
Network Traffic Control and Bandwidth Management

in Internet: A Differentiated Services Case Study

Suqiao Li

School of Cornputer Science

McGill University, Montreal

Juiy, 1999

A thesis submitted to the

Faculty of Graduate Studies and Research

in partial fu l fhent of the requirements for the degree of

Master of Science

O Suqiao Li, 1999

Acquisitiaris and Acquisitions et
Bibliographie Services senrices bibïiraphiques

The author has granteci a non-
exciusive licence aliowing the
National Li'brary of Canada to
reproduce, loan, distri'bute or seii
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts fiom it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
ceprodaire, prêter, distriiuer ou
vendre des copies de cette thèse sous
La fhne de microfiche/film, de
reprodiiction sur papier ou sur format
électronique.

L'auteur conserve fa propriété du
droit d'auteur qui protège cette thèse.
Ni Ia thèse ni des e x t d s substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

Abstract

This Mater's thesis deals with network tnffic conml and bandwidth management in

Internet, and includes four parcs. In part 1. we introduce network uaffic, the basic

principles of traffic conuol, conml methads and components, which are used to support

the Quality of Service (QoS) in' different network envimnments. In part 2, we present

network bandwidth management concepts and its methods, Bandwidth is fmite and

valuable, so we need to manage it efficiently. Bandwidth management can support traffic

conuol to lighten the trafftc laad. Bandwidth management and tfic control are

complementary, and together c m assure a hi& QoS. In pan 3, we address the QoS issues

in Intemet, since the Internet is increasingly important and popular. We focus on the

Differentiated Services (DiffServ) in Intemet, and impiement the two-bit

e (PremidAssured) based DiffServ by coordinated controt. Coordinated control is the

combination of MIC control, bandwidth conml and queue control. Since the two-bit

based DiftServ h a two major drawbacks, in pas. 4, we pmpose same new methods and

algorithms to improve them. These methods and algorithms indude Multilevel Assured

Service, Token-based Assured Service, Consuaint F3ased Routing and load balancing.

Ce mémoire de Maitrise comprend quatre parties. La première partie introduit les

concepts du contrôle de trafic, ses méthodes et ses composants. La plupart d'entre eux

sont utilisés pour supporter la Qualité de Senrice dans un envimement réseau

quelconque. La deuxième partie discute de la gestion de la bande passante du réseau et de

ses méthodes. La bande

passante est finie et côuteuse, eIIe a donc besoin d'êue gérée efficacement. La gestion de

la bande passante peut supporter le contrôle du trafic pour alléger la charge du trafic. La

gestion de la bande passante et le contrôle du trafic sont complémentaires et supportent "

tous la redisation de la Qualité de Service. A partir de la troisième partie, nous presentons

la Qudité de Service au sein de I'Internet, vu la popularité grandissante de celui ci. On

s'intérésse paniculièrement au\ services différenciés sur I'intemet, pour les implémenter

selon sur une architecture deux-bit, par un conuôle coordonné. Le contrôle coordonné est

la combinaison du contrôle du trafic, du contrôle de la bande passante et du contrôle de la

file d'attente. il y a deux inconvénients majeurs a u services différenciés deux-bits. La

quaaième p h e présente de nouvelles méthodes et aigorithms afin de l'améliorer. Ces

méthodes compend le Service Assuré Multicouches, le Service Assuré basé sur le jeton.

Ie Routase basé sur la contrainte et l'équilibre de la charge.

Acknowledgements

1 would üke to express my thanks to my supervisor Dr. Petre Dini for his encouragement

and sound judgement, and for giving me so many great opportunities to grow as a

cesearcher under his thoughtful guidance. This thesis would not have k e n possible

without his support. On a technical note, this thesis also benefited enormously from

Andrei NeguIescu, who gave me the most helpful guidance and suggestions. Specid

thanks are due to Prof. Newborn for his guidance during my stay at McGiLL University.

1 dso tnrly thank CRiM (Centre de recherche informatique de Montréai), which provides

a so wonderful research environment for me.

I wish to th& the School of Compter Science for the graduate courses and the research

environment. Thanks to Franca Cianci, Vicki Keirl, Lise Minogue, and Lucy St-James,

for their great helps.

Many thanks dso to Yihong Shanggan, Yuan Zhang, Hum Wang, Xiaobo Fan, Feng

Xue, Mounina Bocoum. and Evelyna Evelguieva for their fruitful discussions within the

group and for their kind encouragement.

Finally, rny deepest thanks are due to Elaine X. Yu, for her endless support and arnazing

patience.

Table of Contents

Abstract ... ii
.. Résumé iii

Achowledgments .. iv

.. List of Figures ix

... List of Abbreviations x

1 Introduction ..
Network M c conad ..
Bandwidth and bandwidth management
Quality of Service (QoS) ..
1.3.1 QoS architecture ..
1.3.2 End-to-End QoS rnodeis ...

.. 1.3.3 QoS broker

The relationship between QoS, M c contd and bandwidth

management ..

2 The principle of trafic controi and its methods
2.1 PrincipIe of Mit contml ...

2.1.1 Open-loop control ...
2.1.2 Closed-hop conml ...

2.2 Congestion control ...
Closed-loop congestion control
Congestion detection and RED ..

* Congestion comrnumca~on ...
* . Congestion pnctng ..

Congestion contrd algorithms ...

.. 2.2.6 Decongestion 17

...................... 2.2.7 Flow control over congestion control scheme 17

... Fiow control 17

... 2.3.1 Open-loop flow control 18

... 2.3.2 Closed-loop flow control 18

... 2.3.3 Hybrid flow control 20

... Tfic descriptors 21

... 2.4.1 Peak rate 22

....................... 2.4.2 Average rate 22

.. TrafXc shaping 23

.. T&c scheduiing 24

.. Trmc policing 25

................................ 2.7.1 Leaky bucket policing and algorithm 25

.. 2.7.2 Token bucket algorithm 26

... Traffic signaling 27
. Network pnang 27

... 2.9.1 Peak-load pricing 27

2.9.2 Re-negotiation ... 38

.......... Admission control and measurement-based admission control 29

3 Bandwidth management and its methods ...
3.1 Bandwidth management. ...

................................ 3.2 Some Methods for Bandwidth management

3.2.1 Bandwidth allocation and dynarnic bandwidth allocation
3.2.2 Bandwidth sharing and dJnamic bandwidth sharing
33.3 Bandwidth bonowing ...
3.2.4 Bandwidth reservation ...
3.2.5 Preventing bandwidth starvation
3.2.6 Bandwidth pricing and dynamic bandwidth pricing.

....................... 3.3 A bmdwidth management architecture for Internet

3.3.1 Bandwidth management nodes

3.3.1.1 Bandwidth Broke r. A possible solution for bandwidth

allocation ...
3.3.1.2 Management nodes assign bandwidth

3.3.2 Agents ..
3.3.3 Mobile agents ..
3.3.4 Negotiation process ...

3.3.4.1 Negotiation and agents
3.3.4.2 Credit-based bandwidth allocation
3.3.4.3 Enforcement of allocations

1 Differentiated seMces in Internet ...
Generaiized and speciaiized differentiated services of Networks
4.1.1 A Generaiized differentiated services (GDS) network mode1
4.1.3 Generalized differentiated services (GDS)
4.1.3 Specidized dîfferentiated services (SDS)
Differentiated services in Internet ...
4.3.1 General architecture of DiffServ.
4.7.1 Related control for supporting Diffserv

4.2.3.1 Trafic conml For DiffServ in boundary routes
4.2.1.2 Traffic conuol in core router based on PHB

Implement DiffServ baed on two-bit architecture
4.3.1 Service Level A-pement (SLA)
4.3.2 Premium Service implementation
43.3 Assured Service implementation
4.3.4 Two-bit DiffServ implementation
4.3.5 hnplementation performance ..
Coordinated control ..
4.4.1 Tr;iff~c control ...
4.4.2 Bandwidth control ...
4.4.3 Queue control ...
The relationshi~ of DiffServ . coordinated controt and ric ce.

.. 5 Improving two-bit based Dmerv ...
...................................... Drawbacks of two-bit based DiffServ

The scalability of service quaiity in Assured Service
5.2.1 Multilevel Assured Service ...

.............................. 5.2.2 Scheme of Multilevel Assured Service

5.2.3 Multilevel Assured Service supports scaiable service quality ...
...................................... 5.2.4 Choosing a fitting service level

The utiIization of network resources ...
.. 5.3.1 Token-based Assured Service

.. 5.3.2 Dynarnic token price

5.3.3 Token-based Assured S e ~ c e supports hi ph utilization of

.. bandwidth

5.3.4 increasing the resource uulization by Consrnint Based

... Routing

Implementation ...
... 5.4.1 Agent-Broker architecture

5.4.2 Agent-Broker negotiation ...
5.4.3 Broker behavior ...
5.4.4 Implementation of Multilevel Assuted Service
5.4.5 Implementation of Token-based Assured Service

... Simulation

6 Conclusion and future workm..........-.

.. References

Appendix ..
A . Source Code for Service Level Negotiation
B . Source Code for Bandwidth Negotiation

List of Figures

Figure 1.1

Figure 2.1

Figure 2.2

Figure 3.1

Figure 4.1

Figure 4.2

Figure 4.3

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

Figure 5.6

Figure 5.7

Figure 5.8

Figure 5.9

The felationship between QoS. traffic control and bandwidth

management.. ...
The relationship between feedback controt and various components

of a f f i c conuol ..
A shaper based on Token Bucket Algorithm
Management nodes assign bandwidth ..
DiffServ's General Architecm ...
Two-bit DiffServ architecture ..
The relationship of QoS, Coordinated Control and hice
The scheme of Multilevel Assured Service
Agent-Broker Architecture ..
Hosts send agents to ISP ..
The negotiation of Agent and QoS Broker
QoS Broker behavior ...
Broker sets the service Ievel ...
Asent asks for service level ...
Agent asks for tokens (bandwidth amoune)
Broker assiens ail avaihble tokens CO agnts

List of Abbreviations

(in alphabeticd order)

ATM:

BA:

BB:

BF:

DiffServ:

DS:

ECMP:

GDS:

IETF:

Intserv:
IP:
ISP:

LANs:

MF:

MPLS:

OSPF:

QoS :

PHB :

RED:

RIO:

m:
RSVP:

SDS :

Asynchronous Tnnsfer Mode

Behavior Aggregate

Bandwidth Broker

Bellman-Ford's .

Differentiated Services

Differentiated Services

Equal-Cost Multi-Path

First In First Out

Generaiized Differentiated Senrices

Internet Engineering Task Force

Intepted Services

Intemet Protocol

Intemet Service Provider

Local Area Networks

Merropolitan Area Networks

Multi-Field

Multi-htocol Label Switching

Open Shortest Path First

Quality of Service

Per-Hop-Behavior

Random Early Detection

Randorn Early Detection with In and Out

Routing Information h t o c o l

ReSerVation Protoc01

Specialized DifFerentiated Services

O
SLA: Service Level Agreement

TDM. Time Division Multiplexing

VR: Virtuai Reality

WAN: Wide Area Networks

WFQ: Weighted Fair Queuing

WRR: Weighted Round Robin

Chapter 1 Introduction

Nowadays telecorn networks are increasingly complex becruise they make use of mmy

protocol and network architectures, such as Ethernet, Token Ring, FDDL SONET, ATM,

Intemet, and so on [Il. Different networks provide different services for users. In order

to get good Quaiity of Service (QoS) h m the network. we need to conml the network

u;tffic and to manage the availribie brtndwidth, because ' ho contml, no service; good

control, gooà service."

We will discuss the network traffïc conuol and some control metfiods in Chapter 2,

bandwidth management and some methods in Chapter 3. Al1 these methods can be used

to support QoS. QoS is ow goal for building and managing the networks [2]. Genedly,

QoS has severaI Ievels: best-effort services, differentiated services, and guannteed

services. QoS has a tight relationship with trac conno1 and bandwidth management.

We present an adaptive bandwidth management architecture for h e Intetnet in Chapter 3.

The concepts behind this architecture are used in Chapter 5 CO improve the MO-bit based

Differentiated Services.

Since the htemet is so important and popular, many new services need to be

irnpiemented in the intemet, such as multimedia communication, videocomferencing,

intemet telephony, etc. But, the cunent Intemec cannot satisfy these requirements

because of ies besteffort basis, where ail packets are treated equally. The hternet

Engineering Task Force 0 has defined a new service for the Internet-Differentiated

Services @iffServ)- but this service has not yet been standardized. There are some

architectures supporting the DiffServ in the Internet, k e the wo-bit (Premiurn/Assured)

architecture [3]. The impIementation of two-bit architecture is addressed in Chapter 4.

DiffServ is implemented by coordinated control, which is the combination of traffic

control, bandwidth conuol and queue controI. The rdatiomhip between DiffServ and

coordinated controI is described in Chapter 4.

The two-bit architecture has some drawbacks. In this thesis, we focus on the nvo most

important ones. One drawback is the lack of scaiability of service quality, and the other

one is the Iack of hi$ utilization of network resources. We build new models and

propose new algorithms to solve these problems in Chapter 5. The dgorithms have been

implemented in Java The Java simulation program may be found in the Appendix. The

conclusion and future work are described in Chapter 6.

1.1 Network Traffic Contqol
Network MIC conuol is a set of policies and mechanisms that allows a network to

efficiently satisfy a diverse range of service requests [4]. There are two fundamental

aspects of trafic control, diversity in user requirements and efficiency in satisfying them.

Trac convol includes a nch set of mechanisms, such as tnffic shaping, scheduling,

monitoring, poticing, signaling, pricing, admission control, congestion control and flow

conuol. etc. In another way, tnffic control refers to a set of actions taken by the network

to avoid congested conditions, which shapes the behavior of &ta flows at the entry, and

at specific points within the system [Il.

T f i c conml ailows a network to give the most utility with the available resources.

Tnffrc control consists of a co1Iection of specification techniques and mechanisms to:

@ Specify the expected characteristics and requirements of a data Stream;

@ Shape data strearns at the edges and selected points within the queuing network;

Police data streams and take conective actions when WIC deviates from its

specification.

There are three general laws for vaffic control:

1) The network should try to match its menu of senrice quaiities to user requirements.

Service menus that are more closely aiigned with user requirements are more

efficient.

2) Building a single network that provides heterogeneous QoS is better than building

separate networks for different levels of QoS.

3) For typical utility functions, if network utilization remains the same, the sum of user

utility iünctions increases more than linearly with an inmase in network capacity.

To effectively conml &c, a network provider m u t know not only the requirements of

individuai applications and orgimizations, but also their typicd behavior. A trafic mode1

summarizes the expected behavior of an application or an aggregate of applications.

Networks that provide hetemgeneous QoS are likely to cost Less than networks that

provide a single QoS. Trafftc classes represent the shared requirements of a set of widely

used applications. which dso repteserit the types of service provided by the network. We

partition applications inro two fundamentai classes: "guaranteed" and "best-effort".

The "guaranteed" applications include videoconferencing, tekphony, rernore sensing,

videosn-demand, interactive multi-player games, etc. With these applications, users

derive utility from the network only if the network limits the delay and provides a

minimum amount of bandwidth. The utility function for a "gua~nteed" application

pendires üaffic that does not meet its service requirement, which is typically described

by t h e pararnetets: bandwidth, defay. and Ioss.

The "best-effort" apptications are willing to adapt to whatever QoS is available. The

utility function for a best-effort application does not degrade significmtly with a drop in

service quaiity. Unlike a guaranteed application, a test-effort application derives utility

from the network even if its packets suffer long delays, or it receives only a small

bandwidth allocation h m network.

To conclude, the above are the gened concepts of network WIC conml. We wiIl

describe the t d 5 c contml principles and conmi rnethods in Chapter 2.

1.2 Bandwidth and Bandwidth Management

Bandwidth is an important system resource [5]. in digitai systems, bandwidth is data

speed in bits per second (bps). Thus, a modem that works at 57,600 bps has twice the

bandwidth of a modem that works at 28,800 bps. In anaiog systems, bandwidth is defined

in t e m of the difference between the highest-frequency signai component and the

lowest-frequency signal component. Frequency is measured in cycles per second (Hertz).

Genedly speaking, bandwidth is directly proportional to the mount of data transmitted

or received per unit time. In a qualitative sense, bandwidth is proportional to the

complexity of the data for a given Ievel of system performance. For example, it takes

mon bandwidth to download a photopph in one second than it takes to download a

page of text in one second Large sound files, computer prograns, and animated videos

require still more bandwidth for acceptable system performance. Virtud reality (VR) and

full-!en,* three-dimensional audio/visud presentations require the most bandwidth of

dl.

Until now, and at the present time bandwidth has k e n and is a finite and important

system resource, even for local networks, Cheap and abundant bandwidth may be

availabte in the future [6], but in the present we have to manage the bandwidth, to Save it

Oement. and to use it economicdly and efficiendy, therefore we need bandwidth mana,

Bandwidth management is another important way to ensure the QoS. We consider that

there is a ûght relationship between bandwidth and QoS. It is easier IO get good QoS if

the bmdwidth is large. Bandwidth management may support MIC conuo1. When the

bandwidth is ribundant, mffic conuol will be easier, because there is no need to use

complicated &IC control methods.

in short, the wider the bandwidth, the easier the txaffic controI and the better the QoS. We

wiiI propose sorne methods for bandwidth management and present an active bandwidth

management architecture for internet in Chapter 3.

13 Quaiity of Service (QoS)

QoS refers to the abiiity of a network to provide better service to selected network traffic

over various undeQing technolo@es including Frame Relay, Asynchronous Transfer

Mode (ATM), Ethernet and 802.1 networks, SONET, and IP-routed networks [7]. In

particuiar, QoS features provide better and more predictable nenivork service b y:

Supporting dedicated bandwidth;

hproving loss characteristics;

Avoiding and managing network congestion;

Shaping network traff~c;

Setting traffic priorities across the network

Traffic control and bandwidth management are two major ways to achieve the QoS. QoS

is cote for traffic and bandwidth control.

1.3.1 QoS Architecture

We configure QoS features throughout a network to provide for end-to-end QoS delivery

aeneous [7]. The following components are necessary to deliver QoS across a hetero,

network (1) QoS within a single network element, which includes queuing, scheduling,

and MIC shaping features. (2) QoS signaling techniques for coordinating QoS between

network elements. (3) QoS policing and management functions to control and administer

end-to-end t r a fk across a network.

Not dl QoS techniques are appropriate for al1 network routers. Because edge muters and

backbone routers in a network do not necessarily perfom the sarne operations, the QoS

trisks they perfom might differ as weL

GenenlIy, edge muters perforrn the foiiowing QoS functions:

0 Packet classification;

Admission control;

Configuration management.

Generatly, backbone routes perform the foiiowing QoS functions:

0 Congestion management;

a Congestion avoidance.

133 End-to-End QoS Models

End-to-end QoS is the ability of a network to deliver service required by specific network

traffic from one end of the network to another. There are three main types of service

models: best effort, integrated, and differentiated services 171.

A) Best-effort Service

Best-effort is a singe service model in which an appiication sen& data whenever it must,

in any quantity, and without requesting permission or first informing the network. For

best-effort service, the network delivers data if it cm, without any assurance of rekabihty,

delay bounds, or throughput. A large amount of Intemet traff~c nowadays is best-effort

based.

B) Integrated Service

Intepted service is a multiple service mode1 that can accommodate multiple QoS

requirements. In this model the application requests a specific kind of service from the

network befoce sending data The request is made by explicit sipaling; the application

informs the network of its traffîc profile and requests a particular kind of service that cm

encompvs its bandwidth and delay requirements. The application is expected to send

data only after it gets a confirmation h m the network. It is also expected to send &ta

that lies within its described trafftc profile. The network performs admission conuol,

based on information h m the application and available network resources. It aIso

commits to meet the QoS requirements of the application as long as the traffic remains

within the profiIe specifications. The network fulfiils its cornmitment by mauitaining per-

flow sute and then performing packet classification, poticing, and intelligent queuing

based on that state.

C) Differentiated Service

Differentiated service is a multiple service mode1 that can satis@ different QoS

requirements. However. unlike the integrated semce model, an application using

differentiated service does not explicitiy signa1 the router before sending data. For

differentiated service, the network tries to & b e r a particular kind of service based on the

QoS specified by each packet. This spification can occur in different ways. For

example, using the IP Recedence bit settings in P packets or source and destination

addresses. The network uses the QoS specification to classify, shape, and police traff~c,

and to perform intelligent queuing. The differentiated service model is used for several

mission-critical applications and for providing end-to-end QoS. Typically, this service

model is appropriate for aggregate flows because it performs a reIativeIy coarse levei of

iraffic classification.

We focus on differentiated service in the intemet in Chapter 4 and 5, because we consider

that differentiated service is easier to impIement than integrated service. We klieve that

differenuated service is the first step of a wide-scale QoS in the internet.

1.33 QoS Broker

The QoS Broker provides end-to-end guarantees, baiances resources among applications,

the network and operating systems at end-points, and between end-points and the

network. It manages resources at the end-points, coordinating resource management

amss loyer boundacies. As an intennediary, it hides implemntation d e t i s fmm

applications and per-Iayer resource managers.

A QoS Broker uses transIation. admission and negotiation services to configure the

system CO application needs, Configwation is achieved via QoS negotiation resulting in

one or more connections Ehrough the communications systern. The negotiation involves

ail components of the communication system needed for the semp (81.

The roles of the QoS Broker may include: (1) managing resources needed for tasks in the

application and transport subsysterns at the end-points, (2) negotiating with network

resource management, and (3) negotiating with remote QoS Brokers.

An important property of the QoS Broker is its role as an active intermediary which

insulates coopenting entities from the operational details of other entities. The QoS

Broker manages communications among different entities to create the desired system

configuration.

1.4 The Relationship Between QoS, Trafnc Control and Bandwidth

Management

Tnffic conml and bandwidth management are complementary in supporting a hi$ QoS.

The better the traffk controI and brindwidth management, the better the QoS. The

relationship of QoS, MIC controt and bandwidth rnanagement is shown in Figure 1.1.

Td f i c convol and bmdwidth management combine together to ensure a satisfactory

level QoS for the customer.

Figure 1.1 The relationship between QoS, tnffc control and bandwidth management

best-effort
Qos > affc controt bener

I -20s
. 1

.
bandwidth mamgment

In the follawing chapters, we will describe the principle of traffic conml and its methods,

bandwidth management and its merhods, differentiated services in Internet, and

impmving two-bit differentiaied service architecitut, respectively.

Chapter 2 The Principle of Traffic Control and its Methods

in thîs chapter, we discuss the principle of tr(iffic control, some controI mtthods and

conml components. AI1 of these concepts are used in Chapter 4.

2.1 Principle of TmtEc Control

Based on control theory, there are two Ends of control mechanisms: (1) open loop, (2)

closed loop.

2.1 .l Open-hop Control

Open loop conuol is based on good desip. When designhg the control system, we have

to make sure that al1 kinds of problems will not occur in the first place. Once the system

is up and running, corrections cannot be made. An open-loop control system does not

compare the actual resdt with the desired resuk to determine the conml action. Instead, a

caiibrated setting is used co obtain the desired result The primary advantage of open-Ioop

conml is that it is less expensive than closed-Ioop conml, as there is no need to measure

the actual result. in addition. the controller is much simpkr because corrective action

based on the e m r is not required. The disadvantage of open-loop control is that errors

caused by unexpected disturbances are not corrected [91.

2.12 Closed-loop Control

ui contrast, closed-Ioop control is based on the concept of a feedback ioop. Feedback is

the action of merisurin; the difference betwem the a c W result and desired result, and

using the difference to drive the actual result toward the desired result. The tenn feedback

cornes from the direction in which the measured vdue signal traveis in the block

diagam. The sipal begins at the output of the cmmiied system and ends at the input to

the controller. The output of the controller is the input to the conmiied system. Thus the

measured vdue signal is fed back h m the output of the controiied system to the input

Figure 2.1 The relationship between feedback conml and various cornponents of mffic

Controt [l]

Both open loop and closed loop conml methods mu t keep the whole system stable.

Some situations, such as consestion, cm make the system unsuble, so the systein ne&

to control congestion [II.

Feedback is the core of ctosed-loop control. The relationship between feedback conml

and various components of tnffic conml is shown in Fi,- 2.1. TdEc control and

congestion conml mu t be distin-pished, as they are two different concepts. Congestion

controi is just one aspect of traffic control.

2.2 Congestion Control
Congestion control is an important probIem for network üaHic control. Many articles

have addressed the issue of congestion concrol in almost every kind of network, such as

congestion control in ATM networks, congestion control in the Intemet, and so on

[10,11]. Congestion control refers to the set of actions taken by the network to minimize

the intensity, spread, and the duration of congestion. Congestion can be caused by

unpredictable statisticai fluctuations of rraffic fIows and fault conditions within the

network. Congestion is a phenomenon where the amount of mc injected into the

network exceeds the capacity of the necwork [9].

Congestion control includes two parts:

1. The netxork must be able to signd the transport endpoints that congestion is

occurring or about to occur.

2. The endpoints must have a policy that decrease utilization if this signal is received

and increases utilization if the signal is not received.

Congestion conuol cm be achieved using either open-Ioop or closed-loop mechanisms.

The open-loop scheme is based on designing and confxguring the system carefully to

avoid the occurrence of congestion. The closed-loop scheme is based on feedback. We

nther prefer to use the closed-loop scheme.

22.1 Closed-lmp Congestion Control

For the closed-loop feedback conml system, there are t h e steps to appmaching

congestion control:

1. Monitoring the system to detect when and where congestion occurs.

2. Passing this information to ptaces where action cm be taken.

3. Adjusting system opention to correct the probtem.

Congestion control schemes try to pmfect the shared network resources from saturation

by dynamicaiiy adjusting the traffic of the network. Congestion conml schemes can be

ciassified into two categories: reactive control and preventive control. With reactive

contml, sources adjust their traffic flows based on feedback information received h m

the network about the presence of congestion, With preventive control, sources must

reserve network resources in advance, before they c m access the network, and are

required to remain within their dlocated resources 1121.

Various metrics can be used to monitor the congestion. Chef among these are the

percentage of al1 packets discarded for Iack of buffer space, the average queue lengths,

the number of packets that itrne out and are retranslnitted, the average packet delay, and

the standard deviation of packet delay. in d l cases, rising nurnbers indicate growing

congestion. The second step in the feedback loop is to m s f e r the information about the

congestion frorn the point where it is detected to the point where sornething cm be done

about it. The obvious way is for the router detecting the congestion to send a packet to the

M c source, announcing the problern. Of course, these extn packets increase the Ioad at

precisely the moment that more load is not needed as congestion is happening.

22.2 Congestion Detection and RED

Congestion p w s exponentidly, and must be detected as eady as possible [14]. We

describe some rnethods ro detect congestion below.

a The most comrnon method in use is to notice chat the output buffers at a switch are

full, and there is no space for incoming packeis. If the switch wishes to avoid packet

loss, congestion avoidance steps cari be taken when some fraction of the buffers are

full. A time avenge of buffer occupancy cm help smooth transient spikes in queue

occupancy.

a A switch may monitor output line usage. It has been founded that congestion occurs

when mnk usage goes over a thshold and so this metric cm be used as a si@ of

impending congestion.

O A source may monitor round-trip delays. An increase in these delays signals an

increase in queue sizes, and possible congestion.

A source may probe the network's state using some probing scheme.

a 0 A source can keep a timer that sets off an alarm when a packet is not acknowled3ed

in rime. When the aiarm goes off, congestion is suspected

Random Early ktection (RED) is a useful method for congestion detection. EtED

improves on early m d o m àrop in t h e ways. Fust, pack ets are dropped based on an

exponentiai average of the queue lengttr, iather than the instantaneous queue Iength. This

dlows srnail bursts to piiss through unhanneci, dropping packets unly during sustained

overioads. Second, the packec drop probability is a tinear function of the average queue

length. As the mean queue length inmases, the pmbability of packet Ioss increases. This

prevents a severe reaction to mild ovedoad (as with eariy random drop). FindIy, RED

switches cm not onIy drop packets, but mark offending packets. With suitably modified

endpoints, RED switches allow congestion avoidance similar to the DECbit scheme 1251.

One method for gateways CO notify the source of consestion is to drop packets. This is

done automritically when the queue is full. The defiiult aigorithm is, when the queue is

full, to drop the any new packets. This is called tail-&op. Anorher algorithm is when the

queue is full rind a new packet arrives, one packet is nndody chosen from the queue to

be dropped. This is cdled randorn-drop. The drawback to trtil-drop and random-drop

oateways is that ic dmps packets h m many connections and causes them to decrease -
their windows at the same time resulting in a loss of bughput .

Eariy-random-&op gateways are a slight improvement over tail-dmp and randorndrop in

that they drop incoming packets with a frxed probability whenever the queue size exceeds

a certain threshold.

Algorithm of RED

In RED method, once the average queue is above a certain threshold the packets are

dropped with a certain probability related to the queue size. To crtlculzite the average

queue size the algorithm uses an exponentialiy weighted moving average:

mg = (I -wq)aig + wq*QueueeSize

The probability to drop a packet, pb, varies linearIy from O to maxp as the average queue

length varies h m the minimum hshold , minth, to the maximum threshold, maxth. The

chance that a packet is dropped is aiso reIated to the size of the packet. The probabrlity to

drop an individuai packet, pa, increases as the number of packets since the 1s t dropped

packet, count, increases:

in this algorithm as the congestion increases, more packets are dropped. Larger packets

are more likely to be dropped than srnalier packets that use Iess resources [El.

8 Advantages of RED

There are several advantages of RED:

1) Absorbs bursts better;

2) Avoids synchronization;

3) Signais end systerns eariier.

2.23 Congestion Communication

Communication of congestion information from the congested switch to a source cm be

implicit or expiicit. When communication is expiicit, the switch sends information in

packet headers or in control packets such as source quench packets, choke packets, stare-

exchange packets, ratetontrd messages, or throttie packets to the source [15].

Implicit communication occurs when a source uses probe values. reuansmission timers,

throughput monitoring, or delay monitoring CO indicate the occurrence of congestion-

Explicit communication imposes an extra burden on the network since the network needs

to transmit more packets than usud, and rhis may lead to a loss in efficiency. On the

other han4 with implicit communication, a source may not be able to distinguish

between congestion and other pe r fomce problern, such as a hardware problem. Thus,

the communication channel is quite noisy, and a cause of potential instability.

22.4 Congestion Pricing

The first economic principle is that there is ody a marginal cost to carrying a packet

when the network is congested. When congestion happens, the cost of carrying a packet

fiom user A is the increased delay seen by user B. The traff~c of user B. of course, caused

delay for A. But if A somehow were given higher priority, so that B saw most of the

delay, A would be receiving better service, and El paying a higher price, in terms of

increased delay and dissatisfaction. According to economic principles, A should receive

better service only if he is willing to pay enough to exceed the "cost" to B of his

increased delay. This can be achieved in the marketplace by the setting of suitable prices.

In principle, one cm determine the pricing for access dynamically by allowing A and B

to bid for service, aithough this has mmy practicai problems, When the network is under-

loaded, however, the packets from A and from B do not interfere with each other. The

marginal or incremental cos& to the service provider of crirrying the packets is zero. In a

circumstance where prices follow intrinsic costs, the usage-based component of the

charge to the user should be zero. This approiich is called congestion pricing [13].

2.2.5 Congestion Control Algorithms

The closed loop algorithms are divided into two subcategories (1) explicit feedback, (2)

implici t feedback.

0 Explicit feedback: packets rire sent back from the point of congestion to wam the

source.

Implicit feedback: the source deduces the existence of congestion by making local

observations, such as the tirne needed for acknowledgements to come back.

The presence of congestion mems thas the load is pa t e r than the resources cm handie.

Two solutions c m be useci: increase the resources or decrease the load Sptitting t . i c

over multiple routes instead of always using the best one rnay aIso effectively increrise

the bandwidth. Spare routers that are n o d y used ody as backups cm be put on-line to

give more capacity when serious congestion appears. However, sometimes it is not

possible to increase the capacity, or it h a already been increased to the limit. The oniy

way then to beat back the congestion is to decrease the load. Several ways exist to reduce

the load, including denying service to some users, depding service to some or al1 users.

and having users schedule their dernands in a more predictable way.

2.2.6 Decongestion

An overloaded switch can signal irnpending congestion to the sources, and, at worst, can

drop packets. if buffer usage is a congestion metric, switches drop packets or throttle

sources when a source exceeds its s h m of buffers. This share is determined by the buffer

alIocation smtegy, and the rate at which the buffers are emptied depends on the service

discipline. T'hus, the buffer allocation stntegy and the service discipline jointIy determine

which sources are affected 1161.

2.2.7 Flow Control over Congestion Control Scheme

A number of congestion control schemes have been proposed that operate at the sources.

These schemes use the Ioss of a packet to reduce the source sending-rate in some way.

The two main types of schemes are choke scitemes and ratetontrol schemes. In a choke

scheme, a source shuts down when it detects congestion. After some tirne, the source is

allowed to start again. Choking is noc efficient, since the reaction of the sources is too

abrupt. In n rate-control scheme, when a source detects congestion it reduces the rate at

which it sends out packets, either using a window adjustment scheme or a rate adjustment

scheme. The advantage of rate controI schemes over choke schemes is thlit rate convol

dlows a _snduaI transition between sending no packets at ail to sending out packets full

blast [ln.

2 3 Flow Control

Fiow control refers to the set of techniques that enabIe a data source to match its

transmission rate to the currentiy avaiIabte service rate at a receiver and in the network

Besides this primary goal, a flow control mechanism shouid meet severai other,

sometimes mutuaiiy contradictory objectives. It shodd be easily implemented so that the

lest possible network resources are use& and to work effectively even when used by

rnany sources. If possible, each mernber of the entire set of flowsontroIled somes

sharing a scarce resource should resmct its usage to its fair share. Finaliy, the set of

sources should be stable, so when the number of sources is f i e& the transmission rate of

each source settles down to an equilibrium value. Stability also implies that, if a new

source becomes active, existing active sources adjust their transmission rates, and, after a

brief transition period the system setties down to a new equilibrium. We can Unpiement

flow control at the application, transport, network, or data link layer of a protocol stack.

The choice of layer depends on the situation at hand. The most common design is to

place end-toend flow control at the transport layer, and hop-by-hop flow control in the

data link layer (181.

Fiow controI is often confused with congestion control. Congestion refers to a sustained

overload of intermediate network elements. Thus, flow control is one rnechanism for

congestion control. We cm divide flow control techniques into three broad categones:

open Ioop, cIosed loop, and hybrid.

73.1 Open-loop Flow Control

In open-loop flow control, a source has to describe its entire future behavior with a

handfuI of parameters, because the network's admission control aigorithm uses these

panmeters to decide whether to admit the source or not. Open-loop flow control works

best when ri source can describe its MIC well with a mal1 number of paranieters, and

when it needs to obtain QoS guarantees from the network. If either of these conditions

f i l s to apply, the source is better off with closed-loop or hybrid flow control [15]-

2.3.2 Closed-loop Flow Control

In ciosed-lwp flow conuol, we assume that network elements do not reserve suffiCient

resources for the connection, either because they do not support resource mervation, or

because they overbook resources to get additional statistical multipiexing. Some

protocols can be used for close-Iwp flow control, as folIows:

Oa-off flow control

In on-off fiow conml. the receiver sen& the ûansmittter an On signal when it can

receive data, and an Off signal when it can accept no more data. The transmîtter sen& as

fast as it can when it is in the On state, and is ide when it is in the Off state. On-off

control is effective when the deIay between the receiver and the sender is smalI. It works

poorl y w hen the propagation deIay between the sender and receiver is large, because the

receiver needs to buffer a11 the &w that arrive before the Off signal takes effect (11.

Stop-and-wait

In the stop-and-wait protocol, one of the earliest attempts at flow conml, a source sen&

a single packet and waits for an acknowiedgment before sending the next packet. If it

received no acknowtedgment for some tirne, it times out and remsrnits the packet.

Stop-md-wait sirnultaneously provides e m r conuol and fiow conuoI. Tt provides e m r

conuol because if a packet is lost, the source repeatedly retransmits it untii the receiver

acknowledges it. It provides Elow control because the sender waits for an

acknowledgment befoce sending a packet, Thus, stop-and-wait forces the sender to sIow

d o m to a rate slower than cm be supported at the receiver [Il.

DECbit flow controt

The key idea behind the DECbit scheme is that every packet header canies a bit Rat can

be set by an intermediate network elernent that is experiencing congestion. The receiver

copies the bit from a &ta packet to its acknowledgment, and sent the acknowledgment

back to the source. The source modifies its transmission-window size based on the series

of bits it receives in the acknowledgment header as foliows: The source inmases its

windows until it starts buMing queues at the bottleneck server, causing the server to set

bits on the source's packets. When this happa, the source reduces its window size, and

bits are no longer set [20].

in the DECbit scheme, each network eIement monitors packet arriva1 h m each sourcr to

compute its bandwidth demand and the mean aggegate queue length, The DECbit

scheme has severd usehl properties. It requires only one additionai bit in the packet

header and does not require per-connection qwuing at servers. Endpoints can implement

the scheme in software, without additional hardware support.

TCP ~ O W controi

ï h e flow-control scheme in TCP is similar to the DECbit scheme, but differs in one

important detail. Instead of receiving explicit congestion information from network

elements, a source dynamically adjusts its flow contro1 window in response to impiict

signais of network overload.

233 Hybrid Flow Control

in open-loop flow control, a source reserves capacity according to its expected tnffic,

whereas in closed-loop flow control, the source must adapt to changing network

conditions. in hybrid control, a source reserves some minimum capacity, but may obtain

more if other sources are inactive. Hybrid control schemes not only inhent the problems

of open-loop and closed-loop control, but also introduce some new ones. Source

descriptors in hybrid convol cm be less suingent than in open-loop control, because its

descriptor does not limit a source. Hybrid controlied sources must obey al1 appropriate

closed-loop control mechanism. Hybrid control has a strong advantage: a guaranteed

minimum resource allocation to an admitted packet, even when the nehvork is

overloaded. ïhus, a hybrid-conuoiied source, once admitted, knows that even in the

wont case, it has some minimum bandwidth guaranteed to it, and that in the average

case, it will obtain substantially more bandwidth 1151.

To sum up, despite having ail the problems of open-Iwp and close-loop flow control,

hybrid control has the advantage of king able to guarantee minimum service rate to

admitted cdIs even in the wotst case.

2.4 Traffic Descriptors

A traff~c descriptor is a set of panmeters that describes the behavior of a data source.

Typically, it is a behavior enveIope, describing the worst possible behavior of a source,

rather than its exact behavior. A descriptor plays three d e s besides describing source

traff~c. First, it forms the basis of a traffïc control between the source and the network:

the source a p e s not to violate the descriptor, and in turn, the network promises a

particular QoS. Second, the descriptor is the input eo a regulator, a device through which

a source can pa s data before it enters the network. To ensure that the source never

violates its MIC descriptor, a regulator delays traffic in a buffer when the source rate is

higher than expected. Third, the descriptor is also the input to a policer, a device supplied

by the network opentor that ensures that the source meets its portion of the contract. A

policer delays or drops source W i c that violates the descriptor. The regulator and

policer are identicai in the way rhey identify descriptor violations: the ciifference is that a

regulator typically delays excess üaft'ic, while a policer typicaily drops it [?LI.

A practicd MIC descriptor rnust have these important propemes:

Representativity: The descriptor must adequately represent the long-term behavior of

the traff~c, so that the network does not reserve tw litde or too much.

VerifiabiIity: The network musc be able to venfy quickly, cheaply, and preferably in

hardware that a source is obeying its promised M c specification.

Preservability: The network may inadvertently modify source MIC behavior as it

traveis dong its path. Thus, the amount of cesources allocated to a channe1 may

change the path. The network musr be able either to preserve the MIC chancteristics

dong the path, or to cdculate the resourct requirements of the modified traffic

Stream.

UsabiIity: Sources shouId be able to describe their nilfF~c easily, and network elements

should be able to perform admission conml with the descriptor erisily-

Coming up with good traffic descriptors is difficult because of these confiicting

requirements. We choose the source's peak rate as the descriptor. It is usable,

preservable, and verfiable, but not representative, because resource mervation at the

peak rate is wastefd if a source rarely generates daia at this rate. There are two common

descriptors: peak rate and average rate.

2.4.1 Peak Rate

The peak rate is the highest rate at wtiich a source can ever generate data during a packet.

A trivial limit on the peak rate of a comection is the speed of the source's access link,

because this is the instantaneous peak rate of the source dunng actual packet

transmission. For networks with fured-size packets, the peak rate is the inverse of the

closest spacing between the starting times of consecutive packets. For variable-sized

packets, we rnust specify the peak rate dong with a time window over which we rneasure

this peak rate. Then, the peak rate limits the total number of packets generated over al1

windows of the specified size. A peak-rate regulator consists of a buffer and a timer. For

the moment, assume a fixed size packet network. When the first packet arrives at the

buffer, the regulator forwards the packet and sets a tirner for the earliest time it can send

the next packet without violating the peak-rate bound, that is, the srnailest inter-arriva1

time. It delays subsequently arriving packets in a data buffer until the timer expires. if the

timer expires before the next packet arrives, it restam the timer on packet arrival, and the

incoming packet is forwarded without delay [22].

The peak-rate descriptor is easy to cornpute and police. Peak-rate descriptors are useful

oniy if the waffic sources are very smooth, or if a simple design is more important than

2.4.2 Average Rate

The key problem with the peak rate is that it is subject to outliers. The motivation behind

average-rate descriptos is that averaging the nansmission rate over a period of M e

reduces the effect of outliers. Two types of average-nte mechanisms have ken

proposed. Both mechanisms use two paramecers, T and A, defined as foilows:

T= time window over which the rate is maure&

A = the number of bits that can be sent in a window of tinie T.

in the jumping-window descriptor, a source claims that over consecutive windows of

length T seconds, no more than A bits of data will be transmitted The term "jumping

window" refers to the fact that a new time interval starts immediately afier the end of the

earlier one. The jumping-window descriptor is sensitive to the choice of the starting time

of the fmt window.

In the moving-window scheme, the time window moves continuously, so that the source

daims chat over al1 windows of length t seconds, no more than A bits of data will be

injected into the network. The moving-window scheme removes the dependency on the

starting time of the first window. It dso enforces a tigtiter bound on spikes in the input

mffïc. An rivenge-rate reguiator is identicai to a variable-packet-size peak-rate

regulator, because both restrict the maximum amount of information that cm be

transrnitted in a @en intemai of time. For a jumping-window descriptor, at time O, a

counter is initialized to O and is incrernented by the packet size of each departing packet.

Every T seconds, the counter is reset to O.When a packet arrives, the regulator cornputes

whether sending the packet would resuIt in too much data being sent in the current

window. This test reduces to testing whether the sum of the cunent counrer value and the

current packet size is larger or smaller than A. Depending on the result, the regulritor

either forwards rhe packet irnmediately or buffers it until the nexc tirne window [33].

2.5 Traffic Shaping

Traffic shaping cm be done either at the end systems, or in the network by the switch

hardware. Traffk shaping at the end systems can be implemented by the semer using a

Leaky Bucket (singe or dual) shaper consisting of a buffer and a rate controller. The

main issues are the rate control mechanism, shaper delay and deIay variation, and the

shaper buffer size at the semer. The rate controller determines the outgoing data rate

which shouId be consistent with the bandwidth available h m the network. An easy-to-

implement set of traffic descriptors is therefore a key factor in obtaining good

performance from the shaper. Close-loop feedback rate controI wtiich utilizes feedback

obtained from the network can be used to control the üaEc rate I231.The shaper needs a

1-e buffer for accumulatïng the incoming bmty Stream. However, if the outgoing rate

of the shaper is low, a large shaper buffer may resdt in long delay variation. Therefore,

there exists a trade-off between the b&er size, shaper delay, and outgoing rate of the

shaper.

Traff~c shaping iimits the data transmission rate. We can lunit the data transfer to a

specific configured rate, or a derived rate based on the Ievel of congestion. As mentioned,

the rate of transfer depends on these three components tfiat constitute the token bucket:

burst size, mean rate, measurement interval. The mean rate is equd to the burst size

divided by the interval. When traffic shaping is enabted, the bit rate of the interface will

not exceed the mean rate over any integrai multiple of the intervai. in other words, during

every interval, a maximum burst size can be transmitted. Within the interval, however,

the bit rate may be faster than the mean rate at any given time [24].

Traffic shaping smoothes tnffic by storing traffic above the configured rate in a queue.

When a packet arrives at the interface for transmission. the following happens:

If the queue is empty, the arriving packet is processed by the trafftc shaper. If

possible, the traff~c shaper sends the packet. Otherwise, the packet is placed in the

queue.

if the queue is not empty, the packet is placed in the queue.

When there are packets in the queue, the trafiïc shaper ternoves the number of packets it

can transmit frorn the queue every time interva1 [23].

2.6 Traffic Scheduüng

Scheduiing disciplines such as weighted fair queuing and raie-controlled static pnority

scheduiing aiiow individuai connections to obtain parantees on bandwidth, deIay, and

deIay jitter. Thus, packets h m guaranteed-service sources should be scheduled

according to one of these discipIines. Thest sources shodd reserve enough cesources to

meet their performance requirements,

Scheduling should meet not oniy individual, but aiso orgmizational performance

requirernents. Note that a conflict between individud and organizationd performance

requirements is possible, in that a packet might need to be given a Iow delay to meet its

delay bound, but the connection on wtrich the packet arrived might have aiready used its

bandwidth quota, If the scheduler delays the packet, the- organizationd performance

requirement is met, but the individuai performance requisement is not. If the scheduier

sends the packet before its deadline, the oppsite hot& is true.

2.7 Tdc Policing

Since the network must protect gumteed-service clients h m malicious users, it needs

to monitor the t ~ c from each source to ensure that it sdsfies its uaffic specification.

Such an access conml function at the network's edge is caIIed policing. The input to the

policer cornes from the source, and the output goes to the network. The function of the

policer is to ensure that the tritEF~c it outputs to the network siitisfies the tnff~c consuaint

function. To achieve this, the policer may need to buffer or drop packets when the input

Stream exceeds the limir. If the input stream to the source policer satisfies the MIC

consuaint funciion, no bufiering or delay is incurred in the policer [19].

2.7.1 Leaky Bucket Policing and Algorithm

Effective policing of tnffic cm prevent congestion from occurrin; and therefore a

policing hnction that contds to the reliability level necessary is a' crucial

requirement One such poIicing requirement, known as the Leaky Bucket policing

hnccion, has the potential to meet this critical demand.

Each host is connecred to the network by an interface containing a leaky bucket, which is

a finite intemal queue. When a packet arrives, if there is m m on the queue it is appended

to the queue; otherwise, it is discarded [2q. Leaky Bucket Algotichm enforces a rigid

output pattern at the average rate, no matter how bursty the trafic is. For many situations,

it is better to dlow the output to speed up somewhat when Iarge bursts anive, such as in

the Token Bucket Algorithm.

2.72 Token Bucket Algorithm

The le*y bucket hoIds tokens, generated by a dock at the rate of one token every N

seconds. For a packet to be üansrnitted, it mut capture and destmy one token. The token

bucket aigorithm provides a different kind of M c shaping than the leaky bucket

algonthm, which does not dlow idle hosts to Save permission to send large bursts later.

The token bucket aigorithm does dIow saving, up to the maximum size of the bucket,

This property means that bursts of up to the maximum packets can be sent at once,

ailowing tolerance for bursts in the output stream and giving faster response to sudden

bursts of input, Another difference between the two dgorithms is that the token bucket

aigorithm throws away tokens when the bucket fils up but never discards packets [28].

The leaky bucket and token bucket aigorithms cm be used to design the MIC shaper. A

shaper based on token bucket akgorithm is s h o w in Figure 2.2.

Token
Generation

Shaper bufier
Source Depaaing packets

>

pac kets

Figure 2.2 A shaper based on Token Bucket Algorithm

26

2.8 Traffic Signaling

Signaling is the process by which an endpoint requests the nemork to set up, t ex down,

or renegotiate a request. Two distinct mechanisms are involved in sipaling: one that

carries signaling messages reliably between signaiing entities, and another that interprets

the messages. Signaling is ofien the most complex component of a computer network.

Signaling is necessq for providing complex network services. Signaling has strict

requirements for performance and reliability. RSVP (resowce ReSerVation Frotocol) is a

kind of signaling protacol [29].

2.9 Network Pricing

Network pricing is how much a public network should charge for its services. Suppose

we claim that a network provider cm infer users' utilities from their willingness to pay

for services. The idea is that the more utility a user obtains from using the network, the

higher the price he is willing to pay. Thus, the network could charge different pRces for

different services, and users' willingness to pay this price wodd reveai their utility

functions. image that in the real world, you cm drive a car to get to the destination by

highway or by local maci, you can Save time if you choose highway, but you have to pay

more. The key point is that by setting a price for usage, the network cm control user

demand, at leut broridIy, thus modifying the tMff1c load on the system. Therefore,

pricing can be used as a tool for uaff~c control[30].

2.9.1 Peak-load Pricing

Traffic exhibits strong cyclicai behavior at the time scde of a day and at the time scde of

a week In fact, operators look for trafic anomdies simply by overlaying traffic

measured a week earfier over the curent measurement. During the day, traffic peaks

h m 9am to Spm, reflecting the working day. There is a typicaily a drop at Iunchtime and

dinnertime. However, it picks up again around Ilpm, when telephone rates and Internet

usage rates become lower, thus ailowing users to save on toiis. This shifted peak is the

result of peak-load pricing, which is a M c control mechanism o p t i n g at the time

scak of a &yy Peak-Ioad pricing shifts some user deruand from the peak tirne to off-peak

time, decrerising the peak Ioad 1183. With peak-load pricing, the network charges more

during peak hours, and less during off-pedc hours. Some customers c m o t wait until the

off-peak hours, and they ihus pay more. However, some customers cm wait, and their

dernand is shifted to off-peak hours. Thus, peak-Ioad pricing dlows the network provider

to defiver more utility to its customers, because ovedoading is reduced. In the future,

with intelligent endpoints, sophisticaced peak-load pricing scheme may become more

popular [6].

2.9.2 Re-aegotiation

Recail that a guaranteed-service connection must specify its descriptor at the time

of connection establishment. However, it is often impossible to a priori determine

satisfactory traffic descriptors a priori. The application designer or application user can

onIy guess the expected avenge rate of the application. If the guess is too hi&, then the

user pays an unnecessarily hi@ fee for its service, because the network m u t reserve

resources for at [es t the user's declared average rate. if the guess is too 1ow. the poker

drops excess uaffic. so that the received qudity degrades. Sometimes, finding an

adequate descriptor is hxd even if we know the entire source behavior in advance. But if

the application c m renegotiate its trafic descriptor, these problems cm be solved.

If a source can renegotiate its M t c descriptor at the beginning and end of every burst,

its effective reserved rate is identical co its long-tenn average me. However, this imposes

a heavy sipaling Ioad on the network Keeping worst-case deIay and ioss rate fixed, as

the renegotiation Erequency decreases, the effective reserved rate moves frirther away

from the avenge m e and approaches Ehe source's peak rate, With stored W i c , the

series of renegotiation points and renegotiation values cm be precomputed, Even for

online interactive traffic, the application c m observe past behavior and use this to predict

future behavior. Thus, renegotiation does not pose a severe burden on applications. It

does increase the network signaiing load, and a user must d e - o f f between renegotiation

frequency and the de-oree to which the effective reserved rate approaches the m e long-

term average rate [3 11.

2.10 Admission Control and Measurement-based Admission Control
When a connection is requested with its traff~c descriptors and QoS requirements, the

network decides whether to accep or reject the co~ection. The network determines if it

has the necessary resources available to meet the requirements of the new connection

while maintaining those of the ongoing connections [32].

The signaling network carries signaling messages and makes resource reservations.

However, More a router controuer can make these reservations, the admission conml

dgorithm checks whether admitting the packet would reduce the service quality of

existing packets, or whether the incoming packet's QoS requirements cannot be met This

decision depends on the choice of scheduling disciplines and the set of seMces provided

by the network. If either of these conditions holds, the packet is either delayed until

mornes are available, or rejected. Admission control plays a crucial role in enswing

that a network meets its QoS requirements.

Merisurement-based admission control allows us to deal with üaffîc sources that do not

describe themselves. The idea is to admit packets baed on a nominal description, but

then to measure actual source behavior to automaticalIy consmct an appropriate

descriptor. The danger with measurement-based admission control is that it assumes that

put measurements of the system are a good indication of future behavior. The-hope is

thas with enough packets, a switch's load will change onIy very slowly cornpared with

the number of packets arriving and leaving the network. Thus, even if the controller

admits too many packets, it can simply deny admission to future packets, so that as some

packets Ieave, the remaining packets receive adequate service quality.

Measurement-based admission conml is particuIx1y well suited for the controIIed-load

service mode1 1211. Recail that in this service model, the network gumtees a connection

a nominai deiay bound, but the connection's packets may still suffer deviations h m this

bound- If the connections behave simiIarIy in the Future, the deIay bound WU continue to

hoid. Because control-load service applications are willing to tolerate some packets with

excessive delays, the measurement-based admission control algorithm cm make some

errors without agpvating customers. Measurement-based admission conml is &O

necessary when sources can renegotiate their resource allocation. When a source sets up a

packet, it may not know its future renegotiations. Thus, the admission control algorithm

must guess, based on past behavior, whether or not to admit the packet [6].

In this chapter, we discussed some traff~c controI methods and components, al1 of them

will be used to implement DiiTServ in the Intemet in Chapter 4. Traff~c control is a

necessary requirement for achieving a high QoS. If the traff~c is controlled well, a good

QoS is easily anainable. Bandwidth management is another important method to support

QoS, which we will discuss in the next chapter.

Chapter 3 Bandwidth Management and its Methods

in this chapter we discuss network bandwidth management. The bandwidth is always

finite and is an important sysrem resource. Cheap and abundant bandwidth may be

avaiiable in the future [331, but at present, we have to manage the bandwidth to use it

efficiendy. Bandwidth management is also an important way to ensure the QoS. We

believe that there is a tight relationship between bandwidth and QoS, as it is easier to get

good QoS if the bandwidth is adequate. A combination of bandwidth management and

traffic control ensures a satisfactory level of QoS for the customer.

3.1 Bandwidth Management

There are four key areas of bandwidth management: bandwidth on demand, bandwidth

agcmption, bandwidth augmentation, and switchover [34].

1) Bandwidth on demand

Bandwidth on demand rneans bandwidth is avaiIable when it is needed and charges are

ody incurred when &ta is actually being transmitted over the Iine. With bandwidth on

dernand, a connection is opened onIy when there is data to send and it is then ciosed as

soon as the data has been sent. This process is totally transparent to users on the network,

For example, when users are running a Web browser to access a remote Web server via

ISDN, they cause an ISDN connection to be opened at the point of first access to the

Web. While they are reading the data they have received, the comection times out

because no data are king sent or received As soon as they access the next page of

information, the connection is re-opened Since making the ISDN connection is so rapid,

the users appear to have been connected a11 the the . The tirne-out parameters are usually

c ~ ~ g u r a b l e on the ISDN access devices and the most suitabie vdues will depend on

carrier tariff po tic y and the applications king used

2) Bandwidth aggregation

Combiring the bandwidth of two or more channels of the same type, on the same

interface or across interfaces, is termed aggregation. In this situation, when a router

receives the first packet for transmission, a channel is opened to the remote router. A

further channe1 is then dynamically opened when the number of packets or bytes queued

exceeds a certain value, which is normaI1y userdefined M e r each new channel is

opened, there is a shoa delay before a subsequent channel is opened, allowing the

existing queue to be emptied. When the measwed data throughput indicates that fewer

channels are needed, data are no longer transmitted on the channel that was opened last-

If both ends stop sending data, the chme[is closed after a user-specified time-out. This

Iatency is used to accommodate bursty Mit patterns.

3) Bandwidth augmentation

Channels from different interfaces can aIso be combined. For instance, one channe1 on an

interface is specified as primary while another is specified as secondary. Channels on the

prirnary interface are used before channeb from the secondary interface. This technique

is used to combine bandwidth h m interfaces of sirnilx speed Adding bandwidth h m a

different type of interface is known as augmentation. For example, using an ISDN B

channel as on-demand bandwidth for a Ieased line is a common application of combined

bandwidth. This allows a 64Kbps ieased line to be used for average load, whiie an ISDN

B channel is added when the leased line is samted.

4) Switchover

Switchover enables traff~c to be moved from one circuit to another, depending upon the

aff ic rate. A slow-speed leased line mnning at 19.2Kbps can be Iinked to a 64Kbps

ISDN B channel. When the traffk rate on the leilsed line reaches saturation, the ISDN

link is opened and trafic moved to it. Once the traffic rate drops below that of the leased

iine, the EDN link is closed down and tr;iffic diverted back to the leased iine. The

threshoId at which traffic switches can be defined by the user. Switchover ensures that

the most cost-effective circuit is aiways used, and provides a very cost-effective solution

for networks with changing bandwidth needs throughout the day.

3.2 Some Methods for Bandwidth Management
aement Bandwidth is limited, but the requirement of bandwidth is not. Bandwidth mima,

involves deciding what M c has the highest priority, ensuring that it gets the bandwidth

it needs, and deciding how to handle the Iower-priority M i c . Bandwidth management

ensures that network services are used only when required and closed down when there is

no user data transmission [35]. This is critically important when services are king paid

for, regardless of the amount of trafic being transmitted amss the network It dso

ensures that optimal services are used for prirticular applications andior particular remote

sites, and that extra bandwidth cm be made available when there are unexpected bursts of

craffic. Some methods for bandwidth management are addtessed below.

3.2.1 Bandwidth AUocation and Dynamic Bandwidth Allocation

The systern, made up of the users as welI as the network, has various resources that can

be used to rneet senrice demmds. However, in ail realistic systems these resources are

Iirnited and some methods of allucating them is needed when totd demand is greacer than

the resource limit. Bandwidth ailocation is about efficiently ailacating the network

bandwidth among the sources.

Dynmic bandwidth allocation refers to techniques that allocate bandwidth according to

instantaneous demand. For exarnpIe, a typical TDM nime Division Multiplexing)

network would require sepme alIocations of bandwidth for the voice and data. Dynamic

bandwidth techniques ailow data ta burst into the unused voice bandwidth, as it becomes

available and force data to back off as voice connections are activated 1361.

3.2.2 Bandwidth Sharing and Dynarnic Bandwidth Sharing

The bandwidth sharing method relies on sharing the link bandwidth among a number of

connections using one of the foIIowing methods:

1) Fair bandwidth sharing is based on sharing the Iink bandwidth among the different

connections.

2) Bandwidth scheduling assigns a limited amount of Liandwidth to a number of

connections according to specific scheduling time dots.

Dynamic bandwidth sharing methods which reiy on increrised sharing of resowces would

yield better utilization of the network bandwidth. The bursty nature of data WIC could

be exploited by ailowing some users to consume the bandwidth during other users' ide

periods.

3.23 Bandwidth Borrowiag

If the whole bandwidth is assigned to ail class of packets, each class is allocated a

percentage of the bandwidth. When that limit is reached, nomally no more traffic irom

that class can be forwarded. However, if the network link is not being fulIy used, a class

can borrow bandwidth tempomily €rom its neighbor class, and send traff~c at a

percentage that exceeds its aIIocation. The configuration of a class defines the maximum

percentage of bmdwidth, inciuding that borrowed, that cm be used by a cIus at any time.

Spare bandwidth is ailocated temporarily to classes having the highest priority [34]. The

proportion of the spare bandwidth given to a clos depends on the percentage of

bandwidth configured for the class. For exarnple, suppose 20% of the available

bandwidth is not k ing use& and there are three classes with packets queued. Two of the

classes have priority 1, with bandwidths 1% and 9%, and the third class has priority 3 and

bandwidth 11%. The priority 1 classes are given an additional 2% and 18% respectively,

and the priority 3 class is not given any additional bandwidth. It is possibte to define a

class that has 0% bandwidth allocated but may borrow bandwidth h m its parent class. A

packet allocated to such a class is only forwarded if there is no other traffic of higher

priority waiting. A cIass that has 0% bandwidth allocated is given bonowed bandwidth as

though it had 1% bandwîdth allocated. Aiiocating 0% and no bormwing to a class means

that the class is blocked,

32.4 Bandwidth Resewation

Bandwidth reservation means that a request is made to the network to dlocate a specific

amount of bandwidth for data flow. It allows applications to reserve bandwidth and QoS

dong the data path. Many new content-rich applications, such as video conferencing,

interactive multimedia video garnes or training programs, need stable, predictable QoS in

terms of bandwidth and delay in order to function well. Bandwidth reservation protocol is

based on the standard network control protocol RSVP (ReSerVation Protocol) [29j,

which allows Intemetlinmet applications to reserve special QoS for their data. RSVP

was proposed by the Internet Engineering Task Force (IETF), and is emerging as a

standard pmtocol for bandwidth management. It is a component of the future Integrated

Senices (IntServ) in the Intemet. When an RSVP-enabled multimedia application

receives data for which it needs a certain QoS, it sen& an RSVP request back dong the

data path, to the sending application. At each stage dong the route, the QoS is negotiated

with the routers or other network components. Non-RSVP network equipment simply

ignores RSVP traffic and cakes no part in the negotiation.

335 Prevenüng Bandwidth Starvation

Bandwidth cm be controlled by simple mechanisms such as guarantees and limits.

However, priorities provide the most powerful and flexible method to dpamicaily

dlocate lirnited bandwidth. The objective of prionties is to gant preferential privlleges to

one class of trafic over another. For exarnple, a network manager could gram a higher

bandwidth priority for Web uaffic than SMTP uaff~c.

There are two types of bandwidth priorities: absolute and weighted. AbsoLute pnority

means to assign a prionty Ievel to each class of traffic. For example, if there are seven

priority Ievels rtvailable for Internet traffrc, Web M c may be given a priority of 7, and

SiMTP mc assigned a pnority of 6. AbsoIute priority is inefficient because it operates

on an alla-nothing bais. When the tine is oversubscrïbed, al1 higher priority traffic gets

through before any Iower priority traffic receives bandwidth. As a result, heavy Web

usage may deny bandwidth to di S m connections. This situaiion is defined as

bandwidth starvation. In order to avoid bandwidth starvation, we have to use weighted

priority. Weighted priority aIlocates available bandwidth based on relative merit or

importance. When using weighted priorities, each class of trafic is gven a weight ihat is

relative to al1 other weights defined in the management policy. The weights define the

bais upon which WIC comptes for available bandwidth. For example, Web M i c can

be assigned a weighted priority of 60, and SMTP traffic can be given a weight of 20.

When bandwidth resources are oversubscribed, the ratio of Web traff~c to SMTP traff~c is

accurately maintained at a 60:20 ratio. Weighted priority provides the oniy mean to

priocitize trafF~c and prevent starvation.

3.2.6 Bandwidth Ricing and Dynamic Bandwidth Pricing

The bandwidth allocated to a user is considered to be a commodity, which is sold by the

network to the user. We view the usen as placing a benefit, or willingness-to-pay, on the

bandwidth they are ailocated. Given a pRce per unit of bandwidth. a user's benefit

function completely determines that user's trafic input. Users are assumed to act in their

own best interests and to be capable of responding to changes in the price for bandwidth

[W.

Assigning dynamic pnority is difficult. If the red-time applications such as voice and

video are given priority to ensure timely delivery, then data trafEic may suffer higher loss

though it may not be able to tolerate ceil Ioss as weli as voice. On the other hand, if

pnority is given to data and a lot of buffering is employed, then real-time applications

rnay suffer large variable delays [30]. Eience we need a dynamic adaptive inter tempord

priority scheme. The prioricies should change to track changes in the network state or in

the application requirements over muitipk time periads. Rather than having a

compiicated priority scheme, a priQng scheme could be used. The operator would set the

benefit functions for the diRerem applications, and couid ais0 set different benefit

functions for applications of the sarne type. Each application would then input traff~c

according to its assigned benefit function and the current state of the network, as refiected

in the prices.

3 3 A Bandwidth Management Architecture for Mernet

In d is section we exptain the general idea of Internet bandwidth management

architecture. There are four entities in the architecture: nodes, hosts, applications and

agents. The agents negotiate for bandwidth within the nodes and send their answers back

co the hosts, which enforce the allocations on the applicaeions. Hosts communicate

through nodes in the incerior of the Internet, These nodes have expIicit knowledge of the

characterisucs of each connection through them, thmu$ negotiation with the host to set

up connection- The nodes continudly artiitnte and enforce maximum bandwidths for

each connection.

This architecture ensures network faimess and makes it impossible for the network to

becorne over-committed, since the nodes wouId keep the aiIoc;itions beIow the Limit of

their capacity. Applications executing on hosts send agents to nodes [411.

3.3.1 Bandwidth Management Nodes

The management node combines two componencs, the Bandwidth Bmker and routers.

Routes inchde core murer, boundary router, etc. These routers have different funcuons.

The core router is for packet delivering, the boundary router is for packet shaping

marking, dropping, etc. The Bmdwidth Broker is another important cornponent, and is

addressed below.

3.3.1.1 Bandwidth Bro ker: A Possible Solution for Baadwidth Ailocation

Tradiaonaily, the relation between a customer and the service provider is based on a

fked bandwidth, in which ai1 mc is handled in the same way (best-effort service). The

ment popularity of the network hrts led to a shortage in network capacity. This can cause

problems especiaily for the performance of mission critical applications. To sohe this

probIern nenvork service providers want to create new services, that guacantee the

customer bandwidth, or at Ieast a berter than best-eRoa service. These parantees are not

aIways needed, and may be changed in the course of time.

We propose the Bandwidth Broker architecture as a possible solution for the internet

bandwidth allocation [371. The tasks a Bandwidth Bmker can are numerous, but

the main task is to negotiate a contract between the cuçtomer and the service provider,

which sets the specifications (bandwidth, QoS, duration of contract, price, etc.) of a

desired connection. The parameters of the Bandwidth Broker may Vary depending on

where the priorities of an application lie. An E T connection would want high

bandwidth, which may Vary, and low package loss but does not care much about delay.

An internet Telephony connection wodd demand Low delay, low jitter and a fixed

bandwidth.

Since the management node contains Bandwidth Broker and muters, it has two main

functions-arbitration and packet forwarding. The Bandwidth Broker is in charge of

asbitration; the router is in charge of packet forwarding. They c m be sepanted clearly.

Mitration is the pmcess of determining the bandwidths ailocated to each connection

through the management node. Whenever the availability of bandwidth at the

management node has changed sufficientiy since the 1st negotiation round, the node

determines the available resources and conducts a negotiation round, through which the

applications cornrnunicate their desires for bandwidth and the management node sets

their bandwidth alIocations. Once the bandwidth aiIocations are set, a fair packet

forwarding scheme can be used to p a s packets dong according to the allocations.

33.13 Management Nodes Assign Bandwidth

The management nodes assign bandwidth to comecaons based on agents that user

applications send them. The application can be aware of what kinds of data rate tradeoffs

are best for it, so it can compose an agent to negotiate for bandwidth on its behaif and

send it to the management nodes dong a connection. Each management node uses a

bidding pmess to determine the amount of bandwidth each agent wants, after that, the

bandwidth is assigneci

Host 1 , n Host 2

a) Host 1 subrnits an agent to Bandwidth Brokers.

b) The Bandwidth Brokers aiiocate bandwidth at any tirne, send the resuits to the

routers and back to the Hostl.

Host 1 O\
1

Host 2 P

C) Data flows through the routers according to the bandwidth allocations.

Figure 3.1 Management nodes assign bandwidth

Scenario

The process of management nodes ssigning bandwidth is shown in Figure 3.1. We

assume that there are onIy two nodes. We propose the following scenario:

Hostl sen& an agent of application to Nodel, the application includes some

connection panmeters. such as bandwidth, delay, jitter, rate, price, etc. The agent is

on behalf of the appiication to negotiate with the Bandwidth Broker. The agent gets

the comection information €mm the application.

Router1 (RI) receives the agent. forwards it to the Bandwidth Brokerl (BB1). BBI

negotiates with the agent based on the cunent situation of traffic and bandwidth. The

price is dynamic because the situation of affic and bandwidth is variable.

3. Two or more agents apply for service at the same tirne, and bandwidrh is not enough

to satisfj al1 the comections. bidding for service happa . The agent who pays more

wins, others are refused.

4. The request is accepted by BBl. BBl forwards the agent to Bandwidth Broker:!

(BB2). if the request is &nid, an error message is sent back to Host 1 by the Agent.

5. BB2 negotiates with the Agent Like step 2. if some agents are applying for service

simultaneously and the bandwidth is not enough, then they bid for service like step 3.

When the request is accepted, BB2 sets the connection and informs R3 and R4 of the

classification and the policing d e s . After that, BB2 sen& the Agent to BBl with a

confinned message. If the request is denied, an e m r message is sent back to Hostl.

6. BB1 receives the Agent with a confrnned message h m BB2, it sets the comection

and inform R1 and R2 the classification and shaping niles. So, if the vaffrc of the

admitted fiow is non-conformant R1 will shape it. Then, BB 1 sends back the Agent to

Host 1 with a confmed message.

7. Hostl receives the Agent with the confirmed message, it starts to transmit data.

This negotiation idea cm be used for Differentiated Sencices (DiffServ) in the Internet.

We will discuss it in p a t e r detail in Chapter 5.

3.3.2 Agents

One factor that limits the responsiveness of any arbitration mechanism is the speed with

which an application running on a local computer cm communicate with management

nodes within the network. Most networks do not have a direct-iine topology, and there is

overhead in fonvarding packets. AL1 of this adds up. Furthmore, some possible schemes

for negotiation between the management nodes and the applications require several

rounds of communication. Aii this time adds up and decreases the speed with which the

network can adapt.

To counteract t h , the applications couid send agents to negotiate on their behaif. Agents

are smaü pmgrams that cm nm on remote machines. These agents would be pmpagated

dong each conneetion to ali of the affecteci management nodes. Once at a node, they

would be invoked by the arbimtion pmcess and respond as the application would, except

without the round-trip delay of communicating with the application itself. An agent is an

interpretable function that takes a number of inputs and produces a bid for bandwidth.

The inputs depend on the negotiation scheme used by the architecture. An application

that wishes to open a connection across the network would encapsulate the relevant

information about the connection in an agent and send it onward to the nearest

management node. These functions are taken in by a network node and are used to

negotiate for resources on behalf of the application, remotely. The arbitration process

determines allocations of bandwidth for ai1 the connections through a particular

management node, with the agents providing knowledge of the behavior and

requirements of each application to the management node [39].

Mobile agents cm be used if it is necessary.

333 Mobile Agents

Mobile agents are autonornous, intelligent p m ~ s that c m migrate from machine to

machine in a heterogeneous network. The program chooses when and where to migrate.

It can suspend its execution at an acbitnry point, jump to another machine and resume

execution on the new machine. Fmm a computation point of view, mobile agents co-

locate data and computation by bringing the computation to the data, rather than by

bringing the data to the computation. Mobile agents have the necessary autonomy to

make decisions, and to interact with other agents and services to accompiish their goals.

Mobile agents can reduce the network affic. Most communication protocols involve

severai interactions, especiaily when security measures are enabled This causes a lot of

network traffîc. With mobile agents, one can package up a conversation and ship it to a

destination host where the interactions can take pIace locally [35,38]. Mobile agents cm

be used to build up tomorrow's inteIligent internet. But, in our model, the situation is

simple as we just use the normal agent,

33.4 Negotiatioa Process

Once agents are installed in management nodes. they must cooperate with the arbitration

mechanism in the node to determine allocations of bandwidth. The arbitration mechanism

wiIl use some sorts of negotiation methods that are both fair for al1 agents and diffrcult

for an agent to subvert.

33.4.1 Negotiatioa and Agents

The negotiation process works as follows. The management node iracks a current pnce

for bandwidth, which the agents buy from it. The node doles out a certain arnount of

credits per second to the agents, which they use to purchase bandwidth. Each host

submits an agent to the ISP's management node. These agents take as inputs their last

request for bandwidth and the current price of bandwidth, and return a new request for

bandwidth. The management node cycles through the agents, asking them for their new

requests for bandwidth and detexmines a new price for bandwidth based on their requests.

Once the total bandwidth requests converge, the management node sends out the

ailocations to hosts [40].

3.3.42 Credit-based Bandwidth AUocation

Using o pricing method is an effective way to manage bandwidth allocation [13,41]. The

main idea of a pricing method is for al1 applications to bid money for services. An

auction of network bandwidth would presumably be the best possible way to ensure that

applications do not attempt to grab aü available bandwidth, since that would cost large

amounts of money. In this scheme, great hurdies need to overcome, such as accurate

billing, secure transactions, etc.

Within a single organization, like an intxa.net, some of these restrictions can be relaxed.

So, we propose another method, cailed Credit-based methoci. In our method, bidding

codd be done with credits replacing money. Relative fairness can be assured by doling

out credits on a regular basis, with more money going to higher-priority connections.

This devolves to a weighted fair share aigorithm if a i i agents can do is spend the money

as they receive it - each connection gets a proportion of the bandwidth quai to its share

of the entire pool of credits doled out at a time. However, if the agents have some ability

to save credits, perhaps even to spend credits they don? have, then they can plan for the

future. For instance, an application with quantized bandwidth requirements could Save

credits when forced to switch to a bandwidth step lower than its share, in anticipation of a

ame when it will be able to maintain a higher bandwidth step. In another instance, if there

is some channel for agents to receive commands from the application, or even for agents

to be repiaced, an agent might hoard some credits, looking ahead to a time when the

application needs to send data more urgently than it does now. The basic algorithm

amives at a price by stating a price to each agent and taking the resdtant bandwidth

requests and determining the bandwidth ailocation. The price is then changed and the

agents are invoked again. Stepwise refinement continues until the requests converge on a

value that is mutuaily satisfactory to the agents and does not over ailocate the outbound

network link [39].

The aigorithm is as foIlows:

do

for each agent

bandwidth allocation[agent] = agent (price, credit-balance)

banhvidrh.allocarions = summution of brmdw*dfh,allocation[l..n]

allocation. ratio = bmdwidth.allocari4ns / bandividfhavailable

price = pnce * allocation. ratio

unta.1 (allocaiomatio converges on 1)

Since the amount of credits agents have to spend is limite& and ail agents receive the

same amount of credits, the price of bandwidth must aiways be finite. The aigorithm will

converge as long as the minimum balance the agents can negotiate sums to less than the

available bandwidth, aithough if bidding forces prices unreasonably high it may take

Ionger. When the agents are forcing the pnce of bandwidth high temporariiy, they are

aiso spending their allocations of credits very quickiy, and wili not be aiIowed to spend

more credits than they have. This is effective at ensuring sane negotiations. Agents that

do not have bandwidth prices above which they are noc wiiting to buy any bandwidth at

al1 could be cunsidered incorrect. if, however, the minimum bandwidth needs of ai i the

agents at an arbimtor add up to more bandwidth than is availabie, the management node

is over-committed. Some other mechmism must be used in this case to police the

aIlocations and r e m the system from an over-committed state. Since this case only

occurs in the case of variabiiiey-intolerant appIications or very poorly written or actively

rnalicious agents, we would U e this mechanism to determine which agents are most at

fauf and deny hem service. We would also like to use the amount of money given to this

agent as a criterion - if an application is particularly important, human intervention to

pruvide it with more resources before it ans out should ensure that it is not capriciously

killed. So, some combination of credit dlocations and observed adapriveness of the

agents shuuld be a workable method of policing this unfoaunate case.

3.3.43 Enforcement of Allocations

Queues, packet scheduling and packet dropping are use to enforce allocations.

Queues

The management node will keep a separate packet queue for every connection it handes.

Each of these queues wiII be of some reasonable length - sufficient to store-enough

packets to smooth out any unwarrantecf variations in the network, while short enough that

apphcations counting on Iow-Iatency connections are not unduly aected.

Packet Scheduling

Packets wiII be removed from the queues as the network permits, using a fair scheduling

dgorithm, such as Virtual CIock or Weighted Fair Queuing to ensure that the aIIocations

are obeyed [33,42]. By accepting packets, placing them into queues and then drainhg the

queues in a priority-based fair manner, it ensures that aI l data Ieaving the management

node abides by the aiiocations, and thus enforces the allocations.

4 Packet Dropping

The queues have a finite lene@, and if an application's queue is Nled faster than it drains

for a long enough period packets are dropped, This acts to penaiize applications for

sending too much data, providing their authors incentive to remain within their

allocations.

In this chapter, we propose an adaptive bandwidth management architecture, which

ailows internet users to transmit &ta of different speeds at different prices. This idea may

be expanded to differentiated pricing for differentiate services in the Internet. In Chapter

4 we present the main concepts behind differentiated services in Intemet.

Chapter 4 Difterentiated Semces in Xnternet

Differentiated Services is a multiple service mode1 that cm satisfy different QoS

requirements, and is based on the principle "pay more. get morew- The network should

provide customers with different QoS based on their different levels of paytnent. Today,

the Internet hosts a wide range of applications and user applications with different

requirements. If the network were able to offer proper QoS for dl applications, both the

amount of services and users would be higher.

4.1 Generalized and Specialized Differentiated Services of Networks

There are many kinds of networks in the world, but there is no generally accepted

taxonorny into which dl cornputer networks fit. Computer networks cm be classified

based on several factors. for example, bandwidth, cornrnon applications, common

hardware. etc. An alternative criterion for classifying networks is their physical size.

Distance is important as a classification metric because different techniques rire used at

different scde. We give a classification example in the Table 4.1 (11:

Interprocessot distance Processors located in same Example

10.1 m 1 Circuit Board 1 Data flow machine

11 m / System 1 Muitiprocessor . I
1 10m 1 Room 1 Local nrea network l

1 Building 1 Local ma neovork I

1 City 1 Metropohtan m a network 1

Table 4.1 The ~Iassification of networks

100 km

1,000 km

10,000 km

Country

Continent

PIanet

Wide area network

Wide area network

The intemet

Some important networks [l]:

LANs (Lod Area Networks), for example, a computer network in a company's

department. such as Ethernet network;

hUNs (Metropolitan Area Networks), for example, a cable television network within

a city and FDDI network;

WWs (Wide k a Networks), for example, an ISDN network;

i intemet, for example, the well-known worldwide Internet.

4.1.1 A Genecaiized Differentiated Services (GDS) Network Modei

We cm ima@ne that d l currently existing networks are al1 in this GDS network model,

where there are a m a t man y different users, different tasks, md many different networks

providing trernendous services. The GDS network model is a vinual network model. but

it gives the idea of Genedized Differentiated Services and Specialized Differentiated

Services.

4.1.2 Generalized Differentiated Services (GDS)

The GDS mode1 of networks is a gened idea, but for more specifxity it can be divided

into Hard Differentiated Services (Hard DS) and Soft Differentiated Services (Soft DS).

Hard DS is based on different network hardware, such as Ethernet and Token Ring. Soft

DS is based on different network software. Protocol is the most important network

software. There are a lot of protocols, Iike TCP/IP, ATM protocol, etc.

4.13 S peciaiized DiEerentiated Services (SDS)

Here, SDS is used just for iP (Intemet ProtocoI). Because IP is the most important data

transport protocol, it is supported widely. iP networks are based on Intemet Protocol.

internet is the I q e s t IP network, which is a worldwide collection of cornputer networks.

P provides a co~ectionless, unreiiable, best-effort packet deiivery system.

4.2 Differentiated Services in Internet

Differentiated Service (DiffServ) has been developed by the Intemet Engineering Task

Force 0, which is the first step for QoS in the internet. SDS is the same as DiffSew.

The htemet is so important and popular, it has an enormous amount of users in the

world. But today's Intemet cari onIy provide best-effort service, and it is not able to offer

proper QoS to meet al1 needs. IETF defines several kinds of QoS for the Intemet, such as

Differentiated S e ~ c e s (DiffServ) [4'3], hte-pted Services (IntServ) [44,45], Multi-

Protoc01 Label Switching (WLS) [46,47,48], etc.

Here, we only focus on DiffServ, because it is easy to be implemented.

4.2.1 General Architecture of Dimerv

Network edge and network boundary are important concepts in Diffserv. Network

boundary is basically a router which links two network clouds. Network edge is a

particular boundary node, which resides at the edge of the whole DiffServ-compliant area

[dg]. The architecture of Diffserv is shown in Fi-pre 4.1.

h t Source Nemork Edge Network Bouadary Nework Edge IJost Destniuion
borindary nodt b0und;w node

ISP (Intemet Service Rovider)

Figure 4.1 DiiiServ's Generai Architecture

The boundary nodes evaluate and set the bits in the Differentiated Service byte (DS byte)

for each packet and condition the packets based on preinstalled service profdes [SOI. The

profiles are set by the opentors accordinp to the contncts with their customers. DS byte

is used to determine how the packets are treated. The matment, cailed Per-Hop-Behavior

(Pm) or Behaviot Aggregate @A), c m include different priorities involving the queuing

delay, different priorities in the drop decisions if îhe queues overftow, route selection,

etc. At the boundiiries, packets are classified using any information in the packet headers,

for example, IP addresses and port numbers. The classification and the profiles cm be as

simple or as compticated as desired In the core network, only the DS byte needs to be

investigated, which simplifies the classification [5 11.

This architecture is used, because:

i) Sophisticated classiftcrition, marking, policing and shaping opentions are onIy

needed at boundary of the networks. ISP core routers only need to implemenr

Behavior Agpregate (BA) classification. Therefore, it is easier to implement and

deploy DiFfServ.

2) ISP networks usually consists of boundary routers connected to customers, and core

routers/switches interconnecting the boundq routers. Core routers must Convard

packets very rapidy and therefore m u s be simple. Boundq routers need not

forward piickets very rapidly because customer links are relatively sIow. Therefore,

they can spend more time on sophisacated classification. poiicing and shaping

4.23 Related Control for Supporthg D i i r v

We need some related conuoIs for supporting the implementation of DiffServ, such as

&c control, bandwidth and queue management, etc.

4.23.1 Traffic Control for DiffServ in Boundary Routers

Trafic controi is u s d y performed at the bouodary routers and it consists of four

processes: chssificaùon, mking, policing and shaping. For each uaffic flow through the

boundary, the router only pforrns either policing or shaping 1521. Some M c conml

operations are as fotlows.

0 Admission Control

This process is to decide whether to accept a request for resources.

Classification

The pmess of sorting packets is based on the content of packet headers according to

defined rules. Classification is done for matching packet headers against entries in the

classifier table. Every packet is classified to a clriss. After the classification, the packets

within a particular class receive simiIar marnent, while the treaunent can vary.between

different classes. Treatment is composed of marking, policing, shaping, scheduling, etc.

in the DiffServ boundaries, classification can be based on any combination of packet

header fields. In Pv4, the fields in the headers that are rneaningful in the classification

are the source and destination iP addresses, protocols, such as UDP, TCP, I W , etc.,

and the source and destination port numbers in UDP and TCP. If onIy iP addresses are

used, the network cm provide DiffServ on host or sub-network [evel. If application fevel

differentiation is required. the classification has to take the port numbers into account.

Some of the port numbers are well known, but IP telephony (or H.323) uses dynamic port

numbers. In that case, the appiica~on would have to signal its port numbers dynamicdly

to the DiffServ edge. Of cause, the host cm do DS marking by itself and thus avoid the

problem. in Pv6, there is dso the flow label field, which is applicable. In DiffSew, the

point is chat cornplex classification is needed oniy at the boundaries, otherwise, only the

DS-byte is used. In other words, DiffServ aggregates the classifier's state in the core

network [50].

Behavior Aggregate (BA) Classification

BA Classification is the process of sorting piickets based oniy on the contents of the

Differentiated Service field (DS field). The DS field is the field in which the

Differentiated Services class is encoded. It is the Type of Service octet in the IPV4 header

or the Traffic Class octet in the lPv6 header [53].

0. Muiti-Field @IF) Classification

The process of classifying packets based on the content of multiple fields such as source

address, destination address, TOS byte, protocoL ID, source port number, and destination

port number.

9. Marking

Marking is the process of setting the DS field in a packet at the network boundaries.

Marking can be performed by the application, the operating system or the edge router.

Markinp gives each packet a pkcular PHB, which determines the treatment the packet

gets in the core routers. Marking is usually performed according to the results of either

poiicing or shaping.

i. Shaping

Shaping is the process of &Iaying pacicets witiiin aaffic stream to conform it to some

defined MIC profile. Shaping causes the packet stream to be conformed to some

configured traffic properties. Shaping is often based on the leaky bucket algorithm. The

shaper smoothes the bursts of a stream, but delays non-conforming packets.

@ Policing

Policing is the process of handling out-of-profiIe traffic, for example, discarding excess

packets. Policing monitors the packet Stream based on its profile. A simple policer is

implemented using the token bucket algorithm [38], which characterizes the packet

Stream with two parameters: average rate and burst size. For each packet of a stream, the

policer declares whether the packet was conformant or nonconformant to the stream's

profiIe.

4.222 Tdc Control in Core Router based on PHB

The purpose of the PHB is that the packets marked with different PHB values shodd

experience differïng service in the core muters- There are severai ways for a router to

implement differing service, but the most important mechanisms are scheduling and

queue management.

A) Schectuling

Scheduling is the process of deciding which packet CO send h t in a system of multipie

queues. In g e n d , schedulers can be chmterized as work-conserving or non-work-

conserving. A scheduIer is work-conserving if it is never ide when a packet is queued in

the buffer. Non-work-conservinp semer may, for example, postpone the transmission of a

packet when it expects a higher-priority packet to arrive soon, even thou$ it is currently

idle.

S o m scheduling dgorirhrns:

1. Priority Queuing

Pnority Queue is a simpIe scheduling aigorithm [30]. The queues are arranged in strict

priority order, and a particulas queue gers service only if there are no packets in the

higher pnority queues. Priority queuing cm g u m t e e srna11 delay for the highest class,

but the other classes face a possible starvation, if the higher classes use al1 the rivailable

bmdwidth.

2. Weighted Fair Queuing (WFQ)

WFQ is a representative exampie of a work-conserving priorîty-based scheduIer [30]. if

the weights in WFQ corresponding to the individud queues are equal, the dgorithms

divide the capacity of the output link by emuiating a tirne-division multiplexer (TDM). If

the weights are not equd, the queues shiue the capacity according to their weights. If any

of the queues does not have enough packets to send out, the other queues s h m its pomon

riccording to their weights.

3. Weighted Round Robin (WRR)

WRR is a good exampie of workçonserving kame-based schedder [30]. WRR serves

each queue in a round-robin fashion, and for each turn, a number of bits corresponding to

the queue's weight is "pdIed out" h m the queue. Thus the link capacity is divided

accorduig CO the weights as fn WFQ. In a worst-case situation, a packet arrives to a queue

just after the queues tuni. In that case, the maximum queuing delay wiii be the sum of the

weights of al1 other queues, if al1 the other queues have also enough packets. In that

sense, WRR is not as ideal as WFQ, but it is simple to implement. This may become a

deciding factor, if the Link speeds increase faster than the pure processing power does.

Using different queues, the network operator cm differentiate the service experienced by

differing PHBs.

B) Queue management

Queue mana;ement controls the length of packet queues by dropping packets when

necessary or appropriate [461. in DiffServ the idea is that the dropping decisions cake the

PHB vaiues into account. Different PHBs can be üeated as different drop preferences.

The usual mechanism is that the router constantly measures the Iength of its queues and

sets dropping thresholds based on the measurements 1521.

If different PHB vdues translate into differing drop preferences, their service differs

drrimatically during congestion. For TCP trafic. this is seen to the users as differing

throu&put, because TCP slows down when packets gt dropped. For UDP uaffic, the

effect is natudly diffenng packet loss ratio, which cm be important for exarnple with

suemed video service.

One of the most popular queue management dgorithms is Random Early Detection with

In and Out (RIO) [54].

RED (Random EarIy Detection) [55] is a queue management scheme that drops packets

randomly. This wiil trigger the TCP flow control mechanisms at different end hosts to

reduce send rates at different time. By doing so, RED cm prevent the queue at the routes

h m overflowing, and therefore avoid the taiI-&op behavior (dropping ail subsequent

packets when a queue overflows). Tail-drop uiggers mulapIe TCP flows to derxase and

Iater inmase their rates simultaneously. It crurses network utiiization to osciliate and cm

hurt performance significantiy. RED has been proved to be useful and has been widely

deployed

RIO is an advanced RED scheme, it maintains two RED algorithms, one for in packets

and the other one for out packets. RIO use two thresholds to drop packets, the first one is

for out packet, the second is for in packet. When the queue's capacity exceeds the fmt

threshold, the out packet wiU be dropped. The in packet will be dropped only when the

second threshold is reached

4 3 Implement DiffServ based on Two-bit Architecture

The two-bit (premium bit P, ssured bit A) DiffServ architecture indicates three mc

classes OO=best effort, lO=premium, Ol=assured. The premium class is targeted for ml-

time craffic, whereas the assured class receives bener than besteffon treatment subject to

drop probability, and is thus suitable for TCP. At the edge router, the packets are

classified and premium and assured flows are set. Premium flows are shaped to constant

bit rate and they are marked with 10. The bucket is very shallow, and overflow packets

are discarded. Assured traff~c is subject to token bucket policer, and conformant packets

are marked with 01, whiIe non-conformant packets are marked with 00. in the COR

routers, Premium bit is used to classify the packets into two queues. Prernium traffic goes

into the upper queue, which aiways has a strict priority over the lower queue. in the lower

queue, a RIO is mn based on the asswd bit. Thus the assured trafic has lower drop

probability than the best-effort trafF1c. The two-bit architecture is shown in Figure 4.1.

-
P bit

RIO

Figure 4.2 Two-bit DiffServ architecture

13.1 Service Levef Agreement (SU)

In order for a customer to receive DiffServ h m their Internet SeMce Pmvider (ISP), the

customer must have a Service Level Agreement (SLA) with its ISP. SLA is a service

contnct between a customer and an ISP. SLA specifies the fonvarding service a customer

should receive. A customer may be a user organization or another provider domain. A

SLA basically specifies the service classes supported and the amount of traffic dIowed in

each ciass. A SLA can be static or dynarnic. Static SLAs are negotiated on a re-dar

basis, e.g. monthly and yearly. Customers with Dynamic SLAs must use a signaling

pmtocol, e.g. RSVP, to request for services on demand. Customers can mark DS fields of

individual packets to indicate the desired service or have them marked by the leaf muter

based on MF classification [5 11.

At the point of i n p s s to the ISP networks, packets are classified, policed and possibly

shaped. The classification, policing and shaping mies used at the ingress routers are

derived fmm the SLAs. The arnount of buffering space needed for these opentions is

also denved from the SLAs. When a packet hansrnits from one domain to another, the

S U between the two domains will determine whether to re-mark its DS field.

4.32 Premium Service Implementation

The proposd of Prernium Service was made by Van Jacobson [56]. Premium Service

provides iow-delay and low-jiner service for customers that generace fixed peak bit-rate

mffîc. Each customer will have a SLA with its ISP. The SLA specifies a desired peak

bit-rate for a specific flow or an aggregation of fiows. The customer is responsibie for not

exceeding the peak rate. Otherwise, excess M c will be dropped. The ISP gatantees

that the contracted bmdwidth will be avaiiable when the M c is sent. Premium Service

is suitable for Internet Telephony, Video Conferencing, etc. [46] Because Premium

Service is more expensive than Assured Service, it is desirable For ISPs to support bath

static SLAs and dynamic SLAs. Dynamic SLAs ailow customers to request for Premium

Senice on demand without subscribin; to it. Admission control is needed for dynamic

SLAs. Premium Service can be implemented as foiiows.

At the customer side, some entities will deci& which application flow can use Premium

Service. The leaf routers connected directly to the senders wiII do MF ~Iassifications and

shape the affic. We c m consider that there is a P-bit in the DS field. If the P-bit of a

packet is set, this packet belongs to the premium class. Othenvise, the prtcket belongs to

the hsured Service class or best-effort class. After the shaping, the P-bits of ail packets

are set for the flow that is aIIowed to use Premium Service. The exit routers of the

customer domain may need to reshape the aaffic to make sure that the uaffic does not

exceed the peak rate specified by the SLA. At the provider side, the ingress routers will

police the traffic. Excess MIC is dropped Al1 packets with the P-bit set enter a Premium

Queue. Packets in the Premium Queue wiII be sent before packets in the Assured Queue.

Fintly, by admission control, the totd amount of premium traffic cm be timited to a

small percentage, say 5% of the total traffic. Secondly, excess packets are dropped at the

i n p s routers of the networks. Nonconformant fi ows cannot impact the performance of

conformant flows. M y , premium packets are forwarded More packets of other

cIasses, they can potentidly use 100% of the Iink bandwidth.

Therefore, if premium WC is dismbuted evenly, these three factors should guarantee

that the sewïce rate of the Premium Queue is much higher than the arriva1 rate.

Therefore, Mving premium packets should find the Premium Queue empty or very short

most of the time. The delay or jitter experienced by premiurn packets shouid be very low.

By timiting the total amount of bandwidth requested by Remium traffic, we use.Weight

Fair Queuing (WFQ between the Premium Queue and the Assured Queue to ,-tee

that premium tdf ic will not starve the assured and best-effort MIC.

4 3 3 Assured Service Implementation

The proposal of Assured Service was made by Kathieen Nichols [Sl]. Assured Service is

intended for customers that need reiiable services h m their service providers, even in

time of network congestion. Customers will have SLAs with their ISPs. The SLAs wilI

specify the amount of bandwidth aüocated for the customers. Customers are responsible

for deciding ho3 their applications share that amount of bandwidth. SLAs for Assured

Service are usually static, that mems the customers can start data transmission whenever

they want without signaling their ISPs. Assured Service can be implemented as foUows.

Firstiy, cfassification and policing are done at the ingress routers of the ISP networks. if

the Assured Service MIC does not exceed the bit-rate specified by the SLA, they are

considered as in profile. Profile is a description of propemes of a trac sueam such as

rate and burst size. Othenvise, the excess packets are considered as out of profile.

Secondly, al1 packets, in and out, are put into an Assured Queue to avoid out of oder

delivery. Thirdly, the queue is managed by a queue management scheme called RIO

(RED with In and Out).

43.4 Two-bit DiîfServ Implernentation

Combining the implementations of Premium Service and Assured Service, we can

implement the two-bit DiffServ as fouows.

1) Customea negotiate SLAs with ISPs. The SLAs specify what services the customers

will receive. SLAs can be static or dynamic. For static SLAs, customen can transmit

data at any time. For dynamic SLAs, customers must use a sigaling protocol such as

RSVP to request for services on demand before transrnitting data. The Bandwidth

Broken (BB) in the customer domains decide how applications share the services

specified by the SLAs. The DS fields of packets are marked accordingly to indicate

the desired services.

1) The i n p s s routers of ISPs are confîgured with ~Iassification, policing and re-

mxking rules. The e-mss routers of ISP networks are configured with re-shaping

rules. Such rules may be configured manually by network administrators or

dynarnically by some protoc01 such as RSVP [451. ISPs must implement admission

conml in order to support dynamic SLAs. Classification, marking, policing and

shapingfreshaping are only done at the boundary routers. Core routers are shielded

from the signdïng process. They need only implement two queues with strict priority.

They process packets based solely on their DS fields.

43.5 Implementation Performance

There are two parts of implementation performance: (a) customer performance, and (b)

ISP performance.

A) Customer performance

Given a SLA, a customer domain should decide how its hosts share the services specified

by the SLA. This is customer performance. There are basically two choices.

1) Each host makes its own decision to use the service.

2) A resource controlier cdled QoS Bmker or Bandwidth Broker (BB) makes decision

for d l hosts [3,8]. A Broker can be a host, a router or a software process on an exit

muter. It is configured with the organizationai policies and it manages the resources

of a domain. A domain may dso have backup Broken. Since ail hosts musc cooperate

to share a lirnited arnount of resources specified by the SLA, it is technicdly better to

have a Broker to allocate resources.

At the initiai deployment stage, hosts may send their packets unmarked. The exit routers

mark them before sending them out to the ISPs. The packets are treated as best-effort

traffic inside the customer domriin. In Later depIoyment stages, when a host wants to send

traff~c. it will consult the Broker for a service type. The Broker decides the service class

and replies to the sender. For premium tnfftc, the Bmker will then use some protocols,

e.g., RSVP, to set the classification, marking and shaping rules at the leaf router that is

directiy connected to the sender (571. The Broker may also set the reshaping rules at the

exit router. Senders wiI1 send their packets unmarked and the leaf routers will mark them.

If the SLA between a customer and its ISP is dynamîc, the Broker in the customer

domain must also use some signaiin; proroc01 to request resources on demand fiom its

ISP.

B) 1% performauce

Given the SLAs, ISPs must decide how to confi,pre their boundary routers so that they

wiU know how to hande the incoming traffic, this is ISP performance. For static SLAs,

boundary muters can be manudy configured wich the classification, poiicing and

shaping mies. Resources are therefore staticaiiy allocated for each customer. Unused

resources can be shared by other customers. For a dynamic SLA, resource allocation is

closely related to the signaling process. The Broker in the customer domain uses RSVP to

request for resources h m its ISP. At the ISP side, the admission conml decisions can be

made in a distributed manner by the boundary routers or by a Broker. If boundary routers

are directiy involved in the sigaling process, they are confi,oured with the corresponding

classification, policing and shaping rules when they grnt a request. If a Bmker is

invoived nther than the boundary routers, then the Broker must confiam the boundary

routers when it p t s a request In both cases, the ISP core routers must be shielded €rom

the requests to avoid the scahbility problem.

Both custorner and ISP need routers' support to finish their performances. Routes'

support is as follows.

1. The leiif routers in customer domains need to implement MF classifications, marking,

and shaping.

2. The ISP ingress routes need to implement policing and re-marking.

3. The ISP e p s s routers need optionally to implement re-shaping.

4. AI1 routers need to implement BA classification and two queues with strict priority.

5. If dynamic SLAs are supponed, each customer domain wiI1 need a Broker to request

for service on behalf of the domain and to dlocsite services inside the domain.

Signalhg and admission control mechanisms are needed in both customer domains

and [SP domains.

DiffServ cm be implemented based on two-bit architecture, but the architecture has some

dnwbacks. We need to improve that, the methods will be discussed in Chapter 5.

4.4 Coordinated Conîrol

Coordinated control c m be broken down into M c control, bandwidth controI and

queue control. These control methods have been mentioned in Chapter 2 and Chapter 3.

In order to get high QoS. we need the coordinated control, because coordinated control

can avoid congestion, lighten and bdance the trziffic 1oa6 Cwrdinated conno1 is the

p e s s of arranging how tnffic flows through the network so that congestion caused by

uneven network utiiization can be avoided [66,75].

There are several kinds of QoS senrices in the Intemet, such as Intepted Service

(IntServ), DiffServ, MPLS, etc., but actually, there is little difference when the tcaffic

load is light, So, it is necessary to do coordinated control in the first place.

The main aims for coordinated control are as follows.

Traffic control: avoid congestion by congestion control, reasonable routing, load

balancing, etc.

* Bandwidth control: supports M c control by increase the utilization of bandwidth.

Queue control: supports traffic control by appropriated queue algorithm. such as

RIO, WFQ, etc.

4.4.1 Traffic Control

In DiffServ, where the goal of traffic control is to avoid congestion, sorne methods cm be

used such as congestion controi, the reasonabie routing algorithm and the traffic Ioad

balancing algorithm [77,79]. The methods of congestion conuoI have k e n mentioned in

Chapter 2, here, we describe the reasonabie routing algorithm.

Usudly sorne parts of the network are overloaded while other parts are lightly Ioaded

Uneven Mit distribution can be caused by the current Dynamic Routing protocols such

as EUP (Routing Information Protocol), OSPF (Open Shortest Path First) and IS-IS

(Intermediate System-to-Intermediate System), because they aiways select the shortest

paths to foward packets [58,62,63]. As a result, routers and links dong the shonest path

between hvo nodes may become congested while routers and links dong a fongr path

are idle. The Equai-Cost Multi-Path (EW) option of OSPF is usefui in distributirtg Ioad

to severai shortest p a h . But, if there is only one shortest path, ECMP wiU be useIess. So,

we need use QoS routing and Constraint Based Routing to solve the problern [591.

A) QoS Routing

QoS Routing refers to dgorithrns that compute paths that satisfy a set of end-toend QoS

requirements. Given the QoS request of a flow or an aggregation of ffows, QoS Routing

r e m s the route that is most likely to be able to meet the QoS requirements [60].

B) Constraint Based Routing

Constraint Based Routing can be used to compute the routes subject to QoS and policy

constraints. The goai is to meet the QoS requirements of traf!fic and to improve utilization

of the networks. Constraint Based Routing evolves h m QoS Routing, it extends QoS

Routing by considering other constraints of the network such as policy. it is used to

compute routes that are subject to multiple constraints [61].

Consaaint Based Routing is to select optimal routes which most likeiy meets the QoS

requirements of the flows. Using Consuaint Based Routing we can select routes to meet

certain QoS requirement and increase the utilization of the network. W I e determining a

route. Consmint Based Routing considers not onIy topology of the network but also the

requirement of the flow, the resource availability of the links, and possibly other policies

specified by the network adminisuators. Therefore, Constraint Based Routing cm find a

longer and light Ioad path nther than the heavy load shortest path. Network enffic is thus

distributed more evenly. in order to do Constraint Based Routing, routes need to

distribute new link state information and to compute routes based on such information.

A router needs topology information and resource availabiiity information in order to

compute QoS routes. Here, resource avaihbility information means iink avaiIabIe

bandwidth. Buffer space is assumed to be sufficient and is not expiicitly considered. One

approach to dismbute bandwidth information is to extend the iink state advertisements of

protocols such as OSPF and IS-IS [58,62,63]. Because link residd bandwidth is

frequendy changïng, a trade-off must be made between the need for accurate information

and the need to avoid frequent fIooding of link state advertisements. To d u c e the

hquency of link state adverrisements, one possible way is CO distribute them onIy when

ttiere are topology changes, or significant bandwidth changes.

The routing table computation algorithms in Constraint Based Routing and the

complexity of such aigorithm depend on the metrics chosen for the routes. Common

route meuics in Consuaint Based Routing are monetary cost, bandwidth, reliabiiity,

delay, and jitter. Routing algorithm select routes that optimize one or more of these

metrics. Metrics can be divided into three classes. Let d(i,j) be a memc for Link (i J). For

any path P = (i, j, k, ... J, m), metric d is:

additive $d(P) = d(i,j) + d(j,k) + . . . + d(1,m)

muitipiicarive ifd(P) = d(i,j) * d(j,k) * ... * d(1,m)

concave fd(P) = min{d(i,j), d(j, k), d(l,m)/

Accordin; to this definition, metrics deirty, jitter, cost are additive, reliability is

multiplicative, and bandwidth is concave. Algorithms for finding routes with bandwidth

consuaint are simple. Bellman-Ford's (BF) Aigorithm or Dijkstra's AIgorithm cm be

used [64,65]. For example, to find the shortest path between two nodes with bandwidth

n a t e r than 1 Mbps, dl the links with residud bandwidth less than 1 Mbps c m be pruned "

first. BF Algorithm or Dijstra's Algorîthm cm then be used to compte the shortest path

in the pruned network. The complexity of such dgorithms is O(N*E).

Bandwidth is the useful consu-a.int thm delay and jitter, because:

1) Although applications may c m about delay and jitter bounds, few applications

cannot tolerate occasional violation of such constraints. Therefore, there is no obvious

need for muting flows with delay and jitter consaints. Besides, since delay and jitter

parameters of a flow can be determined by the ailocated bandwidth of the route, delay

and jiuer consmints cm bc mapped to bandwidth constnint, if needed.

2) Many real-time applications will require a certain amount of bandwidth. The

bandwidth metric is therefore useful.

Some approaches to reduce the computation overhead of Constraint Based Routing

include:

1. using a large-vaiued timer to reduce the computation frequency;

2. choosing bandwidth as constnint;

3, using administrative poIicy to prune unsuitable links before computing the routing

table.

A Constraint Based Routing scherne can choose one of the followings approaches to

select a route for a destination,

1. The widest-shonest path, if there are multiple such paths, the one with Iargest

avaihble bandwidth;

2. The shortest-widest path, i.e., a path with largest available bandwidth;

3. The shonest-distance path.

Using paths other than the shortest paths consumes more resources. This is not efficient

when the load of the network is heavy. A tradeoff must be made between resource

conservation and Ioad baiancing. The first approach above is basicaIIy the same as

today's Dynamic Routing [66]. It emphasizes preserving network resources by choosing

the shonest paths. The second approach emphasizes Ioad batancing by choosing the

widest paths. The tfiird approach makes a tndeoff between the two extrenes. It favors

shortest paths when network load is heavy and favors widest paths when network Ioad is

mediate [66].

4.42 Bandwidth Control

The bandwidth control has been addressed in Chapter 3. The main idea of bandwidth

conml is to increase the utilization of bandwidth by some means, such as bandwidth

allocation, bandwidth sharing, bandwidth bonowing, bandwidth pricing [76,78].

We propose a bandwidth control method, the "Adaptive bandwidth aiIocation based on

dynamic pricing", which we believe it may possibly increase the utilization of bandwidth.

The bandwidth price is not fixed, i.e., users can decide to buy bandwidth based on

bandwidth pnce policy. When the price is low, the user cm buy more, if al1 bmdwidth

requests are over-committed than the available bandwidth, the provider cm rise the price

to renegotiate, and the users wiI1 decrease their requests if the price is hi@. if the

requested bandwidth is equd or dmost equd to the available bandwidtfi, the negotiation

is done, the bandwidth is allocated to users. This approach will be presented in Chapter 5

as merhod to improve the two-bit based DiffServ.

4.4.3 Queue Control

Queue conml includes some queue management aigorithrns, such as RED, RIO, WFQ,

WER FIFO, etc. These dgorithrns can support the traff~c control to woid congstion.

ïhey can drop the packets to control the length of the queue based on the requirement

(751.

4.5 The relationship of DiffServ, Coordinated Control and Price

DiffServ is a kind of QoS model. Coordinated Conno1 is the way to support the Dimerv.

There is a very important element for DiffServ-price. We cm get different QoS by

adjusting the price [71,74]. When the price is higher, the QoS is better. Theu

relationships are showed in Fi-gure 4.3.

Coordiniucd Control

l

1
Qosm

bmdwici' - queue emmil ,
control 'Qosout

2 l

Figure 4.3 A

AQoS

AQoS = QoS in - QoS out

Figure 4.3 The relationship of QoS, Coordinated Control and Price

Chapter 5 Improving Two-bit Based DiffServ

The Diff Sem based on Two-bit (Premium/Assured) architecture has some drawbacks. In

this chapter, we focus on the shortcomings of Assured Service, and improve on Assured

Service with new algorithm. The simuIation code of the algorithrns is written in Java md

is included in the Appendix.

5.1 Drawbacks of Two-bit based DiffServ
Premium Service and Assured Service are two components of the two-bit DiffServ

architecture. Their dnwbacks are presented in this section.

A) Premium Service

Premiurn Service provides low-delay and low-jitter service for customers thac generate

fixed peak bit-rate trafic. Each customer wiIl have a SLA with its ISP. The SLA

specifies a desired peak bit-rate for a specific flow or an a,o_pgauon of flows. The

cusromer is responsible for not exceeding the peak rate. Otherwise, excess trdEc wiIl be

dropped. The Premium Service must keep enough bandwidth based on the peak bit-rate

to set up the virtual path. Obviously, the drawback of Premium Service is that it wastes a

lot of bandwidth, so that we cannot get high network resource utilization 13,561. -

B) Assured Service

Assured Service is intended for customers who need diable services h m their service

providers, even dunng times of network congestion. Customers will have SLAs with tfieir

ISPs. The SLAs wilI specim the amount of bandwidth dlocated for the customers.

Customers are responsibie for deciding how their applications share that amount of

bandwidth [3,5 11.

There are two major drawbacks of Assured Service:

1. Lack of the scdability of service quality;

2. Lack of high utilization of network resources.

We focus on these two shortcomings and propose new methods to overcome them.

5.2 The Scalability of Service Quaiity in Assured Service

The ratio of data according to type of service in two-bit based Internet traffk in our

proposal is as follows: 5% Pre&um Service traffrc, 35% Assured Service üaffïc, and

60% for Best-effort Service MIC 1491. Because the Premium Service is so expensive,

ody 5% of traffîc packets are premium packets. Most of the DifBerv packets are assured

packets, and they represent about 35% of al1 internet traffic packets. But, in Assured

Service level, al1 traffic packets are treated equally, even though some customers prefer

to pay more for their packets in order to get higher service qudity than others.

Unfortunately, this cannot be implemented within the current Assured Service level. So,

we need to irnprove the Assured Service model. The current Assured Service level is too

coarse, we use multi-class service levels to replace one assured service level, which is

cailed Muitilevel Assured Service.

5.2.1 Multiievel Assured Service

The main idea of MuItiieveI Assured SeMce is as follows:

A customer pays a minimum basic service charge when he uses MuItilevel Assured

Service. If he is wiliing to pay a higher pnce for a higher level of service, his packets will

get a higher level of priority than packets without extra payment. Paying different levels

of money for different levels of service wiII heip set different pnorities for packets and

cause them to enter different priority queues.

Hi&-priority packets are sent earlier than low-pnonty packets, and they are dropped later

han the low-priority packets when there is congestion in the network. We use priority

queues CO mode[this appmach,

5.2.2 Scheme of Mdtilevel Assured Service

Multilevel Assured Service has several service levels. The number of service Ieveis is

flexible, and may be decided by the senrice provider based on erich particular tr&c

situation. We consider four service IeveIs, called Al, A2, A3 and A4, with increasing

priority and service quality. in other words, A4 has the highest priority and Al has the

lowest. in this scheme, AI Queue is an assured queue, which is managed by the RIO

algorithm. A2 Queue, A3 Queue, and A4 Queue are priority queues with increasing

priority. Each queue of A2, A3, A4 is managed by the FIFO algorithm. Al1 these four

queues are managed by WFQ aigorithm in order to avoid bandwidth starvation. The

scheme is shown in Figure 5.1.

Premium Service 07
Packets t ~ c d the specified
bit-me ;ire wked.If neworks
congesuouter WP dmp m k e d (

RIO 4
in profile: c = specified bit-me

:

o u profile: > specifi bit-nte

I Best-effort Service I

Figure 5.1 The scheme of Multilevel Assured Service

533 hiuitilevel Assured Service Supports Scalable Service Quality

MuItilevel Assured Service supports scalable service quaiity by means of Assured Queue

and Mority Queue. The Assured Queue is desired for basic assured service, the Mority

Queue is destined for hi@ quality service. In ow scheme, there is one Assured Queue-

Al, and three Priority Queues-=, A3, A4. The Assured Queue and Priority Queue

have been designed for different qurility services.

1) Assured Queue

First, if the assured service traffic does not exceed the specified bit-rate, they meet the

requirements of the in profile. Othenvise, the excess packets are considered as out of

profile. Second d l packets, in and out, are put into A l Queue to avoid out of order

delivery. Third, AI Queue is managed by RIO, which maintains two RED dgorithms,

one for in packets and one for orir packets. There are two thresholds for each queue.

When the queue size is below the first tfinishold, no packets are dropped. When the queue

size is between the two threshoids, only out packets are randornly dropped. When the

queue size exceeds the second threshoid indicating possible network congestion, both in

and our packets are randornly dropped buc out packets are dropped more agpssively. In

addition to breaking the TCP flowcontroi synchronization, RIO prevents, to some extent,

cgeedy flows from hurting the performmce of other flows by dropping the orir packets

more aggressively. Because in packets have a fow loss rate even in the case of

congestion, the customers will perceive a predictable service fiom the network if they

keep tnffic conformant. When there is no congestion, out packets will also be delivered

Pl.

2) Priority Queue

Priority Queue is managed by FIFO (Füst In Fmt Out) algorithm and Marking algorithm.

If the priority service t&xc does not exceed the specificd bit-rate, they are sent directly

without marking. Othenvise, the exceeding packets are marked fmt, and then sent If

there is no congestion in the network, both marked and unmarked packets cm pass; if

congestion happens, unrnarked packets cm pass but marked packets may be dropped by

the router. This is called the "Marking" algorithm 1421. The marking algorithm dlows the

exceeding bit-rate packets to pass when the trafic load is light, thereby increases the rate

of packet delivery and network resource utilization. Without the "Marking*' algorithrn, al1

exceeding bit-rate packets are dropped before delivery. Even when the uaffic load is very

light, they still cannot be delivered, and nenivork resources are wasted. The packets in the

Priority Queue are delivered by RFO algorithm after markinz.

Packets in the Priority Queue can receive higher quality service than packets in the

Assured Queue, because Pnority Queue has a high send-rate and a low drop-rate.

L) Hi$ Send-rate

For the high send-rate scheme, Priority packets are sent earlier than assured packets.

Assured packets have to wait in the Assured Queue and let packets in the Pnority Queue

be delivered first. In order to avoid starving the Assured Queue, we can use W Q to

manage the Priority Queue and the Assured Queue.

2) Low drop-rate

For the low drop-rate scheme, rnarked priority packets wiil be dropped only after

congestion happens. But assured packets wiH be dropped by the RIO algorithm not only

when congestion has become red, but dso when the trend towards network congestion

has k e n detected.

53.1 Choosing a Fitting Service Level

A customer needs to choose a fitting service Ievei before using the Multilevel Assured

Service. We consider there are four service Ieveis in our MuItiieveI Assured Service

scheme, which are Al, A2, A3 and A4 with increasing priority. Al is for basic assured

service, the customer only needs to pay a basic semice charge for it, say X dollars. If the

customer is willing to pay more to get higher priority For his packets, he cm chwse a

priority queue (A?, A3 or A4) to satisfy his requkment based on two elements: the price

and the size of each ptiority queue, The price of each priority queue c m be set by the

service provider. Suppose the service price for A2 is 2X dollars, A3 is 3X dollars, and A4

is 4X dollars. The size of the queue is given by the Iength of all existing packets in the

queue. Since the priority queue is managed by FEU dgorithm, and if the queue size is

too large, the new packets have to wait for the service for a Longer time. So, if the packets

are Unponant and urgent for the sending application, a higher priority queue will be

chosen.

If the customer is satisfied wirh b o a the price and the size of the queue, the service level

can be set. After setting the seMce level, the custorner's application sen& the packets to

the network, the network will process the packets based on the setting. The

implementation of MuItilevel Assured Service is presented in section 5.4.4.

5 3 Thé Utilization of Network Resources
For current Assured Service, the network resource cannot be utilized effïcientiy. At the

source ISP, it is hard to dfocate ail available bandwidth cornplerely for the requestors.

either when bmdwidth is overîommitted or undercomrnitted, so the bandwidth

utilization is low. Becween the source ISP and destination ISP, when the spatial

granularity becornes Iarger than one destination, it is more difficult to support a service

with a 6xed bandwidth profile 167,681. The network needs to provide enough cesources

to dl possible destinations to ensure the service quality and thus the resource utilization is

low.

We propose to use Token-based Assured Service and Constraint Based Routing in order

CO address the above problem- In order to improve the bmdwidth utilization at the source

ISP, we ptopose a new aigorithm, cailed Token-based Assured Service. The Constraint

Based Routing, as we have piesented in Chapter 4, can select routes to meet the QoS

requirement and inmase the resource unIization between the source ISP and the

destination ISP.

To ensure hi@ network resource utilization, we propose the foiiowinp stages: (1) Using

Token-based Assured Service to increase the bandwidth utilization at the source ISP, (2)

Using Constraint Based Routing to increase the network resource utilization between the

source ISP and destination ISP, and (3) Using Load Baiancing to support the Constraint

Based Routing if necessary.

5.3.1 Token- baseci Assured Service

There are two major eIements of the Token-based Assured Service: (1) tokens, and (2)

token price, Tokens stand for bandwidth amount. For example, if a network has lOOM

bandwidth and every token stands for lM, then the nework has 100 tokens in total. If a

user needs SM bandwidth, he should buy 5 tokens. Token price stands for bandwidth

pnce. That is to Say, $10 for one token means $10 for 1M bandwidth. The available token

number is the number of tokens avaiIabIe for allocating at the mean time. In another

words, it is the unused bandwidth in the network.

Tokens can be used to avoid over-committing the bandwidth. Al1 packets must hoId some

tokens before entering the network, which means the bandwidth must be aliocated to the

packet first. No token means no bandwidth, so there is no entrance for any packet. A

packet must hold more tokens than its minimum token requirements; otherwise, the

packet cannot be delivered properly.

The service provider allocates tokens to al1 requestors based on the dynamic token price,

until ail tokens are ailocated completely.

53.2 Dynamic Token Price

Dynamic token price is the cool used to alIocate tokens. When the number of available

tokens is p a t e r chan the number of total requested tokens, the bandwidth is under-

committed. In this case, the service provider needs to reduce token p r i e to encourage the

requestors to buy more tokens. When the token prke is reduced, the requestors wiU buy

a more tokens. Because more tohns means more bandwidth, and it is easier to get betier

QoS, the token price will be reduced until aii or aImost aii tokens have k e n sold.

If the available tokens are fewer than total requested tokens, the service provider will

increase the token price thus trying to reduce requestor demand for tokens. When the

token pnce is increased, the nurnber of tokens requested will be decrease. Normally, the

customer will request a greater nurnber of tokens than his minimum token requirement.

Having a dynamic token price cm avoid abuse of the bandwidth. Because the bandwidth

is not free, and every one has to pay for it based on the amount used. So, every one needs

to apply for a reasonable amount of bandwidth.

It is very hard to give a reasonable fixed bandwidth price, because if the price is too low,

some p e d y users will abuse it; if it is too hi&, it will prohibit increased use. So, we use

dynamic token pricing, which is fair for every user. A user cm buy the exact number of

tokens he needs. When there are fewer tokens available, the token price will be hi&. In

thnt case, a user can wait until the Iower token price is available, or buy. tokens with a

higher price for delivering his urgent packers.

Dynamic token price provides a chance for some users who want to get hi@ priority.

When totd requested tokens are much more than the avaiiable tokens, a user can bid for

tokens against others for his important packets. This means users can pay more to get

priorîty for delivering packets instead of waiting.

533 Token-bd Assured Service Supports High Utilization of Bandwidth

As described above, token-based assured service c m support hi$ bandwidth utilization

in two ways:

1) Avoids over-committing the bandwidth based on token-holding entrante.

2) DynamicalIy adjusts of the token price to encourage or discourage the users to buy

more tokens or to reduce tokens requirements, until al1 available tokens are sol&

The implementation of Token-based Assured Service is given in the section 5.4.5.

53.4 ïncreasing the Resource Utilization by Constraint Based Routing

M e r assigning al1 available tokens to the requeston, the ISP source will be ready to

process users' packets. The ISP delivers these packets based on Constra.int Based

Routing. The Constraint Based Routing algorithm can find a longer and less loaded path

rather than a more heavily loaded, shorter path, which increases the network utilization

between the source and the destination. Load balancing can reduce the traffic Ioad by

choosing the widest path, and it cm be used concurrently with constra.int Based Routing.

We consider that using Our method, the bandwidth utitization is more efficient at the ISP

source than before. From ISP source to ISP destination, when the packets pass through

the Intemet backbone, Constraint Based Routing and load balancing can ensure hi&

resource utilization, hence the whole network resource utilization is higher than beiore.

5.4 Implementation

We propose two implementations, one is for Muitilevel Assured Service, the second is

for Token-based Assured Service. 30th of hem are based on Agent-Broker architecture,

see Figure 5.2.

Figure 5.3 Agent-Broker Architecture

5.41 Agent-Broker Architecture

Agent-Broker architecture can support the implementations of MultiIevei Assured

Service and Token-based Assured Service. The Agent-Broker architecm is shown in

Fi,oure 53.

In Fi,oure 5.2, S stands for Source, D stands for Destination. So, Host S means Source

Host QoS Broker S means Source Qo!3 Broker. Routers S means Source routes,

including boundary routers, and core routers, etc. Similady, Host D means Destination

Hast, QoS Broker D means Destination QoS Broker, and Routers D means ail

Destination routers.

In Agent-Broker architecture, the Host is a service requestor, the ISP is a service

provider. The Host sends an agent to the ISP to negotiate with the QoS Broker on its

behalf. The Agent, as we described in 3-62, is a small program that can nin on remote

machines. The Agent inchdes some QoS parameters, such its service IeveI requirement,

bandwidth requirement, bit-rate, etc. The ISP inciudes one QoS Broker and some routers.

The QoS Broker cm negotiate with agents, assip system resources to them, and satisfy

Eheir QoS requiremenrs, such as service Ievel, bandwidth mount, etc. The QoS Broker

can also cornmunicate with oher rernote QoS Brokers. Routers within the ISP, and they

cm be classified as either boundary routers or core routers. Boundary muters are

connected to hosts and convol classification. marking, policing, shaping opemions, etc.

Core routers control the fonvarding of packets, and they are connected to the htemet

backbone.

In Figure 5.2, if Host S wants to transmit data to K a t D, it will send an Agent to Routers

S first. The bound;uy router of Rourers S receives the Agent and mns it there. The

boundary router invokes ~e QoS Broker S based on the Agent's QoS requirement. n i e

Broker S responds to the boundary router, and then the Agent negotiates with the Broker

S. if the Asent's requirement is accepteci, the Broker S wilI forward the Agent to QoS

Broker D: otherwise, an error message will be sent back to Host S by the Agent. When

QoS Broker D receives the Agent, it will negociate with the Agent. If the requirement is

accepteci. the Broker D will set the classification and policing mles on Routes D, and

send the Agent back to Broker S with a confmed message; otherwise, it will only send

an error message to Broker S by the Agent. When the Broker S receives a confimed

message h m Broker D, it wilI set the chssification and policing mies on Routers S, and

then send the Agent back to Host S with a confirmed message; othenvise it will just send

back the Agent with an e m r message. When the Host S receives a confirmed message

from Broker S. it cm start transmitùng data. The data will pas through the network from

Routers S, through the inremet backbone, and Routers D to Host D. If the Host S receives

an error message h m Broker S, Host S may change its QoS requirement, and then sen&

a new Agent to renegotiate with the Bmker S.

5.4.2 Agent-Broker Negotiation

Normally, an ISP has a lot of hosts, and aü the hosts can send agents to negotiate with the

Broker for service on their behalf. An exarnple of four Hosts sending four Agents to the

ISP is shown in Figure 5.3.

I I 1 QoS Bmker ,
l l

I I

Figure 5.3 Hosts send agents to ISP

As presented in Figure 5.3, Routers inchdes boundary routers and core routers. The

boundary router of the ISP receives the four Agents, and it invokes the QoS Broker to

negotiate with the Agents. AI1 four Agents can negotiate with the Broker simu1taneousIy.

The negotiation of the Agent and the QoS Broker is shown in Figure 5.4.

>
Router - - - - - - - - - <- - - - - - - - - 1 Tootaer

j QQS Bmkers
Negotiation

1 ,

Figure 5.4 The negotiation of Agent and QoS Broker

In Ftgure 5.4, the Host requests service by sending an Agent eo its ISP. The Agent is

installed in the Boundary Router to negotiate with the QoS Broker there. The negotiation

may Iast several rounds, until Agent and Broker get a munialiy satisfying resuit, which

will be taken back to the Host by the Agent. If the Agent's requireruent cannot be

satisfied, h e Agent will r e m to the Host with an enor message.

5.4.3 Bmker Behavior

The Broker behavior in our implementation is shown in Figure 5.5.

Broker m idle A

sme

Figure 5.5 QoS Broker behavior

Broker negotiate
wbh the Agent

1 3

r

Multilevel Token-bûsed
Assurrd Servlcc ksured Service

The Broker is in an ide state at fmt, while waiting for the request fimm the router. When

the router receives Agents, it invokes the Broker. The Broker wiii negotiate with Agents

how to set the service level and how to assign ail availabIe tokens.

- Algorithm for Roka
sets the service kvel

Algorithm for Broker
assignsavailable
tokens to agents

-

5.4.4 Implementation of Mulüievel Assured Service

The implementation of Multilevel Assured Service is based on Agent-Broker

architecture, as shown in Fi,oure 5.2.

The Host sends an Agent to ISP on its behalf to negotiate the service level, as shown in

Figure 5.3. There are many Hosts, d l of hem cm send Agents to the Broker to request

service. Here, we give an example of one Host sending one Agent to negotiate the service

level with the Broker, as presented in Figure 5.4.

A) Service Level Establishment Scenario

Multilevel Assured Service includes four queues, Al, Al, A3 and A 4 Al queue charges

a basic price, while A2 charges double, A3 triple and A4 four cimes as much as Al. Hosts

send out their Agents to negotiate with the QoS Broker. First, at the Host side, the Agent

sets information about the maximum service pnce and the maximum queue size that the

Host can accept. Second, the Agent is sent to the ISP. Third, after the boundary router

receives the Agent, the negotiation of Agent and Broker stacts.

The Agent gets the prke of the AI level, and if the pnce is higher han the Agent's

maximum price, the negotiation process is terminated and Best-effon Service is dlocaced

to the Agent. Otherwise, the a g n t gets the queue size of Al , and if the size is acceptable,

Al is assigned to the Agent. But if the queue size of AI is too large, the agent has to gve

up on Al, and asks for the pnce of M. Likewise, if the price and queue size of A2 are

both acceptable, A2 Queue service cm be assigned to the Agent, If unfomnately, the

pnce is too hi&, the Agent is assigned to Al, and if the size of A2 is too large, the Agent

wiII go on to seek A3 queue, Then the process wiil continue with A3 and A4 queue with

the same sntegy,

B) Service Level Establishment Algorithm

The service level establishment dgorithm can be divided into two parts. One is the

Broker which sets the service leveI, the other is the Agent which asks for the s e ~ c e

level.

1. The aigorithm for Broker sets service Ievei is shown in F i , w 5.6.

Queue information

Broker

gct information

kfultilevel ksured Service Queue.
4 sub-kvels. Al. AZ. .?J. A4

ger rcsponse

send result back
ta hos t

Fi,- 5.6 Bmker sets the service level

2. The algorithm for the Agent asks for the service Ievel is show in F i a m 5.7.

Agent

kk for AÎsured
Service kveI

htultilevel Assurai Service Queue,
4 sublevels. AI, Al. A3. A 4

Fï,oure 5.7 Agent asks for senrice lever

83

The service level can be set by the above two dgorithms. After the service level is

estabiished, the result is sent back to the HOSL When the Host receives the result, it sen&

the packets to the ISP. The ISP puts the packets in the queue. The packets wiii be

delivered by the router later.

5.4.5 Implementation of Token-based Assured Service

The implementation of Token-based Assured Service is based on this Agent-Broker

architecture as well, as presented in Figure 5.2.

The hosts send Agents to the ISP on their behaif to negotiate with the Broker for tokens

(bandwidth amount).

The hosts must hold some tokens before entenng the network, and these tokens should be

at least somewhat more than their minimum bandwidth requests. Ail hosts are eager to

pet more tokens, because more tokens means more bandwidth, so that the QoS will be

easy to meet. But, the bandwidth is aiways limite& and it is not free. So, the requestor

will submit an initial request (preferred tokens) which is a bit more than its minimum

request, and then modify the request according to the change of the token price. The

token price is dynamic, because it cm both avoid the p e d y requestors and invoke the

idle requestors.

If there are more token requested than the availabie tokens, the token price will rise until

the requested and available tokens are bdanced (equiiibrium point is reached). if the

requested tokens are less than the available tokens, the token price will faii until ail

avaiIabIe tokens are sold out or aimost sold out

A) Scenario of Negotiating Tokens

Four hosts (Host 1, Host 2, Host 3, Host 4) send four Agents (Agent 1, Agent 2, Agent 3,

Agent 4) to the ISP to ask for their preferred tokeas. The prefened tokens are more than

their minimum requested tokens. The ISP's boundary router receives the requests from

four Agents, and invokes the Broker to negotiate with the Agents.

The Broker states an initial token price and collects al1 requests of the Agents; then it

compares the number of total requested tokens with the number of available tokens, and

states a new token price. If the total available tokens are much more than the requested

tokens, the token price is lowered; otherwise, it is increased.

After the Broker sates n new token price, al1 Agents cm get the new price information,

and compare it with the previous token pnce. The Agent will increase its request if price

is lowered, or vice versa. The Broker then collects requests from Agents again. if new

requested tokens are stiH fewer than the available tokens, the Broker reduces the token

price again, encouraging the agents to buy more tokens, until al1 available tokens are

sold. if the new requested tokens are more than the available tokens, the Broker rises the

token price. if the token price is higher than the Host's maximum acceptable pcice, the

Agent has to quit (asks for zero token); otherwise, the Agent reduces its token request as

long as the request does not go lower than its minimum request. Then the Agent applies

for tokens again. If the request is accepted by the Broker, the Agent retums to its Host

with the result; if not, it renegotiates. If the Agent's minimum token request cannot be

sntisfied, the Agent has to quit this round of negotiation. This Agent cari wait for the next

round of negotiation. when it can probably get low-priced tokens.

B) Algorithms for negotiating tokens

There are two algorithm for negotiating tokens: (1) Agent asks for tokens, (2) Broker

assigns tokens.

1. The algorithm "Agent asks for tokens" is shown in Figure 5.8.

Agent

get a token Y
N

ask for0
token V

N
price reduced? l

ask for i% more
tokens(according to

condition):

tokens(according CO I condition):

i

V Y V
Rcturn the resuit -
back to broker

I

I R total requcst
ATN: avdabh token numbers

Figure 5.8 Agent asks for tokens (bandwidth amount)

86

The key idea of the aigorithm of the Agent asking for tokens is described as foiiows.

Based on the dpamic token price, the Agent tries to apply for as many tokens as

possible. There are two ways to do that:

a) When the token ptice is going dom, inmase the token requests.

b) When the token pnce is going up, reduce the token request, until it reaches the

minimum token request, In that case, the Agent can gÎve up this round of negotiation,

and wait for next round to get the appropriate coken pnce and number of tokens.

2. The aigorithm "Broker assigns tokens" is shown in Figure 5.9.

The key idea of the idgorithm of the Broker iusigning al1 available tokens to Agents is as

follows.

The Broker tries to seIl ail its available tokens by dynamic token pricing, which means

that al1 avriilable bmdwidth wiH b t used, so that the highest possible rate of bmdwidth

utiiization is achieved

After the Bmker itssigns the avdable tokens to dl Agents, the Broker signals the router

for service. The Agents send back the finai negotiation results to tfie Hosts, and the Hosr

can send their packets to the ISP.

Broker

refuse nqutsL I

hos t? >

1 < , * ,
signd agents

Figure 5.9 Broker assigns di avdable tokens to agents

88

5.5 Simulation
The simulation program has k e n written in Java

The Agent is an application program, which cm be sent h m locd host to the semer

(ISP) by FR protocol. The simulation source code is given in the Appendix. The source

code includes two parts, part one is for service level negotiation; part two is for

bandwidth negotiation.

Cbapter 6 Conclusion and Future Work

The Internet is used on a very Iarge scde nowadays. QoS introduction in the Intemet

becomes necessq to support different service requirements. DiffServ is the first step of

QoS implementation in the intemet.

We have focused on the two-bit DiffServ architecture in the internet, because two-bit

architecture has the outstmding advantage of king easy to implement. In the foresemble

future, it wiI1 possibiy be used widely in the Intemet. The current two-bit architecture hrts

some drawbacks. We present some ways to irnprove them. such as Multilevel Assured

Service. the Marking dgorithm, the Token-based Assured Service, the Agent-Broker

Algorithrn, Constraint-based Routing and load balmcing, etc. Using these mechods, we

cm get a higher scalribte service quality and higher network resource utilization. These

improvements can make the two-bit architecture more efficient than it is right now. We

believe thnt with Our improvernents, the two-bit DiffServ architecture wilI have a suonger

capacity to support different QoS requirements.

Future research should be conducted to extend our work in order co support multiple ISP

environments, mdticast communications, and both sender and receiver-based chqing

schemes in Che two-bit DiffSew architechue.

1. A. Tanenbaum, Compter Networh, Third edition.

7. P. Ferguson and G. Huston, Qualiry ofservice, John WiIey & Sons, 1998

3. K. Nichols, V. Jacobson and L. Bang, A Twu-bit Drferenriated Services Archireaure

for the interner, Internet Dr&, Nov. 1999.

4. J J. Bae and T .Su4 Srirvey of Trafic Control Protucols in ATM Nenvorks,

December 1990
5. Kevin Lai. Mary Baker, Measuring Bandwidh, Dept. of cornputer Science, Stanford

Uni versiry.

6. T. Ndousse and L. Hester, PPP Errensiomfor IP/PPP-HDLC over SONET-SDW

WDM, Proceedings o f the 16th international Conference on Communications,

June, 1999
7. A. Campbell, A Qualiry ofService Architecmre. PhD. thesis, lanriiiry 1996.

8. ISO, QoS-Merhods and Mechanism. international Srandards Organicafion. 1998

9. V . Jacobson, Congestion Avuidance and Conrrol, ACM, 1988

10. Timorhy Kwok, AïM: The new paradigm for Interner, Intraner, and Residentid

Broadband Services and Applfcarions, Prentice HdI FR, New Jersey 07458

L 1. Zbi-&ew Dziong, ATM Nenvork Resource Manngemenr, McGraw-Hill

12. Sally Fioyd and Kevin fail, Router Mechunisms tu Support End-to-End Congestion

Control, Lawrence Berkeley National Lab, Feb. 15,1997

13. Jeffrey K. MacKie-Mason, Hal R. Varian, Pricing the Inremet, University o f

Michigan, Febmary 1994

14. Zypmunt Haas, Adaptive Admission Congestion Control, AT&T Bell Lab.

15. Jean Walrand, Pnvin Vaniya, High-Perfonnmice Communication Nenvorks, Morgan

Kaufmmn Pubüshers, Inc.

16. Raj lain. Cungesrion Control mrd Tr@c Management ATM Nenvorkrr Recenr

Advmces &A Survey, Dept. of CIS, The Ohio State University, Aug.13,1996.

17. Dominique Gaiti and Guy Pujotie, Performance Munagement issues in Am

Nerworks. Tr@c and Congestion Control, TEEFlACM Transaction on Networking,

Vo1.4, No.2, April 1996.

18. Jose Duato, Sudhakar Yalamanchili, Lionel Ni, Interconnection Networks un

engineering approach, EEE Computer Society, Los Namitos, California

19. A. Parekh, A Genenalized Processor Sharing Approach to Flow Cuntrol in

Integrared Services Nehvorks, PhD. thesis, MlT, Feb. 1992

20. K. Ramakrishnan, and R. Jain, A Binary Feedback Scheme for Congestion Avoidance

in Computer Nerworks, ACM Transaction on Computer Systems, Vo1.8, N o 2 1990

3 1. Sudhir S. Dixit, Trafic Descriptor Mapping and Trafic control for Frame Relay

ûver ATM Nenvork, iEEE/ACM Transaction on Networking, Vol.6, No.1, Feb. 1998.

22. L Petersen, B. Davie, Computer Nenvorks - A Systems Approach, Morgan

Kauhann Publishers, San Francisco, CA; 1996.

23. S. Radhaknshnan, S.V. Radghsivan, a. Agrawaia, Design & Perfiormance Study of a

Flexible Trafic Shaper for High Speed Nenvorks, Feb. 1997

24. Edward W. Knightly and Jingyu Qiu, Meusurement-Based Admission control with

Aggregare Trafic Envelopes, ECE Department, Rice University.

25. S. Dom, RED EXperience and Differentiated Queuing. in NANOG Meeting, June 98

26. S. Floyd, TCP and Eàplicir Congestion Notificurion, Computer Communication

Review, October 1994.

27. H. Liu, Traflc Shaping for Congestion Conrrol in HigR Speed A ï 3 4 Nenvorks, Dept.

of CS, University of Saskatchewan, August 1992.

28. EL Bala, 1. Cidon and K. Sohmby, Congestion control for High Speed Packet -
Swirched Networks, June 1990.

19. RBraden, L. Zhang, S. Berson, S. Herzog and S. lamin, Resource ReSerViznon

Protocol (RSVP) RFC 2205, September 1997.

30. Cisco Billing Architeare White Paper, Cisco Systems, Inc. 1998

3 1. M o k n Guizani and Ammar Rayes, Designing ATM Switching Nenvorks, McGraw

-Hi11

33. Ivy Hsu and Jean Walrand, Admission Conrrol for ATM Nmorkr, Minneapolis,

Minnesota, March 1994

33. L Zhang, Virtual Clock A new T r e c Conrrol Algorithm for Packet-Switched

Nerworks, ACM Transactions on Computer Systems, VoI. 9. No- 2, May 1991

34. Arthur W. Berger, Ward Whitt, Effective Bmthvidth with Priorities, TEEFlACM

Transaction on Networking, Vo1.6, No.4, Au,wt 1998.

35. Alfonso Fuggetta, Gian Pietro Picco, Giovanni Vigna, Understanding Code Mobility,

IEEE Transactions on Software Engineering, Vol 24, 1998

36. Eroi Gelenôe, Xiowen Mang, Raif Onvurai, Banaividr/z Allocation and cal1 Ahission

control in High-Speed Nenvorks, EEE Communication Magazine, May 1997.

3 7. CA *net II Differentiated Services, Bandwidth Broker Sysrem Specificarion, British

Coiumbin Institute of Technology, Technology Centre, Group for Advanced

Information Technology, October, 1998

38. Mobile Agents White Paper, http~/www.genmagic.com/technology/techwhitepriper.

Html, General Magic, Inc,, 1997

39. Tony White, Bernard Pa,ourek, Andrzej Biesznad, Nenvork Modeling for

Management Applications Using Intelligent Mobile Agents, Carleton Unversity, 1999

JO. Steward Snell, Jtec Pty Lirnited, Dynamic Bandwidrh Management Using ATM, 1999

CI 1. D. Tennenhouse, D. Wetherail, Towards an Active Nenoork Architecture. April 1996

a 42. Cisco Access VPN white paper, Cisco Systems, Inc. 1998

43. S. Blake, D. Black, M. Carlson, E Davies, 2. Wang, and W. Weiss, An Architecture

for Differentiated Services, RFC 2475, Dec. 1998.

U. Braden, R., Clark, D. and Shenker, S., Integrated Services in the Interner

Architectzrre: an overview, Internet RFC 1633, Jun. 1994

45. J. Wroclawski, Spec@ation of the Controlled-Load Network Elemenr Service,

RFC 221 1, Sept. 1997

46. T. Li, CPE based WNs using MPLT, internet draft cdraft-li-MPLS-vpn-OO.txt>,

Occ 1998

47. R- Braden, L. Zhmg, S. Berson, S. Henog and S. lamin, Resource ReSerVation

Protocoi (RSVP) --Version 1 Funcrionai Specifi~~on. RFC 1205, Sept. 1997

48. P. Vaananen and R. Ravikanth, Frmnework for Tr@c Management in MPU

Nenvorkr. Internet draftcdraft-vaanmen-mpls-tm-fnmework-0, Mar. 1998

49. YBemet et aI., A Frmnework for Diflerentiared Services, intemet d d t CM-ietf-

diffserv-franiework-ûû.tx~, May 1998

50. K. Nichois, S. Blake, F. Baker and D. Black, Definition of the Differentiated

e Services Field (DS Field) in the IAr4 and Pu6 Headers, RFC 2474, Dec. 1998.

51. K. Nichols et al., Dlflerentiated Senrices Operm.onui Mode1 mid Defiitions,

Intemet d d t <draft-nichols-dsop&f-00.0r~, Feb. 1998

52. Kimberly C. Claffy. Interner Tr&c Charmeryan'on, University of California, San

Diego, 1994

53. Silvano ûai, Intemenoorking lAi6 with Cisco Rowers, McGraw-Hili

54. D. Clark and J. W~oclawski, An Approach ru Service Allocation in the Inremet,

Internet drafi cdraft-ctarkdi fferent-svc-aIlocdO.txt>, SUI. 1997

55. B. Braden et al., Recommendution on Qcteue Management and Congestion

Avoidance in the Interner, RFC 2309, Apr. 1998

56. V. Jacobsen, Dzrerentiated Services Architecture, taik in the htServ WG at the

Munich EETF, August, 1997

57. YBernet et al., A Framework fur use ofRSVP with DiBeni Nerworks, Internec

draft CM-ied-diffserv-rsvp-OO.txt,, Jun. 1998

58- R. Guerin, S. Kamat, A. Orda, T. Przygienda. and D. Williams, QoS Roriting

Mechanisms und OSPF extensions, Internet drift cd&-guenn-QoS-routing-ospf-

03 . tx~, Jan. 1998

59. Q. Ma, QoS Rouring in rhe Inregrared Services nerworks, PhB. thesis, CLMU-CS-

98-138, Jan. 1998

60. E. Crawley, R. Nair, B. Sajagopalan and H. Sandick, A Frmework for QoS-bused

Routing in the Internet, RFC 2386, Aug. 1998

6 1.2. Wang and J . Crowcroft, Quality ofService Routing for Supporting Multimedia

Applicririons, EEE BAC, Sept. 1996

62. C. Vikmizar and T. Li, IS-IS Optimized Multiparh (lm OMP), hternet drafi

CM-VilIamizx-isis~rnp-or>.~~t,, Oct, 1998

63.1. Moy, OSPF Version 2, RFC 2178, Apr. 1998

64. E. Horowitz and S. Sahni, Funriamenrals of Cornputer Algorithms, Computer Science

Press, Pitman Inc., 1987

65. S. Baase, Computw Algocithms: IntMduction to Design and Analysis, Addison-

Wesley hblishing Company, 1987

66.2. Wang, Rouring and Congesrion C o m i in Dasagram Networks, PbD. thesis,

Dept. of CS., University College London, Jan. 1992

67. 2. Wang, User-shore differentimon (USD) scalable bmrhvidth allucarion for

differentiated services, May 1998, Intemet Draft.

68. Trillium Digital Systems, inc. Companson of IP-over-SONET und IP-over-ATM

Technologies, November, 1997

69. Conrrolling TCPnP Bandwidth, The Packeter Technical Forum, November 1998

70. The New Paradigm for Differentiated Service Levels in Interner,

htt~://www .su~ranets.com/

7 1. Cisco IOS Sofnuare Qualiry of Service Solutions, White Paper, Cisco S ystems, hc.

1998

72. E. Rosen, A. Viswanathan and R-Callon, Multi-Protocol Label Switching

Archirecture. intemet ddtcdraft-ietf-mpls-arch-û 1 .txt>, Mar. 1998

73. Wuchang Feng, lmproving Intemet Congestion Control and Queue Managemenr

Algori th , University o f Michigan, 1999

74. S. Shenker, C. Partridge and R. Guerin, Specflcation o!Guaranteed Qualily of

Service, W C 2112. Sept. 1997

75. Shivkuma. Kdyanaramen, Re: Edge-ro-edge Flow control drufi drafr-shivkuma-ecn-

diffserv-01-m, ECN archive message 000 13

76. Ivy Hsu and Jean Walrand, Dynamic Banhvidth Allocation for ATM Switches,

Feb.5, 1995

77. Edward W . Knightly, Enforceable Quality of Service Guarantees for Busrsry Trafic

Srreams, ECE Department, Rice University.

78. Raffaele Bolla, Franco Davoli and Mruio Marchese, Bandwidth Allocation and

Admission in ATM Nenvorkx wirh Service Separaion. IEEE Cornmunicarion

Magazzne, May 1997

79. S. Keshav, Congestion ConrroI in Cornputer Networks, PhD. thesis, U. of California,

Berkeley, Au,pt 199 1

80. S. Ohta and K. Sato, Dynamic bandivicith control of the vimal path in an

qnchronous rransfer mode nmork, IEEE Trans. Commun. 40,7,1239-1247,1992

A. Source Code for Service Level Negotiation

There are three programs in this package: agent.java, mysemer.java,

and myclient.java. They work cooperatively to perform Service Level

Negotiation.

Agent. java plays the role of an Agent. It is stored at the Host side

initially. When request cornes, myclient . java will send this program as
an Agent to the semer. At the semer side, agent. java compares user

requests (maxirmrm price and maximum queue length) with information in

the server database and decides which service level to choose. There is

one class in this program -- class "agent', whose algorithm is given in

Chapter 5 , page 8 3 .

Myclient-java runs on the Host side, It collects information from the

user, sets up FTP comection with the server, sends Agent to the

server, and then reads responses £rom the semer. There are three

classes in this program: class "myc1ientR, perfoming most of the tasks

as a client; class "readCineThreadm, reading responses from the server;

class 'DataConnR, transferriag file using FTP.

Myserver.java resiaes at the server side as a service provider. It

invokes the Agent and sen& the result back to the Host. Class

nmyserverR is the only class in this program.

To be simplified, we use file queue. txt instead of a real database to

store price and queue length information. Service provider should

modify this file on a regular basis so that the up-to-date network

States are reflected in this file. The numbers in the file represent,

respectively, the price for Ai service, the queue length of Aï, the

price for A2 service, the queue length of h.2, the price for A3 service,

the queue length of A3, the price for A4 service and the queQe length

of A4.

/ *
* @agent-java
* @author: Suqiao Li
* @date: June, 1999
* function: this program acts as an agent which negotiates with the

broker
f about service level
(.

* /
import java.io.*;
import java-lang.';
import java.util. *;

public class agent (

public static DataInputStream input=null;

public static void main(String[] args) throws IOException
(int i, j;

DataInputStream input=null;
String price="";
String length="";
int price-i=0; / / price for se-mice level
int length-i=O;// occupied length of queue
int arg_price=O;// maximum price the host want to pay
int arg-length;// maximum queue lengch the host can accepc

St ringTokenizer :oken=new StringTokenizer largs 10 1) ;
argsrice = Integer.garseInt(token.nextToke90 ;
token=new StringTokenizer(args[lI 1 ;
arg-length = Inceger.parseInt(~oken.nextTokea0 1;
input = new DaeaInputStream(

new FileInputStream(new File(*queue.txt*) 1) ;

price = input,readlineO;//get Aï grice
while(price.compareTo~"EOFn) != 0)

(token=new String'ïokeaiter (pricel ;
price-i = Integer.parsemt(token.nextToken0 1;
if(price-i<(atgqrice))// if Al price is acceptable
(length=input . readLine {) ;

token=new StringTokmizertLengthl;
length-i = Inteqer,parseTiit{token.nextTokenO 1 ;
if (lagth-ic (arg-length)) / / if Al length is acceptable
(System.out.println(' Al Queue .);

/ / return result: Aï service lwel
break;

1
else
f price=input . readtine (1 ; / /get A2 price
token=new StringTokenizer (price) ;
price-i = Integer~parse~nt(token.nextTokenO 1 ;

if(price-ic(arggrice))//if A2 price is acceptable
(length=input . readline (1 ;
token=new StringTokenizer(1ength) ;
length-i = ~nteg=.parseInt(token.nextTokenO 1;
if(length-ic(arg-length))// if A2 length is acceptable
(System.out.println(' A2 Queue ' 1 ;

/ / retuen result: A2 service levei
break;

1
else
(price=input,readlineO;//get A3 price
token=new StringTokenizer (price) ;
price-i = Integer.parseInt(token.nextToken0 1 ;
if (price-ic(argqrice)) / / if A3 price is acceptable
(length=input . readline i ;

token=new StringTokenizer(1ength);
length-i = Integer.parseInt(token.nextToken~) ;
if(length-ic(arg-1ength))if A3 length is acceptable
C System.out.println(" A3 Queue '1 ;

/ / return result: A3 service levei
break;

1
else
(price=input,readlineO;// get A4 price
token=new StringTokenizer(price1;
price-i = Integer.parseInt(token.nextTok~~O1;
if (price-i< (argjrice)) / / if A4 price is

acceptable
{ System.out.grictln(" A4 Queue " 1 :

/ / return result: A4 service level
break;

1
else
(System.out.println(" A3 Queue ' 1 ;

/ / return result: A3 service level
break:

1
?

1
else
(Syscem.out.println(" A2 Queue " 1 ;
/ / return result: A2 service levei
break;

1
1

1
else
{ Syscem.out .println(" Ai Queue *) ;

/ / return result: àï service level
break ;

1
1

1
else
(System.out.println('Best-effort Service");

/ / return result: Best-effort semice level
break;

) / /while
input. close i 1 ;

l//class agent

A.2 myserrrstr. java

/+'
* Qmyserver .java
* Qauchor: Suqiao Li
*@date: &me, 1999
* function: this program is a server which acts as broker to negotiate

with
z agent about which service level to allocate.
*
*
/

m o r t java.iu.*;
import java-lang.';
m o r t java.net.*;
import java .util. * ;

public class myserver
(private static Socket incoming;

public static void main(String[l args) chraws IOException
i String respunse='";// response from the agent
Scring scr=*eH ;
String[] arguni-c=new Stringl41; / / argumenrs sent to the agent

incoming=s.accepcO;
1
catchiException el l 1 ;

/ / set up server socket, liscen to request Erom hosr

==Y
E DaCaInputStream sin= nerd

DataInputScream(incorning.getInputStream0 1;
PrintStream saut= new PrintStreamiin~o~ng~getOutputStreamO 1 ;
str=sin.readLineO;

1
catch (&cepcion el
ISysten.aut .printh [el ; 1
System.ouc,princin('Bead information from client...');
argument [O 1 ='javam ;
argument[?] ="agentn ;
argumentf2]=str.substring(O,(~tr.i;i~exOf!~;~l1); / /maximum price
argument[31=str.subs~ring(str.lastIndex0f (" ; " 1 +Il ; / / naxirmim

1 engt h

BufferedReader in= new %ufferedReader(new InputStreamReaderi
Runtime .getRuntime (1 . exec (argument) .getInputStreami i 1 1 ;

System-out .grinth("Invoke agent .class.. . " 1;
/ / invoke agent

(DataInputStream sin= new
DataTilputStream(inconing.gecInputStream0);

PrintStream sout= new PrintStream(incoming.get0utputStreamO);
while ((response= in.readLine0) != nul11

/ / ger response from agent

saut .princin("Result of negotiation: " +response) ;
/ / send back results to hast

System.out.println("çend back result ...' 1 ;
incoming . close (;

/ / close the negociation with agent
1
catch(Exception el
[System.out.println(e);l

in.close(1 ;
1 / /main

1 / /c lass myserver

A. 3 nqlcliant . java

/ *
Omyclient. java

= eauthor: Suqiao Li
* @date: June, 1999
* funccion: this program runs on the host side. Read in the user's
requests ,
* and send agent
service
f level .
*

* /

to negotiate with the broker about the

inport java.io.*;
Fmport java.net.*;
import java. lang. ' ;
imporc java-util. ';

public class myclient extends Thread
I public static void main(String[l args) throws IOException

(Socket sockec = null;
PrincWriter out = null;
auffereaeader in = null;
BufferedReader In = new BufferedReader(new

InputStremQeader(Systen.in) 1 :
String str,strl.str2,str3;
String EromServer= "";

DataInputStream din= null;
DataO~tp~tStream dout= null:
BufferedIngutStream fin= ntill;
BufferedOutputStream fout= null;

/ /
/ / collect requests from user
/ /

Systen.o~t.println(~~at is the maximm price you want co pay?:');
strl = In-readLine0;
System.out.println("What is the maximun queue lerqth cari yau

accept? : ' ;
scr2 = In. readLine (1 ;

String response;
Socket controlsacket = null;
ServerSacket datasocket= null;
3ufferedReader controlin= nulI;
PrintWriter controlout= null;

/ /
/ / connect to semer
/ /

controlsocket= new Socket(*SüçD*, 21);
controlin= new BufferedReader(new

~nputStreamReader(controlsocket.getInputStreamO 1) ;
controlout= new PrintWriter(controlsocket.getOutpurStreamI)~;

/ / build up control connections for FTP transmition
1
catch (UnknownHostException ue) (Sysrem.err.println(ue);

System.exit (1) ; 1

new readlineThread(controlin).stutO;
/ / recrieve greeting message from FTP server

controlout.println("USER sqlin);
controlout . flush (;
new readtineThread
/ / login process

controlouc.prinrln
controlout.flush0
new readLineThread
/ / login process

controlin) . sraxt (1 ;

controlout.println("PORT 132,206,51,48,10,53') ;
controlout.flush0;
new readtine~hread (controlin) . start (1 ;
!/ send port number to server for active mode co~~ection

controlout .println (*rud li/se-mer") ;
concrolout . flush (;
new ~eadLineT~ead(con t r01 in) .startO;
/ / change directdry to where server resides

String filename="agent.class*;

/ /
/ / Initiace Data Cannection
/ / active mode, use ServerSocket class
/ /

datasocket= new ServerSacket(2613);
new DataCom(datasocket, filenamel-start0;

concrolout .println ('TYPE 1.) ;
controlout . f lush(1 ;
new readLineThread(controlin1 .startO ;
/ / c h g e to Bulary mode

/ /
/ / Send FT.P comnands through Control Connection
/ /

try (sleep (5) ;) catch(lnterruptedExcepcion ie) I ; 1
conuolout . p r i n t l n ("STOR agent, classa 1 ;
controlout~flush0;

new readLineThread(contro1in) .startO;
//transmit the agent(agent.class) to the server

try (sleep (5000) ; } catch(bterruptedException ie) {; 1
/ / wait for the transmission to complete
1
catch (IOException ie) (Systern. err.println i ie) ; 1

try
(socket = new Socket("çUSün, 8OOl);

//Create a socket which can communicate with port 8001(the server
port numberi

out = new PrintWritef(socket.qetûutputStream~), true);
in = new BufferedReader(new

InputStreamReader(socket.getInputStream0 1);
1
catch (IOException e)
(System.out.println(e) ;
System.exit (1) ;

1

out.println(strl+":"+str2);
/ / Send to the semer

Sy~tem.out.println(~ Waiting for result ..." 1 ;
while ((str=in. readLine () 1 ! =nul11
I
System.out.printlnistr);

/ / Print out the response from the server

out. close (;
in. close (;
In.close0 ;
socket .close (1 ;
controlout .close I l :
controlin , close (1 ;
controlsocket.close0;

/ / Close the sockec
1

1

/ /
/ / class readLineThread is the thread which reads resgonses from server
/ /
class readLineThread extends Thread
(BufferedReader in= nuil;

public readLineThread(BufferedReader inn)
{ super ("Rea6 Line Thread8 1 ;

this . in= inn;
1

/ / constructor

public void run(1
{ String fromServer= " " ;
trY
[while (ifromSemer= in.readLirieO1 != null)

System.out,println(fromSemer);
1
catch (IOException ie) (System.exit (1) ; 1

1
]//class readCineTread

/ /
/ / class DataConn is the thread which sends files to semer via FTP
/ /
class Datacon! extends Thread
(ServerSocket socket ;
Socket datasocket;
int type;
String file, target ;
booiean client;

public DataConn (ServerSocket s , String f)

super("Data Comection");
this.socket= s;
this.file= f;
:his.ciient= false;

1
/ / constructor

public void runi 1
(
DataInputStream din= rrull;
DataOutputStream dout= null;
BuffereàInputStream fin= null;
SufferedOutputStream fout= null;
int data= -1;

dout= new DataOutputStream~datasocket.get0utputStrem~l 1 ;
fin= new BufferedlnputStream(new FileInputStrezm(file1) ;

fin.cLose0 ;
dout. close (1 ;

datasocket.close0;
socket .close (1 ;

1

catch (FileNotFoundException fnfel
I

Sy~tem.out.println('"~ File not found. Try correct file name.");
return;

1
catch (IOException iei (System*err.println(iei; 1

A.4 queue.txt (simplified database of prices and occupation
percents f o r different levels)

100
5 O
200
30
300
20
400
1 O
EOF

B. Source Code for Bandwidth Negotiation

There are seven programs in this package: agentl-java, agent2.java.

agenc3. java, myserver. java, myclientl. java, myclient2. java, and

mycliene3. java. They work cooperatively to perf orm Bandwidth

Negotiation. The last three of these programs represent three different

hosts, while the first three are the three Agents sent by these Hosts.

Since there is no essential difference between these Hosts and Agents,

we List only one pair of them here.

Agentl.java plays the role of an Agent. It is stored at the Host side

initially. When a request cornes, myclientl-java will send this program

as an Agent to the semer. At the semer side, agentl-java gets the

eoken price from the Broker and modifies its request according to that

new price. The negotiation between Agent and Broker may last several

rounds before a final consensus is reached. There is one class in this

program -- class 'agent', whose algorithm is described in Chapter 5 ,

page 86.

Kyclient1.java ras on the hosc side. Tt collects information from che

user. sets up the ET? connection with the server, sends the Agent to

the server, and then reads responses from the semer. There are three

classes in this program: class "mycliencl', performing mosc of the

tasks as a clierit; class *readLineThreadœ, reading responses from the

semer; class "DataCom', transferring file using FTP.

Myserver-java resides at the server side as a service provider. It

collects requests from al1 the Agents and modifies tokm price

according to the ratio of total requests to available token number. The

negotiation process continues until that ratio converges to 1. Class

*myse,rverR is the only class in this program. The algoritkm for this

class is given in Chapter 5, page 88.

B. 1 agentl . j ava

/ *
@agentl. java

= Bauthor: Suqiao Li
* @date: June, 1999
function: this program acts as an agent which negotiates with the

bro ker
t about how many tokens to buy.
+

import java-io.';
m o r t java-lang:;
import java .ail. *;

public class agentl C

public static DataInputStream input=nuii;

public static void main(String[] args) throws SOException
i inc i, j;

i n t orgjrice;
/ / Original token price from the broker
Fnt price;
/ / New token price form the broker
int max-urice;
/ / Xacimum price which the host want to pay
in: pre-bw;
/ / Prefe=ed bandwidth of the host
in: min-bw;
/ / Minimum bandwidth of the host
int quit-bd=0;
/ / The request reduced to O when token price exceeds the m a x h

price
int cache;

/ /
/ / collect information from the broker
/ /
StringTokenizer token=new StringTokenizeriargs[OI) ;
maxsrice = Inteqer.parseIntitoken.nextToken0 1;
token=new StringTokenizer(args[ll);
gre-bw = Integer-parseInt(token.nextToken0 1 ;
token=new StringTokenizer(argsf2I);
min-bw = Integer.parseIntitoken.nextToken0 1 ;
token=new StringTokenizer(args[31);
orgqrice = Integer.parselntitoken.nextToken0 1;
token=new StrinaTokenizer(args[41) ;
price = Inteqer.parseInt(token.nextToken0 1 ;

if (price>maxgricei
/ / if token price greater than the maximum acceptable price
(System.out.println[Integer.toString(quit-bdl);

/ / ask for O token I quit this round negotiation)
1
else
(cache=pre-bwtorg_price/price;

/ / change request according to the change of the price
if (cachemin-bw)

/ / if the new request is greater than the minimum
(pre-bcache ;

System.out.println(Integer.toString(pre-bwll;
/ / send the new request to the broker

1
else System.ouc.println(Lrireger,toString(gre-bw) 1 :

/ / maintain the origiaal request
1

1 / /class agent

8.2 niyssrrrsr. java

/ *
kcyserver . java
Oauthor: Suqiao Li

* @date: June, 1999
function: this program is a semer which acts as broker to negotiate

with
* three different agents about how many cokens to buy.

= /

import java.io.*;
import java.lang:;
imporc java.net.*;
import java.uti1. *;
import java.lang.Integer:;

public class myse-mer
[private stacic Socket[i incoming=new Socket[41;

public sratic void main(String[] args) throws IOExcepcion
[String response="n; / / the response from the agents
String clienti=";
Srring str="", cache='";
String[l [1 argumenc=new Scring(41 [71;
/ / arguments sent from the broker to the agents
int tr=O ;
//Total Xequest
i x acn=100;
//Available Token Number
iric price=lO;
/ / Price for one token (inirially $13)
int[] request=(0,0,0,0};
/ / Requests Erom each clienc
incf1 p o r t = { 0 , 8 0 0 1 , 8 0 û 2 , 8 0 0 3 } ;
//Port nunber for agents to access se-rver
ÇtringTokenizer token;
ServerSocket [l s=new ServerSocket [4 1 ;
/ / serversocket for different ports

/ /
/ / get initial information: preferred bandwidth, minimum bandwi,dth

m d
/ / maximum price from three agents. Pu: these informacion i.ato

dif f erent
/ / arrays.
/ /
for(int i=l; i<4; i++)

try
(s [i 1 =new ServerSocket (port [i 1 1 ;
incoming[i]=s[il .acceptO ;

1
catch (Exception el C 1 ;
t w

[DataInputStream sin= new
DataInpuiStream(incominglij .getInputÇtreamO);

PrintStream sout= new
PrintStreamiincoming[iI .getOutputStreamI) 1 :

str=sin .readLine () ;
1

catch (Exception e)
(System.out.println(e);)
System.out.println('Read information from client "+il;
cache=str.substring(O,(str.indexOf(';'i 1) ;

if(cache.endsWithiwClientlm})
/ / if the information i s senc by hostl

E ar~ent[ll[Ol=~javam;
argument [ll [I l ='agent18 ;
asg~ment[ll [2j=str.substrinq(O, (str-indexûf (' C m) 1 1 ;

argument[ïI [3I=str.substringt (~tr.indexûf(~;'~+1) ,str.lasthdexOf (" ; *))

arg~mentfll [4]=str.~ubstring~str.lastIndexOf(~;')+l);
argument [Il t5 1 =ïnceger. tostring {price) ;

1
else if(cache.endsWith(TLient2") 1

/ / if the information i s sent by host2

argument[21 13I=atr.~ubçtring((str.indexOf~~;")+l) ,str.lastIadexûf (" ; * I l

argument121 [4l=str.subsrsing(str.lastfndex0f +l) ;
argument [2 1 [5 1 =fnteger. toString(price1;

1
else

/ / if the information Fs sent by host3
I argument [3l [Ol=" java';
arqu1r1enti31 [l]='agent3';

argument 13 1 [4 1 =str .substring(scr. lastIndex0f (" ;" 1 +li ;
argument [3 1 [5 1 =Integer. CoString(price) ;

1
l / f f o r

/ /
/ / sum up total initial requests
/ /
foriint i=l;ic4;i++]
C token=new StringTokenizer(argment [i l 131 1 ;

requestlil = fnteger,parseInt(tokeri,nextToken());
tr=tr+request[il;

/ /
/ / Negotiation process going on until tr/atn converges to 1
/ /

while(((f1oat) (tr/atn)<0.9) 1 1 ((float) (tr/atn)>l))
(argument [l] [SI =~nteger, toString(price1 ;
argument [2] [S 1 =Integer . toString (price) ;
argument [3 1 [51 =Integer. tostring (price) ;

/ / argument [l [SI is the price of last round

price=priceetr/atn;
/ / change price according to the ratio of tr/atn

argument [Il [61 =Integer . tastring (pricei ;
argument [2 1 [61 =Integer. toString (price) ;
argument f 3 1 [6 1 =ïnteger. tostring (price) ;

/ / argumenti][6] is the price of this round

/ /
/ / invoke al1 the agents again, and collect new requests £rom them
/ /
for(int i-1; ic4;i++)
(BufferedReader in= new BufferedReader(new InputStreamReader(

Runtime.getRuntine() .exec (argument [il) .getInputStream(1 1 1 ;
//System.out.println('Invoke agent.class ..." 1 ;
trY
{ DataInputStream sin= new

DataInputStream(incoming[il .getInputStreamO ;
PrintStream sout= new

PrintStream (incoming [il .getOutputStreami 1 1 ;

response=in . readline (;
}
catch (Exception el

(System.out.println(e) ;}

token=new StringTokenizer(response);
request[iI = Integer.parse~nt(token.nextTokenO 1 ;
tr=tr+reqrrest [il ;
in.close0 ;

1

/ /
/ / return the results to hosts.
/ /
for(int i=l;ic4;i++)

[DataInputStream sin= new
DataInputStream(incaming [il .getL.putStream() ;

PrintStream sout= new
PrintStream(incoming[il.getOutputStreamO);

/ / while ((response= in.readLine()) != nul11

sout,grintin(~Result of negotiation: '1;
sout.println(* Token number: "t request[ill;
saut .println(" Price: +price) ;
System.out.println("Send back result ..." 1 ;
incoming l i 1 .close (1 ;

1
catch(Exception el
{ System.out .println(e) ; 1

B . 3 atyclient. java

/ *
* @myclientl. java
* @author: Suqiao Li
@date: June, 1999
function: this program runs at the hoçt side. It reads information

from user * and send out agent to negotiate with broker.
t

*/

import javamio.*;
import java .net. ;
import java.lang.*;
m o r t java.util.*;

public class myclientl extends Thnad
(public static void main(String(] args) throws IOException

(Socket socket = null;
PrintWriter out = null;
BufferedReader in = nu11;
BufferedReader In = new BufferedReader(new

rnputStreamReaderiSystem.in1 1 ;
String str,strl,str2,str3;
String fromServer= "";

DataInputStream din= null;
DataOutputStream dout= null;
aufferedinputstream fin= null;
BufferedOutputStream fout= null;

/ /
/ / Collect information from hosts
/ /
System.out.println
strl = 1n.readLine
System.out.princln

want?:");
str2 = In-readtine
System.out.println

accept? : ") ;

"Wbat is the maximun grice you want to pay?:") ;
1 ;
"What is the greferreü bandwidth do you

1 ;
"mat is the minimun Sandwidth can you

String response;
Socket controlsocket = null;
ServerSocket datasocket= nul l ;
EufferedReader contralin= null;
PrintWriter controlour= null;

/ /
/ / connect to sesver
/ /

try (
controlsocket= new Socket ('PEACH', 21) ;
controlin= new BufferedReader(new

InputStreamReader(controlsocket.getInputStream0 I) ;
controlout= new PriatWriter(controlsocket.getOurpueStrea~~1;

/ / build up control connections for FTP transmition
1
catch (Unkn~wnHostException ue) (Systein.err.grintln(ue) ;

System.exitI1); 1

new readLineThread(controlinl .starc();
/ / retrieve greeting messages from FTP server

contr~lout.println(~USER sqli');
controlout. flush () ;
new readLineThread (controlin) start (1 ;

/ / login process

~ontrolout.println(~PASS ***"*') ;
controlout. flush() ;
new readLineThread(controlin1 -startO;

/ / login process

controlout.grintln(~P0RT 132,206.51.47.10.53");
controlout. flush (1 ;
new readLineThread (controlin1 .start (1 ;

/ / send port number to server for active mode connection

concrolout.println("cwd li/bw/server9);
controlout. flush(1 ;
new readLineThread(contro1in) -start (1 :

/ / change directory to where se-rver resides

String filename="agentl.class";

/ /
/ / Initiate Data Connection
/ / active node. use Serversocket class
/ /

datasocket= new SeruerSocketl2613);
new DataConnIdatasocket, filename) .start(1 ;

controlout .printlnl "mPE I* 1 ;
controlout. flush() ;
new readLineTkead (controlin) -start () ;

/ / change to Binary mode

/ /
/ / Send FTP commatlds through Control Connection
/ /

try f sleep(5) ; l
catch[InterruptedException iel I ; 1
controlout.println('STOR agentl.classa);
controlout.flush0;
new readLineThread(controlinl.starc0;

/ / transmit the agent(agentl.class) to the server

try { sleep[50001:}
catch(1nterrtiptedException iei (; 1
I//try
catch(I0Exception ie)

ISystem.err.print1n (iel ; I

t ry
(socket = new Sacket ["PEACH", 8001) ;

/ / Create a socket which can cormnrnicate with port 8001(server port
number 1

out = new Printwriter(socket.getOutputStream0, truel ;
in = new BufferedReader(new

rnputStream~eaderisocket.getlnputStream0 1) ;
>
catch (IOException el
(System.out.printinie);
Sysrem.exit I l i ;

1

strl=strl.concat('C1ientl");
/ / mark the string for identification

Syscem.out .println('scrl= " +suIl ;
System.out.println(' send out: n+strl+*;n+scr2+n;"+scr3~;
out.printin(strl+':*+s;r2+":'+str31;
Send to the server
Syscem,out.println(' Waiting for result ..." 1 ;
while ((str=in.readLineO) !=nuII)
Prim out the response from the s-er
i
System.out.println(str~ ;

1

out.close(1 ;
in. close (1 ;
In. close (1 ;
socket. close (1 ;
controlaut .close [1 ;
controlin.close (1;
controlsocket-close0;
Close the socket

class readLineThread is the thread wfüch reads responses from semer

class readLineThread extads Thread
f
BufferedReader in= null;

public readLineThread(BufferedReader inni
(

super (' Read Line Thread" 1 ;
this.in= inn;

1
/ / constructor

public void run (1

String frornServer= * ' ;

t
while ((f romserve== in. readline () 1 ! = null 1 (
System.out.println(fromSe~er);

1
1
catch (IOException ie) {Syscem, exit (1) ; 1

1
}//class readtineTread

/ /
/ / class DataConn is the thread which :=ansfers file using FTP
/ /

class DataConn extends Thread
{
ServerSocket socket:
Socket datasocket;
int type;
String file, target;
boolean client;

public DataConn(ServerSocket s, String f i
I

super ("Data Connection* 1 ;
this.sockec= s;
this.file= f;
this.client= false;

1
/ / constructor

public void run(1
t
DataInputStream din= null;
DataOutputStream dout= null;
BufferedInputStream fin= null;
Buf f eredûutputstream fout= null;
int data= -1;

dout= new DataOr;tputStream(&tasocket.getûutputStreuiO 1;
fin= new BufferedInputStream(new FileInputStreamifile) 1;

while ((data= fin.read0 l >= 0)
dout .write(datal ;

fin.close0 ;
dout. close (1

datasocket.close(
socket .close (l ;

1
catch (FileNotFoundExcegtion f ~ f e)
I
System.out.printlnO.*** File not found. Try correct f i l e name

again. " 1 ;

return;
1
catch (IOException iel

ISystem.err.println(ie1; 1
1

1

