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Abstract

The extent of bioaccumulation of organic contaminants in aquatic ecosystems has tradi-
tionally been assessed by two philosophically different methods. This research aimed at
developing a hybrid methodology combining the benefits of the empirical and theoretical
approaches. A genetic algorithm (GA) was developed to calibrate Gobas’ mass-balance,
steady-state model of contaminant bioaccumulation to an available set of empirical con-
centration data in the Lake Ontario ecosystem. The GA was found to be able to perform the
complex calibration of a subset of parameters representing the structure of the aquatic food
web. GA-derived feeding preferences for four Lake Ontario fish species were found to be
in good agreement with independently-derived values. The feeding preferences were also
used to establish the food web hierarchy throught an index of trophic position. The trophic
position of the four Lake Ontario fish species derived by the GA were also found to be sim-
ilar to those obtained by other research efforts. Loosening the search constraints was found
to improve the ability of the GA to find the optimal solution to the calibration problem. The
results suggested that PCBs and other hydrophobic organics can be used as tracers of food
web structure. The main limitations of this study included the lack of explicit integration of
uncertainty in the empirical contaminant data set used and the reliance on the value of the
non-calibrated model parameters and equations.
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Chapter 1

Ihtroduction

The bioaccumulation factor (BAF) is widely used to express the degree of chemical accu-
mulation in aquatic organisms. It is defined as the ratio of the concentrations of a compound
in biota and water'. The BAF is specific to each compound, to each species, and to each
ecosystem. In addition, the BAF can vary in a given system as a function of the environ-
mental conditions (e.g. seasonal changes). It is used in various regulations that manage
chemical use, in particular, in the development of water and sediment quality criteria, in
hazard and exposure assessment, and in evaluating remediation scenarios.

Two philosophically different approaches are used to derive BAFs. The empirical ap-
proach derives BAFs from measured concentrations of contaminants in organisms and in
water. The applicability of this method is often limited because of the lack of data for dif-
ferent compounds, species, and ecosystems. Also, this method does not provide informa-
tion about how the BAFs might change under different environmental conditions, chemical
emissions, and changes in food web structure.

The other approach is to use theoretical models to derive BAFs. Bioaccumulation mod-
els (BM) use knowledge of chemical transport and uptake kinetics to quantitatively predict
internal contaminant concentrations in different living organisms of an ecosystem. Models
are popular since they can be used for a variety of species, compounds, and ecosystems
and do not require site-specific and organism-specific concentration data. Their strength
lies in the understanding of the mechanisms controlling the distribution of contaminants in
biota. Their weakness lies in the uncertainties in the form of the model equations and in the
availability of appropriate data to parameterize the model.

In many practical exposure assessments of contaminants, there is often insufficient data

YBAF = Concpiea/Concuuer




available to satisfactorily apply either an empirical or a theoretical approach to assess the
BAFs. It is equally common that a limited data set of empirical concentration data and
model input data does exist. It is the aim of this research to investigate the application of
genetic algorithms to calibrate a theoretical bioaccumulation model (which lacks crucial
input data) using available empirical data (which may also he incomplete). The new, cal-
ibrated model combines the attributes of theoretical bioaccumulation models and of avail-
able empirical data sets.

The BM developed by Gobas [11] was chosen since it has gained general scientific ac-
ceptance and is now used by the US Environmental Protection Agency (EPA) to estimate
BAFs of hydrophobic organic compounds under the Great Lakes Water Quality Initiative
[5). The model predicts internal contaminant concentrations through a first-order kinetic
mass-balance equation (Equation A.5) that includes the main routes of uptake and elimina-
tion to and from the fish tissues. It also captures food web biomagnification by allowing
multiple feeding interactions between organisms. The Lake Ontario freshwater ecosystem
was investigated in this study.

When facing a situation where certain model parameters are unknown or uncertain,
calibration is often applied to deduce model parameters from an available empirical data
set. Among the most uncertain BM parameters are those determining the structure of the
food web. The diet preferences of each species have to be explicitly specified for the model
calculations [11]. However, this information is difficult to determine experimentally. The
calibration of the food web structure parameters is analogous to resolving the food web
structure using the contaminants as tracers of food web interactions.

In the original BM application to the Lake Ontario ecosystem, the food web structure is
determined by a total of ten trophic links (Figure 1.1). The default model calibration for the
foodweb structure was derived from the literature [9]. The parameter values were calculated
by model calibration to an available data set of hydrophobic organic contaminants [30]. The
calibration results were compared to independently-derived values of foodweb structure.
Agreement between the two sets of foodweb structure parameter values would indicate that
the data set contained the information necessary to resolve the foodweb structure. The new,
calibrated model still maintained its predictive ability and, moreover, is consistent with
available data.

Organic contaminants such as PCBs are ubiquitous in the environment and their distri-
bution in the different organisms of a food web is highly dependent on trophic interactions
[2]). Their distribution will likely be affected by changes in feeding habits or species inva-



Zooplankton

I. - PDH'OPOreial"n'-'-'-"' l::'ll" 223

00000
XY XYY

. - 5

Figure 1.1: Hypothesized structure of the Lake Ontario food web in the late 1980s as de-
rived by Flint [9] and subsequently used by Gobas [11]. The different trophic links and the
proportion that a prey item represents in an organism’s diet are shown for the different fish
species.



sion leading to a different food web structure. Just as stable isotopes [1, 21], PCBs could
provide time-integrated measures of feeding habits.

Simple models with few parameters can be calibrated using traditional methods such
as minimum least squares or maximum likelihood. However, the BM is complex and the
number of parameters to calibrate can be large. Traditional calibration methods are ill-
suited for calibration of the BM. In this study, the genetic algorithm (GA) was investigated
as a possible calibration method since it was found to be a robust and adaptable optimization
algorithm in many comparable situations {14, 37, 20, 10, 31, 29]. The calibration results of
the BM food web structure parameters were compared to independently derived parameter
values [9, 35].

The objectives of this study were to:

1. investigate the applicability of the GA to develop a site-specific BM based on incom-
plete data set

2. evaluate the possibility of resolving food web structure information using chemical
residue data in the different fish species of the Lake Ontario ecosystem through the
calibration of the BM

3. guide future research on the use of advanced numerical methods in bioaccumulation
modeling

There are many other examples where the methodology developed here is applicable. It
can be applied to other modeling applications and their associated data set. The parameters
to be calibrated, usually the most uncertain ones and those that the model is most sensitive
to, will vary from application to application. The methodology provides a mathematically
sensible way to calibrate a variety of parameters in complex modeling applications.



Chapter 2

Methods

The calibration of the BM first required its implementation in a programming language. A
subset of model parameters to be calibrated was identified. A GA was developed toevolve a
population of potential solutions based on the fitness of each individual. The fitness of each
individual was calculated through an objective function that expresses the level of agree-
ment between the predicted and observed concentration data for 44 different chemicals.
The value of the different GA control parameters dictated its performance in solving the
optimization problem. It was therefore important to choose them appropriately to calibrate
the BM. It was also essential to ensure that the GA had enough time to converge towards
a solution approaching the minimum value of the objective function. Finally, search con-
straints were implemented for the different calibrations. Four separate calibrations using
different objective functions and search constraints were performed. The different calibra-
tion results were evaluated through an independent perfomance measure of the BM and
were compared to independently derived parameter values.

2.1 Implementation of the bioaccumulation model

The BM was programmed in the Quick Basic language using the Microsoft QuickBasic 4.5
compiler [27]). The BM’s mass-balance equations can be found in Appendix A.1 and its
different parameters can be found in Appendix A.2.



2.2 Selection of bioaccuinulation model parameters for cal-
ibration

The BM contains many parameters (Appendix A.2) and the methodology presented here
could be used to calibrate any of them. Since this project examines the applicability of the
GA to calibrate the BM, a subset of uncertain parameters was chosen to represent a fairly
complex calibration problem.

While some model] parameters have values that are easily obtainable, others are difficult
to measure. For example, the average weight and lipid content of a biological species can
be relatively easily determined. On the other hand, the diet composition of a fish species is
more uncertain because it is more difficult to measure. Existing methodologies to determine
food web structure have significant limitations. The trophic interactions used in the original
BM [11] are therefore in doubt.

For the purpose of this study, it was decided to explore the application of the GA to
calibrate the feeding preferences which represent the trophic structure of the food web. The
food web linkages are represented by ten different parameter values (Table 2.1 and Figure
2.1). The food web structure parameters are also an interesting subset because they allow
the use of the calibration results to test whether PCBs can be used as tracers of food web
structure. Assuming that the BM is adequate in predicting the chemical concentrations
of PCBs in the different fish species, the calibration results may be able to elucidate the
food web structure that best explains the data observed. Those parameters are not the only
uncertain parameters used in the model but their calibration would represent an interesting
alternative to existing ecological methods for resolving food web structure.

The food web structure was represented by a vector containing the 10 parameter values:

diet composition of sculpin P1 P2
diet composition of smelt P3 P4 P5
diet composition of alewife P6 P7
diet composition of salmon P8 P9 P10

@ = {P1,P2,P3,P4,P5,P6,P1, P8, P9, P10}

The parameters were defined on a scale from 0 to 1 at a precision of +0.01. When
viewed as a stream of 10 numbers, the structure of the food web is difficult to interpret. An

6



Table 2.1: Fish species considered in the BM, their prey items, and the parameters repre-
senting their corresponding feeding preferences.
LPredator Pre:_y Item | Parameter

Sculpin | Zooplankton |  P1
Pontoporeia P2

Smelt | Zooplankton P3
Sculpin P4

Pontoporeia PS5

Alewife | Zooplankton P6
Pontoporeia P7

Salmon Sculpin P8
Smelt P9

Alewife P10

Pontoporeia B

Figure 2.1: The ten parameters in the BM that describe the food web structure.



index of trophic position was used to assess the feeding hierarchy in the ecosystem [22, 35].
Assigning a subjective trophic position to the two lowest prey species in our model of Lake
Ontario allowed the calculation of the trophic position of the different fish species using the
formula:

L= [ (P*T)] +1 @)

where,

T is the trophic position of fish species a
P; is the volumetric contribution of prey item i to predator a
T; is the trophic position of prey item i

In the simplified food web, the zooplankton were assigned a trophic position of 3, the
benthic invertebrates a trophic position of 2, and the primary producers a trophic position of
1. This index was used to calculate the trophic position of each fish species. For example, a
fish species whose diet consisted of 50% zooplankton and 50% benthic invertebrates had a
trophic position of [(50% x 3) + (50% x 2)] + | = 3.5. The index allows comparison of the
trophic position between different fish species. The availability of independently collected
trophic position data provided an opportunity to evaluate the model calibration data [9, 35].

2.3 Selection of forcing variables

In its original application to the Lake Ontario ecosystem, the BM predicted contaminant
concentrations in different organisms, including zooplankton and benthic organisms. The
predicted concentrations in zooplankton and benthic organisms were then used in the cal-
culations for the predatory fish species. Since the parameters in © only affect the predicted
values of the concentration in the fish species, the BM can be simplified so that empirical
values, instead of predictions, of concentration in zooplankton and in benthic organisms
can be used in the calculations for fish species. That is:

CsCsr Kow ) 22

Conc. predicted =
ONC.predicted f ( ?, e
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can become:

CW) Kow

Conc.zp0plankson
Conc.pontoporeia

7.0

Conc. predicted = f 2.3}

where,
Concpredicrea is the predicted internal concentration in a given species ("fwet weight)
f(...) is the BM’s mathematical equations (Appendix A.1)
Cy is the concentration in water ()
C; is the concentration in sediments (%dry weight)
K,w is the compound’s octanol-water partition coefficient (unitless)
Conc.zpoplankeon 18 the observed concentration in zooplankton (535 wet weight)
Conc.pomoporeia 1S the observed concentration in Pontoporeia (%wet weight)
p are the BM parameters (Appendix A.2)

We will refer to the BM form in equation 2.2 as BM /. iceq and that in equation 2.3 as
BM mpiricat- This new model form eliminates potential errors stemming from predictions
of Conc.yp0piankion a0 Conc.pomoporeia- The BM’s predictions for zooplankton and benthic
species have been refined since its original application to Lake Ontario [28].

2.4 Implementation of the genetic algorithm

To have complete flexibility over the calibration of the BM, a GA-based optimizer was
developed and implemented in the Quick Basic language using the Microsoft QuickBasic
4.5 compiler [27]. While some off-the-shelf GA software applications are available, they
lack the expandability and adaptability required for this project.

The GA designed included a mutation operator, a 2-point crossover recombination op-
erator [33], and a reproduction operator. The reproduction operator used the elitist strategy
and standard fitness [4] (see Appendix B). Potential solutions were encoded on adjacent

9



genes stored on binary haploid chromosome. Parameter values were encoded in binary-
reflected Gray code {17, 18]. In each generation, raw fitness values for each individual in
the population were first calculated by an objective function. Individuals were then ranked
and their standard fitness was calculated.

Two different objective functions were used to measure the goodness-of-fit of the BM
to the data. Both were sums of squared residuals, the first used untransformed values of
predictions and observations while the second used their natural logarithm. The objective
functions (S1 and S2) are:

Sl= [/2 wj [i (Conc.pred.; ; — Conc.ops,, 1)2” 2.4)
&

i=|

LZ W, [Z (loge (Conc.pred, ;) — loge (Conc.ab,_'..j))zn 2.5)

where,
Conc.pred,; is the predicted concentration of compound j in fish i
w; is the weight given to compound j
m is the number of fish species
n is the number of compounds

All compounds were given an equal weight (i.e. w = 1/n).
Standard fitness was calculated by a half normal distribution equation that was normal—
izedto 1 [4]:

fe 042
exp [_ grankedzmcsmom! ]
Z#mdmduals exp [_ {ranked Q;iiion i )2]
20
The standard deviation in the normal distribution (G), dictates the evolutionary pressure.
A high value of 6 yields a flat distribution and the pre-assigned fitness values do not differ
much from individual to individual. The best individual still has a larger share of the total

population fitness but its proportional advantage is reduced as ¢ increases. Conversely, a
small ¢ value gives a strong bias towards the best individual in a given generation.

fitness (rank i individual) =

(2.6)
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Chemical residue data in different organisms of the Lake Ontario food web were used
for the BM calibration [30]. The subset of compounds used had data points for each fish
species, for zooplankton, for Pontoporeia, and had logK,, > 5.0. The log(K,) of the
different compounds were obtained from [12] and [16]. The log(K,y) of y-chlordane was
calculated according to methods described in [25] using a free online version of ESC’s
Estimation Software [8]. In total, 44 compounds were used for the calibration of BM_p pirical
(please refer to Appendix E for the data).

The calibrated parameters (© = {P1, P2, P3, P4, PS, P6, P1, P8, P9, P10}) were searched
under two different sets of constraints. Under the first constraints scenario, each parame-
ter was searched on a [0, 1] interval at a precision of £0.01. The sum of diet preferences
for each fish species equaled 1.0. The default calibration (Bg,pqs93) fulfilled this constraint
since the sum of diet preferences for each fish species was equal to 1.0.

It was already established that the parameter values are uncertain and that not all trophic
links in the ecosystem were accounted for. To address this uncertainty, a second constraints
scenario was evaluated where each parameter was searched on a [0,2] interval, still at a
precision of £0.01. In this case, the sum of diet preferences was allowed to vary between 0
and 2. Allowing the diet of a fish to break the strict constraints was similar to varrying the
level of contaminants input from the organism’s food. The constraints were then:

1. Strict constraints

0<Pk<lI
P1+P2+P3=1
PA4+-P54+P6=1
PT1+P8=1
P9+P10=1

2. Under loose constraints
0<P<L2
0<Pl+P2+P3L2
0<P4+P5+P6<L2
0<P7T+P8L2
0<P9+P10L2

11



If a potential solution was found to break the constraints, it was penalized to reduce its
chances of surviving the next generation. To implement this, a penalty function was added
to the objective function (S = S+ penalty) [14, 26). The penalty needed to be large enough
to ensure the nonoptimality of solutions breaking the constraints [29]. Penalty weights (©)
of 10000 for calibration using S1 and of 100 when using 52 were used in a penalty function

of the form:
m
1-{ Y P
=1

n
penalty=w* Y
=

2.7)

where,
@ is the penalty weight
P; is the contribution of prey item i to predator j
m is the number of prey species

n is the number of fish species

The loose constraints used the same penalty function but were implemented as:

. #pr
penalty = { 0 l.f {;ileypi <20 (2.8)
penalty if T.27Pi>2.0

The population was randomly initialized at the beginning of each run, which meant
that solutions were very likely breaking the constraints in the earlier part of the evolution.
The penalty function ensured that solutions which did not fulfill the constraints were at an
evolutionary disadvantage and that their chance of surviving to the next generation were
accordingly reduced.

The trophic position of the different fish species (Equation 2.1) was affected by the
change in constraints. For example, a sum of diet preferences larger than 1 artificially
elevates an organism’s trophic position. When conducting calculations under loose con-
straints, it was necessary to adapt Equation 2.1 so that trophic position accounted for the
possibility of a sum of diet preferences different than 1.0. This correction returned a trophic
position that took into account the relative contribution of the different prey items instead
of their absolute value. The corrected realized trophic position was calculated as:

12



corrected T, = [y, (PixcorrectedT;) / YP]+1 2.9)

where,

correctedT, is the corrected trophic position of fish species a

correctedT; is the corrected trophic position of prey item i

Just as the contaminant predictions in the BM, the trophic position calculations have
to be performed in an order that respects the hierarchy in the food web. Trophic positions
are first calculated for alewife and sculpin since they feed on the two lowest prey items,
namely benthic organisms (Tpontoporeia = 2) and zooplankton (Tyooptankion = 3). The trophic
position of smelt can then be calculated using corrected Tscyipin, along With Tpopoporeia
and Tppoplankion- Finally, the trophic position of the salmonids can be established using
corrected Tecuipin, Corrected Tyiewife, and corrected Topey;.

2.5 Debugging and testing of computer code

The code of the BM was verified by comparing its output to results published in [11].

To ensure the GA was correctly implemented, it was first used to calibrate different
linear and non-linear functions of increasing complexity. The calibration of such models
can be performed by normal regression analysis, hence providing a benchmark for testing
the results obtained by the GA. Discrepancies between GA calibrations and the benchmark
calibrations provided information necessary for the debugging of the computer code. At
that point, the control parameters used varied in values, a situation that led to the meta-level
optimization (Section 2.6).

Calibration of the parameters ¢ and f§ in a linear model of the form y= o+ was the
first GA calibration undertaken. Fifty data sets were generated using different values of o
and P. Each data set consisted of 50 data points and were used to test the GA. After the GA
showed its ability to calibrate a linear model using the "synthetic" data, a random normal
deviate was added to the data and the GA was used to calibrate the same model using the
"noisy” data. )

The calibration of non-linear models was also conducted. The model forms used to cal-
ibrate are taken from [32]. Synthetic data was generated and used to test the GA’s ability to

13



correctly calibrate the different non-linear models. The three non-linear models calibrated
are:

L flx)=1-(x"%
2. flx)=(ox)/(B+x)
3. f(x)=a/[1 +exp(f—yx)]

The final test of the GA before applying it to the BM was a calibration of a non-linear model
using empirical data. The calibrated mode! is a Michaelis-Menten type equation:

y = [{ox) / {(0t/B) +x)]

The data and analyses of Drever [7] were used as a benchmark for calibration of the o
and { parameters. Drever used the nonlinear regression package from SPSS [34].

2.6 Meta-level optimization of the genetic algorithm con-
trol parameters

The GA has four control parameters; the number of individuals in the population, 6 in the
standard fitness calculation, the probability of recombination and the probability of muta-
tion. The value of the GA control parameters affect its ability to solve a given optimization
problem. For example, if the probability of mutation is too high, the GA will behave just as
a random search and will not explore the promising regions of the search space. The number
of individuals in the population controls the amount of search space that gets sampled over
arun. The other three control parameters, dictate the GA's level of exploration/exploitation.
For this reason, it was important to test different GA configurations for BM calibration. A
population size of 50 was deemed sufficient. The population size was not explicitly evalu-
ated. It was necessary to include & as part of the meta-optimization because its appropriate
value is dependent on the optimization problem [4). This optimization of the GA control
parameters is called meta-level optimization [15].

The meta-level optimization of the GA control parameters was performed using a syn-
thetic concentration data set. This data was generated by running the BM with a set of
default parameters (Table A.1, Appendix A.2) for the 44 compounds used (Appendix E).

14



Since the data used were synthetic, the answer sought by the GA was known in advance.
The idea was to calibrate the model using different GA configurations and to evaluate which
configuration performed better.

The appropriate probability of mutation for calibrating the BM was found by evaluating
6 different values (0.001, 0.005, 0.01, 0.05, 0.1, 0.25). Six different values of the probability
of recombination were also evaluated (0.0, 0.2, 0.4, 0.6, 0.8, 1.0). Finally, ¢ (evolutionary
pressure) in the standard fitness operator was evaluated for 5 different values (3, 5, 10, 25,
50).

The meta-level optimization used the sum-of-squared residuals (equation 2.4) as the
objective function. Each of the 180 combinations of configuration parameters was evaluated
through 10 runs of 200 generations. Each optimization routine used the same seed for
initializing the random number generator to insure that the differences in performance were
attributable to the configuration of the GA and not to stochasticity. The mean value of Sy,
after 10 runs was used as an indicator of the ability of the GA configuration to calibrate the
BM.

2.7 Number of generations

If the GA can solve the optimization routine, the value of the objective function is expected
to asymptotically reach a minimum value as the number of generations becomes larger.
To estimate the number of generations neccessary to approach the minimum value of the
objective function (hereafter referred to as the "stabilizing number of generations") required
another meta-level analysis.

The GA used the data in Appendix E to calibrate the BM through 10 runs of an increas-
ing number of generations (25, 50, 100, 200, 300, 500, 1000, 2000, and 5000 generations).
The GA configuration found by the meta-level optimization of the GA control parameters
(section 2.6) and strict constraints were used for those runs. The minimum value of the
objective functions (S1mix and 52,,;) were not known in advance. The GA was therefore
allowed to run for a large number of generations to establish if it converged to a solution
approaching 1y, and S2,;,. The number of generations required for the GA to asymptot-
ically approach S1i, and $2,,;, was subsequently used for the different calibrations.
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2.8 The calibration routines

The problem statement for the calibration of the BM’s food web structure parameters may
be expressed as: find © such that ${(©) is minimized.

Forty GA runs of the stabilizing number of generations (section 2.7) were performed
for four calibration routines:

1. Calibration of BM mpiricat by minimization of S1 (equation 2.4) under strict con-
straints

2. Calibration of BM mpiricat by minimization of S1 (equation 2.4) under loose con-
straints

3. Calibration of BM,mpiricat by minimization of S2 (equation 2.5) under strict con-
straints

4. Calibration of BM,mpiricat by minimization of $2 (equation 2.5) under loose con-
straints

The solution resulting in the lowest value of the objective function after 40 runs was
considered as the solution to the calibration problem. The combined set of 40 GA solu- |
tions were statistically investigated to evaluate the robustness of the algorithm at properly
calibrating the BM.

2.9 The performance measure

To evaluate the effects of calibration on the BM, an independent metric of the model’s pre-
dictive capability was required. The mean and standard deviation of the natural logarithm of
the ratio of predicted and observed concentrations was chosen as the performance measure
of the model’s predicitive ability: '

log,MB = Lﬁ (i log, (Cﬂc—""ﬂ)) /m] /n .10)

Conc.ob,_;, j

OlogMB = \l [’n (i (log MB— logeMsz)] / (p.— 1) Q2.11)
1

i=1

where,
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m is the number of fish species
n is the number of compounds
p is the number of data points (i.e. p=m=*n)

This metric was useful because it provided an all-encompassing measure of the model
bias. The systematic over or under-prediction of empirical concentration data can stem from
many sources, including measurement errors in contaminant concentrations, natural vari-
ability within each fish species, value of model parameters, and form of model equations.
A negative log, MB meant that, on average, our model systematically underpredicted the
concentrations in fish. A positive value pointed to systematic overprediction, and a value
of 0 meant that, on average, our model predictions were consistent with observed data. The
" results from equation 2.10 are referred to as "mean model bias". The standard deviation of
the model bias (equation 2.11) indicated the variability around the mean model bias. The
fish-specific value of these metrics were also used to evaluate the fit of the BM for each fish
species:

—_— Conc.
R )
n
ClogeMB; =\] LZ (log, MB —log, MB;) 2} /(n—1) (2.13)
~
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Chapter 3
Results and discussion

The results from the debugging and meta-level optimization of the GA control parameters
are presented and discussed first. The calibration results of the food web parameters are
presented and discussed in the later part of this chapter.

3.1 Debugging and testing

Calibration results of the linear models by the GA were similar to those obtained by regres-
sion analysis for both the "synthetic" and "noisy" data sets. The GA also properly calibrated
the different non-linear functions with either one, two, or three parameter using both syn-
thetic and noisy data. GA results for the calibration of the Michaelis-Menten model using
data from [7) were similar to those obtained by SPSS.

These results were expected from previous research efforts as the GA was successfully
used to calibrate a variety of linear and non-linear modeis [10, 14, 29, 31, 37]. In certain
cases, the GA solution yielded a better fit to the available data than the regression model.
The analysis of Drever [7] used the nonlinear regression package from the SPSS statistical
software [34]. The non-linear least square estimates of parameter value is implemented
by the Marquardt algorithm [23]). The results returned by such an algorithm are only ap-
proximate since the problem does not have an analytical solution and the calibration can
only be performed by search [3]. Our results suggest that the GA calibration of the linear
and non-linear models was comparable to that obtained through traditional methods. The
results proved that the GA computer code was operating as intended.
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Table 3.1: GA configuration derived from meta-level optimization of GA control param-
eters. The three control parameters considered were the probability of recombination, the
probability of mutation, and 6.

GA control parameter | Optimal value
p(recombination) 04
p(mutation) 0.01
c 5

3.2 GA control parameters

The meta-level optimization results can be found in Tables C.1, C.2, C.3, C.4, and C.5. The
results are further illustrated in Figures C.1, C.2, C.3, C.4, and C.5. The meta-level results
were interpreted in a qualitative manner. For the different os, the lowest mean values of
S1 consistently occurred at intermediate levels of p(mutation) and p(recombination). The
GA configuration that was deemed best at solving the calibration problems and that was
subsequently used for the BM calibrations can be found in Table 3.1.

None of the runs performed during the meta-level optimization of the GA control pa-
rameters successfully found the known optimal value of ©. This is probably due to the fact
that all meta-level runs evolved only 200 generations. As will be noted in section 3.3, the
GA requires a larger number of generations to converge to the optimal solution. In addi-
tion, the objective function used was S1 (equation 2.4) which made the calibration biased
towards fitting the large concentration data points. However, the results of the meta-level
optimization still stand since they allowed us to evaluate how the different GA configu-
rations compared when solving the optimization problem. The GA configuration that was
found to best calibrate the BM exhibited intermediate levels of exploitation and exploration.
A probability of mutation of 0.01 appeared to be low enough not to make the GA actin a
near-random manner. At this level, the operator is expected to perform, on average, one
mutation every other generation. The level of disturbance in evolving the GA population
was kept at a level that allowed new areas of the search space to be sampled while allow-
ing the algorithm to converge towards promising regions of the search space by allowing
recombinations to occur between reproducing individuals at a probability of 0.4. The value
of ¢ found to optimize the GA's search ability was also at an intermediate value of its
documented range of application [4].

Unlike the work done by Grefenstette [15], the meta-optimization performed here did
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not evaluate other GA parameters such as population size, selection strategy, and genera-
tion gap. The value of those general GA control parameters were based on the results in
[15] and from empirical results in many GA applications [33, 26, 14, 29] which showed
that a population size of 50, the elitist strategy, and generation gap of 1.0 were appropriate.
Grefenstette's study aimed at optimizing the performance of the GA through the system-
atic evaluation of GA configurations. The performance of the GA is a measure of how
fast it finds a solution to an optimization problem. The GA application presented in this
study did not aim at making the algorithm fast but was more concemned with making it ro-
bust. The meta-level optimization was aimed at finding the GA configuration that strikes
the right balance between exploration of the search space and exploitation of promising
solutions. These two aspects of the search are usually dictated by the mutation and re-
combination operators and by 6. The goal of the meta-level optimization was not to find
the GA configuration that finds the solution fastest but rather to isolate the configuration
whose exploitation/exploration balance was best-suited to calibrate the food web structure
paramaters of the BM.

3.3 Number of generations

The value of the objective functions was found to decrease as the number of runs increased,
as seen in Figures 3.1 and 3.2. Both objective functions asymptotically approached a mini-
mum value as the number of generations increased. The best solution out of 10 runs doesn’t
improve much after 1000 generations but the spread between the best and worst solutions
narrowed as the evolution time increased, especially for S2.

When using S1 as the objective function, the GA’s best answer out of 10 runs yielded
a better fit than ©gpes93 after only 25 generations. After 200 generations and more, the
worst solutions found by the GA yielded a better fit than the default calibration (Table
C.6). The resuits were similar when using S2. The best answer found by the GA needed
100 generations to yield a better fit than the default calibration. However, the GA’s worst
solutions yielded a better fit than the default calibration only after 5000 generations (Table
C.1.

The constraints were implemented through a penalty function which meant that solu-
tions breaking the constraints were weeded out of the evolving population. The beginning
of the evolution had many solutions breaking the constraints since the population was ran-
domly initialized. As the run progressed, the GA solutions tended to increasingly fulfill
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Figure 3.1: Minimum, mean, and maximum value of (S| + penalty) out of 10 runs versus
number of generations per run. The value of S1 under ©gopqs03 is also shown. The data
used to generate this Figure can be found in Table C.6.
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Figure 3.2: Minimum, mean, and maximum value of (52 + penalty) out of 10 runs versus
number of generations per run. The value of $2 under ©ggpqs93 is also shown. The data
used to generate this Figure can be found in Table C.7.
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the constraints. The initial decrease in the value of the objective functions was due to two
factors. First, the value of S1 + penalty decreased as the number or generations increased
because an increasing number of solutions fulfilled the constraints. Second, the actual
calibration of the food web parameters took place which further reduced the value of the
objective functions.

1000 generations was deemed an appropriate criterion to stop the GA evolution during
the calibrations. It is, however, important to run the GA more than once because a given
evolution of 1000 generations still has the potential of yielding a solution that yields a worse
fit than the default calibration. For this reason, only the 10 best solutions out of the 40 runs
were used as the results of the different calibrations.

3.4 Default calibration

The predictions of Conc.;popiantion Ad Conc.pontoporeia i BM predicrea Were calculated using
a chemical partitioning model between the organism and the water for zooplankton and be-
tween the organism’s lipids, the organic carbon fraction of the sediments and the interstitial
water [11]. These models were later refined and the equilibrium partitioning approach was
replaced by uptake and elimination kinetics models [28].

The default value of © was obtained from [9]:

Ocobasos = {0.18,0.82,0.54,0.25,0.21,0.6,0.4,0.1,0.4,0.5}

The foodweb structure under Oggpas03 and the trophic position of the different fish
species is illustrated in Figure 3.3. Values of the two objective functions and performance
measure of OgGgpase3 can be found in Tabie 3.2. The modet fit to available data are presented
in Figures D.2 and D.3.

Using Conc.-zooplankion a0 CONC.ponoporeia @5 forcing variables yielded a model that
bypassed the uncertainties associated with the BM predictions in benthic organisms and
zooplankton. This simple transformation of the model from BMp,edicred 10 BMempirical Sig-
nificantly improved its fit to the data. This is reflected by the 58% reduction in the value of
S1, the 39% reduction in 52, and the fact that the percentage of predictions falling within
a factor of 2 of the data went from 72.7% to 83.5% (Table 3.2). The overall model bias
is similar for the two model forms but the standard deviation of the log, (MB) was 0.6328
under BMpredictea While it was 0.4939 under BMmpiricar- This was further illustrated by the
larger scatter of points in Figure D.2 when compared to Figure D.3. The large reduction

23



@ T=3
Zooplankton

3 Pontoporeia 2

e,
-ty ol =,

Figure 3.3: Feeding preferences and trophic position of the different Lake Ontario fish
species as derived by Flint [9) and subsequently used by Gobas [11].

Table 3.2: Value of S1 (equation 2.4), 52 (equation 2.5), mean model bias (equation 2.10),
and fish-specific mean model bias (equation 2.12) when using ©g,pus93.

Metricﬁ_ Value under B%,_,.,d,-c,,d Value under BM, ypiricat
st 1219677 5063.38
52 1.5975 0.9745
log, (MB) 0.0342 0.0328
Olog,(MB) 0.6328 0.4939
Sculpin log, (MB) 02193 0.0281
Alewife log, (MB) -0.2008 -0.0735
Smelt log, (MB) 0.0640 00819
Salmon log, (MB) L 0.0543 0.0948
predictions within a factor of 2 || 121% 83.5%
predictions within a factor of 10 ﬂ 100% 100%
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Table 3.3: GA configuration used for the different BM calibrations

GA control parameter Value
No. runs 40

No. generations per run 1000
No. individuals 50
p(recombination) 04
p(mutation) 0.01

G 1 5
BMused | BMompirical

in the value of S1 observed when switching from BMpredicred to BM ypmpirical is due to the
better fit of high concentration data points. Since BM mpiricat Yiclded a much better fit than
BM pyedicted and eliminated important uncertainties in the BM predictions for zooplankton
and benthic organisms, BM mpiricar Was used for all calibrations.

3.5 GA calibrations of food web parameters

The GA control parameters used for the four calibration routines were those in Table 3.3.
The food web parameters results are presented as the best solution found by the GA after 40
runs of 1000 generations. The results of the 10 best GA runs, along with those of all 40 GA
runs, were statistically evaluated to determine the efficacy of the GA to find an appropriate
answer to the calibration problem. The solution found by the GA at each run was likely to
be a good solution to the problem at hand but not necessarily the best solution. Since most
solutions fell within a promising region of the search space, they can be amalgamated to
provide an overview of the efficacy of the GA at calibrating the BM.

The GA’s best solution to the calibration was used to produce the graphs of model fit to
available data (Figures D.5, D.7, D.9, and D.11) and to calculate the different measures of
fit (Table 3.4 and 3.6). The food web structure figures (Figures D.4, D.6, D.8, and D.10)
include both the best GA answer and the mean and standard deviation of the GA’s 10 best
answers to the calibrations. The GA’s 10 best answers were also used to determine mean
and standard deviation of the trophic positions which are reported in Tables 3.5 and 3.7.

The best answer found by the GA reduced the value of the objective function from its
default value (i.e. under ©g,p.s93) for all calibrations. The loose constraints also improved
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the fit compared to the strict constraints.

When calibrating the food web structure of the bioaccumulation model through a 1000
generation-long GA run, the objective function was evaluated 5 x 10° times (1000 generations x
50individuals = 50000 function evaluations = 5 x 10*). Under the food web structure pa-
rameters calibrations, the search space facing the GA had 2.5503 x 10! possibilities un-
der the strict constraints scenario. Loosening the constraints increased the search space
to 7.4002 x 10%° possibilities. Each GA run sampled a really small subset of this search
space. When calibrating under strict constraints, the GA sampled 1.9606 x 10~%% of the
search space ((5 x 10*/2.5503 x 10') x 100 = 1.9606 x 10~*%). This was the maximum
proportion searched by the GA since there can exist multiple copies of the same solution in
an evolving population, hence reducing the proportion of the search space sampled. Under
loose constraints, the GA only sampled 6.7566 x 10~13% of the search space. The fact that
the GA can consistently find solutions that reduce the value of the objective function in
such a large search space demonstrates its efficiency to solve the very complex calibration
problem.

The GA is known to have somewhat poor convergence behavior when the solution gets
close to the optimum [36]. The GA converges on the promising regions of the search
space but fails to search those promising regions in greater details. This shortcoming has
lead some researchers to combine the GA with traditional optimization techniques {36].
The GA used in this study included the elitist strategy, ensuring that the fitness of the best
individual never regressed. The standard fitness operator aimed at making the GA more
robust by applying the correct evolutionary pressure on the evolving population of solutions.
Moreover, the GA was allowed to evolve for a number of generations sufficiently long to
find a near-optimal solution in the promising region of the search space. Finally, the GA
solution was derived from only the 10 best GA answers after 40 runs of 1000 generations.

The two objective functions used in this study yielded discernably different calibration
results. Since the empirical concentration data span a wide range of values (2.8 to 860 %%,
see Table E. 1), calibrating the BM to S1 (equation 2.4) tended to concentrate on fitting the
highest concentration data. This is illustrated by the highest concentration data points in
Figures D.5 and D.7 being located on the 1:1 line. The GA succeded at reducing the value
of S1 from its value under ©gopgs03 but the calibrated parameters values yielded a poorer
overall model fit to the available empirical data. This is because the GA solutions did not
yield a good fit for the concentration data of lesser values. The BM predictions tended
to underestimate the chemical concentrations in the different fish species as reflected in
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Table 3.4: Value of S1 (equation 2.4), S2 (equation 2.5), mean model bias (equation 2.10),
and fish-specific mean model bias (equation 2.12) when using GA calibration results ob-
tained by minimizing S1. The results are given for the GA’s best answer. The values under
Ogobasea are also shown for comparison.

Metric OGobas93 || OsipsStrict | Osy,,.,loose

| st 506338 || 207338 | 1611.64

$2 09745 | 14325 | 0.953244

log, (MB) 00328 | -0.3084 -0.1582
Clog,(M5) 04939 | 05143 0.4631

Sculpin log, (MB) 00281 | -0.5815 -0.0257
Alewife log, (MB) 00735 | 01613 | -0.3665
Smelt log, (MB) 00819 | -0.3229 -0.1457
Salmon log, (MB) 00948 | -0.1681 | -0.0949
% within a factor of 2 83.5% | 813% 85.2 %
predictions within a factor of 10 | 100% 99.4% 100%

a negative value of log, MB (Table 3.4) for both GA answers. When using ©s,,,., strict,
the BM’s overall bias underestimated the empirical concentration data by a factor of 0.735
(e703084 = 0,735). Og,,,,l00se underestimated the data by a factor of 0.854 (¢~0-182 =
0.854). Considering that the BM with the default calibration only overestimates the data by
a factor of 1.033, the calibrations by minimization of S1 do not improve the fit of the BM
to the concentration data. The value of S1 is greatly reduced by the GA answers but at the
expense of a more biased model. The GA calibration results also return trophic positions
that were beyond their independently-derived values for most of the different fish species
(Table 3.5). It was therefore important to log transform our data and use the results from
calibrations 3 and 4 (minimization of 52) to explore the use of PCBs as tracers of food web
processes.

The calibrations of the BM through the minimization of $2 were more interesting. The
answers found by the GA (©y,,,,) improved the model fit to the available data as indicated
by the decrease in the value of both S| and S2 compared to the default calibration. The
food web structure found by the GA also maintained a fairly unbiased model for the strict
and loose constraints cases. The BM underpredicted the concentration data by a factor of
0.912 (=991 = 0.912) with Og;,,,, strict and by a factor of 0.996 (¢~%%2 = 0,996) with
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Table 3.5: Trophic position (Equation 2.9) of the different fish species of Lake Ontario
under Ogopas93, as obtained by Vander Zanden [35], and derived from GA calibrations
using S1. Standard deviations of the mean trophic positions are in parentheses.

Fish Species || Ogopaso3 | Value from [35] || O, Strict Os1,,.. Joase

Sculpin 3.18 3.70 (0.28) 3.82(0.14) | 3.41(0.032)

Alewife 3.6 L1 .1 3.7(0.27) | 3.82(0.060)
Smelt 3.835 3.66 (0.29) 4.21 (0.12) | 3.68 (0.077)

Salmon 4.652 4.38 (0.38) 5.00 (0.060) | 4.70 (0.019)

©s,,.,, loose (Table 3.6). The variability around the mean model bias was also reduced.
The food web structures that minimize S2 under strict and loose constraints yielded average
trophic positions that were consistent with those derived by other research initiatives [9, 35]
for all fish species except for smelt under the loose constraints (Table 3.7).

Loosening the search constraints allowed the expansion of the search space (2.5503 x
10!! to 7.4002 x 10% possibilities). The new search space was much larger but the GA
was still able to find appropriate solutions. An interesting result was that the GA solutions
stayed well within the constraints. Loosening the constraints was similar to allowing the
value of the food web structure parameters to resolve errors arising elsewhere in the model
equations, model parameters, and empirical data. The solutions found did not reach the
upper or lower limits of the constraints, suggesting that the total error of the model may be
relatively small and that it captured the main mechanisms of chemical uptake, elimination,
and biomagnification. In essence, the loose constraints allowed the GA to maximize the fit
of the model even if it meant that the parameter values are ecologically impossible.

The variability around the mean values of the food web structure parameters measured
the ability of the GA at finding the optimal solution to the calibration problem. The large
variability in the results obtained from calibration 3 (Figure D.8) indicated that the strict
constraints were an abstacle to the calibration problem. Finding a solution that fulfilled
the strict constraints seemed to represent a calibration problem whose results had a higher
level of variability. Different solutions respecting the strict constraints resulted in a good
fit to the empirical data but failed at distinguishing themselves from other good solutions.
The variability around the mean values of parameters in Os;,,, ..., pointed to minimum and
maximum values that almost spanned the interval on which the parameters were defined.
For example, the value of P1 in the GA solutions had a mean value of 0.49 and a stan-
dard deviation of 0.19. This means that 95% of the P1 values will occurred in the interval

28



Table 3.6: Value of S2 (equation 2.5), S1 (equation 2.4), mean model bias (equation 2.10),
and fish-specific mean model bias (equation 2.12) when using GA calibration results ob-
tained by minimizing 52. The values under ©¢,s,593 are also shown for comparison.

Metric OGobas93 " 9_«;2‘,mﬂ strict | Oy, ,loose
) 09745 | 0.8375 0.7071

S [ 506338 | 3497464 | 2283.184

log, (MB) 00328 | -0.0919 -0.0042
Olog, (M5) 04939 | 0.4495 04216

Sculpin log, (MB) 0.0281 -0.1647 -0.0036
Alewife log, (MB) 00735 | -0.0818 -0.0049
Smelt log, (MB) 00819 { -0.1109 -0.0080
Salmon log, (MB) 00948 | 0.0102 -0.0003
predictions within a factorof 2 || 83.5% 85.8% 90.3 %
predictions within a factor of 10 | 100% 100% 100%

Table 3.7: Trophic position (Equation 2.9) of the different fish species of Lake Ontario
under ©g,sa593, as obtained by Vander Zanden [35), and derived from GA calibrations
using S2. Standard deviations of the mean trophic

sitions are in parentheses.

Fish Species ?_(:;,,M% Value_f_gom BSLL OS5 in siric O 2 i toce
Sculpin | 3.8 | 370(028) | 3.49(0.14) | 3.42 (0.0017)
Alewife 3.6 3.11(0.11) | 3.55(0.14) | 3.54 (0.0019)
Smelt 3835 | 3.66(029) | 3.76(0.15) | 3.41 (0.0026)
Salmon | 4.652 | 4.38(0.38) | 4.61(0.10) | 4.59 (0.0041)
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[0.12,0.86] i.e. [u£(1.96%0)] = [0.49+(1.96+0.19)] = [0.12,0.86]. Recall that the pa-
rameters were searched on a [0, 1] interval. Loosening the constraints significantly reduced
the variability around the mean value of the calibrated food web structure paramaters found
by the GA. The GA’s convergence to a solution was much better, as indicated by the lower
variability around the calibrated feeding preferences (Figure D.10).

The loose constraints allowed the GA to find a solution that adjusted the level of con-
taminant input from the different prey items. The GA solutions needed to be interpreted
differently than those from the strict constraints scenario. The fact that a given fish species
can have a preference for a prey item that is greater than one might not make sense at first.
Once corrected for the sum of diet preferences, the trophic position calculated through equa-
tion 2.9 actually used the relative proportion of each prey item to the organism'’s diet. The
GA answer was still usable to determine the trophic position of the different fish species
and also encoded the appropriate level of contaminant uptake from the different prey items.

3.6 Resolving food web structure

The calibration results consisted of the food web structures that gave the best fit to the
available contaminant concentration data set. Since there were independently derived es-
timates of the diet preferences of the Lake Ontario fish species, the resuits couid be used
to determine if GA-derived food webs compared to previously published results. Using
the methodology developped here, a subset of organic contaminants could be used with
the BM to backcalculate the food web structure that best explained the observations in
chemical concentrations. If the BM equations captured the main mechanisms of bioaccu-
mulation, and if the value of the other BM parameters were well known, calibration results
of © could provide an altemative to the existing ecological methods for determining food
web structure.

The trophic position of the four Lake Ontario fish species as determined by Flint [9]
and Vander Zanden [35] were different from each other. The food web hierarchy for Lake
Ontario as suggested by Flint [9] and used by Gobas {11] (©¢,sqs93) puts salmonids at the
top, followed by smelt and alewife at intermediate levels, and sculpin at the bottom. Vander
Zanden also puts salmonids at the top of the food web but sculpin is at an intermediate level
while alewife is at the bottom. The trophic positions for Flint’s calibration fell within the
95% confidence region of those from Vander Zanden for sculpin, smelt, and salmon (i-e.
Teculpingry = 3-18 € [3.70£(1.96%0.28)], Tomeiry;,, = 3.835 € [3.66 £ (1.96+0.29)) and

30



Talmongy, = 4.652 € {4.38 +(1.96%0.38)] ). The trophic position of alewife, on the other
hand, was dissimilar for the two benchmarks (i.e. Tofewifes;,, =3.6 ¢ [3.11£(1.96+0.11))
). Changes in the structure of the Lake Ontario food web have been documented [13] and
could explain the discrepancies between the two food web structures used to evaluate the
GA solutions.

©OGobaso3 represents a food web where sculpin is a low-level predator at Teculpin =
3.18. However, Vander Zanden found the same species to occupy a higher position at
Trcutpin = 3.70 [35). The food web structures determined by ©s3,,, ...; and O52,, 1pere
yielded trophic positions for sculpin (Tycupin = 3.49 and Tycupin = 3.42, respectively) that
fell within the values from the benchmarks. In the simplified food web, sculpins had two
prey items at trophic position Trpopiankson = 3 and Tpomoporeia = 2 Which allowed them a
potential trophic position ranging from 3.00 to 4.00. The low variability around the mean
trophic position of sculpin as determined from the GA’s 10 best answers under loose con-
straints was due to the clear convergence of the GA towards solutions approaching S2,.
©52,in urice SYsStematically underpredicted sculpin concentrations by a factor of 0.848, as in-
dicated by log, (MB) = —0.1647. O52pin 10se 83V an almost unbiased model for sculpin
(log, (MB) = —0.0036). The GA solutions were in agreement with independently-derived
values for the diet composition of Lake Ontario sculpin. '

Alewife in ®@gopaso3 is an intermediate-level predator at Tyjewif. = 3.6 while [35] found
the same species to occupy a lower position at Tyj.wife = 3.11. The food web structures
determined by ©s2,,,, i A0d ©52,,;, .0 Yielded trophic positions for alewife (Tytewire =
3.55 and Tyjewife = 3.54, respectively) that were between the two benchmark values, and
that are practically similar to those suggested by Flint [9] and used in Ogypas93. In the
simplified food web, alewife also had a potential trophic position ranging from 3.00 to
4.00. Here again, the very low variability around the mean trophic position of alewife as
determined from the GA’s 10 best answers under loose constraints indicated that the GA
has a strong tendency to converge to this solution. s, ..., systematically underpredicted
alewife concentrations, as indicated by W = —-0.0818. Os,,,, ... 8ave an almost
unbiased model for alewife W = —0.0049). The GA solutions were in agreement
with independently-derived values for the diet composition of Lake Ontario alewife.

©OGobaso3 represents a food web where smelt is a high-level predator at Ty, = 3.835
while [35] found the same species to occupy a lower position at T;,,;, = 3.66. The food web
structure determined by Oy, ... yielded a trophic position for smeit that was between the
benchmark values (Tes, = 3.76). The food web determined by' O52,1i0 00ce Yi€1ded a trophic
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position for smelt that was lower than both benchmark values (Typei, = 3.41). In the sim-
plified food web, alewife had a potential trophic position ranging from 3.00 to 5.00. Smelt
was different from sculpin and alewife because it had the potential to be piscivorous. The
simplified food web allowed smelt to eat sculpin, in a proportion determined by P4 (Table
2.1 and Figure 2.1). In Og,,,, ,,,..» P4 = 0.00 which reduced the trophic position of smelt.
The GA solution suggested that the diet of smelt was entirely composed of zooplankton
and Pontoporeia. However, Vander Zanden reported P4 = 0.30 and identified smelt as an
important source of contaminants to the salmonids because of its elevated trophic position
[35]. Flint reported P4 = 0.25 [9]. Og,,, . suggests that contaminant input into smelt
from sculpin was not necessary to match the observed concentration data. A potential ex-
planantion for this discrepancy is that the BM consistently overpredicts the contaminant
concentrations in smelt, as indicated by a log, (MB) of 0.0819 in Table 3.2. In order for
the GA to improve the fit of contarmninant concentrations in smelt, it had to lower the in-
take of contaminants from the most contaminated prey item, namely the sculpin. The low
variability around the mean trophic position of smelt as determined from the GA’s 10 best
answers under loose constraints was due to the convergence of the GA towards solutions
approaching $2min.

©OGobas93 represents a food web where salmonids are the top predator at Tyyjmon = 4.652
while [35] found the same species to occupy a lower position at Tsamen = 4.38. The food
web structures determined by O5,, ;. .., and Os2 ., yielded trophic positions for salmon
(Tsatmon = 461 and Tgyymon = 4.59, respectively) that were between the benchmark values.
In the simplified food web, salmon had a potential trophic position ranging from 4.00 to
6.00. The GA solutions were in agreement with independently-derived values for the diet
composition of Lake Ontario salmonids.

Considering the many sources of errors already present in [9, 35], the GA results seem
to represent a sound alternative to the existing parameter values. The new calibrated model
using Bs.,,,,,loose yielded an overall unbiased model for all fish species and resolved the
trophic position of all fish species except smelt.
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Chapter 4
Recommendations for further research

This study demonstrated the ability of the GA to calibrate a set of input parameters of a
bioaccumulation model. The calibration scheme investigated appeared to be able to resolve
the food web structure of the Lake Ontario ecosystem from contaminant concentration data.

The GA can be used to calibrate BM parameters whose values are uncertain. The
methodology presented here is a mathematically sound way to find parameter values and
represents a clear advantage over finding parameter values on a trial-and-error basis. A
major problem with the development of site-specific BM lies in the difficulty of obtaining
certain parameter values. The GA can be used with a limited concentration data set to es-
timate these parameters. Another application of the GA calibration is to resolve food web
structure by using contaminants as tracers of trophic interactions.

Another interesting project would be to compare calibration results of the model using
two different data sets taken before and after recorded changes in the trophic structure of an
ecosystem (e.g. perform calibrations using data from [24] and compare to the results of this
project). This would provide an opportunity to test whether model calibration to observed
concentration data captures changes in food web structure.

The calibrations performed in this project used a wide variety of PCB congeners, as-
signing an equal weight to each in the optimization. Certain PCB congeners are known to
be very difficult to metabolize by fish [24], and they could be used as a more robust subset
of contaminants to extract food web structure from BM calibration. Alternatively, a subset
of PCB congeners representing the majority of the contaminant body burden in fish could
be used. Oliver and Niimi identified 10 PCB congeners that constitute over half the PCBs
in fish [30].

The methodology developed here can also be applied to incomplete concentration data
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sets. An incomplete data set is one that does not have data points for each compound and for
each fish species. Since the objective function implemented a multi-objective optimization,
the weight of the missing species-compound data points could be set to 0 and calibration
could be performed as usual. This method is interesting because incomplete data sets are
very common. The data set available to a manager often consists of disparate data for
different compounds in a variety of species. '

An important limitation to the method presented is that it fails to use the variability in
the measured data when performing the calibration. The evolution of the GA solutions did
not take this variability into consideration when deciding if a solution was good or not.
Instead, the average values of the concentration data was used as a single point estimate for
evaluating the fit of the BM. This shortcoming is important and considerations should be
taken when deciding which compounds to use for calibration. Variability in the measured
data maybe used in conjunction with the results of a Monte Carlo analysis.

The effect of the variability in the value of the forcing variables and model parameters
(CuwsCs, Kows ConC.00planktons CONC.pantaporeia; Prand ©) on the model outcome can be de-
termined by a Monte Carlo analysis. This is performed by running the model for a large
number of times and sampling the value of the different forcing variables and model param-
eters from their known distribution instead of using their mean value as a point estimate.
The results from such an analysis show the level of variability in the model predictions re-
sulting from explicitly considering the uncertainty into the values of the forcing variables
and model parameters. The uncertainty estimates of the model’s predictions can be com-
pared to that of the data set for another indicator of the model’s predictive ability. It was not
possible to perform such an analysis using the GA because S2 was always calculated with
the mean value of the reported concentration data. It would be interesting to see if merging
the Monte Carlo analysis and GA calibration would result in tangible results. Coupling of
both methods would be feasible by using Monte Carlo-like values for running the BM. The
GA would evolve a solution using a BM whose parameter values change at each generation
based on their distribution. The elitist strategy should not be used under this framework be-
cause the BM will be different each time it is evaluated and will have many different levels
of fitness. It is expected that the value of S2 would eventually stabilize and the subsequent
variability around §2,,;, would be attributable to the variability in the forcing variables.

The GA was shown to be a mathematically-sound method for calibrating BM param-
eters. This research also evaluated the possibility of obtaining food web structure infor-
mation about an ecosytem by using contaminant concentration data as tracers of trophic
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linkages. Such knowledge of an ecosystem is important since it will be a major determi-
nant in the extent of contaminant biomagnification [6, 2).
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Appendix A

Bioaccumulation model

A.1 Mass-balance equations

The total mass of chemical present in an organism is:
Xeish = Vyisn* Crisn (A.1)
where,
Xjisn is the mass of chemical present in the fish (ng)
Vrisn is the volume of the fish (g)
Crisy is the chemical concentration in the fish (5?)

The net flux of chemical through a fish can be described by the following mass-balance
equation:

d(Vish - Crisn) /dt =
(k1 * Vish * Cuater) + (kp * Viish * Cgier)

— (k2 * Viisn * Crisn) — (ke * Viisn * Crisn)

— (kG * Vrish * Crisn) — (knt * Vs * Crish)
(A.2)

where,
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Cwarer 1S the bioavailable fraction of the total water concentration (Ef. Equation A.3)
ky is the uptake rate constant from water via the gills (day~")

ky is the elimination rate constant to water via the gills (day™!)

kp is the uptake rate constant from food (day™!)

ke is the elimination rate constant by faccal egestion (day™")

kg is the growth dilution rate constant (day~")

ky is metabolic transformation rate constant (day™!)

The bioavailable fraction of the total water concentration is determined by:

Cwa‘ef = BSF * Cwa]er’“al (Ao3)

BSF = 1/[1 +((Kow * OCuater) /P0C)] (A4)

By using the steady-state assumption (d(Xf;ss)/dt = 0), mass-balance equation A.2 can
be simplified to:

(k1 *Cuater) + (kp *Crood) = Crish * (k2 + ke + kg + k)
Solving for Cysy, yields:
Crish = [(kL *Cuarer) + (kp *Craod) | / (k2 +ke + kG + knr) (AS5)

Food web transfer is included in the BM by allowing each fish species to have more
than one food item, and by specifying the proportion of each food item in the organism’s
diet:

m
Cfood = 3. (Crooditemi* P
=1
where,

m is the number of prey species
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The "k"s in the mass-balance equation are the first-order rate constants that describe
the uptake and elimination routes of contaminants to the fish tissue. They are calculated
through existing submodels of chemical transport and from allometric relationships.

k= [((Vyis/ @v) + (Vrisn/ Q1) [ Kow)] ™!

= [((Ve/ Q) * Kow) + (Vi/ Q)]

Vi = Vyish * lfisn

L =883% Vf(_).s(io.z)

o= Qw/ 100

kp=Ep=* (FD/Vf)

ke =0.25xkp

Fp =0.022% V% xexp(0.06+T)

Ep=[(53% 108+ K,) +2.3] '

kg = 0.000502+ V02

ky=0

A.2 Value of non-calibrated parameters

Table A.1 presents the different non-calibrated parameters of the BM and their value in

[11].
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Table A.l: Value of the different BM parameters (from [11])

_PLameter symbol Parameter name J_ Units | Value
T Mean water temperature T ec 8
OCater Organic content of the water | % | 2.5x 10~7
Plipids Density of lipids % 0.9
poc Den§_i£y of organic carbon ’-‘E 0.9
Vecutpin _S;ulpin weight H_—g 54
Lscut pin Sculpin lipid content " % 8.0
Vatewife Alewife weight | g 32
batewife Alewife lipid content % 7.0
Vimets Smelt weight g T 16
Lsmeis _S_tp_elt lipid content ni % 4.0
Viatmonids Salmonids weight | & 2410
Lsatmonids Salmonids lipid content [I % 16
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Appendix B
Genetic Algorithm

GAs are machine-leamning techniques first introduced by Holland [19]. The algorithm uses
the principles of genetic variation and natural selection to solve optimization problems. The
algorithm begins by randomly initializing a "population” of "individuals”. Each individual
has a single binary or real-valued chromosome which is used to encode a possible solution
in a given problem space. This space, referred to as the search space, comprises all pos-
sible solutions to the problem at hand. The algorithm assigns a numerical "fitness" value
to each individual based on how well they perform in the "environment". The environment
used to determine each individual’s fitness is case-dependent. In model calibration, for
example, the numerical fitness of each individual can be calculated through a goodness-of-
fit function. The population is then reproduced and selection is applied to all individuals.
Many selection procedures are currently in use, one of the simplest being Holland’s orig-
inal fitness-proportionate selection [19], where individuals are selected with a probabiliiy
proportional to their relative fitness. This ensures that the expected number of times an indi-
vidual is chosen is approximately proportional to its relative performance in the population.
Thus, high-fitness (“good") individuals have a better chance of reproducing, whereas low-
fitness ones are more likely to disappear. The population of potential solutions is allowed
to evolve until a certain number of generations has passed or until a satisfactory solution
has been found.

While GAs are very efficient at directing the search towards promising regions of the
search space, they are also found to be relatively inefficient at finding the optimal solution
once they reach such regions. This is because the configuration that is efficient at early parts
of the search becomes inefficient at later stages [36]. This kind of problem can be circum-
vented by introducing non-traditional techniques such as dynamic and adaptive strategies
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[14, 36).

GA research from the computing sciences aim at making the algorithm as efficient as
possible. This is of less concern here because obtaining the optimal solution in the smallest
number of generations is not necessary. The information obtained through the evolution
can be used to estimate the uncertainty of the parameters being calibrated and can provide
an overview of model sensitivity to those parameters. The GA has to provide an acceptable
answer to the problem at hand, but not necessarily in the shortest amount of time possible.
This bias towards efficiency is more suited for other real-time GA applications.

B.1 The mutation and recombination operators

Selection alone cannot introduce any new individuals into the population; it cannot find new
points in the search space. These are generated by genetically-inspired operators used in the
reproduction step of the GA. The most common reproduction operators are crossover and
mutation. Crossover is performed with a certain probability (the “crossover probability”)
between two selected individuals, called parents, by exchanging parts of their chromosomes
to form two new individuals, called offspring. In its simplest form, the recombination
operator exchanges substrings determined by a randomly selected crossover point. This
operator tends to enable the evolutionary process to move toward “promising” regions of
the search space. The mutation operator is introduced to prevent premature convergence
to local optima by randomly sampling new points in the search space. It is carried out by
flipping bits at random, with some (small) probability. The role of the different operators is
to strike a balance between exploiting promising areas of the search space while allowing
the GA to continue exploring the search space. Genetic algorithms are stochastic iterative
processes not guaranteed to converge; the termination condition may be specified as some
fixed, maximal number of generations or as the attainment of an acceptable fitness level
[18].

B.2 The elitist strategy and the standard fitness selection
operator

Many ways exist for selecting individuals based on their fitness. A popular selection strat-
egy that has empirically shown its superiority over others is the elitist strategy [26]). The
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elitist strategy stipulates that the best individual of a given generation makes it to the next
generation intact. This strategy circumvents the potential problem of losing the best-so-far
individual through mutation and/or recombination.

Another potential pitfall is the premature convergence of the GA to a sub-optimal solu-
tion. In normal fitness-proportionate reproduction, each individual’s probability of making
it to the next generation is proportional to its raw fitness. It is possible that the fittest in-
dividual in a generation encodes a sub-optimal solution. If the other individuals encode
solutions that are even worse, the GA will converge prematurely because of the relative
advantage of the sub-optimal fittest individual. When using standard fitness (a sub-class of
ranking methods), each individual receives a pre-assigned fitness value that is dependent on
their rank within the population [4]. This way, the best individual in a given generation will
have the largest pre-assigned fitness but will not get a disproportionately large fitness. There
are many different ways to calculate the value of the pre-assigned fitness. An interesting
aspect of this methodology is that the “evolutionary pressure”, i.e. the level of exploitation
of promising regions in the search space, can be controlled through an outside parameter.

Uncertainty estimation of calibrated parameters

A main difference between the GA and other optimization methods is that the algorithm
searches the parameter space through a population of individuals. Most other optimization
methods perform their task by handling the objective function at only one given point at a
time. The GA’s exploration of the parameter space can be used to obtain information such
as parameter correlation and approximate (1 — ¢t)% confidence region. Traditional methods
return the best fit parameter values, leaving the estimation of correlation and uncertainty to
a separate task using other tools such as Monte Carlo simulation. )

The GA performs this task by keeping track of solutions for which the objective function
is below a certain threshold value. This method only approximates the (1 — ot)% confidence
intervals of the calibrated parameters. Moreover, the information provided is uninforma-
tive about the type of distribution to which the parameters belong. For this reason, the
uncertainty information is to be interpreted carefully.

A word of caution

Genetic algorithms were found to be very efficient at directing the search towards promising
parts of the search space. However, they were found to be relatively inefficient at finding the
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optimal solution once they reached such a promising part of the search space; the configu-
ration efficient at early parts of the search become inefficient at later stages [36]. This kind
of problem can be circumvented by introducing non-traditional techniques such as dynalﬁic
and adaptive strategies.

One of the primary objectives of GA research from computer science literature is to
make the algorithm as efficient as possible. This is of little concern in our case because we
are not necessarily interested in obtaining the optimal solution in the smallest number of
generations. We are actually interested in the GA lingering around for many generations
because we use the information obtained to estimate the uncertainty of the parameters being
calibrated. It is important for the GA to provide an acceptable answer to the problem at hand
but not necessarily in the shortest amount of time possible. This bias towards efficiency is
more suited for other real-time GA applications.
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Appendix C

Meta-level optimization and number of
generations results

Each data point in Tables C.1, C.2, C.3, C4, and C.5 is the mean value of S1 after 10
GA runs of 200 generations. The 10 GA runs were repeated for each combination of GA
configuration parameters and used a synthetic data set of contaminants generated using
BM predicted

The minimum, mean, and maximum values of the objective function after 10 runs is
given in Tables C.6 and C.7. For each objective function, the 10 runs were repeated for
9 different number of generations (25, 50, 100, 200, 300, 500, 1000, 2000, and 5000).
The GA runs were performed under strict constraints and used the empirical data set of
contaminants found in Appendix E.



Table C.1: Mean value of S1 under different probabilities of recombination (p(rec)) and
mutation (p(mut)) for ¢ = 3. The data in this Table was used to generate Figure C.1.

p(mut)

| 0001 {0005 00L| 005 | O1 | 025

00 3173 [ 7.79 {491 [ 1444 3279 | 89.39
02| 7371 | 6.39 | 880 | 17.41 | 31.42 | 92.86
p(rec) | 04| 5489 | 9.30 | 381 | 17.38 | 46.82 | 125.54
0.6 57.48 | 4.44 | 5.25 | 14.48 | 28.43 | 90.54
08| 111.41 | 528 | 6.13 | 14.32 | 35.65 | 133.15
1.0 || 4921 | 4.55 | 9.02 | 23.01 | 50.04 | 138.79

Figure C.1: Mean value of S1 under different probabilities of recombination and mutation
forc=3.
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Table C.2: Mean value of S1 under different probabilities of recombination (p(rec)) and
mutation (p(mut)) for 6 = 5. The data in this Table was used to generate Figure C.2.

p(mut)
LO.OOI 0.005]00t| 005 ;| 0.1 0.25

——

00 1466 | 871 | 543} 1260|2573 | 141.50
022227 | 546 | 6.72 | 11.84 | 33.44 | 99.64
plrec) | 044373 | 8.70 | 6.81 | 15.33 | 28.35 | 130.42
0.6 1 59.19 | 445 | 4.68 | 15.95 | 38.42 | 115.78
0819331 | 884 | 7.64 | 23.95 | 49.24 | 148.85
1.0 (| 80.67 | 8.73 | 7.10 | 26.74 | 53.02 | 121.76

Figure C.2: Mean value of S1 under different probabilities of recombination and mutation
foro=>3.



Table C.3: Mean value of S1 under different probabilities of recombination (p(rec)) and
mutation (p(mut}) for ¢ = 10. The data in this Table was used to generate Figure C.3.
] p(mut)

" 0.001 (0005 001 005 | 01 | 025

rYYETTTAR ——————
00 3635 | 9.18 [ 6.12 [ 11.58 [ 27.80 | 132.10

0.2 | 100.68 } 9.91 | 8.18 | 16.34 | 23.38 | 139.07
plrec) | 04| 23.12 | 949 | 6.82 | 12.09 | 27.53 | 109.24
0.6 2970 | 1020 | 5.12 | 17.52 | 46.49 | 138.43
0.8 || 17.13 | 6.37 | 8.37 | 22.28 | 64.55 | 133.03
1.0 || 44.46 | 8.77 | 8.21 | 3595 | 68.06 | 123.68

Figure C.3: Mean value of S1 under different probabilities of recombination and mutation
foro=10.
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Table C.4: Mean value of S1 under different probabilities of recombination (p(rec)) and

mutation (p(mut)) for ¢ = 25. The data in this Table was used to generate Figure C.4.
p(mut)

0.001 | 0.005| 001 | 005} O1 | 025

001} 5365| 787 | 749 | 17.61 | 4048 | 138.66

0.2 || 4003 | 9.88 | 8.63 | 16.98 | 33.15 | 107.89

p(rec) | 04| 2545 552 | 5.86 | 19.80 | 42.98 | 99.32

0.6 [ 40.56 | 9.07 | 8.23 | 32.04 | 55.93 | 107.01

0.8 || 24.82 | 12.57 | 9.16 | 26.99 | 63.22 | 123.28

1.0 || 52.96 | 23.22 | 28.30 | 48.38 | 89.53 | 174.09

04
p{recombination)

Figure C.4: Mean value of S1 under different probabilities of recombination and mutation
forc=25.
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Table C.5: Mean value of S1 under different probabilities of recombination (p(rec)) and

mutation (p(mut))for ¢ = 50. The data in this Table was used to generate Figure C.5.
p(mut)

0001 |[0005( 0.01 | 005 | 0.1 | 025

00 | 116.76 | 1547 | 2048 | 23.97 | 43.98 | 130.65

0.2 ) 70.85 | 14.76 | 10.68 | 18.39 | 46.12 | 110.60

p(rec) | 04 5299 | 839 | 9.93 | 28.65 | 52.15 | 113.22

0.6 || 139.00 | 11.73 | 13.38 | 38.94 | 64.41 | 129.38

0.8 || 20.38 | 17.61 | 27.81 | 35.18 | 73.64 | 163.68

1.0 ][ 23.21 [ 2645 |22.38 | 59.81 | 68.99 | 145.27

LNNE B A A B A J

06

04
p(recombination) p(mutation)

Figure C.5: Mean value of S1 under different probabilities of recombination and mutation
for 6 = 50.
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Table C.6: Minimum ((S1 + penalty)min), mean ((S1+ penalty)), and maximum ((S1 +
penalty)max) value of (S1 + penalty) after 10 runs. The GA runs were performed under
strict constraints and used the empirical data set of contaminants found in Table E.1. This
data was used to generate Figure 3.1.

Number of generations || (S1+ penalty)min | (S1 + penalty) | (S1+ penalty)max

25 4129.04 6080.41 8217.48

50 353543 4655.80 6234.25

100 2895.06 4088.91 5684.56

200 2563.54 3573.25 4649.41

300 2370.86 3300.52 4105.18

500 2262.68 3091.40 3796.88
1000 2073.39 2929.11 3781.25
2000 2070.20 2689.55 3185.06
5000 205591 2506.21 2943.05

S1 = 5063.38 with Og,pa93

Table C.7: Minimum ((S2 + penalty)min), mean ((S2+ penalty)), and maximum ((S2 +
penalty)mq;) value of (S2 + penality) after 10 runs. The GA runs were performed under
strict constraints and used the empirical data set of contaminants found in Table E.1. This
data was used to generate Figure 3.2.

Number of generations || (S2 + penalty)min | (52 + penalty) | (52 + penalty)max

25 1.4403 2.1177 3.9043

50 1.1303 1.3942 1.9813

100 0.9613 1.1457 1.5563

200 0.9361 1.0845 1.5128

300 0.9347 1.0781 1.4758

500 0.9300 1.0677 1.4633
1000 0.8491 1.0351 1.3950
2000 0.8440 0.9608 1.2602
5000 0.8358 0.8828 0.9125

52 = 0.9745 with Ogabgs93
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Appendix D

Calibration results of food web structure
parameters

The graphs of BM fit to the available data under the different calibration solutions (Figures
D5, D7, D.9, and D.11) all have 44 data points per fish species for a total of 176 data
points per plot. The x and y axes both show the log, of the predictions and observations
in "—} wet weight. The solid line represents the ideal fit. The thick dotted lines represent
predictions that are within a factor of 2 from the data and the thin dashed lines represent
predictions that are within an order of magnitude.

The figures of food web structure (Figures D.4, D.6, D.8, and D.10) show the diet
composition of each fish species under the different calibration results along with their
trophic position. For each trophic link (P;), the GA’s best answer is given along with its
mean value and standard deviation for the 10 best runs.
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Figure D.1: Conceptual diagram of the Lake Ontario food web as estimated by [9] and used

by [11).
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Figure D.2: Relationship between predicted and observed concentrations for the four Lake
Ontario fish species when using BM redicred With ©Gopas93. The solid line represents the
ideal fit. The thick dotted lines represent predictions that are within a factor of 2 from the
data and the thin dashed lines represent predictions that are within an order of magnitude.
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Figure D.3: Relationship between predicted and observed concentrations for the four Lake
Ontario fish species when using BMempiricat With OGopasg3. The solid line represents the
ideal fit. The thick dotted lines represent predictions that are within a factor of 2 from the
data and the thin dashed lines represent predictions that are within an order of magnitude.

54



=

Pontoporeia BSS
1%.

0.30
0.30(0,27)

0.40
0.38(0.20)

00000000
SO

AR
000

OO0

XXX  {

AAX ARR

M0N0

b4 ¢ A )

R

] * A

s

—

-] Sc. AN
wl S 52 o PO
vy ;; GSD §E- SO
= I -— 00000

e, 000000000

< VOG0
3 0000

OUOOOX

rTL s ey
-
-
-
=
>
-

0.00

\0.08(0.06)

famd OO0

5 SRR 2 0000
= [=) 000000
sl Sl 1818l 12§ N
famd Wl = of ® -] OO0( X
— -1 B - < OGO

= v S 0
S -] o AR QX
° K AL l"‘
- ol XX
o AN
OOCO00NX
— XOCO00000X
m 8. lll]lll]l [xll]'l
2l g B,

=]

Figure D.4: Conceptual diagram of the Lake Ontario food web determined by GA cali-
brations of BM.mpirica through minimization of S1 with strict constraints. The diet com-
position of each fish species and their realized trophic position are presented for the GA’s
best answer (top of box, single value) and for the 10 best runs (bottom of box, mean and
standard deviation).
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Figure D.5: Relationship between predicted and observed concentrations for the four Lake
Ontario fish species when using BMempiricat With ©s,,,, ,..- The solid line represents the
ideal fit. The thick dotted lines represent predictions that are within a factor of 2 from the
data and the thin dashed lines represent predictions that are within an order of magnitude.
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Figure D.6: Conceptual diagram of the Lake Ontario food web determined by GA cali-
brations of BMmpirical through minimization of S1 with loose constraints. The diet com-
position of each fish species and their realized trophic position are presented for the GA’s
best answer (top of box, single value) and for the 10 best runs (bottom of box, mean and
standard deviation).
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Figure D.7: Relationship between predicted and observed concentrations for the four Lake
Ontario fish species when using BMempiricat With Gsw_,m. The solid line represents the
ideal fit. The thick dotted lines represent predictions that are within a factor of 2 from the
data and the thin dashed lines represent predictions that are within an order of magnitude.
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Figure D.8: Conceptual diagram of the Lake Ontario food web determined by GA cali-
brations of BM mpirical through minimization of S2 with strict constraints. The diet com-
position of each fish species and their realized trophic position are presented for the GA’s
best answer (top of box, single value) and for the 10 best runs (bottom of box, mean and
standard deviation).
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Figure D.9: Relationship between predicted and observed concentrations for the four Lake
Ontario fish species when using BMempiricat With ©s2,,,, ... The solid line represents the
ideal fit. The thick dotted lines represent predictions that are within a factor of 2 from the
data and the thin dashed lines represent predictions that are within an order of magnitude.
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position of each fish species and their realized trophic position are presented for the GA’s
best answer (top of box, single value) and for the 10 best runs (bottom of box, mean and

Figure D.10: Conceptual diagram of the Lake Ontario food web determined by GA cali-
brations of BMempiricai through minimization of S2 with loose constraints. The diet com-

standard deviation).
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Figure D.11: Relationship between predicted and observed concentrations for the four Lake
Ontario fish species when using BM mpiricat With eszm',m. The solid line represents the
ideal fit. The thick dotted lines represent predictions that are within a factor of 2 from the
data and the thin dashed lines represent predictions that are within an order of magnitude.
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Appendix E
Contaminants data set

The data presented here is from [30]. The fields of Table E.1 are:
Cyw concentration in water (%)
C; concentration in sediments (%‘dry weight)
Chinta CONCeEntration in biota (%wet weight)

Table E.1: Data set of 44 hydrophobic organic contaminants used for the BM calibration.

Compound || logKow | Cw | G5 | Cono Cponto | Cscutpin | Catewife | Csmets | Csatmon
PCB 28 567 |46 | 17|64 ] 30 7.8 14 14 36
PCB 66 6.2 31 |46 | IS 30 53 61 72 160
PCB 70 6.2 45 123 20 32 32 50 72 140
PCB 56 6.11 (97133 LI 25 18 32 39 74
PCB 52 584 [ 6312535 | 22 28 27 18 62
PCB 47 585 | 41 |12 ] L7 14 4.1 18 24 60
PCB 44 575 |50 23142 | 26 16 23 15 45
PCB 74 6.2 10 [27] 4 8.2 12 12 14 38
PCB 49 585 |24 (11|23 16 10 14 9 31
PCB 64 595 {93194 36| 84 9.2 11 11 28
PCB 42 576 |33 |47 15| 46 2.8 5 5.1 10
PCB 101 638 | 13027 | I8 37 140 110 79 270
PCB 84 604 | 15|21 2t 24 110 68 95 260
PCB 118 674 | 34 | 15| 19 21 94 58 87 250
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Compound || logKow | Cv | Cs | Caoo | Cponto | Cscuipin | Catewife | Comete | Coatmon
PCB 110 648 | 55| 37| 22 28 76 78 88 230
PCB 87 629 | 21|20 18 61 42 82 69 200

PCB 105 6.65 14 | 10| 85 12 39 27 38 110
PCB 95 6.13 521 14|28 22 31 40 24 80
PCB 85 6.3 94198 |44 | 8.1 17 22 19 58
PCB 82 6.2 2629 3.1 2.7 6.3 10 11 29
PCB 91 6.13 40 | 5734 58 7 12 10 29

PCB 153 692 | 50125 30 45 170 86 130 430

PCB 138 6.83 28 (15| 16 26 t10 65 79 260 -

PCB 149 667 | 34 | 20 | 18 27 27 69 69 190

PCB 146 68 1386763 62 37 21 27 88

PCB 141 682 | 83|74 5.1 12 37 23 21 83

PCB 151 664 [27(37]|03] 57 25 15 It 51

PCB 132 6.58 17111158 85 20 19 18 39

PCB 180 736 127 13 11 48 110 48 55 200

PCB 187 717 18 | 84 88 14 42 30 39 130

PCB 170 727 27 10 38 26 54 23 20 84

PCB 183 7.2 251311 43 {3 3 12 17 71

PCB 177 708 | 1.1 12519 ]| 59 11 7.8 713 36

PCB 174 7.11 1951 2 94 7.4 12 11 32

PCB 203 765 (2682} 24 S 29 12 14 52

PCB 194 7.8 78 137 14 3.6 15 6.7 7.3 23
ppDDE || 651 | 76 | 51 | 81 | 36 | 190 | 180 | 260 | 860
ppDDD 602 |93 | 7283 | 53 47 32 21 83
ppDDT | 691 | 19| 18 | 54 | 86 | 29 | 35 | 41 | 80

mirex 6.89 31 | A 8 12 57 45 53 180
photomirex 6.0 17 13974 | 42 26 20 25 87
Ychlordane | 734 | 34 {21 (| 12| 58 30 9.6 3.6 19
OCS 6.2 4741 11 | 09 6.9 16 14 9.5 44
HCB 547 (150100 4 18 38 20 14 38
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