set of

C W T E R 5. t l jRrC MODELS: S T D E I T Y AND LEARXmG 132

Figure 5.2: (a) Cost function (left), and (b) Complexity term (right) for Simulation 1

input-output data of length 2000 has been generated of which the first 650 data points

were used for training and the rest of the points for testing the rnodel.

Notice that al1 the learning results of this chapter are generated when the empirical

risk minimization algorithm along with the grading method of generating an €12-cover

(introduced in this chapter) are used during the optimization process. However, when a

very fast computer is not available, this optimization process may b e too time consuming

and is not applied here. It is necessary to relax the assumptions t a use a more efficient

optimization method. The optimization algorithms applied in the Eolloming simulations

are those introduced in Chapter 3, using the new cost functions presented in this chapter.

In the first simulation, using a family of atan SNN's with 5 neuroms, the evolutionary

fked-structure neural modeling algorithm is applied to search for a neural network with

three neurons, assuming that both X and -(are set to zero. The settings of the algorithm

are as follows: MinSlope = -1 x 10-~, BackStep = 1000, w, = wb = 0.0005, X = O, y =

O, N = 50, E = 0.05 . Figures (5.2.a) and (5.2.b) depict the evolution of the cost function

and the cornplexity term, respectively.

The training cost function for this simulation (which is the s a m e as the empirical

C W T E R 5. ARX MODELS: S T M I L I T Y -4ND LEARIL'mG

(al

Figure 5.3: (a) Positive
1 (left), and (b) -4ctual
Simulation 1 (right)

real root of the best network of each generation for Simulation
(solid) and estimated (dashed) outputs for the testing data for

error) is 0.0368. As c m be seen, the value of the complexity term incre~ses throughout

the process of evolution and the final network has the complexity of 191.34. Figure (5.3.a)

shows the evolution of the positive real root (PRR) of the charactelistic polynornial. As

can be seen, PRR of the final neural model is 1.2678 , which is larger than one and the

stability of the model, therefore, can not be guaranteed. Then the performance of the

model is assessed against the testing data set. The testing empirical error is 0.0431, which

is still small but sorrewhat larger than the training error. The estimation graph for the

first 450 points is shown in Figure (5.3.b). In this figure, the actual (solid line) and the

estimated (dashed Line) are cornpared to each other.

It is also important to notice that when PRR is larger than one (as in this simulation),

none of the learning results used to define the cost function can be guaranteed. Desirable

learning performance from such a simulation may not occur.

5.7.2 Simulation 2

In the second simulation, al1 the input-output points as well as the settings are the same

as the those of Simulation 1, except that X = 2 x 10-4 and y = 4 x 10-~ . The resulting

curves of the cost function and complexity term are shown in Figure (5.4). The training

Figure 5.4: (a) Cost function (left), and (b) Complexity term (right) for Simulation 2

cost function, empirical error, and complexity term for the resulting nehvork are 0.1092,

0.0401, and 138.5287, respectively. From Figure (5.4.b), it can be observed that the

complexity term does not rise as fast as in Simulation 1, and reaches a value smaller than

the previous simulation.

Figure (5.5.a) shows the location of the positive real root (P m) of the characteristic

polynomial. The PRR for the resulting network is 1.0361, which is still larger than one

and can not guarantee the stability. This suggests that the value of nt may have to be

further increased (which will be implemented in the next simulation). In the testing phase,

the testing empirical error of 0.0442 is obtained. As can be seen, the difference bettveen

the testing and training errors in Simulation 2 is slightly smaller than that of Simulation

1. The estimation cuve for the first 350 points is shown in Figure (5.5.b), which indicates

that the estimation quality decreases as the signal approaches the extreme boundaries of

its interval.

Although both testing and training empirical errors of Simulation 2 are larger than

those of Simulation 1, the relative proximity of the testing and training values can be

regarded as the significant characteristic of Simulation 2.

CNAPTER 5. -4RX MODELS: STABILITY AND LEARJWNG

Figure 5.5: (a) Positive real root of the best network of each generation for Simulation
2 (left), and (b) -4ctual (solid) and estimated (dashed) outputs for the testing data for
Simulation 2 (right)

5.7.3 Simulation 3

In this simulation, the evolutionary variable-structure neural modeling with the following

settings is applied: n/finSlope = -1 x 10-~, BackStep = 1000, w, = wb = 0.0005, X =

2 x IO-^, y = 7 x IO-^, N = 50, 11, = 2, n = 100.

Figure (5.6) shows the curves of the cost function as well as the complexity term of

this simulation. The algorithm stops at 1 = 4; however, since the cost function of the

network with two neurons is lower thm that of the one with three neurons, the algorithm

introduces the final network with two neurons as the output h c t i o n . The jumps in the

complexity term when a new neuron is added play an important role in this selection

(as expected). The jumps in the complexity curve correspond to the points where new

neurons are added. Notice that the defined complexity term depends on the number of

neurons directly and as a result adding a new neuron can make a significant change in

the complexity. These sudden jumps in cornplexity term were not present in the case

of FIR modeling. This is because the number of neurons 1 appeared in the complexity

measures of FIR models only in the form of upper bounds of the summations over the

weights of the model. Therefore, adding a new neuron with al1 its weights set to zero (or

small values) would not cause a jump in the complexity tem. However, as mentioned

CHAPTER 5. ARX MODELS: ST-4BlLITY AND LEARN12VG 136

Figure 5.6: (a) Cost function (left), and (b) Complexity term (right) for Simulation 3

above, the complexity terms defined for ARX models contain multiplicative term of I and

therefore create the jumps.

Also, notice that after adding a new neuron there always exïsts a period of rapid

oscillations in the complexity curve. Oscillations can be reduced by choosing smaller

values of w, and wb at the expense of having a slower training procedure. In other words,

these variations are due to high values of adaptation parameters w, and zub and reducing

the values of these parameters would reduce the variations, but would make the entire

training process undesirably slow.

The output network has the training cost function and empirical error of 0.1216 and

0.0436, respectively. The complexity term for this network is 88.4046 .
--.su

Figure (5.7.a) shows the positive real root of the best network of each generation. As

can be seen, the location of the real positive root for the output function is 0.8289, which

is iess than one and therefore the resulting network is stable. Figure (5.7.b) depicts the

performance of the network against the testing data. The empirical error for the testing

set of data is 0.0458 . This value being close to the training value indicates that the mode1

has avoided overfitting the data.

The direct cornparison of the simulation results given here with those of the literature

may not be possible as the cost function used in al1 existing simulations in the Literature

Figure 5.7: (a) Positive real root of the best network of each generation for Simulation
3 (left), and (b) Actual (solid) and estimated (dashed) outputs for the testing data for
Simulation 3 (right)

is the empirical error, calculated as the sum of the squared error (which is significantly

different kom the one used here). Also, in some cases (such as [38]), it seems that

the entire data set has been used for training and as a result the cornparison between

the testing-training balance may not be possible. Moreover, in none of the literature in

CSTR modeling is the issue of stability mentioned. However, judging from the overd

form of the estimated and actual curves, it seems that the t r a c h g error in [38] rnay be

slightly smaller than the graphs given here.

Each simulation in this section takes between 300 to 420 minutes on a computer with

400MHz Pentiurn II processor.

5.8 Discussion

Here, the results of the chapter are discussed:

1. The above simulations indicate that the proposed algorithm can provide -4RX mod-

els that have relatively similar performances on the testing and training data.

2. As can be seen in Simulation 1, without including the value of the positive real root

into the optimization process, the algorithm may results in models whose stabiliw

CHA4PTER 5. ARX MODELS: STABUIITY AND LEA.€?NLNG 138

is unknom. This encourages the use of non-zero y. However, the condition for

stabiliQ is a sufficient one, and even when the condition is violated the model may

still be stable-

3. As in the FIR case, the resulting model depends on the algorithm settings, i-e.

different values of N, w,, zub, A, y, BackStep and MinSlope would give different

models of the training data. At the same time, one can use the above settings

to implement the objectives of the modeling process. As an example, if a fast

training process is desirable, srnaller values of N , higher values of w, and wb, and

srnaMer values of Backstep can be used. Repeating the training process to find the

"appropriate settings" may be a more reliable strategy.

4. Since the number of hidden neurons 2 appears in the complexity term explicitly, one

can expect to see a jump in the cost function when the variable-structure algorithm

adds a new neuron to the structure. This jump seems to perfonn a vital role in

evolutionary variable-structure neural modeling, as such a sudden jump in the cost

function may easily stop the search.

5. The bounds on the sample complexity are distribution-free, and as a result are

highly conservative. Tighter bounds can be found assuming particular probability

distributions (or even families of probability distributions), as in the case of FIR

modeling.

6. The idea of forming the covering set of a function family by grading the parameter

space (introduced by Barron [7]) seems to be both feasible and practical. Although

the process rnay be tedious and time-consuming, in some applications where relia-

bility plays a more crucial role than the computation time, one may choose to use

this process in order to gain confidence in the learning behaviour of the model.

7. Modeling of the CSTR system (which is used in literature as a benchmark of nonlin-

earïty) shows that both evolutionaq algorithms introduced here c m model complex

nonlinear dynamic systems.

The results of this chapter can be briefly reviewed as follows.

A new sufficient condition for stochastic stability, geornetrical ergodicity, and a-

mixing properties of sigrnoid neural networks is presented. This condition is defined

over the parameters of the network and can be easily evaluated.

With sufficiently large values of y, stable neural models of CSTR system can be

obtained.

Chapter 6

Modeling of Neuromuscular Blockade

6.1 Introduction

For a patient undergoing surgery, unconsciousness may not sufEce: as some muscles rnay

move due to involuntarily rnuscular activities. In order to avoid such unwanted movement,

drugs (such as atracurium) are injected to create muscle relaxation or neuromuscular

blockade. The amount and timing of such injections play critical roles in overall medical

procedures as too small a dose of the drug may not block the motion completely and

an excessive dose of such drugs may cause long term neuromuscular disorder. Accurate

identification and control of the neuromuscular blockade system is therefore important.

Unlike the level of unconsciousness which cannot be measured easily, the level of muscle

relaxation can be monitored on-line and non-incisively via evoked EMG responses. This

has encouraged a number of researchers to develop experimental dynamic models for this

nonlinear system. Al1 such models are based on the average values of some parameters

that Vary significantly from one person to another. This variability, together with the

nonlinear nature of the model, suggests that more sophisticated models such as neural

networks might be used to provide more accurate estimation of the system.

In this chapter, neural networks are applied to obtain a nonlinear model of the response

of the neuromuscular blockade system to drugs such as atricuriurn. Since real data were

not available, a parametric model based on the chemistry of the problem is used to

simulate the actual system. Section 6.2 describes the entire process of neuromuscular

blockade and the model which will be used. In Section 6.3, a sigmoid neural model

is developed for the process, and the performance of the developed model is assessed

against a set of testing data. Section 6.4 discusses the results, and Section 6.5 concludes

the chapter.

6.2 Muscle Relaxation and Neuromuscular Blockade

Define ~ (t) a s the input dose of the drug and ~ (t) as the plasma concentration of the

drug. In Pharmacokinetics, it is shown (see 1151 for example) that after a dose of drug, the

plasma concentration of arracurium deches rapidly in two exponential phases correspond-

ing t o distribution and elimination. The elimination compartment models a phenornenon

referred to as "Hofman elimination" [9]. As a result, combining the two compartments

together; one czn mode! the relation between ~ (t) and u (t) as a second order linear s y s

tem. Based on the empiricd data gathered Erom different patients, the transfer function

of this system is reported as [15]:

where u(s) ar?d C,(s) repïesent the Laplace transforms of u(t) and ~ (t) respectively, and:

z = 0.0940 min-'

pl = 0.3247 min-'

p* = 0.2079 min-' .

Similarly, to characterize different aspects of drug effect, a third cornpartment known

as the "eEert ccmpartrnent" is introduced. This compartment is connected to the central

cornpartment and relates %(f) to ce(t). The signal c,(t) determines how the effective

concentration of the drug in blood varies through tirne. The effect compartment mhich

describes the dynamics of effective concentration of the drug can be expressed as foilows:

wheïe C,(s) represent the Laplace transform of c,(t), po = 0.9910 min-' and k =

Including the delay between the central and effective cornpartments, the overall trans-

fer hnction from u (t) to e&) can be expressed as follows:

where the values of z, po, pz and pz are given above.

Now, based on c&), one can calculate the desired output level of the neuromuscular

blockade, narned as r (t) . This variable, which is normally expresse& as a number between

O and 100 at each time t: indicates the level of blockade, i.e. 1û0 is regarded as M l

muscular activity and O as fidl paralysis. The relation between express r (t) and c&)

reveals the nonlinear behaviour of the system. Experimentally, it has been observed

that the functional dependency between r (t) and c&) is mainly o f saturation type. In

Pharmodynamics, this saturation effect for atracurium is normally modeled by the HiII

equation [9]:

where ceso = 0.404rnl-' pg is the drug concentration a t 50 percent effect. The reported

value for v in Hill's equation is 2.98 .

The existence of this saturation element makes the entire process a nonlinear system

and calls for the use of a nonlinear model to describe the system- In the next section,

this system is modeled using SNN's.

6.3 Neural Modeling of Neuromuscular Blockade

Since real data from the neuromuscular blockade syst em were no* available, simulat ed

data representing the actual system are formed using the model described above. Then,

the training and testing of performance of our neural nets wiU be assessed using the

resulting simulated data-

The discrete model is assumed to have the following form:

where the sampling time is assumed to be 20 seconds. This is due to the fact that in the

actual system the input rate as well as the output measurements are updated every 20

seconds. The delay of one minute between the input and the output traasiates to roughly

a delay of 3 samples in the discrete model.

In order to emulate the noisy nature of actual EMG measurement systems, a sequence

of normally distributed random numbers (~ (t)) "th mean of zero and variance of 3.5

has been added to the output. The training and testing data sets are then normalized

such that the variables r and u fa11 in the interval of [-1 11. The training and testing

data set consist of 450 and 550 input-output samples, respectively. Since it is knom that

the neuromuscular blockade is a stable system, i t is desirable to ensure that the resulting

neural model is stable (geometrically ergodic). -4s a result, in the following modeling task,

a non-zero y is used.

The evolutionary variable-structure neural modeling is used for the training. The

settings of the algorithm are the following: N = 50, w, = zub = 0.0005, X = 0.0002, y =

0.08, e = 0.05, MinSlop = -1 x IO9, BackStep = 1000, Zr,, = 2, n = 100 .

The algorithm stops after generating a network with 3 neurons; however, due to the

lower cost function of the last network with two neurons, the latter network is used as the

output of the algorithm. This can be seen in Figure (6.1 .a), which shows the cost function

evaluated for the best network of each generation. Due to the jump in the value of the

complexity term, there exists a jump in the overall cost function that makes the three-

neuron-networks too costly. The evohtion of the complexity term is shown in Figure

(6 The jump in the complexity term can be seen in this graph. The cost function,

the empirical error and the complexity term for the resulting two-neuron network are

Figure 6.1: (a) Cost fûnction (left), and (b) Complexity term (right)

0.121 8, 0.0382, and 93.2590, respectively.

Figure (6.2.a) shows the location of the positive real root of the characteristic poly-

nomial of the best network of each generation. The value of the positive real root (PRR)

for the resulting network is 0.8111, which indicates that the resulting network is stable.

In Figure (6.2.b), the performance of the resulting network against the testing data set is

depicted.

The empirical error on the testing data is 0.0385, which is very close to the testing

one. Mso, from Figure (6.2.b) one can see that the estimated curve closely tracks the

actual one.

In order to see the prediction performance of the neural model more clearly, in Figure '

(6.3), the auto-correlation of the prediction error is depicted. -4s c m be seen, the only

point with high correlation corresponds to zero shift of the signal. This shows that the

error signal is merely a noise and contains little information.

This can be further seen in Figures (6.4.a) and (6.4.b), where "the power spectral

density" and "the cumulative integrated power spectral" of the error are depicted, re-

spectively. As can be seen in Figure (6.4.a), the spectrum of the error is relatively Bat

which resernbles that of a white noise. The srnall increase in the power of the signal

a t high frequency indicates that the model is less successful in prediction of high fie-

4 8 0 20 a b<) al I o 0 Io) IW 180 180 :

w u -

Figure 6.2: (a) Positive real root of the best network of each generation (left), and (b)
-4ctual (solid) and estimated outputs for the testing data (right)

400 500
Sample Shift

Figure 6.3: Auto-correlation of the empirical prediction error

Figure 6.4: (a) Power spectral density of the empirical prediction error (left), and (b)
Cumulative integrated power spectral density of the empirical prediction error (right)

quency variations. However, since most of the high frequency contents of the signal can

be attributed to the added noise, this may not be a considered as a disadvantage of the

model.

Due to the noisy nature of signal and the jumpy form of the power spectral density,

the curve of the cumulative integrated power spectral is sometimes considered as a more

visually-appealing graph. The curve in Figure (6.4.b) shows the cumulative surnmation

of the power spectral density for any given frequency. The closer this curve becomes to a

straight line, the whiter the signal is. -4s can be seen, Figure (6.4.b) gives a curve which

resembles a straight line which in turn indicates that the error signal is close to the white

noise.

Performing this simulation takes about 300 minutes on a computer with 400MHz

Pentium II processor.

6.4 Discussion

Considering the results obtained in this chapter, the following remarks can be made.

1. The higher values of y result in neural models with higher stability margins. How-

ever, for such simulations, the empirical error of the resulting network might be too

large.

Since the neuromuscuIar blockade system is known to be a stable system, a non-

zero y was used to ensure that the resulting network is stable. However, if having

a neural model with unknomn stability status is still acceptable, one c m set y = 0,

which may result in networks with smder empirical errors and even closer testing

and training errors.

The resulting network performs sirnilady on the testing and training data sets which

further supports the idea of using learning-based cost functions. The fact that the

testing and training errors are very close suggests that the value of X can be further

reduced t O ob t ain even smaller ernpirical errors-

Since the neuromuscular blockade system is known to be time-variant (Le. the

parameters of the system change as the t h e evolves), the model can be designed

to follow the changes of the system assertively. Once a model is developed off-

line and throughout a batch training procedure, it can be updated after a few

samples by including the new measured data points in the on-line training process

and disregarding some of the old training points. Assuming that the computations

involved in updating the neural model can be performed in a few minutes using

a fast computer, the adaptive version of the above modeling procedure is a more

suitable approach, but needs to be confirrned throughout the implementation of the

model on the actual system.

-4 certain dose of atricurium causes different degrees of muscular paralysis on diEer-

ent people so that different mode1 parameters may be needed for different patients.

In order to deal with this problem, one can take an approach similar to the one de-

scnbed in the previous rernark, i.e. using adaptive implementation of the algorit hm.

This way, the modeling process starts with the parameters obtained from the data

taken from different patients and updates the model throughout the process. Also,

characteristics such as weight, age and gender can be used to create models that

work for a ~ O U D of ~ e o ~ l e with certain similar characteristics.

6. The neural model developed here can be use to design a nonlinear controller that

generates the dmg dose input so as to provide a certain level of muscle relaxation-

7. The performance of the neural modeling of the neurornuscular blockade can be best

evaluated using actual data sets taken from the real systems used.

-4 surnmary of the chapter is as follows.

The neuromuscular blockade system can be modeled using neural networks.

Due to the fact that the neuromuscular blockade systems is known to be stable, the

methodoIogy used in this chapter is designed to give a stable mode1 of the system.

The similar performance over the testing and training data suggests that the ob-

tained neural model is a reliable one

Chapter 7

Conclusions and Future Works

In this chapter, the main results of the thesis are briefly reviewed. The main contributions

of the research can be listed as follows.

1. The new inequality on the summation of a sequence of m-dependent r.v.s7 pre-

sented in this thesis helped extending the conventional PAC with i i d . to a more

general fkamework of learning with m-dependent r x s . This new paradigm of m-

dependent learning allows the quantitative evaluation of the learning properties of

FIR modeling procedures. Using the results of m-dependent PAC learning theory,

the learning properties of the following families of neural FIR models are assessed:

Gaussian RBFN's, Reciprocal Multi-Quadratic RBFN7s, at an SNN7s, bipolar expo-

nential SNN's, Volterra NN7s as well as simple linear models. These results give

bounds on the number of training data points which guarantees an accurate and

reliable model and avoids overrfitting the data. These bounds are s h o m to be most

useful when the user has access to large training sets. Moreover, the learning proper-

ties of FIR modeling mith the above families of NN's are compared with each other.

Although the comparison is based on the sufEcient bounds of the sample complex-

ities, the results can still be used in selecting a neural structure. The comparison

shows that Gom the standpoint of learning theory, bipolar exponential networks are

the most desirable neural models.

2. Based on the learning properties of neural FIR models and using the functional de-

pendencies between the learning parameters, complexity t e m s are introduced that

reflect the complexity of learning mith such neural structures. Based on the resulting

complexity terms for neural FIR models, a set of cost functions is constructed that

creates a balance between the empirical error and the complexity of reliable learning

of the model. This cost function can be used to avoid overfitting when the size of

CHAPTER 7. COLVCLUSIOIVS -4ND FUTURE WORKS 150

the training data is small. For a ty-pical task of FIR modeling with small train-

ing setsJ evolutionary neural modeling dgorithms are proposed that consider the

leaniing properties of the model. This is done by minimizing the above mentioned

cost functions and searching for appropriate structure as well as set of parameters

that avoid overfitting. Simulation results testify to the suitable performance of the

proposed algorit hms.

The evolutionary variable-structure neural modeling algorithm is applied to FIR

rnodeling of the paper machine's next-scan-estimation. This shows that when the

sensors are off-line, for the first few scan lines, neural networks can use the previous

information to estimate the future scans (rows). This shows that neural FIR models

can be successfully used to approximate the industrial systems without overfitting

the small training data, provided that an appropriate learning-based complexity

measure is included in the cost function.

-4 set of sufficient conditions for the important properties of stochastic stabifiw,

geometric ergodicity, and geometric a-mïxing properties of two families of SNN's

(atan and bipolar exponential) are presented. These conditions not only evaluate

the important issue of stability for some important neural models, but also allow

the extension of P K learning to a more general learning scheme. Using these

conditions, a new extension of the conventional PAC learning framework is presented

that includes learning with geometrically a-mixing data. This provides a framework

to assess the learning properties of a group of important neural ARX models. In

order to obtain specific results, the PAC learning with geometrically a-mixing data

is applied to evaluate the learning properties of atan and bipolar exponential SNN's.

The results bound the number of training data points that parantees an accurate

and reliable -4- model and avoids overfitting. These results are mainly applicable

to the modeling tasks where the user has access to large data bases.

Based on the learning properties of sigrnoid neural ARX models, complexity terms

are introduced that reflect the complexity of learning Rrith such neural structures.

Then, using the resulting complexity terms for sigmoid neural ARX models, new

cost functions are constructed that create a balance between the empirical error and

CHAPTEEt 7- COW"VUSI0-'VS AND FUTURE WORKS 151

the complexity of reliable learning of the model. For a neural ARX modeling task

(using the above mentioned SNN7s) with s m d training data sets, the evolutionary

neural modeling (similar to that of FIR modeling) is introduced. By minimizing

the above-mentioned cost functions, the algorit hm searches for suitable structure as

well as parameters sets that avoid overfitting. Simulation results obtained from the

modeling of a Continuously-Stirred Tank Reactor (CSTR) testiS to the successful

performance of the proposed algorithms.

6. The evolutionary ARK modeling algorithm is applied to the neuromuscular blockade

system, which resdts in a neural model that learns the system without overfitting

the data. This shows that neural ARX models are capable of approximating complex

systems without overfitting the s m d training data, provided that an appropriate

learning-based complexity measure is included in the cost function.

In continuation of our research the following future works may further improve our

results.

-4s mentioned in Chapter 2, in FIR learning with RBFN's, one can assume a h e d

set of locations for the centers and based on that obtain tighter bounds for the

sample of complexity. This will limit the results to the particular choice of centers

but give more specific and less conservative bounds.

A new algorithm based on the empirical risk minimization algorithm that is intro-

duced in [33] and [34] has resulted in more practical search methods for learning

with i.i.d. data. This a lgor i th , called 'ccanonical smooth estimation", is an exten-

sion of the empirical risk minimization. The algorithm forms an empirical E-cover

set rather than the probability based one. The sample complexity of this algorithm

has been directly calculated based on the sample complexity of the empirical risk

minimization. This suggests that it might be possible to use the results of this t h e

sis to calculate the sample complexity of the canonical smooth estimation, which is

more practical than the empirical risk minimization algorithm.

In order to further evaluate the performance of the introduced cost functions in

CHH4PTER 7. COIVCLUSIONS AlVD FUTURE WORKS 152

dealing with the overfitting problem, one can perform many modeling simulations

with different training and testing sets-

More efEcient non-smooth optimization algorithms might be used to minirnize the

cost functions used in the thesis. However, SIMPLEX and gradient-based algorithms

have already been applied to the problem- The results indicated that the above

methods are not as successful as the proposed E f methods are.

0 From the results of Chapter 4, it seems that the prediction of future rows can be

extended to more than five rom ahead- A set of simulations on predictions of more

rows can determine how many more rows can be accurately predicted.

0 It may be possible to use the results of Tong [22] on the geornetric ergodicity and

geometric strong mixing of nonlinear systems, to create results similar to the ones

introduced for SNiL"s- A careful formulation of the probiem may result in a set of

sufficient conditions on the weights of a RBFN that guarantees the above properties.

-4s mentioned in Chapter 6, the use of actual neuromuscular blockade data taken

from real patients in ARX neural modeling of the system can further assess the

proposed algorithms-

Bibliography

[l] L.G. Valiant. -4 theory of leamable. Comm. ACM, pages pp. 1134-1142, 1984.

[2] M. Vidyasagar. A Theory of Learning and Generalization. Springer, 1997.

[3] A. Blum and R. Kannan. Training a 3-node neural metwork is NP-complete. Proc.

1st workshop on Computational Learning Theory, San Mateo, CA, pages 9-18, 1988.

[4] A. Blumer, -4. Ehrenfeucht, D. Hussler, and M. Warmuth. Learnability and Vapnik-

Chervonenkis dimension. J. AMC, 4 , no. 36:929-965, 1989.

[5] -4. Mokaddem. MLxiing properties of polynomial autoregressive processes. Ann. Inst.

H. Poincare Probab. Statist,, 26, no. 2:219-260, 1990.

[6] A.N. Kolmogorov and V.M. Tikhomirov. E-Entropy and ecapacity of sets in fùnc-

tional spaces. Amer. Math. Soc. Transl., 17:pp. 227-364, 1961.

[7] AR. Barron. Approximation and estimation bounds for artscia1 neural networks.

Machine Learning, 14:115-133, 1994.

[8] B. Dasgupta, H. S. Siegelmam and E. D. Sontag. On the complexity of training

neural networks 116th continuous activation hnctions. IEEE Trans. Neural Networks,

6:1490-1504, 1995-

[9] B. Whithing and A. W. Kelman. The modeling of drug response. Clin. Sci., 59:311,

1980.

[IO] C .G. Looney. Pattern recognition using neural networks: theory and algorithms for

engineers and scientists. Oxford University Press, 1997.

[Il] D. Aldous and U. Vazirani. A Markovian extension of Valiant's leaming model. Proc.

3 i t h Annual IEEE Symp. on the Foundations of Comp. ScL, pages 392-396, 1990.

[12] D. Angluin. Computational learning theory: Survey and selected bibliography. Proc.

24th ACM Symp. on Thy. of Computing, pages 351-369, 1992.

[lS] D. Anthony and N. Biggs. Cornutaional learning theory. University Press, Cambridge,

U-K-, 1992.

[14] D. Anthony, N. Biggs and 3. Shaw-Taylor. The learnability of formal concepts. Proc.

Third Workshop on Computational Learning Theoq, pages 246-257, 1990.

[13] D .A. Linkens, M. Mahfouf, M. Abood. Self-adaptive and self-organising control

applied to nonlinear multivariable anesthesia: a comparative model-based study.

IEE Proceedings-D, 139- no. 4:381-394, July 1992.

[16] D.S. Modha and E. Masry. blinimum complexity regression estimation with weakly

dependent observation. IEEE Trans. Information Theory, 42, no. 6:2133-2145, Nov.

1996.

[17] E. Baum and D. Haussler. What size net gives valid generalization? Neural Com-

putation, 1: no. 1:151-160, 1989.

[18] E. D. Sontag. Feedfomard nets for interpolation and classification. J. Comp. Sys.

Sci., 45, no. 120-48, 1992.

[19] G. M. Benedek and A. Itai. Dominating distributions and learnability. Proc. Fifth

Workshop on Computational Learning Theory, ACM, pages 253-264, 1991.

[20] G. M. Benedek and A. Itai. Learnability with respect to fixed distributions. Theo-

retical Cornputer Sys., 86(2) :377-390, 1991.

[21] H. E. Warren. Lower bounds for approximation by nonlinear manifolds. Trans. AMS,

133:167-178, 1968.

[22] H. Song. Non-linear time series. Oxford Science Publications, 1990.

[23] H.J. Kushner. On the stability of processes defined by stochastic difference-

differential equations. J. Diflerential Equations, 4, no. 3:424-443, 1968.

[24] H.J. Kushner. Stochastic Stability, in Lecture Notes in Math. Springer, New York,

1972.

[25] J. Mason and C. Kambhampati. Predictive control of a rnixing tank using radial

basis function networks. Proc. 35th Conf. Decision and Cont., pages 478-479, 1996.

[26] J.P. La Salle. Stability theory for ciifference equations. MAA Studies in Mathematics,

American Math, Assoc., pages 1-31, 1977.

[27] K. Najazïan, G..4. Dumont and M.S. Davies. A learning-theory-based training al-

gorithm for variable-structure dynamic neural modeling. Proc. Inter. Joint Conf.

Neural Netw O rks (IJCNNSS), 1999.

[28] K. Najarian, GA. Dumont, M.S. Davies, 1. Motabar. Complexity Control of Neural

Networks Using Learning Theory, Part 1: Theory. IASTED Conf. on Neural Networks

(NN720O0), May, 2000.

[29] K. Najarian, G.A. Dumont, M.S. Davies, 1. Motabar. Complexity Control of Neu-

ral Networks Using Learning Theory, Part II: Application in Minimum-Complexity

Neural Modeling of Two-Dimensional Scanning System. IASTED Conf. on Neural

Networks (NN'2000), May, 2000.

[30] K. Najarian, G A . Dumont, M.S. Davies, N. E. Heckman. Neural ARX Models and

P K Learning. Springer's Lecture Notes in Artijkial Intelligence Series, 2000.

[31] K. Wajarian, G.A. Dumont, M.S. Davies, N.E. Heckman. Leaming of FIR Models

Under Uniform Distribution. Proc. The American Control Conference, San Dieo,

U-S. A. (A CC1 999), pages 864-869, June 1999.

[32] K. Najarian; Guy A. Dumont, and Michael S. Davies. P-4C learning in Nonlinear

FIR Models. submztted to: Journal of Adaptive Control and Signal Processing, 2000,

(To appear).

[33] K.L. Bueschner and P.R. Kumar. Learning by canonical smooth estimation, Part 1:

Simultaneous estimation. IEEE Trans on Auto. Control, 42(4):545-556, April 1996.

[34] K.L. Bueschner and P.R. Kumar. Learning by canonical smooth estimation, Part II:

Learning and choice od mode1 complexity. IEEE Trans on Auto. Control, 42(4):557-

569, April 1996.

[35] M. Iosifesco and R. Theodorescu. Random processes and leanzing. Springer-Verlog,

1969.

[36] M. Karpinski and A. J. Macintyre. Polynornid bounds for VGdimension of sigrnoidal

and general Pfaffian neural networks. J. Cornp. Sys. Sci., 1996.

[37] M. Kearns and R. E. Shapire. Efficient distribution-fiee learning of probablistic

concepts. J. Comp. Sys., 48:464-497, 1994.

[38] M. Pottmann and D.E. Seborg. Identification of non-linear processes using reciprocal

multiquadratic functions. J. Proc, Cont-, 2, no. 4:189-202, 1992.

[39] M.C. Campi and P.R. Kumar. Learning dynamical systems in a stationary environ-

ment. Proc. 31th IEEE Conf. Decision and Control, 16, no. 2:2308-2311, 1996.

[40] N.S.V. Rao. Nearest neighbor d e s PAC-approximates feedforward networks. IEEE

International Conf. Neural Networks, pages 108-113, June 1996.

[41] P. Bartlett. The sample complexity of pattern classification mith neural networks: the

size of the weights is more important than the size of the network. Amer. Statistical

Assoc. Math- Soc. Transactions, 17:277-364, 1996.

[42] P. Bartlett, Fischer, Hoeffgen. Exploiting random walks for learning. Proc. 7th ACM

COLT, pages 318-327, 1994.

[43] P. Doukham. Mixing, properties and examples. Sprïnger-Verlog, 1985.

[44] P. Goldberg and M. Jerrum. Bounding VC-dimension of concept classes parametrized

by real numbers. Machine Learning, 18: 131-148, 1995.

[45] P. Koiran and E. D. Sontag. Neural networks with quadrutic VC-dimension, summary

in Advances ion Neural Information Processing, 8- MIT Press, Cambridge, MA, 1996.

[46] S. B. Holden and P. J. W. Rayner. Fast gradient based off-line training of multilayer

perceptron. IEEE Trans. Neural Networks, 6 , no. 2:368-380, March 19%.

[47] S. Chen, S.A. Billings and P.M. Grant. Recursive hybrid algorithm for non-linear

system identification using radial basis function networks. Int. J. Cont., 55, no.

5:f OEil-IO70, 1992.

1481 T. M. Cover. Capacity problem for linear machines, in "Pattern Recognition". by ,
L. Kanak (Ed.), Thomson Book Co., 1952.

[49] V . N . Vapnik. Statistical Learning Theory. Wiley, New York, 1996.

[JO] V. N. Vapnik and A. Ya. Chervonenlas. The necessary and sufficient conditions of

the method of empincal risk minimization. Pattern Recognition and Image Analysis,

1(3):284-305, 1991.

[51] V.N. Vapnik and A.Y. Chervonenkis. On the uniform convergence of relative fie-

quencies of events to t heir pro babilities. Theory O f Pro bability and i ts Applications,

16, no. 2:264-280, 1971.

[52] W. HoeEding. Probability inequalities for sum of bounded random variables. Amer.

Statistical Assoc. Math. Soc. Transactions, 17:277-364, 1961.

[53] 2. Tang and G.J. Kohler. Deterministic global optimal FNN training algorithm.

Neural Networks, 7, no. 2301-311, 1994.

