APPLICATION OF LEARNING THEORY IN NEURAL MODELING OF
DYNAMIC SYSTEMS
By
Kayvan Najaran
B. Sc. (Telecommunications) Sharif University of Technology, Tehran, Iran

M. Sc. {Biomedical Enginearing) Amirkabir University of Technology, Tehran, Iran

& THESIS SUBMITTED IN FARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

DoOCTOR OF PHILOSOPHY

in
THE FACULTY OF GRADUATE STUDIES

DEFARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

THE UNIVERSITY OF BRITISH COLUMBIA
May 2000
(©) Kayvan Najarian, 2000

i+l

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et)
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada
Your file Votre réfdérence
Our file Notre référence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant 4 la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canada

0-612-56593-9

Abstract

Neural networks have been successfully used to model a number of complex nonlinear sys-
tems. Although neural networks can create successful models of some nonlinear systems,
they are known to overfit the data in some other applications. Therefore, in order to
use neural networks reliably, it is necessary to explore the conditions under which neural
models perform equally well on the testing and training data sets. This calls for the design

of the neural models that create a balance between the testing and training performances.

The newly introduced Probably Approximately Correct (PAC) learning theory ad-
dresses the issue of testing-training balance. However, conventional PAC learning only
allows static modeling and cannot be applied to dynamic models. In this thesis, PAC
learning is extended to more general learning schemes that handle dynamic modeling
tasks. The resulting PAC paradigms are then applied to assess the learning properties of
several families of dynamic neural networks, including Radial Bases Functions Networks

, single-hidden-layer Sigmoid Neural Networks, and Volterra Networks.

Another concern with the use of neural networks for some dynamic modeling tasks is
the issue of stochastic stability. Little is known about the stochastic stability of many
neural models used in practical applications. The lack of knowledge over the stability of
neural models further limits the use of such models. In this thesis, sufficient conditions for
stochastic stability of different families of neural networks are presented, which address

the above mentioned concern .

Based on the resulting learning frameworks, evolutionary algorithms are then pre-
sented that search for a suitable suitable dynamic neural modeling which perform equally
well on testing and training data. The evolutionary algorithms are then used for model-
ing of two applications. The first application deals with next-scan-estimation of a two-
dimensional paper basis weight measurement on a paper machine. In the second appli-
cation, a neural model for a neuromuscular blockade system is developed. The results
indicate that accurate and reliable dynamic neural models can be obtained, provided that

the learning complexity of such models are controlled during the training procedure.

ii

Table of Contents

Abstract ii
List of Tables vii
List of Figures viii
Acknowledgement xi
1 Introduction 1
1.1 Background and Motivationo 1
1.2 Contributions L L e e e e e e e e e 5}
1.3 ThesisOutline v e e e e e 7

2 A Learning Framework For FIR Modeling 9
2.1 Introduction e e e e e e e e e e e 9
2.2 Definitions . . . - - . - o o o e 11
2.3 Extension of PAC learning to m-dependent cases. 13
2.4 Learning of RBFN’s With Uniformly-Distributed m-Dependent Data . . . 21
241 Gaussian RBFN's e 25

242 RMQRBEN'S it e e e e e e e e e 27

2.5 Learning of Sigmoid Neural Networks With Uniformly-Distributed m-Dependent

Data e e e e e e e e e e e e e e e e 28
2.5.1 “atan” Sigmoid Functions 32
2.5.2 Bipolar Exponential Sigmoid Functions 33

iii

2.6 Learning of Volterra Neural Networks With Uniformly-Distributed m-Dependent
Data e e e e e e e 34
2.7 Learning of Linear Models With Uniformly-Distributed m-Dependent Data 38
2.8 Using The Learning Results in a Typical Modeling Procedure 39
2.9 Model-Free PAC Learning oot 42
2.10 DISCussion ¢ . v o i i i e 48
2.11 SUMMMATY . . -« « o e 54
Learning and Practical FIR Modeling 56
3.1 Imtroduction« . . e e e e e e e 56
3.2 Structural Risk Minimization Algorithm 57
3.3 Learning-Based Complexity Measures 61
3.4 Number of Neurons in Hidden Layer 67
3.5 Evolutionary Neural Modeling 69
3.6 SimulationResults o L. 77
3.6.1 Simulation1. e 77
3.6.2 Simulation 2. e 79
3.6.3 Simulation 3. L 81
3.6.4 Simulation4 e 83
3.6.5 Simulation 5. L e 83
3.6.6 Simulation6 e 84
3.7 Discussion L Lo e e e e e e e e e e e e e e e e e 86
3.8 SUMMATY - . .« -« v e 89
Two Dimensional Sheet-Scanning System 90
4.1 Imtroduction e e 90

iv

4.2 Monitoring of Paper Quality in a Paper Machine. 91

4.3 Neural Modeling of Basis Weight:.. 94
4.3.1 Simulation 1: One-Row-Ahead Prediction 95
4.3.2 Simulation 2: Two-Row-Ahead Prediction 98
4.3.3 Simulation 3: Five-Row-Ahead Prediction 100

4.4 Discussiono e e e e e e e e e e e e e e 102

4.5 SUMMATY« t ottt e 103

ARX Models: Stability and Learning 104

5.1 Introductionol 104

5.2 Basic Definitions of Stochastic Stability 106

5.3 Geometric Ergodicity of Sigmoid Neural Networks 109

5.4 Geometrically a-Mixing PAC Learning 114

5.5 Distribution-Free Complexity of SNN’s Neural Models. 119

5.6 Minimum Complexity ARX Neural Modeling 126

5.7 Simulation Results 0o, 129
571 Simulation 1. oo oo 132
5.7.2 ‘Simulation 2. 133
5.7.3 Simulation 3. L Lo 135

5.8 Discussion oLl e e e e e e e e 137

5.9 SUMMATY v v o v v et b e e e e e e e e e e e e e e e e e e e 139

Modeling of Neuromuscular Blockade 140

6.1 Introduction L. 140

6.2 Muscle Relaxation and Neuromuscular Blockade 141

6.3 Neural Modeling of Neuromuscular Blockade 142

\'

7 Conclusions and Future Works

Bibliography

153

2.1

4.1

5.1

List of Tables

Bounds on sample complexity of different families of neural networks for

different filter lengths (m). oL L.

Training cost function, training empirical error, testing empirical error and
complexity term for one-row-ahead, two-row-ahead, three-row-ahead, four-

row-ahead and five-row-ahead predictions.

Nominal parameters of a simulated CSTR system.

2.1

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

List of Figures

Sorting neural models based on their sample complexity

Flow chart of fixed-structure evolutionary neural modeling
Three dimensional graph of function f.
(a) Cost function (left), and (b) Complexity term (right) for Simulation 1 .

Actual (solid) and estimated (dashed) outputs for testing data (Simulation

(a) Cost function (left), and (b) Complexity term (right) for Simulation 2 .

Actual (solid) and estimated (dashed) outputs for testing data (Simulation

D) e e e e e e e e e e e e e
(a) Cost function (left), and (b) Complexity term (right) for Simulation 3 .

Actual (solid) and estimated (dashed) outputs for testing data (Simulation

(a) Cost function (left), and (b) Complexity term (right) for Simulation 4 .

Actual (solid) and estimated (dashed) outputs for testing data (Simulation

(a) Cost function (top),and (b) Complexity term (bottom) for Simulation 5

Actual (solid) and estimated (dashed) outputs for testing data (Simulation

(a) Cost function (left), and (b) Complexity term (right) for Simulation 3 .

Actual (solid) and estimated (dashed) outputs for testing data (Simulation

78

79

80

81

82

82

83

84

85

86

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5.1

5.2

5.3

0.4

5.5

5.6

Schematic structure of the scanning unit 92

Schematic control structure for a typical paper machine 93
(a) Cost function (left), and (b) Complexity term (right) for Simulation 1 . 96
(a) Actual (solid) and estimated (dashed) normalized output across row

26 (the entire profile) for Simulation 1 (b) Actual (solid) and estimated
(dashed) normalized output across row 26 (the middle portion of the pro-
file) for Simulation 1 97

(a) Cost function (left), and (b) Complexity term (right) for Simulation 2 . 98

(a) Actual (solid) and estimated (dashed) normalized output across row
27 (the entire profile) for Simulation 2 (b) Actual (solid) and estimated
(dashed) normalized output across row 27 (the middle portion of the pro-

file) for Simulation 2 99
(a) Cost function (left), and (b) Complexity term (right) for Simulation 3 . 100

(a) Actual (solid) and estimated (dashed) normalized output across row
30 (the entire profile) for Simulation 5 (b) Actual (solid) and estimated
(dashed) normalized output across row 30 (the middle portion of the pro-

file) for Simulation 5 101

Schematic diagram of Continuously-Stirred Tank Reactor (CSTR) 129
(a) Cost function (left), and (b) Complexity term (right) for Simulation 1 . 132

(a) Positive real root of the best network of each generation for Simulation
1 (left), and (b) Actual (solid) and estimated (dashed) outputs for the
testing data for Simulation 1 (right) 133

(a) Cost function (left), and (b) Complexity term (right) for Simulation 2 . 134

(a) Positive real root of the best network of each generation for Simulation
2 (left), and (b) Actual (solid) and estimated (dashed) outputs for the
testing data for Simulation 2 (right) 135

(a) Cost function (left), and (b) Complexity term (right) for Simulation 3 . 136

9.7

6.1

6.2

6.3

6.4

(a) Positive real root of the best network of each generation for Simulation
3 (left), and (b) Actual (solid) and estimated (dashed) outputs for the

testing data for Simulation 3 (right)o oL

(a) Cost function (left), and (b) Complexity term (right)
(a) Positive real root of the best network of each generation (left), and (b)
Actual (solid) and estimated outputs for the testing data (right)

Auto-correlation of the empirical prediction error

(a) Power spectral density of the empirical prediction error (left), and (b)
Cumulative integrated power spectral density of the empirical prediction

error (right)

Acknowledgement

I would like to gratefully acknowledge the financial support of the research and myself by
The Department of Electrical and Computer Engineering as well as The Pulp and Paper
Center of The University of British Columbia. I would also like to thank Honeywell-
Measurex Devron Inc. for providing me with the paper machine data. I also like to thank

the following individuals for their great help and support:

@ To my supervisors, Professors Michael S. Davies and Guy A. Dumont, thank you

for your guidance, encouragement, and your friendship.

e To my supervisor, Professor Nancy E. Heckman, I deeply appreciate your helping me

with the mathematical aspects of the thesis and giving me your invaluable guidelines

and encouragement.

® To my wife, my son, my parents and my wife’s parents, thank you for all your

support, encouragement and patience during the period of completing this thesis.

e To my colleagues at ECE and PPC, Greg E. Stewart, Jan A. Bergstrom, Ahmed
A. Ismail, Stevo Mijanovic and Shahram Shirani, thank you for your advice, helpful

discussions and friendship.

Chapter 1

Introduction

1.1 Background and Motivation

Developing models from observed data, or function learning, is a fundamental problem
in many fields, including statistical data analysis, signal processing, control, forecasting,
and artificial intelligence. This problem is closely related to concepts such as function
estimation, function approximation, system identification, and regression analysis. Re-
cently, neural networks have become popular tools in nonlinear function estimation due
to their ability to “learn” and “generalize” rather complicated functions. Multi-layer Sig-
moid Neural Networks (SNN’s) are the most frequently used type of neural networks in
practical applications. However, neural structures can overfit the data, i.e. they may
perform successfully on the training set of data and poorly on the testing one. This is
mainly because the fact that in many applications the complexity of the neural models is
allowed to grow freely during the training process. Therefore, it is necessary to evaluate

and control the complexity of neural models.

Unfortunately, there exists a lack of knowledge over the computational complexity
and generalization capabilities of almost all existing neural architectures and their training
methods. This lack of knowledge has created a serious concern over using neural networks
for sensitive applications where reliability plays a vital role. The need for reliable use of
the computational capabilities of neural networks in modeling of complex system calls for
a more solid approach towards the concepts of “learning”, as well as its application to

neural modeling.

Informally speaking, learning theory addresses the ability of a model to deal correctly
with the data which were not included in the training set, and the amount of calcula-

tion required to perform the approximation process. The above concept, once applied to

CHAPTER 1. INTRODUCTION 2

neural networks, can evaluate the complexity of neural models and avoid overfitting. In
other words, the learning theory can answer some fundamental questions such as: How
confident can one be that the performance of a neural approximator developed to model
an unknown function is within a pre-specified proximity from the actual unknown func-
tion? What is the sufficient number of samples required to train the network (normally
referred to as sample complexity of network)? Is a network A inherently “better” at
generalization performance than a network type B? Does a network type A require fewer
training examples to achieve a given generalization performance than a network of type
B? How would a new neuron added to a particular neural structure affect the overall
computational learning properties of the network? How are the learning properties of a
neural network used for static modeling different from those of the same neural structure
used for dynamic modeling? How can one ensure that the data are not overfitted by a
neural model? While these questions reflect legitimate concerns and can be found in the
literature of many scientific and engineering fields, some will have to be further defined
and specified if a precise answer is needed. For example, the word “better” must be defined

clearly.

It is important to notice that experimental investigation or simulation results cannot
be guaranteed to provide us with reliable answers to this type of questions; they tell us only
about the generalization performance of specific networks applied to specific problems.
Therefore, a more theoretical approach towards the concept of learning is required to

address the computational performance of neural networks.

In 1984, to formulate the idea of learning, Valiant [1], based on computational learning
theory, proposed the Probably Approximately Correct (PAC) learning framework to esti-
mate the generalization capabilities of a given model. This concept created a foundation
to assess the generalization properties of different modeling structures including neural
networks [12], [13], [14]. However, due to some computational problems, evaluation of the
PAC learning property for many types of models (including neural networks) remained
as an intractable open problem. Some of these learning problems are still open, while a

number of such problems were handled as described below.

A parallel development in the theory of empirical processes was to have a profound

CHAPTER 1. INTRODUCTION 3

impact on learning theory. Vapnik and Chervonenkis, working on a theory of uniform
convergence of relative frequencies to probabilities, introduced the concept of” Vapnik-
Chervonenkis (VC-) dimension which proved to be a useful tool in empirical esstimation
of actual probabilities of events [51]. In 1989, the publication of the paper “Lea-rnability
and Vapnik-Chervonenkis Dimension” by Blumer et al. [4] represented another rmmilestone
in the development of learning theory. This paper made a connection between PAC learn-
ing theory and some complexity measures including the VC-dimension. This limk made
evaluation of the PAC learning property for a family of functions tractable by app-ying the
VC-dimension (or similar complexity méaSures) of the family, provided that the complex-
ity measure of the family is finite. The resulting theory provided a theoretical fomundation
for comparing different models from the standpoint of generalization and computational

capabilities.

In the 1990s, there was a burst of publications on learning properties of different
families of neural networks using the ideas of PAC learning. A number of thos:ze papers
introduced upper bounds of VC-dimension and similar complexity measures for p-articular
neural architectures in order to show that those families of networks are PAC learnable.
Others found the families of neural networks for which complexity dimensions ~were not
bounded, and consequently the families which failed to be PAC learnable ([3], [8], [48],
(17], (18], [21], [44], [45], and [36]).

Meanwhile, based on practical results, two families of neural structures have boeen long
known as the most successful architectures for modeling and control applicaticons. The

two families are:

e Single-hidden layer Sigmoid Neural Networks (which is hereafter referreed to as

“SNN’s”), and

e Generalized Single-Layer Networks (GSLN’s) which includes some popular sub-
families of networks such as: Radial Basis Function Networks (RBFN’s), andl Volterra
networks.

A school of researchers suggests that the general class of GSLN’s, using a defin:ed Least

Mean Squared (LMS) method for training, is preferred over SNN’s due to the- relative

CHAPTER 1. INTRODUCTION 4

amount of computation involved in the training phase and the guaranteed convergence
to the global optimum in the parameter space. For example, it is suggested in [46] that
in the case of binary-output networks, from the standpoint of PAC learning, GSLN’s
display a more desirable performance than SNN’s, as they can be shown to require fewer
examples to learn the unknown functions. However, the size of the parameter space is
important and excluding the parameter space from the comparison process makes the
results unclear. Some families of GSLN’s (including RBFN’s) are not truly linear in the
parameters in the strict sense and, depending on the set of parameters to be trained, the
model may or may not be linearly parameterized. For example, in the case of RBFN’s, if
the training algorithm is allowed to update the width or the centers of the basis functions,
the model is no longer linear in its parameters. As a result, LMS can no longer be used for
such cases and no guarantee over the convergence of the parameters to a globally optimal

solution can be given. This will be further discussed in Chapter 2.

In applications of neural modeling, even those with satisfactory results, attention has
seldom been paid to important issues such as the accuracy of the approximation, confi-
dence of convergence (of the model) to the unknown function, the possibility of overfitting
the data, and the sample complexity of the algorithm. Therefore, results are useful for in-
dividual cases, but seldom lead to general properties that might guide future work. This
suggests that conventional PAC learning might be a useful framework to address such
issues in neural modeling. However the learning theory literature indicates that almost
all PAC learning results can be applied only to neural modeling of static systems. Since,
in many applications, neural networks are used to create dynamic models of unknown
systems, it is desirable that learning theory be extended to include dynamic modeling.
This would enable a typical task of dynamic neural modeling to be considered as a learn-
ing process and to evaluate PAC learning properties of the process. The most commonly
used dynamic models in engineering applications are “Finite Impulse Response” (FIR)
and “Auto Regressive eXogenous” (ARX) models. In this thesis, new extensions of PAC
learning are introduced that include dynamic modeling (both FIR and ARX). The results
of the new learning schemes are applied to dynamic modeling with different families of

neural networks.

CHAPTER 1. INTRODUCTION 5

In the case of an ARX modeling task, it is also essential to deal with other issues
such as stability, and the statistical dependency of the resulting processes. As will be
shown later in the thesis, without addressing such issues, it is not possible to even define a
meaningful learning paradigm that includes an ARX modeling task. Moreover, evaluating
the stability of a system is an important part of a typical dynamic modeling task. Dynamic
models for which stability have not been guaranteed can not be used in many industrial

applications.

To show how the learning results can be applied in real world, two nonlinear systems
will be modeled using neural models. The first system is the two-dimensional scanning
sensor for monitoring the basis weight of the paper being produced in a typical paper
machine. The basis weight sensors take the measurements as they move laterally along
the moving sheet of paper being produced. These sensors are occasionally taken off-
line for maintenance purposes or even failure. While the sensors are off-line, the paper
machine is still running. As a result, for some time there are no direct readings of the basis
weights for the paper being produced. Neural networks are applied to use the information
before the sensors go off-line to estimate the basis weights while direct measurement is

not possible.

The second system to be modeled is a neuromuscular blockade system. In many
surgical procedures, two types of drugs are used for anesthesia. The first drug deals with
unconsciousness of the patient and controls the patient’s nervous system so as to make
sure that the patient does not feel the pain. However, an unconscious patient may make
involuntary muscle movements. The second type controls the motion of muscles during
the surgery. Such drugs block the neuromuscular activities of the muscles by generating a
temporary paralysis in muscles, and so make sure that no unwanted motion occurs during
the surgery. In this research, neural networks are used to model the nonlinear relation

between the quantity of the injected drug and the rate of paralysis (muscle relaxation).

1.2 Contributions

The main contributions of this thesis are as follows.

CHAPTER 1. INTRODUCTION 6

e The definition of PAC learning is extended to new learning schemes which include
FIR and ARX dynamic modeling procedures. The resulting new learning schemes
are then applied to different families of SNN’s and GSLN’s, and the learning prop-
erties of such neural models are assessed. The sample complexity (the size of a
training data set which guarantees reliable modeling) of neural dynamic modeling
with different families of SNN’s and GSLN’s is bounded. The specific bounds on
the sample complexity, besides being useful for a systematic modeling task, give the
form of the functional dependency between the accuracy, the statistical confidence,
the characteristics of neural models and the size of the training data. These depen-
dencies are then used to define meaningful complexity measures based on learning
properties of a neural model. These dependencies together with the resulting com-
plexity measures are even more practically useful than the bounds themselves, as
described later. Also, using the bounds, the learning properties of dynamic neural
modeling with different families of neural networks are quantitatively compared.

This comparison helps the user prefer one type of neural models over the others.

e A set of sufficient conditions for stochastic stability of the sigmoid neural ARX
models is presented. These conditions allow quantitative evaluation of stability for

some important families of dynamic neural models.

e Based on the functional dependencies obtained in the sample complexity bounds,
new cost functions that create a balance between the empirical error and the learning
complexity of different families of neural networks (both for FIR and ARX scenarios)
are presented. These learning-based cost functions are shown to avoid overfitting of

the data.

e Using the above mentioned cost functions, new algorithms based on Evolutionary
Programming (EP) are introduced that can be used to identify neural models of
complex nonlinear systems using the learning and computational properties of the
models. These algorithms minimize the learning-based cost functions and are used
in modeling tasks where the available training data sets are small. The proposed
algorithms are meant to avoid overfitting the data and to provide models that

perform equally well against the training and testing data sets.

CHAPTER 1. INTRODUCTION 7

e The EP-based algorithms for training of neural FIR models are used to predict the

future basis weight scans of the paper in a typical paper machine.

e The EP-based algorithms for training of neural ARX models are used to successfully

estimate the nonlinear behaviour of a neuromuscular blockade system.

1.3 Thesis Outline

The outline of the thesis is as follows.

e Chapter 2: An extension of PAC learning which includes nonlinear FIR modeling
is presented. Then, using the new learning scheme, the learning properties of two
families of SNN's, two families of Radial Basis Functions (RBFN’s) and a family
of Volterra networks are evaluated. These results include bounds on the sample
complexity of FIR neural modeling with each of the neural structures. The learning

properties of different families are also compared with each other.

e Chapter 3: In Chapter 3 the focus is given to the FIR modeling tasks, where
a limited number of training data points are available. The learning results of
Chapter 2 are used to generate EP-based algorithms that generate neural models of
such systems. In order to test the performance of the proposed algorithm, a number

of numeric simulations are given in this chapter.

e Chapter 4: One of the proposed evolutionary algorithms developed in Chapter 3 is

applied to predict the basis weight data on the scanning system of a paper machine.

e Chapter 5: This Chapter considers neural ARX modeling using SNN’s. The stochas-
tic stability, geometric ergodicity and geometric a-mixing (strong mixing) properties
of the SNN'’s are addressed, and a set of sufficient conditions for such properties is
presented. Then, the conventional PAC leaning scheme is extended to learning
with geometrically a-mixing data. This leads to a framework to assess the learn-
ing properties of dynamic SNN’s. Based on the learning results, two evolutionary
neural ARX modeling algorithms are presented and tested against a set of numeric

examples.

CHAPTER 1. INTRODUCTION 8

It

|V]

Chapter 6: One of the EP-based algorithms is used for neural ARX modeling of the

neuromuscular blockade system.

Chapter 7: The conclusions of the research along with suggested future work are

given.
is necessary to mention the following remarks regarding the thesis.

Throughout the thesis, some existing lemmas or theorems have been mentioned and
reviewed. In the case of such theorems and lemmas, the name of the person who
presented and proved the theorem and the corresponding reference are mentioned at
the beginning of the statement. All other lemmas and theorems (i.e. the statements

that do not start with a name) are the ones proposed and proved by us in this thesis.

If a technique used for the proof of a theorem is inspired or motivated by a certain
methodology introduced in other works, the name of the person and the reference

to the work is mentioned before the theorem.

Due to the complex notation used in some chapters of the thesis, it was necessary to
modify a very small portion of the notation used in chapter 5. More specifically, the
notation is kept the same throughout chapters 2, 3 and 4, while starting from chapter
5, a few letters and symbols used in the previous chapters have been redefined to
refer to new concepts. Also, notice that the notation used in chapters 5 and 6 is

exactly the same.

The main objective of the applications given in the thesis is to show that the in-
troduced neural algorithms can be used to model industrial and biological systems.
However, in none of the applications are neural networks claimed to be the best
type of structures for modeling of the given systems. In other words, the applica-
tions given here are only used to illustrate the performance of learning-based neural

modeling.

Chapter 2

A Learning Framework For FIR Modeling

2.1 Introduction

In a modeling procedure an unknown function “f” is to be estimated to the prespecified
accuracy “e” and statistical confidence “(1—4)”. In order to perform the estimation, using
a set of input-output training data generated by the function f, an approximator function
“p” is found to model f. The modeling of an unknown system f with a feedforward neural
network h can be considered as a typical example of this procedure. Probably Approxi-
mately Correct (PAC) learning theory, proposed by Valiant 1], relates the accuracy and
confidence of the modeling task. PAC learning and other similar learning schemes allow
quantitative evaluation of the learning properties of modeling procedures in which the
data are independently and identically distributed (i.i.d.) in accordance with a probabil-
ity measure P. The available results in PAC learning theory are applicable only to static
modeling tasks as they make use of Hoeffding’s inequality [52] which is applicable only
to i.i.d. data [20], [19]. However, in many real modeling procedures, the assumption of
data being i.i.d. is violated. As indicated in [39], one important group of applications to
which the results of learning theory with independent data are not directly applicable is
“Nonlinear Finite Impulse Response” (NFIR) modeling, where the output depends on the
present as well as the past inputs. As a result, in an NFIR model, the inputs at times “¢”
and “¢+1” are correlated and consequently dependent [31], [32]. The importance of FIR
models comes from the fact that dynamic systems can often be efficiently approximated
by appropriate FIR models. The main contribution of the present chapter is the extension

of the PAC learning theory to modeling of NFIR procedures.

This chapter also establishes the learning properties of a general family of neural mod-
els. These learning properties are in the form of inequalities that relate the accuracy and

statistical confidence of the models to the number of training data used for modeling.

9

CHAPTER 2. A LEARNING FRAMEWORK FOR FIR MODELING 10

Among different neural FIR models, feedforward neural networks and radial basis func-
tions have been applied in many modeling applications. However, despite the popularity
of feedforward neural networks, the training methods available for such neural models
are relatively complicated and the convergence to the optimal set of weights (parameters)
is not guaranteed. In the case of RBFN’s, provided that only the weights of the basis
functions are to be trained, the optimization procedure becomes a linearly parameterized
one. As a result, for such RBFN’s simple minimization techniques can be used in training
the model. Moreover, such minimization methods guarantee convergence to the optimal
set of parameters. As a result, radial basis functions networks have recently been used
in different modeling applications [38], [25], [47]. It can be observed that restricting the
optimization procedure to the weights of the basis functions reduces the computational
capabilities of RBFN’s but is necessary for linear dependency. Including other parameters
of RBFN’s (such as the ones that change the basis functions) optimization process makes

such models suffer from the same problems as mentioned for SNN’s.

In this chapter, the learning properties of RBFN's, SNN’s, Volterra networks, and sim-
ple linear models are assessed and upper bounds for the sample complexity (the minimum
size of the training data) for NFIR modeling using such neural structures are presented.
The chapter is organized as follows: Section 2.2 gives the basic definitions of the PAC
learning theory. The idea of PAC learning with i.i.d. data is extended to PAC learning
with m-dependent data in Section 2.3. Sections 2.4, 2.5, 2.6 give specific results on the
learning properties of FIR modeling using general families of RBFN’s, SNN’s, Volterra
Networks, and linear models respectively. The main results of these sections (on learn-
ing properties of different families of neural networks) are given in Theorems (2.4.1.1),
(2.4.2.1), (2.5.1.1), (2.5.2.1), (2.6.1), and (2.7.1). In Section 2.8, the results of previous
sections are applied to a typical task of FIR modeling, and the results of modeling with
different neural structures are presented. Section 2.9 describes the concept of model-free
learning, which extends the results of the previous chapters. The main results of this sec-
tion are given in Theorem (2.9.1). In Section 2.10 the results of the chapter are discussed.

Section 2.11 gives the summary of the chapter.

CHAPTER 2. A LEARNING FRAMEWORK FOR FIR MODELING 11

2.2 Definitions

In this section, some of the basic concepts of stochastic learning theory, including m-
dependence, PAC learning with i.i.d. data and the empirical risk minimization algorithm

[50], are reviewed.

The first concept to be defined here is “o-algebra™.

Definition 2.2.1 Suppose X is a set. A (nonempty) collection S of subsets of X ts said

to be a o-algebra if it satisfies the followings.
1. S is closed under complementation; i.e., if A € S, then A°€ S.
2. S is closed under countable union; i.e., A; €S fori=1, 2,..., then U2, A; € S.

The smallest o-algebra of subsets of X that contains every closed subset of X is called

the “Borel o-algebra”.

The following elements will be used throughout the chapter:

o A set X,
e A o-algebra S of subsets of X,
e A fixed known probability measure P on the measurable space (X, S),

e A function set F of measurable functions f : X — [—1/2,1/2]. [The interval
[-1/2,1/2] can be replaced throughout by any bounded interval.]

Now, consider a modeling task in which the unknown function f € F is to be es-
timated. In order to perform the estimation, a set of training data is to be generated
as: z, = {(z:, f(z:))};.,- Also, assume that each z; is independently and identically dis-
tributed according to the probability measure P. An algorithm A, : (X x[—-1/21/2])" —
F, based on the training data z,, generates a function h, € F as an approximator of f,

le.:

CHAPTER 2. A LEARNING FRAMEWORK FOR FIR MODELING 12

hn(f: zn) = An. [(‘Tl'l f(xl))'/ A (xn: f(xn))] (2'1)

PAC learning is defined as follows:

Definition 2.2.2 Suppose that based on z,, where {z,,...,z,} are i.i.d. according to
the probability P, the unknown function f is to be approzimated by a function h,. Then,
a function set F is said to be PAC learnable iff an algorithm A, can be found based on

which for any € and §, there exists “n” such that:
sup Pr{dp(f, hn) <€} > (1 —9) (2.2)
fer :

where dp(f, hn) is a distance between f and h, defined in terms of the probability P.

Hereafter, assume that dp(f, h) = Ep(|f(z) — h(x)|). Wherever the meaning is clear
the index n in A4,, and A, is dropped.

Another useful concept in function learning is an e-cover of a function set.

Definition 2.2.3 An e-cover of a function set F is defined as a set of functions {g;}1—,

in F such that for any function f € F, there is a function g; where: dp(f,g;) < €.

It should be noted that an e-cover for a function set F may or may not exist. If such
a cover set exists, the cardinality (size) of the set depends both on the value of € and the

function set F.

An e-cover with minimal size is called a minimal e-cover, and its cardinality is denoted
as N(e, F,dp). A specific type of learning algorithm known as “the empirical risk mini-

mization algorithm” is now defined:

CHAPTER 2. A LEARNING FRAMEWORK FOR FIR MODELING 13

Definition 2.2.4 Let € > 0 be specified, and let {g:}{_, be an €/2-cover (not necessarily

minimal) of F with respect to dp.

Then the empirical risk minimization algorithm is as follows. Consider a set of i.i.d.
samples {z1,...,z,} € X", distributed in accordance with P. Define the cost functions:
Ji = L5 1 f(z5) —gi(zs)l . i =1,...,q. Now, the output of the algorithm is a function

h = g; such that: Ji = min;<i<qJi-

The last concept to be defined is m-dependence.

Definition 2.2.5 A sequence of r.v.s (Y;)., is said to be m-dependent iff for all j and
k, r.v.s Y;andYy are independent if |j — k| > m. In other words, in a sequence of m-

dependent r.v.s, the radius of dependency is limited to the integer m.

2.3 Extension of PAC learning to m-dependent cases

The existing results in the PAC learning theory are for the cases where input data are
i.i.d., because the fundamental inequalities of the PAC learning theory are based on Ho-

effding’s inequality, which is true only for i.i.d data. This inequality is stated.

Theorem 2.3.1 (Hoeffding [52]) Suppose that (Y;)._, is a sequence of independent

zero-mean 1.v.5 such that a; < Y; < b;. Set: supic;cn |b; — a;| = M, then:

n —902
Pr {z=21 Y; > a} < exp l:m’\{[?] (2.3)

As mentioned before, in order to extend the learning theory to include learning with
dependent data, it is necessary to find an inequality (similar to Hoeffding’s inequality) to
be used for m-dependent data. Using Hoeflding’s inequality, a new inequality to bound
the summation of a sequence of m-dependent r.v.s is now obtained. The method used for

the proof is inspired by the proof of the central limit theorem for a sequence of dependent

CHAPTER 2. A LEARNING FRAMEWORK FOR FIR MODELING 14

data by Iosifescu et al. in [35].

Theorem 2.3.2 Suppose (Y:)._, is a sequence of m-dependent zero-mean r.v.s such that
a; <Y <b;, m>1 and supicic, |b; —a;| = M . Then assuming that n = k(m + 1)

(where k is an integer), we have:

Pr{S ¥ >ab< Dexp | ——2% 2.4
r z=21 P> ay < (m+l)exp i+ 1) (2.4)
Proof:
The proof starts with defining the following new variables :
k
Yj' = Z Yj+(i—1)(m+1) (2-5)

=1

where: 1 < j < m + 1. Notice that Y is a sum of independent r.v.s. Also observe that:

n m+1
S Y=Y (2:6)
i=1 j=t
Now, define the following events:
Evz{ZY}<a} : Euj:.{y;<a/(m+1)} . (2.7)
=1

Showing the complement of an event E as E©:

Pr(Ev°) < nil Pr(Evj) . (2.8)

J_

From the definition of E'v;’s and Hoeffding’s inequality:

CHAPTER 2. A LEARNING FRAMEWORK FOR FIR MODELING 15

Pr(EvS) < T2 (2.9)
HEY) S exP n(m + 1) M?)
Now (2.8) and (2.9) give (2.4) or equivalently:
Pr iY-<a >1—(m+1)exp —_233—— (2.10)
= T n(m + 1) M?

which concludes the proof. O O O

Notice that if there exists no integer k such that: n = k(m + 1), by defining & as:
k = |n/(m + 1)], a similar approach can be followed to extend the result of the theorem
to such cases. However, since generally in modeling applications: n > (m + 1), the
new term is negligible compared to the other parts, and as a result, the assumption of

k =n/(m + 1) being an integer may merely result in gathering a few more data points.

It is important to notice that since in the proof of Theorem 2.3.2, no assumption has
been made on the distribution of the data, the resulting inequality is distribution-free.
This characteristic of the above theorem makes the results applicable to the learning tasks

where the distribution under which the data are generated is unknown.

Theorem 2.3.2 provides a bound for the probability of the summation of a sequence of
m-dependent r.v.s which can be applied to extend the definition of the conventional PAC

learning to the PAC learning with m-dependent data as described below.

Definition 2.3.1 Suppose that z, = {(z;, f(z:))}—, i a sequence of input-output data
where (z1,...,Z,) is an m-dependent sequence, marginally distributed according to the
probability measure P € P. Then, with the rest of the assumptions ezactly the same as
the ones made in Definition 2.2.2, a function set F is said to be “PAC learnable with
m-dependent data” iff an algorithm A can be found based on which for any € and ¢, there

erists “n” such that:

CHAPTER 2. A LEARNING FRAMEWORK FOR FIR MODELING 16

sup Pr{dp(f,h) <€} > (1 —4). (2.11)
feFr

Notice that in practice, one can only calculate the empirical distance between f and h
based on the available data points. The main objective of the learning theory is to have a
quantitative evaluation over the true distance between f and A, i.e. dp(f, k). Therefore, it
is necessary to relate the true distance dp(f, h) to the empirical distance between the two
functions. Next, a lemma is proved that applies Theorem 2.3.2 to evaluate the closeness

of the mean value of a function to its empirical mean.

Lemma 2.3.1 Suppose (: X — [0,1] is a measurable function with respect to a o-
algebra S and P is a probability measure on (X,S). A sequence of training data has
been generated as: {(z:,((zi))}.,, where input data is a sequence of m-dependent r.v.s
identically distributed in accordance with P. If the mean value, Ep({), and the empirical

mean of C, E‘(C), are defined as follows:

Er(C) = [C(a) P(dz) , B(Q) = = 3 (@) (212)
X =1
then:
ne2
Pr{E(C) — Ep(C) > €} < (m + L)exp [— o 1)] . (213)

ome?] .14

Pr{Ep(¢) — E(¢) > €} < (m + 1)exp [“ (m+1)

CHAPTER 2. A LEARNING FRAMEWORK FOR FIR MODELING 17

Proof: First define: Y; = ((z;) — Ep(¢) . Notice that the Y;’s form a sequence of
zero-mean m-dependent r.v.s to which Inequality (2.3.2) can be applied with M =1 and
o = ne. This will result in Inequality (2.13). Inequality (2.14) can be obtained in the
same fashion, assuming Y; = Ep(¢) — {(z;)- D OO

Next, in order to further investigate the new learning paradigm, an algorithm A has to
be defined. Here, a natural extension of “the empirical minimization algorithm” is intro-
duced, that operates over m-dependent input data. The definition of such an algorithm
is straightforward and is defined exactly the same as Definition 2.2.4, except that the
algorithm accepts m-dependent rather than i.i.d. inputs. In this chapter, “the empirical

risk minimization algorithm” refers to the extended definition.

Now, using the empirical risk minimization algorithm and the results of Lemma 2.3.1,
the learning properties of a modeling procedure under the m-dependency of data is eval-
uated. The proof provided here parallels the proof of a similar learning task under i.i.d.

data by Vidyasagar in [2].

Theorem 2.3.3 With the assumptions of Definition 2.3.1, the empirical risk minimiza-
tion algorithm results in PAC learning of F with m-dependent training data to the accuracy

of €. In particular:

sup Pr{dp(f,h) <€} > (1 —9) (2.15)
feF

whenever:

n> 8(m + 1)lnq(m +1)

> - (2.16)

Proof: Since {g;}1; is an €/2-cover for F, there exist an index ¢ such that dp(f, g:) <
€/2. Without loss of generality, suppose that dp(f,g,) < €/2. Again, without loss of
generality, suppose that the g;’s are renumbered such that: dp(f,g:;) > efori=1,...,k

CHAPTER 2. A LEARNING FRAMEWORK FOR FIR MODELING 18

and dp(f,g;) < efori=k+1,...,q. Note that: £ < g—1. Notice that the error involved
in the empirical risk minimization algorithm would be introducing one of the g;’s, where

i=1,....k, as the model h. Define J;, = E‘(If — g¢|), and let the event E be as follows:

E = {J, < 3¢/4and J; > 3¢/4, foralli=1,...,k} (2.17)

From the definition of E, it is known that E C {dp(f,h) < €}. Also:

[
Pr{E®} < Pr{J,; > 3¢/4} + > _Pr{J; < 3¢/4} (2.18)

i=k
Now observe that, for each index %, the cost J; is the empirical mean of the function
|f(.) — g:(.)| based on the available training set. Therefore, Lemma 2.3.1 can be used to
evaluate the distance between J;, the empirical mean, and dp(f, g:), the true mean of the

function [f(.) — g:i(.)|:

a el
Pr{J, — Ep(If = gl) 2 €/4} < (m +L)exp [ﬁ] : (2.19)

where n = k(m + 1). Now, since Ep(|f — gi|]) = dp(f, 9¢) < €/2, then:

. —ne?
< _ .
Pr {Jq > 36/4} < (m +1)exp [S(m - 1)] (2.20)
For J; < 3¢/4 wherei =1, ..., k, following a similar procedure, the following inequality

is obtained:

Pr{J; < 3¢/4} < (m+ 1)exp [8(%51)] : (2.21)

CHAPTER 2. A LEARNING FRAMEWORK FOR FIR MODELING 19

Now, since k¥ < ¢ — 1, the maximum error involved in the overall learning process

would be: g(m + 1)exp [ﬁ%] . In other words:

—ne?)
sup Pr{dp(f,h) <€} > [1—qg(m+1)e —_— 2.22
sup Pr{de(f,) < e} 2 (1 - alm + exp | 5= | (222
which results to: § > g(m + 1)exp[—ne?/8(m + 1)]. Equivalently, when the values of €
and ¢ are fixed: n > (8(m + 1) /ez)lnﬂ";L” which concludes the proof. O OO

Theorem 2.3.3 provides a. constructive method of approximation when the probability
is fixed. The extension of the results for larger probability sets is straightforward and
requires some knowledge of the probability set. Also, notice that similar results may be
obtained for other definitions of dp(f, k) such as the popular Ep[f(.) — g(.)12.

The value ¢ in Theorem 2.3.3 is an indication of the complexity of the function set. In
the case of the distribution-free learning (where no assumption regarding the probability
distribution of data is made), the value of ¢ can be related by another measure of com-
plexity called “P-dimension”, which is in turn an extension of Vapnik-Chervonenkis (VC-)
dimension [49], [37]. Both ¢ and P-dimension are essentially measures that describe the
cardinality of an €/2-cover of the function set. However, in order to construct an €/2-cover

of a function set, the prior knowledge of either ¢ or P-dimension is not required.

Example 1 Suppose that the desired accuracy and confidence of an approrimation task
are 0.08 and 0.92 respectively (i.e. € =& = 0.08). Also assume that the cardinality of
a 0.04-cover of the function set with accordance to dp is less than 10'0 (i.e. ¢ < 10'°)
and m = 2. Using Equation (2.15): n > 99938, meaning that 99938 date points in the

empirical risk minimization algorithm would provide the desired accuracy and confidence.

As mentioned before, the parameter ¢ in Inequality (2.16), plays a vital role in esti-
mation of the overall sample complexity and must be further investigated in the case of
modeling with neural networks. Assume that the e/2-cover used is minimal. In that case,

g can be replaced by N(e/2,F,dp). As can be seen, N(¢/2,F,dp) depends on the prob-

CHAPTER 2. A LEARNING FRAMEWORK FOR FIR MODELING 20

ability measure P, and in case of a fixed-distribution learning procedure, prior knowledge

of P is required to bound N(e/2,F,dp).

In generating a set of input-output data to be used for training of a nonlinear model,
the input samples must cover all the domain of the input. If it is possible to control
the training input data, a set of uniformly distributed input data would be a reasonable
approach. The uniform distribution scatters the input samples over the input domain
and is often used in practice. Uniformly distributed input data are then applied to the
unknown system and the resulting input-output data set is used for training. In the
following section, uniformly distributed input data are considered in order to obtain more

specific learning bounds.

Next, N(e, F,dp) (as an indication of sample complexity) is expressed in terms of the
Lipschitz constant of the function set for uniformly distributed data. Consequently, the
sample complexity is related to the Lipschitz constant of the function set, which in turn
can be expressed in terms of the function set parameters. The following lemma is based

on Example 2 in [6] and Example 6.8 in [2].

Lemma 2.3.2 (Kolmogorov [6]) Let F consist of all functions:
fila, Bl >R

that satisfy f(0) =0, where o, 8 € R and d is the dimension of the input variable. Also
assume that there exists a finite L such that for all f € F:

1£(8) = FIOI S LIE = Clloo » YE= (&1,---,€a), (= (C1s---5Ca) €[, B (2:23)

where:
I€ = Clloo = maxi<i<a [& — Gl -

Now, let P represent a uniform distribution over [a, B]%, and define dp as above.

Then:

CHAPTER 2. A LEARNING FRAMEWORK FOR FIR MODELING 21

—a)d
N(e, F,dp) < 25521 . (2.24)

Lemma (2.3.2) provides an upper bound of N(e, F,dp) for a function set once an
upper bound on the Lipschitz constant of the family is known. In the following sections,
the learning properties of some important families of RBFN’s, SNN's, Volterra Networks
and linear models are studied by finding upper bounds on the Lipschitz constants of those

families, and so investigating the sample complexity of the functions sets.

2.4 Learning of RBFN’s With Uniformly-Distributed m-Dependent Data

A lemma, inspired by [53] and [40], to bound the Lipschitz constant of a general family
of RBFN’s is now given.

Lemma 2.4.1 Suppose a set of RBFN’s F has members expressed as:
fz) =i, aid(rs)

where: [is the number of neurons (basis functions), a = (ai,--..,a) forms the weight
vector of the network with |a;| < M, < oo for all i, ¢;(.)’s are the bounded differentiable
radial basis functions in which r; = ||z — ¢;||, and ¢; is the center of the ith basis function.

Define:
doi(ri) l
dr;

T = SUDgefa,p)¢ |

and form the vector n = (71, ..., m). Further assume that:

SUP;<i<t T < OO

and:

CHAPTER 2. A LEARNING FRAMEWORK FOR FIR MODELING 22
A = Supyq, iy [aifrs < 00
Then:
1. The Lipschitz constant of the function set F is bounded by:
L< Ad.
2. For the function set F defined above:

Ad(B8—c)

N(e, F,dp) < 221" (2.25)

Proof: Note that:
Iz —yll < Vdllz — ylloo

where ||z — y|| is the Euclidean distance between z and y. Now, suppose that a finite Lg

for F can be found such that:

[f(z) = f(W)| < Lellz - yl|

Setting L = /dLpg:

|f(z) = Ffy)l < Lellz—yl
< LE\/EHJ" — Ylloo = Lllz — ylloo

(2.26)

This shows that once an upper bound for Lg is available, an upper bound for the

Lipschitz constant L can be found. In order to find an upper bound for Lg, note that

CHAPTER 2. A LEARNING FRAMEWORK FOR FIR MODELING 23

for a bounded differentiable function such as the defined neural network f, the value
SUD(¢[a,g¢ ||V F(€)]| bounds the variation of the function f over all the domain and along

all the directions, i.e.:

£z) — W)
——— v 2.27
ol = cSag O (227
Now assuming that { = ((1,...,() and 7 = || — &]|:
of . _ L dc,‘é,(r1) dr;
E A l; dr; dé <
! d¢'1,(rz (Clc — Cig)
= | |
Z dr; \/Z 1((1
{ d ’
< Tlal)
i=1
< Z lai|n:
i=1
< A.
Consequently:
Lg < sup VAl < AVA. (2.28)
¢€le.p]
And finally, (2.26) and (2.28) give:
L<Ad (2.29)

which gives a bound for the Lipschitz constant of the function set and proves the first part
of the lemma. Now combining Lemmas 2.3.2 and the bound on the Lipschitz constant,

an upper bound for N(e, F,dp) for the function set F is found. Equation (2.25) is the

CHAPTER 2. A LEARNING FRAMEWORK FOR FIR MODELING 24

straightforward result of substituting (2.29) into (2.24).000

The bound on |d¢;(r;)/dr;| depends on the choice of basis functions. The main re-
sult on the learning properties of RBFN’s comes as a combination of Theorem 2.3.3, and

Lemma 2.4.1 as follows.

Theorem 2.4.1 Consider a set of radial basis function neural networks F as defined
above. Assume that learning is considered under the assumption of m-dependency of the
input training data that are uniformly distributed. Then the empirical risk minimiza-
tion algorithm, performed over a minimal €/2-cover, results in the PAC learning with

m-dependency with the sample complezity bounded by:

€2 €)

p s Sm+1) {[2Ad(ﬁ—a)rln2+ln(m+l)}

(2.30)

or equivalently:

5 > 212220 4 1)exp [—ne?/8(m +1)] (2.31)

where € and § are the positive real numbers that determine the accuracy and statistical

confidence of the algorithm, respectively.

Proof: Knowing that the function set F has an e-cover with finite size, according
to Theorem 2.3.3 the empirical risk minimization algorithm learns the model. Moreover,
direct substitution of ¢ in (2.16) with the upper bound for N(e/2, F,dp) indicated in
(2.25) gives (2.30). OO0

Theorem 2.4.1 provides a framework for learning of a neural modeling task, assum-

ing that the data are uniformly distributed. In such a modeling task, the information

CHAPTER 2. A LEARNING FRAMEWORK FOR FIR MODELING 25

regarding the structure of the network (such as the number of neurons and the size of
the parameter space) is known, and the objective is to use a set of input-output samples
to find the optimal values for the network’s parameters. The empirical risk minimization

algorithm provides a search method that has an associated sample complexity.

Besides the specific bounds on the sample complexity, Theorem 2.4.1 gives the form
of dependency between the accuracy, the statistical confidence, the characteristics of
RBFN’s and the size of the training data. These dependencies can help define meaningful
complexity measures based on learning properties of a neural model, as discussed in

Chapter3.

The above results can be further specialized if the basis functions are known. The
following sub-sections deal with the learning properties of two popular families of such
neural networks. These two families consider Gaussian, and Reciprocal Multiquadratic

(RMQ) basis functions.

2.4.1 Gaussian RBFN’s

A Gaussian RBFN is defined as:

¢i(r:) = exp(=bir}) — exp(—bilcil|*) (2.32)

where 0 < b; < oo is the width (or scattering) parameter of the ith basis function. The
second term normalizes each basis function and guarantees that f(0) = 0. For such a

network, the following theorem can be proved.
Theorem 2.4.1.1 Consider the neural model introduced in Lemma 2.4.1 and suppose
that ¢;(r;)’s are given as (2.82). Forming b as:

b= (bl, bg, ey b[)

define:

CHAPTER 2. A LEARNING FRAMEWORK FOR FIR MODELING 26

Arpn = SUp, p Zi‘:l |a; I\/b_i .

Then with all assumptions of Theorem 2.4.1, the empirical risk minimization algorithm
with m-dependent data performed over a minimal €/2-cover results in the PAC learning

with m-dependency and the sample complezity of the algorithm is given by:

n 8(m+1) .
d
2\/2—Arbfn_d(ﬂ —-— O!) (m -+ 1)
In2 + ln~—+—
{[/e TS
(2.33)
or equivalently:
2V3A,prnd(B-a)]®

5> 2[=] (m + 1)exp [—ne?/8(m +1)] . (2.34)

Proof: For the Gaussian set of basis functions:

i%‘é:—fz = —2b;r; exp(—b;r?) .

It can be seen that the maximum of the absolute value of the above function occurs

at |r;| = —t=, and the maximum itself is: 1/2%. Therefore:
1

2b;
= V_eL H

which results in (2.33). OO0

CHAPTER 2. A LEARNING FRAMEWORK FOR FIR MODELING 27

2.4.2 RMQ RBFN’s

For RMQ basis functions:

Bilr) = —— — ——
Y vz J1+bill?

where 0 < b; < oo is the width (or scattering) parameter of the ith basis function. Similar

(2.35)

to Gaussian functions, the second term normalizes each basis function so that f(0) = 0.

The following theorem describes the learning properties of RMQ RBFN’s.

Theorem 2.4.2.1 Consider the neural model introduced in Lemma 2.4.1 and suppose
that ¢;(r;)’s are given as (2.35).

Then with the assumptions of Theorem 2.4.1 and defining b and Arppn as in Theo-
rem 2.4.1, the empirical risk minimization algorithm with m-dependent data performed
over a minimal e/2-cover results in the PAC learning with m-dependency and the sample

complezity of the algorithm is given by:

n o> SmEL
€
4=A-'rbfnd(ﬁ_a’) ¢ (m+1)
{[33 ¢] ln2+ln—5 }

(2.36)

or equivalently:

6> 2[4Arb33n:(f—a)] (m + 1)exp [—nez/s(m + 1)] . (2.37)

CHAPTER 2. A LEARNING FRAMEWORK FOR FIR MODELING 28
Proof: For the introduced set of basis functions:

doi(ri) __ —birs 1

= T, .
dri 1t \/(1+bi1'i2) (1+b;r2)

The maximum of the absolute value of this function also occurs at |r;] = \/%T’ and the

maximum itself is: %-L‘Z Therefore:

m= 20
3v3

which results in (2.36). OOO

In the next section, following a similar approach, the learning properties of SNN’s are

evaluated.

2.5 Learning of Sigmoid Neural Networks With Uniformly-Distributed m-
Dependent Data

In this section, first an upper bound for the Lipschitz constant of a general family of
three-layer sigmoid neural networks is calculated. This bound is then used to find an

upper bound for the sample complexity of the family.

Lemma 2.5.1 Consider a set of feedforward neural networks F whose members are ez-

pressed as:
f(2) = £izy aio(biz)

where: 0 < o(.) < 1 25 a smooth sigmoid activation function, | indicates the number
of neurons, a;’s are the weights of the output layer and the vector b; defined as: b; =

(b1, - - -, big) Tepresents the weights of the first layer. Further assume that:
i=1 lai| < 00, sup;; [by] < oo

and:

CHAPTER 2. A LEARNING FRAMEWORK FOR FIR MODELING
7 = SUDPyuer [glid(ug)_[<.

Define:

2
Asan = sup \/Ezzl [Z£'=l lail [btkl]
where the above “sup” is taken over the entire parameter space. Then:

1. The Lipschitz constant of the function set F is bounded by:
L< nAsnn\/g .

2. For the function set F defined here:

nAsnn ﬁ(a—a)] 4

N(e,f,dp)§2[¢
Proof:
As in case of RBFN’s:

|f(z) — fW) < Lellz —yl|

Setting L = VidLg:

A

|f(z) - fW)| < Lellz -yl
< LpVd|lz = yllo = Lliz ~ yllo

29

(2.38)

(2.39)

As in RBFN's, it is seen that once an upper bound for L is available, an upper bound

for the Lipschitz constant L can be found accordingly. Now:

CHAPTER 2. A LEARNING FRAMEWORK FOR FIR MODELING

@) = O o con v R

Iz —yli cele Bl

Now assuming that { = ((i,...,¢) and v = =%, b

of < dO'(u du
_ |Z’: dcr(u
t=1
L
< Y lail d"(“)nbzkl
z_.l

<7 2 la:][bik|
=1
Consequently:

LE’ < sup ”Vf(g)" < nAsnn .

€la,8]

eqnarray*

And finally, (2.39) and (2.41) give:

L < nAgaVd

30

(2.40)

(2.41)

(2.42)

which shows that L is a bound for the Lipschitz constant of the function set and proves

the first part of the lemma. As to the second part, Equation (2.38) is a straightforward

result of substituting (2.42) into (2.24) OO0

The assumption of |do(u)/du| being bounded is a requirement of the definition of

sigmoid functions.

The main result on learning properties of sigmoid neural networks comes as a combi-

nation of Theorem 2.3.3, and Lemma 2.5.1 as follows.

CHAPTER 2. A LEARNING FRAMEWORK FOR FIR MODELING 31

Theorem 2.5.1 Consider a set of feedforward neural networks F as defined above. As-
sume that learning is performed under the assumption of m-dependency of the input train-
ing data that are uniformly distributed. Then the empirical risk minimization algorithm
performed over a minimal €/2-cover results in the PAC learning with m-dependency and

the sample complezity of the algorithm is given by:

nz BmtD) { [%Asnnﬂ(ﬂ - a)rh12 falm 1)}

(2.43)

or equivalently:

2nAsnn Vd(8—a)

5> 2[faie=] (m + 1)exp [-ne*/8(m +1)] (2.44)

where € and § are the positive real numbers that determine the accuracy and statistical

confidence of the algorithm, respectively.

Proof: Knowing that the function set F has an e-cover with finite size, according
to Theorem 2.3.3 the empirical risk minimization algorithm learns the model. Moreover,
direct substitution of ¢ in (2.16) with the upper bound for N(e/2,F,dp) in (2.38) gives
(2.43). OOO

Theorem 2.5.1 provides a framework for learning of a neural modeling task. As for
RBFN’s, it is assumed that the structure of the network is available, and the objective is to
use a set of input-output samples to find the optimal values for the network’s parameters:
a;’s and b;;’s (also referred to as “weights”). The empirical risk minimization algorithm

determines one of the search methods to find the foresaid parameters.

Besides the specific bounds on the sample complexity, Theorem 2.4.1 gives the form

of dependency between the accuracy, the statistical confidence, the characteristics of

CHAPTER 2. A LEARNING FRAMEWORK FOR FIR MODELING 32

sigmoid neural networks and the size of the training data. These dependencies can help
define meaningful complexity measures based on learning properties of a neural model,

as discussed in Chapter 3.

The above results can be further specialized if the form of the sigmoid function is
given. The following sub-sections consider some popular families of feedforward neural
networks.

2.5.1 “atan” Sigmoid Functions

First, consider neural networks that include the tan~!(.) or “atan” sigmoid functions.

Thoerem 2.5.1.1 Consider the neural model introduced in Lemma 2.5.1. Further as-

sume that:
o(u) = 2tan~1(u)

Then with all assumptions of Theorem 2.4.1, the minimum empirical risk algorithm
with m-dependent data performed over a minimal €/2-cover results in the PAC learning

with m-dependency and the sample complezity of the algorithm is given by:

€2 TE)

d
n s 8+ 1) { [4As,m\/3(ﬂ - a)] 109 4 1 D) }
(2.45)
or equivalently:

4Asnn Vd(8-a)

5> 2[e] (m + 1)exp [——nez/8(m + 1)] . (2.46)

CHAPTER 2. A LEARNING FRAMEWORK FOR FIR MODELING 33

Proof: For the introduced sigmoid function:

do(u) _ 2 1
du ~ @ l4u? <

R

which results in: 7 = 2. Now following the results of Theorem. 2.5.1 a bound for the

sample complexity of the model can be obtained as in (2.45).00C]

2.5.2 Bipolar Exponential Sigmoid Functions

Now the focus is given to neural networks that apply bipolar exponential sigmoid func-

1—e=¢)

tions of form {T5—7-

Thoerem 2.5.2.1 Consider the neural model introduced in Lemama 2.5.1. Further as-

sume that:

)

1+e—% *

o(u) =

Then with all assumptions of Theorem 2.4.1, the empirical risk -minimization algorithm
with m-dependent data performed over a minimal €/2-cover results in the PAC learning

with m-dependency and the sample complezity of the algorithm is given by:

n> 3@t {[As""‘/a(ﬁ_a)]d1n2+1n———(m+l)}
€ € 0

(2.47)

or equivalently:

Asnn \/E!B—ﬁ)
73

6> 2[] (m + 1)exp [-—nez/S(m + l)] : (2.48)

CHAPTER 2. A LEARNING FRAMEWORK FOR FIR MODELING 34

Proof: For the introduced sigmoid function:

do(u) __ —u
du 2(1-:6_")2 =

D)

which results in: 7 = 1/2. Now following the results of Theorem 2.5.1 a bound can be

obtained for the sample complexity of the model as in (2.47).000

2.6 Learning of Volterra Neural Networks With Uniformly-Distributed m-
Dependent Data

In this section, the learning properties of Volterra networks are discussed. Despite the
similarities of Volterra nets to both RBFN’s and Sigmoid neural networks, due to the poly-
nomial structure of Volterra networks, their learning characteristics should be discussed
separately. As for the previous structures, first an upper bound for the Lipschitz constant
of a family of Volterra neural networks is calculated, and then this bound is used to find
an upper bound for the sample complexity of the family. Although the basis functions
in Volterra networks are defined as hyper-polynomial of degree less than or equal to an
arbitrary p, in this thesis, only the networks up to degree p = 3 are considered. The calcu-
lation of the learning bounds for the networks of an arbitrary degree can be obtained in a

similar manner with the cost of dealing with more complex notation and longer equations.

Lemma 2.6.1 Suppose z = ({1,...,(4). Define the members of a set of Volterra neural

networks F as:
fz) =T, @i+ T8, T2 b45GG + Ty S T GGG
where: a;’s, bij’s, and ¢iji’s are the weights of the network. Further assume that:
sup; |a;| < 00, sup; j; [bij| < 00, SUP; >, x5 lCiji| < o0

Assuming M = max{|c|, |B]|], define:

CHAPTER 2. A LEARNING FRAMEWORK FOR FIR MODELING 35

d
B, = |ak| + M z [bikl + 2ﬂ’[lbkkl
i=1, ik
d d d
+ M2y > ekl +2M7 Z |cine] + 3M? [crr]
i=1 j=i, j#k =1, iFk

and:

Ayor = sup [, l \fj (Bk)zJ (2.49)
k=1

where the above “sup” is taken over the entire parameter space. Then:
1. The Lipschitz constant of the function set F is bounded by:

L S Avot \/2

2. For the function set F defined in this lemma:

[A,.ap/i(ﬁ—a)] d
<

N(G,j:,dp) <2

(2.50)

Proof:

As in the case of RBFN’s and sigmoid neural networks, it can be seen that once an
upper bound for Lg is available, an upper bound for the Lipschitz constant L can be

found accordingly. Also:

CHAPTER 2. A LEARNING FRAMEWORK FOR FIR MODELING 36

Now
of, _
OCk

<
<
+
<

m .
@) = Il o sup vl - (2.51)
|z — il celafld
d d d d
lax + S0 b+ 2bCe+ D Y. ciirGG + > 2caCle + 3ckinCE
i=1,i%k =1 j—-i, i#k i=1, ik
d d
lael +1 Y. bl + [2bxCe| + | Z Z GGl +1 > 2cirGiCel + [3ckrCE]
i=1, itk 1—1]—z J;ek =1, ik
d
lael + D bl lGil + 2[brel|C] + E Z |cizel GG
i=1,i#k i=1 j=1, j¥k
d
S 2lcuxl|GlICk] + 3lekex!ICE]
i=1, i¥k
d d d d
lag] + M S bl + 2M bkl + MEY" S el +2M* D0 ea| + 3M?|crxe|
i=1,i%k o1 j=i, gk =1, gk
By .

This means that:

IA

d
\, kz_: (B)®

S Avol -

slkgl 2

Consequently:

Lg < sup ||[VFQ)
¢€le,p]

< Avol .

And finally, with a discussion similar to the ones given for RBFN’s:

CHAPTER 2. A LEARNING FRAMEWORK FOR FIR MODELING 37

L S A‘ual\/a- (2.52)

which shows that L is a bound for the Lipschitz constant of the function set and concludes
the proof of the first part. As to the second part, Equation (2.50) is a straightforward
result of substituting (2.52) into (2.24). 0OO

The main result on learning properties of Volterra neural networks comes as a combi-

nation of Theorem 2.3.3, and Lemma 2.6.1 as follows.

Theorem 2.6.1 Consider a set of feedforward neural networks F as defined above. As-
sume that learning is performed under the assumption of m-dependency of the input train-
ing data that are uniformly distributed. Define Ayy as above. Then the empirical risk
minimization algorithm performed over a minimal €/2-cover results in the PAC learning

with m-dependency and the sample complezity of the algorithm is given by:

d
5z 8mtl) {[Muan/c‘z(ﬁ - a)] o2+ 1 F 1)} (2.53)
€ € é
or equivalently:
[um(ﬁw—w]“
§>2 ¢ (m + 1)exp [—neg/S(m + 1)] (2.54)

where € and & are the positive real numbers that determine the accuracy and statistical

confidence of the algorithm, respectively.

Proof: Knowing that the function set F has an e-cover with finite size, according
to Theorem 2.3.3 the empirical risk minimization algorithm learns the model. Moreover,
direct substitution of ¢ in (2.16) with the upper bound for N(e/2,F,dp) in (2.50) gives
(2.53). OOO

CHAPTER 2. A LEARNING FRAMEWORK FOR FIR MODELING 38

In some system identification and control literature, the use of Volterra networks to
model an unknown systems is referred to as nonlinear system identification. Historically,
Volterra polynomials were used in system identification before other types of nonlinear
models were widely used. In this thesis, the name “nonlinear system identification”, is

used in its wide sense.

2.7 Learning of Linear Models With Uniformly-Distributed m-Dependent
Data

Due to the importance of linear FIR models, and to compare the learning results of
different neural structures with those of a simple linear model, linear models are now
considered. Consider a family of linear functions. Suppose £ = ((1,.--,{4). Define the

members of a set of linear models F as:
f(x) = Zle a;G; .

The linear model is a special case of Volterra network where only the a;’s are assumed
to be non-zero. As a results, the bounds on the learning properties of a linear model can

be easily obtained as follows.

Theorem 2.7.1 Consider a set of linear models F as defined above. Assume that learn-
ing is performed under the assumption of m-dependency of the input training data that

are uniformly distributed. Define Ayn as:

k=1

Alin = Sup [zd: |ak[2] (2.55)

where the above “sup” is taken over the entire parameter space. Then the empirical risk
minimization algorithm performed over a minimal €/2-cover results in the PAC learning

with m-dependency and the sample complezity of the algorithm is given by:

CHAPTER 2. A LEARNING FRAMEWORK FOR FIR MODELING 39

d
vz St { [2Aun\/z(ﬂ —a)] o +1n(m§L1)} (2.56)
or equivalently:
5> ol === L ep [~ne?/8(m +1)] (2.57)

where € and § are the positive real numbers that determine the accuracy and statistical

confidence of the algorithm, respectively.

Proof: As mentioned above, linear models are special cases of Volterra networks, and
as a result, the proof for this theorem parallels that of Volterra networks, and will not be

given here. OOO

2.8 Using The Learning Results in a Typical Modeling Procedure

In modeling of unknown systems, the structure as well as the parameter space of the
neural model is often fixed. The characteristics of the parameter space, such as the
number of neurons and the maximum size of the network’s parameters, are fixed before
training. The desired values of accuracy and statistical confidence are also pre-specified.
The inequalities of the previous sections then determine a sufficient size of training data

to guarantee the pre-specified levels of accuracy and confidence.

The following examples further clarify the approach.

Example 2.8.1 Suppose that the i.i.d. sequence (u;)2; has been generated according to
a uniform distribution over the interval of [0, 1]. Also, assume that the stochastic process

y(t), t =to,to +1,...,00, depends on the random variables (u;)i_,_, through a function

f, te:

CHAPTER 2. A LEARNING FRAMEWORK FOR FIR MODELING 40
Y(t) = f(Uttort Uttor2y - - -5 Ut) -
Now define the random variable z; as:
T = [Uemtoir Ytmtoi2 --- U]’ € X

where X is [0,1]%. As a result, the z,’s are t,-dimensional t,-dependent random vectors

and:
y(t) = f(=) -

Now consider an NFIR modeling task for which f is assumed to be an unknown member
of a family of atan SNN’s. With the above formulation and using Theorem 2.5.1.1, the
empirical risk minimization algorithm applied to this problem results in PAC learning with

to-dependent input data where: t, =m and m =d.

In order to have a better evaluation on the sample of the algorithm, let: t, =2, e =
§ =0.08, [= 10 and for all i: |a;| < 0.1, [b;| < 0.1 which results to: Asn < 0.0447. For
the above choices, according to Inequality (2.45), a bound for the sample complexity of the
algorithm is: n > 16225. This means that if the training set includes more than 16225

sample points, the algorithm guarantees the prespecified values of accuracy and confidence.

The next example describes a similar identification task using a family of Gaussian
RBFN’s. In order to compare the bounds on sample complexity of SNN’s with those of
RBFN’s, the comparison must be made for networks with similar computational capa-
bilities. In other words, the number of hidden neurons as well as the size of parameters
in both networks must be set to give similar modeling and approximation accuracies. In
literature (see for example [10]), based on the results of applying both SNN’s and RBFN’s
to the same applications, experimental rules have been presented to relate the structure
of SNN’s and RBFN’s that often result in similar performances. In other words, these
rules relate the number of hidden neurons of SNN’s and RBFN’s such that equivalent
classification and modeling performances are achieved. According to the table given in

[10], assuming the same size of |a;|’s and {b;|’s , RBFN’s normally often use almost 4

CHAPTER 2. A LEARNING FRAMEWORK FOR FIR MODELING 41

times as many neurons as SNN’s for the same level of accuracy. This ratio is attributed
to the fact that RBFN’s are local approximators, needing more neurons than in the case
of non-locally distributed approximators such as SNN’s. However, since these are experi-
mental rules, and in order to have a more objective comparison, here it is assumed that
all the settings (the size of the parameter space and the number of hidden neurons) are

the same, as indicated in the following examples.

Example 2.8.2 Consider the identification task described in the previous erxample and
assume that instead of a set of sigmoid functions, a family of Gaussian RBFN'’s are used.
Further assume that: t, =2, € = 6§ = 0.08 ,] = 10 and for all i: |a;| < 0.1, |b;] < 0.1
which results in: Apypn < 0.3162. For the above choice of values, using Theorem 2.4.1.1,
the modeling task is learnable and the sample complexity of the algorithm is bounded by:

n > 491710.

As can be seen, according to our bounds, even for the same number of neurons, Gaus-
sian RBFN’s require more training data points than atan SNN’s. The next example deals

with the same procedure when RMQ basis functions are used.

Example 2.8.3 With all assumptions of Example 2.8.2 except using RMQ) basis function
for the network instead of Gaussian ones, using Theorem 2.4.2.1 one can show that the
modeling task is learnable. Furthermore, in the case of the given numerical values in
Ezample (2.8.2), an upper bound on the sample complezity of the algorithm is given by:
n > 109860.

The results obtained above will be discussed in details in Section 2.10; however a simple
comparison of the above bounds, indicates that based on these conservative bounds, SNN’s
exhibit more desirable learning properties and require fewer examples to learn a typical
example. Comparison of the above examples also shows that based on the results obtained
in this chapter, from the standpoint of sample complexity, Gaussian RBFN’s are the worst

type of neural networks among the networks evaluated here.

CHAPTER 2. A LEARNING FRAMEWORK FOR FIR MODELING

i Network | m=2 | m=5 | m=10 m=20 |
Atan SNN 16225 | 37648 77357 164655
Bipolar Exponential SNN || 15216 | 35630 73657 157598
Gaussian RBFN 109865 | 988616 | 420693 820112
RMQ SNN 491710 | 224923 | 1820849 | 3493081

42

Table 2.1: Bounds on sample complexity of different families of neural networks for dif-
ferent filter lengths (m).

It is insightful to observe the way sample complexity grows with the filter length
“m”. In order to see this, assume that the model parameters are chosen as follows:
€ =06 =0.08,] =10 and for all i: |a;| < 0.1, |b;] < 0.1. Then, for different values for m
and using the bounds obtained in this chapter, Table (2.1) for sample complexity bounds

for different families of neural networks can be formed.

As can be seen from the table, from the point of view of sample complexity, bipo-
lar exponential SNN’s and Gaussian RBFN’s are the most and least desirable forms of

networks, respectively. The results of this table are further discussed in Section 2.10 .

Another practically important issue in neural modeling is now addressed. The conven-
tional form of PAC learning assumes that the data are generated by a non-noisy system.
In many physical systems, either the data generating unit is a stochastic system (with
no notion of any particular function set), or the output of the function set is accessible
only after it is corrupted by additive noise. In such general cases, an extension of PAC

learning known as “Model-Free PAC Learning” is required.

2.9 Model-Free PAC Learning

The learning schemes described in the previous sections assume that A € F. This may
not be true in many real applications, as either F might be an unknown function set,
or the data might be noisy. In such cases, another learning scheme called “model-free
learning” is a more realistic formulation. In this scheme, the approximator function comes
from a known function set H, but no assumption is made about the function set of which

the unknown function f is a member. Then, instead of trying to estimate f directly,

CHAPTER 2. A LEARNING FRAMEWORK FO.R FIR MODELING 43

the algorithm estimates the function in # that best approximates f. Among different
formulations of “model-free learning”, the one given by Vidyasagar in [2] seems to be the
most accurately formulated one. The formulation imtroduced here parallels Vidyasagar’s
model-free learning, extending it to a more general type of learning (i.e. learning with
dependent data). The exact definition of model-free- learning, extended to cover learning

with m-dependent data is given below:

Definition 2.9.1 Introduce the following notation:

® Sets X, Y, U and a o-algebra Son X x Y.

® A fized probability measure P on X.

e A family P of probability measures on X x ¥, where all P € P have the same

marginal probability P on X.
o A family H of measurable functions mapping X into U, called the “hypothesis class.”

® A function l: Y x U — [0,1], called the “loss function.” Based on the loss function
1, for each h € H define an associated function I, : Y x U — [0,1] by:

Ih(z,y) = ly, h(z)],Vz,vy,

and a family of functions Ly = {l : h € H}

With each hypothesis function h and each probability measure P, associate a cost

function:

J(h, P) = /X __ Uiy, h(z)| P(dz, dy) . (2.58)

Also, define the “minimum achievable cost functzon” as:

J*(P) = inf s [y, h(z)| P (dz,dy) . (2.59)

CHAPTER 2. A LEARNING FRAMEWORK FOR FIR MODELING 44

n

Samples z, = {(z:,y:)}., are generated where (z;);_, is a sequence of m-dependent
random variables distributed according to P. Then, an algorithm is considered as an indez
family of mappings A,, wheren > 1, A, : (X xY)" = H and hp, = An(25).

Then the algorithm is said to be “model-free probably approzimately correct to accuracy

€ with m-dependent data” if for any choice of € and &, there ezists “n” such that:
Pr{J(hn, P) > J*(P) +¢} <6 . (2.60)

If when n — oo the above probability approaches zero, the algorithm is said to be

“model-free probably approrimately correct with m-dependent data”.

Next, define “the model-free empirical risk minimization algorithm” which is a natural

extension of the empirical risk minimization to the model-free learning scheme.

Definition 2.9.2 Suppose U defined in Definition 2.9.1 is a subset of R. Assume that
the loss function defined in Definition 2.9.1 satisfies a uniform Lipschitz condition, i.e.

there ezists a finite constant pu such that:
Wy, u1) — Uy, u2)| < plur —ua|, Vu,us e R,Vy €Y. (2.61)

Also, assume that an e/u-cover {gi,...,9¢} of H is available where €g < €. Nert,

calculate the empirical cost functions for all members of the €/ p-cover, i.e. find J;’s as:

n

- 1 .
Ji==2 Uy 0zl 1<i<q. (2.62)

Jj=1

CHAPTER 2. A LEARNING FRAMEWORK FOR FIR MODELING 45

Then, the output of the algorithm is g;, in the €y/u-cover with minimum empirical cost

function, i.e. choose g;, such that:

Jio = min J; . (2.63)

Next, a theorem is proved that deals with learnability as well as sample complexity of

the model-free empirical risk minimization algorithm.

Theorem 2.9.1 Suppose:

1. P is a family of probabilities with the property that every P € P has the same
marginal probability P on X.

2. The hypothesis class H has the property that:
N(e,H,dp) < 00,Ve > 0
8. A loss function l that satisfies the uniform Lipschitz condition of (2.61).

Then (’H,f, l) is model-free PAC learnable. In particular, given any € > 0, choose
{91,---,9q} to be an ey-cover of H with respect to dp for some €y < €. Then the model-free
empirical Tisk minimization algorithm applied to {g1,... g4} is PAC to accuracy €, and

the sample complezity of the algorithm is bounded by:

(2.64)

CHAPTER 2. A LEARNING FRAMEWORK FOR FIR MODELING 46

Proof: First prove that for all P € P and every h;, ho € H:

|J(hl1 P) - J(h27 P)I S ﬂdP(h'],, h?) - (2'65)

This can be proved as follows:

| 7(h1, P) — T (ha, P)|

[/m, Iy, hi(z)) — Uy, ho(z)) P(dz, dy)
fXXY |y, hi(z)) — Uy, ha(z))| P(dz, dy)
b [(@) = ko) P(dz, dy)

u [(@) ~ ha(2)|P(de)
ﬂdp(hl, hg) .

1 VAR PAY

[

Now let P € P be arbitrary, and select h = h{e, P) such that:

J(h, P) < J*(P) + < ';0 : (2.66)

From the definition of J*(P), one can assure that such an A does exist. Since
{g1.--..94} is an €y/2p-cover of H, h must be within a distance ¢/2u from a (possi-
bly unknown) function in the cover set. Assume without loss of generality that the cover

set is renumbered such that dp(h, g;) < €0/2p, which in turn implies that:

J(gq, P) < J(h, P) + €0/2 < J*(P) +¢/2 (2.67)

Assume that the renumbering is such that:

J(gi,P) > J*(P)+¢ 1<i<k, and (2.68)
J(g;, P) < J*(P)+¢6 k+1<i<gq (2.69)

CHAPTER 2. A LEARNING FRAMEWORK FOR FIR MODELING 47

Note that k < ¢ — 1. Now suppose a multi-sample set z, = {(z:, y:) };_,, where (z:);,
is a sequence of m-dependent r.v.s identically distributed according to probability P, is
available. Based on this data set, the model-free empirical risk minimization algorithm
introduces h, € {g1,---,9,} as the output of the model. Notice that the error involved

in the algorithm would be introducing one of the g;’s, where i = 1,...,k, as h,. Let the

event F be:

E = {J(gg, z) < J*(P) + 3¢/4, and J(gi, z) > J*(P) + 3¢/4, i < k} (2.70)

From the definition of E, it can be seen that: E C {J(hs, P) > J*(P) +€}. Now:

Pr{E°} < Pr{J(gq, 2n) > J*(P) + 3¢/4} + zk:Pr{j(gi, zp) < J*(P) +3¢/4} (2.71)

i=1

Next, considering (2.67):

Pr{J(gq, zn) > J*(P) + 3e/4} < Pr{J(gq, 22) — J (g4, P) > €/4} (2.72)

Now, notice that J(g,, z,) and J(g,, P) are the empirical and true means of the func-
tion f,, . Using Lemma 2.3.1 on the difference between the empirical and true means of a
function, the above probability can be bounded as:

ne’] : (2.73)

In the same manner, other probabilities in (2.71), i.e. the ones for 1 < k, can be also

bounded resulting in the same bound as above. Now, since k£ < ¢ — 1, the maximum error

involved in the overall procedure would be: (m + 1) exp [— 5(17%1)] In other words:

Pr{J(hn, P) < J*(P) +€} < (m+1)exp [—%Tf%} - (2.74)

CHAPTER 2. A LEARNING FRAMEWORK FOR FIR MODELING 48

This means that for any arbitrary choices of € and n, model-free PAC learning with

§ > g(m+1)exp [—8(;‘1;;_1)] is achievable. Equivalently, when € and ¢ are fixed:

n> 8(m+l)lnq(m+l)

> = (2.75)

which concludes the proof. 00O

As mentioned in the proof, ¢ is the cardinality of a minimal €/ p-cover of the function
set. This means that the same procedure of calculating an upper bound of this value for
different function sets as in the case of the standard PAC learning paradigm yields similar
results for the model-free PAC learning. In other words, for any of the previous results
on different families of neural networks, the sample complexity of the model-free learning
can be easily extended by replacing e with €;/u, where €5 can be chosen arbitrarily close
to €. Thus it is possible to avoid repeating all the proofs for the model-free learning case

and simply use the inequalities of the standard PAC learning, as mentioned above.

The model-free scheme provides a learning framework that can handle modeling of
non-functional stochastic sources of data assuming different types of loss functions. It
also shows that when using a loss function with x = 1, the computational complexity of
a standard PAC learning scheme is very close of that of a model-free one. This explains
why even though the assumptions made in a standard PAC learning are more restﬁctive
and less realistic, the learning properties of many algorithms are normally assessed within

the standard PAC, and the results are easily extended to the model-free framework.

2.10 Discussion

Considering the results of the previous sections as well as the Examples given above, the

followings remarks can be made.

1. With some modifications, all the results can be extended to PAC learning with
other metric measurements of the distance f and h, such as the popular second or-
der norm. The “model-free learning” paradigm allows the metric measure to belong

to a family of measures rather than just being a particular form of measure such as

CHAPTER 2. A LEARNING FRAMEWORK FOR FIR MODELING - 49

dP(fv h’)'

2. The bounds on sample complexity are sufficient bounds and not necessary ones,
i.e. learning might be achievable with fewer number of training points. There-
fore, the performance of different models cannot be confidently compared with each
other merely based on the given bounds for the sample complexities. Nevertheless,
the presented bounds provide some meaningful functionalities and dependencies be-
tween the parameters of the models and the overall learning performance of the
models. Also, the bounds on the sample complexity are all based on the extension
of Hoeffding’s inequality in the case of i.i.d. data to m-dependent variables. Since
Hoeffding’s inequality is known to give one of the tightest available bounds on sum-
mation of random variables, one can expect the presented bounds to be reasonably
close to the best achievable bounds with the available inequalities. However, nu-
merical examples (such as the ones given in this chapter) reveal that the bounds

are indeed conservative.

3. The empirical risk minimization algorithm not only provides a framework for com-
paring the sample complexity of different function approximation procedures, but
also gives an insight to the behavior of “more practical” types of algorithms. As
mentioned before, all the results presented above are for a standard form of the
empirical risk minimization algorithm, where the availability of a minimal ¢/2-cover
is pre-assumed. However, the results obtained for the empirical risk minimization
algorithm can be useful to describe the properties of other learning algorithms which
do not require an €/2-cover. Such algorithms perform empirical minimization over
the entire family of F rather than the finite set of minimal €¢/2-cover. This can be
interpreted as performing the standard empirical risk minimization where ¢ — 0.
Notice that all the results given above tell us that when € — 0, N(¢/2, F,dp) — o0,
and that such an algorithm will require an infinite number of training examples.
However, the relative rates at which the required sample sizes grow for different
models are more important than the exact value of the bound for each model. As

an example, suppose that the sample complexity of the neural model A, with a

CHAPTER 2. A LEARNING FRAMEWORK FOR FIR MODELING 50

certain number of neurons and a certain size of parameters, grows faster than a
model B with some other structure and parameter space. Then, it can be expected
that the neural model B requires less effort and fewer training data not only for the
empirical risk minimization algorithm but also for many algorithms that perform

global optimization. This idea is further described in the next chapter.

4. It is well-known that the models with larger complexity call for greater sample
complexities. The idea behind this belief comes from the fact that the computation
time (and as a result the computational complexity) of an algorithm increases as the
training algorithm processes more training data. Therefore, the sample complexity
can be considered as an indication of the overall computational complexity of the
model used for approximation. Considering the sample complexity as an indication
of model complexity is the fundamental idea of the structural risk minimization

method (as described in the next chapter).

5. The bounds given for all models indicate that the sample complexity depends not
only on the number of neurons and the dimension of the input, but also on the size
of the parameter space. This means that even without adding new neurons to the
model, and only by increasing the size of the parameter space, one can achieve a
more complex neural model. This is the main point a group of researchers including
Bartlett [41] has been making since the early 1990’s. They believe that the common
trend of adding new neurons to enhance the computational capabilities of neural
networks without paying attention to the size of the parameter space may not be
the best approach in neural modeling. They recommend that the computational
performance of a neural network can be enhanced more systematically (from the
point of view of learning theory) by keeping the number of the neurons the same
and allowing the parameter space to grow larger. This will be further discussed in
the next chapter.

6. The above Examples give a frameworks to assess learning properties for the identifi-

CHAPTER 2. A LEARNING FRAMEWORK FOR FIR MODELING 51

cation of a dynamic system using NFIR models. It is known that in some practical
applications, ARX dynamic systems can be effectively approximated with NFIR
models [16]. However, some properties of ARX systems (including stability) can
not be appropriately addressed with the NFIR approximators.

7. In the bounds given by Theorems (2.4.1.1) and (2.4.2.1) for the sample complexity
of RBFN’s the effect of centers of the basis functions on the overall sample complex-
ity cannot be observed explicitly. The results give the same bound for the sample
complexity of two RBFN’s that use the same parameters but have different centres.
This can be regarded as one of the reasons for our bounds being very conservative.
A more careful investigation of the Lipschitz constants of such families with more
assumptions on the input space as well as the centers might result in a set of bounds
in which the centers play an explicit role. In order to obtain results that incorporate
the centers into the bounds, assumptions on the way the centers are distributed over
the input space would be made. By assuming a grid-type arrangement of the cen-
ters, the above bounds can be further improved. However, such assumptions would
make the results less general as the resulting bounds would be applicable only if the

same grid arrangement is used to form the centers.

8. The bounds for sample complexity of SNN’s and RBFN’s suggest RBFN’s require
more training data than SNN’s. This is in contradiction with the results [46] that
prefer GSLN’s over SNN’s. The main reason for this contradiction is that the
bounds used in [46] for comparison do not consider the size of the parameter space
and are usually based on highly conservative assumptions. Most of the bounds used
in [46] are the ones introduced for binary neural networks in which the values of the
weights are disregarded. They also do not consider the fact the RBFN’s normally
(but not always) require more neurons (10 to 4 times) than SNN’s to perform the
same task of identification or classification with a similar level of accuracy. The two
structures are compared only when the number of hidden neurons for both networks

is assumed to be the same. As shown in this chapter, even with the same number

CHAPTER 2. A LEARNING FRAMEWORK FOR FIR MODELING 52

of hidden neurons, based on our bounds, SNN’s require fewer training data points.
This observation is more compatible with the fact that RBFN’s are more “local”
than SNN’s, and as a result, they might need more data points to reliably cover the

entire input space.

The use of bounds rather than actual values of sample complexity may not be a
reliable approach for such a comparison. Note also that the types of approximations
used in obtaining the above bounds have been slightly different from one neural
structure to another. However, the comparison uses the best available results. This
in turn indicates that if less conservative bounds are obtained, then the results of

the comparison made in this thesis become more reliable.

9. From Table 2.1, it can be seen that atan SNN’s and bipolar exponential SNN’s have
close rates of growth in term of m. Also, these two structures are far superior to the
RBFN's, as far as sample complexity is concerned. Moreover, even with m = 20, the
sample complexities of these two structures are within the typical range of databases

of many real applications such as biomedical and marketing systems.

In order to sort the most popular forms of neural networks based on their learning
properties, the diagram of Figure (2.1) can be used. This diagram shows that
among the four structures compared in the diagram, bipolar exponential SNN’s and

Gaussian RBFN’s are the most and the least preferred types of neural networks.

Also, comparing RMQ and Gaussian RBFN’s, based on the bounds of Table 2.1 as
well as the theoretical bounds given above, it can be observed that RMQ-RBFN’s
exhibit a more desirable learning behaviour. This result is likely to be reliable since
the process of obtaining the bounds is almost the same for both structures. The .
only spot where the two bounds become different is at the final stage when the 7;’s
are to be bounded, and even at that point, the way the two values are bounded is

reasonably optimal for both structures.

The superiority of RMQ-RBFN’s over the Gaussian RBFN's, and the fact they ex-
hibit a better performance as far as the overfitting problem is concerned is reported
in many practical applications, including {38]. Again, this superiority can be at-

tributed to the fact that RMQ-RBFN’s (for the same range of parameters b;’s) are

CHAPTER 2. A LEARNING FRAMEWORK FOR FIR MODELING 53

10.

Bipolar exponential SNN’s

Atan SNN’s

RMQ RBFN’ s

Gaussian RBFN’s

Sample complexity decreases

Figure 2.1: Sorting neural models based om their sample complexity

less local than the Gaussian ones. If two networks are trained with the same set of
scattered data points, and tested against a set of data points that fall in between
the scattered training points (and not particularly close to any of them), then the

less local structures (i.e. RMQ-RBFN’s) create a better approximation.

The above discussion encourages the use of RMQ-RBFN’s. Since RMQ-RBFN’s
have become the most popular RBFN’s used im practical applications (see [38] for
example), in the next section this family is chosen among the different families of

RBFN'’s and used for the simulations.

Considering the sample complexity bounds, an<d using Table 2.1 and the diagram
of Figure 2.1 the same type of comparison can be performed between atan and
bipolar exponential SNN’s. It is found that frorm the point of view of learning, the
bipolar exponential networks require slightly fewer training data points and might
be preferred. However, no practical evidence was found the in the literature to
support the above statement. In order to comply with the trend of the practical
applications, in the next section, atan SNN’s axe chosen to represent the different

families of SNN'’s.

As for the linear and Volterra approximators, simce linear models are special cases of
Volterra networks, the comparison is straightforward. The number of neurons in a

linear model is limited to the dimensionality of the input, while in Volterra networks

CHAPTER 2. A LEARNING FRAMEWORK FOR FIR MODELING 54

11.

2.11

it also depends on the order of approximation. Thus, in a Volterra network, the
higher the order of the input variables to be considered in the approximation process,
the more neurons are added to the hidden layer. The computational capabilities as

well as the need for more training data then increase accordingly.

The bounds on the Volterra networks become more conservative as the order of
the approximation is increased. This is due to the fact that for higher orders, the
approximation of higher moments of the input with the corresponding orders of M
becomes more conservative. This is not the case in other forms of neural networks.
However, since in many real applications of Volterra networks, the second order

approximation is used, the reported results might be more useful.

Since the focus of the rest of the research is on SNN’s and RBFN’s, no simulations
are performed with Volterra or linear models. However, in the next section and
during our description of the minimum complexity modeling, the characteristics of

modeling with both Volterra or linear models are covered.

The value of these results goes beyond their theoretical significance. The size of the
data set that results in PAC learning is a guide to practically useful results, and can
therefore be used to guide a user towards the approximate model and complexity.
Furthermore, the functional dependence of the bounds upon model structure can
be used in designing cost functions that optimize both model accuracy and model

complexity during identification. This issue will be further addressed in the next

chapter.

Summary

The main issues addressed in this chapter are as follows.

Using Hoefiding’s inequality for i.i.d. data, a new equality that bounds the summa-

tion of a sequence of m-dependent r.v.s was derived.

The definition of PAC learning paradigm and all its elements was extended to learn-

ing with m-dependent data.

CHAPTER 2. A LEARNING FRAMEWORK FOR FIR MODELING 55

e Assuming that the data are identically distributed according to the uniform dis-
tribution, the learning properties (including the sample complexity) of a general

modeling task were presented.

e In the case of modeling with general families of RBF'N’s, sigmoid neural networks
(SNN’s) and Volterra networks, the sample complexity was evaluated in terms of

the number of neurons as well as the size of the corresponding parameter space.

e The learning properties of some specific types of RBFN’s and sigmoid neural net-

works were further specified, analyzed and compared with each other.

e The obtained results on learning of different families of neural networks were applied

to assess typical examples of nonlinear system identification with neural networks.

e The functional dependence of the bounds on sample complexity upon model struc-
ture can be used to design learning-based cost functions to be minimized during the

training phase.

e The model-free PAC learning with m-dependent data was defined. The general
properties of such a scheme were evaluated and related to those of the standard

PAC learning framework.

Chapter 3

Learning and Practical FIR Modeling

3.1 Introduction

The modeling approaches described in the previous chapter suffer from the following

shortcomings.

1. None of the learning schemes searches for a model of the unknown function taking
complexity into account as well as accuracy. In practice the algorithm should find

an accurate model and at the same time avoid creating over-complex models.

2. Both conventional and model-free learning schemes require huge training data sets
to assume learning, while in many applications the size of training set is small and
fixed. Even if the learning inequalities ask for more data points, obtaining new data

may not be possible.

Thus, a modeling task based on the previous approaches works best when some infor-
mation about the complexity of the unknown function along with large training data sets
are available. When such conditions can not be satisfied, a more sophisticated method
has to be applied so as to provide the optimal set of parameters, as well as the minimal

structural complexity given the size of the available data set [27], [28], [29].

One such method, introduced by Vapnik in [51], is known as “structural risk minimiza-
tion.” This algorithm, adapted and tuned towards our formulation of neural modeling,
is given in Section 1. Practical algorithms that create a degree of balance between the

theoretical justification and practical limitations of a typical modeling task are then given.

The chapter is organized as follows: Section 3.2 describes different versions of the

structural risk minimization algorithm. In Section 3.3, complexity measures for different

56

CHAPTER 3. LEARNING AND PRACTICAL FIR MODELING 57

families of RBFN'’s, sigmoid and Volterra neural models are found and the corresponding
cost functions to be minimized during the training procedure are devised. The issue
of the number of hidden neurons in different neural models is discussed in Section 3.4.
In Section 3.5, based on the idea of Evolutionary Programming (EP), algorithms are
introduced that can be applied to minimize the non-smooth cost function obtained in
Section 3.3. The proposed EP method, along with two systematic evolutionary methods
for neural modeling, are presented. Section 3.6 describes the results of a number of
numerical simulations that test the performance of the proposed algorithms. The results
of the chapter are discussed in Section 3.7. Finally, Section 3.8 gives the summary of the

chapter.

3.2 Structural Risk Minimization Algorithm

The proposed neural modeling algorithms are extensions of the structural risk minimiza-
tion algorithm [51], which is now described. Two versions of the structural risk mini-
mization algorithm designed for neural modeling are given. In the following formulations,
attention is focused on RBFN’s and SNN’s. Using the results of the previous chapter,
similar algorithms can be devised easily for other neural networks. In the following for-

mulations, the focus is given to RBFN’s while all the fomulations can be extended to

SNN'’s.

In the first formulation, assume that for all functions in F: |a:|v/b; < M < co where
i=1,...,0 and M is a fixed radius of an assumed hyper-sphere of parameters |a;|\/b;.
Now, notice that: A,sp,(l) =M is an upper bound for 3-_, |a;|v/b;. The assumption on
the magnitude of the parameters makes the available learning bounds more conservative,
but is necessary for the nested families of neural networks required by the structural risk
minimization algorithm. The first version of the structural risk minimization algorithm

can be described as follows.

Definition 3.2.1 Assuming the pre-specified values of the accuracy €, the confidence
(1 —48), M and the size of the available set of training data n, “The Structural Risk

Minimization with Variable Structure Algorithm 7 is described as the following steps:

CHAPTER 3. LEARNING AND PRACTICAL FIR MODELING 58

Step 1: Consider a nested sequence of function sets F; C Fi1, where F; is a family
of RBFN’s with | neurons, where i, < | < k. Notice that Arspn(l) is a fized value for
the function set Fi.

Step 2: Find the largest natural number | such that the corresponding inegueality of

sample complezity is satisfied and name it as “k”,

Step 3: Perform the empirical risk minimization algorithm over the function set Fy.
The resulting function (for the particular family of RBFN’s used in modeling) is the output
of the algorithm.

As can be seen, the structural risk minimization finds the simplest function set (within
a certain nested family of function sets) that provides learning with the pre-specified values
of accuracy and confidence, using a training data set with a fixed size. In other words,
this method searches for the simplest possible candidate in 2, F; to approximate the

unknown function, considering the size of the available training data set.

In order to define the second formulation, notice that a nested family of neural net-
works can be generated assuming a fixed number of neurons but grading the size of the
parameter space. The nested family of functions with F, C Fp4; is thus formed assuming
a fixed number of neurons [but a nested parameter space. In order to formulate this
idea, and develop an alternative to the previous algorithm, fist consider a sequence of
real numbers M,, p = 1,2,..., such that 0 < M, < M,,;. Next, for each integer p,
define a set of functions in F, for which: |a;|\/b; < M,. Then, with A s, (p) = IM, where
0 < M, < Mp41, a nested family of functions F, C F,, is formed. The second version

of the structural risk minimization algorithm is:

Definition 3.2.2 With all assumptions as in Definition 3.2.1, and assuming a sequence
of non-decreasing values of My, Ma, ..., Mp,. ., “The Structural Risk Minimization with

Variable Parameter Size Algorithm” is described by the following steps:

Step 1: Consider a nested sequence of function sets Fp C Fpy1 where F, is a family of
RBFN’s with | neurons and parameter size of M, as described above. Notice that A.psn(p)
s a fized value for the function set F,.

CHAPTER 3. LEARNING AND PRACTICAL FIR MODELING 59

Step 2: Let “k” be the largest integer p such that the corresponding inequality for

sample complezity is satisfied,

Step 8: Perform the empirical risk minimization algorithm over the function set Fy.

The resulting function is the output of the algorithm.

Although the second method of generating the nested family gives no clear intuitive
insight to the structural format of the network, it can be seen that if the algorithm
assumes an [that is “large enough”, the need to manipulate the network’s structure is
eliminated. Similar algorithms can be defined for sigmoid neural networks defining M,
as: |ag|[b;;] < M, for all 7 and j. The discussion considers RBFN’s, although similar

arguments can be made regarding the algorithms with sigmoid neural models.

The following comments describe major disadvantages of the above algorithms.

1. It can be seen that both algorithms search for a neural model of the unknown
function with some degree of minimal complexity. However, because of the use
of conservative bounds the need for large training data sets remains as the main
disadvantage of both algorithms. Consider a hypothetical modeling procedure where
only a few hundred training data points are available. The first method tries to
find an upper bound for [such that some levels of accuracy and confidence (e.g.
€ = 6 = 0.05) are guaranteed. Using the learning inequalities of the previous chapter
for I, the typical upper bound obtained for the above-mentioned typical values is
well below [= 1. In other words, it will be found that according to our bounds

there is no model structure for which PAC learning can be assured.

2. In order to use either of the algorithms, some assumptions have to be made regarding
either the number of hidden neurons or the size of the parameter space. For example,
in the second algorithm, it might be difficult to guess what values of [are large
enough for the problem at hand. Also, the size of the step under which M, has to

be increased is an issue that requires further attention.

3. Both algorithms bound A5, = . |ai|v/b;: using some assumption either on the

structure or on the size of the parameter space. For example, the structural risk

CHAPTER 3. LEARNING AND PRACTICAL FIR MODELING 60

minimization with variable structure algorithm assumes a fixed size of the parameter
space, and uses the number of neurons to bound A,;¢, for each function set in the
nested family of function sets. However, there is no guarantees in either approaches

that such assumptions result in tight bounds on A4fp.

The learning results of the previous chapter thus may not be directly used for applica-~
tions with a small number of training data points. These formulations, although carefully
designed and theoretically correct, are successful only if the size of the training data set is
large, since they depend on conservative bounds. Roughly speaking in all modeling tasks
where the size of the training data is larger than a few thousand, the results of the learning
results can be applied even though these results might be conservative estimates. Avail-
ability of large data sets is the main characteristic of an emerging field of research called
“data mining”. In a typical data mining procedure, the knowledge contained in a large
database is to be extracted using a certain type of algorithm. Two of the most important
data mining applications are marketing analysis and image processing, where the quan-
titative evaluation of the accuracy and confidence of the models is most important. For
applications such as medical image processing and financial analysis, where huge training
data sets (typically with more than a few hundred thousands or a few million data points)
are available, the above algorithm can be directly applied to create accurate and reliable
models of data. However, there exist many applications in science and engineering where

the size of the available training set never exceeds a few hundred points.

Another issue that discourages the use of the empirical risk minimization is the diffi-
culty of creating an €/2-cover of a function set. There exist specific procedures of forming
function cover sets that are practically very time-consuming (see for example the pro-
cedure given in Chapter 5, for a distribution-free version of forming such cover sets).
Although an e-cover of a function set is not easy to form practically, the cardinality of a
minimal cover, however, is known to be a highly informative indication of the complexity

of a function family.

To obtain insight into the performance of neural models of practical systems, the
theoretical structure of the statistical learning theory is used as a guide to practical

modeling methods. The more practical methods lack the exact theoretical guarantees

CHAPTER 3. LEARNING AND PRACTICAL FIR MODELING 61

provided by the learning theory.

3.3 Learning-Based Complexity Measures

In the next sections, neural modeling algorithms are proposed that use the results of the
statistical learning theory to provide some degree of confidence over the similarity of the
testing and training performances of the algorithms. In order to do so, a complexity term
is introduced for each neural structure and this term becomes part of a cost function to
be minimized during the training.

Overfitting and poor testing performance are caused by the use of over-complex mod-
els. In order to maintain a testing-training balance, the complexity of the model must be
limited. The results of the statistical learning theory are used to present new measures
of complexity that target the overfitting issue directly and provide an acceptable level of

the testing-training balance.

As mentioned before, given a fixed size of training data set, n, and a certain family of
networks, the deviation of the testing performance from the training performance is set
by € and 4. In order to avoid overfitting in an ideal case, both these parameters must be
as small as possible, at the same time. However, from the learning results of the previous
chapter, it can be seen that with a fixed number of training data points, reducing the
value of the one of these two parameters would increase the bound on the other one. This
means that with a fixed model and fixed number of training data, if higher accuracy is
desired, one has to compromise the level of statistical confidence and vice versa. This
issue parallels the bias-variance problem reported in the fields such as identification and
modeling and asserts that often, both accuracy and confidence may not be minimized
at the same time. To create a systematic modeling algorithm, the main objectives of
a typical modeling task must be used with the learning properties to create a balance
between these two parameters. In order to do this, one of the two parameters is fixed
and the complexity measure is based on the other one. Notice that for a fixed level of
disparity between the empirical error and the true error, § gives the amount of uncertainty
over the model. Therefore, it seems that for a typical modeling application, 6 would be a

good choice for a complexity measure to be minimized throughout the training process.

CHAPTER 3. LEARNING AND PRACTICAL FIR MODELING 62

Defining the complexity measure based on § will result in complexity measures that are
closely related to the level of smoothness (Lipschitz constant), the size of the training
set as well as the dimension of the input. This is not surprising, because modeling with
functions that possess higher Lipschitz constants and larger dimensionality is known to

be more complex and to require more data points.

Assuming that € is constant, if § (or a non-decreasing function of this parameter) is
minimized during the training procedure, a model will be found for which the likelihood of
having the difference between testing and training performances limited by € is maximized.
At this point, consider a set of Gausssian RBFN’s. Similar procedures that give similar

results for other neural structures are described later. Now, consider Inequality (2.34):

5> 2l] o e [~ne2/8(m +1)] (3.1)

where:
-4rbfn = SUPv,p Z:’:I |ai| \ b;

Assume that: & = 0, 8 = 1. As mentioned in Chapter 2, the choices of & and (3 are
arbitrary and there is nothing special in the above choices. Also, note that the values of
m, n, and ¢ are fixed during the training procedure. If the value of € is given, the value
of § (or In(d)) is an indication of uncertainty of the model, i.e. minimizing In(¢) leads to
models that are more reliable and perform more similarly on training and testing data

sets. Therefore, define the complexity term Cyouss—np as In(d), or:

ne

2\/§Arbfn.d
8(m+1)

s (3.2)

d

Cgauss—np = []]-Il(2) + ln(m + 1) —
This complexity measure gives an indication of the testing-training balance and shows
how unreliable the training of such a network is. It is important to notice that the above

measure combines the parameter-space complexity with the complexity due to the number

CHAPTER 3. LEARNING AND PRACTICAL FIR MODELING 63

of neurons (structural complexity), without making any assumptions on the structure or
parameters. This means that any algorithm that minimizes (3.2) addresses the parameter
space complexity and the structural complexity at the same time. It can be cbserved
that the complexity term introduced in (3.2) takes into consideration the size of available
training data set n, the total dimension of input d, as well as the Lipschitz constant as

an indication of smoothness of the function set.

Now, suppose that during the training algorithm the number of neurons [is fixed.
Then the objective of the optimization algorithm is to include both the above complexity

term and the empirical error in a cost function, i.e. :

Jga.uss—n.p = % liil l(f(xi)v yz)]
2v/2Arpnd 4 0 (m B ne?
+/\f:(—6\/€) I (2)+1 (+1) —_8(m+1)

(3.3)

In the above cost function, A is a weighting factor that determines the relative impor-
tance of the empirical error and the complexity term in the overall cost function. Lower
values of A result in models that create small training errors but exhibit poor perfor-
mance over the testing data. The higher values of A create a desirable testing-training
balance with both testing and training errors undesirably increased (due to resulting large
empirical errors). A practical approach in choosing the value of A is described later in
this chapter. The function [(.,.) is chosen to be a loss function that satisfies a uniform

Lipschitz condition as defined in (2.61).

The function introduced as Jyuss—np iS DOt a practical objective function since it
includes a term Ay, that nests the parameter space. In other words, for a chosen value
of Ar4fn, the space in which the parameters are allowed to vary is restricted. Then a higher
value of A, ¢ defines a new parameter space which includes the previous space. In practice

it is very difficult to create such a nested sequence of function sets based on a term such as

CHAPTER 3. LEARNING AND PRACTICAL FIR MODELING 64

Aron and then search for the simplest function set with satisfactory performance. Also,
performing minimization of the error for a fixed value of A,sf, requires a solid method
of constrained optimization to make sure that the resulting set of optimal parameters is
indeed within the space specified by the prespecified value of A,;f,. These limitations

make the entire process of optimization within each of the function sets impractical.

In order to obtain a sub-optimal solution, compromise is necessary. An optimization
algorithm that is capable of minimizing non-smooth functions over the entire parameter
space allows the use of a more practical complexity term which is formed by replacing
Arppn With Zé |a;|v/B;- During the consecutive iterations, the optimization algorithm now
moves in favor of functions that fall within a smaller parameter space and as a result are

less complex. This leads to the following more practical complexity term:

2v2(Zt laslvB)d | ne?
Cguss = (6\/E) ln(2) + ln(m + l) - m (34)

and the corresponding cost function:

Jguss = '7'],;' [i l(f(xi):yi):l

=1

HaglvBd\ ne?
+ A [(2\/5(26,-\1/5\/5)(1) In(2) + In(m +1) - gt

(3.5)

In the new cost functions, the values of 3! |a;|/b; are kept as small as possible without
being concerned about the over-all grading of the space through the fixed values of A y,.
Even with the relaxed definitions, since (3.5) is a non-differentiable function of the a;’s
and perhaps of the b;’s, gradient-based minimization methods cannot be used for the
optimization phase. Performing optimization over a;’s and b;’s thus calls for an algorithm

that can minimize nonlinearly and non-smoothly parameterized models. The issue of

CHAPTER 3. LEARNING AND PRACTICAL FIR MODELING 65

minimizing such cost functions will be discussed later in this chapter.

Next, following the same type of approach, complexity terms and cost functions are
defined for the neural structures discussed in the previous chapter. Just as for Gaussian
RBFN’s, complexity terms are introduced that reflect the functional dependency of In(d)

and contain information about the learning properties of the modeling task.

Starting with RMQ-RBFN’s, use Inequality (2.37) and apply the logarithm on both

sides to define the complexity term and the corresponding cost function as follows:

_ (4ZHail VB ne?

and:

erq = % [Zn: l(f(.’l)i), yi)]

=1

A2 s VB ¢ ne

2

(3.7)

For an “atan” neural network, following a procedure similar to that of RBFN’s, define:

d

2
1ay /5 [losllbal] ne
= — In(2) + In(m +1) — Sm 1)

(3.8)

atan —

CHAPTER 3. LEARNING AND PRACTICAL FIR MODELING 66

Jatan = ‘1]; [i l(f((l?,), yz)]

i=1

d
2
s ady[xho, [Shey lal (b ne?
T

. ln(2)+1n(m+l)——-————8(m+1)

(3.9)
In the case of bipolar exponential sigmoid functions:
=1d
c \/d\/ZLl [t=1 |ai”bikl] I . ne? 0
hezp = - (2) +In(m+1) — m (3.10)
and:
1 n
Jbezp = - [Z I(f(z:), yi)}
i=1
= ¢
iy [Tl e
+) - In(2) +1n(m + 1) — Sm+1)
(3.11)

Finally for a family of second order Volterra networks as described in the previous

chapter:

CHAPTER 3. LEARNING AND PRACTICAL FIR MODELING

p d 2
Cote = [@@] In(2) + ln(m + 1) — 8(%:17

where B is as defined as:.

d d d
B = |a|+1/2) 3 bl + okl + 1/ X el
=1, i#k i=1j=1, j#k
d

+ (1/2) Y lewrl + (3/4) ekl -

i=l, i#k

Based on this complexity term, define the following cost function:

St = % (3 UG, w0)

i=1

+ A [[3-3—6@] In(2) + In(m + 1) —8(;:;“) -

2

67

(3.12)

(3.13)

As mentioned above, the complicated form of these cost functions calls for an op-

timization algorithm which can minimize non-differentiable nonlinear functions. Before

describing the minimization algorithms, some issues regarding the number of hidden neu-

rons in different neural structures must be addressed.

3.4 Number of Neurons in Hidden Layer

As seen in the structural risk minimization algorithm, it is often necessary to define a

range of values for the number of hidden neurons: l;,, < [< k. The upper limit &

depends on the size of the training set and the dimension of the input, i.e. & = k(n,d).

CHAPTER 3. LEARNING AND PRACTICAL FIR MODELING 68

In practice, the number of parameters should be significantly smaller that the number
of training samples. This is an idea also supported by the results of the learning theory.
However, the number of neurons alone does not determine the complexity of the network.

As shown in the previous chapter, the size of the parameter space along with the number
of neurons also influence the complexity.
In practical neural modeling tasks, «(n, d) is often set as a mulitiple of the total number

of parameters in the network. This explains why in general « is also a function of d. For

SNN'’s, since the number of parameters (which is the same as the number of weights) is

equal to: (d + 1)l, follows that:

n>Q(d+ 1)k (3.14)

where @ is an integer that is normally set to a number between 2 and 10. The range 2
to 10 comes from the general idea of having 2 to 10 times as many training points as the

parameters (see [10] for example). Condition (3.14) suggests the following expression for

k(n,d):

n
w(md) = 5Dy (3.15)

A similar argument for the number of parameters for RBFN’s, can suggest an appro-
priate functional dependency for k. Notice that for a RBFN, the number of parameters
does not explicitly depend on the dimensionality of the input and is equal to: 2I. This

suggests the following expression for x:

K(n) = —= (3.16)

CHAPTER 3. LEARNING AND PRACTICAL FIR MODELING 69
3.5 Evolutionary Neural Modeling

The cost functions introduced in the previous section are unsuitable for gradient-based
optimization methods. On the other hand, evolutionary algorithms are often designed
to optimize complicated non-differentiable cost functions. Like other types of optimiza-
tion algorithms, there are many different versions of evolutionary optimization methods.
Evolutionary algorithms use “natural selection”, “reproduction”, and “mutation” opera-
tions to search among the members of a pool of possible solutions. During the process
of natural selection, the members of a generation of species (i.e. possible solutions) are
evaluated based on their level of “fitness” to the environment (i.e. by a cost function),
and the best solutions are selected. Then these selected candidates are reproduced to
create a new pool of solutions called “offspring”. Finally, the candidates in the new
pool of solutions are randomly mutated according to their level of fitness, i.e. the ones
with better fitness are mutated less. Notice that due to the process of mutation the new
solutions {offspring) are no longer the same as their parents, but somewhat similar to
them. The resulting pool of candidates is now treated as the new generation of solutions
and goes through the next evolution cycle. Some other evolutionary operations such as
“cross-over” are also used in a family of evolutionary algorithms (including the Genetic
Algorithm), that might help the process of evolution. The use of cross-over operation,
however, requires creating chromosome strings for each of the solutions, which makes the
entire process more computationally intensive. Also, there exist infinite methods to map
the information of the network to a chromosome, while little is known on how these meth-
ods influence the optimization process. It is also claimed that the cross-over operation
distorts the topology of the neural networks, and as a result may not be an appropriate
operation when dealing with optimization of neural networks. As a result, here the three
fundamental operations of natural selection, reproduction, and mutation that form the
basis of Evolutionary Programming (EP). Performing optimization tasks using EP often

calls for enormous computation time. This is considered as the main disadvantage of

EP-based algorithms.

EP algorithms can be easily designed for a particular problem so that better solutions

of the problem are selected and reproduced throughout the process. A careful design of

CHAPTER 3. LEARNING AND PRACTICAL FIR MODELING 70

the algorithm can result in a faster approach to a sub-optimal solution. Here, the EP

method is adapted to the training of a feedforward neural network as described below.

First an EP method for the fixed-structure neural networks is introduced. This EP
method first creates an initial generation of the networks, all with a fixed number of neu-
rons. The cost function for each of the networks is then evaluated. Networks with the
lowest cost function are then selected and the rest of the models are discarded. Then,
taking into account the cost function, the parameters of the selected networks are mu-
tated. By adding a vector of normally-distributed random numbers with the variance
proportional to the cost of the network, the selected networks are mutated. The muta-
tion process will be further specified later in this chapter. Then the cycle is repeated by

selecting the networks with the lowest cost function in the new generation.

A second algorithm is used for variable-structure neural networks. At each stage of this
algorithm, the EP method with the fixed-structure (as described above) is first performed
for the networks with a certain number of neurons. After iterating for a number of
generations, if the cost function is not decreasing fast enough as the new generations are
produced, the method increases the number of neurons in the hidden layer and searches for
the desirable network within the new structure, again using the fixed-structure algorithm.
When even adding new neurons does not make the cost function decrease fast enough,
the algorithm stops the search. Since increasing the number of neurons creates a nested
family of functions, this method systematically searches for the simplest function of the
nested family of the neural networks that can provide us with the desired level of the

defined cost function.

The cost functions evaluated in the above algorithms are the ones defined in this
chapter, based on the learning properties of each neural structure. The condition that
determines the termination of the search is expressed in terms of the slope of the curve
of the cost function versus the generation number.

The proposed fixed-structure algorithm can be described in more details as the fol-

lowing stepwise procedure:

Definition 3.5.1 Suppose n input-output training data are given. Consider a family of

CHAPTER 3. LEARNING AND PRACTICAL FIR MODELING 71

neural networks with [neurons. Given a certain value of A, the objective is to find the
simplest neural model of the family that minimaizes the cost function J. Also, assume that
the size of each generation is N, and that the integer N, is selected such that Ny = N/N,
too is an integer. In each selection procedure, select the best N, members of the networks
of the generation. Set the values w, and wy as the mutation rates (annealing rates) of
parameters a;’s end b;’s, respectively. Define the slope of the curve ”"cost function wvs.

generation number” as:

__ J{,GenStep)—J(l,GenStep— BackStep)
SlOp e = BackStep -

where: J(l,GenStep) is the cost function of the network of generation GenStep with
minimal cost function and BackStep is the number of back steps, based on which the

slope of the cost function curve is calculated.

Also assume the minimum acceptable slope of the cost function before the training is
stopped is given as MinSlope. The “evolutionary fized-structure neural modeling algo-

rithm” is performed as follows:

Step 0: Create N networks (each having [neurons) to form the initial generation. In
order to do so, randomly assign parameters (a;’s and b;’s) of the networks to standard

normally-distributed random numbers.

Step 1: FEuvaluate the cost function for the networks of the present generation, i.e. find

J for all networks of the pool. Also set: GenStep =1
Step 2: Select the best N; networks that generate the smallest cost functions, and
discard the rest.

Step 3: In order to generate a new generation with N members, mutate each of N,

remaining networks in N, forms. More specifically:

Qnew,r = Qold + W, Jold Randa,r

bnew,r = bya + wp Jord Randb,,.

where 1 < r < p, variables Rand,, and Rand,, are normally distributed random vectors,

and Jyg 18 the value of the cost function calculated for the old network.

CHAPTER 3. LEARNING AND PRACTICAL FIR MODELING 72

Step 4: Find the network that gives the smallest J, and name its cost function as:
Jpest- Assign J(I, GenStep) = Jyest- If GenStep < BackStep, increment GenStep by one
and go to Step 2. Otherwise, calculate:

_ J({l,GenStep)—J(l,GenStep— BackStep)
Slope = BackStep .

Step 5: If Slope < MinSlope, increment GenStep by one and go to step 2; otherwise,

save the parameters of the best network of the pool, and introduce this network as the

output of the algorithm.

A simple flow chart of this algorithm is shown in Figure (3.1).

The slope of the cost function curve versus generation number determines when the
training is stopped, i.e. when producing new generations of solutions does not make the
cost function decrease fast enough the algorithms stops. Also, notice that the weights of
each network are mutated according to the fitness (i.e. the cost function) of the network.
Parameter BackStep determines how many generations are being used to evaluate the
slope of the cost function, while MinSlope gives the threshold value for the slope before

the training is stopped.

The variable-structure version, which includes the above algorithm as its one special

case, is a combination of the two versions of the structural risk minimization algorithm

and can be describes as follows:

.

Definition 3.5.2 Suppose n input-output training data are given. A nested family of
neural networks is formed of a famiy of neural networks with L, < ! < k. Given a
certain value of A\, the objective is to find the simplest neural model of the nested family
that minimizes the cost function J. Also, assume that the size of each generation is N,
and that the integer N, is selected such that N; = N/N, too is an integer. In each
:selection procedure, select the best N, members of the networks of the generation. Set
the values w, and wy as the mutation rates (annealing rates) of parameters a;’s and b;’s,
respectively. Also assume the minimum acceptable slope of the cost function before the

training is stopped is given as MinSlope, and the number of back steps, based on which

CHAPTER 3. LEARNING AND PRACTICAL FIR MODELING

[Populate a random generation of size %

[Select best Ns networksj

[Reproduce selected networks to form N networks]

[Mutate weights of networks based on the cost functions]

Slope of cost function vs generation number is less than MinSlope?

[Select the best network of generatioﬂ

Figure 3.1: Flow chart of fixed-structure evolutionary neural modeling

73

CHAPTER 3. LEARNING AND PRACTICAL FIR MODELING 74

the slope of the cost function curve is calculated, is set to BackStep. The “evolutionary
variable-structure neural modeling” is performed as follows.

Step 0: Setl = i, Also, set GenSlope to a negative number with large absolute value,
and Jopt(liow) to a very large number.

Step 1: If I > k — 1 or GenSlope > MinSlope or Jop(l) > Jope(l — 1) go to Step
6; otherwise | = [+ 1. Create N networks (each having ! neuron) to form the initial
generation. In order to do so, if | = liow, Tandomly assign parameters (a;’s and b;’s)
of the networks to arbitrary numbers. Otherwise use parameters of the last generation
of networks with | — 1 neurons and add a new neuron with small randomly generated
parameters to each of N networks. FEwvaluate the cost function for the networks of the
present generation, i.e. find J for all networks of the pool.

Step 2: Select the best Ny, networks that generate the smallest cost functions, and
discard the rest.

Step 3: In order to generate a new generation with N members, mutate each of N,

remaining networks in N, forms. More specifically:

Qnewyr = Qoid + Wa Jola Randa,r

bnewr = botd + wp Joia Randy -

where 1 < r < p, variables Rand,, and Rand,, are standard normally distributed random

vectors, and Jyq 1S the value of the cost function calculated for the old network.

Step 4: Find the network that gives the smallest J, and name as: Jpes:. Assign
J(l,GenStep) = Jpest. If GenStep < BackStep go to Step 2. Otherwise, calculate:

_ J,GenStep)—J({,GenStep—BackStep)
Slop € = BackStep M

Step 5: If Slope < MinSlope go to step 2; otherwise, save the parameters of the best

network of the pool, set GenSlope = J“’%e:f;‘::;:{(l’l), Jopt(l) = J(I, GenStep), and go to

step 1.

Step 6: Among the best networks with | and [—1 neurons, find the one with the smaller

cost function, and introduce this network as the output of the algorithm.

CHAPTER 3. LEARNING AND PRACTICAL FIR MODELING 75

As can be seen, in the evolutionary variable-structure neural modeling algorithm the
number of hidden neurons is determined by the algorithm and throughout the training
phase. The assumption of /;,,, = x reduces the second algorithm to the first one, and as
a result, the first algorithm is a special case of the second one. The evolutionary fixed-
structure neural! modeling algorithm will be used in simulations to show the practical

importance of the cost functions in avoiding the overfitting problem.

The above algorithms are presented in a general format, and when they are to be
applied to a particular family of neural networks, some items must be further specified.
Here is a list of suggestions about the use of the algorithm to train SNN’s and RBFN’s:

1. For SNN’s, all random numbers can be generated according to a zero-mean normal

distribution with variance of 1.

2. For RBFN's, the same form of random generator can be used. However, in order to
avoid negative values of b;, a mechanism should be included in the algorithm that
assigns b; to a small positive real number if the random generator tries to set b; to

a negative value.

3. In learning of variable-structure RBFN’s, in order to make sure that families of
neural networks are actually nested, the set of centers {¢;, ¢ =1,...,(} for a network
of [neurons should be included in the set of centers for any network with { + 1

neurons, for all [.
Some of the advantages of the above algorithms are as follows.

1. The cost function to be minimized reflects the learning complexity of the model and
can create a balance between the testing and training performances of the resulting

network.

2. Algorithms using gradient-based optimization methods can get stuck in a local mini-

mum, while the EP method used here is less susceptible to the local minima problem.

3. The variable-structure algorithm performs optimization on both parameters and

structure of the network at the same time and tries to avoid overfitting.

CHAPTER 3. LEARNING AND PRACTICAL FIR MODELING 76
The disadvantages of the algorithm can be listed as follows.

1. From the design of the algorithms, it can be seen that the form of the model is used
only in evaluation of the cost function and plays no role in the way the parameters
are updated. This is in contrast to methods such as gradient-based algorithms where
the exact form of the model is explicitly used in updating the weights of the model.
This lack of attention to the exact model form makes EP algorithms applicable to
wider families of optimization tasks, while it makes each particular optimization

process less efficient and more time-consuming.

2. Different choices of variables A, MinSlope, w,, w, and BackStep may result in
different models. The designer must use a series of runs of algorithms with different

settings to find the suitable set of the above variables.

3. In both algorithms, the extensive use of random numbers throughout the learning
process causes the entire process of learning to be a stochastic procedure. The end
result of the training task may be different if different sets of random numbers are

used.

4. The evolutionary variable-structure neural modeling implicitly assumes the convex-
ity of the curve of cost function versus generation number. This is because as soon
as Jope(l) = Jope(l — 1), the algorithm stops and introduces the network with [— 1
neurons as the output function. Considering the stochastic nature of the algorithm,
it can be imagined that in some cases, if the algorithm is allowed to continue the
search, a network with [+ 1 or even more neurons can be found for which the cost

function is smaller than that of the network with [— 1 neurons.

5. Just like any other EP-based algorithm, the introduced neural modeling algorithms
are computationally intensive and require a significant amount of computation time

to obtain a sub-optimal solution.

The first disadvantage, on the other hand, allows the designer to have more control
over the performance of the algorithm. The second disadvantage is characteristic of any

random search and is the price paid to obtain some level of flexibility in dealing with local

CHAPTER 3. LEARNING AND PRACTICAL FIR MODELING 7

minima. The only solution for the third disadvantage might be allowing the algorithm
to continue the search for all [, < | < k, and find the best solution after the search
for all [is done. This solution, although theoretically appealing, may not be desirable in
many practical applications, as for larger values of [the search process becomes extremely

time-consuming.

3.6 Simulation Results

In this section, simulation results using the proposed algorithms in FIR modeling of a

simulated system are presented. In all simulations, the loss function is defined as:

Uy, h(z)) = ly — h(z)| - _ (3.17)

3.6.1 Simulation 1

In crder to generate the data, first generate a set of independently and uniformly dis-
tributed r.v.s {¢;}ies, where 0 < ¢; < 1 for all i. Then form a sequence of uniformly

distributed m-dependent r.v.s z1, Zo, - - ., Z400, Where: z; = ((; , Ciy1), ¢ =1,...,400, and

m = 2. The system to be modeled is generated by a nonlinear function as follows:

VE=(&1&) €[01P, F(§) = % (28 + & — 616 — 26 +2) (1 — 2sin(78)) (3.18)

The 3-dimensional graph of this function for all values in [0 1]? is shown in Figure 3.2.
From the random samples described above, the first 100 samples are used for training of
the network and the remaining points for testing. The neural structure which is used for

modeling is a family of atan-SNN'’s with 3 neurons.

Assuming A = 0, the evolutionary fixed-structure neural modeling algorithm is applied
with [= 3 neurons to observe the resulting neural model when the cost function is based
only on the empirical error. Later in the second simulation, the results of this simulation

are compared with a case where A is non-zero. The parameters of the algorithm are set

CHAPTER 3. LEARNING AND PRACTICAL FIR MODELING 78

4
2ILag ity
- R
AR AR

100

Figure 3.2: Three dimensional graph of function f

0.105

Cost Function

)

g =
Complexity Torm

g

0.085

%

Ganeraton Numoer x10° Generalion Number x 10°

Figure 3.3: (a) Cost function (left), and (b) Complexity term (right) for Simulation 1

as follows: MinSlope = —1 x 10—8, BackStep = 1000,w, = w, = 0.01, A =0, & =
100, N =50.

With this choice of settings, the training curve of Figure (3.3) portrays the evolution
of the best network of each generation. Figure (3.3.'a) depicts the cost function for the
best network of each generation versus the generation number. The complexity term
Catan for the best network of each generation is shown in Figure (3.3.b), which indicates
that during the training and in order to find a better fit, the overall size (magnitude) of
parameters has increased. The performance of the resulting network is shown in Figure

(3.4) with the actual (solid) and estimated (dashed) outputs for 50 points in the testing

CHAPTER 3. LEARNING AND PRACTICAL FIR MODELING 79

-

Acta (i) & Etnted Dashed) Ot

|
[o]
S
T

|
o
N
T

-
-a

!

°

(7
L

s 2 " L L " "
0 1S 20 30 35 40 45 s0

0
nr

2S
Sample Number

Figure 3.4: Actual (solid) and estimated (dashed) outputs for testing data (Simulation 1)

set.

Considering the best network of the final generation as the output of the algorithm,
the training cost function (which is the purely averaged sum of absolute errors between
the actual and estimated outputs) is 0.079, while testing the network against the rest of
the data points (i.e. the testing set) results in the empirical error of 0.097. Even though
0.079 may not be a desirable level of accuracy, the significant difference of the testing and
training errors seems to be a more important cause of concern. A testing error that is
significantly larger than the training error shows that the model is not a reliable one and
can mislead the user. In other words, the purpose of this simulation is not to find very
accurate models but to exhibit the effect of using a learning-based cost function on the

issue of testing-training balance.

3.6.2 Simulation 2

In the second simulation, the same function, data, model, and algorithm as Simulation
1 are used, but A is set to 0.001 rather than zero. The complexity term Cpipn is now
included in the cost function. All the parameters of the algorithm (including all random
numbers used for mutation as well as initialization of weights) are exactly as used in the

previous simulation.

Figures (3.5.a) and (3.5.b) depict the cost function and complexity term Cigtqap curves

CHAPTER 3. LEARNING AND PRACTICAL FIR MODELING . 80

Complextty Term.

. 2 2 : :
1 15 2 25 [} s 1 15 2 25
Generation Number 210" Generation Number x 10*

Figure 3.5: (a) Cost function (left), and (b) Complexity term (right) for Simulation 2

of the learning task, respectively. The training cost function of the resulting neural model
is 0.077 of which 0.070 comes from the empirical error. This shows that the resulting
empirical error is very close to that of Simulation 1. By comparing the complexity curve
of Simulation 1 (Figure (3.3.b)) with that of Simulation 2 (Figure (3.5.b)), the significant
difference between the magnitude of Cyyn, in the two cases can be seen. From Chapter
2 it is known that the smaller Cy:, leads to a model that performs more similarly on
testing and training data sets. Now, observe that the value of Cj,, in Simulation 1 (i.e.
70) is considerably larger than that of Simulation 2 (i.e. 6). This suggests that the neural

model obtained in Simulation 2 might outperform that of Simulation 1 on the testing

data.

The neural model of Simulation 2 is assessed using the same testing data set as for
Simulation 1. The testing cost function for the resulting neural model is 0.081, which
is close to the training cost. Although none of the errors may be small enough, the
proximity of testing and training errors indicates that the cost function with non-zero
A has helped the model avoid overfitting. In order to assess the quality of modeling for
the network of Simulation 2, in Figure (3.6) the actual and estimated outputs of this
model for the first 50 points of the testing set are depicted. Comparing Figures (3.4) and
(3.6), one can observe the superiority of the neural model of Simulation 2 over that of

Simulation 1, over the testing data set. This shows that the testing performance of the

CHAPTER 3. LEARNING AND PRACTICAL FIR MODELING 81

Aot (S0ic) 8 Esinaed Dshed) Qi

-
-~

-
-

L . : x n 2 N
o S 10 1S 20 30 3Ss 4|0 4<S 50

2s
Sample Number

Figure 3.6: Actual (solid) and estimated (dashed) outputs for testing data (Simulation 2)

model of Simulation 1 is significantly less than its training performance, while the testing
and training performances of the model obtained in Simulation 2 are very close to each
other. This further supports the idea that the use of the learning-based cost functions

can avoid overfitting.

3.6.3 Simulation 3

In the next simulation, the same function and set of training data (with 100 data points)
are used, but in this simulation, the evolutionary variable-structure neural modeling al-
gorithm has been used. The algorithm assumes [, = 2 and £ = 50. Similar to the
previous simulations, the remaining 300 points are used for testing evaluation, as before.
The weighting factor A is set to 0.001, and the rest of the parameters are the same as the
previous simulations. Figures (3.7.a) and (3.7.b) show the cost function and complexity
curves of this algorithm, respectively. The sharpest falls of the cost function occur when

neurons 4, 9, and 12 are added at iterations 26280, 72990, and 82898, respectively.

The resulting network has 29 neurons in its hidden layer and its training cost function
is 0.038 . For the testing phase, the cost function value increases to 0.043 which is slightly
larger than the training cost error. Figure (3.8) shows the behaviour of the resulting
model against the first 50 points of the testing set. A brief glance at Figure (3.8) shows

that the resulting network outperforms the networks of Simulations 1 and 2 on the testing

CHAPTER 3. LEARNING AND PRACTICAL FIR MODELING 82

§

Complaxty Term

Cost Function
o
&

o
S

.08}

0.os

aos

Aelal{Sol) Esimald Dashed) Ot

<=

-o.1 Y
'

2S5
Sample Number

Figure 3.8: Actual (solid) and estimated (dashed) outputs for testing data (Simulation 3)

data, as far as training and testing error are concerned.

In the next three simulations, RMQ-RBFN’s are used. A set of reasonable centers for
the basis functions is chosen as follows. Set the first centre as: ¢; = (0.5 0.5). For the
second center, choose ¢ € [0 1]? such that the distance between ¢, and ¢; is maximized.
This would give us one of the vertices of [0 1]2. For cs, search for a two dimensional point
in [0 1]2 whose distance from the closest existing center is maximum. In this special case,
another vertex of [0 1]2. The rest of the centers are selected in the same recursive manner,
i.e. find a point on [0 1]*> whose distance from the closest existing centers is maximum

and add it to the set of centers. This method of forming the centers makes sure that the

CHAPTER 3. LEARNING AND PRACTICAL FIR MODELING 83

Cosi Function
e
N
7 T
Comploxkty Term

otp

Figure 3.9: (a) Cost function (left), and (b) Complexity term (right) for Simulation 4

centers are reasonably scattered over the two-dimensional cube [0 1]2.

3.6.4 Simulation 4

In this simulation, all the settings are exactly the same as Simulation 1, except that
instead of using SNN, a family of RMQ-RBFN’s with 10 neurons is used. Also, set:
A =0, w, =wy, = 0.01 and N = 50. Figures (3.9.a) and (3.9.b) show the cost function

and complexity curves of this leaning task.

Looking at Figure (3.9.b), notice that Cry,, reaches a very large value throughout the
training phase. Next, the model is tested against the same testing data set as in previous
simulations. The cost function for the training and testing sets of data are 0.0854 and
0.0962 respectively. Again, as can be seen, the difference between the testing and training
errors for simulation with A = 0 is observable. Figure (3.10) shows how poorly the output

is estimated for the testing set of data.

3.6.5 Simulation 5

In Simulation 5, all the settings are exactly the same as Simulation 4, except that A =

1 x 1075, Since the magnitude of the complexity term is large, the value of A is chosen

CHAPTER 3. LEARNING AND PRACTICAL FIR MODELING 84

Acil (i) & Esinted D) O

—Oo.5 X 2 " " " L z 2
o [10 1S 20 25 30 3S 40 45 SO
Sample Number

Figure 3.10: Actual (solid) and estimated (dashed) outputs for testing data (Simulation
4)

to be small so that “AC,n,,” remains comparable to the empirical error. A systematic

practical method of choosing an appropriate value for X is explained later in this chapter.

Figures (3.11.a) and (3.11.b) show the cost function and complexity curves of this
learning task. The comparison of Figures (3.11.b) and (3.9.b) indicates that the com-
plexity term of the network of Simulation 5 is smaller than that of Simulation 4. This
suggests the theory that the difference between the testing and training cost functions
for the model in Simulation 5 must be less than that of Simulation 4. The value of cost
function for the training and testing set of data are 0.0881 and 0.0930 respectively, which
verifies our theory. The testing performance of the resulting network for the first 50

samples is shown in Figure (3.12).

3.6.6 Simulation 6

In the next simulation, the same function set (RMQ-RBFN’s) and set of training data
(with 100 data points) are used, but in this simulation the evolutionary variable-structure
neural modeling algorithm is applied. The algorithm assumes /;,,, = 5 and x = 150. Sim-
ilar to the previous simulations, the remaining examples are used for testing evaluation.
From Simulation 5, one can guess that with A = 1 x 10—6, the smaller values of the
empirical errors may not be achieved. As a result, in this simulation, the weighting factor

is reduced to A = 1 x 1077, while the rest of the parameters are kept the same as the

CHAPTER 3. LEARNING AND PRACTICAL FIR MODELING 85

a1s - a
Q.14
0.13
=
e
Z
202
x
8
0.1t
ot 1
0.09 — : " -
Q 50 1000 1500 2000 2500 3000 3%00 4000
Ganeration Numbar
12000 T g —T

Complaxty Term

Al (50i) & Esinaled (Dshed) Ol

Aoz

25
Sample Number

Figure 3.12: Actual (solid) and estimated (dashed) outputs for testing data (Simulation
5)

CHAPTER 3. LEARNING AND PRACTICAL FIR MODELING 86

x 19°

. 14

12

Complexity Torm

Cost Function
|4
>

Figure 3.13: (a) Cost function (left), and (b) Complexity term (right) for Simulation 3

previous simulation. Figures (3.13.a) and (3.13.b) show the cost function and complexity

curves of this algorithm, respectively.

The resulting network has 18 neurons in its hidden layer and its training cost function
and empirical error are 0.0533 and 0.0428 , respectively. In the testing phase the values of
the cost function and empirical error go up to 0.0628 and 0.0523 respectively, which might
be still acceptable but slightly larger than the training ones. Clearly, obtaining small
empirical errors (through reducing A) has affected the difference between the training and

testing errors.

Figure (3.14) shows the behaviour of the resulting model against the first 50 points of
the testing set. The testing result indicate that the resulting network can be regarded as

both accurate and repeatable.

3.7 Discussion
In this section, the simulations results are discussed.

1. All the simulations indicate that the EP algorithm is capable of performing opti-
mization of non-smooth functions. Repeating any of the simulations with a different

initialization as well as random numbers that are used throughout the optimization

CHAPTER 3. LEARNING AND PRACTICAL FIR MODELING 87

o.ap .
o3 7 A N
1 N » 4 ~
A AS n Y G
oz " v h [} -
A 1 N r
=3 Y 0 o
= o-1 ' / Il ‘\ L
= ' \/ ' 1y 1\ g
B N\ L ’ 1 !
= ol ' ' __ 1 Y Wi
Y4 ’
- 1WA ' t >
[\ 4
’ Hig Y, ¥
—-0.1 lI ll [4 . -
2 i r
3 o
- ' -
—o.2 '
Y
%
-_0.3 ‘ -
—o0.a P N x : N . . N N
o S 10 1S 20 2s 30 3as 40 as 50

Sample Numbaeoar

Figure 3.14: Actual (solid) and estimated (dashed) outputs for testing data (Simulation
6)

procedure results in relatively similar solutions. This demonstrates the robustness

of the presented EP algorithm for the data originally generated.

2. In all simulations, the choices of N, BackStep, MinSlope, w,, wy and X di-
rectly affect the resulting neural network. From the logic of the algorithm, it seems
that larger values of N and BackStep together with smaller values of w,, ws and
MinSlope will result in more reliable solutions. However, this requires a longer

training process.

3. Parameters w, and w; influence the extent to which the weights of the networks are
mutated. In many EP-based algorithms such parameters are annealed throughout
the training process, i.e. the values of w, and w, are reduced as the new generations
are produced. This is the main idea of “Simulated Annealing” used in many EP-
based algorithms. In all simulations, constant w, and w, are used, but these values
can be chosen to follow sequences of non-increasing numbers. Using this annealing
process, the results of all simulations might be further improved. However, to
obtain a smooth annealing process, appropriate sequences of w, and w, must be
used. Normally, such appropriate sequences are found throughout a process of trial-

and-error.

4. Throughout the simulations with a certain family of neural networks, it was observed

that using cost functions with non-zero A gives solutions that perform more similarly

CHAPTER 3. LEARNING AND PRACTICAL FIR MODELING 88

[9)]

8.

over the training testing sets. Simulations with SNN’s and RBFN’s indicate that
where the complexity terms are kept small (through selecting a non-zero A), the
difference between the testing and training empirical error has been significantly
reduced. This supports the use of the defined complexity measures in the cost

functions and indicates that the learning-based complexity terms avoid overfitting.

Considering the fact that the complexity terms used here are of order In(é), and
by looking at the values obtain for such complexity terms in our simulation, it
can be observed that the bounds obtained in the previous chapter are extremely
conservative. This suggests that the bounds may not be directly used unless the

size of the training data set is large.

As to the selection of A for a practical application of neural modeling with a fixed-
structure, the following procedure can be suggested. First perform the modeling
assuming A = 0. Then, use the set of parameters obtained from this procedure
as the initial weights for a new training process with small A. If the value of the
empirical error for the resulting network is still acceptable, use the parameters of
the resulting network to initialize a new training process with even larger A. Repeat
this process until the resulting empirical error becomes unacceptably large. This
iterative method can give us a reasonable value for A. As to how the value of A has to
be selected for a variable-structure neural modeling, one can start with the above-
mentioned method for a network with a medium size of hidden layer. Then the
appropriate A found for this network can be used throughout the variable-structure

neural modeling.

Similar simulations can be performed for other types of neural networks discussed
in the previous chapter to assess the performance of the proposed cost functions as
well as the evolutionary algorithms. Due to similarities between the neural networks
used for the above simulations and the remaining neural structures, one can expect
to obtain similar results from a set of similar simulations with the rest of the neural

structures.

Considering the magnitude of the complexity terms (and consequently values of

CHAPTER 3. LEARNING AND PRACTICAL FIR MODELING 89

J), it appears that either the results on SSN’s are less conservative than those of
RBFN’s or the SNN’s are indeed easier to learn. As a result, in the next chapter,

SNN’s are used for a real modeling application.

9. In order to test the variability of the proposed cost functions and evolutionary
algorithms more thoroughly, all the above simulations have to be repeated several
times for different training and testing sets as well as different sets of algorithm
settings. This process, although necessary for a solid statistical evaluatiion, takes a

tremendous amount of computation time and is avoided here.

3.8 Summary
The results of this chapter can be summarized as follows:

e The conservative bounds presented here on the sample complexity of Nosnlinear FIR
modeling procedures suggests that in many practical applications wheree the size of

the training data is small, the results of the learning theory may not be ussed directly.

e New complexity measures of the neural models are introduced. They a:re based on
the learning complexity of the networks, and incorporate them into the c-ost function

to be minimized throughout the trai:ing process.

e Two algorithms based on Evolutionary Programming are introduced snd used to
perform the optimization process. One of the EP methods assumes a fixeed structure
for the neural network, while the other one searches through different swtructures to

find an appropriate neural model.

e The simulation results indicate the relatively successful performance o# both algo-

rithms in a typical modeling procedure.

Chapter 4

Two Dimensional Sheet-Scanning System

4.1 Introduction

In sheet-forming processes, such as processes used in paper, steel and plastic sheet pro-
duction, monitoring the quality of the produced sheet is an important and challenging
process. In the paper industry, as the sheet of paper is being produced, quantities such
as basis weight (weight per unit area), moisture content and caliper (thickness) of the
paper are measured using highly sophisticated and expensive sensors. Basis weight is
considered to be the most important characteristic of the paper, and has a vital role in
assessing the overall performance of the paper machine. Because of the economic issues
and the complexities involved with the re-starting of the paper machine, the production
line is rarely shut down, even when the sensors are off-line. When a sensor failure occurs
or during the normal sensor calibration, paper is produced for which no valid measure-
ment is available. In this chapter, the neural models are used to extrapolate forward the
measurements of paper basis weight before the sensor failure (or maintenance check-ups)
occurs to estimate this quantity for the paper produced while the sensors are not operat-
ing. It is necessary to realize that this chapter is not meant to claim that neural networks
are the best models for estimation of paper machine data. It seems that the methods
that consider the physical properties of the paper machine may be more successful in
modeling of the paper machine data. This is mainly because when neural networks are
used, all such knowledge is simply disregarded. Here, the main objective is to illustrate
that the careful use of neural networks can avoid overfitting of the data for a complicated
industrial system. Therefore, the use of neural network for such a system if the physical

characteristics of the machine is known may not be the best modeling approach.

This chapter is organized as follows. Section 4.2 briefly describes the main units of a

paper machine and the procedure of scanning the paper basis weight. In Section 4.3, the

90

CHAPTER 4. TWO DIMENSIONAL SHEET-SCANNING SYSTEM 91

Slice screw

Dry line
Press section

Calender stack

O-frame

MD Z - . Scanner

Figure 4.1: Schematic structure of a typical paper machine

results of applying the presented systematic neural modeling to model the basis weight
are presented. Section 4.4 discusses the results of the chapter and is followed by the

summary.

4.2 Monitoring of Paper Quality in a Paper Machine

In this section, the main components of a paper machine are described, as is the scanning
mechanism of the basis weight sensors. Also some technical specifications are presented

regarding our task of predicting the next weight scans.

A typical paper machine, as shown in Figure (4.1), consists of different units including
the headbox, the dryer section, the press section and the reel. The headbox contains a
number of actuators that control the amount of fibre delivered on to a mesh conveyer
(also called the wire). The fibre mat is dried throughout the dryer section, and passes
the scanner where its basis weight, moisture content (per unit square), and caliper are

measured by the sensors.

A basis weight sensor is normally composed of a transmitter and a detector of (-
radiation that are mounted on the two sides of a closed rectangular frame called “O-
frame”. For each measurement, the transmitter located above the belt sends a signal
with a known power. This signal is then attenuated according to the density and texture
of the paper. The power of the signal received by the detector (mounted underneath the
frame) depends on the weight as well as the moisture of the paper at that particular point.

CHAPTER 4. TWO DIMENSIONAL SHEET-SCANNING SYSTEM 92

Machine Direction

Figure 4.2: Schematic structure of the scanning unit

As shown in Figure (4.2), in a typical scanning system, the transmitter and receiver move
along a rail that is mounted on the frame. As shown in Figure (4.2), as the paper moves
in the machine direction (MD), the sensor scans the paper in a zigzag pattern. In each
sweep of the paper, a number of measurements is taken by the sensors, which form one
row of a measurements matrix M. Hereafter, each scan of the sheet is referred to as a

row (in the measurement matrix).

Now, consider two consecutive rows “¢ — 1”7 and “” in the measurement matrix M.
In the notation used in the following paragraphs, M (3, j) represents the basis weights of
measured at row “” and measurement point “j” (along jth line in machine direction).
From the zigzag nature of the scan, one can notice that the dependency between the values
M(i,7) and M(i + 1,5) depends on j. Consider the correlation between M (Z — 1, j) and
M (i, 7) , and compare that with the correlation between M (i—1, j+200) and M (%, j+200),
as shown in Figure (4.2). The correlation between the first pair (M (i —1, j) and M (4, 5))
is expected to be greater than that of the second pair, as the points on the first pair
are separated by a smaller distance. Now, compare the correlation between M (%,) and
M(i+1,7), with the correlation between M (7, 7 +200) and M(z+ 1, j +200). As can be

imagined, this time the correlation between the second pair will be larger.

In the modeling of the scanning system, one has to take the above problem into con-
sideration. However, since each scan takes about 30 seconds, in practice, two consecutive

scans (whether they are separated by only a fraction of a second or by 32 seconds) are

CHAPTER 4. TWO DIMENSIONAL SHEET-SCANNING SYSTEM 93

Control Input
Set Points Error (to actuators) Paper

Controller Paper Machine
— ———— >

+

Scanning System eif—-—

Sensor’s Measurements
(from scanner)

Figure 4.3: Schematic control structure for a typical paper machine

treated the same. As a result, in this research, this issue is ignored and different rows of

the measurement matrix are treated similarly.

A paper machine normally operates in a closed loop, i.e. there exist separate control
loops for each of the above mentioned quantities that control the variations of the corre-
sponding quantity. In such a control system, as shown in Figure (4.3), the error between
the sensor measurements (such as basis weight) and the set points are fed to a controller
which generates appropriate control actions for the actuators so as to eliminate unwanted

variations in the paper weight and moisture.

If the sensors are taken off-line, the controller often stops generating new control input,
and the activation of all actuators is set to some average value. While the sensors and
controller are not operational, the system works in open loop. This period of open loop
operation for a typical task of calibration might take up to a few minutes. Meanwhile, due
to the high speed of the paper machine (up to 150 km/hour), a huge amount of paper (up
to 100 meters of paper with the width of 7 meters) is produced. Since no measurements
are taken while the system operates in open loop, it is worthwhile to predict the behaviour

of the system during this period.

CHAPTER 4. TWO DIMENSIONAL SHEET-SCANNING SYSTEM 94

4.3 Neural Modeling of Basis Weight

The scans prior to the stoppage of the scanning system are used to predict the basis
weights of the paper produced for up to five scans afterwards. The data set used here is

taken from a mill and was provided by Honeywell-Measurex Devron Inc.

The target value of the basis weight for the paper being produced is 300 grams per
square meter (gsm). The sheet is 7 meters wide and its weight is measured at 240 locations
across the sheet. Some of the measurements on both edges are discarded, because they
represent sensor readings while the sensor has passed the edges of the paper (see Figure
(4.2)). Omitting the first 7 sensor readings on each edge leaves us with a matrix of
measurements with 226 columns. The scanner completes an entire scan in 32 seconds.
According to the engineers in the mill, most of the error variation cannot be eliminated
by controlling the actuators and therefore the system essentially runs in open loop. As
a result, the activation of the actuators (the control input) is treated as a source of
disturbance and so is excluded from our modeling. Moreover, during the estimation time,
the control input is assumed to be a constant signal. Excluding the control input from the
estimation process enables us to train the model in open loop (while the sensors are on)
and perform the prediction when the sensors are off-line, without having to be concerned
about the change in the way the control input is generated. The available data set consists

of 50 scans (rows), which form a measurement matrix of the size M (%, 7)s0x227-

The objective of the neural modeling is to estimate the next scans (rows) in the ma-
chine direction from the previous measured scan in the cross direction. More specifically,
M (i +k,) is to be estimated using the values of at M (i, — 1), M(4,7) and M(2, 5 + 1),
where 1 < k£ < 5. The input vector (M (3,7 — 1), M(¢,5), M(i,j + 1)) is formed along
the cross direction and for a fixed i forms a sequence of m-dependent r.v.s with m = 3.
The correlation between the reading along the cross direction is assumed to be negligible
beyond three points. The extension to higher assumed ranges of dependency is straight-
forward, and it can be expected to result in better estimation performances at the expense

of increased calculations.

In order to see how the training and testing data are generated, consider a fixed %.

CHAPTER 4. TWO DIMENSIONAL SHEET-SCANNING SYSTEM 95

Rows 7 =1, 7. 13, 19, 25, 31, and 37 form the input, i.e. for each %, set of vectors
(M(%,7 —1), M(i,7), M(i,5 + 1)) is formed, where 2 < j < 225. The corresponding
output for each of the above vectors is M (¢ + k,7). The training set is thus formed as
the input-output data points generated by rows 1, 7, 13, and 19 as the input rows. The
remaining data points will be used as the testing set. Since 1 < k& < 5, there will be five

training sets and five testing sets to be processed separately.

Specific rows are used in order to separate the inputs and the outputs completely.
Notice that in a real scenario where the sensors are taken off-line, the available information
up to row i = 4y is used to estimate the next five rows. This means that the prediction is
made for only rows 4o +1, ..., %5 + 5, i.e. the model is not allowed to use our estimated
values as the inputs to estimate the rows beyond five rows. These rules in generating the
data guarantee that the model is actually an FIR one and makes sure that no measurement

has been used both as input and output information.

Having generated the training and testing data sets for each value of &, the evo-
lutionary variable-structure neural modeling is applied to the corresponding training
set. The parameters of the algorithm for all modeling tasks are chosen as follows:
N = 50, w, = wy, = 0.001, A\ = 0.0001, 5y, = 2, & = 100, € = 0.05, MinSlope =
—1 x 1078, BackStep = 1000 . In order to follow the exact structure of the theoretical
results of the previous chapters and have a better insight to the level of error, the input
variable is normalized to the interval of [0 1]3, and the output variable is mapped to the

interval of [—3 1].

4.3.1 Simulation 1: One-Row-Ahead Prediction

For £ = 1, the resulting network has 6 hidden neurons in its structure. The training
cost function and the empirical error are 0.0291 and 0.0238, respectively. Figure (4.4)
depicts the evolution of the cost function and complexity term of the best network of

each generation. As can be seen, the resulting complexity term Cp,p, levels off at 53.1376.

Next, this network is tested against the testing set which consists of rows 25, 31 and
37 as the inputs and rows 26, 32, and 38 as the outputs. The actual and estimated basis

weights for row 26 (i.e. actual and estimated profiles of basis weight across the sheet) are

CHAPTER 4. TWO DIMENSIONAL SHEET-SCANNING SYSTEM 96

@)
T T T T T a

Figure 4.4: (a) Cost function (left), and (b) Complexity term (right) for Simulation 1

shown in Figure (4.5.2). In order to see the prediction quality more clearly, the estimate
and actucal basis weights of almost 57 points located in the middle of the profile are
shown Fgigure (4.5.b). Similar profiles are obtained for estimation of rows 32 and 38,
which indicate that the estimation process can accurately predict the rows ahead. The
testing empirical error (calculated over all estimated rows) is 0.0244, close to the training
value. Also, notice that the estimated and the actual profiles are highly similar and the

estimation process seems to be accurate.

In order to see how neural networks help the prediction, here the results are compared
with a rather trivial average modeling, in which M (¢ + k, j) is estimated as the simple
linear average of M (4,5 — 1), M (3, 7), and M(%,j + 1), where k£ = 1. For this model, the
value of the empirical error for the testing data is 0.0307 which is considerably larger than
that of the neural model. This shows that the neural model of Simulation 1 is not only

reliable but also accurate (compared to a simple linear estimation).

The variability of the model can be tested by considering the standard deviation of
the testing prediction error (i.e. the actual output minus the estimated output) over
different estimated rows. The calculated values of standard deviation for the prediction
error of rows 26, 32 and 38 is 0.0326, 0.0361 and 0.0326 respectively. The close values of
standard deviation for different rows indicates the similar performance of the algorithm

over different rows of the data.

CHAPTER 4. TWO DIMENSIONAL SHEET-SCANNING SYSTEM 97

(@)

© o ©
- N W
LI
| I |

|
o
—h o
—=F—
-
—-P—‘—
-
—
|

-0.2
-0.3

Actual & Est, BW

|
1

_0.4 1 L 1]
o] 50 100 150 200 250

(b)

Actua! & Est. BW

_0.4 1 I I] ! 1
110 120 130 140 150 160 170 180

CD Sample Number

Figure 4.5: (a) Actual (solid) and estimated (dashed) normalized output across row 26
(the entire profile) for Simulation 1 (b) Actual (solid) and estimated (dashed) normalized
output across row 26 (the middle portion of the profile) for Simulation 1

CHAPTER 4. TWO DIMENSIONAL SHEET-SCANNING SYSTEM 98

(a) ®)

: N " 2 " i N 2 z 2 A
a 1000 2000 3000 4000 5000 6000 7000 8000 9000 [} 1000 2000 3000 4000 5000 5000 7000 8000 9000
Sample

Figure 4.6: (a) Cost function (left), and (b) Complexity term (right) for Simulation 2
4.3.2 Simulation 2: Two-Row-Ahead Prediction

In this simulation, all the settings are the same as those of Simulation 1, except that
k =2, i.e. a two-row-ahead estimation is performed. The resulting network has 4 hidden
neurons in its structure. The training cost function and the empirical error are 0.0350 and
0.0299, respectively. Figure (4.6) shows the curves of the cost function and complexity
term. The resulting complexity term Clan is 50.9978.

In testing as with the previous simulation, rows 25, 31 and 37 are used to form the
inputs, while rows 27, 33, and 39 now form the outputs. The actual and estimated profiles
for row 27 are shown in Figure (4.7). The resulting testing empirical error (calculated over
all estimated rows) is 0.0298 that is smaller than the training one. Also notice that the
estimated and the actual profiles are still very similar and the estimation process seems
to be acceptable. In this case, the empirical error of the trivial estimation on the testing

data is 0.0431 which is significantly larger than the error of the neural model.

The calculated values of standard deviation for the prediction error of rows 27, 33 and
39 are 0.0395, 0.0422 and 0.0432 respectively. The closeness of the above values again
shows the small variability of the algorithm over different parts of the data.

The three-row-ahead and four-row-ahead estimations result in networks with 6 and 7

neurons, respectively. The main results of these simulations are given in Table (4.1).

CHAPTER 4. TWO DIMENSIONAL SHEET-SCANNING SYSTEM 99

(@)

o
w

o ©

o - N
T T

-_—

[1 |

Actual & Est, BW
=1 -]

| |

S © O

W N -
|

|

-0.4 ! .

o
9]
o
—
(=]
o
-—
o -
o
n
o -
o

250

0.1

Actual & Est, BW

-0.4) ! I !] 1
110 120 130 140 150 160 1708 180

CD Sample Number

Figure 4.7: (a) Actual (solid) and estimated (dashed) normalized output across row 27
(the entire profile) for Simulation 2 (b) Actual (solid) and estimated (dashed) normalized
output across row 27 (the middle portion of the profile) for Simulation 2

CHAPTER 4. TWO DIMENSIONAL SHEET-SCANNING SYSTEM 100

Figure 4.8: (a) Cost function (left), and (b) Complexity term (right) for Simulation 3

4.3.3 Simulation 3: Five-Row-Ahead Prediction

With all the settings the same as those of the previous simulations, a five-row-ahead
estimation is now performed. Here, the rows 1, 7, and 13 are used to form the inputs,
and rows 6, 12, and 18 to form the outputs. The resulting network has 9 hidden neurons
in its structure. The training cost function and the empirical error are 0.0464 and 0.0413,
respectively. Figure (4.8) shows the curves of the cost function and complexity term. The

resulting complexity term Cj:.n Teaches to 51.0522.

In testing as with the previous simulations, rows 25, 31 and 37 are used to form the
inputs, and rows 30, 36, and 42 to form the outputs. The actual and estimated profiles
for row 30 are shown in Figure (4.9). The resulting testing empirical error is 0.0441
and relatively close to the training value. The error of the trivial linear estimation for
five-row-ahead prediction is 0.0571 . The calculated values of standard deviation for the
prediction error of rows 30, 36 and 42 is 0.0578, 0.0576 and 0.0583 respectively. The
closeness of the above values further indicates the small variability of the algorithm over

different parts of the paper machine data.

Each of the above simulations takes about 210 minutes on a machine with 400 MHz

Pentium II processor.

CHAPTER 4. TWO DIMENSIONAL SHEET-SCANNING SYSTEM 101

(a)
0-1 1] 1 1]

Actual & Est. BW

0 50 100 150 200 250

(b)

Actual & Est. BW
S
-

3
110 120 130 140 150 160 170 180
CD Sample Number

Figure 4.9: (a) Actual (solid) and estimated (dashed) normalized output across row 30
(the entire profile) for Simulation 5 (b) Actual (solid) and estimated (dashed) normalized
output across row 30 (the middle portion of the profile) for Simulation 5

[Prediction || Train. Cost | Train. Err. | Test. Err. | Comp. Term. [Num. of Neurons ||

1-Row-Ahead 0.0291 0.0238 0.0244 53.14 6
2-Row-Ahead 0.0350 0.0299 0.0298 50.10 4
3-Row-Ahead 0.0406 0.0358 0.0361 47.90 6
4-Row-Ahead 0.0470 0.0423 0.0432 47.14 7
5-Row-Ahead 0.0464 0.0413 0.0441 51.05 9

Table 4.1: Training cost function, training empirical error, testing empirical error and
complexity term for one-row-ahead, two-row-ahead, three-row-ahead, four-row-ahead and
five-row-ahead predictions.

CHAPTER 4. TWO DIMENSIONAL SHEET-SCANNING SYSTEM 102

4.4

Here,

'C)‘l

Discussion

the results obtained in this chapter are discussed.

. From Table (4.1), it is seen that the quality of prediction deteriorates as further

rows ahead are estimated. This may be explained by the fact that the outputs in

closer rows are more highly correlated with the inputs and is thus to be expected.

The results obtained from different simulations and shown in Table (4.1) indicate
that the number of hidden neurons increases with the prediction interval. This shows
that the prediction of further rows involves a more difficult estimation process and

requires more neurons.

Performing the estimation with different algorithm settings (such as A, wg, wp,
and N) may result in different neural models. However, it seems that different
simulations with a fixed A result in models with relatively similar cost functions and

complexity terms.

The estimation process may be continued for the prediction of rows further than
five rows; however the quality of the estimation can be expected to deteriorate.
Since the predicted values might be the only information available on the produced
paper, extending this estimation process even with a lower prediction quality may

be useful.

Once a neural model for the system is generated off-line, one can update the model
through an adaptive process. In order to do so, some of the old training points
must be replaced with the newly measured data and the training process may be
kept running throughout the entire modeling task. Since each scan takes almost 32
seconds, updating the model after every few scans seems to be feasible, specially
when fast computers are available. Since the paper machine is a time-variant process

(especially after a machine start-up), the adaptive approach is desirable.

The accuracy of the estimation process is expected to improve if the input vectors

are formed of the information from the last two rows rather than merely the last

CHAPTER 4. TWQO DIMENSIONAL SHEET-SCANNING SYSTEM 103

row as in the present formulation. The price to pay, however, is an increase in the

computation time.

7. In order to have more confidence over the simulation results, one may want to re-
peat the simulations using different sets of training and test data as well as different
algorithm settings. Due to the fact that each run of the algorithm takes a consid-
erable amount of time, repeating the simulations may be a more feasible task once

faster machines are available.

4.5 Summary
The chapter can be summarized as follows.

® The above simulation results indicate that the proposed evolutionary algorithms
are capable of performing optimization in nonlinear and noisy real applications and

generate useful estimates.

@ The relatively close training and testing performances indicates that proposed com-

plexity terms can successfully deal with noisy complex systems.

@ While the sensors in the paper machine are taken off-line, it is possible to use neural
networks to estimate the properties of the produced paper based on the previously

recorded data.

Chapter 5

ARX Models: Stability and Learning

5.1 Introduction

In a dynamic modeling task in the presence of additive noise, the output of a system is
expressed as a function of the history of the input as well as the output. In the case of a
nonlinear ARX (also known as NARX), assuming that u;g41, %s—q+2, -.. %—aq describe

the history of the input variable and y;—k, Yt—k+1, ... Ye—1 that of the output:

Ye = [(Yt—ks Ytmk+ls --- Ytm1, Ut—gt1, Ut—gt2, --- Ut—d) + Gt (6.1)

where d, ¢ —d — 1, k and (; represent the degree of the input, the delay from the
input to the output, the degree of the output and the additive noise on the system, re-
spectively. Although the model can represent multi-dimensional models, here the single-
input/single-output (SISO) case is considered. It is also assumed that u; and (; are
uncorrelated sequences of independently and identically distributed (i.i.d.) random vari-
ables. The Markov process formed as (5.1) includes a wide range of dynamic models
used in engineering applications including dynamic neural networks. One of the most
important properties of a NARX model to be investigated is the stochastic stability of
the model. Stochastic stability not only guarantees the issue of boundedness pf the out-
put for bounded inputs, but also establishes the necessary conditions for any definition of
learning for ARX models (as described later). The concept of stochastic stability has been
addressed in the literature assuming different definitions for stochastic stability, resulting
in different sufficient stability conditions for NARX models. The concept of Lagrange
stability [26] defines a notion of stability based on a Lyapounov function defined in terms

of the process. Kushner’s work on stochastic stability [24],[23] has provided a more com-

104

CHAPTER 5. ARX MODELS: STABILITY AND LEARNING 105

prehensive mathematical framework for testing stochastic stability of discrete systems.
Important results in this field come from the relation between the stochastic Lyapounov
stability (as in Kushner’s work) and the concept of geometric ergodicity [43], [22]. The
results of this line of research not only provide simple practical notions of stochastic sta-
bility, but also create a foundation for assessment of other statistical properties such as
the learning properties of dynamic modeis [39]. In all learning paradigms presented for
dynamic models, the assumption of processes being geometrically ergodic is treated as
a fundamental requirement, i.e. learning properties of dynamic models can not be eval-
uated unless the assumption of models being geometrically ergodic is verified [30], [11],
[42]). This further calls for evaluation of geometric ergodicity for important families of
nonlinear dynamic models. Here, the general results of [43] are applied to the special case
of neural modeling with sigmoid neural networks and specific sufficient conditions under

which the model is geometrically ergodic are presented.

Here, first a set of sufficient conditions for geometric ergodicity of SNN’s is obtained.
Then, the results are used to assess the learning properties of neural ARX models. In
order to do so, first, learning theory is extended to learning with strong mixing data.
Then, specific upper bounds on the sample complexity of such models are given. Next,
the learning properties of neural ARX are applied to define complexity measures (along
with their corresponding cost functions) that can be used in practical applications. Fi-
nally, using the evolutionary neural modeling algorithms introduced in Chapter 3. The

performance of such cost functions is evaluated in a number of simulations.

This chapter is organized as follows. Section 5.2 gives the basic definitions of stochastic
stability, as well as the existing results on the geometric ergodicity of a general family of
NARX models. Section 5.3 contains a set of sufficient conditions over the parameters of
a sigmoid neural network, which guarantees the stochastic stability of the model. The
main results of this section are given in Theorems (5.3.1) and (5.3.2). In section 5.4,
PAC learning theory extended to learning with co-mixing data. In the same section,
the resulting learning theory is applied to SNN’s and the sample complexity of such
learning tasks are bounded. Theorem (5.4.2) acts as the main theorem of this section.

In Section 5.5 a distribution-free complexity measure of SNN’s is introduced. Theorem

CHAPTER 5. ARX MODELS: STABILITY AND LEARNING 106

(5.5.1) contains the main results of this section. Section 5.6 uses the results of the previous
section to describe learning-based algorithms that search for neural models with minimum
complexity. In Section 5.7, the simulation results of applying the proposed algorithms on
a Continuously-Stirred Tank Reactor (CSTR) are presented. The results of the chapter

are discussed in Section 5.8, and finally, Section 5.9 summarizes the chapter.

5.2 Basic Definitions of Stochastic Stability

In this section, some of the basic concepts of geometric ergodicity as well as the existing
results on the stochastic stability of NARX models are reviewed. Consider an integer
“” and let X; be a Markov chain with the state space (RP, B), where B is the Borel
o-algebra. The t-step-ahead transition probability of X, is denoted by P*(z, A), i.e. :

Pz, A) = P(X, € A|Xo =1z), z € R?, A€ B. (5.2)

Now, the concept of geometric ergodicity is defined as follows.

Definition 5.2.1 X, is geometrically ergodic if there exists a probability measure w on
(RP, B), a positive constant p < 1, and a m-integrable non-negative measurable function

w such that for any t:

”Pt(z, -) - 71—(')“Va‘r < ptw(x)a r€RF (53)
where ||.||ver denotes the total variation norm.
Definition (5.2.1) shows that geometric ergodicity is closely related to stability. Ac-

cording to (5.3), in a geometrically ergodic process, the transition probability approaches

a (possibly unknown) well-behaved probability measure m geometrically fast.

CHAPTER 5. ARX MODELS: STABILITY AND LEARNING 107

Here the definition of stochastic stability is given:

Definition 5.2.2 Consider a Markov chain X, as described above. The process is called
stochastically stable iff there exists a non-negative and measurable function V (called a

Lyapounov function), and constants ¢ > 0 and 0 < p < 1 such that:

E(V(X)) Xe=z) <pV(z)—c. (5.4)

The concept of stochastic stability is also referred to as “stochastic Lyapounov stabil-
ity”. The Lyapounov function V' and the way the stability condition is defined show why
the name stochastic Lyapounov stability seems to be a more appropriate rame for this
concept.

The following theorem by Mokkadem [5] is known to be the most general result on ge-
ometric ergodicity of Markov processes and the way this property is related to stochastic

stability.

Theorem 5.2.1 (Mokkadem [5]) Suppose a Markov chain X, is stochastically stable as
described in Definition (5.2.2). Then X, is a geometrically ergodic process.

Theorem (5.2.1) shows how geometric ergodicity relates to the concept of stochastic
stability. Now, the notion of “a-mixing” (also known as strong mixing) is defined. This

concept describes a type of stationary random process with exponentially weakening de-

pendency.

Definition 5.2.3 Let {y,}2_., be a stationary process. For —oco < t < oo, let Y
and V', denote the o-algebras of events generated by random variables {y;,t > i} and

{y:,t < i}, respectively. Define the strong mizing coefficient oy, (t) as:

CHAPTER 5. ARX MODELS: STABILITY AND LEARNING 108

oy(t) = sup |Pr(A N B) — Pr(A)Pr(B)] . (5.5)
Ae)? , Bey®

Then {y:}2_., s called a-mizing (strongly mizing), if:
tlirgo ay(t) =0. (5.6)
Moreover, suppose oy (t) approaches zero geometrically fast in t, i.e., there ezist:
kl? k27 k3 >0

such that:

0y () = ke ™ (5.7)

Then, the process is called geometrically a-mizing.

Next, the focus is given to the existing results on the Markov process of form (5.1).
Here, a theorem by Doukham [43], which presents a set of sufficient conditions for geo-

metric ergodicity of the process (5.1) is reviewed.

Theorem 5.2.2 [Doukham [4{8]] Consider the process (5.1). Let:
X = (yt—ka Yt—k+1y <+ - Y1, Ut—q+1y Ut—qg+25 --- Ut—d) . (5-8)

Assume that X,; indicates the ith element of X;. Also, assume the followings.

1. There ezxist a number zo > 0 and non-negative constants ¥, ..., Y, a locally

bounded measurable function h : R — RY, and a positive constant ¢ such that:

CHAPTER 5. ARX MODELS: STABILITY AND LEARNING 109

sup|xi<zol f (Xt)| < oo (where || X¢|| is the Euclidean norm of X,), and:

k g—d+k
[FX < Do wilXesl+ D0 h(Xeg) —c (5.9)
J=1 J=k+1

Zf “Xt” >xg-

2. B[] + (g — d)E[h(u)] < ¢ < 00 -

Then, if the unique non-negative real zero of the “characteristic polyriomial” P(z) =
2F — i 2F~ — ... — 9 is smaller than one, the process (5.1) is geome:trically ergodic.
Moreover, if the process X is stationary, the process “y” (i.e. {y:}2_.,) is geometrically

Qa-mizing.

Although the details of the long proof presented for this theorem (by- Doukham) are
not repeated here, a brief description of the general scheme of the proosf will be given.

The proof starts with introducing a Lyapounov function of the form:

k g—d+k
V(X:) = Zajlxt,ﬂ + Z Bih(Xe;) - (5.10)
Jj=1 J=k+1

Then the appropriate choices of a;’s and f;’s to satisfy (5.4) are investigzated. It is then
proved that if all the assumptions made in the theorem hold, the condiition set on the
zeros of the characteristic polynomial P(z) guarantees geometric ergodicity. As can be
seen, the sufficient conditions set in Theorem (5.2.2) guarantee the stochasstic Lyapounov

stability as well as the geometric erogicity of the model.

5.3 Geometric Ergodicity of Sigmoid Neural Networks

This section starts with the following lemma about the atan sigmoid neurral networks.

Lemma 5.3.1 Suppose z € RP. Consider a family of sigmoid neural n.etworks F with

members as follows:

CHAPTER 5. ARX MODELS: STABILITY AND LEARNING 110
f(z) = =i aio(biz)

where: o(.) = 2tan~}(.) is a smooth sigmoid activation function, | indicates the number
of neurons, a;’s (a; € R) are the weights of the output layer and the p-dimensional vectors

b;’s defined as: b; = (bi1, . .., bi,) represent the weights of the hidden layer. Then:

p /!
@ <3 (35 2ledivsl) bl (5.11)

j=1 \i=1

Proof: From the definition of atan sigmoid neural networks:

{
@ = 213 astan™ ()]

i=1

IN

2 4 _
=3 |as|| tan™" (biz)|
T i=

IA

2 l
;Zlaillbixl

=1

2 14 D
= ;Z ||| sz’jl‘jl
J=1

i=1

< 25 (el 3 byl

i=1 j=1

= 5 (52 Zlaltt) i

j=1 \i=1

which concludes the proof. 0 O O

The next lemma gives a similar bound for the bipolar exponential sigmoid networks:

Lemma 5.3.2 Suppose z € RP. Consider a family of sigmoid neural networks F with

members as follows:

f(z) = Ti, aio(bix)

CHAPTER 5. ARX MODELS: STABILITY AND LEARNING 111

—e=() . - . o
where: o(.) = 1 =2=5 is a smooth sigmoid activation function, | indicates the number of

neurons, a;’s (a; € R) are the weights of the output layer and the p-dimensional vectors

b;’s defined as: b; = (b1, - - -, bip) represent the weights of the hidden layer. Then:

F@)l < g (Z la,-nbijl) 1251 (5.12)

i=1

Proof: From the definition of bipolar exponential neural networks:

zl: a-l —e bz
‘1+e b=

=1

{
; |az|

l

> lail|biz]

=1

l [4
= 2_laill 3 bzl

i=1 j=1

14 p
< ZlailZIbijllle

i=1 7j=1

_ z=; (35 el 1

|f(x)| =

T

IN

1—e?
1+ e b=

IA

=1

which concludes the proof. O 0O O

Now, the following theorems present a set of sufficient conditions for stochastic stabil-
ity and geometric ergodicity of the families of sigmoid neural network discussed above.
These conditions involve the known parameters of the network, and as a result can be
easily tested during a practical modeling task. A family of atan sigmoid networks is to

be addressed first:

Theorem 5.3.1 Let X; = (Yt—k, Yt—k+ls --- Ye—1, Ut—g+l, Ut—q+2, -.- Ut—d,). JLake

ve, G and u; as defined in (5.1). Also assume that f is a sigmoid neural network as

CHAPTER 5. ARX MODELS: STABILITY AND LEARNING 112

defined in Lemma (5.8.1) with x = X, where: p = q — d + k. Further assume that
E[|¢l] £ M¢ and E[|u¢]] < M,,. Define:

!

2
wi = Y —laslbyl (5.13)

=1
where j = 1,...,k. Let: M, = max;w. Also define the following characteristic polyno-
mial: P(2) = 25 —w2F' — ... —wg. Then the sequence X; is geometrically ergodic if the
unique non-negative real zero of P(z) is smaller than one. Also, if X, is stationary then

[

y” s geometrically a-mizing.

Proof: In order to apply the results of Theorem(5.2.2), the existence of a real number
Tg such that the conditions of the theorem are satisfied has to be investigated. Lemma
(5.3.1) shows that for any o, Sup|x,|<z, |f (Xt)| < co. Therefore the case where ||X;|| > zo

is investigated. Assuming || X¢|| > zo, there exists at least one index 7 such that:

Zp
> ——2 _ 1<7<q—d+k. 5.14
| Xe,r| > T—dTk [STS¢ d+ (5.14)
Next, from Lemma (5.3.1):
q—d+k
If (Xl < Z“’JIthl + Z w;l Xe gl - (5.15)
i=l J=k+1

Now, taking an arbitrary positive real number p > 0:

g—d+k q—d+k

[f(Xe)] < Z(("JJ +)1 Xe 5] + Z wj +)| Xeil —p Z IXtJl . (5.16)

j=k+1 j=

Now observe that:

CHAPTER 5. ARX MODELS: STABILITY AND LEARNING 113

q—d+k

Iy -
Yo Xl = p——re. 17
P2 Wl 2 07—, 510
Therefore:
k g—d+k Tg
X))l < w;i + p)| Xe i + w; + p)| Xe | — p——m—r 5.18
O < S+ alXesl + 3 i+l Xl ==y (518)

Defining: o; =w; +p, 1 < <k, h(Xes) = (M, +p)|Xejl, k+1 << qg—d+k
= p—==0__ . .
and c=p Ja—ii’ the next step of the proof would be checking the second condition of
Theorem(5.2.2). It suffices to have:

M + (g =) B[(Mo +)| X1q-asel] < prZe

This means that it suffices to have:

M + (g — d) M, (M, + p) < pﬁ (5.19)

Now it can be seen that in order to satisfy Inequality (5.19), o and p need only be
chosen such that pzg is large enough to satisfy the inequality. Choose p sufficiently small
(but non-zero) such that if the positive real root of P(z) with ¢; =wj;, (j =1,...,k) is
less than 1, the positive real root of P(z) with ; = w; +p, (j = 1,...,k) is also less
than 1. Then, choose z, sufficiently larger so that Inequality (5.19) holds. Under such
choices of zg and p, if the unique positive real root of P(z) with ¢¥; = wj;, (F =1,...,k)
is less than 1, all the conditions for geometric ergodicity are satisfied. Moreover, if X; is

stationary then “y” is geometrically o-mixing. O OO

In the above theorem it is assumed that if the positive real root of P(z) with ¢¥; =
wj, (F =1,...,k) isless than 1, there exists p such that the positive real root of P(z) with

Y; =w;+p, (j=1,...,k) is also less than 1. This assumption requires that a very small

CHAPTER 5. ARX MODELS: STABILITY AND LEARNING 114

change in the coefficients of P(z) does not change the location of the poles significantly,
because p can be made arbitrarily small (but not equal to zero) to avoid such a change.

A similar result can be obtained on a family of bipolar exponential networks, as follows.

Theorem 5.3.2 Let X; = (Yt—k, Ye—k+1s --- Yt-1, Ut—g+ls Ut—q+2, --- Ut—d,). Take

y:, G and u, as defined in (5.1). Also assume that f is a sigmoid neural network as
defined in Lemma (5.8.2) with t = X, where: p = q — d + k. Further assume that
E[|¢|] < M¢ and E[|u]] < M,. Define:

4
w; = |ail|bs (5.20)

=1
where § = 1,...,k. Also define the following characteristic polynomial : P(z) = zF —
wizF1 — ... —wi. Then the sequence X; is geometrically ergodic if the unique non-
negative real zero of P(z) is smaller than one. Also, if X, is stationary then the process

“u” is geometrically a-mizing.

Proof: Defining w;’s as in (5.20), the rest of the proof is the same as Theorem (5.3.1),

and is not repeated here. 0 O O

Theorems (5.3.1) and (5.3.2) give sufficient conditions for the stability of the corre-
sponding sigmoid networks, which can be easily tested. Having addressed the important
properties of stochastic stability, geometric ergodicity and geometric c-mixing for a neu-
ral ARX model, a learning scheme for dynamic neural modeling is now introduced. A
learning theory which can be applied to ARX models provides a useful framework to

assess properties such as sample complexity, overfitting and complexity of a model.

5.4 Geometrically a-Mixing PAC Learning

Having described the conditions for stochastic stability and a-mixing of SNN’s, the next
step is to define a PAC learning scheme for learning with geometrically a-mixing data.

One can easily omit “geometrically” and define the learning scheme for a general family

CHAPTER 5. ARX MODELS: STABILITY AND LEARNING 115

of learning tasks where data are a-mixing but not necessarily “geometrically a-mixing”.
In order to specialize the results towards the geometric case, only geometrically mixing

cases are addressed here.

Definition 5.4.1 Suppose that z, is a set of input-output data where (z1,...,T,) is a se-
quence of geometrically a-mizing r.v.s , marginally distributed according to the probability
measure P € P. Then, a function set F is said to be “PAC learnable with geometrically
a-mizing data according to the distance measure dp” iff an algorithm A can be found

based on which for any € and &, there ezists n such that:

sup Pr{dp(f,h) < €} > (1 —¢) (5.21)
feF

Hereafter, referring to the above property, where the meaning is clear,“according to
the distance measure dp” will be dropped. The first step in obtaining some practical
results involves bounds on the summation of a sequence of geometrically o-mixing ran-
dom variables. The results presented by Modha in [16] can provide useful (somewhat

conservative) bounds, as given below:

Theorem 5.4.1 (Modha [16]) Suppose {A;}._, is a sequence of stationary and geomet-
rically c-mizing zero-mean r.v.s (with the k;’s defined in (5.7)) such that |A;| < M and

E(|A1]?) < Q. Also, define:

7 = [n[(8n/ks) /D1 (5.22)

where the unary operations |.| and [.] refer to “the largest integer smaller than” and “the

smallest integer greater than” a given number, respectively.

CHAPTER 5. ARX MODELS: STABILITY AND LEARNING 116

Then:

Pr liA > e} < (1 +4e%k;)e [i] (5.23)
=t MRNECEED |

Next, a lemma is proved that applies Theorem 5.4.1 to evaluate the closeness of the
mean value of a function to its empirical mean where the input is a sequence of geomet-

rically a-mixing r.v.s.

Lemma 5.4.1 Let z € [—1 1]¢. Also assume a function T : X — [0,1]. Suppose that a
set of training data has been generated as: {(z:, Y(z:))};,, where output data is a sequence
of stationary and geometrically c-mizing r.v.s. If the mean value and the empirical mean

of Y are defined as follows:

Ep(T) = / Y(z) P(dz) , E(Y) = %fj Y (z;) (5.24)
X =1
then:
Pr{E(Y) — Ep(Y) > €} < (1 + 4e™2k;)exp [%] (5.25)
and:

Pr{Ep(Y) — E(Y) > €} < (1 + 4e 2k)exp [%J . (5.26)
3

CHAPTER 5. ARX MODELS: STABILITY AND LEARNING 117

Proof: First define: A; = YT(z;) — Ep(Y) . Notice that the A;’s form a sequence of
zero-mean geometrically a-mixing r.v.s to which Inequality (5.23) can be applied with
M =2 and Q = 4. This will result in Inequality (5.25). Inequality (5.26) can be obtained
in the same fashion, assuming A; = Ep(Y) — T(z;). OO O

Now, consider an extension of the empirical risk minimization algorithm to geometri-
cally o-mixing random inputs. Since the definition of such an algorithm is straightforward,
without writing the formal definition, PAC learning evaluation of the empirical risk min-
imization algorithm is next evaluated. The following theorem is similar to the theorem

proved for m-dependent learning.

Theorem 5.4.2 Let z € [~1 1]¢. Also assume a function YT as defined in Definition
5.4.1. Suppose that a set of training data has been generated as: {(z;, Y (z;))}._,, where
output data is a sequence of stationary and geometrically c-mizing r.v.s. Also assume
that there ezists a finite set {g;}?_, which €/2-covers F. Then the minimum empirical

risk results in PAC learning of F with geometrically a-mizing training data to the accuracy

of €. In particular:

sup Pr{dp(f, h) < €} > (1 —6) (5-27)
feF
whenever:
§ > o((1 + 42k,)exp _—en_ (5.28)
- 64(2 + fz-) ')

Proof: If {g;}%_; is an €/2-cover for F, there exists an index ¢ such that dp(f,g:) <
€/2. Without loss of generality, suppose that dp(f,g,) < €/2. Again, without loss of
generality, suppose that the g;’s are renumbered such that: dp(f,g;) > efori=1,...,k
and dp(f,g:) < e for i = k+1,...,0. Note that: £ < p — 1. Notice that the error

involved in the minimum empirical risk algorithm would be introducing one of the g;’s,

CHAPTER 5. ARX MODELS: STABILITY AND LEARNING 118

where 7 =1, ..., k, as the model h. Let the event F be as follows:

E={J,<3¢/4and J; > 3e/4, foralli=1,...,k} (5.29)

From the definition of E, it is known that: E C {dp(f,h) < €/2}. Also:

Pr{E} < Pr{J, > 3¢/4} + f: Pr{J; < 3¢/4} (5.30)

i=1
Now observe that, for each index i, the cost J; is the empirical mean of the function
|f(.) — gi(.)| based on the available training set. Therefore, Lemma 5.4.1 can be used to

evaluate the distance between J;, the empirical mean, and dp(f, g;), the true mean of the

function |f(.) — ¢:(.)|- Now:

—e'n] (5.31)

Pr{J, — Eo(If — gl) > e/4} < (1 + 4 2ky)exp [_64(2 T2
12

where 72 and k; are as defined before. Now, since Ep(|f — g,|) = dp(f, 9,) < €/2, then:

2_
2 -9 —€" N
For J; < 3¢/4 wherei = 1,.. ., k, following a similar procedure, the following inequality

is obtained:

2

Pr{f,- < 36/4} < (14 4e72k;)exp [_62(_2—:-@3-—)—] . (5.33)
12

CHAPTER 5. ARX MODELS: STABILITY AND LEARNING 119

Now, since & < p — 1, the maximum error involved in the overall learning process

would be: g(1 + 4e~2k;)exp [ﬁ] . In other words:

—e27
supPe{dp(/,1) < e} 2 (1 — oL+ 4e 2k)exp [M@f—+"_)]) (5.34)

which results in:

2

§ > o1 + 4e™%k1)exp [@(_2:_7:3] : (5.35)
12

ooao

In an approach similar to that of Chapter 1, as the next step, g is bounded. However,
this time no assumptions on the distribution of the data can be made, i.e. the complexity
measure p indicated in this chapter is a distribution-free one. This calls for a more careful

analysis and results in more conservative bounds.

5.5 Distribution-Free Complexity of SNN’s Neural Models

In this section, “g” (the size of the ¢/2-cover set of F) for SNN’s is bounded to construct
a practical algorithm that searches for a minimum-complexity neural model. First, some
fundamental properties of sigmoid neural networks are evaluated. The following analysis

follows the methodology introduced by Barron [7].

Counsider a sigmoid neural network with [neurons of the following general form:
filz) =X, aio(biT)
Also, define:
lw|y = z_(;:l lwjl -

Now, let § = (a1,...,a;, 011, b1dy - - - 0115 - -, bug). For ;. >0, ¢ =1,...,1, a contin-
uous parameter space Oy, ., is taken to be the set of all such # for which |b;|; < 7;. For

any C > 0, let @, ¢ C Oy, .- be the subset of parameters with 3i_,; |a;| < C.

CHAPTER 5. ARX MODELS: STABILITY AND LEARNING 120

Next, the precision of the above functions is controlled by controlling the resolution
of the parameter space. For each é > 0 and C > 0, let ©;¢,, ... c be a set of parameter
points that é-covers ©,, _n.c,i.e. forevery 8in Oy, .- c,thereexistsa6*in Oy¢r . . n.c

such that fori=1,...,!:

[b; = b7y < € i1=1,...,1
l
Yolar—a;] < €C
k=1
(5.36)
Thus, the parameter points in:
el,é,n ooy T, C
can be used to create a covering set:
{fl(-, 9*) A< @l,é,'rl,...,'rhC}
for the family of functions:
F = {f[(., 0) : B e @[7-,-1,',,,,-“0} . (537)

Now, the Lipschitz constants of specific types of sigmoid functions used in the net-

works are bounded, and then the precision of such function sets is assessed.

Lemma 5.5.1 Suppose vy is the Lipschitz constant of a sigmoid function o(.). As-
sume that the conditions of (5.86) hold. Then for any 6 in the continuous parameter

set Oyr,,..n.c, there is a 6* in the discrete set O ¢r, ... n,c Such that for any z € X:

|fi(z,8) — filz,67)| < (vo +1)€C (5.38)

CHAPTER 5. ARX MODELS: STABILITY AND LEARNING 121
and therefore:

where fi(z,0) € Fi, and:
dp(fi(-+6), f(,87) = [1fiz.6) — fulz,6%)|P(dx) . (5.40)

 More specifically the bound on the left hand-side of the above inequality can be replaced

1—e~ %

by (1 +2/m)éC for o(u) = 2tan~'(u), and (3/2)éC for o(u) = {To=-

Proof: Take an arbitrary 6 in ©,,,.._-.c and choose 8* € Oy ¢, ..n,c such that (5.36)

holds. Consider the difference between a function f;(.,8) and its corresponding function

in el,é,‘rl,...,ﬂ,c 3 i'e' fl(" 9*)' NOW:

l
fi(z,60) — fiz.07)] = 3 ako(bez) — azo(biz)

k=1
l {
= > a(o(bez) — o(biz)) + D_(ak — ag)o(biz)
k=1 k=1
14 {
< Y lakllo(bez) — o(biz)| + D_ lak — afl
k=1 k=1
4
< wo Y |akllbrz — bz| + €C

k=1

(5.41)

Now, notice that for all z € [—1 1} and all &:

|(bk1.’111 +...+ bkd(l?d) — (b",;l:z:l 4+ ...+ b;dmd)l

bz — bz
= |(bkr — bz1)z1 + - - - + (bra — bkg) Z4l

< |brr — b5y llzul + -+ |bra — Bigl|zal

CHAPTER 5. ARX MODELS: STABILITY AND LEARNING 122

IA

|ber = ba| + - - + |bra — BE4l

bk — bEl1

IA

é
(5.42)

From (5.41) and (5.42):

4
'Uoé Z |ak| + éC
k=1
’UoE'C -+ éC

IN

|fulz,8) — fulz,67)]

IA

< (’Uo + l)éC’

As for the more specific results, note that from (2.5.1), for atan sigmoid functions:

v < %, and therefore the above function’s accuracy can be further specified as: (% +1)éC
for this family of SNN’s.

For the bipolar exponential sigmoid network, from(2.5.2), vy < 3 which results in a
more specific accuracy bound of £éC for the function set. O O O.

In order to see the results of this theorem more clearly and with a notation similar
to our formulation of e-covers for function sets, define € = (vp + 1)éC. Then the above

theorem asserts that an e-cover of F; can be formed as:

Fr = {fi(.6") : 6" € OrueriCimmC} - (5.43)

This indicates that the cardinality of the function covering set can be bounded by

bounding the cardinality of the parameter covering set. Next, a bound on the cardinality

of ©¢n,..n,c is found.

CHAPTER 5. ARX MODELS: STABILITY AND LEARNING 123

Lemma 5.5.1.1 Consider O;,, . . c as defined above. The cardinality of this set can

be bounded as follows:

Card(O1¢r,..nc) < (2e(L+€)/é)* f[(2e(mi, + €)/€)* (5.44)
k=1

Eguivalently, for the set F;:

Card (F}) < (2e((vg + 1)C +€)/€)* f[((26((’00 + 1)C + e)/e)d) . (5.45)

k=1

Proof: Consider a rectangular grid at width é/d for the coordinates of b, and width
€C/l for ay, for K = 1,...,l. Intersecting the grid with ©; ., . . c yields the desired
covering set satisfying the requirements of (5.36). Now the cardinality of this set is

calculated. Notice that:

!
SR {9 okl < ey D lakl < C} (5.46)

k=1

is a Cartesian product of the constraint sets for the a’s and b’s. Therefore, the desired
cardinality can be obtained as the products of the corresponding counts. First, the number

of the grid points is bounded:

ST;; = {b € Ry : lbkll < T[;} (547)

where the grid points are spaced at width é/d in each coordinate. Here it is claimed

that the union of the small hypercubes that intersect S, is contained in Sr, 4¢. This is

CHAPTER 5. ARX MODELS: STABILITY AND LEARNING 124

because any point b in this union has a distance less than € from a point b'k in S;,, where
lok]1 < Ib'k|1 + b — b;[l < 71 + €, which means b; € S, 4. Since the volume of the union
of the hypercubes is contained in S;, ¢, the volume of the union can be bounded by the

volume of Sy, 1. From [7], it can be seen that the volume Sy, 1¢ is (2(7x + €))?/d! .

Now, the volume of this union of hypercubes is the product of the number of the
hypercubes and (é/d)%. Therefore, the number of hypercubes that intersect Sy, is not
greater than (2d(m + €)/é)%/d! < (2e(7 + €)/€). For | such parameter vectors b, the
total count is bounded by [Ti_;(2e(T + €)/€)%. In the same way, the count for the ax’s is

not larger than (2e(1 + €)/€)!. Taking the product of the counts results in:

Card(Orem..nc) < (2e(1 +€)/é) f[(ze(fk +¢)/é)° (5.48)

k=1

which concludes the proof for ©;¢r,,..n,c- Considering that é = 557, the bound for

yoor

the function covering set is a direct result of (5.48). O O O

Now, the problem of PAC learning of a function set is further investigated. It can
be seen that for F; (as defined above), the covering set required by the empirical risk
minimization algorithm can be generated by the grid described above. This shows that
the complexity measure g can be bounded by Card(0,¢2r,..n,c)- This observation leads

to the following theorem.

Theorem 5.5.1 Let F; be as defined in 5.87. Suppose all the assumptions made in The-
orem 5.4.2 hold. Also, assume that the €/2-cover required in Theorem 5.4.2 is generated
by a grid described in Lemma 5.5.1.1. Then the empirical risk minimization algorithm
provides PAC learning with geometrically a-mizing, i.e. for any € and § there ezist n such

that:

erlel-;:) Pr{dp(f,h) <€} > 1— (2e(2(vo+1)C +¢€)/e) ﬁ(26(6TkC + e)/e)d] X

=1

CHAPTER 5. ARX MODELS: STABILITY AND LEARNING 125

—e%7]

(1 + 46_2k1)exp [-—e
64(2 + 1—2)

or equivalently:

& > (2e(2(wo+1)C +€)/e) [f[(2e(2(vo + 1)7C + e)/e)d] X

k=1

2_
1e=2 "
(1 +4e™“k;)exp [64(2'*'?62') J

Proof: The proof comes as a direct substitution of the bound calculated in Lemma

5.5.1.1 for Card(F}) in Inequality 5.34. OOO

A brief glance at the results of the above theorem reveals that the introduced bounds
are highly conservative. Also, in many real applications, the values of k;, k> and k3
may not be known. The direct use of the above bounds may fit applications where huge
training data sets, along with some information on the statistical nature of the data, are
available. In some applications, one may even want to first use the data to estimate ki,
ko and k3 and then apply the above bounds. However, in many applications, the available
training sets are small, and performing another estimation task, merely to find ki, k»
and k; may not be desirable, as it requires another nonlinear estimation process besides

the main function modeling. Also, even if the values of k;'s are estimated, the resulting

bounds would not hold exactly due to the estimation error.

As in the case of FIR modeling, one can easily extend the results of the above learning
scheme to a more general paradigm of model-free learning. This enables the algorithm
to deal with cases where data are noisy or the system that generates the data is not a
neural network of known structure. Practically, any real application is a case of model-free
learning and that is why this issue was addressed in Chapter 2 in details. Here, due to
the significant similarities between m-dependent learning and a-mixing learning schemes,
the model-free version of a-mixing learning is not formulated and merely used. In this

chapter, the loss function “I(.,.)” used corresponds to the distance dp, i.e. U((1,¢2) is

CHAPTER 5. ARX MODELS: STABILITY AND LEARNING 126

defined as:

UL, @) =G~ Gl - (5.49)

As shown in Chapter 2, the overall effect of using other norms in the formulation is
the appearance of a constant u (as defined in the model-free learning scheme of Chapter
2) in the results. The main reason for the popularity of the L, norm is the existence
of algorithms such as Least Mean Square (LMS) method for the linearly parameterized
optimization tasks. However, for nonlinear optimization processes (including our task),
there may not be a substantial reason to prefer this norm over the others, as all gradient-
based algorithms may get trapped in local minima when used against nonlinear functions.
As a result, here, dp (which corresponds to L; norm) is used in simulations, and it is re-
emphasized that any other distance measures that satisfy a uniform Lipschitz condition

(as described in Chapter 2) can also be used.

5.6 Minimum Complexity ARX Neural Modeling

Similar to our approach for FIR modeling, new complexity terms based on the functional
dependencies of the available bound for § (or more specifically In(é)) are defined. A
brief look at Inequality (5.49) shows that since k;, k2 and k3 are normally unknown (as
described above), one can not define a complexity term that encompasses all the statistical
aspects of the modeling procedure accurately. This means that, unlike FIR modeling, the
complexity measure created here will not be completely supported by the learning results.
However, in order to create some reasonably accurate learning-based complexity terms,

one can start from the bound on In(é). Using (5.49):

In(éd) > IIn(2e(2(vo+1)C +¢€)/e) +d i In ((2e(2(vo + 1)7:C +€) [€))

k=1
e2n

+ In(l+4e2%k) ~ ———— .
642+)

CHAPTER 5. ARX MODELS: STABILITY AND LEARNING 127

Since the value of &, is often not available, one may exclude the term: In(1 + 4de~2k;)
from the complexity term. Although by omitting this term, some statistical characteristics
of the data are disregarded, making assumptions on a variable that is unknown to us is

also avoided. As to the value of 7 things are more complicated, as described below.

Here, some choices for £, and k3 are assumed that seem to be reasonable for a typical
modeling application; however, these choices are by no means meant to be the best
possible selections and can be replaced by any better estimated or assumed values. It
has to be stressed again that the direct estimation of these values from the training data
might give a better set of values for k5 and k3, but this would involve another estimation
problem. In choosing the value of k,, set k2 = 1. This is because in most applications,
the decrease in correlation of data is not too fast. As to ks, this value is chosen to be:
k2 = 1/k where k is the degree of the system (as defined in (5.1)). This way, it is ensured
that the correlation decreases more slowly when the degree of the system is higher. These

choices of k; and k3, along with (5.50) suggest the following complexity term:

Csnnnp = In(2e(2(vo + 1)C +€)/€)

i e\/n
+ dkz::llfl(Qe(Q(”O'*‘l)TkC +€)/e) — AEC+)

Replacing vy with the Lipschitz bounds given in this chapter can give specific complex-
ity terms for “atan” and bipolar exponential neural networks. With a discussion similar
to the one given in Chapter 3 for FIR inodeling, it is preferred to use a more practical
complexity measure by replacing C and 7, with 3°!_, |a;| and |bk[,, respectively. This

gives the following practical complexity measure:

l
Csnn = lln (26(2(1}0 +1) (; la;|) + e)/e)
l { 62\/7_?.
+ dYmn ((ze(slbkll(g lai|)+e)/e)) - e

CHAPTER 5. ARX MODELS: STABILITY AND LEARNING 128

Based on the above complexity term, a cost function is defined as follows:

Jonn = % [Z l(f(l‘,) yz J + ACsnn -

i=1

(5.50)

As mentioned in previous chapters, higher values of A may give similar testing and
training errors that are both too large, while the smaller values of A may result in small
training errors and large testing ones. The choice of A should be made according to the
objectives of the specific application in hand along with the suggestions made in Chapter

3.

In forming the above cost function, it is assumed that the process is geometrically a-
mixing. However, as mentioned before, this property can not be assumed easily and must
be checked. If the output process is known to be stationary, then from the results given
in this chapter, if the positive real root of the characteristic equation is less than one, the
process is guaranteed to be geometrically ergodic, stochastically stable and geometrically
a-mixing. In order to make sure that the positive real root is indeed less than one, the
optimization process can be extended to minimize the magnitude of this root throughout
the training process. In order to do so, it is suggested here that a new term be added
to the cost function, i.e. assuming that PRR represents this root and v > 0, the cost

function becomes:

1
Jonn = ;2: [Z l(f(:l?,_ » Yi] + ACatan + vPRR .

(5.51)

The value 7y describes how important it is for us to ensure that the model is indeed

CHAPTER 5. ARX MODELS: STABILITY AND LEARNING 129

Q/q

Q 9 7T
—_— ——
4 Ty “ %

Figure 5.1: Schematic diagram of Continuously-Stirred Tank Reactor (CSTR)

stable and geometrically c-mixing. In many applications, the geometrically a-mixing
condition may be assumed without checking. However, in many applications, the system
to be modeled is known to be stable and it is often desirable to obtain “stable models”
for “stable systems”. Then, one has to choose v large enough to make sure that PRR is
actually less than one. Having a stable neural network that accurately models a stable

system is considered to be a major objective in dynamic neural modeling.

As in the FIR case, in order to minimize the complex cost function presented above, an
optimization zlgorithm that can handle nonlinear and non-smooth cost functions must be
used. The algorithms used here are again variable-structure and fixed-structure systematic
evolutionary algorithms, as introduced in Chapter 2. In the next section, some simulation

results obtained from the modeling of a simulated system are presented.

5.7 Simulation Results

In this section, an “atan sigmoid neural network” is used for modeling of a simulated
Continuously-Stirred Tank Reactor (CSTR) system under an ideal chemical-mixing as-

sumption. A schematic of CSTR is shown in Figure (5.1).

A single irreversible, exothermic reaction, A — B, is assumed to occur in the reactor,

CHAPTER 5. ARX MODELS: STABILITY AND LEARNING 130

where A and B are two chemical species. The reaction takes place in a container of fixed
volume and the product flow rate, input concentration, temperature and output flow rate
are assumed constant at their nominal values. Since in this section, an identification
procedure is performed on the simulated CSTR system, the physical model of the process
is given here. The process model consists of the following nonlinear ordinary differential

equations [38]:

. E
Cqa = %(CA}' —C4) — kCy &‘CP(—E)

(_AH) kOCA exp E + chPc

L, s
oC, RT’ ™ pC,V

ge[1 — exp(— - chpc)](T° -T)

F q

(5.52)

where C4 is the effluent concentratior of species A, T is the reactor temperature, V is
tank volume, g is feed flow rate, C4y is feed concentration, Ty is feed temperature, g, is
coolant flow, T, is coolant temperature, p and p. are densities, C, and C,. are special
heats, kg is the pre-exponential factor, E/R is the exponential factor, —AH is the heat
of reaction, and h,4 is heat transfer characteristics. During the simulation, the sampling
time At is assumed to be 1 minute. The nominal values of the above parameters are

taken from [38], and shown in Table (5.1).

In the identification (or modeling) procedure, CSTR is treated as a system with one
input variable ¢. and one output variable C4, i.e. u = g. and y = C4. This selection
of input-output is made since such a model can be used to control the system. During
the control phase, introduction of a coolant flow, g., allows the manipulation of the
reaction temperature and hence of the product concentration, C4. Other parameters of
the modeling task are as follows: £k = 2, d = 2, ¢ = 4. Such assumptions (taken from

[38]) create a discrete input-output model of the system as follows:

Ca(t) = f(Calt —2), Calt — 1), ¢(t —3), ¢(t —2)) . (5.53)

CHAPTER 5. ARX MODELS: STABILITY AND LEARNING

131

- Variable [l Symbol | Nominal value
Tank volume |4 100 {
Feed flow rate q 100 [min~!
Feed concentration Car 1 mol I7*
Feed temperature Ty 350 K
Coolant flow rate Qe 100 ! min~t
Coolant temperature T, 350 K
Densities £y Pe 1000 g {71
Specific heat Cpy Cpe lecal g ' K1
Pre-exponential factor ko 7.2 x 10 min=!
Exponential Factor E/R 9.98 x 10° K
Heat of reaction —AH | 2.0 x 10° cal mol™}
Heat transfer characteristics ha 7 x 10° min~ ' K1
Sampling period At 0.1 min

Table 5.1: Nominal parameters of a simulated CSTR. system.

In the following simulations, in order to generate the input to the CSTR system, an
independent random sequence identically distributed according to a normal distribution
with mean of 100 liters/minute and variance of 10 liters/minute has been generated. The
output sequence y, at each sample time is formed as the response of CSTR system to
the input plus a zero-mean normal random noise with variance of 0.1. In order to ease
modeling calculations and follow the framework of the theoretical results, the input and
output of the system have been normalized to the interval of [—1 1] mol/liter, as in [38].
The normalization process is based on the “max-min” method, i.e. for each variable z

(which includes the noise), the normalized variable Z,orm is computed as:

z — min(z) _
maz(z) — min(zx)

xnorm -

(5.54)

This method of normalization violates cur dependence assumptions in the strict sense
as the values of maz(z) and min(z) (found based on a long record of the output) may
occur at any point in time and thus influence the statistical dependency of the variables.
However, in practice, this method is used for modeling of CSTR (see [38] for example)

to create a mapping of the output to the interval [—1 1], and therefore used. A set of

CHAPTER 5. ARX MODELS: STABILITY AND LEARNING 132

(@) (=)
T T Y

N L L n L i L I " n x
10000 12000 14000 16000 18000 a 2000 4000 6000 8000 10000 12000 14000 16000 18000

Figure 5.2: (a) Cost function (left), and (b) Complexity term (right) for Simulation 1

input-output data of length 2000 has been generated of which the first 650 data points

were used for training and the rest of the points for testing the model.

Notice that all the learning results of this chapter are generated when the empirical
risk minimization algorithm along with the grading method of gemerating an €/2-cover
(introduced in this chapter) are used during the optimization process. However, when a
very fast computer is not available, this optimization process may be too time consuming
and is not applied here. It is necessary to relax the assumptions to use a more efficient
optimization method. The optimization algorithms applied in the £ollowing simulations

are those introduced in Chapter 3, using the new cost functions presented in this chapter.

5.7.1 Simulation 1

In the first simulation, using a family of atan SNN’s with 5 neuroens, the evolutionary
fixed-structure neural modeling algorithm is applied to search for a neural network with
three neurons, assuming that both A\ and <y are set to zero. The settings of the algorithm
are as follows: MinSlope = —1 x 1078, BackStep = 1000, w, = wp = 0.0005, A =0, v =
0, N =50, e =0.05 . Figures (5.2.a) and (5.2.b) depict the evolution of the cost function

and the complexity term, respectively.

The training cost function for this simulation (which is the saame as the empirical

CHAPTER 5. ARX MODELS: STABILITY AND LEARNING 133

Pesitive Real Rool
Actual 8 Estimated Outputs

04 L " L L " L 1
[+] 2000 4000 6000 8000 10000 12000 14000 16000 18000

Figure 5.3: (a) Positive real root of the best network of each generation for Simulation
1 (left), and (b) Actual (solid) and estimated (dashed) outputs for the testing data for

Simulation 1 (right)

error) is 0.0368. As can be seen, the value of the complexity term increases throughout
the process of evolution and the final network has the complexity of 191.34. Figure (5.3.a)
shows the evolution of the positive real root (PRR) of the characteristic polynomial. As
can be seen, PRR of the final neural model is 1.2678 , which is larger than one and the
stability of the model, therefore, can not be guaranteed. Then the performance of the
model is assessed against the testing data set. The testing empirical error is 0.0431, which
is still small but somewhat larger than the training error. The estimation graph for the
first 450 points is shown in Figure (5.3.b). In this figure, the actual (solid line) and the

estimated (dashed line) are compared to each other.

It is also important to notice that when PRR is larger than one (as in this simulation),
none of the learning results used to define the cost function can be guaranteed. Desirable

learning performance from such a simulation may not occur.

5.7.2 Simulation 2

In the second simulation, all the input-output points as well as the settings are the same
as the those of Simulation 1, except that A = 2 x 10™* and v = 4 x 10~2. The resulting

curves of the cost function and complexity term are shown in Figure (5.4). The training

CHAPTER 5. ARX MODELS: STABILITY AND LEARNING 134

mmﬁlly Term

Cost Funcuon
{H

025+

a2x

015

0.1 L N : n rt 1 3 n "
o 1000 2000 3000 4000 5000 6000 7000 “o 1000 2000 3000 4000 S000 6000 7000

Figure 5.4: (a) Cost function (left), and (b) Complexity term (right) for Simulation 2

cost function, empirical error, and complexity term for the resulting network are 0.1092,
0.0401, and 138.5287, respectively. From Figure (5.4.b), it can be observed that the
complexity term does not rise as fast as in Simulation 1, and reaches a value smaller than

the previous simulation.

Figure (5.5.a) shows the location of the positive real root (PRR) of the characteristic
polynomial. The PRR for the resulting network is 1.0361, which is still larger than one
and can not guarantee the stability. This suggests that the value of v may have to be
further increased (which will be implemented in the next simulation). In the testing phase,
the testing empirical error of 0.0442 is obtained. As can be seen, the difference between
the testing and training errors in Simulation 2 is slightly smaller than that of Simulation
1. The estimation curve for the first 350 points is shown in Figure (5.5.b), which indicates
that the estimation quality decreases as the signal approaches the extreme boundaries of
its interval.

Although both testing and training empirical errors of Simulation 2 are larger than
those of Simulation 1, the relative proximity of the testing and training values can be

regarded as the significant characteristic of Simulation 2.

CHAPTER 5. ARX MODELS: STABILITY AND LEARNING 135

:

&

Actusl 8 Estimated Outputs
-3

Figure 5.5: (a) Positive real root of the best network of each generation for Simulation
2 (left), and (b) Actual (solid) and estimated (dashed) outputs for the testing data for
Simulation 2 (right)

5.7.3 Simulation 3

In this simulation, the evolutionary variable-structure neural modeling with the following
settings is applied: MinSlope = —1 x 1078, BackStep = 1000, w, = w, = 0.0005, A =
2x 1074, vy=7x10"2, N =50, lj,n =2, k = 100.

Figure (5.6) shows the curves of the cost function as well as the complexity term of
this simulation. The algorithm stops at [= 4; however, since the cost function of the
network with two neurons is lower than that of the one with three neurons, the algorithm
introduces the final network with two neurons as the output function. The jumps in the
complexity term when a new neuron is added play an important role in this selection
(as expected). The jumps in the complexity curve correspond to the points where new
neurons are added. Notice that the defined complexity term depends on the number of
neurons directly and as a result adding a new neuron can make a significant change in
the complexity. These sudden jumps in complexity term were not present in the case
of FIR modeling. This is because the number of neurons [appeared in the complexity
measures of FIR models only in the form of upper bounds of the summations over the
weights of the model. Therefore, adding a new neuron with all its weights set to zero (or

small values) would not cause a jump in the complexity term. However, as mentioned

CHAPTER 5. ARX MODELS: STABILITY AND LEARNING 136

@ . N (]

Cost Funetion
[-3 o
8 & B & & &
L) T T
Comploxky Term
3

s

2
&

2

Figure 5.6: (a) Cost function (left), and (b) Complexity term (right) for Simulation 3

above, the complexity terms defined for ARX models contain multiplicative term of [and

therefore create the jumps.

Also, notice that after adding a new neuron there always exists a period of rapid
oscillations in the complexity curve. Oscillations can be reduced by choosing smaller
values of w, and w; at the expense of having a slower training procedure. In other words,
these variations are due to high values of adaptation parameters w, and w, and reducing
the values of these parameters would reduce the variations, but would make the entire

training process undesirably slow.

The output network has the training cost function and empirical error of 0.1216 and
0.0436, respectively. The complexity term for this network is 88.4046 .

Figure (5.7.a) shows the positive real root of the best network of each generation. As

can be seen, the location of the real positive root for the output function is 0.8289, which
is less than one and therefore the resulting network is stable. Figure (5.7.b) depicts the
performance of the network against the testing data. The empirical error for the testing
set of data is 0.0458 . This value being close to the training value indicates that the model

has avoided overfitting the data.

The direct comparison of the simulation results given here with those of the literature

may not be possible as the cost function used in all existing simulations in the literature

CHAPTER 5. ARX MODELS: STABILITY AND LEARNING 137

(@)

R o & &% & &
¥

L L " n n
Actual & Estimated Outputs

B

;

]
N
w

-~
ol
o
~
’
o

Figure 5.7: (a) Positive real root of the best network of each generation for Simulation
3 (left), and (b) Actual (solid) and estimated (dashed) outputs for the testing data for

Simulation 3 (right)

is the empirical error, calculated as the sum of the squared error (which is significantly
different from the one used here). Also, in some cases (such as [38]), it seems that
the entire data set has been used for training and as a result the comparison between
the testing-training balance may not be possible. Moreover, in none of the literature in
CSTR modeling is the issue of stability mentioned. However, judging from the overall
form of the estimated and actual curves, it seems that the tracking error in [38] may be

slightly smaller than the graphs given here.

Each simulation in this section takes between 300 to 420 minutes on a computer with

400MHz Pentium II processor.

5.8 Discussion

Here, the results of the chapter are discussed:

1. The above simulations indicate that the proposed algorithm can provide ARX mod-

els that have relatively similar performances on the testing and training data.

2. As can be seen in Simulation 1, without including the value of the positive real root

into the optimization process, the algorithm may results in models whose stability

CHAPTER 5. ARX MODELS: STABILITY AND LEARNING 138

is unknown. This encourages the use of non-zero v. However, the condition for
stability is a sufficient one, and even when the condition is violated the model may

still be stable.

3. As in the FIR case, the resulting model depends on the algorithm settings, i.e.
different values of N, w,, ws, A, ¥, BackStep and MinSlope would give different
models of the training data. At the same time, one can use the above settings
to implement the objectives of the modeling process. As an example, if a fast
training process is desirable, smaller values of IV, higher values of w, and w,, and
smaller values of Backstep can be used. Repeating the training process to find the

“appropriate settings” may be a more reliable strategy.

4. Since the number of hidden neurons [appears in the complexity term explicitly, one
can expect to see a jump in the cost function when the variable-structure algorithm
adds a new neuron to the structure. This jump seems to perform a vital role in
evolutionary variable-structure neural modeling, as such a sudden jump in the cost

function may easily stop the search.

5. The bounds on the sample complexity are distribution-free, and as a result are
highly conservative. Tighter bounds can be found assuming particular probability
distributions (or even families of probability distributions), as in the case of FIR

modeling.

6. The idea of forming the covering set of a function family by grading the parameter
space (introduced by Barron [7]) seems to be both feasible and practical. Although
the process may be tedious and time-consuming, in some applications where relia-
bility plays a more crucial role than the computation time, one may choose to use

this process in order to gain confidence in the learning behaviour of the model.

7. Modeling of the CSTR system (which is used in literature as a benchmark of nonlin-
earity) shows that both evolutionary algorithms introduced here can model complex

nonlinear dynamic systems.

CHAPTER 5. ARX MODELS: STABILITY AND LEARNING 139
5.9 Summary

The results of this chapter can be briefly reviewed as follows.

e A new sufficient condition for stochastic stability, geometrical ergodicity, and o-
mixing properties of sigmoid neural networks is presented. This condition is defined

over the parameters of the network and can be easily evaluated.

e With sufficiently large values of +, stable neural models of CSTR. system can be

obtained.

Chapter 6

Modeling of Neuromuscular Blockade

6.1 Introduction

For a patient undergoing surgery, unconsciousness may not suffice, as some muscles may
move due to involuntarily muscular activities. In order to avoid such unwanted movement,
drugs (such as atracurium) are injected to create muscle relaxation or neuromuscular
blockade. The amount and timing of such injections play critical roles in overall medical
procedures as too small a dose of the drug may not block the motion completely and
an excessive dose of such drugs may cause long term neuromuscular disorder. Accurate

identification and control of the neuromuscular blockade system is therefore important.

Unlike the level of unconsciousness which cannot be measured easily, the level of muscle
relaxation can be monitored on-line and non-incisively via evocked EMG responses. This
has encouraged a number of researchers to develop experimental dynamic models for this
nonlinear system. All such models are based on the average values of some parameters
that vary significantly from one person to another. This variability, together with the
nonlinear nature of the model, suggests that more sophisticated models such as neural

networks might be used to provide more accurate estimation of the system.

In this chapter, neural networks are applied to obtain a nonlinear model of the response
of the neuromuscular blockade system to drugs such as atricurium. Since real data were
not available, a parametric model based on the chemistry of the problem is used to
simulate the actual system. Section 6.2 describes the entire process of neuromuscular
blockade and the model which will be used. In Section 6.3, a sigmoid neural model
is developed for the process, and the performance of the developed model is assessed

against a set of testing data. Section 6.4 discusses the results, and Section 6.5 concludes

the chapter.

140

CHAPTER 6. MODELING OF NEUROMUSCULAR BLOCKADE 141
6.2 Muscle Relaxation and Neuromuscular Blockade

Define u(t) as the input dose of the drug and c,(t) as the plasma concentration of the
drug. In Pharmacokinetics, it is shown (see [15] for example) that after a dose of drug, the
plasma concentration of atracurium declines rapidly in two exponential phases correspond-
ing to distribution and elimination. The elimination compartment models a phenomenon
referred to as “Hofman elimination” [9]. As a result, combining the two compartments
together, one can model the relation between c¢,(¢) and u(t) as a second order linear sys-.
tem. Based on the empirical data gathered from different patients, the transfer function

of this system is reported as [15]:

_ Cy(s) s+ 2z

T U(s) (s+pi)(s+p2) (6-1)

Hy(s)

where U(s) and C, (<) represent the Laplace transforms of u(t) and c,(t) respectively, and:

z = 0.0940 min~!
p; = 0.3247 min~!

ps = 0.2079 min~t.

Similarly, to characterize different aspects of drug effect, a third compartment known
as the “effect compartment” is introduced. This compartment is connected to the central
compartment and relates c,(t) to c.(¢). The signal c.(t) determines how the effective
concentration of the drug in blood varies through time. The effect compartment which

describes the dynamics of effective concentration of the drug can be expressed as follows:

_Ce(s) _ k&

T Cp(s) s+po (6.2)

H,(s)

where C.(s) represent the Laplace transform of ce(t), po = 0.9910 min~' and k& =

CHAPTER 6. MODELING OF NEUROMUSCULAR BLOCKADE 142

0.0120 min~'.

Including the delay between the central and effective compartments, the overall trans-

fer function from u(¢) to c.(t) can be expressed as follows:

Ce(s) _ k(s + z)e™s
U(s) (s +Do)(s+p1)(s+p2)

H(s) = (6.3)

where the values of 2, py, p; and p, are given above.

Now, based on c.(%), one can calculate the desired cutput level of the neuromuscular
blockade, named as r(t). This variable, which is normally expressed as a number between
0 and 100 at each time £, indicates the level of blockade, i.e. 1€00 is regarded as full
muscular activity and 0 as full paralysis. The relation between express r(f) and c.(t)
reveals the nonlinear behaviour of the system. Experimentally, it has been observed
that the functional dependency between r(f) and c.(¢) is mainly of saturation type. In
Pharmodynamics, this saturation effect for atracurium is normallw modeled by the Hill

equation [9]:

r(t) = 100c,(t)”

T Hso +cp(t)” (6-4)

where ce 50 = 0.404ml™" ug is the drug concentration at 50 percent effect. The reported

value for v in Hill’s equation is 2.98 .

The existence of this saturation element makes the entire process a nonlinear system
and calls for the use of a nonlinear model to describe the system. In the next section,

this system is modeled using SNN’s.

6.3 Neural Modeling of Neuromuscular Blockade

Since real data from the neuromuscular blockade system were now available, simulated

data representing the actual system are formed using the model described above. Then,

CHAPTER 6. MODELING OF NEUROMUSCULAR BLOCKADE 143

the training and testing of performance of our neural nets will be assessed using the

resulting simulated data.

The discrete model is assumed to have the following form:

r(t) = f(r(t —2), r(t —1), u(t —4), u(t —3)) + x(¢) (6.5)

where the sampling time is assumed to be 20 seconds. This is due to the fact that in the
actual system the input rate as well as the output measurements are updated every 20
seconds. The delay of one minute between the input and the output translates to roughly

a delay of 3 samples in the discrete model.

In order to emulate the noisy nature of actual EMG measurement systems, a sequence
of normally distributed random numbers (x(¢)) with mean of zero and variance of 3.5
has been added to the output. The training and testing data sets are then normalized
such that the variables r and u fall in the interval of [-1 1]. The training and testing
data set consist of 450 and 550 input-output samples, respectively. Since it is known that
the neuromuscular blockade is a stable system, it is desirable to ensure that the resulting
neural model is stable (geometrically ergodic). As a result, in the following modeling task,

a non-zero 7y is used.

The evolutionary variable-structure neural modeling is used for the training. The
settings of the algorithm are the following: N = 50, w, = w, = 0.0005, A = 0.0002, v =
0.08, € = 0.05, MinSlop = —1 x 10°, BackStep = 1000, ljon, = 2, £ = 100 .

The algorithm stops after generating a network with 3 neurons; however, due to the
lower cost function of the last network with two neurons, the latter network is used as the
output of the algorithm. This can be seen in Figure (6.1.a), which shows the cost function
evaluated for the best network of each generation. Due to the jump in the value of the
complexity term, there exists a jump in the overall cost function that makes the three-
neuron-networks too costly. The evolution of the complexity term is shown in Figure
(6.1.b). The jump in the complexity term can be seen in this graph. The cost function,

the empirical error and the complexity term for the resulting two-neuron network are

CHAPTER 6. MODELING OF NEUROMUSCULAR BLOCKADE 144

(@) ®)
a5 40
045 130
1201
[-X3
10
038 £ 100
E £
2 s z
< HE
5 §
sof
025
7
Q2
0
.15
sal
~
a1 40
1 2 3 < H 6 7 8 9 o 1 2 3 « s L] 7 8 9
Generaticn Nurmber £ 10* Generation Number 10

Figure 6.1: (a) Cost function (left), and (b) Complexity term (right)

0.1218, 0.0382, and 93.2590, respectively.

Figure (6.2.a) shows the location of the positive real root of the characteristic poly-
nomial of the best network of each generation. The value of the positive real root (PRR)
for the resulting network is 0.8111, which indicates that the resulting network is stable.

In Figure (6.2.b), the performance of the resulting network against the testing data set is

depicted.

The empirical error on the testing data is 0.0385, which is very close to the testing

one. Also, from Figure (6.2.b) one can see that the estimated curve closely tracks the

actual one.

In order to see the prediction performance of the neural model more clearly, in Figure
(6.3), the auto-correlation of the prediction error is depicted. As can be seen, the only
point with high correlation corresponds to zero shift of the signal. This shows that the

error signal is merely a noise and contains little information.

This can be further seen in Figures (6.4.a) and (6.4.b), where “the power spectral
density” and “the cumulative integrated power spectral” of the error are depicted, re-
spectively. As can be seen in Figure (6.4.2), the spectrum of the error is relatively flat
which resembles that of a white noise. The small increase in the power of the signal

at high frequency indicates that the model is less successful in prediction of high fre-

CHAPTER 6. MODELING OF NEUROMUSCULAR BLOCKADE 145

Posnive Real Root

. ‘ . .
Actual & Estimalod Outputs

Figure 6.2: (a) Positive real root of the best network of each generation (left), and (b)
Actual (solid) and estimated outputs for the testing data (right)

2.5 "
2r -
1.5+ B
]
=
w
S 1i- 4
=
S
3
3
5 os i
g o
3
0
-0.5 -
-1 (] L 1 1 ye L 1 L
[} 100 200 300 400 500 600 700 800 900

Sample Shift

Figure 6.3: Auto-correlation of the empirical prediction error

Student Version of MATLAB

CHAPTER 6. MODELING OF NEUROMUSCULAR BLOCKADE 146

0.012 045 —
0.012F W o
£oast
oo1f 3
2 oab
5 $
%o.ooa- gm-
i 3
gﬁ.@» g az2pr
_%u.ts
6.00¢} E
3 otf
0.002
ol "l

Figure 6.4: (a) Power spectral density of the empirical prediction error (left), and (b)
Cumulative integrated power spectral density of the empirical prediction error (right)

quency variations. However, since most of the high frequency contents of the signal can
be attributed to the added noise, this may not be a considered as a disadvantage of the

model.

Due to the noisy nature of signal and the jumpy form of the power spectral density,
the curve of the cumulative integrated power spectral is sometimes considered as a more
visually-appealing graph. The curve in Figure (6.4.b) shows the cumulative summation
of the power spectral density for any given frequency. The closer this curve becomes to a
straight line, the whiter the signal is. As can be seen, Figure (6.4.b) gives a curve which
resembles a straight line which in turn indicates that the error signal is close to the white

noise.

Performing this simulation takes about 300 minutes on a computer with 400MHz

Pentium II processor.

6.4 Discussion
Considering the results obtained in this chapter, the following remarks can be made.

1. The higher values of 7 result in neural models with higher stability margins. How-

ever, for such simulations, the empirical error of the resulting network might be too

CHAPTER 6. MODELING OF NEUROMUSCULAR BLOCKADE 147

o

large.

Since the neuromuscular blockade system is known to be a stable system, a non-
zero -y was used to ensure that the resulting network is stable. However, if having
a neural model with unknown stability status is still acceptable, one can set v =0,
which may result in networks with smaller empirical errors and even closer testing

and training errors.

The resulting network performs similarly on the testing and training data sets which
further supports the idea of using learning-based cost functions. The fact that the
testing and training errors are very close suggests that the value of A can be further

reduced to obtain even smaller empirical errors.

Since the neuromuscular blockade system is known to be time-variant (i.e. the
parameters of the system change as the time evolves), the model can be designed
to follow the changes of the system assertively. Once a model is developed off-
line and throughout a batch training procedure, it can be updated after a few
samples by including the new measured data points in the on-line training process
and disregarding some of the old training points. Assuming that the computations
involved in updating the neural model can be performed in a few minutes using
a fast computer, the adaptive version of the above modeling procedure is a more
suitable approach, but needs to be confirmed throughout the implementation of the

model on the actual system.

A certain dose of atricurium causes different degrees of muscular paralysis on differ-
ent people so that different model parameters may be needed for different patients.
In order to deal with this problem, one can take an approach similar to the one de-
scribed in the previous remark, i.e. using adaptive implementation of the algorithm.
This way, the modeling process starts with the parameters obtained from the data
taken from different patients and updates the model throughout the process. Also,
characteristics such as weight, age and gender can be used to create models that

work for a group of people with certain similar characteristics.

CHAPTER 6. MODELING OF NEUROMUSCULAR BLOCKADE 148

6. The neural model developed here can be use to design a nonlinear controller that

generates the drug dose input so as to provide a certain level of muscle relaxation.

7. The performance of the neural modeling of the neuromuscular blockade can be best

evaluated using actual data sets taken from the real systems used.

6.5 Summary
A summary of the chapter is as follows.

e The neuromuscular blockade system can be modeled using neural networks.

e Due to the fact that the neuromuscular blockade systems is known to be stable, the

methodology used in this chapter is designed to give a stable model of the system.

e The similar performance over the testing and training data suggests that the ob-

tained neural model is a reliable one

Chapter 7

Conclusions and Future Works

In this chapter, the main results of the thesis are briefly reviewed. The main contributions

of the research can be listed as follows.

1. The new inequality on the summation of a sequence of m-dependent r.v.s, pre-
sented in this thesis helped extending the conventional PAC with i.i.d. to a more
general framework of learning with m-dependent r.v.s. This new paradigm of m-
dependent learning allows the quantitative evaluation of the learning properties of
FIR modeling procedures. Using the results of m-dependent PAC learning theory,
the learning properties of the following families of neural FIR models are assessed:
Gaussian RBFN’s, Reciprocal Multi-Quadratic RBFN’s, atan SNN’s, bipolar expo-
nential SNN’s, Volterra NN’s as well as simple linear models. These results give
bounds on the number of training data points which guarantees an accurate and
reliable model and avoids overfitting the data. These bounds are shown to be most
useful when the user has access to large training sets. Moreover, the learning proper-
ties of FIR modeling with the above families of NN’s are compared with each other.
Although the comparison is based on the sufficient bounds of the sample complex-
ities, the results can still be used in selecting a neural structure. The comparison
shows that from the standpoint of learning theory, bipolar exponential networks are

the most desirable neural models.

2. Based on the learning properties of neural FIR models and using the functional de-
pendencies between the learning parameters, complexity terms are introduced that
reflect the complexity of learning with such neural structures. Based on the resulting
complexity terms for neural FIR models, a set of cost functions is constructed that
creates a balance between the empirical error and the complexity of reliable learning

of the model. This cost function can be used to avoid overfitting when the size of

149

CHAPTER 7. CONCLUSIONS AND FUTURE WORKS 150

the training data is small. For a typical task of FIR modeling with small train-
ing sets, evolutionary neural modeling algorithms are proposed that consider the
learning properties of the model. This is done by minimizing the above mentioned
cost functions and searching for appropriate structure as well as set of parameters
that avoid overfitting. Simulation results testify to the suitable performance of the

proposed algorithms.

3. The evolutionary variable-structure neural modeling algorithm is applied to FIR
modeling of the paper machine’s next-scan-estimation. This shows that when the
sensors are off-line, for the first few scan lines, neural networks can use the previous
information to estimate the future scans (rows). This shows that neural FIR models
can be successfully used to approximate the industrial systems without overfitting
the small training data, provided that an appropriate learning-based complexity

measure is included in the cost function.

4. A set of sufficient conditions for the important properties of stochastic stability,
geometric ergodicity, and geometric a-mixing properties of two families of SNN’s
(atan and bipolar exponential) are presented. These conditions not only evaluate
the important issue of stability for some important neural models, but also allow
the extension of PAC learning to a more general learning scheme. Using these
conditions, a new extension of the conventional PAC learning framework is presented
that includes learning with geometrically a-mixing data. This provides a framework
to assess the learning properties of a group of important neural ARX models. In
order to obtain specific results, the PAC learning with geometrically a-mixing data
is applied to evaluate the learning properties of atan and bipolar exponential SNN’s.
The results bound the number of training data points that guarantees an accurate
and reliable ARX model and avoids overfitting. These results are mainly applicable

to the modeling tasks where the user has access to large data bases.

5. Based on the learning properties of sigmoid neural ARX models, complexity terms
are introduced that reflect the complexity of learning with such neural structures.
Then, using the resulting complexity terms for sigmoid neural ARX models, new

cost functions are constructed that create a balance between the empirical error and

CHAPTER 7. CONCLUSIONS AND FUTURE WORKS 151

the complexity of reliable learning of the model. For a neural ARX modeling task
(using the above mentioned SNN’s) with small training data sets, the evolutionary
neural modeling (similar to that of FIR modeling) is introduced. By minimizing
the above-mentioned cost functions, the algorithm searches for suitable structure as
well as parameters sets that avoid overfitting. Simulation results obtained from the
modeling of a Continuously-Stirred Tank Reactor (CSTR) testify to the successful
performance of the proposed algorithms.

6. The evolutionary ARX modeling algorithm is applied to the neuromuscular blockade
system, which results in a neural model that learns the system without overfitting
the data. This shows that neural ARX models are capable of approximating complex
systems without overfitting the small training data, provided that an appropriate

learning-based complexity measure is included in the cost function.

In continuation of our research the following future works may further improve our

results.

e As mentioned in Chapter 2, in FIR learning with RBFN’s, one can assume a fixed
set of locations for the centers and based on that obtain tighter bounds for the
sample of complexity. This will limit the results to the particular choice of centers

but give more specific and less conservative bounds.

e A new algorithm based on the empirical risk minimization algorithm that is intro-
duced in [33] and [34] has resulted in more practical search methods for learning
with i.i.d. data. This algorithm, called “canonical smooth estimation”, is an exten-
sion of the empirical risk minimization. The algorithm forms an empirical e-cover
set rather than the probability based one. The sample complexity of this algorithm
has been directly calculated based on the sample complexity of the empirical risk
minimization. This suggests that it might be possible to use the results of this the-
sis to calculate the sample complexity of the canonical smooth estimation, which is

more practical than the empirical risk minimization algorithm.

e In order to further evaluate the performance of the introduced cost functions in

CHAPTER 7. CONCLUSIONS AND FUTURE WORKS 152

dealing with the overfitting problem, one can perform many modeling simulations

with different training and testing sets.

e More efficient non-smooth optimization algorithms might be used to minimize the
cost functions used in the thesis. However, SIMPLEX and gradient-based algorithms
have already been applied to the problem. The results indicated that the above

methods are not as successful as the proposed EP methods are.

e From the results of Chapter 4, it seems that the prediction of future rows can be
extended to more than five rows ahead. A set of simulations on predictions of more

rows can determine how many more rows can be accurately predicted.

e It may be possible to use the results of Tong [22] on the geometric ergodicity and
geometric strong mixing of nonlinear systems, to create results similar to the ones
introduced for SNN’s. A careful formulation of the problem may result in a set of

sufficient conditions on the weights of a RBFN that guarantees the above properties.

e As mentioned in Chapter 6, the use of actual neuromuscular blockade data taken
from real patients in ARX neural modeling of the system can further assess the

proposed algorithms.

Bibliography

[1] L.G. Valiant. A theory of learnable. Comm. ACM, pages pp. 1134-1142, 1984.

2]
(3]

[11]

[12]

M. Vidyasagar. A Theory of Learning and Generalization. Springer, 1997.

A. Blum and R. Kannan. Training a 3-node neural metwork is NP-complete. Proc.

1st workshop on Computational Learning Theory, San Mateo, CA, pages 918, 1988.

A. Blumer, A. Ehrenfeucht, D. Hussler, and M. Warmuth. Learnability and Vapnik-
Chervonenkis dimension. J. AMC, 4, no. 36:929-965, 1989.

A. Mokaddem. Mixing properties of polynomial autoregressive processes. Ann. Inst.
H. Poincare Probab. Statist., 26, no. 2:219-260, 1990.

A.N. Kolmogorov and V.M. Tikhomirov. e-Entropy and e-capacity of sets in func-
tional spaces. Amer. Math. Soc. Transl., 17:pp. 227-364, 1961.

A R. Barron. Approximation and estimation bounds for artificial neural networks.

Machine Learning, 14:115-133, 1994.

B. Dasgupta, H. T. Siegelmann and E. D. Sontag. On the complexity of training
neural networks with continuous activation functions. IEEFE Trans. Neural Networks,

6:1490-1504, 1995.

B. Whithing and A.W. Kelman. The modeling of drug response. Clin. Sci., 59:311,
1980.

C.G. Looney. Pattern recognition using neural networks: theory and algorithms for

engineers and scientists. Oxford University Press, 1997.

D. Aldous and U. Vazirani. A Markovian extension of Valiant’s learning model. Proc.

31th Annual IEEE Symp. on the Foundations of Comp. Sci., pages 392-396, 1990.

D. Angluin. Computational learning theory: Survey and selected bibliography. Proc.
24th ACM Symp. on Thy. of Computing, pages 351-369, 1992.

153

BIBLIOGRAPHY 154

[13] D. Anthony and N. Biggs. Comutaional learning theory. University Press, Cambridge,
U.K., 1992.

[14] D. Anthony, N. Biggs and J. Shaw-Taylor. The learnability of formal concepts. Proc.
Third Workshop on Computational Learning Theory, pages 246257, 1990.

[15] D.A. Linkens, M. Mahfouf, M. Abood. Self-adaptive and self-organising control
applied to nonlinear multivariable anesthesia: a comparative model-based study.

IEE Proceedings-D, 139. no. 4:381-394, July 1992.

[16] D.S. Modha and E. Masry. Minimum complexity regression estimation with weakly
dependent observation. IEEE Trans. Information Theory, 42, no. 6:2133-2145, Nov.
1996.

[17] E. Baum and D. Haussler. What size net gives valid generalization? Neural Com-

putation, 1, no. 1:151-160, 1989.

[18] E. D. Sontag. Feedforward nets for interpolation and classification. J. Comp. Sys.
Sci., 45, no. 1:20-48, 1992.

[19] G. M. Benedek and A. Itai. Dominating distributions and learnability. Proc. Fifth
Workshop on Computational Learning Theory, ACM, pages 253—264, 1991.

[20] G. M. Benedek and A. Itai. Learnability with respect to fixed distributions. Theo-
retical Computer Sys., 86(2):377-390, 1991.

[21] H. E. Warren. Lower bounds for approximation by nonlinear manifolds. Trans. AMS,

133:167-178, 1968.
[22] H. Tong. Non-linear time series. Oxford Science Publications, 1990.

[23] H.J. Kushner. On the stability of processes defined by stochastic difference-
differential equations. J. Differential Equations, 4, no. 3:424-443, 1968.

[24] H.J. Kushner. Stochastic Stability, in Lecture Notes in Math. Springer, New York,
1972.

BIBLIOGRAPHY 155

[25]

[26]

27]

[28]

[30]

[31]

[32]

[33]

[34]

J. Mason and C. Kambhampati. Predictive control of a mixing tank using radial

basis function networks. Proc. 85th Conf. Decision and Cont., pages 478-479, 1996.

J.P. La Salle. Stability theory for difference equations. MAA Studies in Mathematics,
American Math. Assoc., pages 1-31, 1977.

K. Najarian, G.A. Dumont and M.S. Davies. A learning-theory-based training al-
gorithm for variable-structure dynamic neural modeling. Proc. Inter. Joint Conf.

Neural Networks (IJCNN99), 1999.

K. Najarian, G.A. Dumont, M.S. Davies, [. Motabar. Complexity Control of Neural
Networks Using Learning Theory, Part I: Theory. JASTED Conf. on Neural Networks
(NN’2000), May, 2000.

K. Najarian, G.A. Dumont, M.S. Davies, I. Motabar. Complexity Control of Neu-
ral Networks Using Learning Theory, Part II: Application in Minimum-Complexity
Neural Modeling of Two-Dimensional Scanning System. TASTED Conf. on Neural
Networks (NN’2000), May, 2000.

K. Najarian, G.A. Dumont, M.S. Davies, N. E. Heckman. Neural ARX Models and
PAC Learning. Springer’s Lecture Notes in Artificial Intelligence Series, 2000.

K. Najarian, G.A. Dumont, M.S. Davies, N.E. Heckman. Learning of FIR Models

Under Uniform Distribution. Proc. The American Control Conference, San Dieo,

U.S.A. (ACC1999), pages 864-869, June 1999.

K. Najarian, Guy A. Dumont, and Michael S. Davies. PAC learning in Nonlinear
FIR Models. submitted to: Journal of Adaptive Control and Signal Processing, 2000,
(To appear).

K.L. Bueschner and P.R. Kumar. Learning by canonical smooth estimation, Part I:

Simultaneous estimation. IEEE Trans on Auto. Control, 42(4):545-556, April 1996.

K.L. Bueschner and P.R. Kumar. Learning by canonical smooth estimation, Part II:
Learning and choice od model complexity. IEEE Trans on Auto. Control, 42(4):557—
569, April 1996.

BIBLIOGRAPHY 156

[35] M. Iosifesco and R. Theodorescu. Random processes and learning. Springer-Verlog,

1969.

[36] M. Karpinski and A. J. Macintyre. Polynomial bounds for VC-dimension of sigmoidal
and general Pfaffian neural networks. J. Comp. Sys. Sci., 1996.

[37] M. Kearns and R. E. Shapire. Efficient distribution-free learning of probablistic
concepts. J. Comp. Sys., 48:464-497, 1994.

[38] M. Pottmann and D.E. Seborg. Identification of non-linear processes using reciprocal

multiquadratic functions. J. Proc. Cont., 2, no. 4:189-202, 1992.

[39] M.C. Campi and P.R. Kumar. Learning dynamical systems in a stationary environ-

ment. Proc. 81th IEEE Conf. Decision and Control, 16, no. 2:2308-2311, 1996.

[40] N.S.V. Rao. Nearest neighbor rules PAC-approximates feedforward networks. IEEE
International Conf. Neural Networks, pages 108—-113, June 1996.

[41] P. Bartlett. The sample complexity of pattern classification with neural networks: the
size of the weights is more important than the size of the network. Amer. Statistical

Assoc. Math. Soc. Transactions, 17:277-364, 1996.

[42] P. Bartlett, Fischer, Hoeffgen. Exploiting random walks for learning. Proc. 7th ACM
COLT, pages 318-327, 1994.

[43] P. Doukham. Mizing, properties and ezamples. Springer-Verlog, 1985.

[44] P. Goldberg and M. Jerrum. Bounding VC-dimension of concept classes parametrized
by real numbers. Machine Learning, 18:131-148, 1995.

[45] P. Koiran and E. D. Sontag. Neural networks with quadratic VC-dimension, summary

in Advances ion Neural Information Processing, 8. MIT Press, Cambridge, MA, 1996.

[46] S. B. Holden and P. J. W. Rayner. Fast gradient based off-line training of multilayer
perceptron. IEEFE Trans. Neural Networks, 6, no. 2:368-380, March 1995.

BIBLIOGRAPHY 157

[47] S. Chen, S.A. Billings and P.M. Grant. Recursive hybrid algorithm for non-linear
system identification using radial basis function networks. Int. J. Cont., 55, no.
5:1051-1070, 1992.

[48] T. M. Cover. Capacity problem for linear machines, in “Pattern Recognition”. by ,

L. Kanak (Ed.), Thomson Book Co., 1952.
[49] V. N. Vapnik. Statistical Learning Theory. Wiley, New York, 1996.

[50] V. N. Vapnik and A. Ya. Chervonenkis. The necessary and sufficient conditions of
the method of empirical risk minimization. Pattern Recognition and Image Analysis,

1(3):284-305, 1991.

[61] V.N. Vapnik and A.Y. Chervonenkis. On the uniform convergence of relative fre-
quencies of events to their probabilities. Theory of Probability and its Applications,

16, no. 2:264—280, 1971.

[52] W. Hoeffding. Probability inequalities for sum of bounded random variables. Amer.
Statistical Assoc. Math. Soc. Transactions, 17:277-364, 1961.

[53] Z. Tang and G.J. Kohler. Deterministic global optimal FNN training algorithm.
Neural Networks, 7, no. 2:301-311, 1994.

