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Abstract 

The extent of bioaccumulation of organic contaminants in aquatic ecosystems bas tradi- 
tionally k e n  assessed by two philosophically different methods. This research aimed 'at 

developing a hybnd methodology combining the benefits of the empincal and theoretical 
approaches. A genetic algorithm (GA) was developed to calibrate Gobas' mass-balance, 
steady-state model of contaminant bioaccumulation to an available set of empirical con- 
centration data in the Lake Ontario ecosystem. The GA was found to be able to perform the 
complex caiibration of a subset of parameters representing the structure of the aquatic food 
web. GA-derived feeding preferences for four Lake Ontario fish species were found to be 

in good agreement with independently-derived values. The feeding preferences were aiso 

used to establish the food web hierarchy ihrought an index of trophic position. The trophic 
position of the four Lake Ontario fish species derived by the GA were also found to be sim- 
ilar to those obtained by other research efforts. Loosening the search constraints was found 
to improve the ability of the GA to find the optimal solution to the calibration problem. The 
results suggested that PCBs and other hydrophobie organics can be used as tracers of food 
web structure. The main limitations of this study included the lack of explicit integration of 
uncertainty in the empirical contaminant data set used and the reliance on the value of the 

non-calibrated model parameters and equations. 
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Chapter 1 

Introduction 

The bioaccumulation factor (BAF) is widely used to express the degree of chemical accu- 
mulation in aquatic organisms. It is defined as the ratio of the concentrations of acompound 
in biota and water'. The BAF is specific to each compound, to each species, and to each 
ecosystem. In addition, the BAF can vary in a given system as a function of the envirun- 
mental conditions (e.g. seasonal changes). It is used in various regulations that manage 
chemical use, in particular, in the development of water and sediment qudity criteria, in 
hazard and exposure assessment, and in evaluating remediation scenarios, 

' h o  philosophically different approaches are used to derive BAFs. The empitical ap- 
proach derives BAFs from measured concentrations of contaminants in organisms and in 
water. The applicability of this method is often limited because of the lack of data for dif- 
ferent compounds, species, and ecosystems. Also, this method does not pniviâe informa- 
tion about how the BAFs rnight change under different environmental conditions, chernical 
emissions, and changes in food web structure. 

The other approach is to use theoretical models to decive BAFs. Bioaccumulation mod- 
els (BM) use knowledge of chernical transport and uptake kinetics to quantitatively predict 
intemal contaminant concentrations in different living organisms of an ecosystem. Mo&ls 
are popular since they can be used for a variety of species, compounds, and ecosystems 
and do not require site-specific and organism-specific concentration data. Their strength 
lies in the understanding of the mechanisms controlling the distribution of contaminaats in 
biota. Their weakness lies in the uncertainties in the form of the mode1 equations and in the 

availability of appropriate data to parameterize the model. 
In many practical exposure assessments of contaminants, there is often insufficient data 

'W = Concbi,,/Conc,,, 



available to satisfactorily apply either an empirical or a theoretical approach to assess the 
BAFs. It is equally common that a limited data set of empirical concentration data and 
mode1 input data does exist. It is the aim of this research to investigate the application of 
genetic algorithrns to calibrate a theoretical bioaccumulation model (which lacks crucial 
input data) using available empirical data (which may also he incomplete). The new, cal- 
ibrated model combines the attributes of theoretical bioaccumulation models and of avdl- 
able empirical data sets. 

The BM developed by Gobas [Il] was chosen since it has gained general scientific ac- 
ceptance and is now used by the US Environmental Protection Agency (EPA) to estimate 
BAFs of hydrophobic organic compounds under the Great Lakes Water Quaüty Initiative 
[SI. The model predicts intemal contaminant concentrations through a first-order kinetic 
mass-balance equation (Equation AS) that includes the main routes of uptake and elimina- 
tion to and from the fish tissues. It also captures food web biomagnification by allowing 
multiple feeding interactions between organisms. The Lake Ontario freshwater ecosystem 
was investigated in this study. 

When facing a situation where certain model parameters are unknown or uncertain, 
calibration is often applied to deduce model parameters fiom an available empirical data 
set. Arnong the most uncertain BM pararneters are those determining the structure of the 
food web. The diet preferences of each species have to be explicitiy specified for the model 
caiculations 11 11. However, this information is difficult to determine experimentally. The 
calibration of the food web structure pararneters is anaiogous to resolving the food web 
structure using the contaminants as tracers of food web interactions. 

In the original BM application to the Lake Ontario ecosystem, the food web structure is 
detemined by a total of ten trophic links (Figure 1.1). The default model cdibration for îhe 
foodweb structure was decived from the literature [9]. The parameter values were calculated 
by model caiibration to an available data set of hydrophobic organic contaminants [30]. The 
calibration results were compared to independently-derived values of foodweb structure. 
Agreement between the two sets of foodweb stmcture parameter values would indicate that 
the data set contained the information necessary to resolve the foodweb structure. The new, 
calibrated model still maintained its predictive ability and, moreover, is consistent with 
avaîlable data. 

Organic contaminants such as PCBs are ubiquitous in the enviromnent and their distri- 
bution in the different organisms of a food web is highly dependent on erophic interactions 

[2]. Their distribution wiil likely be affécted by changes in feeding habits or species inva- 



Figure 1.1: Hypothesized structure of the Lake Ontario food web in the late 1980s as de- 

rived by Flint [9] and subsequently used by Gobas [1 l]. nie diffeicnt trophic links and the 
proportion that a prey item represents in an organism's diet are shown for the different fish 
species. 



sion leading to a different food web stnicture. Just as stable isotopes [l, 211, PCBs codd 
provide tune-integrated measures of feeding habits. 

Simple models wirh few parameters can be calibrated using traditionai methods such 
as minimum least squares or maximum klihood. However, the BM is complex and the 
number of parameters to calibrate cm be large. Traditionai caiibration methods are üî- 
suited for calibration of the BM. In this study, the genetic aigorithm (GA) was investigated 
as a possible calibration method since it was found to be a robust and adaptable optimization 
aigorithm in many comparable situations [14,37,20, 10,31,29]. The calibration results of 
the BM food web structure parameters were compared to independently derived parameter 
values 19,351. 

The objectives of this study were to: 

1. investigate the applicability of the GA to develop a site-specific BM based on incorn- 
plete data set 

2. evaiuate the possibility of resolving food web structure information using chernical 
residue data in the different fish species of the Lake Ontario ecosystem through the 

calibration of the BM 

3. guide funire research on the use of advanced numerical methods in bioaccumulation 
modeling 

There are many other examples where the methodology developed here is applicable. It 
can be applied to other modeling appIications and their associated data set. The parameters 
to be calibrated, usually the most uncertain ones and those that the mode1 is most sensitive 
to, will Vary from application to application. The methodology provides a mathematically 
sensible way to cdibrate a variety of parameters in complex modeling applications. 



Chapter 2 

Methods 

The calibration of the BM first required its implementation in a programming language. A 
subset of model parameters to be caiibrated was identified. A GA was developed to evolve a 
population of potential solutions based on the fitness of each individual. The fitness of each 

individual was caiculated through an objective function that expresses the level of agree- 

ment between the predicted and observed concentration data for 44 different chemicals. 

The value of the different GA control parameters dictated its performance in solving the 

optimization problem. It was thecefore important to choose them appropriately to cdibrate 

the BM. It was also essentiai to ensure that the GA had enough time to converge towards 

a solution approaching the minimum value of the objective function. Finally, search con- 

straints were implemented for the different calibrations. Four sepamte caiibrations using 

different objective functions and search constraints were perfomd. The different calibra- 

tion results were evaiuated through an independent perfomance memure of the BM and 

were compared to independently derived parameter values. 

2.1 Implementation of the bioaccwnulation model 

The BM was programmed in the Quick Basic language using the Microsoft QuickBasic 4.5 

compiler [27]. The BM's mass-baiance equations can be found in Appendix A.l and its 

different parameters cm be found in Appendix A.2. 



2.2 Selection of bioaccumulation model parameters for cal- 
ibration 

The BM contains many parameters (Appendix A.2) and the methodology presented here . 
could be used to calibrate any of them. Since this project examines the applicability of the 
GA to calibrate the BM, a subset of uncertain parameters was chosen to represent a fairly 
complex calibration problem, 

While some model pararneters have values that are easily obtainable, oihers are difficult 
to measure. For example, the average weight and lipid content of a biological species can 
be relatively easily determined. On the other hand, the diet composition of a fish species is 
more uncertain because it is more difficult to measure. Existing rnethodologies to determine 
food web structure have significant Limitations. The trophic interactions used in the original 
BM [ 1 11 are therefore in doubt. 

For the purpose of this study, it was decided to explore the application of the GA to 
calibrate the feeding preferences which represent the trophic stmcture of the food web. The 
food web linkages are represented by ten different parameter values (Table 2.1 and Figure 
2.1). The food web stmcture pararneters are also an interesting subset because ihey allow 
the use of the calibration results to test whether PCBs cm be used as tracers of food web 
structure. Assuming ihat the BM is adequate in predicting the chernical concentrations 
of PCBs in the different fish species, the caiibration results may be able to elucidate the 
food web structure that b t  explains the data observed. Those pararneters are not the only 
uncertain parameters used in the model but their calibration would represent an interesting 
alternative to existing ecological methods for resolving food web structure. 

The food web structure was represented by a vector containing the 10 parameter values: 

diet composition of sculpin Pl  PZ 
diet composition of smelt P3 P4 P5 
diet composition of aiewife P6 Pi 
diet composition of salmon P8 P9 Pl0  

The parameters were defined on a scale h m  O to 1 at a precision of f0.01. When 
viewed as a srmm of 10 numbem, the structure of the food web is difscult to ioterpret. An 



Table 2.1: Fish species considemi in the BM, their prey items, and the parameten repre- 

1 1 Pontoporeia 1 1 
Smelt Zooplankton 

senting theu corresponding feeding preferences. 

1 1 ~ m p o r e i a  1 1 
Aiewife Zooplankton 

Predator 

Sculpin 

Salmon Sculpin s 
1 Alewife 1 Pl0 

Rey Item 

Zooplankton 

Figure 2.1: The ten parameters in the BM that descnbe the f i  web structure. 

7 

Parameter 

Pl 



index of trophic position was used to assess the feeding hierarchy in the ecosystem 122,351. 
Assigning a subjective trophic position to the two lowest prey species in our model of Lake 
Ontario allowed the caiculation of the trophic position of the different fish species using the 

formula: 

w here, 

T, is the trophic position of fish species a 

Pi is the volumetric contribution of prey item i to predator a 

3;: is the trophic position of prey item i 

In the simplified food web, the zooplankton were assigned a trophic position of 3, the 

benthic invertebrates a trophic position of 2, and the primary producers a trophic position of 
1. This index was used to calculate the trophic position of each fish species. For example, a 

fish species whose diet consisted of 50% zooplankton and JO% benthic invertebrates had a 
trophic position of [@O% x 3) + (50% x 2)1+ 1 = 3.5. The index allows cornparison of the 
trophic position between different fish species. The availability of independentiy collecteci 
trophic position data provided an opportunity to evaluate the model calibration data [9,35]. 

2.3 Selection of forcing variables 

In its original application to the Lake Ontario ecosystem, the BM predicted contaminant 
concentrations in dierent organisms, including zooplankton and benthic organisms. The 
predicted concentrations in zooplankton and benthic organisms were then used in the cal- 
culations for the predatory fish species. Since the parameters in 8 only affixt the predicted 
d u e s  of the concentration in the fish species, the BM can be simplifiecl so that empirical 
vaiues, instead of predictions, of concentration in zooplankton and in bentbic organisms 
can be used in the calculations for fish species. That is: 



cm become: 

w here, 

ConcprdiCted is the predicted intemal concentration in a given species ( ywet weight) 

f (...) is the BM's mathematical equations (Appendix A.l) 

C, is the concentration in water (F) 
C, is the concentration in sediments (?dry weight) 

K,, is the compound's octanol-water partition coefficient (unitless) 

C O ~ C . ~ ~ ~ ~ ~ ~  is the observed concentration in zaoplpohon (ywet weight) 

C ~ n c . ~ . , ~  is the observed concentration in Pontoponia (Twet weight) 

p are the BM parameters (Appendix A.2) 

We will refer to the BM form in equation 2.2 as BMprcdiCred and that in equation 2.3 as 
BMempifical. This new mode1 form eliminates potential erroa stemming h m  predictions 
of C ~ n c . , , ~ ~ , ~ ~ ,  and C~nc.pb,,~,. The BM's predictions for zooplankton and benthic 
s p i e s  have been refined since its original application to Lake Ontario [28]. 

2.4 Implementation of the genetic algorithm 

To have complete flexibility over the calibration of the BM, a GA-based optimizer was 

developed and implemented in the Quick Basic language using the Mimsoft QuickBasic 
4.5 compiler 1271. While some off-the-shelf GA software applications are available, they 
lack the expandability and adaptabiity required for this project. 

The GA designed included a mutation operator, a 2-point crossover recombination o p  
erator [33], and a reproduction operator. The reproduction operator used the elitist strategy 

and standard fitness 141 (see Appendix B). Potential solutions were encoded on adjacent 



genes stored on binary haploid chromosome. Parameter values were encoded in binary- 
reflected Gray code [17, 181. In each genemîion, raw fitness values for each individual in 
the population were first caiculated by an objective function. bdividuals were then ranked 
and their standard fitness was calculated. 

' h o  different objective functions were used to measure the goodness-of-fit of the BM 
to the data. Both were sums of squared residuals, the fint used untransformed values of 
predictions and observations while the second used their natucal logarithm. The objective 
functions (SI and S2) are: 

where, 

is the predicted concentration of compound j in fish i 

W j  is the weight given to compound j 

m is the number of fish species 

n is the number of cornpounds 

Al1 compounds were given an equai weight (Le. w = lin), 
Standard fitness was calculated by a half normal distribution equation that was normai- 

ized to 1 [4]: 

exp [ (ranlr~dgition il2] 

fitness (rank i individual) = 
#individuais [ -IMP$~~Q~ j12] 

(2.6) 
Z,=l 

The standard deviation in the normal distri'bution (a), dictates the evolutionary pressure. 
A high value of a yields a fiat distribution and the pre-assigned fitness values do not ciiffer 
much from individuai to individual. The best individual still has a larger share of the total 
population fitness but its proportional advantage is reduced as a increases. Conversely, a 
matl a value gives a strong bias towards the best individuai in a given generation. 



Chernical residue data in different organisms of the Lake Ontario food web were used 
for the BM calibration [30]. The subset of compounds used had data points for each fish 
species, for zooplankton, for Pontoporeia, and had log& > 5.0. The log (&) of the 
different compounds were obtained from [12] and [16]. The log(&,,) of y-chlordane was 
calculated according to methods described in [25] using a free online version of ESC's 
Estimation Software [a]. In total, 44 compounds were used for the calibration of BMentPin'm~ 
(please refer to Appendix E for the data). 

The calibrated parameters (8 = {Pl, P2, P3, P4, P5, P6, P7, P8, P9, P IO)) were searcheci 
under two different sets of constraints. Under the first constraints scenario, each parame- 
ter was searched on a [O, 11 interval at a precision of fO.O1. The sum of diet preferences 
for each fish species equaled 1.0. The default calibration (OGM3) fulfilled this constraint 
since the sum of diet preferences for each fish species was equal to 1 .O. 

It was already established that the parameter values are uncertain and that not al1 trophic 
links in the ecosystem were accounted for. To address this uncertainty, a second constraints 
scenario was evaluated where each parameter was searched on a [0,2] interval, still at a 
precision of h0.01. In this case, the sum of diet preferences was allowed to Vary between O 
and 2. AIlowing the diet of a fish to break the strict constraints was similar to varrying the 
Ievel of contaminants input from the organism's food. The constraints were then: 

1. Strict constraints 

2. Under loose constraints 



If a potential solution was found to break the constraints, it was penalized to reduce its 
chances of surviving the next generation. To implement a s ,  a penalty function was adàed 
to the objective function (S = S + penalty) [14,26]. The penalty needed to be large enough 
to ensure the nonoptimality of solutions breaking the constraints 1291. Penalty weights (a) 
of 10000 for calibration using SI and of 100 when using S2 were used in a penalty function 
of the fonn: 

where, 

o is the penalty weight 

6 is the contribution of prey item i to predator j 

m is the number of prey species 

n is the number of fish species 

The loose constraints used the same penalty function but were implernented as: 

i f  $zY pi 4 2.0 
penalty = 

if ~~~q pi > 2.0 

The population was randomly initialized at the beginning of each mn, which meant 
that solutions were very likely breaking the constraints in the eulier part of the evolution. 
The penalty function ensured that solutions which did not fulfill the constraints were at an 
evotutionary disadvantage and that their chance of surviving to the next generation were 

accordingly reduced. 
The trophic position of the different fish species (Equation 2.1) was affécted by the 

change in constraints. For example, a sum of diet preferences larger than 1 artificially 
elevates an organism's trophic position. When conducting caiculations under loose con- 
straints, it was necessary to adapt Equation 2.1 so that trophic position accounted for the 

possibiIity of a sum of diet preferences ciifTecent than 1.0. This correction retumed a trophic 
position that twk into account the relative contribution of the different prey items instead 
of their absolute value. The comted realized tropbic position was calcuiated as: 



where, 

corrected Ta is the corrected trophic position of fish species a 

corrected I;: is the corrected trophic position of prey item i 

Just & the contaminant predictiow in the BM, the trophic position calculations have 
to be performed in an order that respects the hierarchy in the food web. Trophic positions 
are first calculated for alewife and sculpin since they feed on the two lowest prey items, 

narnely benthic organisms (TmoPmk = 2) and zooplankton = 3). The trophic 
position of smelt can then be calcuiated using corrected T,ulpin, dong with Tpo~oprCi(l 
and Tzooplankton. Finally, the trophic position of the salmonids can be established using 
corrected TJculpin, corrected TalmiJe, and corrected T,,,rt. 

2.5 Debugging and testing of computer code 

The code of the BM was verified by compacing its output to results published in [Il]. 
To ensure the GA was correctly implemented, it was first used to calibrate different 

linear and non-linear functions of increasing complexity. The calibration of such models 
can be performed by normal tegression andysis, hence providing a benchmark for testing 
the results obtained by the GA. Discrepancies between GA calibrations and the benchmark 
calibrations provided information necessary for the debugging of the computer code. At 
that point, the control parameters used varied in values, a situation that led to the meta-level 

optimization (Section 2.6). 
Calibration of the parameters a and in a lin= model of the forrn y = crx+ f! was the 

first GA calibration undeaaken. Fifty data sets were generated using different values of a 
and p. Each data set consisted of 50 data points and were used to test the GA. After the GA 

showed its ability to caliirate a linear model using the "synthetic" data, a random normal 
deviate was added to the data and the GA was used to calibrate the same model using the 
"noisy" data 

The calibration of non-linear models was also conducted. The model forms used to cal- 

ibrate are taken h m  [32]. Synthetic data was generated and used to test the GA'S ability to 



comctly calibrate the difîerent non-linear models. The three non-linear models calibrated 
are: 

The final test of the GA before applying it to the BM was a calibration of a non-linear mode1 
using empirical data The calibrated mode1 is a Mchaelis-Menten type equation: 

The data and analyses of Drever [7] were used as a benchmark for calibration of the a 
and Q parameters. Drever used the nonlinear regression package from SPSS [34]. 

2.6 Meta-level optimization of the genetic algorithm con- 
ho1 parameters 

The GA has four control parameters; the nurnber of individuds in the population, a in the 
standard fimess calculation, the probability of recombination and the probability of muta- 
tion. The value of the GA control parameters affect its ability to solve a given optimization 
problem. For example, if the probability of mutation is too high, the GA will behave just as 
a random search and will not explore the promising regions of the search space. The number 
of individuals in the population conuols the amount of search space that gets mpled over 
a mn. The other three control parameters, dictate the GA'S level of exploration/exploitaiion. 
For this reason, it was important to test different GA contigurations for BM calibration. A 

population size of 50 was deemed sufficient. The population size was not explicitly evaIu- 
ated. It was necessary to include o as part of the meta-optimization because its appropriate 
value is dependent on the optimization problem [4]. This optimization of the GA control 
parameters is calied meta-leve1 optimization 1151. 

The meta-level optimization of the GA control parameters was performed using a syn- 

thetic concentration data set. This data was generated by ninning the BM with a set of 
default parameters (Table A.1, Appendix A.2) for the 44 compounds used (Appendix E). 



Since the data used were synthetic, the answer sought by the GA was known in advance. 
The idea was to calibrate the mode1 using different GA configurations and to evaluate which 
configuration perfomed better. 

The appropriate probability of mutation for calibrating the BM was found by evaiuating 
6 different values (0.001,0.005,0.01,0.05,0.1,0.25). Six different values of the probability 
of recombination were also evaluated (0.0,0.2,0.4,0.6,0.8, 1.0). Finally, a (evolutionary 
pressure) in the standard fitness operator was evaiuated for 5 different values (3,5, 10, 25, 
50). 

The meta-level optimization used the sum-of-squared residuals (equation 2.4) as the 
objective function. Each of the 180 combinations of configuration parameters was evaluated 
through 10 nins of 200 generations. Each optimization routine used the same seed for 
initializing the random number generator to insure that the differences in performance were 
attributable to the configuration of the GA and not to stochasticity. The mean value of Sm, 
after 10 nins was used as an indicator of the ability of the GA configuration to calibrate the 
BM. 

2.7 Number of generations 

If the GA can solve the optimization routine, the value of the objective function is expected 
to asymptotically mach a minimum value as the number of generations becomes larger. 
To estimate the number of generations neccessary to approach the minimum value of the 
objective function (hereafter referred to as the "stabilizing number of generations") required 
another meta-level analysis. 

The GA used the data in Appendix E to calibrate the BM through 10 nins of an increas- 
ing number of generations (25,50, 100,200,300,500,1000,2000, and 5000 generations). 
The GA configuration found by the meta-level optimization of the GA control parameters 
(section 2.6) and strict constraints were used for those runs. The minimum value of the 
objective functions (Slmu, and S2,,) were not known in advance. The GA was therefore 
allowed to nin for a large number of generations to establish if it converged to a solution 
approaching Slmi,, and S2,,. The number of generations required for the GA to asymptot- 
icaily approach SImh and S2,, was subsequently used for the different calibrations. 



2.8 The calibration mutines 

The problem statement for the calibration of the BM's food web structure parameters nuy 
be expressed as: find 8 such that S(e) is minimized. 

Forty GA nins of the stabilizing number of generations (section 2.7) were perfomied 
for four caiibration routines: 

1. Caiibration of BMmNrid  by minimization of Sl (equation 2.4) under strict con- 
straints 

2. Caiibration of BMmpin.d by minimization of S1 (equation 2.4) under loose con- 
straints 

3. Calibration of B k p i d &  by minimization of $2 (equation 2.5) under strict con- 
straints 

4. Calibration of BMmPirjcai by minimization of $2 (equation 2.5) under loose con- 
sîcaints 

The solution resulting in the lowest value of the objective function after 40 mns was 

considered as the solution to the calibration problem. The combined set of 40 GA solu- 
tions were statistically investigated to evaluate the robusmess of the algorithm at properly 
caiibrating the BM. 

2.9 The performance measure 

To evaluate the effects of calibration on the BM, an independent metcic of the model's pre- 
dictive capability was required. The mean and standard deviation of the natural logadhm of 
the ratio of predicted and observed concentrations was chosen as the performance measure 
of the model's predicitive ability: 

log, MB = 

where, 



m is the number of fish species 

n is the number of compounds 

p is the number of data points (Le. p = m * n) 

This metnc was useful because it provided an dl-encompassing measure of the model 
bias. The systematic over or under-prediction of empiricai concentration data can stem h m  
many sources, including measurement errors in contaminant concentrations, natucal vari- 
ability within exti fish species, value of model parameters, and fonn of model equations. 
A negative Io& MB meant that, on average, our model systematically underptedicted the 
concentrations in fish. A positive value pointed to systematic overprediction, and a value 
of O meant that, on average, our mode1 predictions were consistent with observed data. The 
results from equation 2.10 are referred to as "mean model bias". The standard deviation of 
the model bias (equation 2.1 1) indicated the variability around the mean model bias. The 
fish2specific value of these metrics were also used to evaluate the fit of the BM for each fish 
species: 



Chapter 3 

Results and discussion 

The results from the debugging and meta-level optimization of the GA control parameters 
are presented and discussed first. The calibration results of the food web parameters are 
presented and discussed in the later part of this chapter. 

3.1 Debugging and testhg 

Calibration resulis of the linear models by the GA were similar to those obtained by regres- 
sion anaiysis for both the "synthetic" and "noisy" data sets. The GA dso properly calibrated 
the different non-linear functions with either one, two, or three parameter using both syn- 
thetic and noisy data. GA results for the calibration of the Michaelis-Menten model using 

data from [7] were similar to those obtained by SPSS. 
These results were expected from previous research efforts as the GA was successfuliy 

used to calibrate a variety of linear and non-linear models [IO, 14,29, 3 1, 371. in certain 
cases, the GA solution yielded a better fit to the available data than the regression model. 
The anaiysis of Drever [7] used the noniinear regression package from the SPSS statistical 
software [34]. The non-linear least square estimates of parameter value is implemented 
by the Maquardt algorithm [23]. The results renirned by such an algorithm are only ap 
proximate since the problem does not have an analytical solution and the calibration can 
oniy be perforrned by search 131. Our results suggest that the GA calibration of the iinear 
and non-linear models was comparable to that obtained through traditional methods. The 
results proved that the GA computer code was operating as intended 



Table 3.1: GA configuration derived from meta-level optimization of GA control param- 
eters, The three control parameters considered were the probability of recombination, the 

probability of mutation, and a. 
GA contml parameter 1 Optimal value 

~(recombination) 

3.2 GA control parameters 

The meta-level optimization results can be found in Tables C. 1, C.2, C.3, Cd, and CS. The 
results are further ilIustrated in Figures C.1, C.2, C.3, C.4, and CS. The meta-level results 
were interpreted in a qualitative manner. For the different as, the lowest mean values of 
SI consistently occurred at intermediate levels of  mutation) and p(recombination). The 
GA configuration that was deemed best at solving the calibration problems and that was 

subsequently used for the BM calibrations can be found in Table 3.1. 
None of the runs performed during the rneta-level optimization of the GA control pa- 

tameters successfully found the known optimal value of 8. This is probably due to the fact 

that ail meta-level mns evolved only 200 generations. As will be noted in section 3.3, the 
GA requires a larger number of generations to converge to the optimal solution. In addi- 
tion, the objective function used was S 1 (equation 2.4) which made the calibration biased 
towards fitting the large concentration data points. However, the results of the meta-level 
optimization still stand since they allowed us to evaluate how the different GA configu- 
rations compared when solving the optimization problem. The GA configuration that was 
found to best cdibrate'the BM exhibited intermediate levels of exploitation and exploration. 
A probability of mutation of 0.01 appeared to be low enough not to make the GA act in a 
near-random manner. At this level, the operator is expected to perform, on average, one 
mutation every other generation. The level of disturbance in evolving the GA population 
was kept at a level that ailowed new areas of the search space to be sampled whiIe allow- 
ing the algorithm to converge towards promising regions of the search space by allowing 
recombinations to occur between reproducing individuals at a probability of 0.4. The value 
of a found to optimize the GA'S search ability was also at an intermediate value of its 
documented range of application [4]. 

Uniike the work done by Grefenstette 1151, the meta-optimization performed here did 



not evaluate other.GA parameters such as population size, selection strategy, and genera- 
tion gap. The value of those general GA control parameters were based on the results in 
[15] and from empincal results in many GA applications [33, 26, 14, 291 which showed 
that a population size of 50, the elitist strategy, and generation gap of 1 .O were appropriate. 
Greferistette's study aimed at optimizing the performance of the GA through the system- 
atic evaluation of GA configurations. The performance of the GA is a measwe of how 
fast it finds a solution to an optirnization problem. The GA application presented in this 
stucly did not aim at making the algorithm fast but was more concerned with making it ro- 
bust. The meta-level optimization was aimed at finding the GA configuration that strikes 
the right balance between exploration of the search space and exploitation of prornising 
solutions. These two aspects of the search are usually dictated by the mutation and re- 
combination operators and by a. The goal of the meta-level optimization was not to find 
the GA configuration that finds the solution fastest but rather to isolate the configuration 
whose exploitation/explotation balance was best-suited to calibrate the food web structure 

paramaters of the BM. 

Number of generations 

The value of the objective functions was found to decrease as the number of nins increased, 
as seen in Figures 3.1 and 3.2. Both objective functions asymptotically approached a mini- 
mum value as the number of generations increased. The best solution out of 10 nins doesn't 
improve much after 1000 generations but the spread between the best and worst solutions 
narrowed as the evolution tirne increased, especially for S2. 

When using Sl as the objective function, the GA's best answer out of 10 nins yielded 
a better fit than @Go60s93 after only 25 generations. After 200 generations and more, the 
worst solutions found by the GA yielded a better fit than the default calibration (Table 
C.6). The resuits were similar when using S2. The best answer found by the GA needed 
100 generations to yield a better fit than the default calibration. However, the GA's wost 
solutions yielded a better fit than the default calibration only after 5000 generations (Table 
C.7)- 

The constraints were implemented through a penalty function which meant that solu- 
tions breaking the constraints were weeded out of the evolving population. The beginning 
of the evolution had many solutions breaking the constraints since the population was ran- 
dody initialized. As the nin progressai, the GA solutions tended to increasiugly fulfill 



Figure 3.1: Minimum, mean, and maximum value of (81 + penalty) out of 10 runs versus 
number of generations per m. The value of S1 under 8-3 is also shown. The data 
used to generate this Figure can be found in Table C.6. 



Figure 3.2: Minimum, mean, and maximum value of (S2 + penalty) out of 10 runs versus 
number of generations per run. The value of S2 under eG0m3 is also shown. The &ta 

used to generate this Figure can be found in Table C.7. 



the constraints. The initiai decrease in the value of the objective functions was due to two 
factors. First, the value of SI +penalty decreased as the number or generations increased 
because an increasing number of solutions fulfïiled the constraints. Second, the actual 
caiibration of the food web parameters took place which further reduced the value of the 
objective functions. 

1ûOû generations was deemed an appropriate criterion to stop the GA evolution during 
the caiibrations. It is, however, important to run the GA more than once because a given 
evolution of 1 0 0  generations sti11 has the potentiai of yielding a solution that y ields a worse 
fit than the default calibration. For this reason, on& the 10 best solutions out of the 40 runs 
were used as the results of the different calibmtions. 

3.4 Default calibration 

The predictions of C o n ~ . ~ ~ l d ,  and C U ~ C . ~ ~ ~ ~ ~  in BMprcdifrcd were caiculated using 
a chernical partitioning mode1 between the organism and the water for zooplankton and be- 

tween the organism's lipids, the organic carbon fraction of the sediments and the interstitial 
water [Il]. These models were later refined and the equilibrium partitioning approach was 
replaced by uptake and elimination kinetics models [28]. 

The default value of 8 vas obtained from [9]: 

The foodweb structure under @ ~ ~ b ~ ~  and the trophic position of the different fish 

species is illustrated in Figure 3.3. Values of ihe two objective functions and performance 
measure of eGobar93 can be found in Table 3.2. The modei tit to available data are presented 
in Figures D.2 and D.3. 

Using  con^.,,^^^^^^ and Conc.pmW, as forcing variables yielded a model that 
bypassed the uncertainties associated with the BM predictions in benthic organisms and 
zooplankton. This simple transformation of the mode1 from BMprcdicrcd to BMrnrpifical sig- 
nificantly improved its fit to the data. This is refiected by the 58% reduction in ihe value of 
SI, the 39% reduction in S2, and the fact that the percentage of ptedictions falling within 
a factor of 2 of the data went from 72.7% to 83.5% flable 3.2). The overall model bias 
is similar for the two model forms but the staodard deviation of the log, (MB) was 0.6328 
underBMprcdiacd while it was 0.4939 under BM,pin'EIIf. This was M e r  illustrated by the 
larger scatter of points in Figure D.2 when compared to Figure D.3, The large reduction 



Figure 3.3: Feeding preferences and trophic position of the different Lake Ontario fish 
species as derived by Flint [9] and subsequently used by Gobas [Il]. 

Table 3.2: Value of S1 (equation 2.4), S2 (equation 2.5), mean mode1 bias (equation 2. IO), 
and fish-specific mean model bias (equation 2.12) when using QGobd3. 

Metric 

S1 

S2 

loge (MW 

CIO~JMB) 
Sculpin log, (MB) 
Alewife log, (MD) 
Srnelt log, (MB) 

Salmon log, (MB) 

predictions wirhin a factor of 2 
predictions within a factor of 10 

Value under BMp,d,,ed 

12196.77 

1 S975 

0.0342 

0.6328 

0.2193 

-0.2008 

0.0640 

0.0543 

72.7% 

100% 

Value under BM,,pi~mr 

5063.38 
0.9745 

0.0328 

0.4939 

O.M8 1 

-0.0'735 

0.0819 

0.0948 

83.5% 

100% 



Table 3.3: GA configuration used for the different BM cdibrations 
1 GA conml Darameter 1 Value 1 

L No. nins 1 40 I 
1 No. generations per run 1 1Oûû 1 

in the value of S1 observed when switching from BMpmlicrcd to BMemPiriCOl is due to the 
better fit of high concentration data points. Since BM,,i,icd yielded a much better fit than 
BMprediad and eliminated important uncertainties in the BM predictions for zwplankton 
and benthic organisms, BMmgnCal was used for ail calibrations. 

3.5 GA caiibrations of food web parameters 

The GA control parameters used for the four calibration routines were those in Table 3.3. 
The food web parameters results are presented as the ks t  solution found by the GA after 40 

runs of 1000 generations. The results of the 10 best GA nins, dong with those of ail 40 GA 

mm, were statistically evaluated to determine the efficacy of the GA to find an appropriate 
answer to the calibration problem. The solution found by the GA at each run was likely O 

be a good soIution to the problem at hand but not necessarily the best solution. Since most 
solutions fell within a promising region of the search space, they can be amalgarnated to 
provide an overview of the efficacy of the GA at calibrating the BM. 

The GA's best solution to the calibration was used to produce the graphs of mode1 fit to 
available data (Figures D.5, D.7, D.9, and D.11) and to calculate the different measures of 
fit cable 3.4 and 3.6). The food web structure figures (Figures D.4, D.6, D.8, and D.lO) 

include both the best GA answer and the mean and standard deviation of the GA's 10 best 
answers to the calibrations, The GA's 10 best answers were also used to determine mean 
and standard deviation of the trophic positions which are reported in Tables 3.5 and 3.7. 

The best answer found by the GA reduced the value of the objective fùnction from its 
default value (Le. under eGoban3) for ail cali'braîions. The loose constraints also improved 



the fit compared to the strict constraints. 
When calibrating the food web structure of the bioaccumulation model through a 1OOO 

generation-long GA mn, the objective function was evaluated 5 x lo5 times (1000generations x 

50individuals = 5ûûûOfunction evaiuations = 5 x 10'9. Under the food web structure pa- 
carneters calibrations, the search space facing the GA had 2.5503 x 10 '~  possibilities un- 
der the strict constraints scenario. Loosening the constraints increased the search space 
to 7.4002 x 1020 possibilities. Each GA run sampled a really small subset of this search 
space. When calibrating under strict constraints, the GA sampled 1.9606 x lo4% of the 
search space ((5 x 1@/2.5503 x 10") x 100 = 1.9606 x 10-'%). This was the maximum 
proportion searched by the GA since there can exist multiple copies of the same solution in 
an evolving population, hence reducing the proportion of the search space sampled. Under 
loose constraints, the GA only sampled 6.7566 x 1o-l5% of the search space. The fact that 
the GA can consistently find solutions that reduce the value of the objective function in 
such a large search space demonstrates its efficiency to solve the very complex calibration 
problem. 

The GA is known to have somewhat poor convergence behavior when the solution gets 
close to the optimum [36]. The GA converges on the promising regions of the search 
space but fails to search those promising regions in greater details. This shortcoming has 
lead some cesearchers to combine the GA with traditional optimization techniques [36]. 
The GA used in this study included the elitist strategy, ensuring that the fitness of the best 
individual never regressed. The standard fitness operator aimed at making the GA more 

robust by applying the correct evolutionary pressure on the evolving population of solutions. 
Moreover, the GA was allowed to evolve for a number of generations sukiently long to 
find a nearilptirnal solution in the promising region of the search space. Finaily, the GA 

solution was derived from only the 10 best GA answers after 40 runs of 1OOO generations. 
The two objective functions used in this study yielded discernably different calibration 

results. Since the empiricai concentration data span a wide range of values (2.8 to 860 7, 
see Table E. 1), calibrating the BM to S 1 (equation 2.4) tended to concentrate on fitting the 

highest concentration data. This is illustrated by the highest concentration data points in 

Figures D.5 and D.7 king located on the 1:l line, The GA succeded at reducing the value 

of S1 h m  its value under ec0bd3 but the calibrated parameters values yielded a pooter 
overall model fit to the available empincal data. This is because the GA solutions did not 
yield a good fit for the concentration data of lesser values. The BM predictions tended 
to underestimate the chernical concenirations in the different fish species as reflected in 



Table 3.4: Vatue of SI (equation 2.4), S2 (equation 2.5)- mean model bias (equation 2. IO), 
and fish-specific mean model bias (equation 2.12) when using GA caiiiration results ob- 
tained by rninimizing S1. The results are given for the GA'S best answer. The values under 

[ paiictions within a factor of 10 11 100% II 99.4% 100% 

Qcobd3 are also shown for comparison. 

a negative value of log,MB (Table 3.4) for both GA answers. When using Qsl,,strict, 

Metric 

S2 

the BM's overall bias underestimated the empirical concentration data by a factor of 0.735 

(e-0*30w = 0.735). Bsi,,lmse underestimated the data by a factor of 0.854 (e-0-'582 = 
0.854). Considering that the BM with the default calibration only ovecestimates the data by 
a factor of 1.033, the calibrations by minimization of SI do not improve the fit of the BM 

eG0m3 
5063.38 

0.9745 

to the concentration data. The value of SI is greatly reduced by the GA answers but at the 
expense of a more biased model. The GA calibration results also return trophic positions 
that were beyond their independentlyderived values for most of the different fish species 

eSl, ,  strict 

2073.38 - -  
1.4325 

(Table 3.5). It was thecefore important to log transform our data and use the results from 

@si,, loose 

161 1.64 

0.953244 

calibrations 3 and 4 (minimization of S2) to explore the use of PCBs as tracers of food web 

processes. 
The calibrations of the BM through the minimization of S2 were more interesting. The 

answers found by the GA (&,) improved the model fit to the available data as indicated 
by the decrease in the value of both Sl and S2 compared to the default calibration, The 
food web structure found by the GA also maintained a faicly unbiased model for the strict 
and loose constraints cases. The BM underpredicted the concentration data by a factor of 
0.9 12 (ed0a0919 = 0.912) with Bsl,, stnct and by a factor of 0.996 (e-0-0042 = 0.996) with 



Table 3.5: Trophic position (Equatiun 2.9) of the diffemt fish species of Lake Ontario 

under @&&$?& as obtained by Vander Zanden [3q, and derived fiom GA calibrations 
using SI. Standad deviations of the mean trophic positions are in parentheses. 

I 

Sculpin 

Alew ife 

Qs2,,,loose (Table 3.6). The variability around the mean model bias was also reduced. 
The food web structures that minimize S2 under strict and loose constraints yielded average 

' trophic positions that were consistent with those derived by other research initiatives [9,353 
for al1 fish species except for smelt under the loose consiraints (Table 3.7). 

Loosening the search constraints allowed the expansion of the search space (2.5503 x 
10' ' to 7.4002 x 1dO possibilities). The new search space was much larger but the GA 

was still able to find appropriate solutions. An interesting result was that the GA solutions 
stayed well within the constraints. Loosening the constraints was similar to ailowing the 
value of the food web stnichue parameters to resolve errors acising elsewhere in the model 
equations, model parameters, and empiricd data. The solutions found did not ceach the 
upper or lower limits of the constraints, suggesting that the total error of the model may be 

relatively small and that it capnired the main mechanisrns of chemical uptake, elimination, 
and biomagnification. In essence, the loose constraints allowed the GA to maximize the fit 
of the model even if it meant that the parameter values are ecologicaiiy impossible. 

The variabiiity around the man values of the food web structure parameters measured 
the ability of the GA at finding the optimal solution to the calibration problem. The large 
variability in the results obtained fmm calibration 3 (Figure D.8) indicated that the strict 
constraints were an obstacle to the calibration problem. Findiig a solution that fulfilled 
the strict constraints seemed to represent a calibration problem whose results had a higher 
level of variability. DBerent solutions respecting the strict constraints resulted in a gUod 
fit to the empincal data but failed at distinguishing themselves from other good solutions. 
The variability around the mean values of parameters in pointed to minimum and 
maximum values that almost spanned the interval on which the parameters were &fine& 
For example, the value of Pl in the GA solutions had a mean value of 0.49 and a stan- 
dard deviation of 0.19. This means that 95% of the Pl values will occurred in the interval 

Smelt 

Salmon 

3.18 

3.6 

3.835 

4.652 

3.70 (0.28) 

3.11 (0.1 1) 

3.66 (0.29) 

4.38 (0.38) 

3.82 (0.14) 

3.7 (0.27) 

3.41 (0.032) 

3.82 (0.060) 

4.2 1 (O. 12) 

5.00 (0.060) 

3.68 (0.077) 

4.70 (0.0 19) 



Table 3.6: Value of S2 (equation 2.5), S1 
and fish-specific mean model bias (equai 
tained bv minimizing $2. The values und 

52 
S 1 

1% WB) 

%&(MB) 

Sculpin log, (MB) 
Alewife log, (MB) 
Smelt log, (MB) 

Salmon log, (MB) 

predictions within a factor of 2 
- 

1 ~redgons  within a factor of 10 

equation 2.4), mean model bias (equation 2. IO), 
on 2.12) when using GA calibration results ob- 
r ee4b4s93 are also shown for cornparison. 

Table 3.7: Trophic position (Equation 2.9) of the different fish species of Lake Ontario 
under 8 ~ ~ b ~ 3 ,  as obtained by Vander Zanden [35j. and derived from GA calibrations 
using S2. Standard deviations of the mean trophic positions are in parentheses. 

1 Sculpin 11 3.18 1 3.70 (0.28) 1 3.49 (O. 14) 1 3.42 (0.0017) 1 

Salmon 1 4.652 1 4.38 (0.38) 11 4.6 1 (O. 10) 1 4.59 (0.0041) 

Alew ife 
SmeIt 

3.6 

3.835 

3.1 1 (0.1 1) 

3.66 (0.29) 
3.55 (0.14) 
3.76 (0.15) 

3.54 (0.0019) 

3.41 (0.0026) 



[O. 12,0.861 Le. (1.96 *a)] = [O.@ & (1.96 *O. lg)] = [0.12,0.86]. RecdI that the pa- 
rameters were searched on a [O, l] internai. Loosening the constraints significantiy reduced 
the variability around the mean value of the caiibrated food web structure paramaters found 
by the GA. The GA'S convergence to a solution was much better, as indicated by the lower 
variability amund the calibrated feeding preferences (Figure D. 10). 

The lwse constraints allowed the GA to find a solution that adjusted the level of con- 
taminant input from the different prey items. The GA solutions needed to be interprered 
dierently than those from the strict constraints scenario. The fact that a given fish species 
cm have a preference for a prey item that is greater than one rnight not make sense at first. 
Once corrected for the sumof diet preferences, the trophic position calculated through equa- 

tion 2.9 actually used the relative proportion of each prey item to the organism's diet. The 
GA answer was still usable to determine the trophic position of the different fish species 
and also encoded the appropriate level of contaminant uptake from the different prey items. 

3.6 Resolving food web structure 

The calibration results consisted of the food web structures that gave the best fit to the 
available contaminant concentration data set. Since there were independently derived es- 
timates d the diet preferences of the Lake Ontario fish species, the results could be used 
to determine if GA-derived food webs compared to previously published results, Using 
the methodology developped here, a subset of ocganic contaminants could be used with 
the BM to backcalculate the food web stn~cture that best explained the observations in 

chernical concentrations. If the BM equations captured the main mechanisms of bioaccu- 
muIation, and if the value of the other BM parameters were well known, calibration results 
of 8 could provide an alternative to the existing ecological methods for determinhg food 
web structure. 

The trophic position of the four Lake Ontario fish species as determineci by Flint [9] 
and Vander Zanden [3S] were different from each other. The food web hierarchy for Lake 
Ontario as suggested by Flint [9] and used by Gobas [Il] (eGM3) puts sdmonids at îhe 
top, followed by smelt and dewife at intermediate levels, and sculpin at the bottom. Vander 
Zanden aiso puts salmonids at the top of the food web but sculpin is at m intemediate level 
while alewife is at the bottom. The trophic positions for Fiint's calibration feU within the 
95% confidence region of those from Vander Zanden for sculpin, smelt, and saimon (i.e. 

T s ~ ~ l p u i F I i ~  = 3.18 E [3.70 k (1.96 +0.28)], TmCIIFIM = 3.835 E 13-66 f (1.96 + O B ) ]  and 



T,i-,, = 4.652 € [4.38 f (1.96 * 0.38)] ). The trophic position of alewife, on the other 
hand, was dissimilar for the two benchmarks (Le. TafmifeFlh = 3.6 $ i3.11 i (1.96 * 0. Il)] 
). Changes in the structure of the Lake Ontario food web have been documented [13] and 
could explain the discrepancies between the two food web structures used to evaluate the 
GA solutions. 

8G0bas93 represents a food web where sculpin is a low-level predator at TdPin = 
3.18. However, Vander Zanden found the same species to occupy a higher position at 
T,,I, = 3.70 [35]. The food web stnictures determined by &,,, and @nniiJWC 
yielded trophic positions for sculpin (LulpUi = 3.49 and GCulpiii = 3.42, respectively) that 
fell within the values from the benchmarks. In the simplified food web, sculpins had two 
prey items at trophic position Tzooplankton = 3 and TPortlopRU1 = 2 which allowed hem. a 
potential trophic position ranging from 3.00 to 4.00. The low variability around the mean 
trophic position of sculpin as determined from the GA'S 10 best answers under loose con- 
straints was due to the clear convergence of the GA towards solutions approaching S2,k. 

enmin,,, systematically underpredicted sculpin concentrations by a factor of 0.848, as in- 
dicated by log, (MB) = -0.1647. On gave an almost unbiased mode1 for sculpin 
(log, (MB) = -0.0036). The GA solutions were in agreement with independently-derived 

values for the diet composition of Lake Ontario sculpin. 
Alewife in El~obas93 is an intermediate-level predator at Tale,fe = 3.6 while [35] found 

the same species to occupy a lower position at Tarmife = 3.1 1. The food web structures 
deterrnined by QS2,J,,,.a and On,,,. yielded tmphic positions for alewife (Talmile = 
3.55 and TaLwTe = 3.54, respectively) that were between the two benchmark values, and 
that are practically similar to those suggested by Flint [9] and used in OcOb&. In the 

simplified food web, alewife also had a potential trophic position ranging from 3.00 to 
4.00. Hete again, the very low variability around the mean trophic position of alewife as 
detennined from the GA'S 10 best answers under loose constraints indicated that the GA 
has a strong tendency to converge to this solution. systematically underpredicted 
alewife concentrations, as indicated by log, (MB) = -0.0818. 8sz,,, gave an almost 
unbiased model for alewife (iog, (MB) = -0.0049). The GA solutions were in agreement 
with independentiy-derived values for the diet composition of Lake Ontario alewife. 

ew3 represents a food web where smelt is a high-level predator at Tm = 3.835 
while pq found the sami: species to occupy a lower position at = 3.66. The food web 
structure detennined by en-, yielded a trophic position for smelt that was between the 
benchmark values (Tmeft = 3.76). The food web determined by ~ s 2 n * J 0 0 S C  yielded a tropbic 



position for smelt that was lower than both benchmark values (T,mCII = 3.41). In the sim- 
plified food web, alewife had a potential trophic position ranging ftom 3.00 to 5.00. Smelt 
was different from sculpin and alewife because it had the potential to be piscivorous. The 
simpiified f d  web ailowed smelt to eat sculpin, in a proportion determined by P4 (Table 
2.1 and Figure 2.1). In 9s2,,,,, P4 = 0.00 which reduced the tmphic position of smelt. 
The GA solution suggested that the diet of smelt was entirely composed of zooplankton 
and Pontoporeia. However, Vander Zanden reported P4 = 0.30 and identified smelt as an 
important source of contaminants to the salmonids because of its elevated trophic position 
[35]. Flint reported P4 = 0.25 [9]. en&,,,, suggests that contaminant input into smelt 
from sculpin was not necessary to match the observed concentration data. A potential ex- 
planantion for this discrepancy is that the BM consistently overpredicts the contaminant 
concentrations in smelt, as indicated by a log, (MB) of 0.08 19 in Table 3.2. In order for 
the GA to improve the fit of contaminant concentrations in smelt, it had to lower the in- 
take of contaminants from the most contaminated prey item, narnely the sculpin. The low 
variability around the mean trophic position of smelt as detennhed from the GA'S 10 best 
answers under loose consuaints was due to the convergence of the GA towards solutions 

approaching S2min. 

eGoM3 repnsents a food web where salmonids are the top predator at &almon = 4.652 

while [35] found the same species to occupy a lower position at cal- = 4.38. The food 
web structures determineci by an,,, and en&,,,, yielded uophic positions for salmon 

(Tsar- = 4.61 and Tsalm0, = 4.59, respectively) that were between the benchmark values. 
In the simplified food web, salmon had a potential trophic position ranging from 4.00 to 
6.00. The GA solutions were in agreement with independently-derived values for the diet 
composition of Lake Ontario salmonids. 

Considering the many sources of errors already present in [9,35l, the GA results seem 
to represent a sound alternative to the existing parameter values. The new calibrated model 
using &,, loose yielded an overall unbiased model for al1 fish species and resolved the 

trophic position of al1 fish species except smelt. 



Chapter 4 

Recommendations for further research 

This study demonsfrated the ability of the GA to calibrate a set of input parameters 0f.a 
bioaccumulation model. The calibration scheme investigated appeared to be able to resolve 
the food web structure of the Lake Ontario ecosystem h m  contaminant concentration data 

The GA can be used to calibrate BM parameters whose values are uncertain. The 
methodology presented here is a mathematically sound way to find parameter values and 

reptesents a clear dvantage over finding parameter vdues on a trial-and-error basis. A 
major problem with the development of site-specific BM lies in the difficulty of obtaining 
certain parameter values. The GA can be used with a limited concentration data set to es- 

timate these parameters. Another application of the GA calibration is to resolve foad web 
structure by using contaminants as tracers of trophic interactions. 

Another interesting project would be to compare calibration results of the model using 
two different data sets taken before and after recorded changes in the trophic structure of an 
ecosystem (e.g. perform caiibrations using data from [24] and compare to the results of this 
project). This would provide an opportunity to test whether model calibration to observed 
concentration data captures changes in food web structure. 

The caiibrations performed in this project used a wide variety of PCB congeners, as- 

signing an equai weight to each in the optimization. Certain PCB congeners are known to 
be very difficult to metabolize by fish [24], and they could be used as a more robust subset 
of contaminants to extract food web structure from BM calibration. Altematively, a subset 
of PCB congenets representing the majority of the contaminant body burden in fish could 
be used. Oliver and Niirni identifîed 10 PCB congeners that constitute over haif the PCBs 
in fish [30]. 

The methodology developed here can also be applied to incomplete concentration data 



sets. An incomplete dataset is one that does not have data points for each compound and for 
each fish species. Since the objective function implemented a multi-objective optimization, 
the weight of the rnissing species-cornpound data points could be set to O and calibration 
could be perfonned as usual. This method is interesting because incomplete data sets are 
very common. The data set available to a manager often consists of disparate data for 
different compounds in a variety of species. 

An important limitation to the method presented is that it fails to use the variability in 
the measured data when perfomiing the calibration. The evolution of the GA solutions did 
not take this variabiiity into consideration when deciding if a solution was good or not. 
Instead, the average values of the conceniration data was used as a single point estimate for 
evaluating the fit of the BM. This shortcoming is important and considerations should be 

taken when deciding which compounds to use for calibration. Variability in the measured 
data maybe used in conjunction with the results of a Monte Caro analysis. 

The effect of the variability in the value of the forcing variables and model parameters 

(C,, Cs, Kow,Conc.tmP~~On, ~ o n c . ~ ~ ~ ~ ~ ~ ,  Pt, ande) on the model outcome can be de- 
termined by a Monte Carlo analysis. This is perfonned by running the model for a large 
number of times and sampling the value of the different forcing variables and model param- 
eters from their known distribution instead of using their mean value as a point estimate. 
The results from such an analysis show the level of variability in the model predictions re- 
sulting from explicitly considering the uncertainty into the values of the forcing variables 
and model parameters. The uncertainty estimates of the model's predictions can be com- 
pared to that of the dataset for another indicator of the model's predictive ability. It was not 
possible to perform such an analysis using the GA because S2 was always calculated with 
the mean value of the reported concentration data. It would be interesting to sec if merging 
the Monte Carlo analysis and GA calibration would result in tangible results. Coupling of 
both methods would be feasible by using Monte Carlo-like values for running the BM. The 
GA would evolve a solution using a BM whose parameter values change at each generation 
based on their distribution. The elitist sMegy should not be used under this framework be- 
cause the BM will be different each time it is evaluated and will have many different levels 
of fitness. It is expected that the vaIue of 5'2 would eventually stabilize and the subsequent 
variability around S2,, would be attributable to the variability in the forcing variables. 

The GA was shown to be a mathematicaily-sound method for caiibrating BM param- 
eters. This research also evaluated the possibiüty of obtaining food web structure infor- 
mation about an ecosytem by using contaminant concentration data as tracers of trophic 



linkages. Such knowledge of an ecosystem is important since it will be a major determi- 
nant in the extent of contaminant biomagnification [6,2]. 



Appendix A 

Bioaccumulation mode1 

A.l Mass-balance equations 

The total mass of chemical present in an organism is: 

Xfkh = Vfkh *Cfbh 

where, 

Xfhh is the mass of chemical present in the fish (ng) 

Vfih is the volume of the fish (g) 

Cfisl1 is the chemical concentration in the fish (F) 
The net flux of chemical through a fish can be described by the following mass-balance 

equation: 

where, 



Cwaer is the bioavailable fraction of the totaî water concentration (y. Equation A.3) 

ki is the uptake rate constant from water via the gills (&ydL) 

k2 is the elimination rate constant to water via the gills (day-') 

ko is the uptake rate constant from food (duy-l) 

k~ is the elimination rate constant by faecai egestion (dq-') 

k~ is the growth dilution rate constant (day-') 

k~ is metabolic transformation tale constant (day-l) 

The bioavailable fraction of the total water concentration is determinecl by: 

By using the steady-state assumption (d(Xfkh)/dt = O), mas-balance equation A.2 can 
be simplified to: 

Food web transfer is included in the BM by allowing each h h  species to have more 
than one food item, and by specifying the proportion of each food item in the organism's 
diet: 

where, 

m is the number of prey spezies 



The " k s  in the mass-balance equation are the first-order rate constants that describe 
the uptake and eiimination routes of contaminants to the fish tissue. They are calculated 
through existing submodels of chernical transport and from allomercic relationships. 

k l  = [ ( ( V f i s d ~ w )  + ( v , f k h / ~ i )  /&w)] -' 
k2 = [ ( ( W Q w )  *&w) + (v/Q~)]-' 
Vr =v/,~,*Ifish 

0.6(f0.2) 
Qw = 88.3 * Vf 
Ql a Qw/lOO 

RD = ED * (h/vf) 
RE = 0.25 * kD 
FD = 0.022 * vPB5 * exp(O.06 * T) 

A.2 Value of non-calibrated parameters 

Table A.1 presents the different non-calibrated parameters of the BM and their value in 

r 1 11. 



Table A. 1: Vaiue of the different BM parameters ( h m  [Il])  
I Parameter svmtmi I Parameter narne I I  Units I value 1 

T 

O G m r  

p1ipids 

~ S C M ~ ~ U ~  Sculpin Lipid content 

Klmifi Aiewife weight 
lalcwife Alewife lipid content 

h n ~ 1 t  Smelt weight 
L r i r  Smelt lipid content 

r bfnt~nids Saimonids weight 

PX 

Vscutpin . 

1 ~salmonids 1 Salmonids lipidcontent II % 1 16 

Mean water temperature 
Organic content of the water 

Density of lipids 
Density of organic carbon 

Sculpin weight 

"C 

16 
.& L 

8 

2.5 x 
0.9 

2 
g 

0.9 

5.4 



Appendix B 

Genetic Algorithm 

GAs are machine-leaming techniques first introduced by Holland 1191. The algorithm uses 
the principles of genetic variation and natural selection to solve optimization problems. The 
aigorithm begins by randomly initializing a "population" of "individuals". Each individual 
has a single binary or red-valued chromosome which is used to encode a possible solution 
in a given problem space. This space, referred to as the search space, comprises al1 pos- 
sible solutions to the problem at hand. The algorithm assigns a numerical "fitness" value 
to each individuai based on how well they perform in the "environment". The environment 
used to determine each individuai's fitness is case-dependent. In mode1 caiibration, for 
example, the numerical fitness of each individual can be calculated through a goodness-of- 
fit function. The population is then reproduced and selection is applied to al1 individuals. 
Many selection procedures are currently in use, one of the simplest king HolIand's orig- 
inal fitness-proportionate selection [19], where individuals are selected with a probability 
proportional to theu relative fimess. This ensures that the expected number of times an indi- 
vidual is chosen is approximately proportional to its relative performance in the population. 
Thus, high-fitness ("good) individuals have a better chance of reproducing, whereas low- 
fitness ones are more likely to disappear. The population of potential solutions is allowed 
to evolve until a certain number of generations has passed or until a satisfactory solution 

has been found. 
Mi le  GAs are very efficient at directing the search towards promising regions of the 

search space, they are also found to be relatively inefficient at finding the optimal solution 
once they reach such regions. This is because the configuration that is efficient at early parts 
of the search becomes inefficient at later stages [3q. This kind of problem can be circum- 
vented by inlroducing non-traditional techniques such as dynamic and adaptive strategies 



[14,36]. 
GA research from the computing sciences aim at making the aigorithm as efficient as 

possible. This is of less concem here because obtaining the optimal solution in the smallest 
number of generations is not necessary. The information obtained through the evolution 
can be used to estimate the uncertainty of the parameters being calibrated and can provide 
an overview of mode1 sensitivity to those parameters. The GA has to provide an acceptable 
answer to the problem at hand, but not necessarily in the shortest amount of time possible. 
This bias towards efficiency is more suited for other real-time GA applications. 

B.l The mutation and recombination operators 

Selection alone cannot introduce any new individuals into the population; it cannot find new 
points in the search space. These are generated by geneticaily-inspired operators used in the 
reproduction step of the GA. The most common reproduction operators are crossover and 
mutation. Crossover is perfonned with a certain pmbability (the "crossover probability") 
between two selected individuals, called parents, by exchanging parts of their chromosomes 
to form two new individuals, called offspring. In its simplest form, the recombination 
operator exchanges substrings determined by a.candomly selected crossover point. This 
operator tends to enable the evolutionary pmess to move toward "promising" regions of 
the search space. The mutation operator is introduced to prevent premature convergence 
to local optima by randomly sampling new points in the search space. It is carried out by 
flipping bits at random, with sorne (small) probability. The role of the different operators is 
to strike a balance between exploiting promising areas of the search space while allowing 
the GA to continue exploring the search space. Genetic algorithms are stochastic iterative 
processes not guaranteed to converge; the termination condition may be specified as some 
fixed, maximai number of generations or as the attainment of an acceptable fitness level 

[W. 

B3 The elitist strategy and the standard fitness selection 
operator 

Many ways exist for selecting individuais based on their fitness. A popular selection strat- 
egy that has empirically shown its superiority over others is the elitist strategy [2q. The 



elitist strategy stipulates that the best individual of a given generation makes it to the next 
generation intact. This strategy circumvents the potential problem of losing the best-so-far 
individual through mutation ancilor recombination. 

Another potential pitfall is the prematuce convergence of the GA to a sub-optimal solu- 
tion. In normal fitness-proportionate reproduction, each individual's probability of making 
it to the next generation is proportional to its raw fitness. It is possible that the fittest in- 
dividual in a generation encodes a subsptimal solution. If the other individuais encode 
solutions that are even worse, the GA will converge prematurely because of the relative 
advantage of the sub-optimal fittest individual. When using standard fitness (a sub-class of 
ranking methods), each individual receives a pre-assigned fitness value that is dependent on 
their rank within the population [4], This way, the best individual in a given generation will 
have the largest pre-assigned fitness but will not get a disproportionately large fitness. There 
are many different ways to calculate the value of the pre-assigned fitness. An interesting 
aspect of this methodology is that the "evolutionary pressure", i.e. the level of exploitation 
of promising regions in the search space, can be controlled thmugh an outside parameter. 

Uncectainty estimation of calibrated parameters 

A main difference between the GA and other optimization methods is that the algorithm 
searches the pararneter space through a population of individuais. Most other optimization 
methods perform their task by handling the objective function at only one given point at a 
tirne. The GA'S exploration of the pararneter space can be used to obtain information such 
as parameter correlation and approximate (1 - a)% confidence region. Traditional rnethods 
return the best fit parameter values, leaving the estimation of correlation and uncertainty to 
a separate task using other twls such as Monte Car10 simulation. 

The GA performs this task by keeping track of solutions for which the objective function 
is below acettain tfrreshold vaiue. This method only approximates the (1 - a)% confidence 
intervais of the calibrated parameters. Moreover, the information provided is uninforma- 
tive about the type of distriiution to which the prirameters belong. For this reason, the 
uncertainty information is to be intetpreted carefully. 

A word of caution 

Genetic algorithm were found to be very efficient at dùecting the search towards promising 
parts of the search space. However, they were found to be relatively inefficient at finding the 



optimal solution once they reached such a prornising part of the search space; the coRfigu- 
ration efficient at early parts of the search become inefticient at later stages [36]. This kind 
of problern cm be circumvented by introducing non-traditional techniques such as dynamic 
and adaptive strategies. 

One of the primary objectives of GA research from computer science iiterature is to 
make the algorithm as efficient as possible. This is of little concem in our case because we 
ati: not necessarily interested in obtaining the optimal solution in the srnailest number of 
generations. We are actuaily interested in the GA lingering around for many generations 
because we use the information obtained to estimate the uncertainty of the parameters being 
calibraied. It is important for the GA to provide an acceptable answer to the problem at hand 
but not necessarily in the shortest amount of time possible. This bias towards efficiency is 
more suited for other ceal-time GA applications. 



Appendix C 

Meta-level optimization and number of 
generations results 

Each data point in Tables C.1, C.2, C.3, C.4, and CS is the mean value of SI after 10 
GA nins of 200 generations. The 10 GA runs were repeated for each combination of GA 
configuration parameters and used a synthetic data set of contaminants generated using 

BMpndicted- 

The minimum, mean, and maximum values of the objective function after 10 runs is 
given in Tables C.6 and C.7. For each objective function, the 10 runs were repeated for 
9 different number of generations (25, 54 100, 200, 300, 500, 1000, 2000, and 5000). 

The GA runs were perforrned under strict constraints and used the empirical data set of 
contaminants found in Appendix E. 



Table C.1: Mean value of SI under di&cent pmbabüities of recombination @(rec)) and 

- -- 

p h )  

Figure C.1: Mean value of S1 under different probaàiiities of recombination and mutation 
fora = 3. 



Table C.2: Mean vaiue of S1 under different probabilities of recombination (p(rec)) and 
mutation (p(nurt)) for a = 5. The data in this Table was used to generate Figure C.2. 

Figure C.2: Mean value of S1 under different probabilities of recombination and mutation 
fora=5. 



Table C.3: Mean value of S1 under diaerent probabilities of recombination (p(rec)) and 
mutsirion (p(mut)) for a = 10. The data in this TabIe was used to generate Figure C.3. 

1 

Figure C.3: Mean value of S1 under different probabilities of recombination and mutation 
for a = 10. 



Table CA: Mean value of S1 under different probabilities of recombination (p(rec)) and 
mutation (p(mut)) for a = 25. The data in this Table w u  used to generate Figure C.4. 

Figure C.4: Mean value of Sl under different probabilities of recombination and mutation 
for a = 25. 



Table CS: 

mutation (1 

Mean value of S1 under differe 
(mut))for a = 50. The data in th 

it probabiiities of recombination (p(rec)) and 
is Table was used to generate Figure C.5. 

Figure CS: Mean value of S1 under different probabitiës of recombination and mutation 
for a = 50. 



Table C.6: Minimum ((Sl +penalty),), mean ((SI +penal~y)), and maximum ( (SI+ 
penalty)-) value of (SI + penalty) after 10 mns. The GA ans  were perfonned under 
strict constraints and used the empiricai data set of contaminants found in Table E. 1. This 
data was used to generate Figure 3.1. 

SI = 5063.38 with eGoW3 

(SI+ penalty),, 

8217.48 

Table C.7: Minimum ((S2 + penalty),,), mean ((S2 + penalty)), and maximum ((S2 + 
penalty)-) viilue of (S2+penalty) after 10 runs. The GA mns were performed under 
strict constraints and used the empirical data set of contaminants found in Table E. 1. This 

data was used to generate Figure 3.2. 
Number of generations 

25 

(S2 +penalty),, 

1.4403 

(S2 + penalty) 

2.1 177 

(5'2 +penalty),, 

3.9043 



Appendix D 

Calibration results of food web structure 
parameters 

The graphs of BM fit to the available data under the different calibration solutions (Figures 
D.5, D.7, D.9, and D.11) ail have 44 data points per fish species for a total of 176 data 
points per plot. The x and y axes both show the log, of the predictions and observations 
in y wet weight. The solid line represents the ideal fit. The thick dotted lines represent 
predictions that are within a factor of 2 from the data and the thin dashed lines represent 
predictions that are within an order of magnitude. 

The figures of food web structure (Figures D.4, D.6, D.8, and D.10) show the diet 
composition of each fish species under the different calibration results along with their 
trophic position. For each trophic link (Pi), the GA'S best answer is given along with its 
mean value and standard deviation for the 10 best runs. 



Figure D.1: Conceptual diagram of the Lake Ontario food web as estimated by [9] and used 

by r i  11. 



Figure D.2: Relationship between predicted and observed concentrations for the four Lake 
Ontario 6sh species when using BMpmdicrd with &)&3. The solid line represents the 
ideal fit. The thick dotted lines represent predictions that are within a factor of 2 h m  the 
data and the thin dashed lins represent predictions that are within an order of magnitude. 



Figue D.3: Relationship between predicted and obsened concentrations for the four Lake 
Ontario fish spcies when using BMmpinhr with eGom3. The soüd line represents the 
ided fit. The thick dotted lines rcpesent predictions that are within a factor of 2 fmm the 

data and the thin dashed lines rcpesent predictions that are within an order of magnitude. 



Figure D.4: Conceptual diagram of the Lake Ontario food web determined by GA caii- 
brations of BMmpi,i,,l through minimization of S1 with strict constraints. The diet com- 
position of each fish species and their reaiized hophic position are presented for the GA'S 
best answer (top of box, single value) and for the IO best runs (bottom of box, mean and 
standard deviation). 



Figure D.5: Relationship between predicted and observed concentrations for the four Lake 
Ontario fish species when using BMCmPiriCa1 with @si,&,td& The soiid üne npresents tbe 
ideal fit. The thick dotted lines represent predictions that are within a factor of 2 from the 
data and the thin dashed lines represent predictions that are within an order of magnitude. 



Figure D.6: Conceptual diagram of the Lake Ontario food web determined by GA cali- 
brations of BMempirical through minimization of SI with loose constraints. The diet com- 
position of each fish species and their realized trophic position are presented for the GA'S 
best answer (top of box, single value) and for the 10 best runs (bottom of box, mean and 
standard deviation). 



Figure D.7: Relationship between prdiaed and obsemd concentrations for the four Lake 
Ontario fish species when using BMempi~caf with 8sih,,we. The solid line represents the 
ideal fit. The thick dotted lines represent predictions that are within a factor of 2 from the 
data and the thin dashed lines repscnt predictions that are within an order of magnitude. 



Figun D.8: Conceprual diagram of the Lake Ontario food web detennined by GA caii- 
brations of BMCmPinEa[ through minimization of S2 with strict constraints. The diet com- 
position of each fish species and their reaiized trophic position are presented for the GA'S 
best answer (top of box, single value) and for the 10 best nins (bottom of box, mean and 
standard deviation). 



Figure D.9: Relationship between predicted and observed concentrations for the four Lake 
Ontario fish species when using BMempi,jcaf with The solid line represents the 
ideal fit. The thick dotted lines represent predictions that are wifhin a factor of 2 from the 
data and the thin dashed lines repsent predictions that are wilbin an onler of magnitude. 



Figure D.10: Conceptual diagram of the Lake Ontario food web detemined by GA cali- 

brations of BMCmPiriCIII through minimization of S2 with loose constraints. The diet corn- 
position of each fish species and their realized trophic position are pnsented for the GA'S 
best answer (top of box, single value) and for the 10 best nins (bottom of box, mean and 
standard deviation). 



Figure D. 1 1: Relationship between predicted and observed concentrations for the four Lake 
Ontario fish spcies when using BM,pi~cai with 8 ~ , , ~ ~ .  The solid line represents the 
ideal fit. The thick dotted iines represent predictions that are within a factor of 2 from the 
data and the thin dashed lines reprsmt predictions that are within an order of magnitude. 



Appendix E 

Contaminants data set 

The data presented hem is from [30], The fields of Table E. 1 are: 

Cw concentration in water (y) 
Cs concentration in sediments (:dry weight) 

Cbim concentration in biota (Fwet weight) 

Table E. 1: Data set of 44 hydrophobie organic contaminants used for the BM calibration. 
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