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ABSTRACT 

ABSTRACT 

An agent is placed in an unknown environment and charged with the task of locating a Iost 

object. What c m  the agent use as an efficient technique to find the object? 

We propose a new algorithm for planar search. The algorithm stems from theoretical 

work on search games, in particular provably optimal search techniques on restricted do- 

mains. This thesis addresses the problern of efficiency in robotic search: having a mobile 

robot find a taget object in an unknown environment with obstacles in an efficient manner. 

As a side-effect, the robot explores the environment. 

Based on previous results, a formal description of the problem is presented dong with 

an algorithm to solve it. This algorithm has good worst-case performance, in terms of its 

cornpetitive ratio. We show experimental data validating the feasibility of Our approach and 

typical results. Quantitative results are demonstrated showing the advantage of modified 

spiral search versus traditional approaches. 



Un agent est placé dans un environnement inconnu et sa tâche est de localiser un ob- 

jet spécifique. La question est de  savoir quelle est la technique la plus efficace pour la 

recherche de cet objet. 

Nous proposons un nouvel algorithme de recherche en spirale dans le plan cartésien. 

Inspiré par la théorie des jeux, notre algorithme est basé sur les techniques de recherche op- 

timale dans des domaines restraints. Dans cette thèse, nous addressons le problème de faire 

parvenir un robot mobile à trouver efficacement un objet spécifique dans un environnement 

complexe et inconnu. Comme effet secondaire, le robot explore cet environnement. 

Basée sur des études antérieures, une description formelle du problème, ainsi qu'un 

algorithme pour le résoudre seront présentés. Cet algorithme est compétitif, dans le sens 

où  le rapport entre sa performance et celle d'un algorithme idéal est constant. Des résultats 

experimentaux démontrent la validité de notre approche. De plus, nous presenterons les 

avantages de l'algorithme de recherche en spirale que nous proposons comparé àux autres 

méthodes de recherche traditionelles. 



ACKNOWLEDGEMENTS 

ACKNOWLEDGEMENTS 

My many thanks for the assistance offered to m e  from my supervisior, Professor Gregory 

Dudek, who is responsible for both the environment and F a t  motivation to explore the 

many twists and turns this research has taken and for the patient guidance to keep me on 

some sort of track. 

My parents are the ones who are responsible for my k i n g  here in many ways. 1 thank 

them imrnensely and send my gratitude. 1 hope that they will find this thesis is worthy of 

their efforts. 

1 would like to thank Robert Sim for his iightning fast technical support with RoboDæ- 

mon and for just helping, always. Eric Bourque also for his careful reading and edits, the 

time that he spent is tirne that 1 saved. 

1 would aiso like to thank al1 my mates in the Mobile Robotics Lab for helping create 

such a great environment. For al1 the time 1 spent at thir, thesis, not a second was wasted in 

the lab. 

Je voudrais dire merci à Sylvain, François et Maya pour leur aide dans la traduction du 

résumé. Je ne pourrais pas l'avoir fait sans vous. 



DEDICATION 

DEDICATION 

This dissertation is dedicated to Zachary. Who doesn't know where Montréal is, but who 

knows that it isn't that far away. 



TABLE OF CONTENTS 

TABLE OF CONTENTS 

. . ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11 

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  iv 

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  v 

LIST OFTABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ix 

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  x 

CHAPTER 1 . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 

1 . Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 

2 . Integrating Interdisciplinary Research . . . . . . . . . . . . . . . . . . . .  6 

3 . Search Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 

4 . TheApproach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 

5 . Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 

6 . Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . .  8 

CHAPTER 2 . Previous Research . . . . . . . . . . . . . . . . . . . . . . . . .  1 1  

1 . Rendezvous Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12 

1 . 1 .  The Rendezvous Search Problem . . . . . . . . . . . . . . . . . . . .  12 

1 .2 . Multi-Agent Exploration and Rendezvous . . . . . . . . . . . . . . . .  18 

2 . Explorationstrategies . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24 

2.1. Depth-First Search . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26 



TABLE OF CONTENTS 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  2.2. Searching the Plane 27 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  2.3. Logarithmic Spirals 34 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  2.4. M Concurrent Rays 34 

. . . . . . . . . . . . . . . . . . . . . . .  CHAPTER 3 . Rendezvous Strategies 37 

. . . . . . . . . . . . . . . . . . . . . . .  1 . Rendezvous Search in the Plane 37 

. . . . . . . . . . . . . . . . . . . . . .  2 . A Cornpetitive Ratio Examination 43 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 . Bounded Distances 45 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 . Surnmary 46 

. . . . . . . . . . . . . . .  CHAPTER 4 . Efficient Search in Real Environrnents 48 

. . . . . . . . . . . . .  1 . Searching Non-Concurrently Branched Environments 49 

. . . . . . . . . . . . . . . . . . . .  2 . Trees of Non-Concurrent Search ~ a t h s  51 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 . Summary 53 

. . . . . . . . . . . . . . . . . . . . . . . .  CHAPTER 5 . Experimental Method 55 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 . Map Generation 56 

. . . . . . . . . . . . . . . . . . . . . . . . .  2 . Experimental Dependencies 61 

. . . . . . . . . . . . . . . . . . . . . . . . .  3 . The Exploration Experiment 62 

. . . . . . . . . . . . . . . . . . . . . .  4 . Exploration of Unknown Temtory 66 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 . Summary 67 

. . . . . . . . . . . . . . . . . . . . . .  CHAPTER 6 . Experimental Verïfication 69 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 . Data Presentation 69 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  2 . Underlying Observations 70 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 . TheTestBed 72 

. . . . . . . . . . . . . . . . . . . . . . . . . .  4 . The Experimentai Results 76 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 . SummaryofResults 85 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . CHAPTER 7 Conclusion 88 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . 1 FutureWork 89 

1.1. Experimentation on an Actual Robot . . . . . . . . . . . . . . . . . . .  89 

vii 



TABLE OF CONTENTS 

. . . . . . . . . . . . . . . . . . . . . .  1 2 . Multiple Coordinated Robots 89 

1 .3 . Variations on the Search Algorithm . . . . . . . . . . . . . . . . . . .  90 

. . . . . . . . . . . . . . . . . . .  1.4. Variations on the Potential function 90 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 . Enurneration of Results 91 

APPENDJX A . Proof of Spiral Search Optimality . . . . . . . . . . . . . . . . .  92 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 . Linear Spiral Search 92 

2 . Generalized Linear Spiral Search . . . . . . . . . . . . . . . . . . . . . . .  94 

. . . . . . . . . . . . . .  APPENDIX B . Mathematical Concepts and Definitions 96 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1- Group Theory 96 

2 . Metric Space and Measure Theory . . . . . . . . . . . . . . . . . . . . . .  97 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  REFERENCES 99 

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  107 



LIST OF TABLES 

LIST OF TABLES 

Rendezvous Values for Search Garnes . . . . . . . . . . . . . . . .  17 

Parallei Improvement in explored area . . . . . . . . . . . . . . . .  23 

Hierarchy of distances . . . . . . . . . . . . . . . . . . . . . . . .  28 

Search Distance for a Point in a Line . . . . . . . . . . . . . . . . .  32 



LIST OF FIGURES 

LIST OF FIGURES 

Spirals over Co-Terminal Rays . . . . . . . . . . . . . . . . . . . .  34  

Hemi-Circular Search . . . . . . . . . . . . . . . . . . . . . . . .  38 

Expected Overhead for Rendezvous Search . . . . . . . . . . . . .  44 

Distance Performance by Strategy . . . . . . . . . . . . . . . . . .  45 

Co-Terminal Branching . . . . . . . . . . . . . . . . . . . . . . .  50 

. . . . . . . . . . . . . . . . . . . . . . . . .  Experimental Maps 59 

Experimental Maps (Large) . . . . . . . . . . . . . . . . . . . . .  60 

Example Exploration Map . . . . . . . . . . . . . . . . . . . . . .  63 

Exploration Progression . . . . . . . . . . . . . . . . . . . . . . .  64 

Exploration of Unknown Territory . . . . . . . . . . . . . . . . . .  66 

Nature of Spiral Search . . . . . . . . . . . . . . . . . . . . . . .  71 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  Simulation Map 73 

Simulation: Search level 1 . . . . . . . . . . . . . . . . . . . . . .  73 

Simulation: Search level 2 . . . . . . . . . . . . . . . . . . . . . .  74 

Simulation: Search level 3 . . . . . . . . . . . . . . . . . . . . . .  74 

Simulation: BFS Progression . . . . . . . . . . . . . . . . . . . .  75 

Performance Results: Manual Map 1 . . . . . . . . . . . . . . . . .  77 



LIST OF RGURES 

8 Performance Results: Manual Map 2 . . . . . . . . . . . . . . . . .  78 

9 Performance Results: Medium Random 1 . . . . . . . . . . . . . .  80 

10 Performance Results: Medium Random 2 . . . . . . . . . . . . . .  81 

1 1  Topology of a Map . . . . . . . . . . . . . . . . . . . . . . . . . .  82 

12 Performance Results: Medium Random 3 & 4 . . . . . . . . . . . .  83 

13 Performance Results: Large Random . . . . . . . . . . . . . . . .  84 

14 Global Performance Results . . . . . . . . . . . . . . . . . . . . .  86 



CHAPTER 1 

Introduction 

Search is one of the fundamental tasks of living beings. Animds spend large parts of their 

life foraging for food, hunting, roarning for more hospitable environments, trying to find 

members of their species. Whatever the specific task, these are al1 types of searching. Al1 

animals need to be successful searchers to ensure that survival tasks are accomplished ef- 

ficiently. From insects to humans, animals everywhere spend their waking hours seeking 

food, shelter, habitat and mates. Vast fields of human knowledge have been acquired as 

a result of this task of searching our environment, and no longer is it even our own envi- 

ronment that we expend effort to search. Undersea and space research are frontiers that 

human-kind has embarked upon in order to help satis@ our innate need to explore [17,28]. 

Search leads us into new environments, but how can search be made efficient when explor- 

ing an unknown environment? This is the question to be addressed in this work. 

Herein an analysis of some exploration and search techniques useful in the field of 

mobile robotics is presented. A new technique for mobile robot search and exploration 

will be introduced. Motivated from mathematical results in restricted theoretical settings, 

our approach for mobile robot search in unknown environments will be shown to be more 

efficient than traditional methods. The search environment will be a planar network of halls 

and rooms. It is the robot's task to search efficiently throughout the network and to thereby 

explore the a prion unknown environment. Traditional methods are inefficient in terrns of 

the time taken to find an object or  particular location that c m  only be determined by a local 



sensor in such a setting. Our particular brand of search is a form of iteratively deepening 

depth-first search based on logarithmic spirals to determine the points of iteration. This 

method has better average-case performance with regards to the task of searching within 

an environment. 

Let us first establish that exploration, in a general sense, is the process of expanding 

one's knowledge about the environment. It is important to realize that the term environ- 

ment is very flexible in its interpretation, ranging from underground ant passageways to far 

more abstract environments, such as the recently popularized Noosphere', the space of al1 

human thought and ideas. By the process of exploration, living beings sample their envi- 

ronment for indications of danger, availability of food, materials for tools as well as any 

large variety of other potential targets. If exploration is seen as expanding the knowledge 

the environment then the next logical question is how to proceed with this exploration to 

be most successful. 

Search is at the core of exploration. Search can be seen as the method employed 

to increase knowledge of one's surroundings. When exploring a new environment, what 

strategy should be employed to ensure that the exploration is being accomplished in an 

efficient manner? Thus the method of search then becomes a critical element of exploration. 

How do we d e s c n k  what a "method of search is? How do we quantize such a method for 

andysis? 1s it even possible to define a simple strategy for search that will be effective in 

radically different scenarios? 

Ideally, we might be able to construct sets of scenarios for which a particular search 

strategy is most appropriate or useful. How then can we attempt to define different types 

of environments when these environments may be be such different things as "the space of 

al1 thoughts" versus a road map for a city, for instance. Certainly it is clear that any par- 

ticular strategy of search will be inefficient within al1 the different possible environments, 

' Eric S. Raymond recently wrote an article Homesreading rbe Noosphere [58] in which he discusses the space 
in which ideas are developed by human thought, both academically and industrially. Here he speaks of the 
"Noosphere" to be the space of al1 possible thoughts and ideas, within which human knowledge is constantly 
expanding as we add to our kemel of ideas. 



1.1 BACKGROUND 

but perhaps there is some set of strategies that can be applied and tested in a new environ- 

ment to see how it fares against other known approaches, and hence using hybrid search 

techniques composed of fundamental search techniques that may be used in a wide range 

of applications. 

If successful search is so important a factor to  an individual how is it possible to do 

better? Working in groups can be a way to speed the search process, so that the team 

work pays dividends greater than might be had otherwise. The parallelization of tasks, the 

distribution of workload arnong several individuals is a relatively difficult task requiring 

communication and agreement between CO-operating agents. But can we define a scheme 

to irnprove on what a single agent can achieve? Working in teams, cooperation for mutual 

benefit, would be a indicator of intelligence in any sort of social system. 

The solution presented for efficient search is termed "Spiral Planar Search" for a mo- 

bile agent. The method implemented is based on extensive theoretical grounding and ad- 

dresses the issues of scalability of theory to a functional robotics level. Both of which are 

active research problems. Spiral planar search will be shown to be more efficient than the 

cornpetitive methods of depth-first or breadth-first search in terms of searching an unknown 

environment, on average. 

1. Background 

There are two meta-problems addressed in this thesis. The first is a search problem 

developed from theory in a theoretical, constrained setting. This first problem may have 

been motivated by a need in robotics, but is properly restricted to mathematical theory. 

The second meta-problem has to do with the extension of a theoretical idea to a functional 

mobile robotic implementation. There has k e n  a long standing cal1 in mobile robotics 

research for the integration [45] of fundamental problems, or rather the solutions as they 

stand to those problems, in order to produce more highly functiond robotic systems. 

Shown will be the development of a theoretically grounded problem to a fully func- 

tional simulation designed to act as test bed for the solutions to the initial problem. This 

bnngs together theory and application studies in an integrated robust system. 



1.1 BACKGROUND 

There has been much work completed in the field on  the union of these meta-problem 

areas. Much good theory for the underlying structure that is necessary to develop stmc- 

tured solutions comes to us from a variety of sources. Classic sources for motivating planar 

search and rendezvous games corne from works like Schelling [65] and Ga1 [36]. General- 

ized graph searching algorithms that are related to the problem at hand but which don? have 

any robotic motivation necessarily are covered in [42] on wandering RAMS with bounded 

memory searching binary trees and [15] where the search is for integers in unbounded sets 

with no distance traverse cost. 

Work on developing the underlying theory for search garnes in general [39, 491 and 

the means with which to analyze the performance of search algorithrns [l, 2 , 4 5 1  has been 

foundational work. 

The problern of online search has k e n  a popular theme is robotics research. Typicaily 

the problem is set in restricted environments in order to aid analysis or develop very par- 

ticular algorithms. Solutions to problems in searching restricted polygons often are very 

specific to the constraints on the polygon. interesting results in searching simple polygons 

[44] and searching the kernel of a star-shaped polygon [52] both have excellent approaches 

to the solution of online search algorithms. Another closely related polygonal search prob- 

lem is with the set of infamous polygons known as genenlized süeets initially set forth by 

Icking [22] with follow-up work from the research field [43,38, 44, 511. Such restricted 

application domains need extension to be useful in more general settings, however the 

problems do apply to an interesting set of polygons. 

Brurnitt [20] has addressed the area of optimal paths for multi-robotic systems, but 

global infinite communication has been assumed to achieve this goal, clearly a specialty 

requirement not generally available in desired robotic settings. A huge variety of work on 

the area of exploration, whether in an a prion unexplored environment [55,27] explicitly 

or  more generally with exploration and optimal map building, has been done [56,52, 53, 

67,59,60,55,27,50,18,19,53] in the research field. With such a large variety of work, it 

becomes difficult to categorize al1 the contributions brought to us. Much of this work can 

benefit from an improved method to discover unknown space. Whether actively searching 
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for a known target in unknown surroundings or exploring large environrnents in a reliable 

manner efficient methods to move within the environment are needed to accommodate the 

relatively slow physicd motion exhibited by most mobile robots. 

The studies by Yarnauchi et al. 168, 70,691 have been very motivating with their ap- 

proach to functional robotic systems. Zelinsky's work [71] too has k e n  a well considered 

approach to the study of robotic exploration. Aside €rom the motivation that any of these 

previous works may have provided, they also showcase an entire research field of potential 

application for a more efficient means of planar search. Any of the above studies that do not 

explicitly deal with exploration algorithms per se could benefit from an improved search 

and exploration algori thm. 

Another approach that can be taken to speed the discovery of unknown surroundings or 

to shorten the time taken to find a target consists of utilizing multiple agents concurrently. 

Multi agent map merging [41] has always been an interesting topic. The coordination [54, 

341 of a multitude of agents for any sort of task continues to be an ongoing research area. 

Inter agent communication studies [12, 13,621 also help us to understand the capabilities 

and restrictions that may apply to multi-agent systems. 

The topic of navigational methods has been a very important foundation for this thesis 

as well. Navigational approaches for exploration tasked mobile robots by Blum [16], Foux 

[35], Rao 1571 and especially by Dudek et al. [29, 30, 31, 331 have k e n  core to the de- 

velopment of the robotic simulation and to the experimental test-bed. The decision to use 

a topologicai representation for this work has was made based on these references and on 

research pertaining to spatial models and representation by Kuipers [46,47,48]. 

Of Particular note, due to the intersection of academic principles, we note work by 

Alpern [l, 2, 3,4] and Anderson 18, 71 for their work in game theory and rendezvous or 

similar search techniques. Along with the very central work of Nicholas Roy [62] as a more 

functionai robotics based piece of rendezvous work. 

In the area of planar search we have followed closely work by Baeza-Yates [IO] with 

Culberson and Rawlins [Il] for a b a i s  of search algorithms in more precise environments. 

The collection of these results served in part as motivation to the beginnings of this work. 



1.2 tNï'EGRATiNG INTERDISCIPLINARY RESEARCH 

The importance of the work and direction provided by Dudek et al. [29,30,31,33,59, 

61,60,66,623 would be hard to overstate. These contributions have had a strong influence 

on this thesis in many disperse subjects such as path planning, navigation and localization 

in mobile robotics research. 

2. Integrating Interdisciplinary Research 

This thesis will reiterate the nature of two separate aspects of modem robotics and 

propose a means of integration between them. The primary aspect is a novel robotics ap- 

plication, specifically a search and exploration method that will be extended from theoretic 

results in planar geometry. Qualitative experiments will be performed to show the efficacy 

of application. The second aspect is consideration of techniques to use multiple agents to 

efficiently streamline a complex search problem. 

Mobile robotics has traditionally been approached using "bottom up" reasoning. The 

mobile robot is the sum of its cornponents and behaviours. However, the problems that need 

to be dealt with for successful robotics are themselves so complex that they deserve study 

in their own right. There have been alternative attempts at attacking the robotics problem in 

a more holistic manner such as Brooks' [18,19] subsumption architecture where different 

layers in the abstraction of the mobile robot are more insulated from one another. The 

desire is to let the world be its own representation, and that intelligent behaviour at lower 

levels does not rely on an accurate complete interna1 representation of the world. 

Ideally topics such as localization, exploration, navigation, path-planning, map-building, 

cornputer vision, feature recognition and naturd language comprehension/synthesis would 

be blended together seamlessly to form a functional and very impressive robotic compan- 

ion. Roboticists have delved into these problems and developed sciences appropriate to the 

study of each discipline. Mobile robotics remains a puzzle of unsolved problems. This cal1 

for integration has k e n  formdized by Kortenkamp and Shultz [45] in the general robotics 

community. 



1.4 THE APPROACH 

3. Search Properties 

There are some desirable properties that a reasonable search algorithm should display. 

Certainly these desirable properties are not minimal requirements, for instance a Random 

WaUc could be admissible as a search algorithm. We will use the following properties in 

for the purposes of qualitative evaiuation. 

(i) Terrnination - Will the entire region be searched? 1s exhaustive search guaranteed. 

(ii) Principle of Locdity - Targets located near the origin of search should be discov- 

ered with precedence over distant targets. 

(iii) Efficiency - the search algorithm should exhibit reasonable worst-case or average- 

case behaviour. Canonicai failure modes should not l i s e  in cornmon cases. 

(iv) Exploration - the search should result in complete exploration of the environment. 

Moreover, this exploration should be done in an efficient rnanner. 

These properties will be referenced with relation to the various search techniques 

throughout the text. 

4. The Approach 

The underlying theory of optimal planar search in theoretically restricted settings is 

described initially to give basis to decisions made later in the more complex environments 

required by the mobile robots. This theory is developed to establish some formal justifica- 

tion for the novel approach that we develop for efficient robotic search and exploration as 

extension to and experimental verification of the core work by Baeza-Yates. Culberson and 

Rawlins [Il]  and Baeza-Yates [IO]. 

In addition rendezvous search theory and techniques will be investigated. We see how 

some of these techniques have been used in modem work to motivate multi-agent coor- 

dination for mobile robots. A branch of statistics known as game theory, more precisely 

the theory revolving around cooperative, two-player, zero-sum garnes will provide a basis 

for the investigations of multi-agent cooperation. The foundational work here from Alpern 

[l, 2, 41 provides methodology to the approach of the problem and a means by which to 
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analyze it. Roy [62] provides a wonderful example of a similar extension of theoretical 

results into a robust technical verification that corresponds to and gives appropriate testing 

to those ideas in a functional setting. 

L a d y  we implement an experimental framework exhibiting the functionality of a 

robotic system petiorming several different types of search in sirnilar environments. Our 

framework will serve to assess the performance issues involved with the differing algo- 

rithms, and to show results from a complete and operational system. 

5. Contribution 

Spiral search techniques for planar search and discovery provide a more efficient method 

for robotics searçh and discovery. While the current irnplementation is restricted to the two 

dimensional case for purposes of analysis and evaluation, there is nothing in the theory that 

prevents application in three dimensions. Moreover, spiral search techniques have a wide 

variety of application domains and do not suffer frorn many of the severe restrictions that 

sirnilar work on the theory of searching requires. This general approach to online search 

makes very few assumptions about the environment and is thereby largely unrestricted in 

terms of the potential application domains. 

6. Organization of the Thesis 

This thesis is organized as follows. In chapter 2 we will present a reasonably com- 

prehensive overview of the work which is of central importance to this work. In particular 

the most appropriate results and definitions frorn the work of [l, 2,11,62] will be brought 

out as well as the theoretic foundation for this thesis. The core ideas to the development 

and design of our experimental system will be introduced here. Al1 of these ideas will be 

expounded upon and further detail will be deferred to the appendix or the original works 

themselves. 

Section 2.1 covers the issues involved with rendezvous search. It looks at treatments 

of the problem as both a two player statistical garne problem [l, 2, 3, 4, 71 and also as 

a mobile robotic experimental system [62]. These queries will be most useful later in 
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chapter 3 which focuses most directiy on rendezvous search strategies in the sense that we 

wish to make use of them. 

Section 2.2 is an enurneration of the difficulty of search in the plane given different sets 

of knowledge regarding the target. This section is a partiaily complete sumrnary of Baeza- 

Yates' work on search [Il, IO]. This groundwork will be extended in chapter 4 where an 

extension to our mobile robotic setting will be outlined. 

The description and analysis of a simple rendezvous search problem is detailed in chap- 

ter 3. Motivated by the optimdity results that have k e n  found for spiral search techniques 

and by the analysis of the rendezvous search problem we investigate a hybrid problem. 

A cornpetitive ratio anaiysis for search in the haif-plane is presented as a symmetric ren- 

àezvous value for the problem. 

Chapter 4 explains how the theory of search has been adapted to the current problem 

and provides context for the entire thesis. This adaptation of theoretical ideas into imple- 

mentable strategies hâs k e n  carefully considered so as not to make any assumptions that 

might invalidate the interpretation of the theory into a real world system. 

Chapter 5 will document the application environments and the experimental framework 

that is k ing  developed in this thesis. The framework documented in section 5.3 will be 

properly analyzed and exhibited in the following chapter 6. Details in chapter 5 wilI reveal 

the experirnentai procedure used in this thesis. Bnef discussion will be given to some of 

the assumptions that had to be made and some defense of the experimental dependencies 

will be given. 

The experiments and the resultant data are discussed in chapter 6. Any interesting or 

particular details related to the individual experiments are given and the results from the 

experiments are collected and malyzed. We give good experimental verification to the 

initiai claims that spiral search is an efficient search technique worth adopting. 

Chapter 7 concludes this thesis. Summary is given to the stated problems, the means 

by which they were addressed, the techniques involved in testing those hypothesis and a 

look forward is taken. The potential for the application of this technique to mobile robotics 
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problems is reiterated and future work topics stemrning from this current will be suggested. 

Directions for related and continuing studies in this area will be considered. 



CHAPTER 2 

Previous Research 

It is worthwhile here to present a brief summary of other work that is closely enough 

related to this thesis topic to be of value. Many of the ideas that will be called upon 

later as "foundation" ideas are set out in the following group of papers. So a reasonable 

presentation of the papers and the appropriate ideas therein shdl be given here. 

Firstly we shall consider the area of multi-agent coordination. We shall use the ter- 

rninology of "Rendezvous Methods" to refer to the concept of coordinating multiple agent 

behaviour according to any sort of strategy. Any attempt to describe a multi-agent sys- 

tem requires considention of both how the entire group is managed as well as what each 

agents behavior is in the group. So the mechanism of how control is distributed throughout 

the group, the arnount of communication possessed by the agents, the tightness of their 

awareness of each other and the way that work is distributed among the agents will al1 be 

classified as the rendezvous technique. Alpern's [SI work in the theory of this area is piv- 

otal to the adoption of this topic within the thesis. Work by Anderson and Fakete [6] as 

well as Roy [62] also will be examined for some of the ideas that they present. 

Concern will be geared more toward the group management scheme in section 1, rather 

than on the particular behaviour of each agent. That topic we will regarded in the next 

section on Exploration Strategies. This is reasonabie because what the particular behaviour 

of an agent should be fairly transparent within the entire group scheme. Certainly the 
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specific method of search used is necessary to  ident io  a complete "strategy" but we will 

defer the details of the exploration strategy to section 2 on  Exploration. 

1. Rendezvous Methods 

The topic of rendezvous methods is to be regarded as a thread of multi-agent control 

theory, theory which has been worked on rather extensively in a variety of fields (see Balch 

[12, 131 and Arkin [9] for a subset related to multi-agent robotics). Explicitly, however, 

the term "rendezvous methods" is intended to  refer more specifically to work relating to 

the subset of multi-agent coordination together with sorne sort of fail-safe behaviour in 

the event of communication failure, sensor failure, failure to encounter other agents or  any 

other sort of unpredictable short comings that may occur in the real world. 

Good results come to us from Alpern [2, 41, Anderson [6], and Roy [62] in this new 

field. For the remainder of this section we will look at what kind of results are supplied to us 

from some of the Literature. Specifically we will consider the "rendezvous search problem" 

proposed by Alpern and we will consider the problem of "multi-agent exploration and 

rendezvous" as posed by Roy and the solutions that they offer to these problems. 

1-1- The Rendezvous Search Problem. Alpern's work 12, 41 serves as a good 

reference to the ideas of what it is that the rendezvous search problem incorporates as well 

as allowing us to introduce the concepts that are involved with coordinated search in a 

formal way. Also, the paper holds very prornising insights to this field which will help 

exhibit the merits of funher study. 

Alpern defines the rendezvous search problem as follows. Two agents are piaced ran- 

domly in a known environment with the objective of finding one another. Each agent 

moves a t  unit speed and knows nothing about the location of the other agent until it is actu- 

ally discovered. The problem is to rninirnize the expected time to discovery. The solution 

is presented as a general solution cast in a compact metric space together with a group of 

isometnes [see B.3 for a definition] which reflect the amount of information that the agents 

share about the environment. It is an important realization that the rendezvous time (or 
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rendezvous value, 'R) that is finally assigned as the solution is a function of the topological 

characteristics of the search region W for the given search strategies. 

Multi-agent search strategies corne in two types. Symrnetric search strategies are those 

such that each agent follows the same set of rules while searching. Asymmetric search 

strategies are those such that each agent has a potentially different search aigorithm that it 

follows. An example rnight illustrate best. Imagine two agents on the boundary of the sarne 

circle looking for each other. They have no vision and must collide to detect each other. 

A symrnetric search strategy might be "walk clockwise". Both agents following such a 

strategy will never discover each other if they waik the same speed unless they start at the 

sarne spot. An asymrnetric example might be for agent 1 to "walk clockwise" and for agent 

2 to "walk anti-clockwise". Here each agent employs a different strategy than the other. 

Discovery is guaranteed within a walk of at most half the circumference if the agents are 

the sarne speed. 

Alpern uses the symmetric and asymmetric alternatives to rnotivate two different mea- 

sures for search strategy quantization. The symrnetric rendezvous value. RS, and the asym- 

metric rendezvous value, W. These values are the least expected meeting times for the 

search strategy over the defined environment. The a s y m e t r i c  case yields lower values 

than the symmetric case. Le. Ra < RS typically. Alpem concentrates primarily on sym- 

metric strategies, as will we in the buik of our work, since we will not assume that we c m  

differentiate between agents in the environment. The kind of symrnetric strategies that we 

are going to see are known as mixed strategies, whereby the actual strategy being used is 

a combination of strategies and a method for how to blend them. Mixed strategies dlow 

for symmetric strategies to break the kind of deadlock that we have already observed in 

our example of the searchers on the circle when they each simply w d k  clockwise. So the 

algorithms are of the flavour "perform x for some tirne t *, and then switch to y for time 

t3 . . . " so that there is a mixed nature to the behavior of the agents. By no means does 

"symrnetric search" irnply that the agents behave identically. simply that they follow the 

sarne algorithm, deterministic or not. 
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Alpem acknowledges that the use of "focal points" is of practical utility, although his 

intention is to show that focal points in the environment are not a prerequisite to successful' 

rendezvous. Lndeed, in practice these focal or "distinctive" points will be of great utility 

and in Roy's [62] work we see how a practical application can take great advantage of the 

non-homogeneity of the environment while still employing the multistage strategies that 

differentiates between Aipern's work and Schelling's 1651. 

To define the problem formally Alpern first tackles the rendezvous problem in its most 

general setting "rendezvous on a compact metric space" and then goes into studying the 

problem in more restricted regions. We will present his argument for the generd setting 

and then show the results most related to the current work. For more complete discussion 

the reader is of course referred to the actual paper 123. 

The generd problem consists of a compact metric space (W. P )  with a given detection 

radius of 6 and a group, G, of isometries of W [see B.3 for a definition]. The distance 

function [B.6], p, is what turns the compact space into a rnetric space. Et is assumed that 

the players know the environment, and can localize themselves within it, but cannot detect 

the other player until they occupy positions closer than 6 to each other. The group G 

represents the player's uncertainty about the region that their cornpanion occupies. 

Consider the set of paths, P. that may be taken within the region as P = {p : P+ -t 

X, p(p(tl ), p ( t 2 ) )  5 1 t - t2 1). The subset of paths onginating at a point, x E IR+, is 

denoted Pz. The meeting tirne T : P x P + IRf of two paths p,  q is defined by the tirne 

T ( P ,  9)' 

'success here can be taken to impIy that we are able to successfully rendezvous with greater likelihood if we 
are able to choose our search algorithm rather than simply wandering about 
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where 6 is the detection radius and p is Our distance function. The group G induces an 

equivalence relation on X and P according to: 

The associated sets of equivalence classes are referred to as 2 and P, with the cosets of a 

point represented by the [ ] operator. 

Then a search suategy is a map s : % + such that there is some path p  E s(z) with 

p (0 )  = x. The set of al1 such search strategies will be referred to as S. 

Now that we have described formaily what it means to be a path, we can describe 

what it is we are looking for. What is the expected meeting time for pairs of equivalence 

classes of paths? We calculate the expected meeting time of two paths by integrating over 

al1 equivalent sets of paths in the environment. Let v be denote the Haar measure on G [see 

B.7 for definition] and define' T([p], [g ] )  to be the expected meeting time of the two paths, 

With this definition of distance between paths, we can progress to consider the ex- 

pected time of rendezvous for search strategies. Given two search strategies, sl, s2 € S, we 

want to generate the normal form, T, for the search problem. In the case of the symrnetric 

search strategy this simplifies by choosing sl = S*. The normal form for the search garne 

is thence given by T : S x S + B working on pairs of search strategies and returning 

an expected time. We assume the players are placed independently according to the same 

measure, p, to begin. We hereby define the normal form for two search suategies to be 

The rendezvous search value can now be defined in terrns of the normal forms for 

sets of search strategies. We have seen how using symrnetric strategies can lead to infinite 

expected meeting times. Our simple exarnple of the "wdk clockwise" suategy amounted 

'G o n l y  acts o n  one path since for g, h E G, T ( g p ,  hq) = T ( h - ' g p ,  q )  

15 
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to an infinite expected rendezvous time akin to a dog chasing its tail. In order to avoid 

this pitfall we allow mixed strategies to be Our symmetric strategies, which allows for 

independent randomization between agents. For more detaii on the formal implications of 

this randomization see Alpern [2] but we will suffice it to Say here that this does not impose 

any constraints that will be manifested in any environment that we will be conceming 

ourselves with in application. 

The asyrnrnetnc rendezvous problem is to find the pair of strategies which minirnize 

the expected meeting time of the agents in a given environment. Remember that the "envi- 

ronment" here is r e d y  the actud environment together with the set of isometries that tell 

u s  how much we know about the environment and Our minimal encounter distance, 6. We 

take al1 the search strategies for the environment and assign a minimal one to be the value 

of the search problem 

Ra = Ra(X, G, 6) = min ~ ( r ,  s ) .  
r.s€S 

The symmetric rendezvous problem is similar, we are also looking for the strategy 

that rninirnizes the time to rendezvous. However we must be a little more cautious in the 

definition to take care with the independent randomization that is occumng in the mixed 

symmetric strategy we are using. Because we are employing such mixed strategies, we 

necessarily have to extend our set of al1 strategies to the set of al1 mixed strategies. This set 

we will denote S*. Having chosen our path space a little more cautiously, we are free to 

define the symmetric search vdue by 

R" = Rs(X, G ,  6) = min T(s,, s2) ds*(sl)  dse(s2) .  

The kinds of rendezvous strategies that are analyzed in [2] are sumrnarized here to 

give some sense of setting. Rendezvous on a circle, C ,  is considered. We have two players 

on the circurnference of a circle who wish to rendezvous. There are 4 different strategies 

analyzed as follows and shown in table 1. 
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1 Know 1 Init/Orient 1 Orient 1 Nothing 1 

I 5 OpDir 
3 - OpDir 1 GoStay 2 

TABLE 2.1. Summary of rendezvous values for 2 player rendezvous search games 
on the boundary of a circle. 

a GoToZ Take the shortest path to the point Z on the circle. Complete knowledge of 

the initial position and the whereabouts of the point Z are required. This is a sym- 

meuic aigorithm, with an expected rendezvous time of RS (GoToZ) = 2/3? VZ. 

a COIN HALF Tou~[CoHaTu] Oscillate from the initiai point to the antipodai point 

dong either route (equiprobably each time). The expected rendezvous time here is, 

Rs(CoHaTu) = 3/2. Incidentally, this is symmetric, but the result holds even if 

only one of the two players adopts this strategy. 

O OPPOSITE DIRECTIONS[O~D~~]  One player proceeds clockwise, the other counter 

clockwise. This requires knowledge of "up", but not of initiai position. Here we 

have Ru(OpDir) = 1/2. 

GOSTAY One player sits still and the other randornly chooses a direction to begin a 

traversai. This requires no knowledge of initial position or orientation. The expected 

rendezvous value of this game is R"(0pDir) = 1. 

These search values for the circle certainly help to illustrate how it is possible to speak 

of an expected rendezvous time for a given algorithm. Later in [2] another estimate is 

given for rendezvous search on a line. In this case we have the agents on a common line 

a distance, D, apart and they wish to find each other. The proposed search aigorithm, 

1F2B(z) ,  is one step forward two steps back (where step size is x). In particular, when the 

distance is known then Alpem conjectures that 1 ~ 2 ~ ( : )  is optimal with a search value, 

R" = 512. This conjecture is more than reasonable and is precisely the kind of motivation 

that we need to start thinking about more generalized search. Consider that when we do not 

know the initial distance this search game becomes much more subtle to play and analyze. 

In section 2 we will see that the asyrnmetric case of one player doing 1 F2B and the other 

sitting still will yield Ra = 9. 
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1.2. Multi-Agent Exploration and Rendezvous. Roy's 1621 work exhibits a novel 

implementation for the work in rendezvous search. Frorn an understanding of the theory 

that we have investigated in the previous section Roy shows a real world multi-robotic 

system that uses these techniques effectively to improve upon the capabilities of a single 

agent. 

Also of importance, explanation of this work will help bring to light some of the is- 

sues comrnonly involved with mobile robotics. Limited sensors, difficulty with localiza- 

tion, path planning and navigation failures and unreliable recognition capabilities are dl 

cornmonplace issues that have to be considered in the study of mobile robotics. A good 

robotic system will exhibit graceful degradation in failure modes and also show recovery 

techniques that allow continued operation of the system. We consider the contribution of 

Roy's [62] work for these reasons. 

Roy considers the problem of rendezvous between two robots explonng an unknown 

environment. The question is how can two autonomous agents that cannoc communicate 

with one another over long distances meet if they start exploring at different locations in 

an unknown environment. The intended application is collaborative map exploration. En- 

herent to multi-agent systems are problems of task division, synchronization and coordina- 

tion. Communication issues between agents is also a limiting factor in realistic multi-agent 

systerns. In this work a realistic, limited range "line-of-sight" communications mode1 is 

assumed. The solution for these problems dong with the issue of merging maps between 

the agents once communication and rendezvous have been established are termed by Roy 

as "Multi-agent Rendezvous". 

1.2.1. The Rendezvous Problenz. The problem discussed by Roy is how to determine 

the best strategy for a successful rendezvous between two agents in optimal tirne. Consider 

of how the rendezvous task c m  be efficiently accomplished under assurnptions regarding 

the environment and the perceptual abilities of the agents. Multi-robot exploration using 

rendezvous is considered in the context of unknown environments. Initially an "abstract" 

sensor that allows the agents to recognize one another when they are sufficiently close 



together is assumed. This sensor is also used to evaluate discovered areas in the evolving 

exploration as to their suitability as a rendezvous points. 

The rendezvous task itself is divided into two sub-problems: 

(i) Identification of appropriate rendezvous points. The agents must have some way of 

independently choosing some set of locations as appropriate points for attempted 

rendezvous. 

(ii) The ability for agents to agree on the same location for rendezvous. Given a set of 

appropriate potential locations, how should rendezvous be attempted within these 

locations? An appropriate rendezvous strategy will take into account the possi- 

ble asyrnmetry between the agents' exploration as well as asynchrony between the 

agents, and dlow for rnissed rendezvous attempts. 

Rendezvous will involve the agents searching through the environment for good meet- 

ing points, and then traveling to the best meeting point at a pre-arranged tirne. The con- 

ceived rendezvous problem consists of four steps to be performed: 

(i) Explore the environment 

(ii) Categorize areas according to goodness as rendezvous points 

(iii) At a pre-arranged time, choose the best rendezvous location 

(iv) Travel to the best location for rendezvous 

The problem of rendezvous is also concerned with how to proceed if a particular ren- 

dezvous attempt fails. Important are Strategies that permit a robot to interleave exploration 

and attempted rendezvous so that even in the case of failed rendezvous the robot c m  con- 

tinue its work. Such an approach is indicative of good robotic system design. 

1.2.2. Formal Parameters of the Rendezvous Problem. Fundamental to rendezvous 

is the ability to identify rendezvous points in the environment. One rnethod to identiw 

rendezvous points is to use a potential function at al! points in the known environment and 

taking the points which maxirnize that potential function as the candidates for rendezvous 

points. These points are often called distinctive points in the environment. The potential at 

any point is then determined by a distinctiveness function. The distinctiveness is a value 
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defined at every point in the environment as a function of the location in the environment 

and the sensor(s) used to gather information about the environment at that point. 

To try and coordinate rendezvous as best as possible it is clear that each of the agents 

s hou ld use identicai distinctiveness functions with which to categorize the environment. 

Still differences in the agents' sensors will result in different perceptions of the environment 

and hence different distinctiveness functions will be assigned, even with the environment 

cornrnon to each agent. Compensation for these differences is also a necessary aspect 

to the rendezvous problem. In order to manage this compensation for independent error, 

in hopes to arrive at a cornrnon perception of the environment, a parameterization of the 

distinctiveness measure, D(x,  y), is perfonned. The parameters chosen by Roy for this job 

are systematic differences between agents, and random noise. D(x, y) is also a function of 

the sensors the agents use: 

where S(z. 9) is the ideal perception of the environment by the given sensor, in the 

absence of noise. Si(x, y) is an agents perception of the environment at position (x, 3). 

encapsulating the agent's systematic error f ( x ,  y) over the measurement at that position 

and Xi is an agent's random sensor noise. 

Then in order to quantify the inter-agent differences, X and are rnodeled as scalars, 

the random and system errors are collapsed into one term. These inter-agent differences 

are expressed for any agent relative to a reference agent, represented Dl 

where îi (z, y) is al1 stochastic and systernatic noise processes ofeach robot, and & specifies 

the extent to which the two robots (Di and Dl) sense (or perceive) the sarne thing. Modeling 
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differences in sensor measurement across agents, the f j  and 5 parameters can be treated as 

a single parameter, 6. 

Roy identifies critical attributes that affect the performance of rendezvous strategies. 

These attributes envelop issues regarding the actual robots themselves as well as issues 

regarding the environments within which the robots must manage rendezvous. The pararn- 

eters of the rendezvous search problem are listed as follows: 

0 Similarities -The coincidence of the agents' perceptions. This is greatly dependent 

on the kind of sensor used for the measurement. This is expressed as 8 of Equation 

9. 

0 Sensor noise - The G(x,  g) term of Equation 9, is meant to encapsulate the indepen- 

dent differences from ided perception that an agent makes at a given location. This 

effect leads to the need to consider a greater number of less-than-ideal rendezvous 

points. 

Landmark Cornmonaiity - The extent of overlap between the explored areas of 

the different agents. Landmarks that fail outside of this overlap are useless as ren- 

dezvous points. This disparity forces that multiple rendezvous points be considered. 

0 Synchronization - Appropriate action must be taken by the agents to overcome 

f&led meetings. This effect leads to a need for strategies that may re-visit the same 

Iandmarks repeatedly to compensate for missed meetings. 

0 Landmark Cardinaiity - The manner in which different landmarks are ranked and 

the number of ranked landmarks that are considered for rendezvous points. 

These parameters of the rendezvous search problem lead to an adoption of a necessarily 

robust scheme for perforrning red world rendezvous. Failure and variation from expected 

behaviour are aspects of functional mobile robotics that must be addressed. This aspect of 

Roy's work is precisely the merit of it's discussion here. 

1.2.3. Lrrndmark Selection Algorithms. There are two main classes of algorithm 

considered for the selection of Iandmarks to visit: detenninistic and probabilistic. The 

deterministic class of algorithm creates a Iist of ail possible combination of landmarks 
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and specifies the order in the k t .  The probabilistic class of algorithm does not generate 

an ordering of landmarks, but simply generates probabilities for landmarks being visited. 

Bnef descriptions of the types of dgorithrns are given: 

Deterministic Algonthms - these algorithms always create the same ordering of 

landmarks. 

- Sequential - One robot waits at a landmark while the other robot searches 

al1 of its landmarks. If rendezvous fails the first robot moves to a different 

landmark and waits. 

- Srnart-sequential - Each pairwise combination of landrnarks known to a ro- 

bot is assigned a value of the product of the distinctiveness of the pair. The 

list of landmark pairs is sorted and the robot then visits the landmarks in this 

order. 

Probabilistic Algonthms - The landmarks are sorted with respect to their distinc- 

tiveness and then assigned a likelihood of visitation pi for landmark i. The algorithm 

probabilistically selects a landmark to visit, using pi for each landmark. 

- Exponential - The likelihood of visiting the i - th  best landmark is oc e'. 

This accentuates relatively highly distinctive points. 

- Random - On each attempted visit, each robot selects a landmark at random 

and goes there. 

The success of rendezvous attempted using each of these algorithmic approaches wüs 

compared and assessed. I'hese algorithms were the variables under study in the experi- 

ments. 

1.2.4. Multi-Agent Exploration. Of particular interest in Roy's experiment is the 

ability for the rendezvous algorithm to overcome the communication restriction and yet 

maintain the increase in speed that multiple-agent robotics promises. A speed increase is 

demonstrated for exploration, even accounting for the time to rendezvous. 
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The increase in speed, AS, of the mapping process is then given by Equation 12, 

Taking the area of a single agent, As as the area explored by the active agent, and 

the time of the single agent T' as the time allowed for the exploration process alone. The 

combined area, A, was the explored area of the merged maps, and the combined time, Tc 

was the time to explore, Ts added to the time to rendezvous, T, so that Tc = Ts + T,. 

% Increase in Area 
44.2 
50.2 
55.6 
42.8 
54.1 

Index 
O 
1 
2 
3 
4 

1 Averaoe 1 II 49 -4 

Active Passive Combined 
48.0 42.2 69.1 
48.0 58.4 72.0 
48.0 66.5 74.6 
48.0 59.5 68.5 
48.0 67.7 73.9 

TABLE 2.2. The increase in explored area, as a percentage of the environment, for 
each of the 5 initial configurations. 

Table 2 (from 1621) shows the average speed increases observed by use of each of the 

algorithms from the previous section. As Table 2 shows, the increase in explored areas was 

a minimum of 42.8%, and on average 49.4%. The data expressed in this table assumes 

total communication between the robots and hence expresses ideal speedup based on the 

rendezvous algorithms used. 

1.2.5. SectionSumrnary. This workexhibitsapracticalmulti-agentrendezvous 

scheme to overcome practical communication limits by periodically having the agents con- 

verge and share information. It shows the efficacy of a multiple robot system compared to 

the single robot system, while eliminating the traditional assumption of global communi- 

cation between agents. 
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The rendezvous problem was divided into two separate subproblems. The first is deter- 

mining what points in the environment constitute good rendezvous locations. This problem 

is addressed by modeling the environment as a function of the sensors giving rise to a 

distinctiveness surface, defined over the domain of the environment. 

Which points the robot visited was dictated by the trajectory prescribed by the under- 

lying task, and so dernonstrates a mechanism to overcome trajectory dependencies. 

Three key parameters that charactenze the problem are identified. By choosing a num- 

ber of different points in the environment for meetings, an intelligent scheme for visiting 

these points allows rendezvous to be achieved reliably. The three parameters are identified 

as sensor noise, map commonality and nsynchrony. 

The problem of which appropriate behaviour to use in choosing the landmarks to visit 

is the second of the two subproblems of rendezvous. Two main classes of algorithms are 

proposed deterministic and probabilistic guidance algorithms. 

The rendezvous algorithm was demonstrated both in simulation and on physical robots. 

The simulation tests were used as a confirmation of the numerical results. An interesting 

conclusion frorn these results is that, depending on a combination of these confounding 

factors, no strategy is canonically a good or bad choice. The experiments using physicd 

robots gave a compelling demonstration that the rendezvous dgorithms are an essential 

part of the rendezvous process. 

2. Exploration Strategies 

We have seen (equations 5,4) that the choice of an appropriate search algorithm is 

directly dependent upon the environment that we are considering. It is well worth identify- 

ing some environments and optimal search strategies to get a feel for what kind of results 

we will expect to find as our environments become less constrained and harder to analyze. 

Bcaring in mind Moore's ~ a w ~ ,  the processing power available in current mobile robots 

'A rule o f  thumb proposed by Thomas Moore in the late 1960's that microprocessor speeds will continue to 
double roughly every 18 months. This shocking exponential da im has been consistently accurate for the 1 s t  
30 years, and according to current estirnates will likely continue for at least another 10 -1  5 years. See [37] 
for a more complete discussion o f  the growth trends in microcomputer architecture. 
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far outweighs their mobile capabilities, this is a trend that we can assume will persist. 

Any sort of reduction in physical motion, especially when the cost is processing time, is a 

worthwhile investment. 

What sort of approach should be used for determining this strategy? We will apree 

that the actual environment we are interested in is the plane. Searching in more general 

environments is in itself an interesting problem, but here we will restnct our interest to 

domains topologically equivalent to the plane since that is where our mobile agents will be 

working. 

By investigating search paths in the plane it is possible to gain a better understanding 

of the efficacy of search strategies that we may wish to ernploy. Baeza-Yates, Culberson 

and Rawlins [Il]  show some interesting findings regarding exactly this problem of finding 

optimal search paths in the plane. We will look at their results in section 2.2. 

It is well known that a traversal through a graph-like environment according to a 

"depth-fint" approach (section 2.1) can be performed optimally in 2 x IlVll edge move- 

ments, where [[Vil is the number of vertices in the graph. Depth-first search, or DFS. is a 

sure way to traverse the graph, but it is inappropriate for our task. In unknown and poten- 

tially [practically] unbounded environrnents DFS may not perform well in terms of average 

case behaviour. Unreliable cycle detection poses a real problem while performing DFS. 

One of the failures of DFS is that a failed cycle detection will lead to the robot falsely be- 

Iieving that it has continued to explore new ground while walking in circles. Even bounded 

failure will result in a serious topological morphing of the search environment that would 

not be the case in breadth-first searching that does not allow itself to descend deeply into 

an error. This difficulty associated with recognizing cycles4 in the graph. the failure of 

adhering to the Principle of Locality5 and the fact that the environment is unknown a priori 

makes DFS an undesirable approach. 

'the trouble with cycle detection in a robotics setting cornes from a difficulty in accurate position detection 
in the presence o f  noisy unreliable sensors. 
' ~ u l e  o f  thumb regarding cache hierarchies (see [373). The principle posits that references that are located 
proximally tend to be accessed proximalty. Here the principle is extended beyond its purpose to indicate 
that average case behaviour is very important while searching. An object that was lost 10 minutes ago is 
misplaced, where as an object misplaced 10 days ago is more likely lost. 
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2.1. Depth-First Search. Depth-first search is a simple search strategy that ex- 

pands a graph-like structure by searching deeper into the graph whenever possible. A more 

detailed explanation than will be presented here can be found in [21]. 

According to the depth-first strategy any unexplored edges leading from the most re- 

cently discovered vertex are explored before any further unexplored edges are taken leading 

out of the parent of the current vertex. This process is applied recursively at every vertex 

and continues until ail of the nodes in the graph have k e n  explored. Al1 of the nodes 

neighbouring the current node p, aside from the predecessor, are said to be children to p. 

The pseudo-code shown as algorithm 1 shows the details of a recursive depth-first search 

algorithm which keeps track of the discovery time of each node in the SearchMeO routine. 

Algorithm 1 DEPTH-FIRST-SEARCH(~) 

for Y E C h i l d [ ~ ]  do 
if u.hasNotBeenSearched() then 

Depth-FirstSearch(v) 
end if 

end for(Chi1dren of p will be searched before p )  
p. Searc hMe0 

Depth-first search has several redeerning features that make it a go06 strategy to start 

with. Firstly, it is exhaustive. We are guaranteed that every node will be visited eventually. 

Secondly, it performs minimal re-traversai of the graph. With DFS we are assured that 

no edge will be visited more than twice6, which is a great property bearing in mind the 

burden of physical motion for mobile robots. Thirdly, this aigorithm has minimal memory 

space requirements. The memory requirements for the algorithm consist of only needing to 

remember the graph itself and the path to the current vertex. The memory size requirements 

are thence O(llVll log II Vil). This allows the robot not to have to try to match its cument 

location to a vertex in the graph since this is implicitly accomplished through the topology 

of the graph. Since reliable localization is a difficult problem in its own right, this is a very 

attractive property of depth-first search. Despite these qualities DFS is not exactly what we 

6Whereas one o f  the major drawbacks with breadth-first search is that vertices with children are visited 
2 * llsubtreef 1 times. This does not factor in asymptoticaliy to the performance, but it is a consideration in 
reality for our slow maving agents. 
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need. There are major shortcomings of DFS that we need to address for use in real, a priori 

unknown, environment that we will be dealing with. 

In unbounded environments DFS stands to perforrn perhaps very poorly, since it may 

never7 successfully descend the depth of the entire search tree. The pnnciple of locality is 

also sacrificed by DFS, something that we do not wish to give up on so easily. 

2.2. Searching the Plane. Consider the series of results collected by Baeza-Yates, 

Culberson and Rawlins in [Il]. We can get a flavour of how we may do better than DFS 

in a planar environment by adopting the trend suggested in the hierarchy of table 3. The 

trend to discover is that the family of logarithmic spiral crtntes, properly constrained to 

the appropriate environment, provide optimal solutions to search problems. We see this 

trend developed here in environments that are simple enough to study rigorously. It is our 

intention that with this motivation that later, when looking for efficient search strategies in 

less confined environments, that we may extrapolate these results to provide a mechanism 

for efficient search in dynamic reai environments. 

Under the assumption that we have to pay a significant cost to "probe" in our environ- 

ment proportional to the distance of the probe from Our current location there may be better 

ways to search. Tdble 3 shows a collection of known best results for such search problems 

under the restrictions given. 

The problem of searching in the plane for a line with different kinds of a priai knowl- 

edge regarding the line is an illustrative exarnple. Starting at the origin, (0, O). we begin 

looking for the line. Supposing that the line is a distance n steps away from the origin and 

that travel is performed taking unit "steps". We assume that we detect the line as soon as 

we encounter any point in the line. In the real world this is a non-trivial condition if one 

considers an example such as a target that can be identified as soon as there exists a direct 

line of sight from the agent to the target. 

To demonstrate the results of table 3 we suppose that we have a variety of different 

types of information conceming the line before starting. 

7perhaps "never" should be qualified with "for al1 intents and purposes". Bearing in mind o f  course that the 
relatively slow physical motion o f  reai robots rnay require an infeasible amount o f  time to search the extant 
o f  an environment. 
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Info Given 

Normal of a line 

~istancc. Slope 

Distance. AXL. Aligned 

2.2.1. Searching for a Line given its Nomal. When the [directed] normal to the 

line is known, the problem is trivial. We know that the distance to the line is n and the 

direction that the line lies in relative to the ongin. This condition is equivalent to knowing 

the solution. Recall that the shortest distance from the ongin to a Iine is in the negative 

direction of the normal. 

Our direction of motion is constrained to W2/R = R, a Iine and we know which 

direction the line lies in, so walking d o n g  the normal in that direction will yield our result 

in exactiy the minimai n steps. 

2.2.2. Searching for n Line Given Slope and Distance. When the distance and dope 

of the target line are known at the outset, but not the side of the origin to which the line lies 

then there is some arnbiguity to consider. The direction in which the line lies is unknown. 

This problem is equivalent to finding a point in a line knowing the distance. 

Again Our search is constrained to a line perpendicular to the slope, but unlike the 

previous case we do not know in which direction the line lies. So  we walk d o n g  the 

direction perpendicular to the line for a distancen, and if the line is not on that side then 

we know that we chose wrong initially and that the line is on the other side of the origin 

dong  the perpendicular. The total worst-case distance is thus 3n. 

Search Distance 

n 

3 n  

3 d 7 t  % 4.24n 

Nothing 13.81 n 
TABLE 2.3. An enurneration of distances searched to discover a line that is a dis- 
tance n from the origin. The hierarchy reflects varying kinds of knowledge regard- 
ing the line. Cornpetitive ratios for are found by dividing by n. These worst-case 
values are reported in [I l]  
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2.2.3. Searching for an Axis Aligned Line Given Distance. In this version, it is 

known that the line for which we search is parallel to one of the axes, but which is not 

known. With the information that we are given we know the line that we search for is one 

of the sides of the square shown in the following diagram. It is easily seen that the problem 

c m  be solved by investigating opposite corner points in the square formed by the possible 

configurations of the problern. 

Again this results in finding a particular point on a line without knowing the correct 

direction (see diagram). In this problem the distance to either of the points is a n  yielding 

a worst-case performance of 3& n. 

2.2.4. Searching fur a Line Given unly Distance- This case is one of the least intu- 

itive of the cases presented. It is worth spending a few moments to consider some possible 

approaches before reading on to the solution. The question and first [non-optimal] solution 

date back to 1956 from Bellman [14] and shortly aftenvard. in 1957 Isbell [40] presented 

the solution in a brief [and difficult to find] paper which is optimal. 

Given the distance to the target, but no more information, it is clear that the target lies 

somewhere on the circle of radius n centered at the origin. A quick calculation shows that a 

tour of n + 27rn - 7.28n is an upper bound, by walking to any point on the circle and then 

traversing the circurnference. Isbell has shown that we can do better than this according to 

the following method which asserts the optimal solution is achieved in (1 + & + F ) n  = 
6.397n. metric units. 
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Assume a circle radius n = 1 and centered a p. We have the following eloquent 

explanation by the original author: 

Being at p and unoriented, imagine a clock face. Walk toward one o'clock for 

fi units. (This takes you to a vertex of a circurnscribed regular hexagon.) 

Then turn on the tangent which strikes the unit circle at two o'clock. Follow 

the circle to nine o'clock and continue on a tangent. Upon striking the line 

which is tangent to the unit circle a t  twelve o'clock you have swept al1 the 

tangents to the unit circle, and that in a path of minimum length. 

Isbeil[40] 

The proof amounts to finding the minimum for 

which is indeed achieved at a = B. 
2.2.5. Searching for a LNle Given Slope. Knowing only the slope of the potential 

line but not the distance is equivalent to the problem of finding a point in a line, since it 

only makes sense to walk dong the perpendicular to the dope. Here we do not know the 

distance to the line. This case is equivalent to searching for a point in a line an unknown 

distance away. An malogy might properly be made to searching a darkened hallway for a 

light switch, when the searcher has no expectation for either how far the light switch might 

be nor for the length of the hallway. 
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We can describe the solution as a function f (2) : Z+ -+ Z+ where f (2) reports the 

number of steps to take to the right or  left of the origin before the 2-th turn. This function, 

provided with the progress condition of, 

is enough to speciQ a solution to the problem. The progress condition simply ensures that 

our solution will indeed explore new territory each time there is a change in direction, This 

is assured by taking at least one more step into unexplored temtory than has been taken 

so that the search will terminate. Since this is an altemating search, f (i) and f (i + 2) are 

consecutive distances from the origin on the same end of the line. 

-=c- -- I . . - - . - . -  -3- 

f(3) f( 1) O f(2) 

Baeza-Yates et ai. [Il]  show that the following function, 

results in an optimal solution. With this function the total distance that is walked is 

2 c ~ ~ ~ ~ ~ + ~  2' + n, since we  walk out and back on every iteration of 2' steps except for 

the last probe, during which we walk n. This is easily seen to be bounded by 9n steps, 

with a little bit of slack in the first inequality. In fact there exist algonthms which perform 

at 9n - B(logn)', Vz. It can be shown that the class of logarithmic spiral curves will 

achieve this bound in general. These performance properties of the logarithrnic curves will 
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be exploited in general framework for mobile robotic exploration. The proof that linear 

spiral search is optimal up to lower order terms is deferred to appendix A. 

1 Known 1 Search Distance 1 
Direction and Distance 7L 

Section 2.2.2 Dis tance 3n 

Section 2-25 Nothing 9n I 
TA B LE 2.4. This sub-table o f  3 illustrates the 1 dimensional subprobIem 
a point in a line with various amounts of a priori knowledge 

It is interesting to note the apparent regression that this result provides. This concludes 

the 1 dimensionai analog to searching the plane. While searching for a point in a line, 

there are 3 kinds of information that we may have (sumrnarized in table 4). If we know 

the direction and distance to the point then we waik directly there, taking the required n 

steps. If we know only the distance, then the arnbiguity of which side to search on reveals a 

worst-case performance of 3n making our search 3 tirnes longer possibly. Knowing nothing 

about the location of the point results in a further complication by a factor of 3. This last 

case requires a potential 9n steps and is the case we have just analyzed. 

2-26.  Searching for a fine Given Little or No Information. In this instance of the 

problem, the distance to the line is not known nor is the slope. We have no knowledge 

of the line beyond that there is a line in the plane. It seems reasonable that an optimal 

search path that discovers this line will be one that exhibits spiral self similan'ty. That is 

to Say that the curve will expand outwards during the search and that it does not rely on 

orientation or scale, since neither of these properties are known. This optimal curve will be 

self sirnilar with respect to both rotations and dilatations. This is a reasonable presumption 

for a solution curve by converse reasoning. Any curve that does not exhibit these properties 

will admit some line in the plane that is not found in the minimal number of steps. 

More precisely our search space is the plane, so from equation 5 we have that X = R2 

and Our set of isometries are G = (rotation, dilatation). The only known farnily of curves 

that exhibit spird similarity in the plane are the curves known as the logarithrnic spirals. 
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The class of logarithmic spirals are defined by the polar equations r = ko. It is claimed 

in [Il]  that the "best" numericai approximation for the logarithmic spiral is such that k zz 

1.250 - - - . Whether the authors have some theoretical method of generating this number 

or  whether it is just the number that yields the lowest worst case performance is unclear 

and unspecified. Clearly we are free to choose k as we wish as it indexes the entire farnily 

family of curves. Choosing k = 1.250 yields the claimed lowest worst case performance 

of 13.81n + O(1ogn) from table lowest 3. 

Although this is not a rendezvous method, we can cast it as one, with the rendezvous 

being between a mobile point agent and a line. The line has no search strategy and the point 

robot follows the strategy laid out by r = 1.250'. In this sense we have an asyrnmetric 

rendezvous vaiue of 

With the restriction that the line be axis aiigned, slightly more information about the 

pose of the target line is known. This has the effect of lowering the upper bound from 

13.81n to 1 3 . 0 2 ~ ~ .  These results are h v e d  at in a sirnilar manner as before, but the limits 

are approximated using numerical methods. 

This concludes the explanütion of  the entries in Table 3. It dso raises some interesting 

points. The method of search that is empioyed seems to be rather sensitive to the amount 

of a priori knowledge that we have of the environment and especially of the properties 

of our target therein. Selecting the search method that we should use is not always clear 

and the choice is dependent upon several factors, like the principle of locality, that are 

not necessarily related to efficient search in other common domains. Searching in noisy, 

dynarnicaily changing and unknown environments is a difficult problem. 

The important observation at this point is that there are a set of properties which un- 

derly this entire series of solutions. There is a trend to a generd solution method upon 

which the rest of this work relies. The  identification of the class of logarithmic spirals as 
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the family of curves which yield the optimal search strategies in their respectively con- 

strained environments. This general method employs the family of curves that we have 

already introduced and whose properties we will consider next. 

2.3. Logarithrnic Spirals, Ln retrospect here we observe an interesting aspect of 

this hierarchy of inquiries. Aside from the case of finding the shortest distance to a line 

given the distance, n. to the line8, a general trend of logarithmic spird search restricted 

to the appropriate domain serves as an approach which unifordy delivers asymptotically 

optimal performance. 

. * 

FIGURE 2.1. The path traced by f (i) = ($)' intersecting with rn = 3 concurrent rays. 

2.4. M Concurrent Rays. The case for searching m-concurrent rays is very sirnila- 

to that of searching for a point in a line, but offers further insight into that same problem. 

The assumptions here are that the robot is standing at the [common] intersection of m 

rays [see definition 2.11 and endeavours to find a target located on one of the rays. If the 

distance to the target is known, but not which ray the target lies within (comparable to 

'This is a special case in that the dornain of  the search is bounded. We know that the solution will be found 
on the circle of radius TL. This condition separates this case from the others, whose domain extent is infinite. 
As we will see this is the mark of a problem whose solution rnay bc best approached using a logarithrnic 
spiral search method. 
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knowing distance but not direction) then the obvious (2m - 1)n algorithm is optimal. If 

the distance is unknown, then this becomes the counterpart of the point-in-a-line problem 

from section 2.2.5 and yields some interesting results. 

DEFINITION 2.1 (Concurrent Rays). Rays or  search paths that emanate from a corn- 

mon intersection and extend without further intersections are said to be concurrent. If 
from that commun intersection point there are M such CO-terminal rays, we Say there are 

M-Concurrent Rays. 

This problem is worth addressing as it will tum out to be the correct setting for the 

experimental work presented in chapter 4. In fact a deviation of this problem will be what 

is specifically needed, when we drop the assumption that we have concurrent rays. Being 

able to speak quantitatively of searching in non-concurrent rays will be important later on 

and this nomenclature will serve to be useful throughout this paper. In environments with a 

"star shaped nature, this is the rnost useful approach. Although the theory will be extended 

to handle cases homeomorphically [see B.5 for a definition] similar to star polygons, the 

concepts will remain essentially the same. 

Given that we have m rays, the order is not important since the names of any of the 

rays are simple labels and cm be perrnuted, so cyclical addressing is fine from 1,2,  . . . , m. 

Later in the case of non-concurrent rays will this issue corne up again, since then, indeed, 

the order of visitation will rnake a difference in the overall performance. Again we see that 

in order to study the problem, we have the progress requirement that the function, f (i), 

which relates how far to walk from the origin before the i - th turn is, 

This has been coined by Baeza-Yates et al. [Il] as generdized linear spiral search as pre- 

sumably opposed to just spiral search, since the points we are interested in are the inter- 

section points of the two sets in figure 1 and the actual spiral set which is the set of dotted 

points forming the logarithmic spiral depicted. The generalized linear spiral search dgo- 

rithrn is defined in a similar manner to the Iinear spiral search from equation 13 as the 
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number of steps to walk before the ith tum starting from the origin. It can be shown (see 

[Il] and appendix A.2) that, 

will yield optimal performance. Thus we are instntcted about what base to choose for the 

denorninator in the tell-tale function. In the point-in-a-line case (m = 2) we have f (i) = 2'. 

for the case of m = 5, for instance, we see that the function we should use is f (2) = (5/4)'. 

This cornes naturally from the proof (see A.2), with a worst performance ratio of, 

mm 
l + L  (for large m). 

(m - 

So equation 16 provides for us an online way to detennine the optimal distance that 

should be walked during this kind of search. Upon realizing that we are faced with some 

number, M. of CO-terminal nys  to search and being at the cornmon root, we can use hf and 

equation 16 to infer the search distance that wili make Our efforts most effective. This fact 

will be called upon for our further generalization in chapter 4. 



CHAPTER 3 

Rendezvous S trategies 

Rendezvous strategies provide a scheme whereby two or more agents in a cornmon envi- 

ronment, and wishing to meet, can proceed in a manner that will result in an encounter. 

Rendezvous can be cast as a classic two player, zero-sum game, and the resultant analysis 

from game theory [36] can be useful for many restricted settings [l, 2, 41. Rendezvous 

between mobile robots in a real environment is more cornplex and requires graceful failure 

routines for the continued operation of the robotic system. Such a system has been designed 

and tested by Roy 1621 and we have seen some of the details of that work in chapter 2. 

In this chapter we consider the purely algorithmic solutions to the symmetric ren- 

dezvous search problem in the plane. This will be an ideal formulation and will not ac- 

comrnodate obstacles in the plane to interfere with the search. Handling the inclusion of 

obstacles in the plane is certainly not a difficult modification but we do  not need to accom- 

modate obstacles to arrive the long term properties of the rendezvous strategies, which is 

the goal. 

1. Rendezvous Search in the Plane 

We consider the case of 2 unit speed agents searching the plane for a single target. The 

agents can sense a region in the plane in a disk about their position of radius, r. We will 
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assume that both agents adopt the same search strategy, so that without loss of generality. 

we cm perfonn analysis on the half-plane and a single agent.' 

Following the advice of [Il] we will adopt the appropriate mode1 of spiral search as 

the exploration strategy. In this circurnstance, spiral search simplifies to walking concentric 

circles of odd radius, so that the boundary of the sensed regions just touch. This leaves a 

measure zero set unsearched so we  are guaranteed to find the target if it lies within the 

searched region. See figure 1 for an iliustration of the search pattern. 

FIGURE 3.1. The path traced by a, of concentric hemi-circles. The solid lines in- 
dicate the path the actual robot will sweep and the dotted Iines indicate the bound- 
M e s  between points covered in consecutive sensing passes. The robot can sample 
points a distance r from its physical location. 

The farnily of rendezvous strategies that we will consider can be described as follows. 

Every time our agent arrives back at the border of the half plane it has a choice to move back 

to the origin to meet with the other agent, or continue to search the next level of its region. 

We identiQ these alternative behaviors with an index q. We will evaiuate and analyze the 

cost of the altemate behaviors and attempt to classify the family of strategies according to 

the distances that they travel relative to one another. The distances that we will compare 

will be the total distance traversed. Distance traversed will be the total distance traveled by 

the agents, whether resulting in further search o r  in attempted rendezvous. Assuming unit 

'The asymmetric case where each agent may adopt a different strategy is a future expansion of this analysis, 
that would have to include the probability of failed rendezvous attempts in the cost function. 
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speed agents, there is a directly proportional relationship between the distance traversed 

and the time spent searching. These ci's will be the strategies employed, which c m  now 

be defined. 

Let ai E S be the strategy that rendezvous is attempted upon every i-th arrival at the 

search boundary. Let Z be the positive integers then rendezvous is attempted at border 

encounters from the set, {Z \ Z j ) ,  for strategy ai. Define O= to be the strategy ensuing 

from spiral search without rendezvous attempts (since {Z \ Z,) = 0). 

THEOREM 3.1 (Hemi-Planar Search Distance). Given sensor radius, r, the distance 

traversed &y a hemi-planar search strategy that does not attempt rendezvous is 

PROOF- The proof is a simple matter of adding the terms in the progression of the 

different legs of the search. 

Clearly this distance is infinite, since a, never attempts to rendezvous. The farnily of 

ai, i E Z are defined by the frequency that they attempt rendezvous at. For the strategy 

o3 for instance, rendezvous would be attempted at the ongin after searching for 3 turns 

since the last rendezvous attempt. Rendezvous attempts require a walk back to the origin, 

to check to see if another agent is there waiting for rendezvous, and a walk back to where 

the search was abandoned. Only distance is considered here as a rnetric. 

THEOREM 3.2 (Distance traversed during Rendezvous Search). Given sensor radiris, 

r, and a family of rendezvous search algorithms defined for searching the haij-plane, ai, 

that attempt rendemus after every i-th turning point, the distance traveled after the n-th 
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rendezvous attempt is 

PROOF. With the general pattern provided by equation 17 we can evaluate how each 

of the search strategies perforrns in t e m s  of the distance that it travels. We can easily go 

ahead and enurnerate the distance traversed by each strategy in the family, by applying 

similar analysis. Note that the sum is chosen to reflect the distance traveled between ren- 

dezvous attempts, breaking the infinite sum in this way will be useful when analyzing the 

strategies according to rendezvous attempts and we can safely take the sum term-wise due 

to the compactness ' of the plane. Yielding the sequence of distances walked at the n-th 

rendezvous attempt, 

'because we are working over ri compact domain, we are assured that convergent infinite sums will converge 
CO the same point regardless of how we group the terms of the sum. Addition is associative on convergent 
series on compact domains. 
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Splitting the sums up in this fashion allows us to see the pattern that evolves by the 

members on each of the respective rendezvous attempts. The pattern that evolves is intu- 

itive enough since for each member the distance, traveled between rendezvous iterations 

consecutive odd traversais of hemi-circies, followed by the trip to the origin. This accounts 

for the terms in equation 18, the TT term for the exploration trips, and the r term accounting 

for the rendezvous trips. 

Now we can characterize the distance that is wasted, D,, perforrning rendezvous by 

taking the difference of equation 18 and equation 17 resutting in the extra distance traveled 

at each iteration. This wasted distance is distance that would not be traversed by a lone 

searcher, or  by independent searchers in independent environments with no concern for 

rendezvous. D, is simply a measure of the extra work that is k i n g  done to coordinate 

the efforts of the agents. This is the largest part of the inefficiency introduced by the 

parailelization of work. This slowdown due to parallelization is quantified according to 

Amdahls Lnrw [37] of which a variation will be used to study the necessary inefficiency 
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introduced in the parallelization of work- 

If this is the accumulated distance that we waste at each iteration then our opportunity 

from fu&er search? It is the area, A, that we will see on the next iteration of the search 

THEOREM 3.3 (Hemi-plmtlr Search Area). Given sensor radius, r, the nrea, A, sivept 

in the haIfplane by the uj -th rendezvous search algorithnz afrer the n-th rendezvous atternpt 

PROOF. The proof proceed~ in a simifar fashion as theorem 3.2, first enumerating the 
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Then from equation 2 1 we see that what we expect to gain is area of the next iteration 

of search for Our strategy, oj. This is in inverse proportion to the accumulated distance that 

we have walked for rendezvous purposes. 

Ex(gain f rom search) 
Cost(rendezvous) 

That proportion is what we need to understand. 

Ares next Level 

from (20),( 19) 

The gain from search refers to the area that can potentially be gained by choosing to 

search further at the next turning point. The cost of rendezvous is the distance that we have 

to cover, of already visited temtory, to attempt a rendezvous with another agent. Both of 

these factors are explicit and simply refer to the distance traversed by the agent. 

The function illustrated in figure 2 shows the shape of the behaviour of choosing in- 

creasingly large search strategies. The height of the function gives an indication of the time 

wasted by our chosen search strategy relative to a,. It makes sense to have strategies of 

j < 1, which would correspond to not exploring the entire semi-circle before returning to 

the rendezvous origin, perhaps in circumstance where the sensing region was very large 

relative to the speed moved, v << R. 

2. A Cornpetitive Ratio Examination 

Assurning that we know the distance to the target for multiple agent search it is easy 

enough to derive the formula for the distance traveled for each search strategy employed. 
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Rmduvart o v n m  

FIGURE 3.2. The Quantitative Performance prescribed by equation 21 of explo- 
ration versus rendezvous overhead. 

If the distance is known to be d, the sensor radius r, then number of rendezvous attempts 

made will have to be r$l for strategy uj, where 1-1 is the integer ceiling operator. Then 

the distance traveled by each strategy, Dd(uj)  is given by 

and the 

Of 

resulting curve is plotted, for exarnple d = 10, in figure 3. 

course the cornpetitive ratio that we are examining here is in cornparison to the 

distance traveled by an omniscient agent that simply walks to the target and back to the 

rendezvous Iocation, for distance of 2d. 
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FIGURE 3.3. A plot of distances walked by the different strategies for a target at 
distance, d = 10. Hem r = 1. Note: the curve is monotonically increasing to the 
right after oio. The graph is layered by search strategies. d = 10 was chosen to 
compare the growth of the various strategies without occlusion. 

3. Bounded Distances 

If d c m  occur equally likely in the discrete range [1..D] then we have a uniform distri- 

bution on the probability of DTor = d with an upper bound of D. So 

and figure 3 shows that the minimum distance traveled occurs for strategy j = d. What 

strategy is now our best? That follows from 

easily enough. 



The general case is found by integrating over the probability distribution on the region3 

if we assume a uniforrn distribution over the surface area. This case cm be arrived at by 

where d D is the boundary of the enclosing space. 

4. Summary 

From equation 2 1 we have calculated the payoff schedule for the different rendezvous 

strategies. The quantitative results are shown in figure 2. The qualitative payoff schedule 

allow the development of an intuition for what the different strategies really provide during 

planar search. 

The result of quantifying the progression of the search allows for the development of 

the cornpetitive ratio of the performance of each strategy to that of an omniscient searcher 

with ideal search behaviour. A pIot of the efficiency of each of the rendezvous strategies is 

shown in figure 3. 

Section 3 details how the analysis c m  be modified ta  relax the restriction that the 

distance to the target is known. With this relaxation we assume a uniform probability over 

the boimded region for the search and show the necessary resulting modifications. It makes 

no sense to allow D + w and to speak of average performance with uniform distribution 

over an infinite range. Simply enough Pr(& = d) = limD,,(b) -t O and there is no 

chance of finding the target by any scheme. 

Much of the previous anaiysis has been motivated by Alpern's work as the result of 

both private communication in the winter and spring of 1998 and through various publi- 

cations such as [l, 2, 41. Also the important consideration of Anderson [S, 7, 61 and the 

original works by Gal 1361 and Schelling [65] should be noted. 

Having developed Our intuition now for planar search, we turn our attention to extend- 

ing the theory that we have seen for searching the plane into a more general scheme that we 

3The distribution of distances in some case, say a room, will be the distribution of distances frorn the agent 
to the points on the wails in the region. This is opposed to the simple concentric enclosure that this model 
assumes. 



can actually use on a functional robotic systern. This adaptation from theory to application 

is the topic of  the next chapter. 



CHAPTER 4 

Efficient Search in Real Environments 

We have seen in section 2.2 severai examples of optimal search results for planar search 

with various sorts of a priori knowledge about the environment. The setting that will be of 

particular interest is for a mobile robot in a somewhat less contrived environment. Given 

the concern that physicd motion is the most expensive operation for a mobile agent in 

terms of time we would like to design a system for efficient exploration. 

The mode1 for searching in an environment of concurrent rays will serve as a start- 

ing point for building a functional system to deal with the task of searching in practical 

environments. To map the interior of a building or perhaps set of roadways for a mobile 

agent is desirable functionality. From experience we see that rarely will such structured 

environments have more than 4 concurrent rays at an intersection. Despite that even having 

the ability to search 4 concurrent rays is insufficient. More comrnonly we will find that en- 

vironments will not only have "concurrent ray" subproblems but that they will in addition 

have hierarchies of these subproblems. This issue of hierarchicd concurrent paths will be 

dealt with in section 1. 

The problem of search in an unknown planar environment has k e n  addressed in the 

literature to sorne extent. The work of Anderson and Fakete CS, 71 refers to this class 

of problems as lawn-mower search problems. The idea k i n g  that to scour an environment 

with a sensor and overlap as little as possible the path that has dready been traced. It is of no 

use to cover the sarne ground twice with a lawn-mower and hence is inefficient. Chapter 3 
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addresses a sirnilar issue to the lawn-mower problem in an unconstrained environment with 

multiple agents assisting one another as a study of pure efficiency. 

In constrained environments finding an optimal solution to the lawn-mower problem 

is a problem worthy of study. However a map is required of the environment before any 

calculation c m  begin. If the environment is unknown, then the issue is sirnply to explore 

the environment in an efficient manner. In order to extend the capabilities afforded by 

concurrent search, let us consider searching non-concurrent rays. 

1. Searching Non-Concurrently Branched Environments 

Demanding that we c m  examine concurrent rays is still too siinplistic in practice. In 

the structured world that we would like to be able to cope with the techniques studied 

in chapter 2 are insufficient. Useful are the techniques that the theory provides for us, 

however adaptation and extension are going to be required for functional use in desired 

environments. 

Concurrency of the search rays is a specification to simplify the theory, however we 

would like to relax this condition to be able to perform well in more robust environments. 

Figure 1 gives some indication of what sort of relaxation we are asking for. We will intro- 

duce the notion of non-concurrent rays. 

DEFINITION 4.1 (Non-Concurrent Branches). Given a tree T(V, E )  of vertices (v E 

V) and edges (e E E) between vertices and the rree being rooted at a vertex r 3 r E N 

mlled the root vertex, we sny that T is a branched tree emanating from r . 

Our desire is to evolve a system based on what we know about the optimality conditions 

present during concurrent path searching and build them into an heuristic that c m  cope with 

this more robust setting. 

One of the features that makes searching non-concurrent paths different from concur- 

rent paths in a fundamental way is that there is no way of knowing the branching factor 

before beginning. The breadth of the search tree is unknown to start with. In order to not 
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FIGURE 4.1. Examples of environments depicting concurrent [CO-terminal] (a) 
and non-concurrent (b) branching. See definitions 2.1 and 4.1 respectively. 

restrict the system to particular environments an online solution for this problem has been 

developed. 

In section 2.4 of chapter 2 we find a description of how to search in concurrent rays in 

equation 16. Given that we know M, the number of separate rays, we know the distance to 

walk down the i-th ray is given by 

The case of non-concurrent rays poses the issue of discovenng new rays during the search. 

The solution to cope with this is to allow M to change dynarnically as the exploration 

progresses. Ad is therefore allowed to increase and decrease as information about the map 

is learned, as branches are detected and terminate, the search must continues on the rest of 

the graph (there is no longer a need to search again on the terminated ray). There is another 

way that Ad may decrease, in environments where intersection between the paths is dlowed, 

in cyclic environments, M decreases as paths rnerge, as well as terminate. This case will 

be discussed later, for now we will assume that we are working on acyclic environments. 

For searching in branching environments we keep track of the number of active [un- 

terminated] branches, M, in the known environment and recalculate 22 as these updates 

M occur. This is the key modification that we need to extend the theory from searching 

concurrent rays to searching in branching environments. Using this method to deal with 

the expansion of the search, the expectation is that we are doing as well as possible with 

the knowledge we have. 
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Most importantly we are keeping with the underlying therne that we have seen devel- 

oped in chapter 2. By recalculating the distances for the i-th turning point from equation 

22 in a dynamic way, we maintain the spiral nature of the search. It's this underlying de- 

pendence on the spiral growth of the iterative deepening nature of the search aigorithm that 

will provide the efficiency of this brand of search. 

2. Trees of Non-Concurrent Search Paths 

Distance will be measured as path distance from the origin to the current position. 

We will de fine path distance to be the distance traveled d o n g  the shortest known path yet 

traversed that joins the two points. In the case of acyclic environments there is no arnbiguity 

in this value. In environments that contain cycles, it is important that we choose the shortest 

of the possible paths for uniqueness [see B.61. 

In an tree structure it is sufficient to know only where the branches occur to have 

complete knowledge of the path structure. Branches are defined by the point at which 

they branch. The ability to reference the branch points together with knowledge about 

the preceding branch point is sufficient to allow deterministic navigation of the tree. Only 

very coarse sensoral information is necessary to be able to distinguish the possible courses 

available from a particular branch point. 

The branch points in the tree will be referred to equally as reference points, since they 

serve to index the tree structure. Some notation often used for referring to tree structures 

are parent branches and child branches. 

DEFINITION 4.2 (Tree Notation). A tree is a gruph in which every node has at most ci 

single unique parent. This ensures that there is a well-defined route to each branch. Such 

n structure is known in graph theory as a rooted DAG (directed acyclic graph). 

A cyclic graph is n graph G(V, E)  in which there is a path (uo, ul, . . . , vkj such that 

vo = v k  and vo, ut, . . . , ur; are distinct [21]. In a directed graph this can mean that there 

are several paths possible to arrive at a given vertex. This has the general implication that 

there are multiple paths between two points in the graph. 
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I f  q is a branch in a tree structure such that q is a branch off of a branch p (closer to 

the root) and r is n branch off of q Cfarther away from the root of the tree than q)  thÊn we 

Say that the parent(q) C p. and the child(q) > r. 

Navigation within cyclic enviroiiments is functionally more difficult with mobile robots 

thao tees  [rooted DAGs]. The trouble Iies in determining whether or not, upon arriving at 

a new branching point, the same location has been previously discovered dong a different 

route. This determination requires answering the problem "Have 1 been here before", the 

localization problem. Techniques in mobile robotics to perform this global position asser- 

tion depend on unreliable and limited sensors and are unstable. Locaiization techniques 

are contested in their own right, and although much progress has been made in this field 

163, 25,26, 32, 531 localization of sufficient resolution necessary to resolve path cycling 

issues c m  be difficult to attain. 

For our purposes cycle detection is resolved by using odometric data together with 

"sonar signatures" of branch points. Sonar signatures are dense sonar sarnples taken at 

branch points and stored in order to try to identify that point uniquely at some later time. 

Instabilities are produced in performance on cyclic graphs by both failure to recognize 

arrival at previously visited location, and by false positive identification. False positive 

identification occurs when a new location is identified as being a previously visited one, 

wrongly. Either of these failures are very difficult to cope with, as they S ~ ~ O U S ~ Y  effect the 

topology of the resulting map. 

This perspective of our environment allows us to make the critical transition frorn graph 

theory to a robotic search aigorithm. We induce a unique topology on a map with a given 

starting point according to where and when we detect branches in the environment. At 

any given branch point in the expanding search we have the beginning of two arms of the 

search. These are are topologically related to their parent arm with the root of the search 

tree k i n g  the origin of the search. 

An isomorphism is thus defined between a robot searching in a map, and a topological 

tree. It makes sense for us to apply Our algonthms on the space of this search tree, whether 

DFS, BFS or our spiral search approach. Due to the induced isomorphism, we have a means 



to translate the information back from the topological tree to the actual robot performing the 

search to optirnize the progression of that search in a dynamic manner. We can exploit the 

aigorithrns that work on topological structures to guide our search through the real world 

by way of this isornorphism. The notions of breath- and depth-first search well known in 

graph theory take on practicai real-world analogues. 

3. Summary 

This chapter details the necessary extensions from the optimal concepts reveaied in 

chapter 2 to an efficient search algorithm defined over a relaxed domain. We need less 

restrictions on the type of domains over which we can apply the spiral search concepts. 

This will result in an algonthm that we can still quantitatively study, but yet is capable of 

perfonning in a real environment. 

The means by which the extension from theory to application is done is by allowing for 

dynamic updates to the search parameters as information is gained about the environment. 

These dynamic updates are the key feature, but the search algonthm is a graph theoretic 

construct and so we need to interpret the real world as a graph. Hence the second important 

feature is the way in which we induce a topology on the search environment. 

Given an branched environment, a starting point and a search algorithm there is a 

unique way to perceive the environment as a tree consisting of vertices and edges with the 

branches occumng in the order the search algorithm discovers them. This isomorphism 

between the search environment and it's undedying topology give us a means to apply the 

search algorithms by mapping the perceived environment to the dynamically updating tree, 

applying the search aigorithm in order to determine the next step in the search and then 

mapping that decision back to the perceived environment as a decision in the progression 

of the search. 

Now, having designed a method that should be applicable in real environments and we 

have predictions from the theory on the expected efficiency of that algorithm, we c m  go 

on to test the predictions. In the next chapter we will define the experiment that will be 

performed and some of the dependent and independent variables. Care has been taken to 
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ensure that the experimentation will give correct results regarding the desired measurable 

quantities. 

The perception of an isomorphism from the real environment of the robot to the topo- 

logical structure of a rooted DAG allows a deterrninistic search through real environments. 

Chapters 5 and 6 will make thorough use of this relationship to match red-world behaviour 

to m algorithmically stable analogue. 



CHAPTER 5 

Experimental Method 

Experirnents to perform automatic exploration of unknown environments have been made 

to study the differences that various methods of search provide. Search is being performed 

using depth-first, breadth-first and our own spiral search algorithms. These searches are 

performed on a series of maps, some automatically generated, and sorne manually gener- 

ated. 

The robotic control technique is identical for the three different search aigorithms, Save 

for the steps explicitly related to choosing nodes within the underlying topological search 

tree. This fact ensures that the only differences in the performance of the search algorithms 

are explicitly due to the nature of the search algorithms and not some affect implicitly 

related to the systematic control of the robots. 

Discussion of the robotic control system that may have any bearing on the dependent 

experimental variables follows in the subsequent sections. T.he issues related to the genera- 

tion of the maps for the experimentation are addressed. The choice of the size of the rnaps, 

the relative size of the structures intemal to the maps and details of the map generation 

are some of the critical issues. Identification of some of the dependencies of any robotic 

systern will also be discussed. Mobile robotic systems in general have a certain complex- 

ity and some of the unique problems associated with mobile robots will be identifird that 

may have an affect of biasing experimentai method. This factor partly justifies the use of 

a simulator for the experimentd trials in so much as it allows us to control the effect that 
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reai-world, noisy, error prone sensors rnay inflict on the expriment without treating these 

reasonably sophisticated problems outside the scope of this study. Also, details of how 

the exploration of the maps is performed are given. The methods for determining initial 

parameters for the various search dgorithms are outlined to dispell any possible subjective 

bias in the experiments. 

1. Map Generation 

The search experiments to be done require a setting. There are several criteria that are 

desired from the maps that are to be used in the experimentation. 

a Absolute Size - The maps must be large enough and contain sufficient structure to 

merit study. 

a Relative Sizes - The overall size of the map with relation to the robot. The com- 

parative sizes of structures in the map {hallway length, room size, corner angles, 

. . .). 

0 Structure - The design of the structures. 

- Manually versus Automatic - Manual maps induce bias on the design (pur- 

posefully or otherwise.) Automatic maps may induce some sort of implicit 

bias into the experiments. 

- Width of Hallways - Narrow hallways/doors rnay prevent entry of the robot 

to a large part of the map. 

- Branching Frequency - Determines in part the depth of the topological tree 

related to the map. Search algorithms are very sensitive to perceived topolog- 

ical changes. 

- Initial Pose - Serves as the root of the DAG. Small changes in starting posi- 

tion may result in unprecedented changes in the topological representation of 

a given map. 
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The maps used to test the search algorithms have to be large enough to provide suffi- 

cient variety and be of complex enough topology' to be able to tease apart the differences 

in the performance of the various search algorithms. Depth-first search and breadth-first 

search on a tree that is one level deep are identicai. There is no point to even compare the 

algorithms on trivial trees. 

The relative size of  the map to the robot and of the rnap to its structures is important. 

Part of what is being studied is how the search algorithms perforrn according to time of 

execution of a certain task. With unit speed agents, tirne is linearly proportional to distance 

covered as long as the agents move continuously. So the relative distances in the map are 

important. The critical factors are: the scale of the map (relative to the size of the robot), 

the relative sizes of structures in the map (two maps with the sarne topology may induce 

different behaviours based on the relative sizes of the structures') and of course, the actual 

topological structure of the map. 

The manuaily generated maps have been designed with some bias in mind to try to 

illustrate pathological cases that may cause quantitative differences in the performance of 

the various search aigorithms. Automatically generated maps are used to try to provide 

series of maps free from human bias to acquire more statisticaily valid results. 

For the experimentation a large series of maps are used. Some of the smaller maps are 

hand drawn wi th purpose ful intent to generate pathologicai be haviour in the algori thms. 

The larger maps have been created automaticdly in a serni-random fashion. The automati- 

cally generated maps have several key requisite properties. The topology of the connections 

in a map of the "hallways" frorn the perspective of the search algorithm is the important 

criteria. These "hdlways" need not be much wider than the robot itself, an aspect of 3-5 

times the diameter of the robot is sufficient for Our purposes. The frequency that branches 

occur at are more critical and independent for this study of the way in which a "room" is 

actually searched. It is the large scale behaviour that we are interested in. The lengths of 

'The copology of a rnap refers to the way that the structures in that rnap are connected to each other. Shape, 
size and distance are not Our concern when we speak of the topology of a map, only the way in which the 
structures are interconnected. Tree diagrarns are useful to convey topological information. 
' ~ h e r e  is a good example o f  this effect in section 6.4. 
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the hallways are also important as the underlying metric that is used in the spiral search 

algorithm is dependent on distance. Also the choice of the initial pose in a map affects the 

performance of the algorithms on  that map. This effect is directly related to the topologi- 

cal layout that the robotic searcher perceives. With these concerns in mind the automatic 

generation of maps can be described. 

The map generation is performed in the following manner. A regular square grid is cre- 

ated with the total size of the grid and the resolution of the grid pattern k i n g  parameters. 

These serve to address the issues of scde  and the "radius" properties of the hailways. In or- 

der to create various maps from these similar initiai conditions, the grid intersection points 

are then randomly3 and independently displaced from their grid coordinate. A Delaunay 

triangulation is then performed on the displaced grid points creating a series of planar tri- 

angulations thüt differ from each other, maintaining still some sense of scale and radius. 

From one corner of the triangulated environment edges are recursively removed to create 

"runs" through the triangulation. From the interior of these "runs" edges are progressively 

removed in a pseudo-nndom manner to create progressions of branching "hallways" with 

the desired properties. Care is taken dunng this thinning not to join separate hallways. This 

has the effect of not creating cycles in the graph, although this is not a requirement for the 

search algonthms it is a requirement to ensure stable map generation. Boundary edges are 

not removed during this thinning since the condition of bounded maps is a requirement, 

especially for depth-first search, to ensure termination of the expenments. 

The resulting maps from edge thinning of the Delaunay triangulation of irregular grids 

have roughly the desired requisite properties. This method facilitates the generation of a 

test bed of experimentai environments with the appropriate properties to differentiate the 

performance of the various search aigorithms. 

"sing a pseudo-random number generator. Which, of course, is not purely random, but serves Our purposes. 

58 
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FIGURE 5.1 . These are half of the Maps used. The top two are the manually 
generated maps. The simulated length and width of these maps would be roughly 
20 meters each. 
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FIGURE 5.2. These are the rest of the randomly generated maps. These maps are 
larger than the previous ones king  roughly 30 meters a side. The robot was started 
arbitrarily in the bottom left hand conmer of the maps. 
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2. Experimentai Dependencies 

The field of mobile robotics faces a host of difficult problems that need to be addressed 

in any functiond robotic system. It is not our intention to solve each of these problems 

using the most sophisticated methods available". Critically addressing each of the problems 

in turn would both cause intractability of the system and would distract attention from the 

problem at hand; the performance of search algorithms in robust environments. 

Some of the well known problems in mobile robotics that are tractable, but difficult 

in their own right, that have direct affect on this set of experiments and have had to be 

addressed are as follows. Odometric drift and the accumulation of error between perceived 

and real movement and how to compensate for that error is an ongoing research problem 

in the field [59,60]. The creation of internal representations of the environment for future 

reference are critically dependent on the details of the sensor used, and the representation 

of that data. Attempts to be able to reuse this acquired information require some flexibility 

in interpretation of current data relative to existing knowledge in order to be useful. In 

particular, noise and error in odometric readings serve to create divergences between per- 

ceived and real position for a mobile agent. Also reliability and repeatability is a major 

concern for any kind of active sensor. Work on these and related problems is common in 

the field [24,23,66,54,47]. Again noise, error in the sensor itself and the action of sensing 

the environment serve to create divergences between real and perceived images. Low res- 

olution sonar is very susceptible to many distorting effects, some are well understood and 

some not. Despite these shortcomings, sonar has been judged to be a sufficient guidance 

mechanism for the purposes that we require. Such factors are anathema to the progress of 

the field of robotics. Particular in this work the development of robust systems that are able 

to function on real robots in real environments is equally inhibiting. 

Dead reckoning from raw odometric data is a very easy method with which to attempt 

robotic navigation. In the interest of the problem at hand, some dependence on such infor- 

mation is k i n g  used. Efforts have been made to absolutely minirnize the dependence of 

'For a brief discussion o f  how the various techniques o f  mobile robotics blend together and constructively 
and destmctively i nterfere in robotics research inregration see [45l. 
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the algorithm itself on odometric information, In fact at no time during the exploration of 

unknown temtory or within any of  the search algorithms themselves is odometric informa- 

tion used. The use of odometric estimation is used in the framework to facilitate motion 

of the robot through the already explored, known environment. In this sense, the robotic 

framework actually builds an odometric representation for the connectivity of the known 

environrnent. It is referred to only for navigation between reference points in the known 

map. Any method that can achieve this task can easily replace the use of odometric dead 

reckoning in the experimental framework without affecting the manner in whic h searc h 

is performed or without affecting the search algorithms themselves in any way other than 

utility. 

The reliance of the experimental system upon unstable and unpredictable elements 

inherent in mobile robotics is minimal. Some arnount of functionality is required to perform 

the desired tasks and so the use of odometric data and sonar dependence is justified. Careful 

thought has been given to avoid overt use of methods which are not easily upgradabie and 

yet prone to failure. These dependencies are flexibly bounded in terms of k i n g  able to 

perform in the presence of error prone sensors and most importantly, these reliances are 

modular enough to be easily replaced by different methods should the need arise. At present 

they are sufficient for completion of the task at hand. 

3. The Exploration Experïment 

The experiments have been performed in simulation on a robotic system simulator. 

The simulation system is fully capable of locally controlling a real robot with sensors. The 

scaling of the experiment from simulation to an actual robot would be a trivial matter aside 

from the difficulties discussed at the beginning of section 2. The simulation environment 

allows for control over some non-trivial aspects of  mobile robotics that are beyond the 

scope of this study such as: sonar sensor interpretation and dynamic odometric correction. 

The experiments begin with the robot coming online with the intention of exploring 

the environrnent in which it finds itself. The robot begins with no information about the 
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FIGURE 5.3. A possible scenario. The robot, indicated by the central dot, upon 
waking knows nothing of the environment. 

environment. Figure 3 will begin an illustration of the search progression. The initialization 

the robot performs consists of taking a set of sonar sarnples and deciding on a "wall" to 

move appropnately close to. The robot employs a wail-following technique to explore 

the environment. The distance that the robot finds itself from the wail that it approaches 

initially is used to seed the robots decision of what a "unit" wiil be in the current metric. 

This method of choosing a dynamically allocated metric unit is more appropriate than using 

some arbitrary fixed metric in hopes that the initiai surroundings of the robot may contain 

some sort of global scde information that could potentially aid the search. If the robot finds 

itself on a soccer playing field or in a partitioned office setting it is appropriate to let the 

environment suggest some initial metnc unit. The choice of step size has low-order effect 

on the long term behaviour of the search algorithm although it does affect the performance 

of any particular triai. 

Based on the assignment of the metric unit, the robot then performs a circumnavigation 

of the position that it has moved from. This circumnavigation is performed around a radius 

of twice the unit metric chosen. The purpose of this exercise is to try and establish an 

effective direction for the beginning of the exploration. This initialization is often enough to 

determine that there are some or several directions to begin the exploration. Topologically 
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- 

FIGURE 5.4. The concentric rings indicüte the bounds of the explored area when 
the number of concurrent rays is increased. This occurs when an obstacle is en- 
countered at a point in the middle of the exploration frontier within an area that 
was presumed to be a single ray, je at a n y  bifurcation. 

we have identified the root of the tree that will be used to guide our seaxh algorithrns and 

perhaps may have acquired sorne information about the base of the search tree. Success 

at this point to determine directions for the exploration is not necessary, but tends to be 

the case especially considering that the initialization radius is dependent upon some rough 

equivalence to the size of the room. In figure 4 the inner most enclosing circle would 

be the seed to the determination of the unit metric distance. The circumnavigation after 

initialization may have the robot map a distinct portion of the initial surroundings. In the 

case of figure 4 the robot may perceive an exploration with four separate concurrent search 

branches after this initidization stage. 

At this point the exploration begins. The exploration is based on a wall following 

method that uses the foilowing logic. The number of "concurrent search rays" at this point 

is zero of greater. Until there are at least two branches to search there are no decisions to 

make. The number of branches at any given time is dynarnic and completely dependent on 

the exact nature of the rnap, the search algorithm and the starting point of the experirnent. 

Figure 4 serves to illusuate this point further, as the search progresses beyond initialization 
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and down the independent branches some of the branches terrninate, and some are seen to 

branch further. This impacts the distance d o m  a branch that we will search according to 

the theoretical optimal search ratio laid out in section 16 o f f  (i) = (5)' . 

We are assuming that we are in an environment that has sorne sort of assignable topo- 

logical structure. Given this assumption breadth and depth first search are already satisfi- 

able. Spiral search, as is indicated in equation 16, requires the further assumptions to hold: 

That there is a branching structure that will drive the number of concurrent search branches 

to greater than twoS and that we have some method whereby to determine the distance that 

we have traveled along a path from the origin. This second requirement is not tied neces- 

sarily to rnetric distance per se and any Lyapunov potential function [see definition: 8.81 

can serve this purpose equally well. 

As we progress through the environment, we see where the increments take place in 

figure 4. These are labelled in the diagrarn for clarity albeit incorrectly. They are incorrect 

in reality since decrements d s o  occur when rays of the search have k e n  exhausted6. There 

is another issue present here that will be addressed and that is these rays are not in fact 

concurrent. The rays do not emanate from a cornmon point. 

This outlines an algorithm for extending the frontier of our search through a real envi- 

ronment. In the circurnstance of concurrent rays the aigorithm is designed to take advantage 

of what is known to be optimal behaviour in more restricted environments where quantita- 

tive evaluation is possible. The critical perception of an equivalence between the real world 

and the theoretical graph constnict shown in chapter 4 allows for the adoption of an efficient 

approach to planar search in this more qualitative setting of reai world structure. We have 

a method to adapt it to the non-concurrent situation in a manner made yet more explicit in 

chapter 6 section 3, in order to guide us in expanding our knowledge of the environment in 

a locality-centric manner. 

' ~ h i s  excludes the degenerate case; the search will still proceed in such an environment, but there will be no 
"spiral" nature to the search. 
6For instance the lower left region would cenainly have been completely explored before the M = 5 vertex 
would be discovered and hence would have resuited in removal from the list of open rays to explore along 
with a decrement in the numberof rays. So that by the time the kf = 5 vertex is discovered there will actually 
be at most 3 active search rays, however this is a pedantic issue. 
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4. Exploration of Unknown Territory 

When searchine unexplored territory an altemating method of wdl-following is used. 

By following the left wall for some distance then moving to the right wall and following 

it for a sorne distance, the search progresses into unknown territory in a reiiable and s a k  

way, while still k i n g  able to detect branches in the'hallway. Only local sonar sans  are 

used for this purpose and metric information is only utilized over a short range to minimize 

the accumulation of odometric error. 

FIGURE 5.5 .  Exploration of unknown temtory. By extending left and right 
searches dong the walls, branches are easily detected while crossing. Detection 
occurs between the second and third plates. 

A progression of exploration down a branch is shown in figure 5. The robot has only 

sonar range information about the location of the wdls. By following the left and right 

walls alternately, exploration progresses. Between the first and second plates of figure 

5 the robot has switched from the left to the right side for wall-following. Between the 

second and third plates a new branch in the search has k e n  detected. This series features a 

depth-first searcher, hence the search continues on deeper at every opportunity. The fourth 

plate shows the completely searched branch and the robot resurning search in a depth first 

manner into unexplored temtory. 
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Continuation of the exploration cycle ensure complete coverage of the map. With 

depth-first search, the robot moves through explored previously explored territory only 

when necessary; when termination of a branch forces traversal to a parent node. With 

breadth-first search the robot never searches into unexplored territory until al1 nodes at the 

current search depth have k e n  explored. With spiral search, the decision of when to switch 

between branches in the topologicd search tree representing is a little more sophisticated. 

In the next chapter results on the relative performance of the three search algorithms will 

be presented and the advantages of spiral search will become clear. 

5. Summary 

Efforts have been taken to perforrn a set of experiments thüt will show the qualitative 

differences between a variety of search algorithrns for automatic robotic exploration. To 

insure the accuracy of these experiments many of the dependent factors have k e n  isolated. 

However, some factors are beyond easy control. Suc h factors that may affect the experimen t 

have been identified and discussed. 

The generation of the senes of maps over which the experiments take place h a  been 

explained. The map generation has been done in a way to hopefully qualitatively sepa- 

rate the performance qualities of the different algorithms in an unbiased and statistically 

signifiant manner. Issues of map size, structure and topological representation have been 

carefully considered. 

The modeling of sonar data and the accurate use of odometric information for large 

scde maneuvering within a real environment are difficult unreliable tasks. It is not the pur- 

pose of this thesis to address these issues in a rigorous way and the use of the simulator to 

control only those aspects which are otherwise not part of the dependent experimentation. 

The maps that are loaded into the simulator have been "randornly" generated to have 

certain properties while not providing any heuristic advantages to the system. Some of the 

desired properties are the scale relative to the robot, the underlying topology of the map, 

the relative sizes and distances within the map of its constituent structures and that there is 

an "inside" to the map, that it is bounded for termination of each of the search aigorithms. 



Experimental methodology has been carefully explained. Both in the important sense 

of how the global search progresses in unknown environments and in the sense of how local 

exploration is performed within a branch of the search tree. 

Having been assured of the validity of the experirnental underpinnings we c m  progress 

to the results of the actuai experimentation. The next chapter will reveai our findings and 

veriQ our initial presumptions of the efficacy of the spiral search technique on a red  robotic 

system. Thcse results have been predicted by the theory on planar search in highly con- 

strained theoretical settings and are shown to scale to good worst-case behaviour in a real 

robotic system. 



CHAPTER 6 

Experimental Verfication 

Analysis of the performance of the search rnethods that have been the focus of this work 

will be shown here. The more traditionai methods of search are contrasted against the per- 

formance of search being performed using an implementation of the spiral search technique 

that has k e n  described. The setting for the experiments consists of a senes of manually 

and randornly generated floor map models consisting of interconnected hallways' . 

1. Data Presentation 

The analysis is presented using two types of measure for each map: The first graph for 

each map will indicate the time of discovery for a large number of points in each map. This 

will be referred to as the point discovery series. We assume unit speed agents in each of 

the experiments, so the time that a point is discovered is linearly proportional to the total 

distance traveled by the robot when that point is first visited. 

To make sensible comparisons, the time of discovery plots order the points according 

to depth-first discovery. DFS search in these experiments tended to have the lowest average 

discovely time per point. The points chosen for the plots are points comrnon to each of the 

different search algorithms corresponding to a rnonotonic depth-first ordering. 

The second series of plots show the time taken to discover d l  points at a given distance 

from the starting point. This series will be referred to as the dl-points time discovery senes. 

'These definitions are loosely used only to suggest that the search occurs in environments rich enough to 
encapsulate what are often referred to as office-like environments in mobile robotics literature. 
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The time depicted is the time taken to discover the las& point that is at most a given distance 

from the origin of search. This number is generated by taking the set of al1 discovered points 

in a map together with the time that each is discovered and then dividing the points into 

bins. These bins are relative to the size of the individual maps. We have arbitrarily chosen 

to subdivide the maps into 10 bins each. Thus each bin contains points that lie within 10 

percentile ranges of the longest path in the map. None of the maps used had a topologicd 

representation with a tree depth of more than 10 so this arbitrary choice of segmentation is 

of sufficient resolution to capture any qualitative differences in the algorithrns. 

For the point discovery series we know from the theory that in acyclic bounded graphs 

depth-first search will minimize the total distance [or time] for the graph. This is certainly 

expected and clearly holds true in the experiments as the mean discovery tirne for the DFS 

algorithm is seen to be consistently lowest. 

For the all-points discovery series the results will be discussed on a map by map basis. 

This measure is interesting as it indicates the worst-case time taken to discover any point 

in the map given its distance from the search origin. It is this worst-case behavior that this 

thesis was intended to address. Spiral search should provide good worst-case results for 

discovering points a given distance from the origin. Using the anaiogy of searching for a 

lost set of keys without k i n g  certain of the distance they lie from where they were assurned 

to be, then spiral search should provide a least cost approach to the search. The results 

from these sets of experiments reinforce our belief that spiral search achieves this primary 

objective. It is worth noting that the expenments show the dl-points discovery time taken 

over a global maximum of search distance. This is important and perhaps counter-intuitive, 

even though spiral search takes significantly longer to find some points, the worst-case time 

of discovery is significantly lower than depth or breadth first search on a large category of 

interesting maps. 

2. Underlying Observations 

The nature of the "logarithrnic spiral" search pattern should not be misunderstood. The 

spiral nature of search is not readily evident during the actual search. Nothing in the search 
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itself seems to obviously display any spiral properties. The only use of spiral curves is in 

choosing the points during which the search is advmced to search other rays of the already 

known map. 

FIGURE 6.1. The nature of the underlying spiral guiding the search progression. 
The dots represent the tuming points chosen while perfoming spiral search on this 
map. 

Figure 1 shows a typical rnap with the turning points of spiral search depicted by dots 

and joined in order of  occurrence. During the search, these points signify places where the 

search algorithm signalled the robot to abandon search and continue down another node 

in the underlying search tree. By joining the points it is hoped that sorne feel for how the 

spiral nature of the search development actually relates to the physical rnap. 

Tuming points are selected by their distance from the origin of the search. That dis- 

tance is measured within the map, as the shortest path from the origin that the robot has 

taken to its current position. The number of branches that the robot will encounter during 

its search changes dynamically as the search progresses based on the robots current percep- 

tion of the known map. The unit step distance is initialized to be roughly the width of the 

hailwaylroom in which the robot finds itself to begin. To recall from equation 16 both the 
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unit step distance and the number of branches factor into the calculation of the next search 

distance. 

The choice of the metric is independent from the the large scale behaviour of spiral 

search. Hence, use of some other metric may admit a different evaiuation of cost during the 

search while maintaining the benefits gained from a spiral search approach. Any potential 

field may equally serve to drive the selection of the tuming points. This is due to the unique 

fact that the farnily of logarithmic spirals are invariant under rotation and dilatation in the 

plane. As long as the function chosen to drive the search is o Lyapunov' function. then we 

are guaranteed that spiral search will behave with the worst case behavior that we seek. This 

makes spiral search a candidate for use in various other domains than just planar search. 

Search in higher dimensions [i.e. undenvater or outer space settings] or search dnven by 

different potentiai fields. Robotic application areas where this may be useful could range 

from volcanic exploration, where a temperature gradient potential field might be seen to be 

important, or nuclear reactor exploration where there may exist radiation gradients to drive 

the search as a potential field. 

3. The Test Bed 

A battery of experïments have been perfonned using variations in the search methods 

to determine the performance of these algorithms relative to each other in actuai settings. 

Many different maps have been used in the generation of the data. For each experiment the 

map and the starting pose of the robot was identical. The different algorithms tested are 

variations to a depth-first search, a breadth-first search and spiral-search approaches. 

Several examples each of a series of iterations of rounds of the experimental procedure 

follow. These figures show stepwise progression by one of the algorithms in question 

in an experiment on a hand drawn. pre-constructed map [seen in figure 21 representing 

perhaps a set of haliways in a building. Whereas one of our test robots has a diameter of 

'see B.8 for a definition 
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FIGURE 6.2. One of the simplest maps used for simulation testing. 

50 centimeters, the relative size of the map would be roughly 25 meters. This is the rough 

scale of the environment to the robot used for most of the experiments. 

FIGURE 6.3. The robot at the end of the first iteration of search, f (1). Search 
depth is not logged until the robot detennines that there is more than one possible 
branch to explore, Le. Ad > 1 [ M  from equation 161. 

Figures 3 - 5 indicate the progress of the simulated robot at the end of each successive 

spiral iteration. The extent of this map is not so large that a second cycle results in complete 

traversal of the environment. This series is intended to indicate the nature of the progression 

of the algorithm in simulation. The algorithms run sinulady on al1 of the maps. 
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F ~ G U R E  6.4. The robot depicted at the end of the second iteration, f (2). The 
search w il1 continue down the next unexplored branch in order to maintain spiral 
growth in explored area in a branch-wise sense. 

FIGURE 6.5. The explored area in the map after the third iteration, f (3) steps 
down the third my. f (4) will prove large enough to finish exploring each of the 
branches completely before another spiral iteration is required. 
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The spiral nature of the search algorithm is again suggested by the progression of the 

robot down each of the branches of the map. 

figure 1 was generated. 

This is gives some perspective as to how 

F r a  RE 6.6. This series illustrates a run by the breadth tirst search progression. 

A series of steps dong the breadth-first search of a different map shown in figure 6 con- 

trasts that of figures 3 - 5. The robot is seen to perform a branch switch every time there is 

a new level of branch discovered. Again this is based on the interpretation that branches in 

the real world correspond to vertices in the topological representation mentioned in chapter 

4. BFS still corresponds to the traditional use from graph theory, where ail cousin vertices 

are visited before any child vertices by this correspondence. This kind of behaviour will be 
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seen to fail to be very useful in a performance sense. An intuition for why the performance 

in this case may be developed by gained by perceiving that the number of branch switches 

grows in linear proportion to the number of edges in the topological representation for a 

map. This is a scale independent measure. Recognizing that breadth first search does not 

scale with the map should give us some intuition for why the constant factor overhead of 

branch switching will result in unimpressive search performance. 

The experirnents are run on a variety of hand drawn and randomly generated maps. 

The results from each map are compiled and offer a large enough range and variety in 

findings that any qualitative performance observations that are made will accord closely to 

real performance of the algorithm. 

4. The Experimental Results 

Experimental trials verifi the original postulate that spiral search has better worst- 

case search performance than either depth- or breadth-first search. Spiral search does not 

perform best in every case. Dependency on the robots starting point in a given map and 

the underlying topology of the map is clearly factor into overall performance. Interesting 

combinations of these factors directly from the experimental results will be addressed in 

the discussion of the experimentai findings. 

Both tirne of discovery and dl-points time discovery plots will be shown for al1 of the 

experiments discussed. To reiterate, the conclusions that we expect to discover from the 

theory are that in bounded acyclic maps, depth-first search should explore the maps with 

minimum re-traversal of discovered wea, resulting in a low average discovery time on a 

pose-per-pose basis. The second result that the theory should predict is that spiral search 

will perform better while atternpting to discover al1 points that lie within a given radius of 

the starting point. To see how these two expectations fare under actual experimentation on 

a robust robotic system results are presented in Our time of discovery and all-points time 

discovev plots to respectively uncover the desired trends. 
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FIGURE 6.7. These experimental results from an unbranched "hdlway" type map. 
These resutts would s u g e s t  an approach to looking for a light switch in adarkened 
hallway. 

The f i ~ t  experimental results, shown in figure 7, are for a rnap of pathological simplic- 

ity. This rnap was manually generated and serves as a trivial case for study. The rnap is best 

described as a single, long hallway, with no branching features. The robot starts searching 

somewhere in the middle of the hallway and proceeds to search its length. The experiment 

with the robot starting at an end point of the hallway shows identical performance for the 

three algorithms. This case shows a minimal rnap and starting point configuration to differ- 

entiate between spiral and either DFS or BFS, both of  the latter perform identically since 

there are no bifurcations in the rnap to separate their performance. The hallway is long 

enough to separate the performance of spiral search from the other algonthms, nonethe- 

less. 

This experiment is akin to looking for a light switch in a darkened hallway, given no 

information on the starting point of the search nor on the location o r  distance to the light 

switch. This experiment closely approximates the theoretical discussion ir. chapter 2 of 

section 2.2.5 and searching for a point in a fine of unknown dimensions. 

From the perspective of the time of discovery per point in the leftmost plot in figure 

7 there is no difference in the performance of the DFS or BFS approaches. Nor is there 

any overhead in either of the algorithms of traversing dready discovered area in the rnap 
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FIGURE 6.8. The graph on the left shows the time that [common] points are dis- 
covered based on algorithm. The Bar graph depicts the time at which the last point 
at a @en distmce is discovered based on the various search algorithms. 

beyond what is essential. The altemations caused by the spiral search approach induce 

some such overhead in the progression of the search, resulting in a slightiy higher time of 

discovery for roughly half of  the points in the map. It is evident that the scale of the map 

caused the spiral search algorithm to altemate once during the search between branches, 

this should be obvious from the time ofdiscovery plot. 

As the theory suggests, however, a different truth is borne out in the dl-points discov- 

ery plot on the right of figure 7. Indeed we see that altemating between branches results in 

a 12.5% lower average dl-points discovery average in this particular case on the behalf of  

spiral search. This is encouraging and suggestive that DFS or BFS are clearly not capable 

of delivering good worst-case behaviour even in some simple situations. The difference 

between the performance of spiral search and DFS would continue to grow in favour of 

spiral search in experiments with yet greater scale. This experiment illustrates the advm- 

tages of modified spiral seamh but since it represents a test case cioseiy approximating an 

early theoretic result it is  an important experiment to test the validity of the theory. 

The experiment with results shown in figure 8 was run on a small, manually generated 

map. The topology of the map is a complete balanced tree with depth two. Each of the 
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hallways joining the nodes are roughly the sarne length. The intent behind the design of 

this map was to provide a minimal rnap such that each of the algorithms would perform 

exploration of the rnap in a manner unique to itself. Any rnap with less nodes in the topo- 

logical representation would fail to uniquely differentiate the various search algorithms' 

properties. 

The time of discovev plot on the left in figure 8 shows mean performance of DFS 

to be the lowest. followed by the rniddling performance of BFS and having spiral search 

with the highest of the mean performance values. These findings essentiaily represent the 

redundancy in the exploration for the different algorithms. BFS spends some time traveling 

through previously explored temtory, while spiral search altemates even more often thus 

spending more time traversing already explored territory than BFS and arnassing a greater 

overhead of travel than either of the other algorithrns to perform a complete exploration. 

All-points tirne discovery performance displayed in figure 8 on the right, bears a sim- 

ilar bias towards the performance of both DFS and BFS. Spiral search in this case has the 

highest mean time for dl-points discovery while DFS and BFS perform nearly identically 

in this right. The brutal symmetry of the underlying topology and the simplicity of the rnap 

itself make either BFS or DFS equally well suited to this task at hand. Contnbuting to the 

high overhead that spiral search endures here is the fact that the rnap is very small. 

The topological tree representing this rnap is only of depth two. The rnap is simply 

not large enough to allow the dividends of the spiral search approach to overcome the 

overhead paid in the early stages of search. This experiment is biased against worst-case 

performance, the syrnrnetry of the rnap and its small size make it closely approximate a 

best-case scenario for both DFS and BFS. This is the exact reason behind the use of this 

map in the experimental battery and the justification for it as a manually generated test 

case. 

The results in figure 9 corne from an experiment nin on an automaticaily generated 

map. These results are fairly typical of the findings for the autornatically generated maps. 

The size of the rnap is considerably larger than that of the previous manually generated 
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F I G U R E  6.9. The first of the randomly generated maps. The area of this map is 
considerably greater than the manually generated maps. More complex behaviour 
is seen in the time of discovery graph on the left. 

maps. This fact alone allows for more alternations for the spiral and BFS algorithms. This 

fact c m  be seen by the number of fluctuations in the left of the figure by the spiral search 

and BFS algorithms relative to DFS. 

One interesting fact about this experiment is that spiral search actually has a lower av- 

erage time of discovery than BFS. The previous experiments took place on smaller maps 

and so the overhead paid in redundant travel was relatively high for spiral search. In this 

experiment we see that as the maps get larger in size spiral search has a diminishing mar- 

ginal return o n  redundant travel relative to BFS. DFS still has lowest tirne of discovery, but 

the rnargins between spiral search and DFS are closing too, although this is an asymptotic 

reiationship. 

The dl-points rime discovery plot on the right of figure 9 shows that spiral search 

handily outperforms both BFS and DFS having performance Urnes of 83% and 77% re- 

spectively. DFS here exhibits a very typical failure mode. It achieves the lowest dl-points 

discovery time because of a asymmetry in the balance of the topological tree. DFS spends 

a considerable amount of time searching points far from where it begins, while there are 
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FIGURE 6.10. This is an interesting case where DFS has better mean performance 
time than Spiral Search. Although the results for are very close in terms of mean 
performance DFS prevails, This result is linked to the the map topology and initial 
pose used in the expriment 

points very ncarby the origin that remain unsearched. This contradicts the principle of Lo- 

cality . This fact will be further discussed in the experiment relating to figure 12 where the 

effect is more obvious. 

Figure 10 summarizes an experiment run on another of the randomly generated maps. 

We see that in some cases spiral search does not perforrn the best in terrns of ail-points 

discovery. This experiment finishes with DFS having an dl-points discovery time of 94% 

of that of spiral search and 84% that of BFS performance. The cause of this is that there is 

an asyrnmetry in the topologicai tree of the map that favours DFS. 

The issue is particularly related to the asyrnmetry of the topology of the map and the 

relative lengths of the hallways therein. From the starting point in the bottom left corner of 

the map, shown on the Left in figure 11, the bulk of the map is Laid out in such a manner 

that the clockwise depth-first searcher is able to discover the large majority of the area of 

the map before descending into the relatively short branch from the bottom of the map. 



6.4 THE EXPERlMENTAL RESULTS 

FIGURE 6.1 1. The topological representation on the right illustrates the map stnic- 
ture with edge weighting roughly corresponding to the lengths of the edges in the 
map on the left. This correspondence of physical environment to topological repre- 
sentation is nicely illustrated here and is crucial to the development of a real-world 
system from the theoretical primitives examined: Robots opemte in the real world 
and algorithms operate on data. Here there is a well defined relationship between 
the two that can be exploited. There is a strong bias in this particular configuration 
that favours [clockwise] depth first search. 

The topological layout as perceived from the initial pose in the bottom left hand corner 

is üpproximated on the right in figure 11. Some attempt was made to convey a sense 

of the relative weights of the branches according to length in this representation. The 

correspondence between the physical world that the robot operates in and the topologicai 

representation that allows quantitative study of search algorithms is well illustrated in the 

figure. Breadth-first search, for instance, is clearly applicable to a topologicai graph and 

the correspondence shown here allows a practical interpretation for the less obvious use of 

breadth-first search in real-world search. 

This experiment d s o  suggests the sense of dependence that the experiments have on 

the choice of the initial pose. In this example a decision to start sornewhere else on the 

map woüld have a strong influence on the performance results. Beginning from a different 

location will have the effect of rotating the perceived topological tree for the map to have 

a different root. This would change the perceived asymmetry of the tree and of the distri- 

bution of explorable area in the map would be different. These factors al1 have an affect on 

the relative performance of the search algonthms. Although this experiment finds a lower 



6.4 THE EXPERMENTAL RESULTS 

mean dl-points discovery time for DFS the margin of improvement is quite small, at 696, 

for the gain over spiral search. 

7 .  

FIGURE 6.1 2. A common pitfalf. The square shape of the dl-points distance on 
the right indicates a shoncoming of depth-first search, 

Both experiments shown in figure 12 have a comrnon trait that illustrates a typical 

shortcorning of DFS. While DFS is very efficient, that efficiency is gained at the expense 

of neglect. Both of the results in the dl-points discovery graphs on the right show poor 

performance for DFS. The shape of the bar graph in both experiments for DFS is nearly 

square. While DFS is efficiently searching points far off from the origin of search, there 

are points very near to the origin that are completeiy neglected. In both of these examples 
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this effect is exacerbating in terms of not discovering a very large proportion of the area of 

the map until the very end of the search. 

FIGURE 6.13. A fairly typical result from one of the experiments done on a map 
from the set of large maps. The relative mean performance of the search algorithm 
is staying reasonably consistent, but the scale of the dependent axis is increasing. 
This indicates a growing gap in absolute performance. 

The results on one of the larger maps is shown in figure 13. The results over the 9 

experiments performed on these largest sized maps did not v a q  greatly in relative terms 

from those results perceived in the first set of experiments on the automatically generated 

rnaps. The size of these maps would be approximately 30 meters x 30 meters assuming the 

robot were 0.5 meten in diameter. This corresponds to a 225% increase in the area of the 

maps. 

The typical result shown in figure 13 shows that the relative performance of the search 

algorithms is remaining fairly consistent with results seen previously on the smaller maps. 

Certainly the absolute difference between spiral search and the performance of the other 

algorithms continues to grow. This same tendency is expected as the maps grow in size. 

The analysis that predicied these results were worst-case analysis predictions, and we see 

that the convergence to the wont-case behaviour has already began to show itself in our 

barrage of tests. 
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On unbounded we can predict the terminal nul1 results for DFS. Ln the situation of a 

map with a breach in the hull, DFS will never discover the entire map. Once the depth first 

searcher discovers the breach to the "outei' world, it will never retum to points near the 

root, if the "outei' world is infinite. Nor will BFS be guaranteed to search the entire of 

the interior. There is a guarantee that some non-trivial percentage of the rnap area will be 

discovered, but when BFS exits to the "outer" world (except for in some conditions of the 

"outer" world containing branching points in a specific manner) BFS will never retum to 

the root of the search. However, we do have a guarantee that even it this terminal setting 

spiral search will still discover the entire area of  the map eventually. Its turning points are 

stimulated partially by the distance traversed, so it is possible that even in an unbounded 

map that the area near the root of the map will be discovered. This sort of behaviour is in- 

dicative of the graceful degradation that is so highly desired in robotic system architecture. 

5. Summary of Results 

Presentation and analysis of the proposed experiments has been shown in this section. 

Extensive testing of the proposed algorithms has been performed on a simulator over a 

series of appropriate test maps. The data resulting from the experiments has been organized 

in 2 types of graphs. Time of discovery graphs depict the time at which a subset of regions 

from the environment were discovered by each of the algorithms and dl-points time of 

discovery show the time taken to discover al1 the regions lying a certain distance from the 

starting point by each of the different algorithms. 

Some observations have been noted regarding the interpretation of the underlying log- 

arithmic spiral search pattern. An example from one of the experimental maps is used 

to elucidate the relationship between the spiral nature of the search algorithm and its ob- 

servable effect during the progression of the search. A more detailed discussion of the 

characteristics of the experimental maps has also been made. 

The predicted performance suggested by the undedying theory is indeed borne out by 

experirnen tation. The all-points discovery series is interesting as it indicates the worst-case 
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FIGURE 6.14. Summary Results 

time taken to discover any point in the map given its distance from the search origin. It 

is this worst-case behavior that this thesis was intended to address. Spiral search has been 

seen to provide good worst-case results for discovering al1 points a given distance from the 

origin. Using the analogy of searching for a lost set of keys without k i n g  certain of the 

distance they lie from where they were assurned to be, then spiral search should provide 

a least cost approach to the search on average. The results from these sets of experiments 

reinforce Our belief that spiral search achieves this primary objective. The worst-case time 

of discovery is significantly Iower than depth or breadth first search on a large category of 

interesting maps. 

The mean scores for the dl-points discovery series have been collected and summa- 

rized from the entire set of experirnents. The averages of these experiments show that spiral 
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search indeed tends to perform significantly better at this task of dl-points discovery. Spi- 

ral search over this battery of tests performs 11.9% better than BFS and perforrns 16,6% 

better than DFS in terms of average time to discover al1 points a certain distance from the 

origin. Figure 14 surnmarizes the dl-poin ts ,discovery mean performance for each of the 

experimen t s performed. 

We have provided experimentally generated results showing the efficacy of spiral search 

over the more traditional types of search of depth and breadth first search. These results are 

drawn frorn a set of simulated test runs of the algorithms on interesting, non-trivial maps 

that are representative of office-like environments. The simulations have k e n  built to ex- 

hibit reliable behaviour with attention paid not to impact any of the independent variables 

of the expriment addressed in chapter 5. 



CHAPTER 7 

Conclusion 

In this thesis we have considered a new algorithm for efficiently searching with a moving 

robot in a planar environment containing obstacles. Our work integrates previous theo- 

retical work with a functioning robotic simulation for testing and cornparison of the new 

implementation. 

Our work is founded in the theory of planar spiral search by Baeza-Yates et ;il. [Il]. 

The techniques of spiral search that we have enumerated in chapter 2 are extensible to non- 

pianar search, this is interesting future work. Investigations in the theory of search and 

search games in particular led to the sub-field of rendezvous search studied in detail by 

Alpern [l]. In chapter 2 we chronicle the development of a multi-robotic implementation 

by Roy [62] testing solutions to the rendezvous problem based on optimal theoretic results. 

In chapter 3 we provide analysis for the rendezvous problem in the half plane without 

obstacles. 

Based on this theoreticd work we develop a novel approach to a problem in plana 

search. First we constmct a graph from the stnictured planar region that we face with 

the robot. Then, opposed to the more traditional methods of breadth- or depth-first graph 

search, we develop Our brand of "modified spiral search" as an iteratively deepening depth- 

first search using the principles discovered in the theoretical work to ensure efficiency. 
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This is an extension of existing work [Il] that proves the asymptotic optimality of spi- 

ral search in more abstract environments. Our work shows how to search a open or polyg- 

onal environment in a manner that is efficient in cornparison to the optimal distance that 

would be traveling if the location of the goal were known in advance. This is accomplished 

by searching paths that are explored with a search radius that increases as a logarithrnic 

spiral based also on the number of branches that have been detected in the environment. In 

the experimental work we present, the feasibility and typical performance is illustrated. 

1. Future Work 

1.1. Experimentation on an Actual Robot. The architecture the simulation has 

been built on is fully capable of interfacing with an actual robot. It is fully possible that 

experiments can be performed in actual environments given reasonable solutions to typical 

robotics problems. 

(i) Place recognition - answenng the question "Have E been here before?" is criticai 

for traversal of previously seen temtory, resolution of cycles in the map and for 

deciding when branches actually occur in the environment. Whether this is done 

using corrected odometry, dense sonar scans, laser range data, visual image methods 

or any combination of these, place recognition is crucial. 

(ii) Localization - the ability to localize accurately the position of the robot in the 

environment based on sensor input and reference to an intemal world representation. 

(iii) Safe Navigation - navigating through the known map and into unexplored temtory 

in a reliable and sde manner, so as not to incur darnage to the robot, others in the 

environment, or to the environment itself. 

With reasonable solutions to these problems, physical testing of the search algorithms c m  

proceed, 

1.2. Multiple Coordinated Robots. One exciting avenue for further work is ex- 

amination of parallel implementations of search for use by multiple robots: this leads to 

issues to how to subdivide the problem and how and when to merge partial results. The 
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rendezvous search approaches that we have studied would be ideal candidates for the im- 

plementation of multi-robotic search. The gains from work in parallel could be great given 

effective means of rnerging data and partitioning work among the agents in a dynamic way. 

1.3. Variations on the Search Algorithm. The success of the modified spiral 

search algorithm in solving the ail-poinîs distance problem motivates testing with alter- 

native search algorithms. 

An aiternative heuristic that seems apparent might be to use the modified spiral search 

approach, but attempt to make branch predictions based on suspected size of map and 

historical branch rate. A probability could be assigned to the length of new hdlways, the 

distance traveled before an expected branch, the size of rooms, al1 based on reasonable 

inferences from known quantities from the rnap so far. It would also be interesting to try to 

predict the number of branches, M7 in a map based on some probabilistic guess, and then 

have fewer updates to fi1 dynamically during the search to see if this could be beneficiai to 

search performance. 

The accrual of positional error (for example via odometry) is a real problem. This 

suggests another search strategy that could involve returning to previously-explored re- 

gions slightly more frequently that might be suggested by the analysis presented here. The 

"localization visits" may contribute a level of reliability to the system that may facilitate 

portability to a real robotic system. 

A related issue is that most real range sensors have an accuracy that diminishes with 

distance, and hence c m  be described in probabilistic tems.  In some cases it may be prefer- 

able to search more deeply in regions were visibility is obstructed in order to assure a uni- 

form coverage of free space dong different paths. This suggests that probabilistic search 

may have a slightly different form than modified spiral search. 

1.4. Variations on the Potential function. Perhaps search using different potential 

functions, rather than metric distance as used here, could make the algorithm proposed here 

for planar search appropriate to a larger variety of environments. Any Lyapunov function 

could act equally well as the potential function underlying the search. The hierarchy of 
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spiral search techniques seems to prove efficient in more complex realms, as our experi- 

mentation here shows. 

Perhaps adaptation to a higher dimensional search algorithm with a switch in the un- 

derlying potential function could prove to make this technique remarkably useful. The ef- 

fective adaptation of spiral search to 3 dimensions may make contributions to the efficiency 

of underwater search or space exploration. Perhaps useful alternative potential functions 

may be the availability of Iight, for underwater visuai application. or perhaps gravitational 

field potential for search of large areas of the galaxy. 

2. Enurneration of Results 

The expected results from the theory are borne out by experimentation. The dl-points 

discovery series is interesting as it indicates the worst-case time taken to discover any point 

in the rnap given its distance from the search origin. It is this worst-case behavior that this 

thesis was intended to address. Spiral search has been seen to provide good worst-case 

results for discovering al1 points a given distance from the origin. 

The results from experiments reinforce our belief that spiral search achieves the pri- 

mary objective of efficiently searching in complex environments. The worst-case time of 

discovery is significantly lower than depth or breadth first search on a large category of 

interesting maps. The averages of these experiments show that spiral search indeed tends 

to perforrn significantly better at this task of dl-points discovery. Spiral search over this se- 

ries of tests performs l 1.9% more efficiently than BFS and performs 16.6% more efficiently 

than DFS. 

Modified spiral search provides aiso the secondary objectives that rnaps are searched 

in finite time, even if the environment is unbounded and that the search is performed in 

a non-neglectful manner. Any targets close to the origin w i l  be discovered in reasonable 

time. 



APPENDIX A 

Proof of Spiral Search Optimality 

1. Linear Spiral Search 

THEOREM A. 1 (Baeza-Yates, Culberson and Rawlins [Il]). Linear spiral search is op- 

. timal up to low order tenns. That it is to Say that the total distance walked by  un agent 

peflorrning linear spiral search is no more than 9n steps (see eqrration 14). 

PROOF. Let the point be found after the (i + 1)th tum and before the (i + 2) th turn. 

3 i. Hence, 6 is such that f (i) + 1 5 n < f ( 2  + 2) giving a worst case ratio of, 

Since we already know that a Sn algorithm is possible (take f (i) = 2', see 14) suppose that 

f is such that 

where c is constant. A lower bound on c will yield a lower bound of (1 + 2c)n for the 

problem (from equation 23). Continuing, from 24 and the fact that f is strictly monotone 

increasing, so that we can always choose a large enough i such that 

i-t 1 
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hence, we have 

For a fixed and sufficiently large-i, c rnust also saris@ the following infinite set of 

inequalities: 

Together with the previous inequality on c this system of inequalities may be solved in- 

ductively for each k by deleting the f (i + k) term on the right hand side, substituting the 

derived bound on f (i + k) into the inequality for f ( i  + k - 1) and using that bound on 

f(i + k - l), and soon. 

In generai, c must be such that the following polynomials are al1 pos'itive: 

The minimal value of c for which each of these polynornials is preater than zero bounds c 

from below. 

These polynomials obey the recurrence 

which has characteristic equation 
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which has roots 

which, having equal roots at c = 4 gives 

and is positive for al1 ic > O, or, having distinct roots gives 

which is positive for d l  k > O if and only if c > 4. 

Hence we have shown that c has a lower bound. Back-substituting into 24 we see that 

and so 23 posits 

Therefore any algorithm to find a point on a line an unknown distance n, away must take 

üt least (1 + 2 x 4) n = 9 n steps. O 

2. Generaüzed Linear Spiral Search 

THEOREM A.2 (Baeza-Yates, Culberson and Rawlins [Il]). Generalized linearspird 

search is oprimal up to l o ~  order tenns. 

PROOF. Let the point be found after the (i + m - 1)th tum and before the (i + m)th 

turn. The worst case ration is 
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Let c be a constant such that 

Similar to 1 we construct an infinite sequence of functions of c (al1 positive), which are 

and obey the recurrence 

For which the charactenstic equation 

has a real positive double root at c = mm/(m - l)m-l namely X = c(m - l)/m, and al1 

other roots are negative or imaginary. O 



APPENDM B 

Mathematical Concepts and Definitions 

1. Group Theory 

The following are some definitions from group theory that will be helpful in the general 

settings that we are going to be considering. For clarification on any of the following see 

Rudin [64] or  any text on modem algebra. 

DEFINITION B. 1 (Group). A set, G. and n binnry operation, - (ofien cuiied addition) 

such that 

i [Associativity] a . ( b  - c )  = ( a  - b)  - c V a, b, c E G 

ii [Identity] 3 e ~ G s u c h t h a t e - a = a - e = a  V a E G  

iii [Inverse] V a  E G 3 b E G such that a - b = b . a = e and b is defined as "a- 

inverse", b = a- l .  

DEFINITION 8 .2  (Abelian Group). The group, G, is calledAbelian ifthe operation is 

commutative for al1 the elemenrs in the group. That is to sny, 

DEFINITION B.3 (isornetry). Let X, y be rnetric spaces, a bijective funcrion, f : X + 
y, that preserves distances is an isornetry. 
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where f is the Map and d(a ,  6 )  is the distance function. 

An isometry of the Plane is a Linear transformation which preserves length. Isometries 

include Rotation, Translation, Refiection, Glides, and the Identity Map. Every isometry in 

the plane is the product of at most three reflections (at rnost two if there is a Fixed Point). 

Every finite group of isometries has at least one Fixed Point. 

DEFINITION B.4 (Group Isornorphism). An isomorphism 4 from a group G to a group 
- 
G is a one-to-one, ont0 rnapping (or function) that preserves the group operation. Thar is. 

- 
ifthere is an isomorphism 4 : G + G then the groups are isomorphic and G = G 

Although the following definition is not a group theoretic result, it is in some weak 

sense, the analog of the previous definition in topology and relating topological spaces 

rather than subsets. 

DEFINITION B.5 (Homeomorphic). Let (X, S) ,  (y,  7) be topological spaces and let 

h : X + y be bijective (1-1 and onto). The function h is n homeomorphism iff h is 

continrious and h-' is conrinuous. I f  such a map exists then ( X ,  S ) ,  (y ,  7) cire said to be 

homeomorphic. 

2. Metric Space and Measure Theory 

DEFINITION B.6 (Distance). A space, X, is said to be a metric space if ivith any hvo 

points p and q from X there is associated n real number 6, S : X x X + IF%, called rhr 

distance from p to q such that 

~ ( P Y  d > 0  if^ # q; &(P, P )  = 0; (Positive DeJinite) 

&y 9 )  = 6(q, P); (Symmetric) 

h(p,  q )  $ b(p,  b)  + b(b, q)  , V r E X. (Triangle Inequality) 
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Any jiinction with these three properties is called a distance function, or a metric (from 

[Wh 

Because many properties of spaces are preserved by continuous functions, spaces re- 

lated by a bijection (one-to-one and ont0 function) which is continuous in both directions 

will have many properties in common. These properties are identified as topologicai prop- 

erties. Spaces so related are called homeomorphic. in Our setting we exploit the property 

that two sets are homeomorphic to each other if they are smoochly deformabie to each other 

without introducing o r  removing any fundamentai characteristics of  the initial set. 

DEFINITION B.7 (Haar Measure). An invariant measure on a localiy compact group 

is oBen eu lled a Haar measure. We usually want it to sut+ some regrrlarity condition and 

also nllow it to be complete. 

The next definition brings our attention to a much sought after class of functions im- 

portant in the field of navigational methods. The generation of  stable potential fields allows 

for the use of gradient descent navigation. Usually is it difficult to  find generic, stable func- 

tions for use in any sort of complex setting. The shortcoming of  gradient descent methods is 

clearly that the existence of local minima in the potential field result in basins of attraction 

that do not lead to the desired goal point. Functions that are said to be Lyapunov functions 

do not suffer from this problern of local minima. 

DEFINITION B.8 (Lyapunov Function). Any continuously differentiable, real vdrted 

function U (x) E Ci with a jixed point, x*, in the domciin of U such that 

(i) U ( z )  > O for al1 x # x* and U ( x * )  = O 

(ii) V U ( x )  < O for al1 x # x* and V U ( x * )  = O (al1 trajectories on the dornain ore 

downhill) 

is said to br a Lyapunov function and x* is globally stable: for al1 initial conditions of 

vector x, x ( t )  + x* as t + oo. 
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