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ABSTRACT

ABSTRACT

An agent is placed in an unknown environment and charged with the task of locating a lost
object. What can the agent use as an efficient technique to find the object?

We propose a new algorithm for planar search. The algorithm stems from theoretical
work on search games, in particular provably optimal search techniques on restricted do-
mains. This thesis addresses the problem of efficiency in robotic search: having a mobile
robot find a target object in an unknown environment with obstacles in an efficient manner.
As a side-effect, the robot explores the environment.

Based on previous results, a formal description of the problem is presented along with
an algorithm to solve it. This algorithm has good worst-case performance, in terms of its
competitive ratio. We show experimental data validating the feasibility of our approach and
typical results. Quantitative results are demonstrated showing the advantage of modified

spiral search versus traditional approaches.
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RESUME

RESUME

Un agent est placé dans un environnement inconnu et sa tiche est de localiser un ob-
jet spécifique. La question est de savoir quelle est la technique la plus efficace pour la
recherche de cet objet.

Nous proposons un nouvel algorithme de recherche en spirale dans le plan cartésien.
Inspiré par la théorie des jeux, notre algorithme est basé sur les techniques de recherche op-
timale dans des domaines restraints. Dans cette thése, nous addressons le probléme de faire
parvenir un robot mobile a trouver efficacement un objet spécifique dans un environnement
complexe et inconnu. Comme effet secondaire, le robot explore cet environnement.

Basée sur des études antérieures, une description formelle du probléme, ainsi qu’un
algorithme pour le résoudre seront présentés. Cet algorithme est compétitif, dans le sens
ou le rapport entre sa performance et celle d’un algorithme idéal est constant. Des résultats
experimentaux démontrent la validité de notre approche. De plus, nous presenterons les
avantages de I’algorithme de recherche en spirale que nous proposons comparé aux autres

méthodes de recherche traditionelles.
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CHAPTER 1

Introduction

Search is one of the fundamental tasks of living beings. Animals spend large parts of their
life foraging for food, hunting, roaming for more hospitable environments, trying to find
members of their species. Whatever the specific task, these are all types of searching. All
animals need to be successful searchers to ensure that survival tasks are accomplished ef-
ficiently. From insects to humans, animals everywhere spend their waking hours seeking
food, shelter, habitat and mates. Vast fields of human knowledge have been acquired as
a result of this task of searching our environment, and no longer is it even our own envi-
ronment that we expend effort to search. Undersea and space research are frontiers that
human-kind has embarked upon in order to help satisfy our innate need to explore [17, 28].
Search leads us into new environments, but how can search be made efficient when explor-
ing an unknown environment? This is the question to be addressed in this work.

Herein an analysis of some exploration and search techniques useful in the field of
mobile robotics is presented. A new technique for mobile robot search and exploration
will be introduced. Motivated from mathematical results in restricted theoretical settings,
our approach for mobile robot search in unknown environments will be shown to be more
efficient than traditional methods. The search environment will be a planar network of halls
and rooms. It is the robot’s task to search efficiently throughout the network and to thereby
explore the a priori unknown environment. Traditional methods are inefficient in terms of

the time taken to find an object or particular location that can only be determined by a local



CHAPTER 1. INTRODUCTION

sensor in such a setting. Our particular brand of search is a form of iteratively deepening
depth-first search based on logarithmic spirals to determine the points of iteration. This
method has better average-case performance with regards to the task of searching within
an environment.

Let us first establish that exploration, in a general sense, is the process of expanding
one’s knowledge about the environment. It is important to realize that the term environ-
ment is very flexible in its interpretation, ranging from underground ant passageways to far
more abstract environments, such as the recently popularized Noosphere', the space of all
human thought and ideas. By the process of exploration, living beings sample their envi-
ronment for indications of danger, availability of food, materials for tools as well as any
large variety of other potential targets. If exploration is seen as expanding the knowledge
the environment then the next logical question is how to proceed with this exploration to
be most successful.

Search is at the core of exploration. Search can be seen as the method employed
to increase knowledge of one’s surroundings. When exploring a new environment, what
strategy should be employed to ensure that the exploration is being accomplished in an
efficient manner? Thus the method of search then becomes a critical element of exploration.
How do we describe what a “method of search” is? How do we quantize such a method for
analysis? Is it even possible to define a simple strategy for search that will be effective in
radically different scenarios?

Ideally, we might be able to construct sets of scenarios for which a particular search
strategy is most appropriate or useful. How then can we attempt to define different types
of environments when these environments may be be such different things as “the space of
all thoughts” versus a road map for a city, for instance. Certainly it is clear that any par-

ticular strategy of search will be inefficient within all the different possible environments,

VEric S. Raymond recently wrote an article Homesteading the Noosphere [58] in which he discusses the space
in which ideas are developed by human thought, both academically and industrially. Here he speaks of the
“Noosphere™ to be the space of all possibie thoughts and ideas, within which human knowledge is constantly
expanding as we add to our kernel of ideas.
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1.1 BACKGROUND

but perhaps there is some set of strategies that can be applied and tested in a new environ-
ment to see how it fares against other known approaches, and hence using hybrid search
techniques composed of fundamental search techniques that may be used in a wide range
of applications.

If successful search is so important a factor to an individual how is it possible to do
better? Working in groups can be a way to speed the search process, so that the team
work pays dividends greater than might be had otherwise. The parallelization of tasks, the
distribution of workload among several individuals is a relatively difficult task requiring
communication and agreement between co-operating agents. But can we define a scheme
to improve on what a single agent can achieve? Working in teams, cooperation for mutual
benefit, would be a indicator of intelligence in any sort of social system.

The solution presented for efficient search is termed *“Spiral Planar Search™ for a mo-
bile agent. The method implemented is based on extensive theoretical grounding and ad-
dresses the issues of scalability of theory to a functional robotics level. Both of which are
active research problems. Spiral planar search will be shown to be more efficient than the
competitive methods of depth-first or breadth-first search in terms of searching an unknown

environment, on average.

1. Background

There are two meta-problems addressed in this thesis. The first is a search problem
developed from theory in a theoretical, constrained setting. This first problem may have
been motivated by a need in robotics, but is properly restricted to mathematical theory.
The second meta-problem has to do with the extension of a theoretical idea to a functional
mobile robotic implementation. There has been a long standing call in mobile robotics
research for the integration {45] of fundamental problems, or rather the solutions as they
stand to those problems, in order to produce more highly functional robotic systems.

Shown will be the development of a theoretically grounded problem to a fully func-
tional simulation designed to act as test bed for the solutions to the initial problem. This

brings together theory and application studies in an integrated robust system.



1.1 BACKGROUND

There has been much work completed in the field on the union of these meta-problem
areas. Much good theory for the underlying structure that is necessary to develop struc-
tured solutions comes to us from a variety of sources. Classic sources for motivating planar
search and rendezvous games come from works like Schelling [65] and Gal [36]. General-
ized graph searching algorithms that are related to the problem at hand but which don’t have
any robotic motivation necessarily are covered in [42] on wandering RAMS with bounded
memory searching binary trees and [15] where the search is for integers in unbounded sets
with no distance traverse cost.

Work on developing the underlying theory for search games in general [39, 49] and
the means with which to analyze the performance of search algorithms [1, 2, 4, 5] has been
foundational work.

The problem of online search has been a popular theme is robotics research. Typically
the problem is set in restricted environments in order to aid analysis or develop very par-
ticular algorithms. Solutions to problems in searching restricted polygons often are very
specific to the constraints on the polygon. Interesting resulits in searching simple polygons
[44] and searching the kernel of a star-shaped polygon [52] both have excellent approaches
to the solution of online search algorithms. Another closely related polygonal search prob-
lem is with the set of infamous polygons known as generalized streets initially set forth by
Icking [22] with follow-up work from the research field [43, 38, 44, 51]. Such restricted
application domains need extension to be useful in more general settings, however the
problems do apply to an interesting set of polygons.

Brumitt [20} has addressed the area of optimal paths for multi-robotic systems, but
global infinite communication has been assumed to achieve this goal, clearly a specialty
requirement not generally available in desired robotic settings. A huge variety of work on
the area of exploration, whether in an a priori unexplored environment [55, 27] explicitly
or more generally with exploration and optimal map building, has been done [56, 52, 53,
67, 59, 60, 55, 27, 50, 18, 19, 53] in the research field. With such a large variety of work, it
becomes difficult to categorize all the contributions brought to us. Much of this work can

benefit from an improved method to discover unknown space. Whether actively searching
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for a known target in unknown surroundings or exploring large environments in a reliable
manner efficient methods to move within the environment are needed to accommodate the
relatively slow physical motion exhibited by most mobile robots.

The studies by Yamauchi et al. [68, 70, 69] have been very motivating with their ap-
proach to functional robotic systems. Zelinsky’s work [71] too has been a well considered
approach to the study of robotic exploration. Aside from the motivation that any of these
previous works may have provided, they also showcase an entire research field of potential
application for a more efficient means of planar search. Any of the above studies that do not
explicitly deal with exploration algorithms per se could benefit from an improved search
and exploration algorithm.

Another approach that can be taken to speed the discovery of unknown surroundings or
to shorten the time taken to find a target consists of utilizing multiple agents concurrently.
Multi agent map merging [41] has always been an interesting topic. The coordination [54,
34] of a multitude of agents for any sort of task continues to be an ongoing research area.
Inter agent communication studies [12, 13, 62] also help us to understand the capabilities
and restrictions that may apply to multi-agent systems.

The topic of navigational methods has been a very important foundation for this thesis
as well. Navigational approaches for exploration tasked mobile robots by Blum [16], Foux
[35], Rao [57] and especially by Dudek et al. [29, 30, 31, 33] have been core to the de-
velopment of the robotic simulation and to the experimental test-bed. The decision to use
a topological representation for this work has was made based on these references and on
research pertaining to spatial models and representation by Kuipers [46, 47, 48].

Of Particular note, due to the intersection of academic principles, we note work by
Alpern [1, 2, 3, 4] and Anderson [8, 7] for their work in game theory and rendezvous or
similar search techniques. Along with the very central work of Nicholas Roy [62] as a more
functional robotics based piece of rendezvous work.

In the area of planar search we have followed closely work by Baeza-Yates [10] with
Culberson and Rawlins [11] for a basis of search algorithms in more precise environments.

The collection of these results served in part as motivation to the beginnings of this work.



1.2 INTEGRATING INTERDISCIPLINARY RESEARCH

The importance of the work and direction provided by Dudek et al. [29, 30, 31, 33, 59,
61, 60, 66, 62] would be hard to overstate. These contributions have had a strong influence
on this thesis in many disperse subjects such as path planning, navigation and localization

in mobile robotics research.

2. Integrating Interdisciplinary Research

This thesis will reiterate the nature of two separate aspects of modern robotics and
propose a means of integration between them. The primary aspect is a novel robotics ap-
plication, specifically a search and exploration method that will be extended from theoretic
results in planar geometry. Qualitative experiments will be performed to show the efficacy
of application. The second aspect is consideration of techniques to use multiple agents to
efficiently streamline a complex search problem.

Mobile robotics has traditionally been approached using “bottom up’ reasoning. The
mobile robot is the sum of its components and behaviours. However, the problems that need
to be dealt with for successful robotics are themselves so complex that they deserve study
in their own right. There have been alternative attempts at attacking the robotics problem in
a more holistic manner such as Brooks’ [18, 19] subsumption architecture where different
layers in the abstraction of the mobile robot are more insulated from one another. The
desire is to let the world be its own representation, and that intelligent behaviour at lower
levels does not rely on an accurate complete internal representation of the world.

Ideally topics such as localization, exploration, navigation, path-planning, map-building,
computer vision, feature recognition and natural language comprehension/synthesis would
be blended together seamlessly to form a functional and very impressive robotic compan-
ion. Roboticists have delved into these problems and developed sciences appropriate to the
study of each discipline. Maobile robotics remains a puzzle of unsolved problems. This call
for integration has been formalized by Kortenkamp and Shultz [45] in the general robotics

community.



1.4 THE APPROACH

3. Search Properties

There are some desirable properties that a reasonable search algorithm should display.
Certainly these desirable properties are not minimal requirements, for instance a Random
Walk could be admissible as a search algorithm. We will use the following properties in

for the purposes of qualitative evaluation.

(1) Termination — Will the entire region be searched? Is exhaustive search guaranteed.
(i1) Principle of Locality -— Targets located near the origin of search should be discov-
ered with precedence over distant targets.
(ii1) Efficiency — the search algorithm should exhibit reasonable worst-case or average-
case behaviour. Canonical failure modes should not arise in common cases.
(iv) Exploration — the search should result in complete exploration of the environment.

Moreover, this exploration should be done in an efficient manner.

These properties will be referenced with relation to the various search techniques

throughout the text.

4. The Approach

The underlying theory of optimal planar search in theoretically restricted settings is
described initially to give basis to decisions made later in the more complex environments
required by the mobile robots. This theory is developed to establish some formal justifica-
tion for the novel approach that we develop for efficient robotic search and exploration as
extension to and experimental verification of the core work by Baeza-Yates, Culberson and
Rawilins [11] and Baeza-Yates [10].

In addition rendezvous search theory and techniques will be investigated. We see how
some of these techniques have been used in modern work to motivate multi-agent coor-
dination for mobile robots. A branch of statistics known as game theory, more precisely
the theory revolving around cooperative, two-player, zero-sum games will provide a basis
for the investigations of multi-agent cooperation. The foundational work here from Alpern

(1, 2, 4] provides methodology to the approach of the problem and a means by which to

7



1.6 ORGANIZATION OF THE THESIS

analyze it. Roy [62] provides a wonderful example of a similar extension of theoretical
results into a robust technical verification that corresponds to and gives appropriate testing
to those ideas in a functional setting.

Lastly we implement an experimental framework exhibiting the functionality of a
robotic system performing several different types of search in similar environments. Our
framework will serve to assess the performance issues involved with the differing algo-

rithms, and to show results from a complete and operational system.

5. Contribution

Spiral search techniques for planar search and discovery provide a more efficient method
for robotics search and discovery. While the current implementation is restricted to the two
dimensional case for purposes of analysis and evaluation, there is nothing in the theory that
prevents application in three dimensions. Moreover, spiral search techniques have a wide
variety of application domains and do not suffer from many of the severe restrictions that
similar work on the theory of searching requires. This general approach to online search
makes very few assumptions about the environment and is thereby largely unrestricted in

terms of the potential application domains.

6. Organization of the Thesis

This thesis is organized as follows. In chapter 2 we will present a reasonably com-
prehensive overview of the work which is of central importance to this work. In particular
the most appropriate results and definitions from the work of [1, 2, 11, 62] will be brought
out as well as the theoretic foundation for this thesis. The core ideas to the development
and design of our experimental system will be introduced here. All of these ideas will be
expounded upon and further detail will be deferred to the appendix or the original works
themselves.

Section 2.1 covers the issues involved with rendezvous search. It looks at treatments
of the problem as both a two player statistical game problem [1, 2, 3, 4, 7] and also as

a mobile robotic experimental system [62]. These queries will be most useful later in

8
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chapter 3 which focuses most directly on rendezvous search strategies in the sense that we
wish to make use of them.

Section 2.2 is an enumeration of the difficulty of search in the plane given different sets
of knowledge regarding the target. This section is a partially complete summary of Baeza-
Yates’ work on search [11, 10]. This groundwork will be extended in chapter 4 where an
extension to our mobile robotic setting will be outlined.

The description and analysis of a simple rendezvous search problem is detailed in chap-
ter 3. Motivated by the optimality results that have been found for spiral search techniques
and by the analysis of the rendezvous search problem we investigate a hybrid problem.
A competitive ratio analysis for search in the half-plane is presented as a symmetric ren-
dezvous value for the problem.

Chapter 4 explains how the theory of search has been adapted to the current problem
and provides context for the entire thesis. This adaptation of theoretical ideas into imple-
mentable strategies has been carefully considered so as not to make any assumptions that
might invalidate the interpretation of the theory into a real world system.

Chapter 5 will document the application environments and the experimental framework
that is being developed in this thesis. The framework documented in section 5.3 will be
properly analyzed and exhibited in the following chapter 6. Details in chapter S will reveal
the experimental procedure used in this thesis. Brief discussion will be given to some of
the assumptions that had to be made and some defense of the experimental dependencies
will be given.

The experiments and the resultant data are discussed in chapter 6. Any interesting or
particular details related to the individual experiments are given and the results from the
experiments are collected and analyzed. We give good experimental verification to the
initial claims that spiral search is an efficient search technique worth adopting.

Chapter 7 concludes this thesis. Summary is given to the stated problems, the means
by which they were addressed, the techniques involved in testing those hypothesis and a

look forward is taken. The potential for the application of this technique to mobile robotics
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problems is reiterated and future work topics stemming from this current will be suggested.

Directions for related and continuing studies in this area will be considered.

10



CHAPTER 2

Previous Research

It is worthwhile here to present a brief summary of other work that is closely enough
related to this thesis topic to be of value. Many of the ideas that will be called upon
later as “foundation” ideas are set out in the following group of papers. So a reasonable
presentation of the papers and the appropriate ideas therein shall be given here.

Firstly we shall consider the area of multi-agent coordination. We shall use the ter-
minology of “Rendezvous Methods” to refer to the concept of coordinating multiple agent
behaviour according to any sort of strategy. Any attempt to describe a multi-agent sys-
tem requires consideration of both how the entire group is managed as well as what each
agents behavior is in the group. So the mechanism of how control is distributed throughout
the group, the amount of communication possessed by the agents, the tightness of their
awareness of each other and the way that work is distributed among the agents will all be
classified as the rendezvous technique. Alpern’s [2] work in the theory of this area is piv-
otal to the adoption of this topic within the thesis. Work by Anderson and Fakete [6] as
well as Roy [62] also will be examined for some of the ideas that they present.

Concern will be geared more toward the group management scheme in section 1, rather
than on the particular behaviour of each agent. That topic we will regarded in the next
section on Exploration Strategies. This is reasonable because what the particular behaviour

of an agent should be fairly transparent within the entire group scheme. Certainly the
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specific method of search used is necessary to identify a complete “strategy” but we will

defer the details of the exploration strategy to section 2 on Exploration.

1. Rendezvous Methods

The topic of rendezvous methods is to be regarded as a thread of multi-agent control
theory, theory which has been worked on rather extensively in a variety of fields (see Balch
{12, 13] and Arkin [9] for a subset related to multi-agent robotics). Explicitly, however,
the term “rendezvous methods” is intended to refer more specifically to work relating to
the subset of multi-agent coordination together with some sort of fail-safe behaviour in
the event of communication failure, sensor failure, failure to encounter other agents or any
other sort of unpredictable short comings that may occur in the real world.

Good results come to us from Alpern [2, 4], Anderson [6], and Roy [62] in this new
field. For the remainder of this section we will look at what kind of results are supplied to us
from some of the literature. Specifically we will consider the “rendezvous search problem™
proposed by Alpern and we will consider the problem of “multi-agent exploration and

rendezvous” as posed by Roy and the solutions that they offer to these problems.

1.1. The Rendezvous Search Problem. Alpern’s work [2, 4] serves as a good
reference to the ideas of what it is that the rendezvous search problem incorporates as well
as allowing us to introduce the concepts that are involved with coordinated search in a
formal way. Also, the paper holds very promising insights to this field which will help
exhibit the merits of further study.

Alpern defines the rendezvous search problem as follows. Two agents are placed ran-
domly in a known environment with the objective of finding one another. Each agent
moves at unit speed and knows nothing about the location of the other agent until it is actu-
ally discovered. The problem is to minimize the expected time to discovery. The solution
is presented as a general solution cast in a compact metric space together with a group of
isometries [see B.3 for a definition] which reflect the amount of information that the agents

share about the environment. It is an important realization that the rendezvous time (or

12
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rendezvous value, R) that is finally assigned as the solution is a function of the topological
characteristics of the search region X for the given search strategies.

Multi-agent search strategies come in two types. Symmetric search strategies are those
such that each agent follows the same set of rules while searching. Asymmetric search
strategies are those such that each agent has a potentially different search algorithm that it
follows. An example might illustrate best. Imagine two agents on the boundary of the same
circle looking for each other. They have no vision and must collide to detect each other.
A symmetric search strategy might be “walk clockwise”. Both agents following such a
strategy will never discover each other if they walk the same speed unless they start at the
same spot. An asymmetric example might be for agent 1 to “walk clockwise” and for agent
2 to “walk anti-clockwise”. Here each agent employs a different strategy than the other.
Discovery is guaranteed within a walk of at most half the circumference if the agents are
the same speed.

Alpern uses the symmetric and asymmetric alternatives to motivate two different mea-
sures for search strategy quantization. The symmetric rendezvous value, R, and the asym-
metric rendezvous value, R®. These values are the least expected meeting times for the
search strategy over the defined environment. The asymmetric case yields lower values
than the symmetric case, i.e. R® < R? typically. Alpern concentrates primarily on sym-
metric strategies, as will we in the bulk of our work, since we will not assume that we can
differentiate between agents in the environment. The kind of symmetric strategies that we
are going to see are known as mixed strategies, whereby the actual strategy being used is
a combination of strategies and a method for how to blend them. Mixed strategies allow
for symmetric strategies to break the kind of deadlock that we have already observed in
our example of the searchers on the circle when they each simply walk clockwise. So the
algorithms are of the flavour “perform z for some time ¢,, and then switch to y for time
ta ... 7 so that there is a mixed nature to the behavior of the agents. By no means does
“symmetric search” imply that the agents behave identically, simply that they follow the

same algorithm, deterministic or not.

13
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Alpern acknowledges that the use of “focal points” is of practical utility, although his
intention is to show that focal points in the environment are not a prerequisite to successful'
rendezvous. Indeed, in practice these focal or “distinctive” points will be of great utility
and in Roy’s [62] work we see how a practical application can take great advantage of the
non-homogeneity of the environment while still employing the multistage strategies that
differentiates between Alpern’s work and Schelling’s [65].

To define the problem formally Alpern first tackles the rendezvous problem in its most
general setting “rendezvous on a compact metric space” and then goes into studying the
problem in more restricted regions. We will present his argument for the general setting
and then show the results most related to the current work. For more complete discussion
the reader is of course referred to the actual paper [2].

The general problem consists of a compact metric space (X, p) with a given detection
radius of 4 and a group, G, of isometries of X [see B.3 for a definition]. The distance
function [B.6], p, is what turns the compact space into a metric space. It is assumed that
the players know the environment, and can localize themselves within it, but cannot detect
the other player until they occupy positions closer than 4 to each other. The group G
represents the player’s uncertainty about the region that their companion occupies.

Consider the set of paths, P, that may be taken within the region as P = {p : R* —
X, p(p(t1),p(t2)) < |t; — t2|}. The subset of paths originating at a point, z € R*, is

denoted P,. The meeting time T : P x P — R* of two paths p, q is defined by the time
T(p. 9),

T(p,q) = min{t : p(p(t), q(t)) < 8, @.0)

'success here can be taken to imply that we are able to successfully rendezvous with greater likelihood if we
are able to choose our search algorithm rather than simply wandering about

14
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where ¢ is the detection radius and p is our distance function. The group G induces an

equivalence relation on X and P according to:

r~y < g(z)=y .3gEG

p~q <> g(p(t)) =q(t) ,3g€G

The associated sets of equivalence classes are referred to as X and 13, with the cosets of a
point represented by the | ] operator.

Then a search strategy is amap s : X — P such that there is some path p € s(z) with
p(0) = z. The set of all such search strategies will be referred to as S.

Now that we have described formally what it means to be a path, we can describe
what it is we are looking for. What is the expected meeting time for pairs of equivalence
classes of paths? We calculate the expected meeting time of two paths by integrating over
all equivalent sets of paths in the environment. Let v be denote the Haar measure on G [see

B.7 for definition] and define? T'([p], [g]) to be the expected meeting time of the two paths,

T(lp). [q]) = /G T(gp, q) dv(g). 2.2)

With this definition of distance between paths, we can progress to consider the ex-
pected time of rendezvous for search strategies. Given two search strategies, s;, s> € S, we
want to generate the normal form, T, for the search problem. In the case of the symmetric
search strategy this simplifies by choosing s; = s;. The normal form for the search game
is thence given by T : $ x S — R working on pairs of search strategies and returning
an expected time. We assume the players are placed independently according to the same

measure, /£, to begin. We hereby define the normal form for two search strategies to be

Tose) = [ [ T(1(@). 20) du(o)dutu). 23)

The rendezvous search value can now be defined in terms of the normal forms for
sets of search strategies. We have seen how using symmetric strategies can lead to infinite

expected meeting times. Our simple example of the “walk clockwise” strategy amounted

2G only acts on one path since for g, h € G, T(gp, hq) = T'(h~'gp, q)

15
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to an infinite expected rendezvous time akin to a dog chasing its tail. In order to avoid
this pitfall we allow mixed strategies to be our symmetric strategies, which allows for
independent randomization between agents. For more detail on the formal implications of
this randomization see Alpern [2] but we will suffice it to say here that this does not impose
any constraints that will be manifested in any environment that we will be concerning
ourselves with in application.

The asymmetric rendezvous problem is to find the pair of strategies which minimize
the expected meeting time of the agents in a given environment. Remember that the “‘envi-
ronment” here is really the actual environment together with the set of isometries that tell
us how much we know about the environment and our minimal encounter distance, §. We
take all the search strategies for the environment and assign a minimal one to be the value

of the search problem
R* = R*(X,G,6) = min T(r, s). (2.4)

The symmetric rendezvous problem is similar, we are also looking for the strategy
that minimizes the time to rendezvous. However we must be a little more cautious in the
definition to take care with the independent randomization that is occurring in the mixed
symmetric strategy we are using. Because we are employing such mixed strategies, we
necessarily have to extend our set of all strategies to the set of all mixed strategies. This set

we will denote S*. Having chosen our path space a little more cautiously, we are free to

define the symmetric search value by

R’ =R¥(X,G,d) = min ffT(sl,SQ)ds‘(sl)ds‘(sz). 2.5)
sJs

s*€5"

The kinds of rendezvous strategies that are analyzed in [2] are summarized here to
give some sense of setting. Rendezvous on a circle, C, is considered. We have two players
on the circumference of a circle who wish to rendezvous. There are 4 different strategies

analyzed as follows and shown in table |.
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Know | Init/Orient | Orient | Nothing
R* % GoToZ g CoHaTu % CoHaTu
Re 3 OpDir 3 opDir | I Gosay

TABLE 2.1. Summary of rendezvous values for 2 player rendezvous search games
on the boundary of a circle.

e GOTOZ Take the shortest path to the point Z on the circle. Complete knowledge of
the initial position and the whereabouts of the point Z are required. This is a sym-
metric algorithm, with an expected rendezvous time of R*(GoToZ) =2/3, VZ.

e COIN HALF ToUR[CoHaTu] Oscillate from the initial point to the antipodal point
along either route (equiprobably each time). The expected rendezvous time here is,
R*(CoHaTwu) = 3/2. Incidentally, this is symmetric, but the result holds even if
only one of the two players adopts this strategy.

e OPPOSITE DIRECTIONS[OpDir] One player proceeds clockwise, the other counter
clockwise. This requires knowledge of “up”, but not of initial position. Here we
have R*(OpDir) =1/2.

e GOSTAY One player sits still and the other randomly chooses a direction to begin a
traversal. This requires no knowledge of initial position or orientation. The expected

rendezvous value of this game is R*(OpDir) = 1.

These search values for the circle certainly help to illustrate how it is possible to speak

of an expected rendezvous time for a given algorithm. Later in [2] another estimate is

given for rendezvous search on a line. In this case we have the agents on a common line

a distance, D, apart and they wish to find each other. The proposed search algorithm,

1F2B(z), is one step forward two steps back (where step size is z). In particular, when the

distance is known then Alpern conjectures that 1/72B(2) is optimal with a search value,

R?® = 5/2. This conjecture is more than reasonable and is precisely the kind of motivation

that we need to start thinking about more generalized search. Consider that when we do not

know the initial distance this search game becomes much more subtle to play and analyze.

In section 2 we will see that the asymmetric case of one player doing 1F'2B and the other

sitting still will yield R® = 9.
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1.2. Multi-Agent Exploration and Rendezvous. Roy’s {62] work exhibits a novel
implementation for the work in rendezvous search. From an understanding of the theory
that we have investigated in the previous section Roy shows a real world multi-robotic
system that uses these techniques effectively to improve upon the capabilities of a single
agent.

Also of importance, explanation of this work will help bring to light some of the is-
sues commonly involved with mobile robotics. Limited sensors, difficulty with localiza-
tion, path planning and navigation failures and unreliable recognition capabilities are all
commonplace issues that have to be considered in the study of mobile robotics. A good
robotic system will exhibit graceful degradation in failure modes and also show recovery
techniques that allow continued operation of the system. We consider the contribution of
Roy’s [62] work for these reasons.

Roy considers the problem of rendezvous between two robots exploring an unknown
environment. The question is how can two autonomous agents that cannot communicate
with one another over long distances meet if they start exploring at different locations in
an unknown environment. The intended application is collaborative map exploration. In-
herent to multi-agent systems are problems of task division, synchronization and coordina-
tion. Communication issues between agents is also a limiting factor in realistic multi-agent
systems. In this work a realistic, limited range “line-of-sight” communications model is
assumed. The solution for these problems along with the issue of merging maps between
the agents once communication and rendezvous have been established are termed by Roy
as “‘Multi-agent Rendezvous™.

1.2.1. The Rendezvous Problem. The problem discussed by Roy is how to determine
the best strategy for a successful rendezvous between two agents in optimal time. Consider
of how the rendezvous task can be efficiently accomplished under assumptions regarding
the environment and the perceptual abilities of the agents. Multi-robot exploration using
rendezvous is considered in the context of unknown environments. Initially an “abstract”

sensor that allows the agents to recognize one another when they are sufficiently close
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together is assumed. This sensor is also used to evaluate discovered areas in the evolving
exploration as to their suitability as a rendezvous points.

The rendezvous task itself is divided into two sub-problems:

(i) Identification of appropriate rendezvous points. The agents must have some way of
independently choosing some set of locations as appropriate points for attempted
rendezvous.

(i1) The ability for agents to agree on the same location for rendezvous. Given a set of
appropriate potential locations, how should rendezvous be attempted within these
locations? An appropriate rendezvous strategy will take into account the possi-
ble asymmetry between the agents’ exploration as well as asynchrony between the

agents, and allow for missed rendezvous attempts.

Rendezvous will involve the agents searching through the environment for good meet-
ing points, and then traveling to the best meeting point at a pre-arranged time. The con-

ceived rendezvous problem consists of four steps to be performed:

(1) Explore the environment
(i) Categorize areas according to goodness as rendezvous points
(iii) At a pre-arranged time, choose the best rendezvous location

(1v) Travel to the best location for rendezvous

The problem of rendezvous is also concerned with how to proceed if a particular ren-
dezvous attempt fails. Important are Strategies that permit a robot to interleave exploration
and attempted rendezvous so that even in the case of failed rendezvous the robot can con-
tinue its work. Such an approach is indicative of good robotic system design.

1.2.2. Formal Parameters of the Rendezvous Problem.  Fundamental to rendezvous
is the ability to identify rendezvous points in the environment. One method to identify
rendezvous points is to use a potential function at all points in the known environment and
taking the points which maximize that potential function as the candidates for rendezvous
points. These points are often called distinctive points in the environment. The potential at

any point is then determined by a distinctiveness function. The distinctiveness is a value
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defined at every point in the environment as a function of the location in the environment
and the sensor(s) used to gather information about the environment at that point.

To try and coordinate rendezvous as best as possible it is clear that each of the agents
should use identical distinctiveness functions with which to categorize the environment.
Still differences in the agents’ sensors will result in different perceptions of the environment
and hence different distinctiveness functions will be assigned, even with the environment
common to each agent. Compensation for these differences is also a necessary aspect
to the rendezvous problem. In order to manage this compensation for independent error,
in hopes to arrive at a common perception of the environment, a parameterization of the
distinctiveness measure, D(z,y), is performed. The parameters chosen by Roy for this job
are systematic differences between agents, and random noise. D(z,y) is also a function of

the sensors the agents use:

S;i(.'.l:, y) = S;(.'E, y) + 7:];;(1', y) + ’-\.i (2-6)

Di(z,y) = D(Si(z,y)) (2.7)

where S (z.,y) is the ideal perception of the environment by the given sensor, in the
absence of noise. 5_;5(1', y) is an agents perception of the environment at position (z, y),
encapsulating the agent’s systematic error 7j(x,y) over the measurement at that position
and J; is an agent’s random sensor noise.

Then in order to quantify the inter-agent differences, A and n are modeled as scalars,
the random and system errors are collapsed into one term. These inter-agent differences

are expressed for any agent relative to a reference agent, represented D,

Di(z,y) — Di(z,y) = Siﬁi(a:, y) + SiDl(if", ) (2.8)
Di(z,y) = (1—3&)Di(z,y) + dmii(x, y) 2.9)

where 7j;(z, y) is all stochastic and systematic noise processes of each robot, and 5; specifies

the extent to which the two robots (D; and D, ) sense (or perceive) the same thing. Modeling
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differences in sensor measurement across agents, the 7 and 5 parameters can be treated as
a single parameter, 4.

Roy identifies critical attributes that affect the performance of rendezvous strategies.
These attributes envelop issues regarding the actual robots themselves as well as issues
regarding the environments within which the robots must manage rendezvous. The param-

eters of the rendezvous search problem are listed as follows:

e Similarities — The coincidence of the agents’ perceptions. This is greatly dependent
on the kind of sensor used for the measurement. This is expressed as $ of Equation
9.

e Sensor noise — The 7j(z, y) term of Equation 9, is meant to encapsulate the indepen-
dent differences from ideal perception that an agent makes at a given location. This
effect leads to the need to consider a greater number of less-than-ideal rendezvous
points.

e Landmark Commonality — The extent of overlap between the explored areas of
the different agents. Landmarks that fall outside of this overlap are useless as ren-
dezvous points. This disparity forces that multiple rendezvous points be considered.

e Synchronization — Appropriate action must be taken by the agents to overcome
failed meetings. This effect leads to a need for strategies that may re-visit the same
landmarks repeatedly to compensate for missed meetings.

e Landmark Cardinality — The manner in which different landmarks are ranked and

the number of ranked landmarks that are considered for rendezvous points.

These parameters of the rendezvous search problem lead to an adoption of a necessarily
robust scheme for performing real world rendezvous. Failure and variation from expected
behaviour are aspects of functional mobile robotics that must be addressed. This aspect of
Roy’s work is precisely the merit of it’s discussion here.

1.2.3. Landmark Selection Algorithms.  There are two main classes of algorithm
considered for the selection of landmarks to visit: deterministic and probabilistic. The

deterministic class of algorithm creates a list of all possible combination of landmarks
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and specifies the order in the list. The probabilistic class of algorithm does not generate
an ordering of landmarks, but simply generates probabilities for landmarks being visited.

Brief descriptions of the types of algorithms are given:

e Deterministic Algorithms — these algorithms always create the same ordering of

landmarks.

~ Sequential — One robot waits at a landmark while the other robot searches
all of its landmarks. If rendezvous fails the first robot moves to a different

landmark and waits.

— Smart-sequential — Each pairwise combination of landmarks known to a ro-
bot is assigned a value of the product of the distinctiveness of the pair. The
list of landmark pairs is sorted and the robot then visits the landmarks in this

order.

e Probabilistic Algorithms — The landmarks are sorted with respect to their distinc-
tiveness and then assigned a likelihood of visitation p; for landmark i. The algorithm

probabilistically selects a landmark to visit, using p; for each landmark.

— Exponential — The likelihood of visiting the i — th best landmark is < €.
This accentuates relatively highly distinctive points.
- Random — On each attempted visit, each robot selects a landmark at random

and goes there.

The success of rendezvous attempted using each of these algorithmic approaches was
compared and assessed. These algorithms were the variables under study in the experi-
ments.

1.2.4. Multi-Agent Exploration.  Of particular interest in Roy’s experiment is the
ability for the rendezvous algorithm to overcome the communication restriction and yet
maintain the increase in speed that multiple-agent robotics promises. A speed increase is

demonstrated for exploration, even accounting for the time to rendezvous.
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The increase in speed, AS, of the mapping process is then given by Equation 12,

Sco-mbined - Ssingle

AS = (2.10)
Ssingle
-4
TC 3
= == (2.11)
T
AT,
= €S _ 2.12
AT 12

Taking the area of a single agent, A as the area explored by the active agent, and
the time of the single agent 7 as the time allowed for the exploration process alone. The
combined area, A. was the explored area of the merged maps, and the combined time, 7.

was the time to explore, T added to the time to rendezvous, 7, so that 7, = T + T-.

Index | Active Passive Combined || % Increase in Area
0 48.0 422 69.1 44.2
1 48.0 58.4 72.0 50.2
2 48.0 66.5 74.6 55.6
3 48.0 59.5 68.5 42.8
4 48.0 67.7 739 54.1
Average 494

TABLE 2.2. The increase in explored area, as a percentage of the environment, for
each of the 5 initial configurations.

Table 2 (from [62]) shows the average speed increases observed by use of each of the
algorithms from the previous section. As Table 2 shows, the increase in explored areas was
a minimum of 42.8%, and on average 49.4%. The data expressed in this table assumes
total communication between the robots and hence expresses ideal speedup based on the
rendezvous algorithms used.

1.2.5. Section Summary. This work exhibits a practical multi-agent rendezvous
scheme to overcome practical communication limits by periodically having the agents con-
verge and share information. It shows the efficacy of a multiple robot system compared to
the single robot system, while eliminating the traditional assumption of global communi-

cation between agents.
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The rendezvous problem was divided into two separate subproblems. The first is deter-
mining what points in the environment constitute good rendezvous locations. This problem
is addressed by modeling the environment as a function of the sensors giving rise to a
distinctiveness surface, defined over the domain of the environment.

Which points the robot visited was dictated by the trajectory prescribed by the under-
lying task, and so demonstrates a mechanism to overcome trajectory dependencies.

Three key parameters that characterize the problem are identified. By choosing a num-
ber of different points in the environment for meetings, an intelligent scheme for visiting
these points allows rendezvous to be achieved reliably. The three parameters are identified
as sensor noise, map commonality and asynchrony.

The problem of which appropriate behaviour to use in choosing the landmarks to visit
is the second of the two subproblems of rendezvous. Two main classes of algorithms are
proposed detrerministic and probabilistic guidance algorithms.

The rendezvous algorithm was demonstrated both in simulation and on physical robots.
The simulation tests were used as a confirmation of the numerical results. An interesting
conclusion from these results is that, depending on a combination of these confounding
factors, no strategy is canonically a good or bad choice. The experiments using physical
robots gave a compelling demonstration that the rendezvous algorithms are an essential

part of the rendezvous process.

2. Exploration Strategies

We have seen (equations 5,4) that the choice of an appropriate search algorithm is
directly dependent upon the environment that we are considering. It is well worth identify-
ing some environments and optimal search strategies to get a feel for what kind of results
we will expect to find as our environments become less constrained and harder to analyze.

Bearing in mind Moore’s Law?, the processing power available in current mobile robots

*A rule of thumb proposed by Thomas Moore in the late 1960’s that microprocessor speeds will continue to
double roughly every 18 months. This shocking exponential claim has been consistently accurate for the last
30 vears, and according to current estimates will likely continue for at least another 10—15 years. See [37]
for a more complete discussion of the growth trends in microcomputer architecture.
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far outweighs their mobile capabilities, this is a trend that we can assume will persist.
Any sort of reduction in physical motion, especially when the cost is processing time, is a
worthwhile investment.

What sort of approach should be used for determining this strategy? We will agree
that the actual environment we are interested in is the plane. Searching in more general
environments is in itself an interesting problem, but here we will restrict our interest to
domains topologically equivalent to the plane since that is where our mobile agents will be
working.

By investigating search paths in the plane it is possible to gain a better understanding
of the efficacy of search strategies that we may wish to employ. Baeza-Yates, Culberson
and Rawlins [11] show some interesting findings regarding exactly this problem of finding
optimal search paths in the plane. We will look at their results in section 2.2.

It is well known that a traversal through a graph-like environment according to a
“depth-first” approach (section 2.1) can be performed optimally in 2 x [|V|| edge move-
ments, where ||[V/|| is the number of vertices in the graph. Depth-first search, or DFS, is a
sure way to traverse the graph, but it is inappropriate for our task. In unknown and poten-
tially [practically] unbounded environments DFS may not perform well in terms of average
case behaviour. Unreliable cycle detection poses a real problem while performing DFS.
One of the failures of DFS is that a failed cycle detection will lead to the robot falsely be-
lieving that it has continued to explore new ground while walking in circles. Even bounded
failure will result in a serious topological morphing of the search environment that would
not be the case in breadth-first searching that does not allow itself to descend deeply into
an error. This difficulty associated with recognizing cycles® in the graph, the failure of
adhering to the Principle of Locality® and the fact that the environment is unknown a priori

makes DFS an undesirable approach.

‘the trouble with cycle detection in a robotics setting comes from a difficulty in accurate position detection
in the presence of noisy unreliable sensors.

SRule of thumb regarding cache hierarchies (see [37]). The principle posits that references that are located
proximally tend to be accessed proximally. Here the principle is extended beyond its purpose to indicate
that average case behaviour is very important while searching. An object that was lost 10 minutes ago is
misplaced, where as an object misplaced 10 days ago is more likely lost.
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2.1. Depth-First Search.  Depth-first search is a simple search strategy that ex-
pands a graph-like structure by searching deeper into the graph whenever possible. A more
detailed explanation than will be presented here can be found in [21].

According to the depth-first strategy any unexplored edges leading from the most re-
cently discovered vertex are explored before any further unexplored edges are taken leading
out of the parent of the current vertex. This process is applied recursively at every vertex
and continues until all of the nodes in the graph have been explored. All of the nodes
neighbouring the current node p, aside from the predecessor, are said to be children to p.
The pseudo-code shown as algorithm 1 shows the details of a recursive depth-first search

algorithm which keeps track of the discovery time of each node in the SearchMe() routine.

Algorithm 1 DEPTH-FIRST_SEARCH(u)

for v € Child[u] do
if v.hasNotBeenSearched() then
Depth-First_Search(v)
end if
end for{Children of p will be searched before p}
p-SearchMe()

Depth-first search has several redeeming features that make it a good strategy to start
with. Firstly, it is exhaustive. We are guaranteed that every node will be visited eventually.
Secondly, it performs minimal re-traversal of the graph. With DFS we are assured that
no edge will be visited more than twice®, which is a great property bearing in mind the
burden of physical motion for mobile robots. Thirdly, this algorithm has minimal memory
space requirements. The memory requirements for the algorithm consist of only needing to
remember the graph itself and the path to the current vertex. The memory size requirements
are thence O(||V|| log ||V'||). This allows the robot not to have to try to match its current
location to a vertex in the graph since this is implicitly accomplished through the topology
of the graph. Since reliable localization is a difficult problem in its own right, this is a very
attractive property of depth-first search. Despite these qualities DFS is not exactly what we

SWhereas one of the major drawbacks with breadth-first search is that vertices with children are visited
2 « ||subtree]| times. This does not factor in asymptotically to the performance, but it is a consideration in
reality for our slow moving agents.
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need. There are major shortcomings of DFS that we need to address for use in real, a priori
unknown, environment that we will be dealing with.

In unbounded environments DFS stands to perform perhaps very poorly, since it may
never’ successfully descend the depth of the entire search tree. The principle of locality is

also sacrificed by DFS, something that we do not wish to give up on so easily.

2.2. Searching the Plane. Consider the series of results collected by Baeza-Yates,
Culberson and Rawlins in {11]. We can get a flavour of how we may do better than DFS
in a planar environment by adopting the trend suggested in the hierarchy of table 3. The
trend to discover is that the family of logarithmic spiral curves, properly constrained to
the appropriate environment, provide optimal solutions to search problems. We see this
trend developed here in environments that are simple enough to study rigorously. It is our
intention that with this motivation that later, when looking for efficient search strategies in
less confined environments, that we may extrapolate these results to provide a mechanism
for efficient search in dynamic real environments.

Under the assumption that we have to pay a significant cost to “probe” in our environ-
ment proportional to the distance of the probe from our current location there may be better
ways to search. Table 3 shows a collection of known best results for such search problems
under the restrictions given.

The problem of searching in the plane for a line with different kinds of a priori knowl-
edge regarding the line is an illustrative example. Starting at the origin, (0, 0), we begin
looking for the line. Supposing that the line is a distance n steps away from the origin and
that travel is performed taking unit “steps”. We assume that we detect the line as soon as
we encounter any point in the line. In the real world this is a non-trivial condition if one
considers an example such as a target that can be identified as soon as there exists a direct
line of sight from the agent to the target.

To demonstrate the results of table 3 we suppose that we have a variety of different

types of information concerning the line before starting.

"perhaps “never” should be qualified with *“for all intents and purposes”. Bearing in mind of course that the
relatively slow physical motion of real robots may require an infeasible amount of time to search the extant
of an environment.
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Info Given Search Distance
Normal of a line n
Distance, Slope 3n
Distance. Axis Aligned 3\/§ nx424n
Distance to line (1+ 3+ 77/6)n ~ 6.39n
Slope only 9n
Axis Aligned 13.02n
Nothing 13.81n
TABLE 2.3. An enumeration of distances searched to discover a line that is a dis-

tance n from the origin. The hierarchy reflects varying kinds of knowledge regard-
ing the line. Competitive ratios for are found by dividing by n. These worst-case
values are reported in [11]

2.2.1. Searching for a Line given its Normal. When the [directed] normal to the
line is known, the problem is trivial. We know that the distance to the line is n and the
direction that the line lies in relative to the origin. This condition is equivalent to knowing
the solution. Recall that the shortest distance from the origin to a line is in the negative
direction of the normal.

Our direction of motion is constrained to R?/R = R, a line and we know which
direction the line lies in, so walking along the normal in that direction will yield our result
in exactly the minimal n steps.

2.2.2. Searching for a Line Given Slope and Distance. ~ When the distance and slope
of the target line are known at the outset, but not the side of the origin to which the line lies
then there is some ambiguity to consider. The direction in which the line lies is unknown.
This problem is equivalent to finding a point in a line knowing the distance.

Again our search is constrained to a line perpendicular to the slope, but unlike the
previous case we do not know in which direction the line lies. So we walk along the
direction perpendicular to the line for a distance n, and if the line is not on that side then
we know that we chose wrong initially and that the line is on the other side of the origin

along the perpendicular. The total worst-case distance is thus 3n.
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2.2.3. Searching for an Axis Aligned Line Given Distance. In this version, it is
known that the line for which we search is parallel to one of the axes, but which is not
known. With the information that we are given we know the line that we search for is one
of the sides of the square shown in the following diagram. It is easily seen that the problem
can be solved by investigating opposite corner points in the square formed by the possible

configurations of the problem.

Again this results in finding a particular point on a line without knowing the correct
direction (see diagram). In this problem the distance to either of the points is V2 n yielding
a worst-case performance of 3v/2n.

2.2.4. Searching for a Line Given only Distance.  This case is one of the least intu-
itive of the cases presented. It is worth spending a few moments to consider some possible
approaches before reading on to the solution. The question and first [non-optimal] solution
date back to 1956 from Bellman [14] and shortly afterward, in 1957 Isbell [40] presented
the solution in a brief [and difficult to find] paper which is optimal.

Given the distance to the target, but no more information, it is clear that the target lies
somewhere on the circle of radius n centered at the origin. A quick calculation shows that a
tour of n + 27n = 7.28n is an upper bound, by walking to any point on the circle and then
traversing the circumference. Isbell has shown that we can do better than this according to
the following method which asserts the optimal solution is achieved in (1 + V3 + -"Gl)n =

6.397n métric units.



2.2 EXPLORATION STRATEGIES

Assume a circle radius n = 1 and centered a p. We have the following eloquent
explanation by the original author:

Being at p and unoriented, imagine a clock face. Walk toward one o’clock for
\/g units. (This takes you to a vertex of a circumscribed regular hexagon.)
Then turn on the tangent which strikes the unit circle at two o’clock. Follow
the circle to nine o’clock and continue on a tangent. Upon striking the line
which is tangent to the unit circle at twelve o’clock you have swept all the
tangents to the unit circle, and that in a path of minimum length.

Isbell [40]

The proof amounts to finding the minimum for
f(a) =seca+tana+7—2a, o€ [0%]

which is indeed achieved at o = %.

2.2.5. Searching for a Line Given Slope. = Knowing only the slope of the potential
line but not the distance is equivalent to the problem of finding a point in a line, since it
only makes sense to walk along the perpendicular to the slope. Here we do not know the
distance to the line. This case is equivalent to searching for a point in a line an unknown
distance away. An analogy might properly be made to searching a darkened hallway for a
light switch, when the searcher has no expectation for either how far the light switch might

be nor for the length of the hallway.
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2.2 EXPLORATION STRATEGIES

We can describe the solution as a function f(i) : Zt — Z* where f(z) reports the
number of steps to take to the right or left of the origin before the z-th turn. This function,

provided with the progress condition of,
f@) =2 fE-2)+1

is enough to specify a solution to the problem. The progress condition simply ensures that
our solution will indeed explore new territory each time there is a change in direction. This
is assured by taking at least one more step into unexplored territory than has been taken
so that the search will terminate. Since this is an alternating search, f(Z) and f(i + 2) are
consecutive distances from the origin on the same end of the line.

<< g - } e >

f(3) f(1) 0 f(2)

Baeza-Yates et al. [11] show that the following function,

f@) =2, Vi>1 (2.13)

results in an optimal solution. With this function the total distance that is walked is
2y lonl+l o L since we walk out and back on every iteration of 2 steps except for
the last probe, during which we walk n. This is easily seen to be bounded by 9n steps,

tlogn]+1
2 Y 2+n<2(2len) 4

=1

=2n+n
=9n

with a little bit of slack in the first inequality. In fact there exist algorithms which perform
at 9n — O(logn)?, Vi. It can be shown that the class of logarithmic spiral curves will

achieve this bound in general. These performance properties of the logarithmic curves will
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be exploited in general framework for mobile robotic exploration. The proof that linear

spiral search is optimal up to lower order terms is deferred to appendix A.

Known Search Distance

Section 2.2.1 | Direction and Distance n
Section 2.2.2 Distance 3n
Section 2.2.5 Nothing 9n

TABLE 2.4. This sub-table of 3 illustrates the I dimensional subproblem of finding
a point in a line with various amounts of a priori knowledge

It is interesting to note the apparent regression that this result provides. This concludes
the 1 dimensional analog to searching the plane. While searching for a point in a line,
there are 3 kinds of information that we may have (summarized in table 4). If we know
the direction and distance to the point then we walk directly there, taking the required n
steps. If we know only the distance, then the ambiguity of which side to search on reveals a
worst-case performance of 3n making our search 3 times longer possibly. Knowing nothing
about the location of the point results in a further complication by a factor of 3. This last
case requires a potential 9n steps and is the case we have just analyzed.

2.2.6. Searching for a line Given Little or No Information.  In this instance of the
problem, the distance to the line is not known nor is the slope. We have no knowledge
of the line beyond that there is a line in the plane. It seems reasonable that an optimal
search path that discovers this line will be one that exhibits spiral self similarity. That is
to say that the curve will expand outwards during the search and that it does not rely on
orientation or scale, since neither of these properties are known. This optimal curve will be
self similar with respect to both rotations and dilatations. This is a reasonable presumption
for a solution curve by converse reasoning. Any curve that does not exhibit these properties
will admit some line in the plane that is not found in the minimal number of steps.

More precisely our search space is the plane, so from equation 5 we have that X = R?
and our set of isometries are G = (rotation, dilatation). The only known family of curves

that exhibit spiral similarity in the plane are the curves known as the logarithmic spirals.

32



2.2 EXPLORATION STRATEGIES

The class of logarithmic spirals are defined by the polar equations r = k?. It is claimed
in [11] that the “best” numerical approximation for the logarithmic spiral is such that k =
1.250 - - -. Whether the authors have some theoretical method of generating this number
or whether it is just the number that yields the lowest worst case performance is unclear
and unspecified. Clearly we are free to choose k as we wish as it indexes the entire family
family of curves. Choosing £ =~ 1.250 yields the claimed lowest worst case performance
of 13.81n + O(logn) from table lowest 3.

Although this is not a rendezvous method, we can cast it as one, with the rendezvous
being between a mobile point agent and a line. The line has no search strategy and the point
robot follows the strategy laid out by = = 1.250°. In this sense we have an asymmetric

rendezvous value of
R* =R*(X,G,0) =13.81

With the restriction that the line be axis aligned, slightly more information about the
pose of the target line is known. This has the effect of lowering the upper bound from
13.81n to 13.02n. These resuits are arrived at in a similar manner as before, but the limits
are approximated using numerical methods.

This concludes the explanation of the entries in Table 3. It also raises some interesting
points. The method of search that is employed seems to be rather sensitive to the amount
of a priori knowledge that we have of the environment and especially of the properties
of our target therein. Selecting the search method that we should use is not always clear
and the choice is dependent upon several factors, like the principle of locality, that are
not necessarily related to efficient search in other common domains. Searching in noisy,
dynamically changing and unknown environments is a difficult problem.

The important observation at this point is that there are a set of properties which un-
derly this entire series of solutions. There is a trend to a general solution method upon

which the rest of this work relies. The identification of the class of logarithmic spirals as
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the family of curves which yield the optimal search strategies in their respectively con-
strained environments. This general method employs the family of curves that we have

already introduced and whose properties we will consider next.

2.3. Logarithmic Spirals. In retrospect here we observe an interesting aspect of
this hierarchy of inquiries. Aside from the case of finding the shortest distance to a line
given the distance, n, to the line?, a general trend of logarithmic spiral search restricted
to the appropriate domain serves as an approach which uniformly delivers asymptotically

optimal performance.

~

FIGURE 2.1. The path traced by f(z) = ( %)’ intersecting with m = 3 concurrent rays.

2.4. M Concurrent Rays. The case for searching m-concurrent rays is very similar
to that of searching for a point in a line, but offers further insight into that same problem.
The assumptions here are that the robot is standing at the [common] intersection of m
rays [see definition 2.1] and endeavours to find a target located on one of the rays. If the

distance to the target is known, but not which ray the target lies within (comparable to

8This is a special case in that the domain of the search is bounded. We know that the solution will be found
on the circle of radius n. This condition separates this case from the others, whose domain extent is infinite.
As we will see this is the mark of a problem whose solution may be best approached using a logarithmic
spiral search method.
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knowing distance but not direction) then the obvious (2m — 1)n algorithm is optimal. If
the distance is unknown, then this becomes the counterpart of the point-in-a-line problem

from section 2.2.5 and yields some interesting results.

DEFINITION 2.1 (Concurrent Rays). Rays or search paths that emanate from a com-
mon intersection and extend without further intersections are said to be concurrent. If
from that common intersection point there are M such co-terminal rays, we say there are

M-Concurrent Rays.

This problem is worth addressing as it will turn out to be the correct setting for the
experimental work presented in chapter 4. In fact a deviation of this problem will be what
is specifically needed, when we drop the assumption that we have concurrent rays. Being
able to speak quantitatively of searching in non-concurrent rays will be important later on
and this nomenclature will serve to be useful throughout this paper. In environments with a
“star shaped” nature, this is the most useful approach. Although the theory will be extended
to handle cases homeomorphically [see B.5 for a definition] similar to star polygons, the
concepts will remain essentially the same.

Given that we have m rays, the order is not important since the names of any of the
rays are simple labels and can be permuted, so cyclical addressing is fine from 1,2, ... ,m.
Later in the case of non-concurrent rays will this issue come up again, since then, indeed,
the order of visitation will make a difference in the overall performance. Again we see that
in order to study the problem, we have the progress requirement that the function, f(%),

which relates how far to walk from the origin before the z — th turn is,
f@)=flEi—-—m)+1 Vi>1where f(—j) =0V0<j<m-—1 (2.15)

This has been coined by Baeza-Yates et al. [11] as generalized linear spiral search as pre-
sumably opposed to just spiral search, since the points we are interested in are the inter-
section points of the two sets in figure 1 and the actual spiral set which is the set of dotted
points forming the logarithmic spiral depicted. The generalized linear spiral search algo-

rithm is defined in a similar manner to the linear spiral search from equation 13 as the
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number of steps to walk before the :ith turn starting from the origin. It can be shown (see

[11] and appendix A.2) that,

f(i)=( m ) Vi> 1. (2.16)

m—1
will yield optimal performance. Thus we are instructed about what base to choose for the
denominator in the tell-tale function. In the point-in-a-line case (m = 2) we have f(i) = 2,
for the case of m = 5, for instance, we see that the function we should use is f(i) = (5/4)".
This comes naturally from the proof (see A.2), with a worst performance ratio of,

mm

1+2—
(m _ l)m—l

(for large m).

So equation 16 provides for us an online way to determine the optimal distance that
should be walked during this kind of search. Upon realizing that we are faced with some
number, M, of co-terminal rays to search and being at the common root, we can use M and
equation 16 to infer the search distance that will make our efforts most effective. This fact

will be called upon for our further generalization in chapter 4.
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CHAPTER 3

Rendezvous Strategies

Rendezvous strategies provide a scheme whereby two or more agents in a common envi-
ronment, and wishing to meet, can proceed in a manner that will result in an encounter.
Rendezvous can be cast as a classic two player, zero-sum game, and the resultant analysis
from game theory [36] can be useful for many restricted settings [1, 2, 4]. Rendezvous
between mobile robots in a real environment is more complex and requires graceful failure
routines for the continued operation of the robotic system. Such a system has been designed
and tested by Roy [62] and we have seen some of the details of that work in chapter 2.

In this chapter we consider the purely algorithmic solutions to the symmetric ren-
dezvous search problem in the plane. This will be an ideal formulation and will not ac-
commodate obstacles in the plane to interfere with the search. Handling the inclusion of
obstacles in the plane is certainly not a difficult modification but we do not need to accom-
modate obstacles to arrive the long term properties of the rendezvous strategies, which is

the goal.

1. Rendezvous Search in the Plane

We consider the case of 2 unit speed agents searching the plane for a single target. The

agents can sense a region in the plane in a disk about their position of radius, 7. We will
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assume that both agents adopt the same search strategy, so that without loss of generality,
we can perform analysis on the half-plane and a single agent.'

Following the advice of [11] we will adopt the appropriate model of spiral search as
the exploration strategy. In this circumstance, spiral search simplifies to walking concentric
circles of odd radius, so that the boundary of the sensed regions just touch. This leaves a
measure zero set unsearched so we are guaranteed to find the target if it lies within the

searched region. See figure | for an illustration of the search pattern.

m
g
R

FIGURE 3.1. The path traced by o, of concentric hemi-circles. The solid lines in-
dicate the path the actual robot will sweep and the dotted lines indicate the bound-
aries between points covered in consecutive sensing passes. The robot can sample
points a distance r from its physical location.

The family of rendezvous strategies that we will consider can be described as follows.
Every time our agent arrives back at the border of the half plane it has a choice to move back
to the origin to meet with the other agent, or continue to search the next level of its region.
We identify these alternative behaviors with an index o;. We will evaluate and analyze the
cost of the alternate behaviors and attempt to classify the family of strategies according to
the distances that they travel relative to one another. The distances that we will compare
will be the total distance traversed. Distance traversed will be the total distance traveled by

the agents, whether resulting in further search or in attempted rendezvous. Assuming unit

'The asymmetric case where each agent may adopt a different strategy is a future expansion of this analysis,
that would have to include the probability of failed rendezvous attempts in the cost function.
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speed agents, there is a directly proportional relationship between the distance traversed
and the time spent searching. These o;’s will be the strategies employed, which can now
be defined.

Let o; € S be the strategy that rendezvous is attempted upon every i-th arrival at the
search boundary. Let Z be the positive integers then rendezvous is attempted at border
encounters from the set, {Z \ Z;}, for strategy o;. Define 0. to be the strategy ensuing

from spiral search without rendezvous attempts (since {Z \ Z,, } = 0).

THEOREM 3.1 (Hemi-Planar Search Distance). Given sensor radius, r, the distance

traversed by a hemi-planar search strategy that does not attempt rendezvous is

(o ]

D(ox) = 2[21‘ + (26 — 1)mr]

=1
PROOF. The proof is a simple matter of adding the terms in the progression of the

different legs of the search.
Dox)=(r+mr+7r)+(r+3nr+r)+(r+5ar+7r)+(r+Tar+r)+---

=2r+nmr+2r+3nmr+2r+5ar+2r+7nr+--- G.1)

oC

=Y "[2r + (2i — 1)7r]

=l

O

Clearly this distance is infinite, since o, never attempts to rendezvous. The family of
0, © € Z are defined by the frequency that they attempt rendezvous at. For the strategy
o3 for instance, rendezvous would be attempted at the origin after searching for 3 turns
since the last rendezvous attempt. Rendezvous attempts require a walk back to the origin,
to check to see if another agent is there waiting for rendezvous, and a walk back to where

the search was abandoned. Only distance is considered here as a metric.

THEOREM 3.2 (Distance traversed during Rendezvous Search). Given sensor radius,
r, and a family of rendezvous search algorithms defined for searching the half-plane, o;,

that attempt rendezvous after every i-th turning point, the distance traveled after the n-th
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rendezvous attempt is

D(o;) = i(4ji - 2)r+ (25% — j%)7r

=1

PROOF. With the general pattern provided by equation 17 we can evaluate how each
of the search strategies performs in terms of the distance that it travels. We can easily go
ahead and enumerate the distance traversed by each strategy in the family, by applying
similar analysis. Note that the sum is chosen to reflect the distance traveled between ren-
dezvous attempts, breaking the infinite sum in this way will be useful when analyzing the
strategies according to rendezvous attempts and we can safely take the sum term-wise due
to the compactness ? of the plane. Yielding the sequence of distances walked at the n-th

rendezvous attempt,

D(oy) = (r+ar +r)+ (3r + 3nr + 3r) + (57 + 577 + 57)
+(Tr+7rr+7r)+---

=2r+nr+6r+37rr+10r +57r + 14r + 77r + - -+

= Z[(4z —2)r + (2i — 1)7r]

=1

D(oy) =(r+ar+2r +3nr + 3r) + (br + 57ar +2r + 7ar + 7r) + (9r + - - -

=6r +4rr+ 14r + 2%+ - - -

n

=Y [(8i — 2)r + (8i — 4)rr]

=1

because we are working over a compact domain, we are assured that convergent infinite sums will converge
to the same point regardless of how we group the terms of the sum. Addition is associative on convergent
series on compact domains.
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D(o3) = (r + 7 + 2r + 371 + 2r + 571 + 57)
+(Tr+Tar +2r+97r + 2r + 1lar + 11r) + - -

=10r +9nr + 22r + 277 + - - -

= i: [(12i — 2)r + (18 — 9)7r]

=1

D(o;) = Y _(4ji — 2)r + (2% — j%)nr (3.2)

=1

Splitting the sums up in this fashion allows us to see the pattern that evolves by the
members on each of the respective rendezvous attempts. The pattern that evolves is intu-
itive enough since for each member the distance, traveled between rendezvous iterations
consecutive odd traversals of hemi-circles, followed by the trip to the origin. This accounts
for the terms in equation 18, the 77 term for the exploration trips, and the 7 term accounting
for the rendezvous trips.

Now we can characterize the distance that is wasted, D,,, performing rendezvous by
taking the difference of equation 18 and equation 17 resulting in the extra distance traveled
at each iteration. This wasted distance is distance that would not be traversed by a lone
searcher, or by independent searchers in independent environments with no concern for
rendezvous. D, is simply a measure of the extra work that is being done to coordinate
the efforts of the agents. This is the largest part of the inefficiency introduced by the
parallelization of work. This stowdown due to parallelization is quantified according to

Amdahls Law [37] of which a variation will be used to study the necessary inefficiency
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introduced in the parallelization of work.

Dy(0; ~ 0c) = 3 _ (471 — 2)r + (2% — )77 — D 2r+ (2~ 1)rr
=1 =]
(3.3)

n
= Z 4jir ,Vj
i=1
If this is the accumulated distance that we waste at each iteration then our opportunity
cost is searching this far into the next level of the exploration. So what is our expected gain

from further search? It is the area, A, that we will see on the next iteration of the search

strategy. This is easy enough to figure out: it is the area given by the 77 term in equation 18.

THEOREM 3.3 (Hemi-Planar Search Area). Given sensor radius, r, the area, A, swept

in the half plane by the o ;-th rendezvous search algorithm after the n-th rendezvous attempt
is
A(oj) = Z(2J'2i - j)mr
i=]

PROOF. The proof proceeds in a similar fashion as theorem 3.2, first enumerating the

stzps for each strategy, we collect the terms into a closed form and extrapolate.

A(gy) =7 ((m) + 37) + (5m) + (Tm) + - -)
= i:(?i — 1)nr

Algy) =r (7 +3m) + (b +7m) +---)
= i(& — 4)r

i=1

A(os) =7 ((m+ 37+ 57) + (Tm + 9 + 117) + - - )

= Z(ISZ' —9)7r
i=1
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A(g;) =D (25% — j*)wr 34
=1
O

Then from equation 21 we see that what we expect to gain is area of the next iteration
of search for our strategy, o;. This is in inverse proportion to the accumulated distance that

we have walked for rendezvous purposes. That proportion is what we need to understand.

Ez(gain from search) __ Area next Level
Cost(rendezvous) Dy(o; — 0x)

_ (@Pn— )

S 4ji
_ (27’ — )
- 4j(n2-n)

2

from (20),(19)
(3.5)

_ (2°n -7

©2jn? —2jn
The gain from search refers to the area that can potentially be gained by choosing to
search further at the next turning point. The cost of rendezvous is the distance that we have
to cover, of already visited territory, to attempt a rendezvous with another agent. Both of

these factors are explicit and simply refer to the distance traversed by the agent.

The function illustrated in figure 2 shows the shape of the behaviour of choosing in-
creasingly large search strategies. The height of the function gives an indication of the time
wasted by our chosen search strategy relative to o. It makes sense to have strategies of
j < 1, which would correspond to not exploring the entire semi-circle before returning to
the rendezvous origin, perhaps in circumstance where the sensing region was very large

relative to the speed moved, v < R.

2. A Competitive Ratio Examination

Assuming that we know the distance to the target for multiple agent search it is easy

enough to derive the formula for the distance traveled for each search strategy employed.
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Rendezvous Iteration

FIGURE 3.2. The Quantitative Performance prescribed by equation 21 of explo-
ration versus rendezvous overhead.

If the distance is known to be d, the sensor radius 7, then number of rendezvous attempts
made will have to be [ %] for strategy o;, where [-] is the integer ceiling operator. Then
the distance traveled by each strategy, Dy(o;) is given by

47

Dy(o;) = _(4ij — 2)r + (26 — 1)mj*r  (from 18)

=1

2] (o[-

and the resulting curve is plotted, for example d = 10, in figure 3.

Of course the competitive ratio that we are examining here is in comparison to the
distance traveled by an omniscient agent that simply walks to the target and back to the
rendezvous location, for distance of 2d.

_ Da(a;)

CR 5d



3.3 BOUNDED DISTANCES

L]
x 10

Sesrch Strategy Index

FIGURE 3.3. A plot of distances walked by the different strategies for a target at
distance, d = 10. Here r = 1. Note: the curve is monotonically increasing to the
right after o19. The graph is layered by search strategies. d = 10 was chosen to
compare the growth of the various strategies without occlusion.

3. Bounded Distances

If d can occur equally likely in the discrete range [1..D] then we have a uniform distri-
bution on the probability of D, = d with an upper bound of D. So

1
T D+1

Pr{Dg, = d) on [0..D]

and figure 3 shows that the minimum distance traveled occurs for strategy j = d. What

strategy is now our best? That follows from

1 D
j=5/0 zdz
2D

easily enough.
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The general case is found by integrating over the probability distribution on the region?

if we assume a uniform distribution over the surface area. This case can be arrived at by

j= / Pr(z) -zdz
§D

where 4 D is the boundary of the enclosing space.

4. Summary

From equation 21 we have calculated the payoff schedule for the different rendezvous
strategies. The quantitative results are shown in figure 2. The qualitative payoff schedule
allow the development of an intuition for what the different strategies really provide during
planar search.

The result of quantifying the progression of the search allows for the development of
the competitive ratio of the performance of each strategy to that of an omniscient searcher
with ideal search behaviour. A plot of the efficiency of each of the rendezvous strategies is
shown in figure 3.

Section 3 details how the analysis can be modified to relax the restriction that the
distance to the target is known. With this relaxation we assume a uniform probability over
the bounded region for the search and show the necessary resulting modifications. It makes
no sense to allow D — oo and to speak of average performance with uniform distribution
over an infinite range. Simply enough Pr(D; = d) = limp_.(5) — 0 and there is no
chance of finding the target by any scheme.

Much of the previous analysis has been motivated by Alpern’s work as the result of
both private communication in the winter and spring of 1998 and through various publi-
cations such as [1, 2, 4]. Also the important consideration of Anderson [S, 7, 6] and the
original works by Gal [36] and Schelling [65] should be noted.

Having developed our intuition now for planar search, we turn our attention to extend-
ing the theory that we have seen for searching the plane into a more general scheme that we

3The distribution of distances in some case, say a room, will be the distribution of distances from the agent
to the points on the walls in the region. This is opposed to the simple concentric enclosure that this model
assumes.
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can actually use on a functional robotic system. This adaptation from theory to application

is the topic of the next chapter.
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CHAPTER 4

Efficient Search in Real Environments

We have seen in section 2.2 several examples of optimal search results for planar search
with various sorts of a priori knowledge about the environment. The setting that will be of
particular interest is for a mobile robot in a somewhat less contrived environment. Given
the concern that physical motion is the most expensive operation for a mobile agent in
terms of time we would like to design a system for efficient exploration.

The model for searching in an environment of concurrent rays will serve as a start-
ing point for building a functional system to deal with the task of searching in practical
environments. To map the interior of a building or perhaps set of roadways for a mobile
agent is desirable functionality. From experience we see that rarely will such structured
environments have more than 4 concurrent rays at an intersection. Despite that even having
the ability to search 4 concurrent rays is insufficient. More commonly we will find that en-
vironments will not only have “concurrent ray” subproblems but that they will in addition
have hierarchies of these subproblems. This issue of hierarchical concurrent paths will be
dealt with in section 1.

The problem of search in an unknown planar environment has been addressed in the
literature to some extent. The work of Anderson and Fakete {S, 7] refers to this class
of problems as lawn-mower search problems. The idea being that to scour an environment
with a sensor and overlap as little as possible the path that has already been traced. It is of no

use to cover the same ground twice with a lawn-mower and hence is inefficient. Chapter 3
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addresses a similar issue to the lawn-mower problem in an unconstrained environment with
multiple agents assisting one another as a study of pure efficiency.

In constrained environments finding an optimal solution to the lawn-mower problem
is a problem worthy of study. However a map is required of the environment before any
calculation can begin. If the environment is unknown, then the issue is simply to explore
the environment in an efficient manner. In order to extend the capabilities afforded by

concurrent search, let us consider searching non-concurrent rays.

1. Searching Non-Concurrently Branched Environments

Demanding that we can examine concurrent rays is still too simplistic in practice. In
the structured world that we would like to be able to cope with the techniques studied
in chapter 2 are insufficient. Useful are the techniques that the theory provides for us,
however adaptation and extension are going to be required for functional use in desired
environments.

Concurrency of the search rays is a specification to simplify the theory, however we
would like to relax this condition to be able to perform well in more robust environments.
Figure 1 gives some indication of what sort of relaxation we are asking for. We will intro-

duce the notion of non-concurrent rays.

DEFINITION 4.1 (Non-Concurrent Branches). Given a tree T(V, E) of vertices (v €
V') and edges (e € E) between vertices and the tree being rooted at a vertex r 3r € N

called the root vertex, we say that T is a branched tree emanating from r .

Our desire is to evolve a system based on what we know about the optimality conditions
present during concurrent path searching and build them into an heuristic that can cope with
this more robust setting.

One of the features that makes searching non-concurrent paths different from concur-
rent paths in a fundamental way is that there is no way of knowing the branching factor

before beginning. The breadth of the search tree is unknown to start with. In order to not
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) 95

(a) (b)

FIGURE 4.1. Examples of environments depicting concurrent [co-terminal] (a)

and non-concurrent (b) branching. See definitions 2.1 and 4.1 respectively.
restrict the system to particular environments an online solution for this problem has been
developed.

In section 2.4 of chapter 2 we find a description of how to search in concurrent rays in

equation 16. Given that we know M, the number of separate rays, we know the distance to
walk down the i-th ray is given by

. M\ .
f@@) = (M — 1) Vi> 1. 4.1)

The case of non-concurrent rays poses the issue of discovering new rays during the search.
The solution to cope with this is to allow M to change dynamically as the exploration
progresses. M is therefore allowed to increase and decrease as information about the map
is learned, as branches are detected and terminate, the search must continues on the rest of
the graph (there is no longer a need to search again on the terminated ray). There is another
way that M may decrease, in environments where intersection between the paths is allowed,
in cyclic environments, M decreases as paths merge, as well as terminate. This case will
be discussed later, for now we will assume that we are working on acyclic environments.
For searching in branching environments we keep track of the number of active [un-
terminated] branches, M, in the known environment and recalculate 22 as these updates
M occur. This is the key modification that we need to extend the theory from searching
concurrent rays to searching in branching environments. Using this method to deal with
the expansion of the search, the expectation is that we are doing as well as possible with

the knowledge we have.
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Most importantly we are keeping with the underlying theme that we have seen devel-
oped in chapter 2. By recalculating the distances for the i—th turning point from equation
22 in a dynamic way, we maintain the spiral nature of the search. It’s this underlying de-
pendence on the spiral growth of the iterative deepening nature of the search algorithm that

will provide the efficiency of this brand of search.

2. Trees of Non-Concurrent Search Paths

Distance will be measured as path distance from the origin to the current position.
We will define path distance to be the distance traveled along the shortest known path yet
traversed that joins the two points. In the case of acyclic environments there is no ambiguity
in this value. In environments that contain cycles, it is important that we choose the shortest
of the possible paths for uniqueness [see B.6).

In an tree structure it is sufficient to know only where the branches occur to have
complete knowledge of the path structure. Branches are defined by the point at which
they branch. The ability to reference the branch points together with knowledge about
the preceding branch point is sufficient to allow deterministic navigation of the tree. Only
very coarse sensoral information is necessary to be able to distinguish the possible courses
available from a particular branch point.

The branch points in the tree will be referred to equally as reference points, since they
serve to index the tree structure. Some notation often used for referring to tree structures

are parent branches and child branches.

DEFINITION 4.2 (Tree Notation). A tree is a graph in which every node has at most a
single unique parent. This ensures that there is a well-defined route to each branch. Such
a structure is known in graph theory as a rooted DAG (directed acyclic graph).

A cyclic graph is a graph G(V, E) in which there is a path (vo, v, ..., ur) such that
Y9 = U and vg, Uy, - . ., Ui are distinct {21). In a directed graph this can mean that there
are several paths possible to arrive at a given vertex. This has the general implication that

there are multiple paths between two points in the graph.
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4.2 TREES OF NON-CONCURRENT SEARCH PATHS

If q is a branch in a tree structure such that q is a branch off of a branch p (closer to
the root) and r is a branch off of q (farther away from the root of the tree than q) then we

say that the parent(q) < p, and the child(q) D r.

Navigation within cyclic enviro.iments is functionally more difficult with mobile robots
than trees [rooted DAGs]. The trouble lies in determining whether or not, upon arriving at
a new branching point, the same location has been previously discovered along a different
route. This determination requtres answering the problem “Have I been here before”, the
localization problem. Techniques in mobile robotics to perform this global position asser-
tion depend on unreliable and limited sensors and are unstable. Localization techniques
are contested in their own right, and although much progress has been made in this field
[63, 25, 26, 32, 53] localization of sufficient resolution necessary to resolve path cycling
issues can be difficult to attain.

For our purposes cycle detection is resolved by using odometric data together with
“sonar signatures” of branch points. Sonar signatures are dense sonar samples taken at
branch points and stored in order to try to identify that point uniquely at some later time.
Instabilities are produced in performance on cyclic graphs by both failure to recognize
arrival at previously visited location, and by false positive identification. False positive
identification occurs when a new location is identified as being a previously visited one,
wrongly. Either of these failures are very difficult to cope with, as they seriously effect the
topology of the resulting map.

This perspective of our environment allows us to make the critical transition from graph
theory to a robotic search algorithm. We induce a unique topology on a map with a given
starting point according to where and when we detect branches in the environment. At
any given branch point in the expanding search we have the beginning of two arms of the
search. These are are topologically related to their parent arm with the root of the search
tree being the origin of the search.

An isomorphism is thus defined between a robot searching in a map, and a topological
tree. It makes sense for us to apply our algorithms on the space of this search tree, whether

DFS, BFS or our spiral search approach. Due to the induced isomorphism, we have a means
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to translate the information back from the topological tree to the actual robot performing the
search to optimize the progression of that search in a dynamic manner. We can exploit the
algorithms that work on topological structures to guide our search through the real world
by way of this isomorphism. The notions of breath- and depth-first search well known in

graph theory take on practical real-world analogues.

3. Summary

This chapter details the necessary extensions from the optimal concepts revealed in
chapter 2 to an efficient search algorithm defined over a relaxed domain. We need less
restrictions on the type of domains over which we can apply the spiral search concepts.
This will result in an algorithm that we can still quantitatively study, but yet is capable of
performing in a real environment.

The means by which the extension from theory to application is done is by allowing for
dynamic updates to the search parameters as information is gained about the environment.
These dynamic updates are the key feature, but the search algorithm is a graph theoretic
construct and so we need to interpret the real world as a graph. Hence the second important
feature is the way in which we induce a topology on the search environment.

Given an branched environment, a starting point and a search algorithm there is a
unique way to perceive the environment as a tree consisting of vertices and edges with the
branches occurring in the order the search algorithm discovers them. This isomorphism
between the search environment and it’s underlying topology give us a means to apply the
search algorithms by mapping the perceived environment to the dynamically updating tree,
applying the search algorithm in order to determine the next step in the search and then
mapping that decision back to the perceived environment as a decision in the progression
of the search.

Now, having designed a method that should be applicable in real environments and we
have predictions from the theory on the expected efficiency of that algorithm, we can go
on to test the predictions. In the next chapter we will define the experiment that will be

performed and some of the dependent and independent variables. Care has been taken to
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ensure that the experimentation will give correct results regarding the desired measurable
quantities.

The perception of an isomorphism from the real environment of the robot to the topo-
logical structure of a rooted DAG allows a deterministic search through real environments.
Chapters 5 and 6 will make thorough use of this relationship to match real-world behaviour

to an algorithmically stable analogue.

54



CHAPTER 5§

Experimental Method

Experiments to perform automatic exploration of unknown environments have been made
to study the differences that various methods of search provide. Search is being performed
using depth-first, breadth-first and our own spiral search algorithms. These searches are
performed on a series of maps, some automatically generated, and some manually gener-
ated.

The robotic control technique is identical for the three different search algorithms, save
for the steps explicitly related to choosing nodes within the underlying topological search
tree. This fact ensures that the only differences in the performance of the search algorithms
are explicitly due to the nature of the search algorithms and not some affect implicitly
related to the systematic control of the robots.

Discussion of the robotic control system that may have any bearing on the dependent
experimental variables follows in the subsequent sections. The issues related to the genera-
tion of the maps for the experimentation are addressed. The choice of the size of ihc maps,
the relative size of the structures internal to the maps and details of the map generation
are some of the critical issues. Identification of some of the dependencies of any robotic
system will also be discussed. Mobile robotic systems in general have a certain complex-
ity and some of the unique problems associated with mobile robots will be identified that
may have an affect of biasing experimental method. This factor partly justifies the use of

a simulator for the experimental trials in so much as it allows us to control the effect that
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real-world, noisy, error prone sensors may inflict on the experiment without treating these
reasonably sophisticated problems outside the scope of this study. Also, details of how
the exploration of the maps is performed are given. The methods for determining initial
parameters for the various search algorithms are outlined to dispell any possible subjective

bias in the experiments.

1. Map Generation

The search experiments to be done require a setting. There are several criteria that are

desired from the maps that are to be used in the experimentation.

e Absolute Size — The maps must be large enough and contain sufficient structure te
merit study.

e Relative Sizes — The overall size of the map with relation to the robot. The com-
parative sizes of structures in the map {hallway length, room size, corner angles,

e Structure — The design of the structures.

-~ Manually versus Automatic — Manual maps induce bias on the design (pur-
posefully or otherwise.) Automatic maps may induce some sort of implicit
bias into the experiments.

— Width of Hallways — Narrow hallways/doors may prevent entry of the robot
to a large part of the map.

- Branching Frequency — Determines in part the depth of the topological tree
related to the map. Search algorithms are very sensitive to perceived topolog-
ical changes.

~ Initial Pose — Serves as the root of the DAG. Small changes in starting posi-
tion may result in unprecedented changes in the topological representation of

a given map.
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The maps used to test the search algorithms have to be large enough to provide suffi-
cient variety and be of complex enough topology' to be able to tease apart the differences
in the performance of the various search algorithms. Depth-first search and breadth-first
search on a tree that is one level deep are identical. There is no point to even compare the
algorithms on trivial trees.

The relative size of the map to the robot and of the map to its structures is important.
Part of what is being studied is how the search algorithms perform according to time of
execution of a certain task. With unit speed agents, time is linearly proportional to distance
covered as long as the agents move continuously. So the relative distances in the map are
important. The critical factors are: the scale of the map (relative to the size of the robot),
the relative sizes of structures in the map (two maps with the same topology may induce
different behaviours based on the relative sizes of the structures?) and of course, the actual
topological structure of the map.

The manually generated maps have been designed with some bias in mind to try to
illustrate pathological cases that may cause quantitative differences in the performance of
the various search algorithms. Automatically generated maps are used to try to provide
series of maps free from human bias to acquire more statistically valid results.

For the experimentation a large series of maps are used. Some of the smaller maps are
hand drawn with purposeful intent to generate pathological behaviour in the algorithms.
The larger maps have been created automatically in a semi-random fashion. The automati-
cally generated maps have several key requisite properties. The topology of the connections
in a map of the “hallways” from the perspective of the search algorithm is the important
criteria. These “hallways” need not be much wider than the robot itself, an aspect of 3-5
times the diameter of the robot is sufficient for our purposes. The frequency that branches
occur at are more critical and independent for this study of the way in which a “room” is

actually searched. It is the large scale behaviour that we are interested in. The lengths of

!'The topology of a map refers to the way that the structures in that map are connected to each other. Shape,
size and distance are not our concern when we speak of the topology of a map, only the way in which the
structures are interconnected. Tree diagrams are useful to convey topoiogical information.

2There is a good example of this effect in section 6.4.
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the hallways are also important as the underlying metric that is used in the spiral search
algorithm is dependent on distance. Also the choice of the initial pose in a map affects the
performance of the algorithms on that map. This effect is directly related to the topologi-
cal layout that the robotic searcher perceives. With these concerns in mind the automatic
generation of maps can be described.

The map generation is performed in the following manner. A regular square grid is cre-
ated with the total size of the grid and the resolution of the grid pattern being parameters.
These serve to address the issues of scale and the “radius” properties of the hallways. In or-
der to create various maps from these similar initial conditions, the grid intersection points
are then randomly?® and independently displaced from their grid coordinate. A Delaunay
triangulation is then performed on the displaced grid points creating a series of planar tri-
angulations that differ from each other, maintaining still some sense of scale and radius.
From one corner of the triangulated environment edges are recursively removed to create
“runs” through the triangulation. From the interior of these “runs” edges are progressively
removed in a pseudo-random manner to create progressions of branching “hallways™ with
the desired properties. Care is taken during this thinning not to join separate hallways. This
has the effect of not creating cycles in the graph, although this is not a requirement for the
search algorithms it is a requirement to ensure stable map generation. Boundary edges are
not removed during this thinning since the condition of bounded maps is a requirement,
especially for depth-first search, to ensure termination of the experiments.

The resulting maps from edge thinning of the Delaunay triangulation of irregular grids
have roughly the desired requisite properties. This method facilitates the generation of a
test bed of experimental environments with the appropriate properties to differentiate the

performance of the various search algorithms.

3Using a pseudo-random number generator. Which, of course, is not purely random, but serves our purposes.
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FIGURE 5.2. These are the rest of the randomly generated maps. These maps are
larger than the previous ones being roughly 30 meters a side. The robot was started
arbitrarily in the bottom left hand conmer of the maps.
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5.2 EXPERIMENTAL DEPENDENCIES

2. Experimental Dependencies

The field of mobile robotics faces a host of difficult problems that need to be addressed
in any functional robotic system. It is not our intention to solve each of these problems
using the most sophisticated methods available®. Critically addressing each of the problems
in turn would both cause intractability of the system and would distract attention from the
problem at hand; the performance of search algorithms in robust environments.

Some of the well known problems in mobile robotics that are tractable, but difficult
in their own right, that have direct affect on this set of experiments and have had to be
addressed are as follows. Odometric drift and the accumulation of error between perceived
and real movement and how to compensate for that error is an ongoing research problem
in the field [§9, 60]. The creation of internal representations of the environment for future
reference are critically dependent on the details of the sensor used, and the representation
of that data. Attempts to be able to reuse this acquired information require some flexibility
in interpretation of current data relative to existing knowledge in order to be useful. In
particular, noise and error in odometric readings serve to create divergences between per-
ceived and real position for a mobile agent. Also reliability and repeatability is a major
concern for any kind of active sensor. Work on these and related problems is common in
the field [24, 23, 66, 54, 47]. Again noise, error in the sensor itself and the action of sensing
the environment serve to create divergences between real and perceived images. Low res-
olution sonar is very susceptible to many distorting effects, some are well understood and
some not. Despite these shortcomings, sonar has been judged to be a sufficient guidance
mechanism for the purposes that we require. Such factors are anathema to the progress of
the field of robotics. Particular in this work the development of robust systems that are able
to function on real robots in real environments is equally inhibiting.

Dead reckoning from raw odometric data is a very easy method with which to attempt
robotic navigation. In the interest of the problem at hand, some dependence on such infor-

mation is being used. Efforts have been made to absolutely minimize the dependence of

*For a brief discussion of how the various techniques of mobile robotics blend together and constructively
and destructively interfere in robotics research integration see [45].
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the algorithm itself on odometric information. In fact at no time during the exploration of
unknown territory or within any of the search algorithms themselves is odometric informa-
tion used. The use of odometric estimation is used in the framework to facilitate motion
of the robot through the already explored, known environment. In this sense, the robotic
framework actually builds an odometric representation for the connectivity of the known
environment. It is referred to only for navigation between reference points in the known
map. Any method that can achieve this task can easily replace the use of odometric dead
reckoning in the experimental framework without affecting the manner in which search
is performed or without affecting the search algorithms themselves in any way other than
utility.

The reliance of the experimental system upon unstable and unpredictable elements
inherent in mobile robotics is minimal. Some amount of functionality is required to perform
the desired tasks and so the use of odometric data and sonar dependence is justified. Careful
thought has been given to avoid overt use of methods which are not easily upgradable and
yet prone to failure. These dependencies are flexibly bounded in terms of being able to
perform in the presence of error prone sensors and most importantly, these reliances are
modular enough to be easily replaced by different methods should the need arise. At present

they are sufficient for completion of the task at hand.

3. The Exploration Experiment

The experiments have been performed in simulation on a robotic system simulator.
The simulation system is fully capable of locally controlling a real robot with sensors. The
scaling of the experiment from simulation to an actual robot would be a trivial matter aside
from the difficulties discussed at the beginning of section 2. The simulation environment
allows for control over some non-trivial aspects of mobile robotics that are beyond the

scope of this study such as: sonar sensor interpretation and dynamic odometric correction.

The experiments begin with the robot coming online with the intention of exploring

the environment in which it finds itself. The robot begins with no information about the
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FIGURE 5.3. A possible scenario. The robot, indicated by the central dot, upon
waking knows nothing of the environment.

\‘\.‘..\,/‘

environment. Figure 3 will begin an illustration of the search progression. The initialization
the robot performs consists of taking a set of sonar samples and deciding on a “wall” to
move appropriately close to. The robot employs a wall-following technique to expiore
the environment. The distance that the robot finds itself from the wall that it approaches
initially is used to seed the robots decision of what a “unit” will be in the current metric.
This method of choosing a dynamically allocated metric unit is more appropriate than using
some arbitrary fixed metric in hopes that the initial surroundings of the robot may contain
some sort of global scale information that could potentially aid the search. If the robot finds
itself on a soccer playing field or in a partitioned office setting it is appropriate to let the
environment suggest some initial metric unit. The choice of step size has low-order effect
on the long term behaviour of the search algorithm although it does affect the performance
of any particular trial.

Based on the assignment of the metric unit, the robot then performs a circumnavigation
of the position that it has moved from. This circumnavigation is performed around a radius
of twice the unit metric chosen. The purpose of this exercise is to try and establish an
effective direction for the beginning of the exploration. This initialization is often enough to

determine that there are some or several directions to begin the exploration. Topologically
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FIGURE 5.4. The concentric rings indicate the bounds of the explored area when
the number of concurrent rays is increased. This occurs when an obstacle is en-
countered at a point in the middle of the exploration frontier within an area that
was presumed to be a single ray, ie at a ray bifurcation.

we have identified the root of the tree that will be used to guide our search algorithms and
perhaps may have acquired some information about the base of the search tree. Success
at this point to determine directions for the exploration is not necessary, but tends to be
the case especially considering that the initialization radius is dependent upon some rough
equivalence to the size of the room. In figure 4 the inner most enclosing circle would
be the seed to the determination of the unit metric distance. The circumnavigation after
initialization may have the robot map a distinct portion of the initial surroundings. In the
case of figure 4 the robot may perceive an exploration with four separate concurrent search

branches after this initialization stage.

At this point the exploration begins. The exploration is based on a wall following
method that uses the following logic. The number of “concurrent search rays” at this point
is zero of greater. Until there are at least two branches to search there are no decisions to
make. The number of branches at any given time is dynamic and completely dependent on
the exact nature of the map, the search algorithm and the starting point of the experiment.

Figure 4 serves to illustrate this point further, as the search progresses beyond initialization
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and down the independent branches some of the branches terminate, and some are seen to
branch further. This impacts the distance down a branch that we will search according to
the theoretical optimal search ratio laid out in section 16 of f(i) = (m—”_‘i)‘ .

We are assuming that we are in an environment that has some sort of assignable topo-
logical structure. Given this assumption breadth and depth first search are already satisfi-
able. Spiral search, as is indicated in equation 16, requires the further assumptions to hold:
That there is a branching structure that will drive the number of concurrent search branches
to greater than two’ and that we have some method whereby to determine the distance that
we have traveled along a path from the origin. This second requirement is not tied neces-
sarily to metric distance per se and any Lyapunov potential function [see definition: B.8]
can serve this purpose equally well.

As we progress through the environment, we see where the increments take place in
figure 4. These are labelled in the diagram for clarity albeit incorrectly. They are incorrect
in reality since decrements also occur when rays of the search have been exhausted®. There
is another issue present here that will be addressed and that is these rays are not in fact
concurrent. The rays do not emanate from a common point.

This outlines an algorithm for extending the frontier of our search through a real envi-
ronment. In the circumstance of concurrent rays the algorithm is designed to take advantage
of what is known to be optimal behaviour in more restricted environments where quantita-
tive evaluation is possible. The critical perception of an equivalence between the real world
and the theoretical graph construct shown in chapter 4 allows for the adoption of an efficient
approach to planar search in this more qualitative setting of real world structure. We have
a method to adapt it to the non-concurrent situation in a manner made yet more explicit in

chapter 6 section 3, in order to guide us in expanding our knowledge of the environment in

a locality-centric manner.

>This excludes the degenerate case; the search will still proceed in such an environment, but there will be no

“spiral” nature to the search.

®For instance the lower left region would certainly have been completely explored before the M = 5 vertex
would be discovered and hence would have resulted in removal from the list of open rays to explore along
with a decrement in the number of rays. So that by the time the M = 5 vertex is discovered there will actually
be at most 3 active search rays, however this is a pedantic issue.
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4. Exploration of Unknown Territory

When searching unexplored territory an alternating method of wall-following is used.
By following the left wall for some distance then moving to the right wall and following
it for a some distance, the search progresses into unknown territory in a reliable and safe
way, while still being able to detect branches in the hallway. Only local sonar scans are
used for this purpose and metric information is only utilized over a short range to minimize

the accumulation of odometric error.
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FIGURE 5.5. Exploration of unknown territory. By extending left and right
searches along the walls, branches are easily detected while crossing. Detection
occurs between the second and third plates.

A progression of exploration down a branch is shown in figure 5. The robot has only
sonar range information about the location of the walls. By following the left and right
walls alternately, exploration progresses. Between the first and second plates of figure
5 the robot has switched from the left to the right side for wall-following. Between the
second and third plates a new branch in the search has been detected. This series features a
depth-first searcher, hence the search continues on deeper at every opportunity. The fourth
plate shows the completely searched branch and the robot resuming search in a depth first

manner into unexplored territory.
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Continuation of the exploration cycle ensure complete coverage of the map. With
depth-first search, the robot moves through explored previously explored territory only
when necessary; when termination of a branch forces traversal to a parent node. With
breadth-first search the robot never searches into unexplored territory until all nodes at the
current search depth have been explored. With spiral search, the decision of when to switch
between branches in the topological search tree representing is a little more sophisticated.
In the next chapter results on the relative performance of the three search algorithms will

be presented and the advantages of spiral search will become clear.

S. Summary

Efforts have been taken to perform a set of experiments that will show the qualitative
differences between a variety of search algorithms for automatic robotic exploration. To
insure the accuracy of these experiments many of the dependent factors have been isolated.
However, some factors are beyond easy control. Such factors that may affect the experiment
have been identified and discussed.

The generation of the series of maps over which the experiments take place has been
explained. The map generation has been done in a way to hopefully qualitatively sepa-
rate the performance qualities of the different algorithms in an unbiased and statistically
significant manner. Issues of map size, structure and topological representation have been
carefully considered.

The modeling of sonar data and the accurate use of odometric information for large
scale maneuvering within a real environment are difficult unreliable tasks. It is not the pur-
pose of this thesis to address these issues in a rigorous way and the use of the simulator to
control only those aspects which are otherwise not part of the dependent experimentation.

The maps that are loaded into the simulator have been “randomly” generated to have
certain properties while not providing any heuristic advantages to the system. Some of the
desired properties are the scale relative to the robot, the underlying topology of the map,
the relative sizes and distances within the map of its constituent structures and that there is

an “inside” to the map, that it is bounded for termination of each of the search algorithms.
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5.5 SUMMARY

Experimental methodology has been carefully explained. Both in the important sense
of how the global search progresses in unknown environments and in the sense of how local
exploration is performed within a branch of the search tree.

Having been assured of the validity of the experimental underpinnings we can progress
to the results of the actual experimentation. The next chapter will reveal our findings and
verify our initial presumptions of the efficacy of the spiral search technique on a real robotic
system. These results have been predicted by the theory on planar search in highly con-
strained theoretical settings and are shown to scale to good worst-case behaviour in a real

robotic system.
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CHAPTER 6

Experimental Verification

Analysis of the performance of the search methods that have been the focus of this work
will be shown here. The more traditional methods of search are contrasted against the per-
formance of search being performed using an implementation of the spiral search technique
that has been described. The setting for the experiments consists of a series of manually

and randomly generated floor map models consisting of interconnected hallways'.

1. Data Presentation

The analysis is presented using two types of measure for each map: The first graph for
each map will indicate the time of discovery for a large number of points in each map. This
will be referred to as the point discovery series. We assume unit speed agents in each of
the experiments, so the time that a point is discovered is linearly proportional to the total
distance traveled by the robot when that point is first visited.

To make sensible comparisons, the time of discovery plots order the points according
to depth-first discovery. DFS search in these experiments tended to have the lowest average
discovery time per point. The points chosen for the plots are points common to each of the
different search algorithms corresponding to a monotonic depth-first ordering.

The second series of plots show the time taken to discover all points at a given distance

from the starting point. This series will be referred to as the all-points time discovery series.

'These definitions are loosely used only to suggest that the search occurs in environments rich enough to
encapsulate what are often referred to as office-like environments in mobile robotics literature.



6.2 UNDERLYING OBSERVATIONS

The time depicted is the time taken to discover the last point that is at most a given distance
from the origin of search. This number is generated by taking the set of all discovered points
in a map together with the time that each is discovered and then dividing the points into
bins. These bins are relative to the size of the individual maps. We have arbitrarily chosen
to subdivide the maps into 10 bins each. Thus each bin contains points that lie within 10
percentile ranges of the longest path in the map. None of the maps used had a topological
representation with a tree depth of more than 10 so this arbitrary choice of segmentation is
of sufficient resolution to capture any qualitative differences in the algorithms.

For the point discovery series we know from the theory that in acyclic bounded graphs
depth-first search will minimize the total distance [or time] for the graph. This is certainly
expected and clearly holds true in the experiments as the mean discovery time for the DFS
algorithm is seen to be consistently lowest.

For the all-points discovery series the results will be discussed on a map by map basis.
This measure is interesting as it indicates the worst-case time taken to discover any point
in the map given its distance from the search origin. It is this worst-case behavior that this
thesis was intended to address. Spiral search should provide good worst-case results for
discovering points a given distance from the origin. Using the analogy of searching for a
lost set of keys without being certain of the distance they lie from where they were assumed
to be, then spiral search should provide a least cost approach to the search. The results
from these sets of experiments reinforce our belief that spiral search achieves this primary
objective. It is worth noting that the experiments show the all-points discovery time taken
over a global maximum of search distance. This is important and perhaps counter-intuitive,
even though spiral search takes significantly longer to find some points, the worst-case time
of discovery is significantly lower than depth or breadth first search on a large category of

interesting maps.

2. Underlying Observations

The nature of the “logarithmic spiral” search pattern should not be misunderstood. The

spiral nature of search is not readily evident during the actual search. Nothing in the search
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6.2 UNDERLYING OBSERVATIONS

itself seems to obviously display any spiral properties. The only use of spiral curves is in
choosing the points during which the search is advanced to search other rays of the already

known map.

Z_ /) L

~—

FIGURE 6.1. The nature of the underlying spiral guiding the search progression.
The dots represent the turning points chosen while performing spiral search on this
map.

Figure 1 shows a typical map with the turning points of spiral search depicted by dots
and joined in order of occurrence. During the search, these points signify places where the
search algorithm signalled the robot to abandon search and continue down another node
in the underlying search tree. By joining the points it is hoped that some feel for how the
spiral nature of the search development actually relates to the physical map.

Turning points are selected by their distance from the origin of the search. That dis-
tance is measured within the map, as the shortest path from the origin that the robot has
taken to its current position. The number of branches that the robot will encounter during
its search changes dynamically as the search progresses based on the robots current percep-
tion of the known map. The unit step distance is initialized to be roughly the width of the

hallway/room in which the robot finds itself to begin. To recall from equation 16 both the
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unit step distance and the number of branches factor into the calculation of the next search
distance.

The choice of the metric is independent from the the large scale behaviour of spiral
search. Hence, use of some other metric may admit a different evaluation of cost during the
search while maintaining the benefits gained from a spiral search approach. Any potential
field may equally serve to drive the selection of the turning points. This is due to the unique
fact that the family of logarithmic spirals are invariant under rotation and dilatation in the
plane. As long as the function chosen to drive the search is 2 Lyapunov? function, then we
are guaranteed that spiral search will behave with the worst case behavior that we seek. This
makes spiral search a candidate for use in various other domains than just planar search.
Search in higher dimensions [i.e. underwater or outer space settings] or search driven by
different potential fields. Robotic application areas where this may be useful could range
from volcanic exploration, where a temperature gradient potential field might be seen to be
important, or nuclear reactor exploration where there may exist radiation gradients to drive

the search as a potential field.

3. The Test Bed

A battery of experiments have been performed using variations in the search methods
to determine the performance of these algorithms relative to each other in actual settings.
Many different maps have been used in the generation of the data. For each experiment the
map and the starting pose of the robot was identical. The different algorithms tested are

variations to a depth-first search, a breadth-first search and spiral-search approaches.

Several examples each of a series of iterations of rounds of the experimental procedure
follow. These figures show stepwise progression by one of the algorithms in question
in an experiment on a hand drawn, pre-constructed map [seen in figure 2] representing

perhaps a set of hallways in a building. Whereas one of our test robots has a diameter of

2see B.8 for a definition
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FIGURE 6.2. One of the simplest maps used for simulation testing.

50 centimeters, the relative size of the map would be roughly 25 meters. This is the rough

scale of the environment to the robot used for most of the experiments.

FIGURE 6.3. The robot at the end of the first iteration of search, f(1). Search
depth is not logged until the robot determines that there is more than one possible
branch to explore, i.e. A/ > 1 [M from equation 16].

Figures 3 - 5 indicate the progress of the simulated robot at the end of each successive
spiral iteration. The extent of this map is not so large that a second cycle results in complete
traversal of the environment. This series is intended to indicate the nature of the progression

of the algorithm in simulation. The algorithms run similarly on all of the maps.
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FIGURE 6.4. The robot depicted at the end of the second iteration, f(2). The
search will continue down the next unexplored branch in order to maintain spiral
growth in explored area in a branch-wise sense.

FIGURE 6.5. The explored area in the map after the third iteration, f(3) steps
down the third ray. f(4) will prove large enough to finish exploring each of the
branches completely before another spiral iteration is required.

74



. 6.3 THE TEST BED

The spiral nature of the search algorithm is again suggested by the progression of the
robot down each of the branches of the map. This is gives some perspective as to how

figure 1 was generated.

FIGURE 6.6. This series illustrates a run by the breadth first search progression.

A series of steps along the breadth-first search of a different map shown in figure 6 con-
trasts that of figures 3 - 5. The robot is seen to perform a branch switch every time there is
a new level of branch discovered. Again this is based on the interpretation that branches in
the real world correspond to vertices in the topological representation mentioned in chapter
4. BFS still corresponds to the traditional use from graph theory, where all cousin vertices

. are visited before any child vertices by this correspondence. This kind of behaviour will be
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seen to fail to be very useful in a performance sense. An intuition for why the performance
in this case may be developed by gained by perceiving that the number of branch switches
grows in linear proportion to the number of edges in the topological representation for a
map. This is a scale independent measure. Recognizing that breadth first search does not
scale with the map should give us some intuition for why the constant factor overhead of
branch switching will result in unimpressive search performance.

The experiments are run on a variety of hand drawn and randomly generated maps.
The results from each map are compiled and offer a large enough range and variety in
findings that any qualitative performance observations that are made will accord closely to

real performance of the algorithm.

4. The Experimental Results

Experimental trials verify the original postulate that spiral search has better worst-
case search performance than either depth- or breadth-first search. Spiral search does not
perform best in every case. Dependency on the robots starting point in a given map and
the underlying topology of the map is clearly factor into overall performance. Interesting
combinations of these factors directly from the experimental results will be addressed in
the discussion of the experimental findings.

Both time of discovery and all-points time discovery plots will be shown for all of the
experiments discussed. To reiterate, the conclusions that we expect to discover from the
theory are that in bounded acyclic maps, depth-first search should explore the maps with
minimum re-traversal of discovered area, resulting in a low average discovery time on a
pose-per-pose basis. The second result that the theory should predict is that spiral search
will perform better while attempting to discover all points that lie within a given radius of
the starting point. To see how these two expectations fare under actual experimentation on
a robust robotic system results are presented in our time of discovery and all-points time

discovery plots to respectively uncover the desired trends.
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FIGURE 6.7. These experimental results from an unbranched “hallway” type map.
These results would suggest an approach to looking for a light switch in a darkened

hallway.

The first experimental results, shown in figure 7, are for a map of pathological simplic-
ity. This map was manually generated and serves as a trivial case for study. The map is best
described as a single, long hallway, with no branching features. The robot starts searching
somewhere in the middle of the hallway and proceeds to search its length. The experiment
with the robot starting at an end point of the hallway shows identical performance for the
three algorithms. This case shows a minimal map and starting point configuration to differ-
entiate between spiral and either DFS or BFS, both of the latter perform identically since
there are no bifurcations in the map to separate their performance. The hallway is long
enough to separate the performance of spiral search from the other algorithms, nonethe-
less.

This experiment is akin to looking for a light switch in a darkened hallway, given no
information on the starting point of the search nor on the location or distance to the light
switch. This experiment closely approximates the theoretical discussion in chapter 2 of
section 2.2.5 and searching for a point in a line of unknown dimensions.

From the perspective of the time of discovery per point in the leftmost plot in figure
7 there is no difference in the performance of the DFS or BFS approaches. Nor is there

any overhead in either of the algorithms of traversing already discovered area in the map

77




6.4 THE EXPERIMENTAL RESULTS

Tine to Discover AR Ponts at Certawn Drstance

8 100 ™ T Y
Soarxt
7 agh BFS
aalk
6
g 70k
- 3
S §-
g -1
-i’l Eso-
> o
23 s “r
§ &
g2t
20}
(35
10p
] - 0
] -} 100 1 2

40 60 80 3 4 S 6 7 a8
Ponts of the Map (DFS maor order] Dxstarce from Ongnn [Refatrve 1o Map Scaie]

FIGURE 6.8. The graph on the left shows the time that [common] points are dis-
covered based on algorithm. The Bar graph depicts the time at which the last point
at a given distance is discovered based on the various search algorithms.

beyond what is essential. The alternations caused by the spiral search approach induce
some such overhead in the progression of the search, resulting in a slightly higher time of
discovery for roughly half of the points in the map. It is evident that the scale of the map
caused the spiral search algorithm to alternate once during the search between branches,
this should be obvious from the time of discovery plot.

As the theory suggests, however, a different truth is borne out in the all-points discov-
ery plot on the right of figure 7. Indeed we see that alternating between branches results in
a 12.5% lower average all-points discovery average in this particular case on the behalf of
spiral search. This is encouraging and suggestive that DFS or BFS are clearly not capable
of delivering good worst-case behaviour even in some simple situations. The difference
between the performance of spiral search and DFS would continue to grow in favour of
spiral search in experiments with yet greater scale. This experiment illustrates the advan-
tages of modified spiral search but since it represents a test case closely approximating an

early theoretic result it is an important experiment to test the validity of the theory.

The experiment with results shown in figure 8 was run on a small, manually generated

map. The topology of the map is a complete balanced tree with depth two. Each of the

78




6.4 THE EXPERIMENTAL RESULTS

hallways joining the nodes are roughly the same length. The intent behind the design of
this map was to provide a minimal map such that each of the algorithms would perform
exploration of the map in a manner unique to itself. Any map with less nodes in the topo-
logical representation would fail to uniquely differentiate the various search algorithms’
properties.

The time of discovery plot on the left in figure 8 shows mean performance of DFS
to be the lowest, followed by the middling performance of BFS and having spiral search
with the highest of the mean performance values. These findings essentially represent the
redundancy in the exploration for the different algorithms. BFS spends some time traveling
through previously explored territory, while spiral search alternates even more often thus
spending more time traversing already explored territory than BFS and amassing a greater
overhead of travel than either of the other algorithms to perform a complete exploration.

All-points time discovery performance displayed in figure 8 on the right, bears a sim-
ilar bias towards the performance of both DFS and BFS. Spiral search in this case has the
highest mean time for all-points discovery while DFS and BFS perform nearly identically
in this right. The brutal symmetry of the underlying topology and the simplicity of the map
itself make either BFS or DFS equally well suited to this task at hand. Contributing to the
high overhead that spiral search endures here is the fact that the map is very small.

The topological tree representing this map is only of depth two. The map is simply
not large enough to allow the dividends of the spiral search approach to overcome the
overhead paid in the early stages of search. This experiment is biased against worst-case
performance, the symmetry of the map and its small size make it closely approximate a
best-case scenario for both DFS and BFS. This is the exact reason behind the use of this
map in the experimental battery and the justification for it as a manually generated test

case.

The results in figure 9 come from an experiment run on an automatically generated
map. These results are fairly typical of the findings for the automatically generated maps.

The size of the map is considerably larger than that of the previous manually generated
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FIGURE 6.9. The first of the randomly generated maps. The area of this map is
considerably greater than the manually generated maps. More complex behaviour
is seen in the time of discovery graph on the left.

maps. This fact alone allows for more alternations for the spiral and BFS algorithms. This
fact can be seen by the number of fluctuations in the left of the figure by the spiral search
and BFS algorithms relative to DFS.

One interesting fact about this experiment is that spiral search actually has a lower av-
erage time of discovery than BFS. The previous experiments took place on smaller maps
and so the overhead paid in redundant travel was relatively high for spiral search. In this
experiment we see that as the maps get larger in size spiral search has a diminishing mar-
ginal return on redundant travel relative to BFS. DFS still has lowest time of discovery, but
the margins between spiral search and DFS are closing too, although this is an asymptotic
relationship.

The all-points time discovery plot on the right of figure 9 shows that spiral search
handily outperforms both BFS and DFS having performance times of 83% and 77% re-
spectively. DFS here exhibits a very typical failure mode. It achieves the lowest all-points
discovery time because of a asymmetry in the balance of the topological tree. DFS spends

a considerable amount of time searching points far from where it begins, while there are
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FIGURE 6.10. This is an interesting case where DFS has better mean performance
time than Spiral Search. Aithough the results for are very close in terms of mean
performance DFS prevails. This result is linked to the the map topology and initial
pose used in the experiment

points very nearby the origin that remain unsearched. This contradicts the principle of lo-
cality . This fact will be further discussed in the experiment relating to figure 12 where the

effect is more obvious.

Figure 10 summarizes an experiment run on another of the randomly generated maps.
We see that in some cases spiral search does not perform the best in terms of all-points
discovery. This experiment finishes with DFS having an all-points discovery time of 94%
of that of spiral search and 84% that of BFS performance. The cause of this is that there is
an asymmetry in the topological tree of the map that favours DFS.

The issue is particularly related to the asymmetry of the topology of the map and the
relative lengths of the hallways therein. From the starting point in the bottom left corner of
the map, shown on the left in figure 11, the bulk of the map is laid out in such a manner
that the clockwise depth-first searcher is able to discover the large majority of the area of

the map before descending into the relatively short branch from the bottom of the map.
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l

Start (Tree Root)

FIGURE 6.11. The topological representation on the right illustrates the map struc-
ture with edge weighting roughly corresponding to the lengths of the edges in the
map on the left. This correspondence of physical environment to topological repre-
sentation is nicely illustrated here and is crucial to the development of a real-world
system from the theoretical primitives examined: Robots operate in the real world
and algorithms operate on data. Here there is a well defined relationship between
the two that can be exploited. There is a strong bias in this particular configuration
that favours [clockwise] depth first search.

The topological layout as perceived from the initial pose in the bottom left hand corner
is approximated on the right in figure 11. Some attempt was made to convey a sense
of the relative weights of the branches according to length in this representation. The
correspondence between the physical world that the robot operates in and the topological
representation that allows quantitative study of search algorithms is well illustrated in the
figure. Breadth-first search, for instance, is clearly applicable to a topological graph and
the correspondence shown here allows a practical interpretation for the less obvious use of
breadth-first search in real-world search.

This experiment also suggests the sense of dependence that the experiments have on
the choice of the initial pose. In this example a decision to start somewhere else on the
map would have a strong influence on the performance results. Beginning from a different
location will have the effect of rotating the perceived topological tree for the map to have
a different root. This would change the perceived asymmetry of the tree and of the distri-
bution of explorable area in the map would be different. These factors all have an affect on

the relative performance of the search algorithms. Although this experiment finds a lower
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mean all-points discovery time for DFS the margin of improvement is quite small, at 6%,

for the gain over spiral search.
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FIGURE 6.12. A common pitfall. The square shape of the all-points distance on
the right indicates a shortcoming of depth-first search.

Both experiments shown in figure 12 have a common trait that illustrates a typical

shortcoming of DFS. While DFS is very efficient, that efficiency is gained at the expense

of neglect. Both of the results in the all-points discovery graphs on the right show poor

performance for DFS. The shape of the bar graph in both experiments for DFS is nearly

square. While DFS is efficiently searching points far off from the origin of search, there

are points very near to the origin that are completely neglected. In both of these examples
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this effect is exacerbating in terms of not discovering a very large proportion of the area of

the map until the very end of the search.
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FIGURE 6.13. A fairly typical result from one of the experiments done on a map
from the set of large maps. The relative mean performance of the search algorithm
is staying reasonably consistent, but the scale of the dependent axis is increasing.
This indicates a growing gap in absolute performance.

The results on one of the larger maps is shown in figure 13. The results over the 9
experiments performed on these largest sized maps did not vary greatly in relative terms
from those results perceived in the first set of experiments on the automatically generated
maps. The size of these maps would be approximately 30 meters x 30 meters assuming the
robot were 0.5 meters in diameter. This corresponds to a 225% increase in the area of the
maps.

The typical result shown in figure 13 shows that the relative performance of the search
algorithms is remaining fairly consistent with results seen previously on the smaller maps.
Certainly the absolute difference between spiral search and the performance of the other
algorithms continues to grow. This same tendency is expected as the maps grow in size.
The analysis that predicted these results were worst-case analysis predictions, and we see

that the convergence to the worst-case behaviour has already began to show itself in our

. barrage of tests.
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On unbounded we can predict the terminal null results for DFS. In the situation of a
map with a breach in the hull, DFS will never discover the entire map. Once the depth first
searcher discovers the breach to the “outer’” world, it will never return to points near the
root, if the “outer” world is infinite. Nor will BFS be guaranteed to search the entire of
the interior. There is a guarantee that some non-trivial percentage of the map area will be
discovered, but when BFS exits to the “outer” world (except for in some conditions of the
“outer” world containing branching points in a specific manner) BFS will never return to
the root of the search. However, we do have a guarantee that even it this terminal setting
spiral search will still discover the entire area of the map eventually. Its turning points are
stimulated partially by the distance traversed, so it is possible that even in an unbounded
map that the area near the root of the map will be discovered. This sort of behaviour is in-

dicative of the graceful degradation that is so highly desired in robotic system architecture.

5. Summary of Results

Presentation and analysis of the proposed experiments has been shown in this section.
Extensive testing of the proposed algorithms has been performed on a simulator over a
series of appropriate test maps. The data resulting from the experiments has been organized
in 2 types of graphs. Time of discovery graphs depict the time at which a subset of regions
from the environment were discovered by each of the algorithms and all-points time of
discovery show the time taken to discover all the regions lying a certain distance from the
starting point by each of the different algorithms.

Some observations have been noted regarding the interpretation of the underlying log-
arithmic spiral search pattern. An example from one of the experimental maps is used
to elucidate the relationship between the spiral nature of the search algorithm and its ob-
servable effect during the progression of the search. A more detailed discussion of the

characteristics of the experimental maps has also been made.

The predicted performance suggested by the underlying theory is indeed borne out by

experimentation. The all-points discovery series is interesting as it indicates the worst-case
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FIGURE 6.14. Summary Results

time taken to discover any point in the map given its distance from the search origin. It
is this worst-case behavior that this thesis was intended to address. Spiral search has been
seen to provide good worst-case results for discovering all points a given distance from the
origin. Using the analogy of searching for a lost set of keys without being certain of the
distance they lie from where they were assumed to be, then spiral search should provide
a least cost approach to the search on average. The results from these sets of experiments
reinforce our belief that spiral search achieves this primary objective. The worst-case time
of discovery is significantly lower than depth or breadth first search on a large category of
interesting maps.

The mean scores for the all-points discovery series have been collected and summa-

rized from the entire set of experiments. The averages of these experiments show that spiral
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search indeed tends to perform significantly better at this task of all-points discovery. Spi-
ral search over this battery of tests performs 11.9% better than BFS and performs 16.6%
better than DFS in terms of average time to discover all points a certain distance from the
origin. Figure 14 summarizes the all-points discovery mean performance for each of the
experiments performed. )

We have provided experimentally generated results showing the efficacy of spiral search
over the more traditional types of search of depth and breadth first search. These results are
drawn from a set of simulated test runs of the algorithms on interesting, non-trivial maps
that are representative of office-like environments. The simulations have been built to ex-
hibit reliable behaviour with attention paid not to impact any of the independent variables

of the experiment addressed in chapter 5.
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CHAPTER 7

Conclusion

In this thesis we have considered a new algorithm for efficiently searching with a moving
robot in a planar environment containing obstacles. Our work integrates previous theo-
retical work with a functioning robotic simulation for testing and comparison of the new
implementation.

Our work is founded in the theory of planar spiral search by Baeza-Yates et al. [11].
The techniques of spiral search that we have enumerated in chapter 2 are extensible to non-
planar search, this is interesting future work. Investigations in the theory of search and
search games in particular led to the sub-field of rendezvous search studied in detail by
Alpern [1]. In chapter 2 we chronicle the development of a multi-robotic implementation
by Roy [62] testing solutions to the rendezvous problem based on optimal theoretic results.
In chapter 3 we provide analysis for the rendezvous problem in the half plane without
obstacles.

Based on this theoretical work we develop a novel approach to a problem in planar
search. First we construct a graph from the structured planar region that we face with
the robot. Then, opposed to the more traditional methods of breadth- or depth-first graph
search, we develop our brand of “modified spiral search” as an iteratively deepening depth-

first search using the principles discovered in the theoretical work to ensure efficiency.
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This is an extension of existing work [11] that proves the asymptotic optimality of spi-
ral search in more abstract environments. Our work shows how to search a open or polyg-
onal environment in a manner that is efficient in comparison to the optimal distance that
would be traveling if the location of the goal were known in advance. This is accomplished
by searching paths that are explored with a search radius that increases as a logarithmic
spiral based also on the number of branches that have been detected in the environment. In

the experimental work we present, the feasibility and typical performance is illustrated.

1. Future Work

1.1. Experimentation on an Actual Rebot. The architecture the simulation has
been built on is fully capable of interfacing with an actual robot. It is fully possible that
experiments can be performed in actual environments given reasonable solutions to typical
robotics problems.

(i) Place recognition — answering the question “Have I been here before?” is critical
for traversal of previously seen territory, resolution of cycles in the map and for
deciding when branches actually occur in the environment. Whether this is done
using corrected odometry, dense sonar scans, laser range data, visual image methods
or any combination of these, place recognition is crucial.

(ii) Localization — the ability to localize accurately the position of the robot in the

environment based on sensor input and reference to an internal world representation.

(iii) Safe Navigation — navigating through the known map and into unexplored territory

in a reliable and safe manner, so as not to incur damage to the robot, others in the
environment, or to the environment itself.

With reasonable solutions to these problems, physical testing of the search algorithms can

proceed.

1.2. Multiple Coordinated Robots.  One exciting avenue for further work is ex-
amination of parallel implementations of search for use by multiple robots: this leads to

issues to how to subdivide the problem and how and when to merge partial results. The
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rendezvous search approaches that we have studied would be ideal candidates for the im-
plementation of multi-robotic search. The gains from work in parallel could be great given

effective means of merging data and partitioning work among the agents in a dynamic way.

1.3. Variations on the Search Algorithm. The success of the modified spiral
search algorithm in solving the all-points distance problem motivates testing with alter-
native search algorithms.

An alternative heuristic that seems apparent might be to use the modified spiral search
approach, but attempt to make branch predictions based on suspected size of map and
historical branch rate. A probability could be assigned to the length of new haliways, the
distance traveled before an expected branch, the size of rooms, all based on reasonable
inferences from known quantities from the map so far. It would also be interesting to try to
predict the number of branches, M, in a map based on some probabilistic guess, and then
have fewer updates to M dynamically during the search to see if this could be beneficial to
search performance.

The accrual of positional error (for example via odometry) is a real problem. This
suggests another search strategy that could involve returning to previously-explored re-
gions slightly more frequently that might be suggested by the analysis presented here. The
“localization visits™ may contribute a level of reliability to the system that may facilitate
portability to a real robotic system.

A related issue is that most real range sensors have an accuracy that diminishes with
distance, and hence can be described in probabilistic terms. In some cases it may be prefer-
able to search more deeply in regions were visibility is obstructed in order to assure a uni-
form coverage of free space along different paths. This suggests that probabilistic search

may have a slightly different form than modified spiral search.

1.4. Variations on the Potential function. Perhaps search using different potential
functions, rather than metric distance as used here, could make the algorithm proposed here
for planar search appropriate to a larger variety of environments. Any Lyapunov function

could act equally well as the potential function underlying the search. The hierarchy of
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7.2 ENUMERATION OF RESULTS

spiral search techniques seems to prove efficient in more complex realms, as our experi-
mentation here shows.

Perhaps adaptation to a higher dimensional search algorithm with a switch in the un-
derlying potential function could prove to make this technique remarkably useful. The ef-
fective adaptation of spiral search to 3 dimensions may make contributions to the efficiency
of underwater search or space exploration. Perhaps useful alternative potential functions
may be the availability of light, for underwater visual application, or perhaps gravitational

field potential for search of large areas of the galaxy.

2. Enumeration of Results

The expected results from the theory are borne out by experimentation. The all-points
discovery series is interesting as it indicates the worst-case time taken to discover any point
in the map given its distance from the search origin. It is this worst-case behavior that this
thesis was intended to address. Spiral search has been seen to provide good worst-case
results for discovering all points a given distance from the origin.

The results from experiments reinforce our belief that spiral search achieves the pri-
mary objective of efficiently searching in complex environments. The worst-case time of
discovery is significantly lower than depth or breadth first search on a large category of
interesting maps. The averages of these experiments show that spiral search indeed tends
to perform significantly better at this task of all-points discovery. Spiral search over this se-
ries of tests performs 11.9% more efficiently than BFS and performs 16.6% more efficiently
than DFS.

Modified spiral search provides also the secondary objectives that maps are searched
in finite time, even if the environment is unbounded and that the search is performed in
a non-neglectful manner. Any targets close to the origin will be discovered in reasonable

time.
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APPENDIX A

Proof of Spiral Search Optimality

1. Linear Spiral Search

THEOREM A.l (Baeza-Yates, Culberson and Rawlins [11}). Linear spiral search is op-
timal up to low order terms. That it is to say that the total distance walked by an agent

performing linear spiral search is no more than 9n steps (see equation 14).

PROOF. Let the point be found after the (¢ + 1)th turn and before the (i + 2)th turn,

J1i. Hence, i is such that f(i) + 1 < n < f(i + 2) giving a worst case ratio of,

2 1-:11 . . i-tl .
‘5‘5‘3‘( = e H) =1+ 2mex (%J@)l-{-_(i?)) A1)

Since we already know that a 9n algorithm is possible (take f(i) = 2¢, see 14) suppose that

f is such that
XS0 |
f@E+1 —

where c is constant. A lower bound on ¢ will yield a lower bound of (1 + 2¢)n for the

Yi>1, (A2)

problem (from equation 23). Continuing, from 24 and the fact that f is strictly monotone
increasing, so that we can always choose a large enough ¢ such that

D fG) —e> fE) +1

j=1



A.l LINEAR SPIRAL SEARCH

hence, we have

S L5 f0)
f@) +1
S fE+1D+ f@EY+1
f@@)+1
_ . fE+D)
f@H+1

For a fixed and sufficiently large-z, ¢ must also satisfy the following infinite set of
inequalities:

FE +1+ 350 G +35) — fli+ k)

c—1

flE+k) > Vk>1

Together with the previous inequality on c this system of inequalities may be solved in-
ductively for each k by deleting the f(¢ + k) term on the right hand side, substituting the
derived bound on f(Z + k) into the inequality for f(¢ + k — 1) and using that bound on
f(E+k —1), and so on.

In general, ¢ must be such that the following polynomials are all positive:

oQ k — )
gy =13 ) (~1/ey
j=0 J
The minimal value of ¢ for which each of these polynomials is greater than zero bounds ¢

from below.

These polynomials obey the recurrence
g(k) = cg(k — 1) ~ cg(k — 2)
which has characteristic equation

A —cA+c¢=0
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A.2 GENERALIZED LINEAR SPIRAL SEARCH

which has roots

which, having equal roots at ¢ = 4 gives
g(k) = (k + 1)25+

and is positive for all & > 0, or, having distinct roots gives

1 ((c+M)k+l_(c_m)k+l>
= c-ve —9¢

g(k) = 5 5

-

which is positive for all £ > 0 if and only if ¢ > 4.

Hence we have shown that ¢ has a lower bound. Back-substituting into 24 we see that

S0 <4
f@E)+1 — 7

and so 23 posits

L+ 2max (Zfz(z)i(i)) =1+2(4)

Therefore any algorithm to find a point on a line an unknown distance n, away must take

at least (1 4+ 2 x 4) n = 9 n steps. O

2. Generalized Linear Spiral Search

THEOREM A.2 (Baeza-Yates, Culberson and Rawlins [11]). Generalized linear spiral

search is optimal up to low order terms.

PROOF. Let the point be found after the (i + m — 1)th turn and before the (i + m)th

turn. The worst case ration is

i+m—1 f(]
1”’?2‘3‘( 2 (f(z)+1))
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A.2 GENERALIZED LINEAR SPIRAL SEARCH

Let ¢ be a constant such that

% (ff(” <e Vi>1.

Similar to | we construct an infinite sequence of functions of c (all positive), which are

g(k)=ck—1i k+m—2—(m—1)j

1=0 .7

(—1/c).

and obey the rec.un'ence
g(k) = cg(k — 1) — ™' g(k — m).
For which the characteristic equation
A" —e At el =0

has a real positive double root at ¢ = m™/(m — 1)™~! namely A = ¢(m — 1)/m, and all

other roots are negative or imaginary. (|

95



APPENDIX B

Mathematical Concepts and Definitions

1. Group Theory

The following are some definitions from group theory that will be helpful in the general

settings that we are going to be considering. For clarification on any of the following see

Rudin {64] or any text on modern algebra.

DEFINITION B.1 (Group). A set, G, and a binary operation, -(often called addition)
such that
i [Associativity] a-(b-c)=(a-b)-¢ Va,bce G
ii [Identity] 3e€ Gsuchthate-a=a-e=a Va€G
iii {Inverse] Va € G3b € G suchthata-b = b-a = e and b is defined as “a-

inverse”, b =a"L.

DEFINITION B.2 (Abelian Group). The group. G, is called Abelian if the operation is

commutative for all the elements in the group. That is to say,
a-b=b-a Ya,beqG.

DEFINITION B.3 (Isometry). Let X', Y be metric spaces, a bijective function, f : X —

V. that preserves distances is an isometry.

d(f(z), f(y)) =d(z,y) VzeX,ye),



B.2 METRIC SPACE AND MEASURE THEORY
where f is the Map and d(a, b) is the distance function.

An isometry of the Plane is a linear transformation which preserves length. Isometries
include Rotation, Translation, Reflection, Glides, and the Identity Map. Every isometry in
the plane is the product of at most three reflections (at most two if there is a Fixed Point).

Every finite group of isometries has at least one Fixed Point.

DEFINITION B.4 (Group Isomorphism). An isomorphism ¢ from a group G to a group

G is a one-to-one, onto mapping (or function) that preserves the group operation. That is,
¢(a-b) = ¢(a)- 4(b), Va,beC
If there is an isomorphism ¢ : G — G then the groups are isomorphic and G ~ G

Although the following definition is not a group theoretic result, it is in some weak
sense, the analog of the previous definition in topology and relating topological spaces

rather than subsets.

DEFINITION B.5 (Homeomorphic). Ler (X,S), (), T) be topological spaces and let
h : X — ) be bijective (1-1 and onto). The function h is a homeomorphism iff h is
continuous and h="' is continuous. If such a map exists then (X,8), (¥, T) are said to be

homeomorphic.

2. Metric Space and Measure Theory

DEFINITION B.6 (Distance). A space, X, is said to be a metric space if with any two
points p and q from X there is associated a real number 8, § : X x X — R, called the
distance from p to q such thatr

d(p,q) > 0ifp # q;6(p,p) =0; (Positive Definite)
é(p,q) = é(q,p); (Symmetric)

d(p,q) < é(p,b) +4(b,q),Vr € X. (Triangle Inequality)
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B.2 METRIC SPACE AND MEASURE THEORY

Any function with these three properties is called a distance function, or a metric (from

[64]).

Because many properties of spaces are preserved by continuous functions, spaces re-
lated by a bijection (one-to-one and onto function) which is continuous in both directions
will have many properties in common. These properties are identified as topological prop-
erties. Spaces so related are called homeomorphic. In our setting we exploit the property
that two sets are homeomorphic to each other if they are smoothly deformable to each other

without introducing or removing any fundamental characteristics of the initial set.

DEFINITION B.7 (Haar Measure). An invariant measure on a locally compact group
is often called a Haar measure. We usually want it to satisfy some regularity condition and

also allow it to be complete.

The next definition brings our attention to a much sought after class of functions im-
portant in the field of navigational methods. The generation of stable potential fields allows
for the use of gradient descent navigation. Usually is it difficult to find generic, stable func-
tions for use in any sort of complex setting. The shortcoming of gradient descent methods is
clearly that the existence of local minima in the potential field result in basins of attraction
that do not lead to the desired goal point. Functions that are said to be Lyapunov functions

do not suffer from this problem of local minima.

DEFINITION B.8 (Lyapunov Function). Any continuously differentiable, real valued
Junction U(x) € C, with a fixed point, =*, in the domain of U such that
(i) U(x) > Oforall z # z* and U(z*) =0
(ii) VU(z) < 0 for all z # z* and VU(z*) = 0 (all trajectories on the domain are
downbhill)
is said to be a Lyapunov function and =" is globally stable: for all initial conditions of

vector z, z(t) — =~ ast — oo.
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