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Master of Science 

Graduate Department of Cornputer Science 

University of Toronto 

2000 

This thesis describes structurai properties of hereditary dominating pair (HDP) and min- 

imal HDP graphs. A dominating pair (DP) in a connecteci graph is a pair of vertices 

such that every path between them is dominating. A graph G is HDP if every con- 

nected induced subgraph of G hm a DP. The dass of HDP graphs includes all & ~ o i d d  

triplefree ( AT-hee) graphs - already extensively studied - and m n e  graphs contain- 

ing astaroidal triples ( ATs). A minimal HDP graph H c o n t h  an AT { x ,  y, z) ,  and 

satisfies the foilowing: if Pzvb ie the set of ail induced paths betweui vertices o and b 

that avoid the neighborhood of a vertex c, then every vertex of H belong to a path in 

P& U P& U PFvt. The position of DP vertices in minimal HDP graphs is determineci, as 

well as some structural properties dictated by the position of DP vertices. 
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Chapter 1 

Introduction 

This thesis describes some structural properties of hereditary dominating pair (HDP) 

graphe and minimal HDP graphe. To describe these ciasses of graphs some definitions 

need to be introdud. A set of vertices of a graph is dominating if every vertex outside 

the set is adjacent to some vertex in the set. A dominating pair (DP) in a comected gaph 

is a pair of vertices such that evesy path between them is dominating. A graph is H D P  

if a l l  of ite induced subgraphs have dominating pairs. The dass of HDP graphs contains 

asteroidal triple-fiee (AT-ftee) graphs as a subchss (Corneil, Olariu, and Stewaxt 1997), 

as welI as some graphs with asteroidal triples (ATa), such as a Ce. An asteraidal triple 

is definecl to be an independent set of vertices such that each pair of vertices is joined by 

a path that avoids the neighborhood of the third (Lekkerkerker and Boland 1962). 

The motivation for describing the structure of these graphs and the overview of the 

thesis will be presented in the next two mbsectione. 

1.1 Motivation 

P~ogress in gaph theory haa resulted in the identification and study of many d i f f i t  

graph families. An extensive survey of cmently known d t s  about various graph 

ciasaes l d y  asdateci with pedect grapb was given by Brandstadt, Le, and Spinard 



(1999). When examining the structure of AT-free graphs, Corneil, Olariu, and Stewart 

(1997) n o t i d  that these graphs exhibit vazioue types of h e m  structure; for example, 

every connecteci AT-free graph has a dominating pair. Cleady, aU subdasses of AT-fke 

graphs, such as c*comparability, trapezoid, interval, and permutation graphs (definitions 

appear in the next chapter), satisfy this property tw. However, even though different 

forms of linear structure of these subdasses of AT-& grapha have been noticed before, 

the common liaear structure of tbese subdasses was not noticed untii the structure of 

their superdass, AT-fiee graphs, was examined by Corneil, Olariu, and Stewart (1997). 

For this reason, it is interesting to study the structure of graph classes that contain AT- 

fiee graphs as a subdass, for example, HDP graphs, since they might have an interesting 

stmcture that will reveal many important cornmon properties of it B subelasses. 

The thesir considers some structural properties of HDP graphs as well as structural 

properties of minimal HDP graphs. Minimal HDP graphs are defined differently from 

other minimal graph families, such as, for example, minimal imperfect graphs. While 

minimal imperfect graphs are those! that become pedect by removing any single vertex, 

the definition of minimal HDP graphs is based on a completely différent concept. Since 

AT-& graphs are HDP and the structure of AT-free graphs has already been studied 

(Corneil, Olariu, and Stewart 1997), this thesis coneiders only HDP graphs that have 

asternidal triples, and defines minimal HDP graplra in the following way. If {x ,  y, z )  is 

an asteroidal triple of an HDP graph H, and if PE,b is defined to be the set of all induced 

paths between vertices a and b in K that avoid the neighborhood of a vertex c in H, 

then H is minimal if all of its vertices belong to a path in P& U 'Pf, U P&. Henceforth 

PC*,,, Pt&, and Pyg WU be used to denote P&,, Pz$, and P;' respectively. h m  this 

definition it can be eeen that minimnl HDP graphs form a rich family, since the pa tb  in 

U P=+ U Pw4 can be of any length, eui share vertices, and can have dinetent vertex 

adjacency patterns. A h ,  dinerent minimrl HDP graphe will have differeot patterns in 

terme of possible positions of thUr dominating pair verfices. In addition, the position of 



DP vertices in a minimal HDP graph G wili force =me structural properties on G. Thus, 

the structure of minimal HDP graphs will be a cornplex and important building blodc for 

understrrnding the structure of HDP graphs. Similar to the defmition of minimal HDP 

graphs, minimal AT g m p h s  can be defineci. 

Corneil, Olarîu, and Stewaxt (1997) explain AT-free graph properties that are quite 

deep and involved. The authors took over five y e m  to undexstand some aspects of the 

structure of AT-& graphs, h m  their h t  techaicd report on this subject (1992), to 

completion of the paper (1997). Therefore, it is monable to expect that it wili be very 

diffidt and time coneuming to describe the structure of HDP graphs as well. Even 

the fimt look at the structure of minimai HDP graphs in this thesis r e v d  a rich and 

intricate structure. 

1.2 Overview of the Thesis 

The thesis has the following structure. 

Chapter 2 explains the background work relevant to the thesis. It firat describes the 

currently known hierarchy of graph classes related to HDP graphs. Then it gives a review 

of known structural r d t e  about AT-free and HDP graphs. 

Chapters 3, 4, and 5 contain original work on HDP graphs. Chapter 3 desctibes the 

general structurai properties of HDP graphs and minimal HDP graphs. It introduces 

definitions and clWna cornmon to all W P  and ali  minimd HDP graphs. It aiso gives 

propetties of minimal HDP graphs in terms of the number of their %on-path-disjoint" 

vertices. The main thenrem of this chapter, Theorem 26, establishm that every asternidal 

triple in an HDP graph must have at least two of its AT vertices path-disjoint. In this 

way, minimal HDP graphe are divided into two mbdap~s, (2,2,2) and (1,2,2) graphs. 

Definitions of these two subelasses are given in Chapter 3. 

Chapters 4 and 5 describe structural pmperties of (2,2,2) and (1,2,2) graphe respec- 



tiveIy. The structure of (2,2,2) graphs ia described first becauae this subclaes is more 

restricted than the (1,2,2) graph subdass, i.e., a (1,2,2) graph can contain a (2,2,2) 

gaph as its induced subgraph, while the oppoeite is not tme. (2,2,2) graphs axe furthet 

chasacterid in tems  of the "length of the aides of the graphn into twdong-sided, one- 

long- sided, and no-long-eided graphe, while (1,2,2) graphs are similarly characterized into 

long-sided, and nelong sided graphs. Structural characteristics specific to the lengtha of 

the sida of (2,2,2) and (L,2,2) graphs are described in appropriate subeections of Chag 

ters 4 and 5, respectively. Standard definitions of the path ''lengU1'' and the path %*se'' 

are useci throughout the thesis to denote the number of edges and the number of vertices 

respect ively. 

The main reeults of Chapter 4 are given in Claims 13,18, 21,25,30, and Corollaries 7 

and 11. Claim 13 establishes that in a twdong-sided (2,2,2) graph with an AT {z, y, r )  

and long paths in Pst,, and Pz$, the length of all paths in Pv, mwt be qua1 ta 2. The 

other main results of this chapter describe the positions of DP vertices with respect to 

AT vertices in different types of (2,2,2) graphs. These results completely characterize the 

positions of DP vertices in ail (2,2,2) graphs. 

Similady, the main results of Chapter 5 are given in Claims 35, 39, 41,44. Claim 35 

establishes that in a (1,2,2) graph with an AT { x ,  y, z )  and a non-path disjoint vertex s, 

the length of aLl paths in Py, must be equal to 2. The other main results of this chapter 

describe the positions of DP vertices with respect to AT vertices in differuit types of 

(1,2,2) mphs. These results completely characterize the positions of DP vertices in all 

(1,292) graph- 

Finally, Chapter 6 contains concluding remarks and directions for furthetc m c h  

in this azea. One possible direetion for further research ie considetecl in more detail in 

seetion 6.1. In this section, diflesient conjectutes about lifting the Spine Propaty h m  

AT-fke grapbs to HDP graphs are eons idd ,  and counterexamp1es to those conjectures 

are given. Also, a possible description of the position of DP vertices in HDP graphs that 



CHAPTER 1. INTRODUCTION 

dif' from the Spine Property seen in AT-& graphs is discussed. 



Chapter 2 

Background 

2.1 Hierarchy of Graph Classes 

As mentioned in the previous chapter, various graph classes have intensively been studied 

in the past. The m a t  extensive eurvey of currently known results about graph classes 

loosdy related to perfect graphe was done by Brandstadt, Le, and Spinard (1999). This 

thesis describes the structural properties of HDP and minimal HDP graphs, so it is 

important to know the relationship between HDP graphs and 0th- graph classes in 

order to get a better intuitive feel about HDP graphs, as w d  as to understand whidi 

properties might hold for HDP graphs. Definitions of classes in the neighborhood of HDP 

graphs as well as the m a t  important resuits for understanding the relationships between 

these elasses are described below. Note that only a qui& overview of the dasses in the 

neighborhood of HDP graphs ie piven. The only reaults about these graph classes that 

are presented are those that axe necessary to understand the hierarchy of these graph 

classes; many 0th- properties aie omitted and ean be fotmd in (Bmdstadt, Le, and 

Spinatd 1999). 



Perfect Graphs 

The following basic definitions will be used to d&e peifect graphs. 

Definition 1 Let G = (V, E )  be a gtvrph. 

V' Ç V i& an independent set in G if for al1 u, v E V', UV 4 E, 
V ' C V  k a  cliqueinG i f f o r a l ~ u , v ~ V ' , u # u , u v ~ E ,  

x(G) = min{k: then b a partition of V into k dàajoint independent seb},  

w(G) = rnaz(lV'1 : V' C V and V' b a clique in G ) .  

x(G) is cded  the chromatic number of G, since it represents the smdest number of 

colors needed to properly color the vertices of G. w(G)  is d e d  the clique number of G, 

since it represents the size of the largest complete subgraph of C. Clearly, x(G) 2 w(G) 

for al1 G. 

The following definition was introduced by Berge in the early 1960s (Berge 1960; 

Berge 1961). 

Definition 2 A groph G b pedect for al1 induced aubgmphe H of G, x ( H )  = w(H) .  

Golumbic (1980) presented many results on various perfect graph classes. One of the 

most important results concerning perfect graphs is the Perfect Graph Theorem (PGT) 

by Lovàsa (1972): 

Theorem 1 (Loudsz 1972) The complernent of a perfcct gmph is perfect. 

Comparability Graphs 

Comparability graphs were defineci by Ghouüa-Houri (1962), and Gilmore and Hoff- 

man (1964). The following is a simple formulation of the definition of comparabiüty 



Detlnition 8 An undincted gmph which is tmneitiuely orientable U called a compara- 

biiity gaph, or  a transitively orientable p p h .  

~ s i t i v e l y  orientable meuw k t  each edge of G = (K E) con be oesigned a one-way 

direction, so that the wulting oriented groph satisfies the following condition: for al1 

=$,CE V, a b c  # a n d b c ~  ÈI i m p l y o c ~  l?. 

The following result desaibed the relationship between cornparability and perfect 

graphs: 

Theorern 2 (Berge 1967) Euery compambility graph is perfect. 

Cocomparability Graphs 

A cocomparubility gmph is the complement of a comparability gaph. Since, by The- 

orem 2, comparability graphs are perfect and since, by Theorem 1, the complement of a 

perfect graph is perfect, it can be concluded that cocomparability graphs are also perfect. 

The fobwing result established the relationship between cocomparability and AT-& 

grap ha: 

Theorern 9 (Golunabic, Monma, and Trotter 1984) Euery cocompurnbility graph is AT- 

be- 

Diametral Path Graphs 

The diameter of a graph G, denoted by dàam(G), is defineà to be the maximum 

distance between any pair of vertices in G. Krabch (1995) introduced the following 

definit ions: 

Definition 4 A pair of vertices u, v of a gmph O arch that the distance between u and 

v equob the diamefer of G b called (i diamehl pair (u, v )  ojG. 



A shortcst path P in G between the vertices of a diametml pair (u,v)  ie called a 

dianietmi path of G. 

/f in addition to being a diunetml path, P P abo a dominating set of G, then P is 

called c dominating diametral path ( D m ) .  

A gmph G is called o diametrd path graph if every connected induad aubgmph of G 

ha8 a dominating diametml path. 

Kratsch (1995) establiehed that the class of AT-fiee graphs is properly contained in 

the daae of diametral path graphe. He also definecl a dominating pair gmph ae a graph 

in which every connected induced subgraph has a dominating pair. This definition is 

the same as the definition of an HDP graph used in this thesis. Kratsch (1995) &O 

established the following remit: 

Theorem 4 (Kratsch 1995) Any H D P  graph is a diametml path groph. 

Chordal Graphs 

Chordal graphs, dso cded triangulated graphs, are dehed as follows: 

Definition 6 A gmph G P chordal if each cycle in G of length et least 4 hm ut least 

one chod. 

These graphs were ehown by Berge (1967) to be pedect. Kratsch (1995) preaented 

the following theorem. 

Theorem 5 (Kmbch 1995) A chonlui gmph G ie a diometd path gmph if and only if it 
does not contain the p p h s  AT-1 and AT-2, shoum in Figon 2.1, as inducul stibgmphs. 



Figure 2.1: The minimai forbidden subgraphs for chordal diametrai path graphs. 

Tkapeaoid Graphs 

The definition of trapezoid graphs wae introduced by Corneii and Kamula (1987), 

and by Dagan, Golumbic, and Pinter (1988): 

Definition 8 G ie a trapezoid graph ifG is the intersection gmph of a Mi te  collection 

of trapesoids between two pamllel fines. 

Fkom the definition, interval graphs and permutation graphs described below are 

trapezoid graphs. 

Permutation Graphs 

The definition of permutation graphs waa introduced by Even, Pnueli, and Lempel in 

(1971) and (1972): 

Definition 7 (1) Let L& be two pamllel lines in the plane and label n points by 

1,2,3, ..., n on Cl end abo on L2. The straight fine Li connects i on Li 6 t h  i on La. 

(2) Let Gr = ({1,2, ..., n), Ec) müh i j E Et if  Li and Lj interacet -ch other. 

(3) A gmph G ia called a permutation graph if there ii an intersection rnodel L: as 

demibed in condition (1) sach that G = Gr. 

The name pemutation gmph cornes h m  the observation that the pointe on Ci and 

El can be seen as a permutation r = (!;;-:J, and i j E Er if and ody if (i - j)(r-I(i) - 
rol(j)) < 0, i.e., i and j form an inversion in r. 



The following result explained the relationship between comparability, cocomparabil- 

ity, and permutation graphe. 

Theoram 6 (Pnueli, Lempef, and Euen 1971) G G a permutation gniph if and only if 

it is 60th compumbility and cocompambdity. 

Interval Graphs 

I n t e d  graphs are dehed se follows: 

Definition 8 A gmph G is an i n t e d  graph if the vertiew of G can be put into a one- 

to-one currespondence with intervals on the mal line, such that two vertices a n  adjacent 

in G if und only if the comsponding inteniab have o nonempty intersection. 

Lekkerkerker and Boland (1962) characterized i n t d  graphs as foiiows. 

Theorem 7 (Lckkerkerker and Boland 1962) A p p h  k an intenta1 gmph i f  and only if 

it rP chordal and AT-Jke. 

Later, Gilmore and H o h a n  (1964) atrengthened (in light of the more recently known 

result that AT-& graphs strictly contain cocomparability graphs) this to: 

Theorem 8 (Gümon and Hoffman 1964) A gniph is an i n t e m l  graph if and only i f  it 

ia chunial and cocomparabàiity. 

AT-fkee Graphs 

The definition of AT-frea graphs is given in Chapter 1. The structure of these graphs 

irr explained in detail in section 2.2. Ody a couple of major d t s  with regards to the 

position of AT-& graphs in the graph clms hierarchy am mentioned here. 

Corneil, Olariu, and Stewart (1997) pmved the foiIowing theorem which implies that 

AT-& graphs an HDP: 



Theorem 9 (Corneil, Olariu, and Stewart 1997) Euery connected AT-fke gmph con- 

t a i ~  a dominating pair. 

In fact, they a b  showed (using the terminology of Kratsch (1995)): 

Theorem 10 (Corneil, Olariu, and Stewart 1997) Any AT+e p p h  ie a diametml 

path gnaph. 

Clearly, AT-& graphs need not be perfect, since Cs is AT-free. 

HDP Graphs 

The d a t i o n  of HDP graphs is given in Chapter 1. The known structurd results 

about these graphe an presented in section 2.3. Again, only major results that help in 

undetstanding the position of HDP gmphs in the graph clas hierarchy are mentioned 

here. 

Kratsch (1995) proved the following nsult: 

Theorem 11 (Kmteeh 1995) Any HRP gmph ia a diametml puth p p h .  

As mentioned above, all A T h  graphs are HDP graphs. In addition, eome graphs 

that have aateroidal triples are also HDP, for example, Cs. There has not been much 

research on graphs that contain asteroidal triples. Thus, as mentioned in Chapter 1, 

graphs that contain asteroidal triples which are also EIDP (ATnHDP graphs) are the 

topic of this thesis. 

The summary of the relationships between the describeci graph classes is teptesentecl 

in Figure 2.2. 

2.2 Structure of AT-free Graphs 

It has already been mentioned in Chapter 1 that the definition of an astaoidal triple 

was nrat introduced by Cekkerkerker and Boland (1962). Since 1989 Corneil, Olariu, and 



Figure 2.2: Hierarchy of the Graph Claases in the Neighborhood of HDP Graphs. 

Stewart have been working intensively on AT-free graphs end proved many structural 

and algorithmic properties of these dass of graphs [see for example their papers from 

(1994, 1995b, 1995a, 1997)]. Since this thesis deals with the structural properties of 

HDP graphs, only st~ctural properties of AT-free graphs are presented in this section. 

Theorem 9 by Corneil, Olariu, and Stewart (1997) mentioned above is implied by an 

even stronger result: 

Theorem 12 (Corneil, Olariu, and Stewart 1997) Let x be an arbitmry vertex of a 

connected AT-/ree graph G. Eithet ( x , x )  h a dominoting pair, or l e  for a suitable 

choice of uerticee y and z in N1(x) ,  (y,%), or (y,%) às a dominoting pair. Hem, N'(z) 

denotes the eet of al1 vertices adjacent to x in the complement C of G. 

They aiso proved the foilowing t d t  that Kratsch (1995) wed in his work on diame- 

tral path graphs: 

Theorern 13 (Corneil, Olariu, and Stewart 1997) In euery connected AT-fne graph 

some dominating pair adiieues the diameter. 

They gave two chazacterizations of AT-fiee graphs. The finit one ch-& AT- 

fra graphe based on dominating pairs, whiIe the second one charBCterized AT& graphs 



in t m s  of minimal tiiangulations. 

For the fht  characterization, they introduced the spine property as foilows. A con- 

nected graph H with a dominating pair satisfies the spine propcrty if for every nonad- 

jacent dominating pair (a, p) in H there exiets a neighbor d of o! such that (a',@) is a 

dominating pair of the wnnected curnponent of H \ a containhg p. Then they pmved: 

Theorem 14 (Corneil, Oluriu, and Stewart 1997) (The Spine theonna) A gmph G ie 

AT+e i f  and only if euery connected induced subgmph H of G satiefiece the spine pmp- 

ert y. 

This result enabled them to formulate a spine of G as follows. Let G = (V, E )  be a 

connected AT-free graph with ( x ,  y) as an arbitrary nonadjacent dominating pair. Con- 

stmct a sequence zo, xi, .. ., IL of vertices of G and a sequence Ga, Gi , ..., Gk of subgraphs 

of G defined in the following way: 

(i) Go = 0 and xo = x ,  

(ii) for d i(0 5 i 5 k - l), x;y $ E and xky E E, 

(iii) for ail i(1 i i 5 k), let Gi denote the subgraph of Gi-i induced by the component 

of Gi-i \ containing y, 

(iv) for ail i ( l 5  i 5 k), let xi be a vertex in Gi adjacent to xi.,.-1 and such that ( x i ,  y) 

is a dominating pair in Gi. 

The Spine theorem guailiantees the existence of the sequence xi, ..., zt. They referred 

to the sequence xi, ..., xk  as a spine of G. They alm emphasized that the existence of a 

sequence of vertices and a sequence of subgraphs defineci in (i) through (iv) above doea 

not necessarily imply that the graph is AT-&. 

Theh seand characterization of AT-& graphs in terms of minimal trianplations 

wse as follow8. For an axbitrary graph G = (V, E) ,  a triangulation T(G) of G is a set 

of edges such that the graph C = (V, E U T(G)) is chordai. A trianguiation T(G) is 

minimu1 when no proper subat of T(G) is a triangulation of G. They quoted R H. 

Mohmig (1996) for the foilowing r d t :  



Theorem 15 (R. H. MOhring 1996) If G is an AT-fne graph, then for every minimal 

triangulation T(G) of G, the groph Of = (V, E U T(G))  is an interual gmph. 

Then they proved the converse of Theorem 15 which resulted in the following theorem: 

Theorem 16 (Corneil, Olariu, and Stewart 1997) A p p h  G ie AT-Jke if and only if; 

for euety minimal triangulation T(G) of G, the graph C = (V, E U T(G)) is on interual 

graphe 

They &O gave some interesthg results about augmenthg AT-free graphs that confirm 

the linear structure of AT-free graphs, since the dominating pair can be stretched to a 

new dominating pair. They caileà a vertex u of an AT-fiee graph G pokable if the graph 

Cf obtained from G by adding a degree 1 vertex adjacent to u is AT-free; otherwise v is 

called unpokable. A dominating pair ( x ,  y) is referred to as pokable if both x and y are 

pokable. ARer the introduction of these definitions, they proved the following results: 

Theorem 17 (Corneil, Olaràu, and Stewart 1997) Euery connected AT+e graph con- 

tains a pokabk dominating pair; fiirthennore, euery connected AT-fm gmph which is not 

o clique contains a nonadjacent pokable dorninating pair. 

Theorem 18 (Corneil, Olariu, and Stewart 1997) (The Composition theomn) Given 

two AT-fie gmphs Gi and 4 and pokablc dominating pairs (xl,yi) and (22, m) in Cl 

and 4 reepectively, let G Le the graph consttucted fiom Cl and 4 by i d e n t i h g  vettices 

ri and 21. Then G ie an AT-fm graph. 

Another interesthg d t  by Corneil, Olariu, and Stewart (1997) deals with contract- 

ing AT-fke graphs. Firat, they introduced the following definitions. For an AT& graph 

G = (V, E) with at least two vertices and a pokable dorninating pair ( x ,  y), define a binary 

dat ion R on G by vurithg for every pair u, v of vertices, uRv (j D(u, x )  = D(u, x) ,  

where D(a, b) denotes the set of vertices that interœpt all a,bpathe. Cledy, R is an 



equidence clam; denote by Cl, ..., Ck(k 2 1) the equivalence classes of GI R A dass Ci 

is called nontrirriol if lCil 2 2. Then they proved: 

Claim 1 (Corneif, O l u ~ u ,  and Stewart 1997) G[R contuim ut le& one nontriuial equiu- 

alence closs. 

They d e d  a nontrivial clam C of GIR valid i f  C induces a connected subgraph of 

G. Then they proved: 

Claim 2 (Corneil, Olariu, and Stewart 1997) GI R contains ot least one valid equiualence 

clam?. 

They al80 introduced the following definition. Let S be a set of vertices of 2. The 

graph G' is said to mise fiom G by an S-contmction if  G' contains all the vertices of 

G \ S dong with a new vertex r adjacent, in G', to al1 the vertices in G \ S that were 

adjacent, in G, to some vertex in S. They proved: 

Theorem 19 (Corneil, Olariu, and Stewart 1997) Let C be an arbittury ualid equiua- 

lence class of G(R.  The gmph C obtained /ram G by a C-contraction Ls AT-free. 

They also gave the following r d t s  about hi& diameter AT-fiee graphs: 

Theonm 20 (Corneil, Olariu, and Stewart 1997) Let G be a connected AT-free gmph 

with diameter ut le& four. Then ezist nonempty, diejoint sets X and Y of vertices of 

G such that (x ,  y) is a dominding pair i f  and only if z E X and y E Y.  

Corneil, Olsriu, and Stewart (1997) also established some r d t s  about gaphs that 

contain asteroidal triples. First, they defined the foilowing. If r = ui, ua, ..., uk and 

rl = V I ,  Y, ..., VI are two paths, then the path Ur, ul, ..., with i k is rderred to as 

a p m j k  of r. A vertex w is a ~ S S  point of n ~a if w = ui = vj  and the four 

vertices ui-1, vj-1, ui+i, and u j+l are ail defined and distinct. They denoted by G a 



graph wntaining an AT and chose an induced subgraph H of G with the least number of 

vertices such that some triple {x, y, z) is an AT in H. They denotd by ~ ( z ,  y), 2(2, r),  

and x(y, z )  paths in H demanstrating that {x,  y, z) is an AT. They alm wrote r ( x ,  y) : 

x = U I , U ~  ,..., UL = y, r(5 ,z)  : z = u ~ , u ~ , . . . , u I  = Z,  and r ( y , z )  : y = wi,wa, ..., wt = z. 

Then they showed the following: 

Claim 3 (Corneil, Olanu, und Stewart 1997) No pair of pathe among n(z, y), n(z, a),  

and r ( y  , t) has a m s s  point. 

Claim 4 (Comeil, Olariu, and Stewart 1997) Let i be the largest subsMpt for which 

then ezi~ts subsmpt j  SUC^ that ui = uj and U~+L # vj+i* Then i = j und ut = for 

al1 1 S t s i .  

Lemma 1 (Comeil, Olariu, and Stewart 1997) Then eziet unique vertices x', y', z' in 

H such that 

(i) the unique path between x and z' b a p r e h  of 60th r ( x ,  y) and r ( x ,  z) ,  

(ii) the unique path between y and y' is a pmfiz of 60th r ( y ,  x )  and *(y, z) ,  

(iià) the unique path between z and 8 às a p m j k  of 60th r ( z , x )  and +(z, y). 

Claim 5 (Corneil, OlaRu, and Stewart 1997) The vertices x', y' and 2 are either al1 

distinct or eke they coin&. 

Corollary 1 (Corneil, Olaràu, and Stewart 1997) Vertices s',y1 und z' coincide i f  and 

only i f  H is isornorpliic to the p p h  in Figure 2.3. 

Broersma, KIoks, Kratsch, and M d e r  (1999) presented an 0(n4) aigorithm to com- 

pute the m h u m  weight of an independent set in a given AT-& graph. To do this, 

they used the foiIowing definitions to desaibe some additional structural properties of 

AT& graphs, In a graph G = (V, E), they denotecl by CD(y) the connecteci campe 

nent of G[V \ N[z]]  containhg the vertex y. Also, they denoted by t ( z )  the number of 



Figure 2.3: 111ustration of Corollaty 1 

conneded components of G[V \ N[x] ] .  For nonadjacent vertices x and y in G, they said 

that a vertex z E V \ {x, y) is between x and y if there is an x,z-path avoiding N [ y ]  

and there is an y, r-path avoiding N[x] .  For nonadjacent vertices x and y in G they said 

that the interual I = I(z,y) is the set of d vertices that are between x and y. Thus, 

I(X, y) = c=(Y) n c~(z). 

They described the following results about splitting intervals in AT-& graphs. Let 

G = ( K E )  be an AT-free graph, let I = I(z, y) be an interval, let s E 1, and let 

Il = I (x ,  s) and & = I(e, y) .  

Lemrna 2 (Broema ,  Klok, Kmtsch, and Muller 1999) x and y are in difennt con- 

nected components of G[V \ N[s ] ]  . 

Coroliary 2 (Ehersma, Kloks, Kratsch, and Muller 1999) Il n I3 = 0. 

Lemma 3 (Broermna, Kluks, Kmtsch, und Muller 1999) Il Ç I and I2 C 1. 

Theorem 31 (Broerma, Moks, Krotech, and Muller 1999) Then  &t connected corn- 

ponents Ci$;, ..., C; of G[V \ N[s]]  stich that 

Coroltary 3 (Broersma, Klokrs, Kmtsch, and Muller 1999) Eueq connected component 

of G[I - (N[s]  U Il U 12)] is a connected component of G[V \ N[s]]. 

They dm describeci the d t s  about splitting comected componmts of AT-fiee 

graphs. As More, they let G = (V, E)  be an AT-fke graph, let z be a vertex of G, let 



Cs be a conneded component of G[V \ N[x]], let y E CZ, and let I = I (s ,  y). They 

studied the connected components of G[Cx - N[y]] and gave the following results. 

Theorem 22 (Brwrsma, Kloh1 Krokch, und Muller 1999) Let D be a connected com- 

ponent of G[Cx - N[y]]. Then N[D] n ( N [ x ]  \ N[y]) = 0 if and only if D is a connected 

component of G(V \ N W )  uith D C Cs. 

Corollary 4 (Broersma, Kloks, KmrBth, and Muller 1999) Let B be a connected corn- 

ponent of G[Cx - N[y]]. Then N [ B ]  n ( N [ x ]  \ N[y]) # 0 if and only i f  B 2 Cw(x). 

Theorem 23 (Broersma, Kloks, Kmbch, and Muller 1999) Let BI, ..., Bi be all the con- 

nected components of G[Cx - N[y]], that an contained in Cu(z). Then I = u:,, Bi. 

2.3 Structure of HDP Graphs 

Kratsch (1995) describeci some of the stmcturd properties of diametrd path graphs. As 

mentioned above, the c h  of diametrd path graphs is a superclass of HDP graphe (see 

Theorem 4), so all results that apply to diametrai path grapha apply to HDP graphs ae 

w d .  

The definition of diametral path graphs was given above. Kratsch (1995) also defined 

a dominating shortest path of a graph G as a path between vertices x and y in G of 

length do(x, y), where do(x, y) is the distance between vertices x and y in G, Le., i t  is 

the length of the shortest path between x and y. Then he pmved the foUowing theorem. 

Theocem 14 (Kmtech 1995) A gtaph G ie a diometml p t h  gmph i/ and only if euery 

connected induced eubgmph K of G h m  a dominating shortest path. 

It hae h a d y  been asserted in Theorem 10 that AT-& gtapàs are diametral path 

graphe. Moreover, Kratsch (1995) gave examples of many graphs that are diametral 

path graphs, but not AT-fk, Le., the dass of diametrd path graphs properly contains 

AT-fitee graphe as a subclass. 



Figure 2.4: A diametrd path graph that is not HDP. 

Theorem 11 above explained the relationship between HDP graphe and diametral 

path graphs. M h m o r e ,  diametral path graphs properly contain HDP graphs (see 

example in Figure 2.4). We dm know that HDP graphs properly contain AT-free graphs 

(an example ie graph Cs). 

Theorem 5 above gave the relationship between chordal and diametral path graphe. 

Kratsch (1995) also characterized diametral path graphs in terms of PATH-MCDS, where 

PATH-MCDS is a minimum connected dominating set that induces a path in G. 

Theorem 26 (Kmbch 1995) Let G = (V, E )  be a connected diametml puth gmph with 

diam(G) > 4. Then G h a  a PATH-MCDS. 



Chapter 3 

General Structure of HDP Graphs 

This chapter and the following two chapters contain original work. 

This chapter describes some structural properties of both HDP and minimal HDP 

graphs. The main result of the chapter is Theorem 26 which establishes that every AT 

of an ATnHDP graph must have at least two of its vertices path-disjoint. Definition 9 

introduces a notion of a path-disjoint vertex. Theorem 26 is important since it implies 

that ody two types of minimai ATnHDP graphs exist: those with aU AT vertices being 

path-disjoint, and those with one non-path-disjoint AT vertex in at least one of th& ATs. 

Consequently, these two types of minimal HDP graphs are introduced in Definitions 12 

and 13. 

The following lemma, Le., Lemma 4, is used in the proof of Claim 6. Claim 6 is 

applied extensively in the proofs of daims throughout the thesis. Some examples if its 

use are in the prwfs of Corollary 5, and Claims 8,9,11. The main d t  of this chapter, 

Theorem 26, foilows fiom Claim 11. 

The following notation will be used thmughout this diapter. Let H be an HDPnAT 

graph with an AT {z, y, 2). As stated pnviously, let denote the set of ali induced 

paths x to y that avoid N ( t ) ,  P*,, the set of 1 induced paths h m  z to z that 

avoid N(y), and P,,,, the set of ail induced paths from y to z that avoid N(x)  in 61. 
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Let P,,, P,,, Pu, be arbitrary induced paths that eetabliah the AT {s, y, z )  in H. The 

reader is reminded that standard definitions of the path length and the path size wil l  be 

used to represeut the number of edges and the number of vertices respectively. In the 

definitions and daims in this chapter which Say "let H be defined as above," or ulet H 

be deiined as in the peragraph preceding Lemma 4," it is assumecl that H is dehed as 

in this paragraph. The same holds for Pz&, and Pv4. 

Lemma 4 If H is an HDP gmph, then the= does not ezist an AT {o,y, z )  in H with 

paths P.,, and Pu, establkhing AT { x ,  y, z), euch that al1 three path  have o com- 

mon uertez W .  

Proot: Assume to the contrary. That is, assume H is an KDP graph with an AT 

{x, y, z ) ,  induced paths P,,, Pz,, P,, that establish an AT {x, y, z),  and a cornmon 

vertex w of theee three paths. Let H' be the graph induced on the union of paths 

P,, U P,,, U P,, of H, where P,, is the path between w and x induced on P',,, P,, is 

the path between w and y induced on Pst,, and P,, is the path between w and z induced 

on P,,. Since { x ,  y, z )  was an AT of H, the definition of Ht implies that {z, y, z) is aiso 

an AT of Ht. The length of P,, is at le& 2 because { x ,  y, z )  is an AT of H'. Similady, 

the length of P,,, and the length of P,, are both at least 2. 

Sina H is an HDP, H' hm a DP, Say (a, B)* Each of the DP vertices must belong 

to one of P,,, P,,,, and P,,, by definition of H'. The DP vertices cannot both belong 

to P,, because in that case a path between them i n d u 4  on P,,, avoids N(z ) ,  which 

wodd contradict the assumption that (a, P )  i a DP. This is because z cannot be adjacent 

to any vertex of P,,,, sina otherwise the path P,,, whose subpath is the path P,, by 

dennition, would not avoid the neighborhood of z contradicting the fact that {z, y, z )  is 

an AT of 8'. Similady, both DP vextieerr cannot belong to P,,, and cannot bdong to 

P .  Thedore, they must belong to différent paths in {P,, U P' U P d .  W.1.0.g. 

a s m e  that a E P,, and p E P,,. NOW, the path fmm o to @ induced on P,, U Pd, 



CHAPTER 3, GENERAL STRUCTURE OF HDP GRAPHS 23 

where Pa,, is the path between a and w induced on Pw,, and PWg is the path between 

and u, induced on P,,, avoids the neighborhood of x,  again con tdc t ing  the fact that 

(a, P)  is a DP of H'. P a ,  U Pwg avoids N(x)  because it i s  aduaily a subpath of Pu,. 

Thus, H' cannot have a DP. This contradicte the assumption that H is HDP. 0 

The path-disjoint and non-path-disjoint vertices mentioned before are defined as fol- 

lows* 

Definition 9 Let H, and 'PI, l e  dejined os aboue. An AT uertez x ia called path- 

disjoint with respect to y, z if for a11 paths P E Pr,, and for al1 paths Q E Pz,, P n Q = 

{XI* 
An AT vertex x ie called non-path-disjoint $then ezist paths P E Pz,, und Q E Px$ 

auch that P n Q > {x, XI) ,  where x # x'. 

Note that sometimes "x  ie path disjointn will be used to mean "x is path disjoint with 

respect to y, 2." 

Definition 9 mot ivates definhg a significant neighbor of a non-pat h-disjoint vertex, 

as weil as definhg a 1-disjoint graph. These two terms are defined as follows. 

Definition 10 A neighbor x' o f z  in an HDnIAT grclph H with an AT {x,  y, z )  and a 

non-path-disjoint uertez s ie called a significant neighbor of x ifst E P,, n P,,, for some 

induced paths Px ,  E R,, and PI, E R,. 

Definition 11 C o r d e r  an HDPnAT graph 61 with a non-path-diajoint vertez z and a 

signifcunt neighbor x' of x, such that H \{dl ie dbconnected into a connected component 

contuining y and z and not containing x,  and some other connected componente. Such a 

p p h  miil be called 1-disjoint w.r+t. x .  

Claim 6 Let K k defincd as in the ptzm~raph pnceding Lemma 4, let z be a non-pth- 

dwoint verte2 of H wDr.t. y, z, and let P,,, P,,, P, be induced pths establishing the 

AT* If uny z' E P,, n P,,, when z' # z, then zz' is an d g e  in H e  
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Proofi Assume xx' is not an edge in H. Then, since z # sr, there must exist a path 

Pz# between z and s'of leagth at least 2. W.1.o.g. let the path P+ be a subpath of P,,,. 

A h ,  let Pst, and Pd, be subpaths of P,,, between z' and y, and of P,, between z' end 

z respectivdy. The assumption that x' E P,,#nP,, implies that the length of P&,, and 

the length of P&, are both at least 2, since othemise x' would be in the neighborhood 

of eitha y, or z, or both, contradicting the fact that P',,, P,,, and P,, establish an AT 

{x ,  y, z )  in H. 

Now look at the graph H' induced on Pst, U Pd,, U Pd,. Note that in H', { x ,  y, r )  

is still an AT. But now, x' is a common vertex of the paths that establish an AT in Hf 

and therefote, by Lemma 4, Hf cannot have a DP. Since H' is an induced subgraph of 

H, this contradicts the aesumption that H is an HDP graph. O 

Corollary 5 Let H be defined as in the paragruph preceding Lemma 4 Wth a non-path- 

disjoint vertez z w.r.t. y, z. Let P,, E FZtP,,, and P,, E Pz, be such that x' E PI.Y fl Pz*, 

and x' # x. H \ { x )  h w  only one connected component C .  

Proof: Assume to the contrary. Let H \ {x) have two connected components, C 

containing y, z, and D not containing them. Consider any vertex 2 of D that is adjaant 

to s in H. Now, (5, y, z )  ie also an AT in H, but 22' is not an edge, contradicting Claim 

6. a 

The following daim presents an interesthg result that will be u e d  in the proofs 

throughout this thesis, such as for example, in the pro& of Claims 8,39, and CorolIary 

8. 

Claim 7 For any HDP groph G and any O$ its DP's (a, B), if H Q 0, H is connected 

and a, p E H, then (a, p) is a DP of 8. 

Proof: Assume that (a, p)  is not a DP of H. Then, sin- H is connected, there existo 

a path P from a to p in H that misses a vertex w E H. However, P also belongs to G 

and misses w in G, contradicting (a,.@) beîng a DP of G. O 
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The following daim will be used in the proofa of Claime 11 and 37. The reader is 

reminded that the main result of this chapter is a corollary of Claim 11. 

Claim 8 Let H be defined aa in the pamgraph pnreding Lemma 4 with induced paths 

Px,u, Px,, Pu, esta6lishing the AT, such that x' E P,, n P,,, and x' # x. Let H \ { s 3  
6e diaconnected, i.e. H is 1-dwjoint w.r.t. x, and let C denote the connected component 

of H \ {z') that contains y and z. Then, f o ~  e v e y  DP (ce$) of H, one of a, P is in 

H \ C and the other is in C. f id iemore ,  if H is minimal, then H \ C = { x ,  2'). 

Proot: Let H be the subgraph of H induced on Pz, u P., u P,, u {a, P).  By Claim 

7, (aJ) is a DP of H as well. 

Suppose both a, /3 E C n H. Since H is an induced subgraph of H, any path L fiom 

a to /3 in C n H is also in H. No vertex v of L ia adjacent to x in H for the following 

reasons. Since v E L E C n fi, u E Pz,,, U P,, \ {x, x'). If v E {y, z ) ,  then v x  4 E in H, 

since {x, y, z) is an AT of H. If v E P,, \ {x, x', y), or v E P,, \ { x ,  s', z), then oz  4 E 

in H, since P,, and Px,. are induced paths. If u E Pu, \ {y, z), then xv 4 E in El, since 

a l l  verticea on the path P,, must miss x because paths P.,#, P,,, P, establishing the 

AT { x ,  y, 2). Therefore, ail vertices of L miss x contradicting (a, P )  being a DP of H. 

Thetdore, at lea.st one of a, P must be in H \ C. 

Now, suppose both a, P E H \ C. Then, any path fiom a to /3 in H \ C misses both 

y and z contradicting (a, P )  being a DP of H. Therefon, not both a and P are in H \ C. 

It is proven that at least one DP vertex must be in H \ C, but not both of them are 

in R \ C. Thus, one of a, p is in H \ C and the other is in C. An exampie is in Figure 

3.1. 

Non pmve that if H is minimal, then H \ C = {x ,  xt}. Let H be a minimal EDP 

graph. Let H \ C = ( x ,  x', v ) ,  x # v # x'. us' E E, since o t h d s e  it would cantradict 

Claim 6. Now, either zv E E, or zv 4 E. If zu E E, then u belonge to a path in Pz,, 

that is not an induced path, whieh eonhadicts the d a t i o n  of Pz,,. If xu E, then u 
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Figure 3.1: Illustration of Claim 8. 

does not belong to any path in R ,  U P=$ U PpP, which again contradicts the definition 

of a minimal HDP graph. 0 

Claim 9 Let H be 1-&joint w.r.t. s. If u 4 C, then u is either x' or it ia adjacent to 

2'. 

Proofi A s m e  u # x' and v is not adjacent to x'. Then, there exista a path Q in 

H \ C of length at least 2 between x' and u. Let P,, be the path from v to y induced on 

Q U Pst,#, and let P,, be the path from v to z induced on Q U Pd,. But now, {v ,  y, z )  

is an AT and {x ' )  C P,,, n P.,, and ux' 6 E contradicting C l a h  6. a 

The following claim will be used in the pmofs of Claims 35 and 37. 

Claim 10 Let H be 1-dkjoint w.r.t. x, and let (a, P )  be o DP of H. If cr $! C, then 

P 4 PIVU U P,, for uny path P,, between z und y that auoids N( z ) ,  and any path P,, 

between x und z that auoitis N(y). 

Proof: W.1.o.g. if P E P,,,, then the path h m  a to P i n d u d  on P,, U {a, z') does 

not hit r contradicting (a, #3) being a DP of H. 0 

The daimii above will be used to pmve the following. 

Claim 11 l/ z is non-puth-disjoint 6 t h  respect to y, z, and y ie non-puth-disjoint with 

nepect to z,z in a p p h  H mith an AT {x,y , t ) ,  Le., 3xr E P,n P,,, d # x, and 



CHAPTER 3. GENERAL STRUCTURE OF HDP GRAPHS 27 

Proot: Assume to the contrary. Thus, H is HDP. By Claim 6, xz' and yg' are edges 

in H. First note that s' # y'. This is because if x' = y', then y intercepte path P,, in H 

contradicting the fect that { x ,  y, r )  is an AT in Hs 

Let H be the subgraph of H induced on P,, U Px, U P,,. Now, H is a minimal 

HDP graph. Let (a$) be a DP of H. By Claim 8, H \ C, = { x ,  a!} contains a DP 

vertex, w.1.o.g. say a E H \ C,, where C, is the connecteci component of H \ {x') that 

contains y and t .  By the same reasoning, p E H \ C, = {y, y'), where C, ie the connected 

component of H \ {y') that containe x and z. Consider the path joining a and B that is 

induced on {a, f l )  U P9,ut, where Pd,,# is a subpath of Pz, between x' and y'. This path 

misse8 r ,  since {x, y, z )  ie an AT, contradiet ing (a, P )  being a DP of fi. O 

The foiiowing theorem is the main result of this chapter. It follows from the previous 

claim. 

Theorem 26 If H is an AT n HDP p p h ,  then for any AT in H at leost two of üa AT 

vertices a n  path-disjoint. 

Proofi Follows immediately fiom Claim 11. 0 

This theonm motivates the introduction of the Definitions 12, 13, 14, and 15. These 

definitions sepaxate m i n i d  HDP and minimal AT graphs into subdassee d e d  (2,2,2), 

(1,2,2), (1,1,2), and (1,1,1) graphs, depending on the number of non-path-disjoint AT 

vertices. Note that (1,2,2) notation is used for minimal HDP graphe with exadly one 

non-path-disjoint AT vertex, and that the order in which path-disjoint and non-path- 

disjoint AT vertices appear dae  not matter; i.e., (2,1,2) and (2,2,1) notation need not 

to be useci. The same holds for (1,1,2) notation. 
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Definition 11 A minimal HDP gmph is culled a (2,2,2) graph if it hm no non-path- 

diijoint AT uertimsC 

Detinition 13 A minimal HDP gmph is called a (1,2,2) graph if it hacl czoctly one 

non-path-disjoint AT vertcz. 

Definition 14 A minimal AT p p h  b cufled a (1,1,2) graph if it hm emzctly two non- 

path-disjoint AT vertices. 

Definition 16 A minimal AT p p h  ia called a (1,1,1) graph i / it has czoctly thne non- 

path-disjoint AT vertices. 

From Theorem 26, and Definitions 12 and 13 it can be concludeci that the only AT 

graphs that sre minimal HDP are (2,2,2) and (1,2,2) graphs. Therefore, the following 

two chapters will talk about (2,2,2) and (1,2,2) graphs. Before analyzing the structure 

of (2,2,2) and (1,2,2) graphs in detd,  some additional definitions and daims about the 

general structure of HDPnAT graphs will be introduced. 

R e d  t hat standard definitions of the path lengt h and the pat h size are used t htough- 

out this thesis to denote the number of edges and the number of vertices respectively. 

The size of a path P is denoted by 1 PI. 

Deflnition 16 A path of Bize bigger thon 3 ie called a long path. 

For (1,2,2) graphs the definition of K,,,, and is needed. Let G,, c 'P,, be the 

set of all paths P E P=,, such that 3Q E 'P+, and 2' E P n Q such that x' # x.  Similady, 

let %# c P,, be the ciet of all paths P E such that 3Q E P=,# and x' E P n Q sueh 

that x' # x. Let a, be the set of subpaths of pa th  in K,, between x' and y, aad 'Ri, 

be the set of subpaths of p a t b  in &f between z' and z. 

Definition 17 A (2,2,2) puproph H d l  Le culled twdongsided if then aists P,, E 'P,, 

and t h m  ez& P,, E P ~ , ,  in H srch Mat IP=,,,l> 3, and IP,,[ > 3. A (l,Z#) gmph H 
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d 6 e  called ho-long-sided if then e&ts & ,  E &,, and the= ezjsts 4, E &, in 

H such that I&J > 3, and I&,I > 3. 

Definition 18 A (2,2,2) gmph H d l  be called one-long-sided if then ezi& P,,, E Pr,,, 

in H euch that 1 P+,ul > 3, and 60th P=+ and 'P,, in H comist of P3 >s only. A (l,&2) gmph 

H will be colled ondong-sided i f  thcm ezists &,y E 7&f ,  in H euch that > 3, 

and 60th & ,  and PvP,, in H consist of P3 3 only. 

Definition 19 A (2,2,2) gmph H tmll be called no-long-sided ifp,,,, P=&, and Fu$ in 

H conskt of Pa L only. A (1,2,2) gmph H tuil1 be called no-long-sided if Q,,, Q,, and 

'P,, in H consikt of Pa's only. 

Definition 20 A (2,2,2) or o (I,2,2) gmph ie colled long-sided i/ it às either one-long- 

sided, or t wo-long-sided. 

Note that any (2,2,2) and any (1,2,2) graph is either twc4ong-sided, or one-long-sided, 

or no-long-sided. The structure of these three types of (2,2,2) graphs will be considered 

separatdy in sections 4.1, 4.2, and 4.3. The structure of these three types of (1,2,2) 

graphs will be considered in sections 5.1, and 5.2. 

The structure of twdong-sided (2,2,2) graphs will differ depending on the lengths of 

paths in P,, and 'P,,. A specific structure WU result if in addition to having long paths 

in and 'P,,, a twdong-eided (2,2,2) graph H also has a path of Iength 2 in P=,P,,,, 

or in P,,. Similady, a specific structure WU resuit if a twdong-sided (2,2,2) graph has 

more than one long path in Pst#, or more than one Iong path in PSd. The poaition of 

DP vetticea in these two mb-families of twdong-sided (2,2,2) graphs WU be examined 

in subsections 4.1.1 and 4.1.2. Fot that putpose, the paths of length 2 wilI be called 

short puth, and the set of patha that contains a long path, Le., P=,# or Pss , will be 

called a long side. Similady, the structure of ondong-sided (2,2,2) graphs with the long 

side amtainhg a short path wiU be desaibed in subsection 4.2.1, and the structure of 
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one-long-sided (2,2,2) graphs with the long aide containing at least two long paths wilI 

be described in subsection 4.2.2. Equivalent results hold for (1,2,2) graphs and wilt be 

explaineci in subwtions 5.1.1, 5.1.2. 

The structure of all these subfamilies of graphe will be examined in order to determine 

the position of their DP's in relation to position of the5 AT vertices. 

The following t h  lemmas present resulta about the position of DP vertices in HDP 

graphs. They wiU be used in the prwfs of Ciaims 13, 18, 30, 39, and Lemma 8. Note 

that sometimes the terminology will be abused by letting Px,, denote both the set of 

paths between x and y that miss z, and the union of the vertices on these paths. 

Lemma 5 Let (a$) be ci DP of an AmHDP gmph H. a and B cannot both belong to 

PZ,,, cannot 60th belong to Px,, and cannot 60th belong to Pvg. 

Proof: W.1.o.g. assume that a and P both belong to 'P,,,. Since the subgraph 

induced on the vertices in 'Po,, is connecteâ, there is a path between them that misses z, 

contradicting (a, f i )  being a DP. a 

Lemma 6 Let (a, P )  6e a DP of a gmph H. 

(1) If H H o two-long-sided (2#2,2) graph, then a and P cannot belong to the union 

of the interna1 vertices of Px,# and P,,, when Px,v and Px$ a n  long paths in 'P,,, and 

PZ* rrspect ivelg. 

(2) If H H a (42,2) gnrph, then a and P cannot belong to the union o j  the vertices 

of Ri, and &,, when & ,  and &, a n  paths in '&,, and 7Z+ respectiuely. 

ProoC: A s m e  to the contrary. 

(1) W.1.o.g. let a be an internd vertex of Plv and let P be an infernal vatex of P,,. 

Note that (I caanot be adjacent to both x and y, and that P cannot be adjacent to both 

x and z, sina lP,,j > 3 luid (P,,j > 3. Ifay E E and pz E E, then the path h m  a to 

/3 induced on cg u P, U Px  does not hit z confradicting (a, /3) king a DP of H, where 
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Pu, is aay path in Py,. If one of these two edges ay and pz does not exist, Le. w.1.o.g. 

if ay e E, then the path fiom a to P induced on Pa, U P.,fl does not hit y contradicting 

(a, 0) being a DP, where P,, is the subpath of P,,, between a and x ,  and Px# is the 

subpath of P,, between x and P. Therefore, a and P do not both belong to the union 

of the internal vertices of P,, and Px*. 

(2) W.1.o.g. let a E &,, and f l  E 4,. Clearly, either f l  = xf, or P E &, \ {x').  

ü p = xy (and cr E &,,), then both a,p beiong to P x ,  contradicting Lemma 5. if 

P E &, \ {xf), then we have the following casee: 

(i) if a = xf, then both a, P belong to 'P,, contradicting Lemma 5. 

(ii) if a E &,, \ {x'}, then the path between a and p induced on P a ,  U P,, U Pz$ 

does not hit x,  where Pa,, is the path between a and y induced on a,,, Pz,# is the path 

between z and p induced on kt,, and P, is any path in Pv,; note that no vertex on 

Pa,, and no vertex of Pz,@ is adjacent to x ,  since &,, and &, are induced paths. 

Lemrna 7 (a) Cowider a two-long-sided (2,2,2) gmph H &th long paths P,, E Pz,, 

and P,, E P=$. It is not the case that one DP vertex of H LP an internal uertez of P,,,, 

and the other one is equal to t .  By eymmetry, it is not the case that one DP vertex of 

H is an intemol vertez of P,, and the other one is equal to y. 

(b) Consider o (1,2,2) p p h  H with p t b  & ,  E & ,  and &, E 7&,. It U not 

the case that one DP wrtez of H is an intemal vertez of kt,, and the other one is equal 

to z. By sytnmetry, it is not the case that m e  DP uertez of H is an intemal vertes of 

&, and the other one às equal to y. 

Proofi (a) Let (a, P )  be a DP of a hvo-long-sided (2,2,2) graph H. W.1.o.g. assume 

that a = z and p E P , ,  \ {z,y}. Since IP=,#l > 3, ,û cannot be adjacent to both x and y. 

If pz 6 E, then the path fimm a to p induced on P, U Pu# does not hit x contradicting 

(a,@) being a DP, whem P'# is the subpath of P,, betueen y and P. If @y g E, then 

the path fiom a to induad on P,, U PSd d a s  not hit y contradicting (a, P )  behg a 

DP, where P& is the subpath of P,, behreen x and P. 
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(b) Corollary of Lemma 6 (2). 0 



Chapter 4 

(2,2,2) Graphs 

The claims in this section will describe some structure of (2,2,2) graphs. The goal is to 

describe enough structure of (2,2,2) graphs, so that the positions of d DP vertices in 

these graphs can always be determined. This goal is achieved and ptesented in Claims 

18, 21, 25, 30, and Corollaries 7 and 11. These are the main reaults of this chapter. 

Each of them describes the positions of DP vertices in a specific type of (2,2,2) graphs, 

and together they describe the positions of DP vertices all types of (2,2,2) graphs. In 

addition, an interesting structural result appean, in Claim 13. 

The following notation will be used in this chapter. Let H be a (2,2,2) graph with 

an AT { x ,  y, 2). As before, let PSI, be the set of induced paths between z and y that 

avoid N ( z ) ,  let P=$ be the set of induced paths between x and z that avoid N(y), and 

let Pua be the set of induced paths between y and z that avoid N(x) .  In the claims in 

this chapter which eay 'let H be dehed as in the paragraph preceding Claim 12," it is 

a s m e d  that H is dehed as in this paragraph. The aame holds for PZlV, Pz&, and 'P,,. 

The following claim daicribes the positions of DP vertices in a restricted s u b f d y  

of (2,292) graphe- 

Claim 12 IfVP=,, € P=,u, VPs4 E Pst,, and VP,, E Pv,, then un no edges between 

interna1 verticea of P,,, P,,, and P,,, then a DP ver tu  of uny DP of H rnust be in 



Proof: Assume to the cantrary. Thus, VPZl, E VPCg E P=$, and VP,+ E Pu& 

there are no edges between internd vertices of Px,,, P,,, and P,,, and no DP vertex 

is in {x ,  y, 2). Denote by (a, P )  any DP of H. W.1.o.g. assume a E P,,, \ { x ,  y), 

P E Pt, \ {z, s) for aome Pr?, E Pz, and some P,, E 'P,,. Denote by Pa, the subpath 

of P,,, between a and x, and by PB, the subpath of P,, between P and x. But now, 

the path between a and p induced on Pa, U PB, does not hit any interna1 vertex of any 

P,, E Pv9 contradicting (a,@) being a DP. 

The following daim describes an interesting structural property of (23%) graphs. 

Claim 13 If 3P, ,  E Pz,, and 3P., E Pz, in H such that IPx,I > 3, IP,,I > 3, then 

VP E Pu,, 1 Pl = 3. 

Proof: Assume to the contrary. Thus, 3P,, E Pu& such that 1 Pu, 1 > 3. So, 1 P,,I > 3, 

1 PI 1 > 3, 1 Pvs 1 > 3. Let H be the subgraph of H induced on P,, u P,, u P,. Let 

(a, p)  be any DP of K. Where could a and P be positioned? 

By Lemma 6 (l), a and P do not belong to the union of the interna1 vertices of P,,,, 

Pr$, and Pu,. T h d o r e ,  one of a, P must be in {x ,  y, 2). W.1.o.g. let a = x. Then by 

Lemma 5, p 4 Pz,, U P,,. Therefore, ,û E P,, \ {y, 2). P cannot be adjacent to both y 

and z, since lPvrl > 3. W.1.o.g. assume that pz $ E. Now the path between a and P 

induœd on PVJ U P,, does not hit z contradiethg (a, P )  being a DP, where PvIp is the 

subpath of P,, between y and P. 

Thus, H does not have a DP contradicting H being HDP. 0 

Additional structural pmperties of (2,2,2) graphe are desctibed in the following claim. 

chim 14 In a (&%2) p p h  H, let P,, E PStv, P., E 'P,,, P,, E Pw,,, and let 

u E P,, \ {x ,  y), u E PI, \ (2, Z )  6e such that the length of fhe puth between them induced 



on P,,, U Px* that includee x id at keat 4. Let P,, be the subpth of Px, betrwen x and 

v ,  and let P,, be the eubpath of P., between x and u. Ifuv E E, then either 

(i) u is uniuersal to P,,, o r  

(ii) v P uniuersal to Px,u, or 

(iài) i fn,  E E, and v is not adjacent to w E Pu,, and wu E E, then either w is 

adjacent to o vertez in P,, \ {y, z), or  every vertez in P,, \ {y, z )  i8 adjacent either to 

u or to v*  

Note that by synmetry, the some holds ij u E P,, \ {x, y), v E P,, \ {y, z},  or if 

u E P,, \ { x ,  z) ,  v E P,, \ {y, E ) ,  and the conditions aboue a n  satisfied. 

Proof: Assume to the contraq. Thus, UV E E and neither u is universal to nor u 

is univemal to P,,, (negation of the condition (iii) above will be added in part (2)(a)(i) 

of this proof). Consider the subgraph H of H induced on P,,, U P,, U P,,. Since the 

length of the u, v-path induced on Px,, U P,, is at least 4, there are two cases to consider: 

(1) su, +u $ E. Consider H = H \ {P,, \ {y, t)). H is (1,1,2), in particular, vertices 

y and z of the AT {x, y, z )  in fî are non-path-disjoint, contradicting Theorern 26. 

(2) Exactly one of xu, xv is an edge. W.1.o.g. let zv E E. Clearly, u is not universal 

to Px,,, since xu 4 E. Also, by a,saumption, u is not universal to P,,,. Let w E Px,, be a 

vertex not adjacent to u. Here, there are the following cases to consider: 

(a) wu E E, or wx E E. Consider each of these two cases aeparately. 

(i) Assume wu E E, w is not adjacent to any vertex in Pm, \ {y, r) ,  and there exists 

a vertex p E Pu, \ {y+) that is not adjacent to u and is not adjacent to W .  Clearly, 

w z  4 E since the length of the path between u and v induced on P,,U P,, that indudes 

z is at leait 4 and zv E E. Let P,, be the subpath of P,, betwan x and w, let 

d = Px,,,, n N(w), let x' = Px,, n N(x) ,  and let Pd,& be the subpath of P,, between 

2' and d. Now, H \ Pd,d is (1,1,2), in particular, vertices tu and z of the AT {w, p, x }  

are non-path-di~joint, contradicting Theonm 26; note that w is not adjacent to any 

vertex of P,,, where P, is the mbpath of Px& between v and z, since o t h e h ,  Le., if 



wq E E,q E P,,, then tv and q satisfy the condition of case (1) above (replace v by q, 

and u by w). 

(ii) Norv a8s-e tuz E E. Denote by H the graph obtained by removing from H a l l  

vertices on P,, \ {y, z). NOIR, & is a (1,1,2) graph with an AT {tu, y, s}, in particular, the 

non-path-disjoint vertices are y, and z, contdcting Theorem 26; note that if wq E E 

for some q E P,, then H is not a (2,2,2) graph, since the path Q E PSP,, induced on 

{XW)U{W~)U P,,, where P,, is the subpath of P,, between q and z, has common vertices 

{x ,  w }  with P',,, i.e., z is not a path-disjoint vertex, contradicting the assumption that 

H is (2,2,2). 

(b) wu 4 E, and wx 4 E. Now, the graph H \ {Pu, \ {y, z}} is (1,1,2), in partidar, 

vertices y and z of the AT {w,  y, z )  are non-path-disjoint contradicting Theorem 26; 

again, wq 4 E, for all q E P,,, as explained in part (2)(a)(ii) above. 0 

It has b e n  mentioned before that any (2,2,2) graph is either two-long-sided, or one- 

long-sided, or nelong-sided. The structure of these three types of (2,2,2) graphs will be 

considered separately in the next three sections. 

4.1 Two-Long-Sided Graphs 

In this section, a s m e  that the graph is two-long-sided, i.e. that there exists P,, E Pz,, 

and there exists P,, E 'P,, in a (2,2,2) graph H such that 1 P,,I > 3,I P.,[ > 3. By 

Claim 13, P,,, wnsists of 4's only. Denote by M the set of interna1 vertices of all paths 

in 'P,,. These assumptions about the graph H hold in all daims in this section. 

The standrvd dennition of didance between two vertices u and v ,  denoted by d(u, v) ,  

which defines it as the minimum 1-h of a u, u-path, is used in this theeis. R d  that 

the length of a path is the number of its edgea. 

The followhg claim describes the structud pmperty of twdong-sided graphs that 

WU be used in proofs of various daims in this thesis, sueh as for example, in the proofs 



of Claims 16, 17,20, and Cotollary 9 in this chapter. 

Claim 15 The vert= of distonce i from z on Pz,,, for i 2 2, cannot Le adjacent to the 

vertez of distance j from x on P,,, for j 2 2. 

Proof: Assume to the contrary. Denote by u the vertex of distance i fiom x on P,,, 

for i 2 2, and by u the vertex of distance j from x on P,,, for j 2 2, with UV E E. That 

is, d(u,x)  = i 2 2, d(u,x) = j 2 2, and UV E E. Note that u # y, because otheswise u 

could not be adjacent to any vertex on P,,, since y is an AT vertex. Similady, v # z. 

Consider the subgraph H of H induced on P,, U Pz,. Since UV E E, H is a (1,1,2) 

graph, namely the AT vertices y and z of the AT { x ,  y, z )  of fi are non-path-disjoint, 

mntradkting Theorem 26. O 

Note that edges fiom the neighbor of z on a Long path P,, to a non-neighbor of x 

on a long path P,, can occur in minimal HDP graphs. However, su& an edge would 

imply the graph is (1,2,2) and is considered in the next chapter. Therefore, the foilowing 

corollary. 

Corollary 6 In a two-long-sided (2J2,2) p p h  H with long p a h  Pz,, E 'P+,Y and P,, E 

R,, the uertez of dietance i from x on for i 2 1 ,  cannot be adjacent fo the uertez 

of distance j J h r n  s on P,,, for j 2 2. 

Proofi Follows directly fiom Claim 15 and the paragraph preceding Corollary 6. 0 

The foilowing lemma describes the positions of DP vertices in a s p d c  type of an 

induced subgraph of a twdong-sided (2,2,2) graph. One of the main r d t s  of this 

chapter, n d y  Comllary 7, follows directly fimm this lemma. The lemma will a b  be 

used to prove Claims 16,17, and 19. Claim 17 will further be used in the pmofs of Claims 

42 and 46. 



Lemma 8 Let H be o two-long-aided (2,9,2) p p h  wWth long puths P,, E P=,, and 

P,, E Pz$, let P,, bt any potla in Pw, of H, and let (a, P )  be a DP of the subgroph & 

of H i&ad on P,, U Px* U P,. Then one of a , p  is in N [ z ]  = {z) U N(x) in H und 

the other one is the internal uertez of P,,. 

Proot: Note that K is a twdong-sided (2,2,2) gtaph. 

By Lemma 5, a and carmot both belong to P.,,, cannot both belong to P,,, and 

cannot both belong to P,,=. 

By Lemma 6 (l), a and P cannot belong to the union of the internal vertice of P,,, 

and P,,. 

Let xf = P,,, n N(x). It is not the case that one of a, p is an intemal vertex of P, 

and the other one belongs to P,,, \ { x ,  x', y) for the following reason. Assume to the 

contrary. Thus, w.1.o.g. assume that cr E P,, \ {y, z )  and P E P,,, \ {z, sr, y). Then 

the path from a to p induced on { a y )  U P,,@ does not hit x contradicting (a, /3) being 

a DP, where PV,# is the subpath of P,,, between P and y. Similarly, it is not the case 

that one of a, /3 is in P, \ {y, z )  and the other one belongs to P,,, \ { x ,  x", z),  where 

xti = P,, n N(x ) .  

By Lemma 7 (a), it is not the case that one of 4, p is equal to z and the other one 

belongs to P x ,  \ { x ,  y). Similarly, it is not the case that one of a! and @ is equd to y and 

the other one belongs to P,, \ {x ,  2). 

Thdore ,  the only possible position for (a, P )  is that one of them is in N [ x ]  and the 

other one is in P,, \ {y, 2). 0 

Corollary 7 Let H bc a 2-long-sided (2,2¶2) p p h  math no short poths in the long sides. 

One DP uertez of H m w t  be in N [ z ]  and the other one must be an internat vertex of a 

p t h  in Pw4. 



The following two claims describe some &actural properties of two-long-sided (2,2,2) 

P P ~ *  

Claim 16 Let x i  and x; be the neighbors of x on long p t h  P,, and P,, in H nspec- 

tively, and let x i  und x: be of dhtunce 2 /rom x on Pz,, and P,, nspectively. Let v be a 

uertez in M. Then {z:z:, xrv, x:v) fî E # 0. By symmetry, {zizi, slu, ziv) n E # 0 as 

well. 

Proofi Assume ta the cantrary. Thus, z i z i ,  x:v, xiv 4 E. Note that x:xk 4 E since H 

is a (2,2,2) graph. Denote by P,, E P,, the path that contains v.  Consider the subgraph 

fi of H induced on Pz, U Pz, U P,,. Denote by (a, P )  a DP of H. Rom Lemma 8, in 

fi one of {a, p )  is in N[x] and the other one ia in M. W.1.o.g. let a E M and ,8 E N [ x ] .  

However, p cannot belong to {x,zi) together with cr = v for the following reason. 

Assume that a = u and /3 E {s, xi). Then the path fiom a to /3 induced on Px, U (uz) 

does not hit x;', contradicting (a, P )  being a DP, since by Claim 15, no vertex of Pz, 

that is of distance 2 or more h m  x is adjacent to any vertex on P,,, that is of distance 

2 or more h m  x, Le., xy is not adjacent to any non-neighbor of r on Px+; also, by 

assumption, x!v 6 E.  Similarly, a cannot be equal to u together with P being equal to 

x i ,  dnce othemiae the path between them induced on {P,,, \ (2)) u {yu) wodd not hit 

xi; this is true becawe x i  is not adjacent to any non-neighbor of x on P,,, since H is 

(2,2,2); dm, by aseumption, xix',, x i v  6 E. 

Thus, H does not have a DP contradicting H being HDP. CI 

Claim 17 Al1 uertices of didonce i from z on P,,, for i 2 3, i j the8 e d ,  mwt be 

adjacent to al1 verticw in M. By synmctry, the sarne Aolds for the vertices of diatonce i 

from x on P,,. 

Proofi Assume to the contrary. Thus, there existe a vertex of distance i from x on 

P,,, d it u, where i 2 3, that is not adjacent to a vertex v E M. Note that u is not 



adjacent to x*, where x' is the neighbor of x on P,,, and P,, is a long path in P,,, since 

H is (2,2,2). Let P,, E Pu, be the path that contains v.  Consider the subgraph H of H 

induced on P,,, U P,, U P,. Denote by (a, p) a DP of B. From Lemma 8, one of {a, P )  
is in N[x]  a d  the other one is in M. 

AB in the proof of Claim 16, it is not the case that one of a and /3 is equal to v 

and the 0th- one belongs to { x ,  x'), since otherwiee the path between them induced 

on {vz) U Pz, would miss u; note that by Claim 15, u eannot be adjacent to any non- 

neighbor of t on P,,, and in addition, by our assumption, u is not adjacent to u; note 

again that ux' 6 4, since H is (2,2,2). 

Similady, it is not the case that one of a and P is equal to v and the other one 

belongs to Pz,, n N ( x )  for the following reason. Assume to the contrary. Thus, w.1.0.g. 

aesume that cr = v and p E Px,, n N(x). Since pz E E, the path fiom a to p induced 

on {vz) U P,, U (28) misses u; note that by our assumptions and Claim 15, u is not 

adjacent to any vertex on P., and is not adjacent to v. 

Thus, ff does not have a DP contradicting H being HDP. 

4.1.1 A Long Side Has a Short Path 

Let H be a two-long-sided (2,2,2) gaph with a long side having a short path. W.l.o.g. 

let Px,, have a short path. Denote by P,,, a long path in Pz,,, by P,, a long path in 

PZ+, and by P a path of length 2 in Pst,,, in H. Denote by W the set of middle vertices 

of al1 4 ' s  in Pst,. As befon, denote by M the set of middle vertices of all paths in Pu&. 

Let rn be the middle vertex of P,, where P,, is an arbitrary path in P,&. 

The following daim representa one of the main results of this chapter. It describes 

the positions of DP verfice% in twdong-sided (2,2,2) gaphs with a long side having a 

short path. The thme corollaties following this daim describe some of the structural 

properties that are dictated by specific positions of DP vertices in these graphs. 



Claim 18 Consider o two-long-sided (2$?,2) gmph H Gmth a short path in o long Bide 

as desm4bed in the firat pumgruph of this arbsection. One DP vertex of H is in N[x]  = 

{X)U N ( x )  and the other one is in M, or one DP vertez ie in N[z ]  = { z )  U N ( z )  and the 

other one is in W .  Each of these two typm of DPs can occur. Note that the synmetrie 

nscilt would hold if then mas a P3 in Ps4. 

Proofi Let (a, P )  be a DP of H. Consider where o and P could b e  positioned in H .  

By Lemma 5, a and /3 cannot both belong to 'P,,,, m o t  both belong to P=+, and 

cannot both belong to Pu,. 

By Lemma 6 (l), a and P cannot belong to the union of the intemal vertices of P&, 

and Pz,, where P,,,, and P,, are long paths in Pz,, and 5, mpectively. 

By Lemma 7 (a), it is not the case that one of a and @ is equal to z and the other 

one belongs to P,, \ { x ,  y), and also is not the case that one of them is equal to y and 

the 0th- one belongs to Pz, \ {x, 2). 

If one of a and p is equai to rn and the other one belongs to P', \ { x ,  y, 23, or if one of 

them is qua1 to m and the other one belongs to P,, \ { x ,  z,z"), where s' = N ( x )  n P,,, 

x" = N ( x )  n P,,, and m is any vertex in M, then the proof is as follows. W.1.o.g. assume 

that a E P,, \ { x ,  y, 27 and p = m. Since a x  6 E, the path between a and p inducecl 

on Pa, U {yp) does not hit x contradicting (a, P )  being a DP, where Pa,, is the subpath 

of P,,, between a and y. 

Thus, the only two options for {a,P) are that one is in N[x]  and the other one is in 

M, or that one is in N[z ]  and the other one is in W. 

Examples showing that each of these two types of DPs can occur are given in Figure 

4.1. DP vertices axe shaded in these examples. 0 

Consider each of the possible positions fot {a, P )  from the previous daim eeparately. 

The foUowiag notation Poül be used in the foIlowing three comllaries. Consider a 

twdong-sided (2,2,2) graph H with a short path in s long side sir described in the 
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paragraph of this subsection. Let rn be a vertex in M, let w be a vertex in W, let 

Z' = Pz,, n N ( x ) ,  y' = P,,, n N ( y ) ,  Z' = P,, n N ( z ) ,  xt' = P,, n N(x),  where Px,,, and 

Px, are long paths in 'P.,, and Pz,, respectively, let P,, be the path containing rn, and 

let P be a P3 in P,, whose mid-vertex is W. Let &tiV be the subpath of P,, between 

z' and y', let H be the subgraph of H induced on Pz, U Px, U P,, U P,  and let PI,# be 

the subpath of P,,, between x' and y. Denote by U the set of midpoints of al1 Pa's in 

P=, U P=+; note that W E Cr. Denote by 2' the second neighbor of z on P,,. 

Corollary 8 If one of the DP vertices of H t egwl  to x and the other one ib m, then al1 

non-neighbors of x and y on the long putlis in Fx*,,, ifthey &t, and al1 non-neighbonr of 

x and t on the long poth in Pz$, ifthey ezist, m w t  either Be uniuersal to U, or adjacent 

to rn, or  60th. 

Proofi Assume to the contrary. W.1.o.g. let v be a non-neighbor of x and y on the 

long path P.,,, E Pst, that is not adjacent to w and is not adjacent to na, where ( x ,  m) is 

a DP of H. Consider the subgraph of H induced on P U P,, U P,, U P,,. By Claim 7, 

it ie knovvn that, since (2, m) is a DP of H, and eince z, rn E H ,  (z, rn) ia also a DP of H. 

However, the path fiom ï to n a  in H induced on P u {p) does not hit v contradicting 

(x,m) being a DP of H. 0 

Coro11ary 0 Let (tu, t )  be a DP of H. Then H h a  the follouing pmperties: 

(a) &et u be an internat mrtez of P,, different from zt. Tlien mo E E. 



(6) Let u be an intemal vertex of P,,,, diffennt from y', or on intemal aertez of P,, 

diffennt Ç m  2. B v w  4 E, then v is uniuetsol to M.  

(c) If y'w, fm 4 E, then m is not adjacent to a non-neighbor of d on Pst,. 

Prool: (a) Let v E P,,,\{z, x', y) be such that vw $ E* Note that vxtt e E since H is a 

(2,2,2) graph. Then the path from w to z i n d u d  on P,, U {xw) misses v, contradicting 

(w, z )  being a DP of H (note that by Claim 15 the ody vertex on Px* that u can be 

adjacent to is x"). 

(b) W.1.o.g. let u be an internal vertex of P., diffeirent from y' such that vw, vrn 4 E. 

Then the path fiom z to w induced on P,, U {yw) misses u, contradicting (w,  a )  being 

a DP of H. 

(c) If y'w, y'm $ E and m is adjacent to a non-neighbor q of y' on P,,,, then the path 

from z to w induced on {ma) U {mq) U P,, U { x w )  does not hit y', contradicting (w, z )  

being a DP of H, where P,, is the subpath of P,, between q and x. 0 

Corollary 10 If (w,m) às a DP of H ,  then euery àntemal uertez of a long path Pz, 

Px, and every internal uertez of a long path P,, E 'P,,, different from f mwt be adjacent 

either to m, or to w, or to both. In addition, àfwm E E, then d mwt also be adjacent 

to rn, or to w,  or to both. 

Proof: Assume to the contrary. Let u be an internal vertex of PStu different h m  y', 

or an internal vertex of P,,. Since by assumption vm, vw 6 E, the path between m and 

w i n d u d  on {ym) U {yw) does not hit v contradicting (m, w )  being a DP. Similady, if 

w m  E E and y' is not adjacent to m and not adjacent to w,  then the path h m  m to w 

induced on {mw) does not hit y'. 0 

4.1.2 A Long Side Has at Least Two Long Paths 

The following notation will be u d  in the daims in this nibwtion. Let H be a twm 

loq-eided (2,2,2) graph that has at least taro long paths on one of its long sides. W.l.0.g. 



let P=,, have at least two long paths. Denote by P and Q two long paths in 'P,, of H. 

Denote by P,, a long path in P,,. Remember that, by C l a h  13, Pv4 consists of 4 ' s  

only. k t  P,, be any path in P,,,. Let x, = N ( x )  n P, z, = N ( x )  n Q, z, = N ( x )  n P,,, 

vp = N(y) n P, y, = N(y) n Q, and let m be the middle vertex of P,,. Let Nl(x) be the 

neighborhood of x on the long paths. 

The foilowing claim describes the positions of DP vertices in a subfamily of twdong- 

sided (2,2,2) graphe with a long aide having at least two long paths. 

Claim 19 Ifthem are no 4 '9 in P,, and P,,, then one DP uertez of H ia in {X)U Ni($) 

and the other one b in M .  

As mentioned before, let D(u, v )  denote the set of vertices that intercept aii u, u-paths 

in a connected gaph. 

Claim 20 VP, Q E Pz,, that a n  long pathsJ and Vul E P \ (2, XJ and Vu2 E Q \ {z, z,), 

ul E D(x, q ) ,  or va E D(x, V I ) .  

Proof: Assume to the contrary. Let P, Q E R,, be long paths, let P,, be any long 

path in P=,, and let x, be the neighbor of x on P,,. Let VI  E P \ {x, x,), va E Q \ {x ,  x,) 

be such that V I  4 D(x,ua) and v l g  D(x, vl). Note that vlx, 4 E and V ~ X ,  t E since H 

is a (2,2,2) graph. Let P, be any path in 3,. Let & be the eubgraph of H induced on 

P U Q U P., U PM,. Let m be the mid-vertex of P,,. 

&\{ml d a s  not have a DP any more, since {ul,q,z) is its AT that contradicts 

Claim 6. In particular, {vl, va, z )  is an AT of l? for the following nasoas: 

(i) the path h m  ul to y induced on P,, U P,,, misses z, where P,,, is the path 

between ut and y induad on P, and similady, P,, is the path between v2 and y induced 

on Q; this is hue by the definition of P',, and 'Po,; 



(ü) the path between r and VI  induced on P,,. U P*., misses y, where P,,, is the 

path between ui and x induced on P; thie ie trua because uix. e E, since H is (2,2,2), 

and a h ,  by Claim 15, ui is not adjacent to any non-neighbor of x on P,,; 

(iii) similady, the path between z and s induced on P,, U P,, misses VI, where P,, 

is the path between va and x induced on Q. 

Clearly, in 8, zt 4 E, con tdc t ing  Claim 6. O 

4.2 One-Long-Sided Graphs 

Let H be a ondong-sided (2,2,2) graph with an AT {x, y, 2). W.1.o.g. let 'P,, be the 

long side of H. Denote by Mi the set of mid-points of a l l  paths in Ps4, by M2 the set of 

mid-points of all paths in FwP,,. For now assume that the long side does not contain any 

short paths; the case when the long side has a short path will be discussed in subsection 

4.2.1. 

Note that for any internéai vertex v of a long path P,, E Pst,, edges between v and 

any vertex in Ml, and between v and any vertex in M2 are aliowed in these types of 

graphs. For example, the fact that vm1 E E in H, for some ml E Mi, might seem 

to eontradict the fact that H is (2,2,2), since the path L between x and z induced on 

P,, U {uml) U {rnlz), where Pz,, is the path between z and u induced on P,,, seems to 

be in Pz,, and it shares vertex u with P,,, E 'P,, making the graph H (1,2,2). However, 

this is not BO, since, by definition, ail paths in P=,, are induced paths, while L is not 

induced, and therefore not in P=+; in particulsr, zmi, vmi E E. Therefore, even if u is a 

non-neighbor of z and a non-neighbor of y on a long path P,, E 'P,, in a onelong-sided 

(2,2,2) graph H describeci h m ,  this does not conhadict H being (2,2,2). 

The following daim is one of the main resuita of this section. It describes the positions 

of DP vertices in one-long-sided (2,2,2) graphs. The three daims foilowing it establiah 

some stmctwal properties that are didated by s p d c  positions of DP vertices in these 
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Claim 21 One DP uertez of a one-long-sided (2,2,2) ggrah h in N[x]  and the other one 

is in M2, or one of its DP verlices is in N[y] and the other one is in Ml. Each of theae 

two types of DPs con occur. 

PmoE FoLlows the proof of Claim 18. 

Examples showing that each of these two types of DPs can occur are given in Figure 

4.2. DP vertices are shaded in these examples. 0 

Claim 22 r f  {qp) = {s ,m2)  for some verte2 r n 2  E Ma, then for al1 ml E Ml, every 

uertcz in P,,,, \ (2, y, xf}, where P,,, is a long path in PsPv and x' Lc the neighbor of z on 

P',,, is adjacent to ml, or to ml, 07- to 60th. 

Proofi Assume to the contrary. Let v E Pz,, \ {z, y, 23 be non-adjacent to some 

mi Ml, and non-sdjacent to ma. Then the path h m  a to j3 induced on {zml) U 

{mtz) U {mg) would not Mt v contradicting (a, P )  being a DP. a 

Claim 33 If {a,@) = {zr, ml) for aome vertez ml E M2 and the neighbor z' of x on a 

long puth P,, E Pst#, then euery verte2 in Mi is adjacent to a ueriez in {m2)~P,,\{x, y). 

By wmmetry, if {a, P )  = {f, ml) fof aome uet-tez ml E Ml and the neighhr g' of y on a 

long potl, P,, E Ps,,, flcen evev  uedez in M2 is adjacent to a uedez in {ml)~P,,\{z, y). 



Proof: Assume to the contrary. Let {a& = {xt,rn2) and a veittex mi E Ml is net 

adjacent to any vertex in {mz) U P,, \ {z, y). Then the path fiom a to P induced on 

{ym2) U P,,, \ { x )  does not hit mi contradicting (a, P) being a DP. O 

Claim 24 If {a, p) = {ml, na2) for some vertices ml E Mi und ma E Mz, then euery 

internal vertex of a long poth P,,, E Pt, is adjacent to ml, or to ml. 

Pro& This is true because otherwise the path from a to ,û induced on {mlz} U {m2z) 

would not hit an internal vertex of P,, that is not adjacent to {ml,m2). O 

4.2.1 The Long Side Has a Short Path 

The following assumptions and notation hold for the claims in this subsection. Let H 

be a one-long-sided (2,2,2) graph with an AT { x ,  y, z), the long side 'P,,,, a long path 

Pz,, E Pz,,, and a short path P in 'P,,,. As before, denote by Mt the set of mid-points 

of all paths in 'P,,, and by M2 the set of mid-points of d paths in Pu,=. Also, denote 

by W the set of mid-points of a l l  paths in Ps,,. Let z' be the neighbor of z on Pz,,. Let 

y' be the neighbor of y on Let ml be an arbitrary vertex in Ml, m2 an arbitrsry 

vertex in M2, and w an arbitrary vertex in W. Let Pz, be any path in Pz*. 

The following claim is one of the main resuits of this section. It describes the positions 

of DP vertices in onelmg-sided (2,2,2) graphs in which the long side wntains a short 

path. The three claims following it establish aome structural properties that are dictated 

by specific positions of DP vertices in these graphs. 

Claim 26 DP uerticw of a one-long-eidcd 0 2 )  gtuph 6 t h  a short path in a long side 

satisfy the following. Either: 

(a) one DP uertez is in N[z]  and the other one às in Ma, or 

(b) one DP vertez b in N[y] and the other one is in Mi, or 

(c) one DP uertu is in N[z] and the other one ie in W. 

Eud of #hure t h e  t p  of DPs w n  occtlr. 
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Proofi Follows the pmof of Claim 18. 

Examples showing that each of these thnx types of DPs can ocnir are given in Figure 

4.3. DP vertices are shaded in these examples. a 

Claim 26 Let (z ,w)  be a DP of H. 

(a) If x'w 4 E, then 2' must be universal to Mg. By  a ymctry,  if y'w ( E, then y' 

mwrt be universal to Ml. 

(b) Let u be an intemal wertez of PfV diferent /rwn x' and y'. If vw 4 E, then v is 

universal to Mi U M2. Abe, if x'w, xty', y'w 4 E, then z' is univeml  to Ml U M2, and 

similady, if 3/w, xty', xtw 4 E, then y' is universal to Mi U M2. 

ProoE (a) Assume to the contrary. Let x'w 4 E, and let xtm2 4 E, for some m2 E M2. 

Let ml E 4,. Then the path fiom z to w induced on P, U {yw) misses x' contradicting 

(2, w) being a DP. 

(b) Assume to the contrary. Let vw 4 E and, w.l.o.g., v is not adjacent to some 

vertex ml E Mi. Then the path between z and w induced on {zrni) U {mis) U {sw) 

miases v. 

Now, prove the second part of the claim. If x'w, z'y', g'w g E and w.1.o.g. x' is not 

adjacent to some mi E Mi, since f is universai to Ml (by part (a)), the path between z 

and w induced on {%mi) U {mif) u {Jy) u {yw) misses zf. 0 



(a) euerg verte2 in Mt U P,, \ {y') mwt be adjacent to ml, or to w, or  to 60th; 

(b) it is possible for vertices in {fl U M2 \{ml) to be not adjacent to 60th na2 and W .  

Proof: (a) Assume to the contrary. Let v E Ml U P,,,, \ {y')  be non-adjacent to ma 

and W. Then the path fiom rn? to w induced on {m2y) U {gw) does not hit v. 

(b) To see that it is possible for y' not to be adjacent to m2 and w consider the 

following. If g' is adjacent to aJl vertices in Ml,  and if there are no edges between rn2 

and internal vertices in R,, (note that intemal vertices of P., \ { w )  cm be adjacent to 

w), then every path fiom ml to w contains at leget one of the vertices in Ml U {y), and 

theiefore hits y'. 

To see that it is possible for a vertex in M2 \ {ml)  not to be adjacent to ml and w 

consider the foliowing. If for alI internal vertices u of ail paths in R,, U 'P.,., m2u E, 

then any path from ml to w must include at least one of vertices y and z, and therefore 

every vertex u E M2 \ {m2) is hit by any path from rn3 to W. 0 

C l a h  28 Not al1 interna1 uerticw of a path Pz,, in H, such that IP,,nI > 4, can be 

non-adjacent to both wrticw in {ml,  ml),  for any ml E Ml and any rn? E Ma. 

Proofi Assume to the contrary. Thus, al1 internal vertices of a path P,, in H, 

1&,,1 > 4, are non-adjacent to both vertices in {ml,  ml),  for some ml E Mi and Borne 

m2 E M2. Then the aubgraph H of H induced on Px,,U P=,.U P,, where ml E P,, E Px$ 

and ml E P, E 'P,,, has a chordless cyde of length at least 7, and t h d o r e  does not 

have a DP. O 

4.2.2 The Long Side Has at Least Two Long Paths 

Let H be a one-long-aided (2,2,2) graph with an AT {z, y, z}, the long side 'P,,, and at 

least two long paths in Pz,,,. Let P and Q be the long paths in PStu. As before, denote 

by Ml the set of mid-points of aU paths in Pz,,, and by M2 the set of mid-points of ali 

patb in Pvp. Let z, be the nei&bor of x on P, let z, be the neighbor of x on Q. 
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The following wrollary specifks the positions of DP vertices in one-long-sided (2,2,2) 

graphs in which the long side has at least two long paths. 

Corollary 11 If then o n  no short p a h  in Pz,,, one DP uertez of H is in N [ x ]  and 

the other one is in M2, or one DP uertaz of H b in N[y] and the other one is in Mi.  

Each of these two types of DPs con occur. 

Proof: FoUows directly fiom Claim 21. 

Examples showing that each of t h e  three types of DPs can occur are given in Figure 

4.4. DP vertices are shaded in these examples. 0 

The following daim describes an interesthg structural property of these types of 

(2,2,2) graphs* 

Clairn 29 VP, Q E Pz,, that a n  long paths, and Vul E P \ { x ,  3,) and Vv2 E Q \ { x ,  x,}, 

if vlmi, yrni 6 E for aome mi E Mi, then ul E D(x, va), or v* E D(x, vi) . 

Proof: Follows the proof of Claim20. CI 

4.3 No-Long-Sided Graphs 

Let H be a ndong-sided (2,2,2) graph with an AT {z, y, 2). That ie, all paths in 

U P=,, u Pv4 are Pas. Denote by Mi the set of mid-points of aiI patb in 'Pt,, by M2 
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the set of mid-points of d paths in P,,, and by M3 the set of mid-points of aU paths in 

%* 

The following daim is one of the main results of this section. It describes the positions 

of DP vertices in no-long-sided (2,2,2) graphs. The two daims following it establish some 

structural properties that are dictateci by specific positions of DP vertices in these graphs. 

Claim 30 A DP of a no-long-eided (2,2,2) graph consbb of an AT verte2 v E {x, y, z )  

and a mid-point of a path that auoids the neighborhood o j v ,  or of a uerfez in Mi and a 

vertez in Mi, where i # j, and i ,  j E {1,2,3). Each of thcae types of DPs can occur. 

Proofi Denote by (a, p) a DP of a nelong-sided (2,2,2) graph H with an AT { x ,  y, 2). 

By Lemma 5, a and f l  cannot both be in P,,, cannot both be in 'P,,, and cannot both 

be in P,,. Therefore, since H is a nelong-sided (2,2,2) graph, the only two options for 

the position of a and p are an AT vertex v E {x, y, z )  and a mid-point of a path that 

avoids the neighborhood of v ,  or a vertex in Mi and a vertex in Mi, where i # j, and 

i, j E {1,2,3). 

Examples showing that eadi of these types of DPs can oceur are given in Figure 4.5. 

DP vatices am shaded in these examples. 0 

Claim 81 Let (a, P )  be a DP of a no-long-sided (8)2,2) gmph H with an AT {z, y, 2)- If 
a E Mi, p E Mi) tuhcn i # j ,  and i, j E {1,2,3), then euery uettez in Mk, for h 6 {à, j )  

and k E {l, 2,3), mwt either k adjacent to a, or to p. 



Proof: Assume to the contrary. W.1.o.g. let cr E Mi, /3 E M2, and let v be a vertex 

in M3 that is not adjacent to a and is not adjacent to p. Then the path fcom a to P 

induced on { a s )  U { x p )  does not hit v contradicting (cr,P) being a DP of H. 

Claim 32 Let (a, P )  be o DP of a no-long-eided (2,2)2) gmph H with on AT {x ,  y, 2). 

If (a, P )  E {z, m3) for rns E M3, then m3 cannot be adjacent to any ver ta  p E ML U M2 

unless every uedez of M3 Ls adjacent to either m3 or p. By symmetry, the some holds 

for C d )  E {Y, m2) for m2 E M2) and for {a,@) E (2, ml) for mi E Ml. 

Proof: W.1.o.g. let o = x a n d P = m 3 ,  m3 E M3. Assumeto thecontrary. Thus,let 

rnsp E E, p E Mi U M2, and a vertex mj E M3 is neither adjacent to ms, nor to p. Then 

the path from ct to p induced on {ap) U (pp) does not hit mj contradicting (a, P )  being 

a DP. 0 



Chapter 5 

(1,2,2) Graphs 

The daims in this section will describe some structure of (1,2,2) graphs. As iD. the 

previous chapter, the goal is to describe enough stnictum of (1,2,2) graphs, ao that the 

positions of all DP vertices in these graphs can always be determined. This goal is 

achieved and presented in Claims 39, 41, and 44. These are the main results of this 

chapter. Each of them describes the positions of DP vertices in a speeific type of (1,2,2) 

graphs, and together they describe the positions of DP vertices all types of (1,2,2) graphs. 

In addition, an interesthg structural result appears in Claim 35. 

In this chapter we will assume the following. Let 'P,,v, 'P., and 'P,, be defined as 

before in a (1,2,2) graph H with AT {z, y, 2). Let x be a non-path disjoint AT vertex of 

H with x' E P., n P,,, z + d, tor some P,,, E P,,#, and some P,, E P,&. Let P$,# be 

the subpath of Pz,, between x' and y, Pd, the subpath of P,, between z' and t, and let 

P,, be any path in P#,,. In the daims in this chapter which say 'let H be defined as in 

the patagraph preceding Claim 33,' it ia asmec i  that H is d&ed as in this pasagraph. 

The same holds foc P=,n, P,,, and P,,. 

The following two resuits present -me structural pmperties of (1,2,2) graphs. 

Claim 33 For eny a E P&, \ {z3 and any b E PL+ \ {z'), ab e E.  

Proofi Assume to the contrary. Thus, ab E E. Take a subgraph H of H induced on 



P,, u P,,. Note that H is also an AT graph because it has the path P,, that avoids 

the neighborhood of r,  P,, that avoids the neighborhood of y, and the path from y to r 

induced on Pu,. U {ab) U h,, where P, is the subpath of P,,, between y and a, and &, 

is the subpath of P,, between b and z, that avoids the neighborhood of x.  (Note that 

no vertex in Pd,, U Pd, \ {x ' )  is adjacent to x since d paths in %, U P,, are induced.) 

But now, vutices 2, y, and x in H are all non-path-disjoint contradicting Theorem 26. 

Therefore, there does not exist an edge from o to b in H.0  

Proof: Assume to the contraxy. Thus, ac E E, and cy 4 E. Since cy 4 E, there 

must exist a subpath of P, fiom c to y of length bigger than one. Let Pi, be the path 

from y to z induced on P, U {ac) U Pa, where PM,. is the subpath of Pz, from y to a, 

and P, is the subpath of P,, from c to a. Since q $ E, P,,,, and Pi4 have a cornmon 

vertex different from y. Consider graph l? i n d u 4  on P,,,, Pi,, and P,,. This gaph 

is AT since P,,, avoids the neighborhood of z, Pi, avoids the neighborhood of z, and 

P,, avoids the neighborhood of y. Note that since c is not adjacent to y in H, y is not 

path-disjoint with respect to x,  z in a. Now, H has two non-path-disjoint vertices, x 

and y, and thus, by Theorem 26, is not an HDP graph which contradicta R being HDP. 

Note that in the same way it can be proven that for any b E Pd, \ {x', z) ,  if bc E E, 

then cz E E. a 

The following cleim describes one of the possible positions of DP vertices in (1,2,2) 

g r a ~ b *  

Claim 34 Cet H 6e defied os in the pamgmph preceding Chab 39. Abo, let P,,, P,,, 

and P, be defined as in the pumgtuph pnceding Cloim 99, and let (a, P )  6e a DP of H. 

If a E K \ C, where C b the mnnected compnent of H \ {z') that contains y and z, and 

i f@ E Pwg, then p àis adjacent to both y and z. 



Proof: Assume to the contrary. Thus, assume that P is not adjacent to z. Then, the 

path fiom p to Q that consiste of the subpath of P,, between P and y, and the y, a-path 

induced on P,, U {a) does not hit z contrsdicting (a, 8) being a DP. O 

The following c l a h  establisha an interesthg structural property of (1,2,2) graphs. 

Claim J I  Let H ,  P',,, und P,, be defincd as in the pumgruph preceding Claim 93. All 

path in P,, are & 'S. 

Proofi Assume to the mntrary. Let Pi, be a path in Pv, that is of length bigger than 

2. Let H be the subgraph of H induced on P,, U P,, u Pi,. Cleady, H is 1-disjoint 

w.r.t. x. Let (a,P) be a DP of k. One of a,P must be in {z ,b) ,  aime otherwise the 

path between them induced on V ( H )  \ {x, 3' )  would miss 2. (Note that no vertices in 

V ( H )  \ (2, xt )  are adjacent to z since P,,, and P,, are induced, and PI, E 'P,,.) By 

Claim 10, P E Pi, \ {y, z )  in H .  Since Pi, is not a P3, p ie not adjacent to at least one 

of y, z. W.1.o.g. let ,ûy 4 E. But now, the path induced on PB, U P.,, where Pg, is the 

subpath of PG, between P and z, is an a, /3-path miseing y contradicting (a, p) being a 

DP of H. o 

Remember that is defined in Chapter 3 to be the set of all induced paths between 

x and y that avoid N ( z )  such that VP E Gr, 3Q E Ps, such that x' E P n Q, z' # x. 

A h ,  Q,, is defined to be the set of subpaths of paths in &,, between x' and y. Similar 

definitions hold for Kg and R+,. The following daim gives a stnicturai property of 

(1,292) graphe 

Claim 36 Let R be defied as in the pamgmph pnceding Claim 99. Let y' be the neighbor 

of y on a poth in &,Y, and let z' be the neighkr of z on a poth in î&,. If deg(p8) = 

de#) = 2 and e,,, # B + &, then H is not BDP. 



path in PyP,,. Let H be the subgraphs of H induced on Pl U f i  U QI U Q2 U Re Howevei, 

\ {{u E P2(v 4 {y, y', z)) U {v E Qllv $ {z ,  2, x))) has AT {x, y', z') that contradicts 

T h a m  26, in particular, both y' and a' are non-path-disjoint. 

Chap ter 4 differentiated between twdong-sided and one-long-sided graphs. When 

dealing with (1,2,2) gaphs it is not necesasry to have this distinction; instead, long sided 

graphs, Le., (1,2,2) graphs for which at least one path in a,, U 7Z+ is of length bigger 

than 2, are studied. In the study of such graphs, some simple structure of these graphs 

that is forced by a particular placement of the DP vertices will be emphasized. Clearly, 

every path between DP vertices must dominate the graph. This rauits in some edges 

that will not be explicitly mentioned. 

5.1 Long-Sided Graphs 

As before, let x be non-path-disjoint w.r.t. y, z in an HDPnAT graph H with AT { x ,  y, z},  

and let x' be a significant neighbor of 2. Let F,, be the set of all induced paths between 

y and a in H that avoid N ( x ) .  Let M be the set of rnidpoints of all paths in Pu,. Let 

D(u, v )  denote the set of vertices that intercept all u, v-paths. 

Claims 37 and 38 desaibe some structure of long-aided (1,2,2) gaphs. 

Claim 97 Euery non-neighkr of x' in o long path in a,, must be uniuersal to M. By 

symmetty, the same ho& for Gs as well. 

Prooc Assume to the contrary. Thus, t h m  exists a non-neighbor v of x' on a long 

path P$,, E that is not adjacent to a vertex m E M. Let l? be the subgrsph of 

fi induced on P&, U {z) U P,, L1 Pd,, whm Pd, is any path in Q,, and m E P,. 

Let (a,P) be a DP of H. Shce H is 1-disjoint ws.t. z, by C k  8, one DP vertex of É 

is in H \ C and the other one is in C, where C ia the comected component of H \ {d} 

containing y, 2. W.1.o.g. assume a E H \ C = {s, d )  (note that ahce H is minim$, by 



Claim 8, H \ c = { x ,  2')). Then, by Claims 10 and 35, #3 is the midpoint of P,, in fi, i.e., 

p = m. Since v E Pd, \ {x',y), by Claim 33 and the aseumption that us' 4 E, v is not 

adjacent to any vertex in P&,. Now, the path from a to p induced on {pz )  ü Psta u {z) 
does not hit v contradicting (a, p) being a DP of a. 0 

As before, let x be non-path-disjoint w.r.t. y, z with a significant neighbor x' in an 

HDPnAT graph H with AT {x, y, 2). Let Kt,, be defined M in Chapter 3, and let cVv 
be the set of all induced paths between x and y that avoid N ( z )  and do not share vertices 

with paths in &,,, other than x and y. Similarly, let &, be defined as in Chapter 3, 

and let be the set of ali induced paths between x end z that amid N(y) and do not 

share vertices with paths in 'lS+$ other than x and z. Let Pu$ be defined as before to be 

the set of al1 induced paths between y snd t that avoid the neighborhood of x. 

Claim 88 Let H be defined as in the paragmph preceding this daim. If # 0, OT 

& # 0, then H is not 1-disjoint w.i.t. 2. 

Proof: Let a,, # 8. Let P E k,,. By definition of kt#, z' Q P, and therefore, 

P E H \ {x'). Thus, the connected component of H \ {x ' )  that contains y and z also 

wntains 2, i.e. H is not 1-disjoint w.r.t. s. O 

Denote by M the set of mid-points of ail paths in P,,, by Wl the set of mid-points of 

all short paths in a,,, and by W2 the set of mid-points of al1 short paths in 12,. Note 

that Wi and W2 might be empty. 

The fonowing daim is one of the main results of thie chapter. It describes the positions 

of DP vertices in long-sided (1,2,2) gaphs. 

Claim 89 One DP verte+ of a long-sàded (1,2,2) puph i? ia in N [ z ]  and the other one 

ie in M, or one DP ver ta  of H is in N[z] and the other one ie in WI, or one DP uertez 

of H às in N[gl and the ofher one is in W2. Each of these Uinc tmw of DPa cun OCCUP. 



Figure 5.1: 

Figure 5.2: 

Proof: Denote by (a,/?) a DP of H. By Lemma 5, a and B cannot both belong to 

'P,,#, cannot both belong to Ps+, and cannot both belong to PvP,,. 

By Lemma 6 (2), a and P cannat belong to the union of vertices of &,, and &,, 

whae & ,  and &, an any paths in & ,  and 7& respectively. 

If %,, # 0 and k ,  hm a long path, then it is not the case that one of a, P is e q d  

to t and the other one is an intemal vertex of a long path kt,, € a,, for the following 

reason. Assume to the eontraty. Thus, w.l.o.g., a = r and P E &,, \ {x ,  y). Take 

the subgraph H of H induced on &,, U && U PM, for any path &a E 'R,& and any 

PW E (such paths and P, ex is t  by d a t i o n  of H). Now, the claim is that Ë 



Figure 5.3: 

is a two-long-sided (2,2,2) graph containing a$, and thus, by Lemma 7 (a) and Claim 

7, it is not the case that one of a, /3 is equal to s and the other one is an internai vertex 

of &,,, . To eee that H ia a (2,2,2) graph (and not (1,2,2)) various edges are inserted 

and it is noticed how such insertions contradict certain definitions. These insertions are 

illustrateci in Figures 5.1, 5.3, 5.4, and 5.2. For example (see Figure 5.1), if v, a non- 

neighbor of s on &, E e,,, is adjacent to x', then this contradicte the definition of 

$,,, since the path &,, E a,, shares a vertex v d i n e n t  from x and y with the path 

K,, E &,, induced on {xx')  U {x'v) U {vy). Figure 5.2 deale with the case when v is 

adjacent to a non-neighbor of x in 'R,*, i.e., to a vertex in &, \ {z', 2). Li Figures 5.3 

and 5.4, z", the neighbor of x in &,, is adjacent to an intemal vettex of &, and to z' 

If .a, # 0 and it has a long path, then it ie not the case that one of a,p is an 

intenial vertex of some long path kt,, ii,y k,, and the other one is an intemal vertex of 

some path &, E G, foc the following mason. Assume to the contrary. Thus, w.l.o.g., 

o E \ {+, y) and P E &* \ {z, z}. Similar to the above, take the subgraph H of 

H induced on &, U U P,,, for any P,, E 'P,,. Now, fi is a twelong-sided (2,2,2) 

graph containhg a,P, and thus, by Lemma 6 (1) and Claim 7, it is not the case that 

one of a,@ is an i n t e d  vertex of &, and the other one is an intemal vertex of &,, 



Figure 5.4: 

contradicting our aseumption. 

If both e,, # 0 and # 0, and if both have long paths, then it is not the case 

that one of a, p ie an intemal vertex of some long path &?, E &,, and the other one is 

an internal vertex of some long path &, E a, for the following reason. Assume to the 

contrary. Thus, w.l.o.g., a E &,,, \ {s, y) and P E \ {z,s). Similar to the above, 

take the subgraph H of H induced on &,, U U Pv,,, for any P, E 'P,,. Now, H is 

a two-long-sided (2,2,2) graph containing a,/?, and thus, by Lemma 6 (1) and Claim 7, 

it ia not the case that one of cr,p ia an internal vertex of A&, and the 0th- one is an 

interna1 vertex of kg, contradiding our assumption; note that H cannot be (1,2,2) as 

illustrated in Figure 5.5, where a non-neighbor u of I in E kt,, is adjacent to the 

neighbor 2 of x in E a$. 
The only options for DP vertices a,@ are that either one of them is in N [ z ]  and the 

other one ie in M, or that one of them is in N[z]  and the other one is in Wi, or that one 

of them is in N[g] and the other one is in W2. 

Examples ahowing that each of these three types of DPs can oceur are given in Figure 

5.6. DP vertices ate shaded in these examples. n 

Tht structure of (1,2,2) graphs that have one DP vertex in N [z] and the 0th- one in 



Figure 5.5: 

Y m z  

Figure 5.6: 



Wi, or symmetrically, one DP vertex in N[y] and the other one in W2, will be examined 

in subsection 5.1.1. Here, only the stmctue of long-sided graphs with one DP vertex 

equal to z and the other one in M is presented in the foliowing claim. 

Claim 40 Let (a, P )  be a DP of a long-sided (1,2,2) p p h  H, and let {a,P) = {x i  m), 

for somc rn E M. If v U the vedez of didance i from x on a poth R in for i 2 2, 

then either urn E E, or v U adjacent to euery neighbor of x in Pz&; in addition, for ony 

P E 1S,, \ R, v h a  to be adjacent to a uertez on the shortest path bettueen 2 and rn 

induced on P U {m). 

Proofi Let u be the vertex of distance i from z on some path R E a,#, for i 2 2. 

Assume to the contmy. Thus, vm 4 E and v is not adjacent to the neighbor of x on 

some path P E PSp. Note that, by Claim 15, v cannot be adjacent to any non-neighbor 

of x on P. Therefore, the path fiom x to m induced on P U {zm) misses u. 

If for some P E e,, \ h, v is not adjacent to any vertex on the shortest x ,  m-path Q 

induced on P U {m), then the x, m-path induced on Q misses u. a 

5.1.1 A Long Side Has a Short Path 

There are two graph structures to consider here. One structure happens when there exists 

a P3 in and the other one happens when there exists a P3 in All 

the properties that the first structure satisfies have alreaày been described for long-sided 

(1,2,2) graphs. However, the second structure has some additional properties that will 

be described in this subsection. 

The following notation will be used in this subsection. Denote by M the set of mid- 

vertices of dl paths in and by Wr the set of mid-vertices of d 4's in &,, in a 
long-sided (1,2,2) graph H whae Wt # 8. 

The foiiowing daim is one of the main lte8uIts of this diapta. It describes the positions 

of DP verticet? in long-sided (1,2,2) graphs with a long side having a short path. 



Claim 41 One DP vertex of H is in N [ x ]  and the otlier one ie in M, or one DP verta  

ia in N[z ]  and the other one ie in Wi. Each of these two types of DPs can occur. (Note 

that the syrnrnetric nsult w u l d  hold if then was a P3 in @&.) 

Proofi Follows the proof of Claim 39. 

Examples showing that euh of these two types of DPs can occur are given in Figure 

5.7. DP vertices axe shaded in these examples. 

The structure of long-sided graphs when one DP vertex is x and the other one is in 

M was presented in Claim 40. The following daim wiil describe some of the structural 

propertiee of these graphs in which one DP vertex is in N[x]  \ { x ,  x')  and the other one 

is in M. The reader is reminded that other edges may be forced to enme that (a,@) is 

a DP. 

Claim 42 Denote by (a, P )  o DP of H .  If one of the DP vertices of H is in N[z ]  \ { x ,  23 
und the other one ie in M ,  then: 

(1) If {a,/3) = {w,m), for some w E Wi and some m E M ,  then: 

(a) Al1 vert* in P=,, muat be adjacent to m, or to W .  

@) AN vertices in long patb in &, mu& be adjacent to m, or  to W. 

(c) AIL non-neighbra of y in a,, mvst be adjacent to m, or to W .  



(2) r f  {a,B) = {xr,,,m), when z, is the neighbor of x on a long path R ,  E a,,, 
then the folloming claime must be satbjkd: 

(a) Al1 non-neighbora of z, on kt#, if they cet, must be adjacent to m, or  ta a11 

neighbom o j z  in P,,. ~f &, is o ehort poth in then al1 non-neighbors of x, and y 

on k,,, if they czist, that a n  not adjacent to the mid-uertez of %, mrrst be adjacent to 

m. 

@) Neighbors of zr on long p a t b  in Q,, U &, must be adjacent to x,, or  to ail 

w E Wl U W2, or to m. 

Proofi (1) (a) Let v be a vertex in Pz, that is not adjacent to m and is not adjacent 

to W. Then the path between m and w induced on {my) U {yw)  misses v .  

(b) By Claim 37, aJl non-neighbors of z' on long paths in &,, are adjacent to al l  

m E M. Now, prove the daim for neighbors of z' on long paths in Q*, (note that 

the daim holds for sr by part (a) above). Let v be the neighbor of x' on a long path 

&,, E 'Rj, that is not adjacent to m, and is not adjacent to W .  Then the path between 

rn and w induced on {my) U {yw) misees v; note that wy 4 E, since vxr E E and &,# 

is a long path. 

(c) Similady, if v is a non-neighbor of y in a,, that is not adjacent to rn, and is not 

adjacent to w,  then the path between m and w induceci on {my)  U { yw)  misses v. 

(2) Let {a, p )  = {t,, m), where 2, is the neighbor of r on a long path &, E &*,. 
(a) The first part is true, sina otherwise the z,, m-path induced on {x ,x)  u P,, U {m) 

would miss the non-neighbor u of z, that is not adjacent to the neighbor of x on P,, E 'PI, 

and is not adjacent to m; note that by Claim 15, u cm only be adjacent to neighbors of 

x in 'P,,. 

Note that by applying Claim 17 to the subgraph H of H induced on &,Y U P;, U 

&& U P,,, for any rt,# E Krt and m E Pu+ E 'P+,, all non-neighbors of z, on are 

adjacent to m. Note that since (1,2,2) graphs are being eansidered, the non-neighbor of 

xr on &, can be nomadjacent to m if it is adjacent to x' (this can be pmved by following 



the pmof of Claim 17). Therefore, a l l  non-neighbors of zr on &,, are adjacent to x' or 

The proof of the second part is as follows. Assume that a non-neighbor p of z, and y 

on &,, ie not adjacent to na and is not adjacent to the mid-vertex of &,. (By the k t  

path of this claim, pz' E E.) Then the path fiom x, to na induced on {x,x)  u &,u {ym) 

misses p. 

(b) W.1.o.g. assume that a neighbor x" of x' on a long path in &,, is not adjacent 

to x,, w ,  and m, for some w E Wi. Then the path h m  x, to rn induced on {x ,s )  U 

{xw) U {wv) U {ym) misses 2". a 

The following claim describes some structure of these graphs forced by one DP vertex 

being in N [ z ]  and the other one in Wi. 

Claim 43 Let (a, P )  be o DP of a long-sided (1,2,2) gniph H defined as in the second 

pamgmph of th& subsection. If one DP uertez of H ik in N[z]  and the other one is in 

Wi, then the followàng conditions mwf be satisfied: 

(1) Let {a, p )  = {z, W) for some w E Wi . 
(a) z' and of1 of its neighbors on long patha in G,, U Q,. mïst be adjacent to w, or 

to ail m E M. 

(b) if&, # 0, then the neighhts of x' on paths in a, must be adjacent to w, or 

to alt neighbors of x in 1Zr,. 
(2) Let {a, P )  = {z', w),  when z' is the neighbor of z on a path &, E &,, or on 

a path & E and w E Wi. Then: 

(a) If t' belongs to a path in 'IS+.*, then al1 vertices v E N(z') on long patb in &,, 

mwt be adjacent to w, or universal to M .  

(b) Let z' E &, E G,. Then, alt non-neighbora of z' on Q,, must be adjacent to 

W. A h ,  al1 non-neighbor8 of z' on &,, i /  they czist, mwt k adjacent to df m E M, 



(c) Let z' E E CG. Then, al1 non-neighbors of z on a,, muet l e  adjacent to 

w, or to al1 neighbors of z on P,,. 

Note that the cose when {a,@) = {m, ru), for some m E M and w E Wl is covered 

in Cloim 42. 

Prool: (1) Let { a , P ) =  {z,w) for some w E Wi. 

(a) Let u be either x' or the neighbor of x' on a long path in &,, U Kt, that is not 

adjacent to w, and is not adjacent to some m E M. Then the path fiom w to z induced 

on {wy) U {ym) U {mz) misses v .  

(b) Let 12, # 0 and let v be the neighbor of x' on a path in Kt,, that is not adjacent 

to w ,  and ie not adjacent to some neighbor xn of x on E 7?&. Then the path between 

w and r induced on {wx) U misses v;  note that by Claim 15, v c a ~ o t  be adjacent 

to a non-neighbor of x on &,. 
(2) Let {a, P l  = {z', 4. 
(a) Let z' belong to a path in 7&,. Let v E N ( z J )  be on a long path in &,, that 

is non-adjacent to =me m E M and to W .  Then the path fiom z' to w induced on 

{t'z) U {zm) U {mg) U {yu) misaes v ;  note that v is not adjacent to any vertex in 

&,, \ {x'} by Claim 33. 

(b) Let z' E &,. Let v be a non-neighbor of x' on that is not adjacent to W. 

Then the path fiom z' to w induced on &# U {xw), where is the path between x 

and t' induced on &, U (x'z), misses u. (Note that, by Claim 33, there are no edges 

between vertices on a path in and vertices on a path in Kt,; &O, vx $ E since d 

paths in 'R,+ are induced.) 

Note that al l  non-neighbors of x' on &, are adjacent to all m E M, by Claim 37. If 

a neighbor x'' of x' on &, that is a non-neighbor of 2, is not adjacent to w, and is not 

djacent to =me m E M, then the i, tu-path induced on ($2) U {an) U {my) U {yu) 

misses s". 

(c) Similarly, let r' E E .ar+. Let a be a non-neighbor of z on t b t  îa aot 



adjacent to w and is not adjacent to a neighbor of x on P., E Pz,,. Then the path from 

d to tu induced on {z'z} U Pz, U {xui) misses W. (Note that, by Claims 15 and 33, there 

are no edges between non-neighbors of x on a path in 'P,, and non-neighbors of x on a 

path in P=*.) 0 

5.1.2 A Long Side Has at Least Two Long Paths 

Let H be a Zlong-sided, or a 1-long-aided (1,2,2) gaph. There am three graph structures 

to consider here. The first one is when a long side, say has at least two long paths. 

The second one is when in addition to the existence of a long path in &,,, there alao 

exists a long path in k,, . The third one is when in addition to the existence of a long 

path in &,,, there also exist at least two long paths in etp. Some aspects of these three 

structures will be described separately in this section. 

The position of DPs in such graphs ia explainecl in Claim 39 and it depends on whether 

there are short paths in and kg, or not. The structure of these graphs depends on 

the position of iti, DP vertices and most of it is described in Claims 42 and 43. The only 

property of these graphs that is still unddresaed is the "interaction" between the long 

paths that belong to a long side. This will be addressed in the following three Facts, for 

each of the stmctmea mentioned in the previous patagraph separateiy. 

Ehct 1 For al1 P, Q E &, that are not P3 's, Vy1 E P \ N [ z l ,  Vya E Q \ N [ x l ,  n E 
Wx', Y2), or Y2 E D ( 4  n) 

Proofi Similar to the proof of Claim 20. Assume to the contratry. Let P, Q E %,u 

that are not Wr, and let y1 E P \ N [ x l ,  y2 E Q \ N[xq, such that y1 # D(x', y& and 

n $ D(& YI). Let P, be m y  path in Pu*, let m be the mid-vertex of P,,, and let P&, 

be sny path in &,. Let be the mbgraph of H i n d u 4  on P U Q U P#, U P,, U {x). 

Now, k\ {y, m) does not have a DP any more, since {yi, yl, z )  is an AT that c o n t d c t s  

Claim 6, in partidar xfz 6 E. (Note that no edges between y1 and any vertex in P*, 



Sirnilar claims holds for long paths in 7Z+ and kt,. 

Proofi Similarto the proofof Fact 1. 0 

Proofi Sirnilatto the proofof Fact 1. 0 

5.2 No-Long-Sided Graphs 

Denote by M the set of mid-vertices of aU paths in Pu*, by Ul the set of mid-vertices of 

aU paths in KttY, and by CI2 the set of mid-vertices of all paths in &,. Also, denote by 

Wi the set of mid-vertices of ail short paths in kt#, and by W2 the set of mid-vertices 

of d short paths in &*. Note that Wi and W2 csn be empty, and that l&, and 7&, 

may have long paths. 

The foilowing claim is one of the main results of this chapter. It describes the positions 

of DP vertices in nelong-sided (1,2,2) graphs. The two claims foliorving it determine some 

structural properties f o d  by dinerent positions of DP vertices in these graphs. 

C lah  44 One DP uetta of a no-long-dded grapli H b in N [ z ]  und the other one is in 

M, or one DP uertez of R ia in N[z]  und the other one ie in Wi, or one DP uertcz of 

H P in N[g] and the other one is in W3. Each of thac three typcs of DPs cun occut. 



Figure 5.8: 

ProoE Follows the same proof as Claim 39. 

Examples showing that each of these t h  types of DPs can occur are given in Figure 

5.8. DP vertices are shaded in these examples. O 

Claim 45 Let one DP vertez of a no-long-sided gruph H be in N [ z ]  and the other one 

in M.  Denote by (a,@) such a DP of H .  Then: 

(1) If {a, p )  = { x ,  m), for some m E M ,  then a11 non-neighbors of x on a path P in 

Pz, must be adjacent to mm, or to al1 neighbors of x in R,. 

(2) If {a, P }  = {x,, m}, for some rn E M and 2, = P n N ( z ) ,  where P is a long path 

in 7?&$, then each vertex in Ul is adjacent to m. 

(9) if {a, P )  = {w2, m), for some m E M and some q E W2, then the internai 

vertices of al1 paths in and the internat verticea of al1 paths in &, that a n  not 

neighbors of t, mwt be adjacent to y, or to m. 

Proofi (1) Otherwise, if then d s t s  a vertex v th& is o non-neighbor of x on a path P 

in PSp, is not adjacent to m, and is not adjacent to some neighbor xN of x in P,,, Pzlu, 

then the path from z to m induced on P,, U {ym) does not hit u; note that u cannot be 

adjacent to any vertex in P=,,, 0th- thsn the neighbor of z, by Claixns 15 and 33. 

(2) Let {a, 8)  = {z, m). Let ui E Ul be non-sdjaœnt ta m. Then, the path h m  z, 

to rn induced on {mz} u P\ { x )  ul; note that, by Claim 15, ui eaanot be adjacent 



to any vertex on P 0th- than x,, and also ulx, e E since P is a long path in kg, 
Le., if ulz, E E, then P would share vertex xp dinetent fiom x and y with the path L 

induced on {zx,) U {xpui) U {ui y), L E %,#, which meam that P E 7Ld contradicting 

the aesumption that P E 121,. 
(3) Let {a, P )  = {w2, m) and w.1.o.g. Let u be an internal vertex of a path in P=,, 

that is not adjacent to w2 and is not adjacent to m. Then the path from w2 to m induced 

on {w2i) U {zm) misses u. 

Claim 46 Let one DP uertez of a no-long-sided gmph H be in N[z]  and the other one 

in Wl . Denote by (a, P )  such a DP of H. Then: 

(1) Let {a, P )  = {z ,  wl), for some W I  E Wl . Then al1 intemal vertices of 'P+, that 

a n  not neighbors of y, and al1 intemal verticcs of Pz, that are not neighbors of z, mwt 

be adjacent to wl, or uniuersal to M.  Abo, al1 non-neighbonr of x in Pz, that ore not 

adjacent to w l  mwt be adjacent to al1 neighbora of z in in addition, i f  a neighbor 

3'' of x on G,, ie adjacent to some non-neighbor of x in R,, then al1 non-neighbors of 

x in R ,  mwt be adjacent to x", or to wl. 

(Z) Let {a,@) = {wl, w2), for some wl E Wl and some tua (F1 W2. Then, euery 

m E M ,  and euery non-neighboor of x in Pz, U P=*, must be adjacent to cul. or to w2. 

(3) Let {a, p)  = {zp, wi), when P is a long path in %6,.and zp = P n N ( z ) .  Also, 

let xp = P n N(x). Euery non-neighbor of x on Pst,, must be adjacent to wi. 

(4) Let {qp) = {wl, U& for some w i  E Wl and some u2 E U'. Let u 2 w l e  E. Then 

al1 non-neighbors of x on k,, m t d  be adjacent to wl, or to al1 m E M .  

Proot: (1) Let v be an internal vertex of 'P,, that is not a neighbor of y, or an i n t e d  

vertex of Pz+ non-adjacent to z. If u is not adjacent to wl, and is also not adjacent to 

eome vertex m E M, then the path h m  z to tu1 induced on {n) u {mg) u {yuil) does 

not hit u. 

Now, let ui be some non-neighbor of z in P=,# that is not adjacent to coi, and is not 

adjacent to a neighbor y of z in R+-. Let u2 E P E 'P,,. Then the path h m  z to w l  



induced on P U {xwl) misses ul. (Again, by Claim 15, the ody vertex on P that ean be 

adjacent to ui is q.) Note as bdore, that no non-neighbor of z in Pz,, is adjacent to a 

neighbor of x in &, by definition of a,%. 
If a neighbor x" of x on is adjacent to mme non-neighbor p of x in P,, E 'PI,, 

and if a non-neighbor v of x in is not adjacent to x" and is not adjacent to lai, then 

the path fiom z to tu1 induced on Pz, U (pz") U {x"x) U {xwi) misaes v ,  where Pz,, ie 

the path between z and p induced on Pz,. (In the case that u E Q,, and p E a,, by 

Claim 33, vp' 4 E, V# E P,,. Otherwise, by Claim 15, the only vertex on Pz+ that u 

cm be adjacent to is the neighbor of x, i.e., again vp' 4 E, Vp' PP,. Note again that a 

neighbor of x in kt, cannot be adjacent to a non-neighbor of z in Pz* by definition of 

k W * )  

(2) Let some u E M U Pz,, U P=+ \ N[x]  be non-adjacent to wi,  and non-adjacent to 

w2. Then the path from w l  to w2 induced on {wlx) U {xw2) misses W. 

(3) If some vertex v that is a non-neighbor of x on P,,, is not adjacent to wi, then 

the path between r, and wi induced on P U {zwi) misses v ;  note that by Claim 15, v 

cannot be adjacent to any vertex in P other than z,, and &O u cannot be adjacent to 

x, since P E cc. 
(4) Note that by Claim 17, ail vertices of distance i fiom x, i 2 3, on e, must be 

universai to M. Let u be the second neighbor of x in that is not adjacent to tu1 and to 

same m E M. Then the path between us and wl induced on {u2r)u {zm)~ {my) u{ywi) 



Chapter 6 

Concluding Remarks 

This thesis firat gave an overview of the hierarchy of graph classes in the neighborhood 

of HDP graphe, and known reaults about stmctural properties of AT-free and HDP 

graphs. Then it established sorne new structural properties of HDP and minimal HDP 

graphs. The positions of DP vertices in minimai HDP graphs were determined. Also, 

the structural properties of a minimal HDP graph that are forced by the position of the 

graph's DP vertices were examineci. 

This thesis did not discuss the complexity of determining whether a graph is HDP, 

which is an interesting topic for further research. The hereditary structure of HDP graphs 

would mate any brute force algorithm for determining whether a graph is HDP run in 

urponential time. Howeva, knowing the structure of HDP graphs might result in a new 

algorithm that nuis in polynomial t h e .  

In AT-& graphs, there exists a simple ünear tirne texicographic Breadth Firat 

Search algorithm for finding a DP of a connected AT-ke graph (Corneil, Olariu, and 

Stewart 1999). Thadore, another interesting topic for hture work ia to see if there exists 

a polynomial time algorithm that fin& a DP in a connected HDP graph. 

The füU structure of HDP gaphs nmab  unexplod. M t s  about HDP and mini- 

mal HDP graphs esttabli~hed in this thesis could be a building blodc for discovering more 



Figure 6.1: Cs counterexample to generalizing Spine theorem to HDPnAT graphs. 

structure of HDP graphs. Also, it is not clear how to lift the structural properties of 

AT-& graphs to HDP graphs. To illustrate this, the next section considers the Spine 

pmperty of AT-free graphs and tries to lift i t  to HDP graphs. 

6.1 HDP Spine Property for HDP n AT Graphs 

Corneil, Olariu, and Stewart (1997) established an elegant property of AT-free graphs 

that dows  for hding DP vertices of induced subgraphs of an AT-fiee graph that miss a 

DP vertex. The property is d e d  the Spine property, and it has already been defined in 

Chapter 2. They also proved the Spine theorem (Theorem 14 fiom Chapter 2). It would 

be nice if the Spine theorem wouid generalize to d HDP graphs, Le., to HDP graphs 

with asteroida1 triples. 

The firat attempt to generalize the Spine theorem is motivateci by Ca. Note that after 

a DP vertex a ia removeci from Ca, neither (d, P )  nor (a", P )  an DPs of Ce \ {a) (sa 
Figure 6.1). This example suggeste that perhaps a slightly diffaent wiation of the Spine 

property would work for HDPnAT graphs. T h d o r e ,  the following conjecture seems at 

the fin& glance to be teasonable. 

Podble Coqiecture 1 (The HDP Spine conjecture?) A grtapl, G is HDP if and only 

if euety connected induccd subgrclph lt of G satisfies the fdlowing: 

for eu- nonadjacent dominuting pair (a, P )  in H, either: 



Figure 6.2: A counterexample to Possible Conjecture 1. 

(i) 3a' E N ( a )  n Cg such that (af, /3) is a DP of Cp, when Cfl denotes the connected 

component of G \ {a) containing p; or 

(àà) 3 4  df E N ( a )  n Co such that (a', d f )  ia a DP of Cg. 

It is easy to see that the + direction of the Possible Conjecture 1 is true, since if every 

connected induced subgraph of G satisfies this property, that means that every connected 

induced subgraph of G has a DP, which, by definition, means that G is HDP. However, 

the other direction (i.e., +) does not hold. To see this, consider the counterexample 

shown in Figure 6.2. It cm be seen th& neither (i) nor (ii) of Possible Conjecture 1 

hold for G \ a in Figure 6.2. But, the set of conditions can be extended to handle this 

counterexample as follows. 

Possible Conjecture 2 (The HDP Spine conjecture?) A p p h  G is HDP if end only if 
euety connected induced subgmph H ofG either satisfies one of the conditions of Possible 

Conjecture 1, or the followàng: 

(àii) for euery nonadjacent dorninating pair (a, P )  in H, the= ezàsb a uertez 7 uni- 

versal to N ( a )  auch that (p, r)  Ls a DP of the connected component of O\ {a} containing 

P-  

Unfortunately, even though this new Passible Conjecture 2 covers the example pre- 

sented in Figure 6.2, it rgain fails to satisfy the direction. This can be seen by the 

eouflterexamp1e in Figure 6.3. In this counterexampIe, when a is removed, no condition 



Figure 6.3: A counterexample to Conjecture 2. 

fiom Possible Conjecture 2 is satisfied in G\ {a). Therefore, Posaible Conjecture 2 could 

be further extended to deal with the example in Figure 6.3 as follows. 

Conjecture 1 (The HDP Spine conjecture) A gmph G is HDP if and only if every 

connected induced subgraph H of G saticfies: 

for euery nonadjacent dorninating pair (a, f i )  in H, either: 

(à) 3a' E N ( a )  n Cg such that ( d J )  ib a DP of Ca, when Cg denotes the connected 

component of G \ {a)  containing p; or 

(ii) 3 d ,  d' E N(a) Cp such that (d,df) ik a DP of Cg; or 

(iii) thcm ezists a vertez 7 universal to N ( a )  such that (p, 7) is a DP of the connected 

component of G \ {a)  containing #3; o r  

(iu) 3Pf, p" E N(P)  such thot (p, p) is a DP of the connected component of G \ {a )  

containing p. 

Whether Conjecture 1 holds or not remains unexplored. 

These examples illustrate that it is haKL to lift the Spine property and the Spine 

theorem h m  AT-fitee to HDP graphe. It seems that the position of the DP vatices in a 

subgraph of an HDP graph G induced on V(G) \ {a) is not deteminecl by the position 

of the DP vertices a and P in G, as was the caae for AT-free graphs. Chaptere 3,4, and 

5 auggest that perhsps the position of DP vertices in HDP graphs ia determined by the 

position of AT vertices. It might a b  be tnie that the position of AT vertices in an HDP 



graph ie determineci by the position of DP vertices in the graph. These are inteteethg 

topics for M h e r  reaearch. 



Bibliography 

Berge, C. (1960). Les problèmes de colorations en théorie des graphes. Publ. Inst. Stat. 

Univ. Paris 9, 123-160. 

Berge, C. (1961). Firbung von Gmphen, dann sàmtliene bm dann undgemde Krete 

stutr sind Wiss. Zeitschr. Martin-Luther-Univ. H d e W i t  tenberg. 

Berge, C. (1967). Some Classes of Perfect Gmphs, in Gmph Theory and Theoretical 

Physics, F. Hanity (ed.). Academic Press, New York. 

Brandstadt, A., V. B. Le, and J. P. Spinard (1999). Gmph Classes: A Suniey. SIAM 

Monographs on Discrete Mathematics and Applications. 

Brarma, H. J., T. Kloks, D. Kratsch, and H. M d e r  (1999). Independent sets in 

asteroidal triple-free graphs. SIAM Journal on Dkcrete Mathematics 12,267-287. 

Corneil, D. and P. Kamula (1987). Extensions of permutation and interval graphs. 

Pmceedings 18Ui South-Eastern Conf. on Combhatorics, Gmph Theory and Com- 

puting, Congnssw Numemntium 58,267-275. 

Corneil, D. G., S. Olariu, and L. Stewart (1992, June). Asteroidal t r i p l c h  grapb. 

Technical Report 262192, Department of Cornputer Science, University of Toronto, 

Toronto, ON, Canada 

Corneil, D. G., S. Olariu, and L. Stewart (1994). Asteroidal triple-& graphs. Ptoceed- 

ings of the 19th International Worhhop on GrupI,-Z!heontic Concepts in Cornputer 

Science, Springer-Wag, Lectun Notes in Cornputer Science 790,211-258. 



Corneil, D. G., S. Olariu, and L. Stewart (1995a, August). Computing a dom- 

inating pair in an asteroidai triple-fiee graph in iinear tirne. Algorithm and 

Data Stncctures, 4th International Wonkshop, WADS '95, Kingston, Ontario, 

Canada, Proaedings. Lecture Notes in Computer Science 955, 358-368. 

Corneil, D. G., S. Olariu, and L. Stewart (1995b, November). A linear time algorithm to 

compute a dominating path in an at-free graph. Infornation Porcessing Letters 54, 

253-257. 

Corneil, D. G., S. Olariu, aad L. Stewart (1997, August). Asteroidal t r i p l e h  graphs. 

SIAM J. Dierrete Math. 10(3), 399-430. 

Comeil, D. G., S. Olariu, and L. Stewart (1999, Januaey). Lbfe orderings and CO- 

comparability graphs. Pmceedings of the Tenth Annual A CM-SIAM Symposium on 

Discmte Algorühms, Baltimore, Maryland. A C M / . A  M, 883-884. 

Dagan, L, M. Golumbic, and R Pinter (1988). Trapezoid graphs and their coloring. 

Dtsmte Appl. Math. 21, 35-46. 

Even, S., A. Pnueli, and A. Lempel(1972). Permutation graphs and transitive graphs. 

J. Assoc. Comput. Mach. 19,400-410. 

Ghouila-Houri, A. (1962). Characterisation des graphes non orientes dont on peut 

orienter del aretes de maniere a obtenir le graphe d'une relation d'ordre. C R .  

Acad. Sei., 1370-1371. 

Gilmore, P. and A. Hoffman (1964). A characterization of comparability graphs and 

interval grapl. Canadian Journal of Motihernaties 16,539-548. 

Golumbic, M. C. (1980). Algorithmie Gmph TAeory and Perfcct Gmphs. Academic 

Press, Inc., 111 Fifth Avenue, New York, New York 10003. 

Golumbic, M. C., C. L. Monma, and W. T. 'ilutter (1984). Toleraace graphes. Disnte  

Appl. Math. 9,157-170. 



Kratsch, D. (1995). The Structure of Gmphs and the Design of Eflcient Algorithm 

- Habilitationsschrffi. Vorgelegt dem Rat der F$nrltat fur Mathematik und Mot- 

matik der Kedrich-SM=-Universitat Jena. 

Lekkerkerker, C. G. and J. C. Boland (1962). Representation of a finite graph by a set 

of intervals on the real line. Efrnd. Math. 51,454. 

Lovàaz, L. (1972, March). Normal hypergraphs and the pedect graph conjecture. Dis- 

crete Math. t (46), 253-267. 

Pnueli, A., A. Lempel, and S. Even (1971). Transitive orientation of graphs and inden- 

tification of permutation graphs. Canadian Journal of Mathematics 23, 160-175. 

R. H. MOhring (1996, August). Triangulating graphs without asteroidal triples. Dis- 

crete Appl. Math 64, 281-287. 




