

National Library Bibliothéque nationale
du Canada

Acquisitions and Acquisitions et
Bibliographic Services senrices bibliographiques

395 Wellington Street 395. rue Weilingtm
OtiawaON K l A W OttawaON K t A W
Canada Canada

The author has granted a non-
exclusive licence dowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la fome de microfiche/fiim, de
reproduction sur papier ou sur format
électronique.

The author retains ownership of the L'auteur conserve la propriété du
copyright in ths thesis. Neither the droit d'auteur qui protège cette thèse.
thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels
may be printed or othewise de celle-ci ne doivent être imprimés
reproduced without the author's ou autrement reproduits sans son
permission. autorisation.

Supervisor: Dr W.W. Wadge

ABSTRACT

Temporal ElTML (THTML) as presented in this thesis is an extension of HTML -- a

high level authonng language for World Wide Web documents. THIML incorporates

temporal logic into HTML to provide an efficient solution for authonng and maintaining

rime-seizsirive web sites. in THTML, the same URL request may result in different

HTML pages for different request times. This request time may be the local time that the

reader sends the request, or it may be sometime in the past or even the future. The

HTML page sent in response to the request is an instance of the page determined by the

particular time context, i.e. the reader's request time. The instance is generated using the

THTML source files for each web component whose time interval stamps rnost closely

approxirnate the time specified. With setver push technology incorporated into the

design, the THTML server periodicaily re-instantiates the previously requested URLs in

each web session and re-issues the updated instances as time elapses. THTML 1.0

i mplemen ted the above design partially.

CONTENTS

CONTENTS ... iv
...

LIST OF FIGURES ... v11i

LIST OF TABLES.xi

ACKNO WLEDGEMENTS .. x

1 . Introduction ... 1

1.1 Introduction to Temporal HTML .. - 1

1.1.1. THTML solution ... -3

1.2 The relationship between lHTML and THï'ML .. 5

1.3 Terminology 6

1 AThe structure of the Thesis .. -6

2 . Background ... 7

2.1 Intensional Logic ,. .. 7

2.2 Temporal Logic-An Instance of Intensional Logic 8

2.3 An Application of Intensional Logic on Version Control 8

2.3.1 Existing Problems in Version Control .. 9

.. 3.3.2 Intensional solution -11

2.3.2.1 Intensional Configuration Rule and Refinement

order ... 11

2.3 .3.2 "Subversion" -11

2.3.2.3 Version Join ... -12

.. 2.3.2.4 Discussion of the approach 12

2.4 Application of the Version Control Approach to WWW-Intensional

HTML ... 12

... 2.4.1 IHTML Introduction -13

3.4. 1.1 Intensional Context Switches in Web Elements 14

....................................... 2.4.1.2 Multiple Candidates and the best-fit 16

2 - 4 2 Summary of iHTML 16

.. 2.5 Base of THTML 1.0 17

.. 2.5.1 HTTP Protocol -17

2.5.2 Server Side Software-Apache Server API 2.5.1 18

.. 2.5.2.1 Cornmon Sewer Behavior 18

... 2.5.2.2 Apache Solution Features -18

.. 3 . Time in THTML 20

... 3.1 Overview - 2 0

3.2 Introduction to the Temporal interval Stamp and the Tirne sensitive Tag -20

.. 3.3 State-of-art Time Representations 21

... 3.3.1 Time Interval Starnp Design 21

3.3.2 Time Point and Time-interval Representations in THTML 21

3.3.3 Time Pattern Design in Time-Interval Stamp -23

3.3.3.1 Temporal Data Type in THTML ... -23

... 3 .3.3.2 Time Pattern Definition 2 4

3.3.3.3 Discussion of Normalization Operation - 2 6

.. 3.3.4 Conclusion of Time Pattern Design -26

3.3 Best-fit Interval Selection in a TIS .. - 2 7

... 3.4.1 ExtensionaI Rule - 2 7

.. 3.4.2 Intensional Rule - 2 8

3 - 4 2 1 Ambiguity Handling of Same type of Temporal Patterns -29

3.4.2.2 Ambiguity Handling of Different type of Temporal Pattern 30

3 -5 Best-fit Interval Selection arnong Multiple TIS's 31

.. 3.6 Conclusion 32

3 . THT'ML System Design ... -33

4.1 Overview ... 33

4.2 Language Design ... - 3 4

4.2.1 Design Requirement ... 34

4 - 2 2 THTML Language Enhancements to HTML 35

4.2.2.1 Time Sensitive Tag PST) ... 36

4.2.2.2 Time Interval Stamp (TIS) .. 37

.. 4.2.2.3 Creation of a THTML file 38

... 4.2.3 Language Semantics -38

4.2.3.1 Semantic Distinction between HTML and THTML 39

................................ 4.2.3.1.1 The Global Context and h a 1 Context 39

...................................... 4.2.3.1.2 Temporal Context Switches (TCS) 39

...................................... 4.2.3.2 Web Intensions and Web Extensions 42

................... 4.2.3.2.1 "Now" Discussion - Intension and Extension 42

4.2.4 Conclusion ... -43

4.3 Back-end System Design ... 43

4.3.1 Design Requirements .. -43

4.3.1.1 Tree Structure ... -44

...................................... 4.3.1.2 Naming Convention of THTML files -45

............................. 4.3.1.3 Design of Time interval Stamp (the time tag) -45

... 4.3.1.4 Conclusion of File System Design 46

.. 1.1 Algorithm Design -46

... 3.4.1 THTML Web Server Mode1 46

4.4.7 Time trregularity . User-defined Temporal Terminology and Hierarchy of

User-defined Calendars .. A 7

.................................... 4.4.2. L Gregorian Calendar and its Irregularity -47

4-4-32 User-defined Temporal Terminology and Hierarchy of User-Defined

.. Calendars(not implemented yet) 49

.. 4.4.3 Temporal Versioning Algorithm 51

.............................. 4.4.4 Push Technology and Dataflow Mode1 of WWW 51

............................. 4.4.4.1 Problem of Cache in the Existing Web Mode1 51

4.4.4.2 Possible Solutions .. S 3

4.4.5 Conclusion of Algorithm Design .. -54

4.5 Combination with MTML .. -55

4.6 Conclusions and Further Directions of THTML System Design -57

LIST of FIGURES

Figure 1.1 Yesterday's Instance of a URL .. 4

Figure 2.1 iHTML working Mode1 ... -10

Figure 2.2 Typical ClientIServer Mode1 ... 16

Figure 3.1 Best-fit among the same type of temporal patterns 27

Figure 3.2 Cornparison between "After" Patterns ... 2 8

Figure 3.3 Compruison among different types of temporal Patterns 29

Figure 3.4 Cornparison between "Recuning" Patterns 29

Figure 3.5 Cornparison between Bounded Interval Patterns - 2 9

Figure 4.1 Three-tier Mode1 of THTML System .. -34

Figure 4.2 THTML Enhancement into HTML .. 36

Figure 4.3 Server Interpretation Mode1 ... -40

Figure 4.4 the Locai and Global Context .. 41

Figure 4.5 Time Conveyance in THTML system ... 44

Figure 4.6 System Structure Design ... -47

Figure 4.7 THTML Working Mode1 .. 48

Figure 4.8 Interpretation from THTML to conventional HTML -48

Figure 4.9 User-Defined Calendars, Order and Operations -51

Figure 4.10 Intensional tier Supporting User-defined Time Concepts -51

Figure 4.11 Server Push ... - 3 5

Figure 4.12 Backend Components of THTML 56

.. Figure 4.13 Three-tier Mode1 of THTML System 59

Figure 5.1 Enlarged HTML Web Server .. -63

Figure 5.2 Flow Chart in the Request Handler .. 66

Figure 5.3 Algorithm of refinement relationship resolution between "before"

Patterns ... -72

Figure 5.4 "Overflow" Among Time Units .. 75

.......... Figure 5.5 An Extension Sent to Client at request time 10: 10% am Jan 14.00 78

Figure 5.6 The THTML source for generated THTML page shown in Figure 5.6 79

viii

LIST OF TABLES

Table 1 Storage for User-Defined Versions -69

Table 2 Temporal Pattern Candidates73

1 would like to thank my supervisor Dr.W.W.Wadge, for his support, both financial

and intellectual. THTML aiso originated from him. 1 also thank ISLIP 17 conference. on

which my imagination is inspired about the high level design of îWTML. 1 wouid aiso

li ke to appreciate my dear sister, Mom and Dad, for their support and courage for

decades.

1 would like to appreciate Gordon Brown for his free EITML 2.0, on which 1 build

the THTML 10. Finally 1 would Li ke to thank Som Tang, Micheal Ko and Paul Swoboda

for their help in proofreadinp the thesis.

Chapter 1

Introduction

1.1 Introduction to Temporal HTML

Since Web technology provides an integrated presentation of al1 types of

information (text, picture, video and audio) on a single screen, individuals and

institutions are encouraged to establish their own Internet presence. This multi-media

environment can consist of text, graphies, audio, video, three-dimensional models or any

other information that a computer can process.

Web technology is based on 2 protocols, namely HTML and W?TP. Based on the

TCPm Internet lüyer, HTTP dominates the protocols defined by W3C for the World

Wide Web. In HTTP, a set of negotiations is defined between the client and server so

that actions performed at the client c m be interpreted by the server and the correct

response can be sent to the client. For example, the ger method is defined to retrieve

certain resources at the server site. HTML (hypertext markup language) is normaily

considered a high-level authoring tool to wnte web container documents that hold

different types of multimedia information. Web browsers can interpret the different

types of data and display them on the screen. HTML is actually a protocol implemented

on top of H?TP for presenting information on the web. It features an archor system by

which any web page cm refer to other pages, without any knowledge of the contents of

the other page. It gives the web a better look and feel than that of a static electronic

li brary .

AIthough HTML serves many applications very we11 as a high-Ievel authorhg

lringuage for the World Wide Web, it provides no temporal support for a site. With the

rapid development of web technology nowadays and the appearance of more time

sensitive applications on the web, it is no longer sufficient to provide only static

information. Creating a dynamic site becomes criticai for success. The non-temporal

feature of conventiond I-ïïML is a serious hindrance to creating a more dynarnic World

Wide Web. Some of the problems are concluded as follows:

1. In addition to retrieving the current version, web clients sometimes wish to

retrieve historical information. This occurs on sites related to the news or

stock market where retrievai of information based on time is necessary.

However, the existing HTML protocol only supports keeping one version of a

document in the system.

2. In time criticai web applications, such as the stock market, information k i n g

viewed at one moment might becorne stale in the next- HTML does not

provide a mechanism for sjmchronizing the server and clients, so clients will

not be informed of changes to the information.

3. The demand for web authors to create dynamic rather than staric sites is

increasing dramaticaily. They need to decide when items should be posted,

and not just rvhat should be posted. The existing web servers do not have a

mechanism selecting the file corresponding to a given time. The author has to

manually update the site to make it appear dynamic from the client's

perspective.

With the above demands for temporal support on the web, a lot of effort is k i n g

devoted to this area at research institutions and companies such as Netscape and

Microsoft. As a result, many HTML enhancements have appeared such as JavaScnpt,

DHTML, XML etc.

Although they improve the dynamic features of the web and make the web more

interactive, none of them addressed the temporal demands of the web in a natural way.

For example, XML provides developers with their own special purpose tags that c m be

defined for a variety of purposes. DHTML extends HTML by allowing multimedia

applications to run on a user's desktop without interaction with the server. It also

supports interactive databases and documents. However, the above enhancements don?

provide a natural and efficient mechanism to allow servers to support complicated

renzporai phenomena in web applications.

With the introduction of Temporal Logic (TL), THTML provides an efficient

solution for most temporal demands of a web site. It has great potential for adoption in

complicated time-critical web applications such as the stock market, newspaper. web

comrnercials etc.

THTML enhances the following features to HTML:

1. THTML provides a mechanism to ailow one to define arbitrary venions

for the same HTML file. lt aiso ailows one to define versions for parts

of a page.

2. THTML also ailows the author to define multiple instances of an

HTML page, each of which has a time interval starnp. This time

intenial stamp determines what content should be posted based on the

URL request and the request time from a client.

3. A tirne point can be specified by the client to indicate the specific

instance of an HTML page it requires. The time c m be a relative point

to now such as yesterday or the day before yesterday, or an absolute

time point such as May 3rd, 1998 12: 12: 12, etc.

1.1.1 THTML Solution

THTML is a web-authoring tool intended for time sensitive web sites.

Time critical web sites have two basic requirements. One is that the page k i n g viewed

by the reader (the people who access or browse the site) is dependent on the time. For

eiample, on a course web site, an instructor often wants assignment one posted during

the first week. The solution of the assignment is posted in the second week dong with

the problems for assigrment 2 and so on. The course notes should also be posted at

appropriate times to match the schedule of teaching. In a newspaper site, different

content should appear every day, and sometimes the reader would like to view

yesterday's page as well as today's page.

The other requirement is that the content can be updated at customizable intervals,

preferably automaticaily. This is often criticai for stock markets where a user would like

to see the most recent content of the site.

THTML fulfills the two requirements with a solution based on discrete temporal

logic. THTML allows a single source file to specify multiple instances of the

corresponding page - different versions whose layout and content v q with time. Every

request for a particular page in a THTML site is accompanied by a requesf tirne, which

specifies the instance of the page that the reader wishes to view. The request time is

often the current time but may dso be a time in the past or even the future.

The arcthor can speci fy multiple instances for a source file, each instance associated

with an interval label, in which the author can specify a time p e n d or tirne point or sets

of time periods or time points. When the server receives a request for a URL from a

reader's request

L

resulting page

L issues the resulting page to

the reader as the response

request time calculated

serirch for the file poois

most relevant ririe
instance

b

instance

instance

I

2

l most relevant foorer
instance I

generates an

instance of the page

I

Figure 1.1 Yesterday's Instance of a URL

reader, the insmntiation (the process of taking the general definition of a time-varying

page, combining it with a particular time-point and producing the instance) of the source

file begins. The page of the URL is configured dynamically with the THTML source file

of each component whose time interval label is most relevant to the request time

according to the temporal versioning algonthms. The page will be issued to the client

when it is created, and discarded afterwards. The dynamic configurarion and the

renzporal versioning algonthm guarantee that the resulting page sent to the client is an

instance at the time context specified in the reader's request time. Suppose, that a reader

accesses a newspaper URL which has the following components: the title, banner, body

and footer and requests yesterday'ç instance. The instance of each component

corresponding to the reader's request time, namely, the local time the server receives the

rrqztest minus one day in this case, constitutes a page for the requested URL and it will

be issued to the reader as the response. An instance of each component is generated

using the THTML source file that 1s most relevant to the request time.

Further, web pages change as time elapses, the instance a user is viewing may

becorne obsolete. With push technology, synchronization c m be achieved between the

client and the server. After the initial request for a URL, the server sends updated

instances to the reader at frequencies that the reader specifies.

1.2 The Relationship between IHTML and THTML

The implementation of THTML is based on Intensional HTML 2.0, which

supports sites having multiple user-defined versions. THTML 1.0 extends it by allowing

users to create temporal variants of each arbitrary user-defined version and associate

time with each temporal variant.

Because T m adds a time dimension to the MïML version space and specifies

more tirne related version control algonthms to eliminate temporal version ambiguity,

THTML makes the web site more dynamic and time-sensitive.

1.3 Terminology

A few terrns are used in particular ways in this thesis and the meanings are

explicitly declared here:

Readers-- the people who accesdbrowse the web.

Arrrhors-- the people who wnte the source for the web site-

Soztrce files-- the source which the author writes and which generates pages and

cornponents.

Time point -- a complete temporal context, a particular point in time.

hzsrance-the version of a page/cornponent/site corresponding to a particular time

point.

Instantiarion - the process of taking the general definition of a tirne-varying page,

combining it with a particular time-point and producing the instance.

Thle interval stamp-the time periods or time points specified at the beginning of a

THTIML source file, which is the bais for determining the most relevant instance to the

reader's requested time. It is distinguished with a tag pair <cran> and </cran>.

Temporal versioning algon'thm-the rules for determining the most relevant

instance of a source file.

1.4 The Structure of the Thesis

The relevant background knowledge is introduced in Chapter 2, including the

Intensi onal Logic based version control approach. Knowledge needed to implement

TJ3ïML is also introduced, namely the HTTP protoc01 and the client/server mode1 for

communicating over the Internet. Chapter 3 examines THlML from three different

perspecti ves: Language Design, S ystem Design and Algorithm Design. Funher

enhancements to each design aspect are also discussed. Chapter 4 shows how to

implement THTML on a web semer using the Apache 1.2.5 APL Chapter 5 concludes

the thesis and proposes further directions for research.

Chapter 2

Background

2.1 Intensional Logic

In natural language, there are many situations where the semantics of a sentence

depends on implicit contexts. For example, in the phrase

Today 's temperature isfirpe degrees less than pesterday 's temperature,

the value of today's temperature relies on the value of yesterday's temperature at the

same place, therefore, the sentence "todq's temperature is 5 degrees" rnay or may not

be true.

Although implicit context sensitive expressions have for a long time been

considered a non-mathematical and illogical aspect of naturai language, logicians have

tried to capture them in formal methods. Intensional b g i c is the result. It is the study of

context sensitive properties using formal methods. Intensional Logic uses predicate

calculus to represent these context sensitive expressions.

An Intension is an entity that depends on implicit contexts. For exarnple,

temperature is an intension thrit is variable in time and space. The time and place that is

irnplicit in a sentence determines the temperature's value. In IL, intension and e-rrension

are distinguished for an expression. It is based on the distinction between sense and

denorarion of it. Intension is the entire concept of an expression-wlzat we, at some

fevel, inrend ivhen rve write it, while the extension denotes the panicular object ir in facr

derzotes (or currently denotes). For example. the expression " the Presiderzt of France"

derzotes czrrrently Jacques Chirac; but no one wodd claim t l m M Chirac somehow sums

irp rlie rvhole concept of the French presidency[l8]. As we can see, an intensional object

rnay have di fferen t extensions at di fferent implici t contexts. For example, the French

consriturion specifies that the French President is directly elected; this is not the same as

specifiing thar M Chirac be directly elec?ed[l8].

The basic concept in IL is the possible world semantics proposed b y Montague.

Simply speaking, it refers to a space of indices that an entity varies over -- the implicit

contexts. A simple example is the World Wide Web (WWW). The web can be perceived

as an indexed family of pages, the indices k ing the URLs. (URL's are required by the

protocol to be unique, a necessary condition for indexing.)

Another example is the chessboard world, which is composed of al1 possible

configurations of pieces on the board. As one c m see, there may be rnany possible

worlds in a given scenario. Using particular d e s , one can switch from one possible

world to another, (Modal logic is a variant of IL, in which people study the necessity and

possibility of a statement in some or al1 the possible worlds, and the accessibility among

them. Refer to [l] for more information in Modal Logic.)

2.2 Temporal Logic-An Instance of Intensional Logic

Temporal Logic (TL) is an instance of IL in which the collection of contexts models

a collection of time points. Many areas in computer science adopt it extensively because

high-level languages need a way of describing behaviors of comptex systems in time.

TL is useful for reasoning about a changing world. Since the temporal order of

actions/events can be described, they are useful for representing dynamic systems. TLs

are widely used in the specification and verification of reactive systems and in

applications where the concept of time is central, such as temporal planning, temporai

representation and temporal databases. Consequently, programming languages that

provide access to such temporal concepts built on temporal logic such as Chronolog

have a wide range of applications.

Further, the logic power of the language ailows people to express cornplex temporal

properties of the system. For example, if Discrete Temporal Logics (DTL's) are used,

where time is represented as a sequence of distinct moments, a temporal formula c m be

used to effectively represent the individual steps of an execution. THTML adopts DTL

so that the time context of a page cm be efficiently reported at discrete moments.

2.3 An Application of Intensional Logic to Version Control

Plri Intensional Programmine Language (PL), which can be textual or visual,

retains two aspects of IL. First, at the syntactic levei, îhere are context-switching

operators, cailed intensional operators, that can switch intensional contexts from one

possible world into another. Second, at the semantic level, possible world semantics

must be provided for each intensional operator. THTML is a web authonng tool that

interprets version phenornena on the web using IL and provides an efficient method to

generate instances of a HTML page and allow clients to switch arnong different possible

worlds. THTML uses the eduction model, which is a tagged, demand-driven dataflow

model. In this model, an intension is computed lazily. Each demand is tagged by an

index. and is evaIuated by the extension at that index, the demand and their results flow

as packets in an asynchronous network. in the eduction model in THTML, the server

wil'i generate specific instances and respond to clients only if the client requests it at a

given time.

2.3.1 Existing Problerns in Version Control

Many version control systems exist that are very successful in solving particular

problems. For example, pure version control systems, such as SSC and RCS[4], use delta

techniques to solve storage problems and keep track of changes made by different

programmers to a file. Software configuration systerns such as MAKE[4] aliow for

automatic configuration of a system when changes are made to a component.

The integration of hierarchical-stnictured entities and version control is still not

satisfactory. Using a system such as RCS and SCCS, for each file, there is a tree of

revisions. The truck is considered to be the main version, the branches correspond to

iyariarrts. Often, the changes are merged back into the trunk. The tree structure does not

show how this merge took place. if integrated environments, such as Adele[4], are used,

then for each module, there can be variants of the specification. For each specification,

they can be variants of the implementation. And then for each implementation, there is

an RCS-like structure for the development of irnplementation. In both cased, a tree

structure is used for versions, yet. the tree stnicture is not appropnate for software

development, because of the constant merging of different changes to the sarne system.

A direct acyclic graph would be more appropriate. For example, suppose a program is

written to work with a standard screen in English. Two people independently modify the

program. The first ad& a graphics interface, and the other changes the error message to

French. And then someone asks for a version that has both graphics and French

messages. The new version inhents from its two ancestors. The main weakness of

existing tools is that the different versions of a cornponent have only a local

signi ficance. It might be the case for example, that there is third version of component A

and also a third version of component B. But there is no a prori reason to expect my

relationship between the third versions of separate components. This lack of

correspondence between versions of different components makes it difficult to build a

complete system automatically.

An approach proposed by W. W. Wadge and J. A. Plaice based on IL provides an

efficient rule for generating a version [4]. In this approach, variant concept is addressed.

It presents the need for versions of complete systems, and informally presents the

versions of complete system c m be generated by the versions of components. The

approach introduced here will give the users the freedom of building any desired

combination, but i t is the user's responsibility of deciding which of the number of

possible combinations will yield a consistent, working instance of the system.

The advanrage of the approach is rhat it is now possible to talk of versions of rhe

conlplete esrem-fomed, in the simplest case. by un@ormly choosing the corresponding

versioris of the cornponents[4]. Suppose, that we have created a fasr version of every

component of a compiler. Then we build the fast version of the compiler by combing the

fast versions of al1 the cornponents. Of course, in general it is unrealistic to require a

distinct fast version of every component. It may be possible to speed up a compiler by

altenng only a few components, and only these components will have f a t versions. So

we extend our configuration rule as follows: to build the fasr compiler we take the fast

version of each component, if it exists; otherwise, we take the orâinary vanilla version.

As generalized, in this approach, a system is perceived as a hierarchical structure that is

composed of components or modules, each of which has its own set of versions. The

system is configured with the most relevant versions of each component.

2.3.2 Intensional Solution

The following mechanisms are adopted to configure a particular version of a

system.

2.3.2.1 the Intensional Configuration Rule and the Refmernent Oder

A partially ordered algebra is defined arnong versions, it reflects their refinement

relations. V . W, read as "V is refined by W", or "V is relevant to W", means that W is

the resrtlr offr~rther developing version V. ïïze basic concept is that in configuration

version W of a system, we c m use version V of a particular component if the cumponent

does rlot exist i) ~ a more relevant version. That is, we cari use version V of the comportenr

as long as the component does not exist in version V', wirlz V g V'L m4]. The major

advantage of defining a refinement relationship between versions for each module is that

the creation of a system version can be automated. Note that the most generic version of

each component (vanilla) must be created as a last resort in the system in case the

systern cannot find more refined versions of a component.

2.3.2.2 Subversion

If a piece of software is going to be adopted in different environments, it musr meet

the different requirements of the users. The differences could exist at many levels. For

example. at the level of user interfaces, some prefer text menus while others prefer the

visual interface and mouse, while at the functionality level, some clients are provided

with full access to ail functionality while others only partial access. Different in

implementation may also arise from one machine to another. The versions for machines

X and Y may be identical, but differ with that for machine S.

In this approach, subversion (variant) is introduced. It is partiaily addressed in

SCCS and RCS, with the introduction of branches, unfortunately, replying on the

numeric strings to identify the branches becomes very unwieldy. W e choose the path of

naming the subversions. For example, a user can define a bugFr version of 2.3.4, and a

release version of 2.3.4, a bluesky subversion of an image version or an indigo

subversion of the image version. Subversions of a version are especially useful for

paral le1 development.

2.3.2.3 Version Join

By joining compatible subversions according to the refinement rule, different

system versions can be created- The "+" sign is used to identify the join operation.

The concept of least upper bound is addressed in the joining of compatible

versions, which refers to the most relevant version of a component according to the

refinement relationship specified.

Consider versiorl VI and VZ, version VI+ V2 is the least upper bound of VI and V2,

if and only if for ail V sirch that VI V and V S c V then VI + V2 c V exists. In other

rtvords, VI +V2 is tlie least upper bound (the most relevant) because of the axiom

(V I + V 2) _c (V+V) = W4J.

As above, we can create a new version for exarnple, Japanese+ graphies+ infinite

X, if al1 of the versions of the modules are compatible.

2.3.2.4 Discussion of the Approach

Based on the refinement relationships, a system version can be generated

automrttically, and the number of possible system versions is greatIy increased, because

this approach dlows users to combine arbitrary versions for each component.

The intensional semantics of this version control approach is that the version

universe of the system contains arbitrary user-defined possible worlds. A version of

software can be perceived as variables in the universe. It is configured by the most

relevant coordinate in each possible world. Using this approach, the version universe is

expanded with each increase of user-defined dimensions. This approach was

successfully implemented in MTML, which extends HTML by allowing arbitrary user-

defined versions for a site.

2.4 Applications of the Version Control Approach to WWW----Intensional HTML

Based on the TCP/IP protocol implemented in the Internet layer, HTML and H?TP

are used between the clients and the server.

On a web site, HTTP is used as the basis for building a tme client/server

multimedia environment. HïML documents contain links to different data types. Web

browsers use plug-ins to interpret the different types of data and display it on the screen.

This multi-media environment can consist of ail kinds of information that a cornputer

can process.

HTML documents contain markup codes cailed tags in their body to control how

the text is displayed. The markup tags tell the browser how the marked up text should be

displayed-for example a header. link, bullet. list or body text. They can also contain

other information such as a URL or the file name of an embedded picture. The format

and usage of the different tags are detailed in the following sections.

2.4.1 IHTML Introduction

MTML introduces a version control mechanism to HTML by providing an efficient

representation of the web's intensional characteristics. (See more information for

IHTML in reference [3] .)

In MTML, a web site is a hierarchical structure composed of many user-defined

modules, each of which has multiple user-defined versions. A particular version of a

web page is composed of the corresponding versions of each module.

In THTML, a version is specified with a dimension name and a version value in that

dimension. For example: bgc:blrre indicates a version is blue at the user-defined

dimension: background. Join is represented as a "+". A version of a web site c m be

bgc:blrre+ larzg:erzglish, which is composed of the most relevant versions of blue in the

background dimension and englislt in the langrtage dimension. In d l WïML systems, a

vanilla version, named aai . h m , should be defined for each module.

MTML follows the configuration rules introduced in the above section. IHTiML is

implemented by keeping only one copy of al1 variants; the server generates the final

system version dynamically using the most appropriate version of each module. After

sending the resulting HTML files to the client, the server discards it, so that maintenance

of these versions can be avoided.

From the intensional semantic perspective, MTML provides context-switching

operator. This allows users to switch contexts and modify versions of each element on

web.

2.4.1.1 Intensional Context Switches in Web Elements

A web element is an entity defined with a special tag and attributes in HTML such

as a h yperlink, SSI. In HI'ML, because context switch operators are inserted into the

web elements, web elements become intensional web elements, each of which has an

intensiond and extensionai expression. The intensional context switches are

implemented in hyperlinks, images and links in IHTML.

Intensional Context S witches in Hyperlinks

Extensional expressions in hyperlinks for example, have the following format:

<a hrrf= aVRLVRLMdrmr8a ~ ~ O b J = ~ l r ~ g : ~ g l i m h ~ ~ highlightmd-tut

in which the absoiute version of the URL is given no matter what context the current

paze is in. This means that, for example, if the current page is in

lang : f rench+pic :big, then the version of the above hyperlink is modified to

lang : english defined by the VERSION tag.

Intensional context switch in a hyperlink defines the version or dimension modifiers

of the Iink so that the user c m switch to the relevant version based on the current one. In

the above example, if the VERSION is changed to VMOD,

<a href-nVRC-rd&asma VldOD=al~g:.nglimh~ tmxt

the version of the URL therefore becomes lang:english+pic:big, which is the

result of the merge of the cument context lang t french+ pic :big and the local

context modifier on the lang dimension, narnely lang tenglish.

Intensional Context Switches in Image Elements

Context switching operators are embedded in an image elernent in the sarne way as

h yperlin k. The extensional and intensional expressions of an image are distinguished

wi th VMOD and VERSION respectivel y. For example:

< img ~rc-~ iaugm.g i f~ VXOD=mluag:frm~chaw Frmach varmion ,

which defines the version of the image .gif based on the current version of the page,

while

 French version ,

which defines the absolute version of the h g e . gif to laag r f ranch.

Intensional Context Switches in Sewer Side Includes (SSI)

MTMIL also has a Semer-Side Inclrrdes feature that causes the contents of the

included file to be incorporated into HTML page at the server before it is sent back to

the client.

The advantage of it is that the included information is included on the fly at request

tirne.

A SS1 may have multiple versions, the files included in semer's response wili be the

best-fit version for the user's request. For exmple

<!--#includm ~irturl=~hordmr.htmi~ -- >

if the page's version is currently French, the file included will be french version of

IHTML from a client IHTML fie pools generated HTML sent to the ciient

Figure 2.1 lHTML Working Model

header.html if it is in storage; otherwise, the vanilla version will be sent instead.

(An error message will be sent to the user if the vanilla version of the target file cannot

be found.)

2.3.1.2 Multiple Candidates and the Best-fit

The IHTML system keeps multiple versions of each web module. When the

server receives an MTML file from a client, the file pools are searched for the one

matching the client's request. If more than one fits the request, the best-fit version will

be found according to the arnbiguity-handling algorithm. Figure21 illustrates the

IHTML working mechanism.

2.3.2 Surnmary of IHTML

As an IP language on W, MTML integrates intensional semantics into the

HTML and context-switching operators for the user to switch among different contexts.

There are many ridvantages of MTML over HTML.

&Ilmu

y[
waiting for connection

seIect D connection
establishment connect I

read request req uest
œ

response .
Figure 2.2 Typical Client/Server Mode1

First, from functionality perspective, it provides a natural method to support

arbitrary user-defined versions for a site, the user can switch versions for an element or a

whole page by context switching operators, and the version of each can be totally or

partially modified. JHTML provides great flexibility to the user in version

modifications.

Second, in the implementation, it saves system storage greatiy by keeping versions

of variants rather than the system versions, in which there may be cloninp parts arnong

them. The server dynarnically creates a page by the configuration rule of the system

version mentioned in Section 2.3. The version configuration of a site is automated to the

greatest extent.

Third, it provides a base from implementation of THTML, which will be presented

from the next chapter.

2.5 Base of THTML 1.0

The software of THTML, is implemented on APACHE server APL In order to

introduce the implementation of the THTML system, HTTP protocols, which the HTML

protocols and the servers' behavior are based are introduced first as the background

knowledge.

2.5.1 HTTP Protocol

HTTP protocol is based on TCP/iP. The typical web model is clientkerver model,

in which, the client initiates a TCP connection with the server, after the connection is

established, the client sends a request down that channel. The server examines the

request and responds in a manner specified in the server Apache MI and third-party

modules. When a user types in a URL, the prorocol narne, (lrrtp in orrr case), server's

nanre(ivww.soniervliere.corn), the direcrory name(/wherefloo.himl) and the p o r ~ nurnber

(use the defartlt ifnot specified, 80) are used to establish a unique connection with the

server. The request for an HTML document is issued to the server on the dedicated

network with the following format:

GET /whrxo/foo.htd WP/l.O<CR><LF><CR>cLF>

GET defines the method of retrieving a resource (norrnally a file) from the remote

host. /soms/where/f oo. htmï defines the virtual host and the directory narne, Le.

where the file is located. 8TTP/l. O is the protocol name. The server sends the file

back if it can find it on the server or decline the request if the resource does not exist. If

no more requests happen during a certain time, it will close the connection to the client.

2.5.2 Server-Side Software--Apache Server API-1.2.5 [17]

In THTML. special actions are defined at the server to handle THTML requests

from the web clients. The software is implemented by extending a module based on

Apache API server software, which offers a high de&ee of &op-in compatibility with

the popular NCSA server [2]. Internally, an APACHE server is built around an API

(application programmer interface) chat allows third parties to add new server

functionality. Most of the server's visible features (logging, authentication, access

control, CGI, and so forth) are implemented as one or several modules. The

impIementation of requestfresponse handling is discussed in the following sections.

2.5.2.1 Common Server Behavior

At the back-end of the server, after the server software has been compiled and got

running, a daemon process will be running in the background, listening to any requests

for connection. After one is detected, it forks a chiId process to handle it. Based on the

data structure received from the client, it will determine which host and port number are

the targets of the request. The virtual host then takes the path inserted in the request, and

reads against its configuration to decide on the appropriate response.

2.5.2.2 Apache Solution Features

Apache makes the server running with default behaviors or customized behaviors

defined in users' configurations and third party modules. There are two factors

determining the server's request/response, nmely the directives in configuration files

and the exrended modules at the server.

Directives

Directives are provided in the configuration files to aIlow a user to specify hislher

preference on semer's behavior. For exarnple, a port number(8080) and the server

nante(valdes.uvic.ca) have to be defined as well as a log file for THTML for recording

the behavior of the semer. These features are al1 conveniently specified in corresponding

directives in a configuration file.

Module Structure

Apache handles the requests and response by several steps (phases). They are:

1. URI to filename translation

2. Several phases involved with access control

3. Determining the MIME type of the requested entity

4. ActuaIIy sending data back to the client

5. Logging the request.

The user can extend modules to handle any or al1 the phases. Some phases go

through al1 the modules linked with i t before going to the next phase such as logging the

request and handling access control, while others may stop if one of the modules linked

with the step successfully handles the request such as the step of URI to file translations,

in which if one module handles the request and successfully translates the URI to a file,

it wiII stop and go to the next step.

In the THTML implementation, a module is extended to handle the translation of a

temporal URL and sends clients a response. The implementation of THlXE is

presented extensively in Chapter 5.

Chapter 3

Time in THTML

3.1 Overview

There are three components that distinguish THTML from conventional HTML for

both the reader and author of web sites.

1. Time sensitive tags are used to allow a reader's browser to specify a request

time. This request time specifies which instance of a page is desired.

2. The author c m create multiple intemai-labelled source files for a single page or

component. These interval-labelled files indicate when a particular page should be

pos ted.

3 The tirnes in these pages and requests cm either be relative or absolute

representrition.

Some questions still remain, however. on how the above will be implemented.

How will time be specified such that it reflects the temporal requests from readers and

authors? There is also the question of how a request with different possible matches is

resolved. These questions will be answered in the foilowing chapter where we will

in troduce the existing temporal modeis and their advantages and disadvantages. We will

also discuss a time-interval refinement algorithm that will help to resolve any

ambiguities resulting from different possible matches.

3.2 Introduction to the Temporal Interval Starnp and the Time Sensitive Tag

Two new components were incorporated into THTML to support temporal requests.

They are time sensitive tags (TST) and time interval stamps ('Ils). TST's are used to

specify which instance of a particular page should be sent to the client. For exampie, if

we wanted an image of the weather outside at some specific time, we would specify the

exact time in the TST and it would be the server's responsibility to match that tag to a

particular image.

On the server side, it uses the TIS associated with each HTML file to determine

which instance should be sent to the client. The server is responsible for deterrnining the

best-fit HTML page for each temporal request and sending the resuits back to the client.

How the server determines the best-fit page and the design of both the TST's and TIS's

will be discussed further in the following sections.

3.3 TIS Design

3.3.1 State-of-the-art Time Representations

Although time is continuous in nature, two cornrnon views have evolved:

conrinrioris versus discrete time. Continuous time is considered to be isornorphic to real

rzurnbers, whereas discrete time is normally isomorphic to natural nuntbers. The discrete

interpretation of time has been adopted in many real-time systems because of its

simplicity and the relative ease of implementation.

There are two time models widely adopted. One is the linear time model; the other

is the brunclring tirne model. In the linear time model, time is considered to be totally

ordered, i-e. if two distinct time points t and t'are given, either t is before t'or t ' is before

r chronologically. However in the branching time model, multiple time lines are defined

and a chronological ordering only exists between time points on the same time line. The

branching time model is often adopted in hypotheticd reasoning, where time in the

future cannot be determined, therefore, multiple time lines are assumed and researched

hypothetically. For simplicity, we only consider the linear time model in this thesis.

Therefore, time points are totally ordered on this single time line. Nevertheless, it is

possible for web designers to use a branching time model, depending on the application.

3.3.2 Time-point and Tirne-interval Representations in THTML

The time model is not the only issue that needs to be resolved, there has d s o been a

lot of debate on the most appropriate representation of time. The two most common

representations are the rime interval and the rime point. An obvious choice is the time

point. One reason for this choice is its simplicity. Time points are isomorphic to

numbers and therefore easy to represent. The other reason is that the computational

complexity of dealing with time points is less than that of time intervals.

The main drawback of the time point representation is that it is cumbersome for

expressing the fact that an entity holds over a time period. As long as time is discrete,

every time span can be represented by a finite set of time points. WhiIe this argument is

theoretically correct, it is often not practical. For example, to specify that a THTML, file

holds for a period of time on Web, the time period would consist of a list of dt vaiid

time points. This representation is especially cumbersome when the granularity of time

is fine-grained (e-g. seconds or even finer) and the average time a file holds is relatively

long (say months or years). An obvious way out of this dilemma is to use time intervals

in order to capture the duration of a temporal file. In addition to modeling the time span,

the time interval can also be used to mode1 time points if the start and end points are the

same.

The main drawback of the time interval representation is that the domain of the

intervals is not closed with respective to the usual set-theoretic operations (union,

difference and intersection). For example, the union of the two intervals may yield two

intervals or just a single one.

[3- IO] ~ [1 5 20]=/[3-10],[15,20]]

[4,10] ~[6-17]={[4-I 7]}

The behavior of subtraction (set difference) is even worse:

[4- lON8-20]={[4-8]]

[4-10N6-8]=/[4-6],[8- 1 O] }

14-1 ON 1 -2O]={ j

Depending on the operands, subtraction yields zero, one or two intervals as a result.

This property makes it quite mkward and expensive to process rime intervals on the

cornpurer. [14] Therefore, a question arises-namely whether we shouid use the point-

based model or the interval-based model in THTML.

Because it is common for people to specify time intervals over which files are to be

posted on web, the tirne interval representation is needed to represent the valid times of

files. In order to avoid the complexity it may induce, THTML adopts the representation

of a ririion of sets of time intervals rather than dwerence in order to simplify the

implernentation. Time intervals are perceived as the shorthand of time points within the

starting and ending points inclusively. They are both adopted in the definition of TIS. In

THTML. a reader rnust supply a complete time point to retrieve an instance. THTML

doesn't support request intervals, therefore, in the TST specification, only time points

are adopted. However, both time intervals and time points cm be defined in the time-

interval stamp.

3.3.3 Time Pattern Design in Time-Interval Stamp

3.3.3.1 Temporal Data Type in THTML

The data type of the TIS should have the capability of presenting both a time

interval and a time point. Before discussing the design of the data type, we first clarify a

terrninological problem. There are two terms widely used to represent time: date and

rime. Sornetimes, the distinction between a date and time is made based on the chosen

granularity. A date covers the granularity year. monrh and day while tirne covers every

time unit below a day. Therefore, for exarnple 1985/3/L5 is called a date while 13:45 is

called a time. Depending on the chosen granularity, it may be more appropnate to use

one term over the other.

Nevertheless, THTML combines the two as the time type, which is time + date.

There are two main reasons for adopting this data type. First, an acceptable granularity

for representing the valid times of a file needs to be provided. Normally, on a compter,

the granularity of files is in seconds. Although there are some arguments that the

development of files should be granulated to below a second, the speed of web transfers

is insensitive to precision below a second. So the granularity in THïML is a second.

This includes the modified time, the expired time, and the user-request time. This

corresponds nicely with most version control software that also records time with

precision of a second. The second reason is portability. The THTML time-keeping

mechanism is consistent with that of ail computer systems in use today-Unix,

Windows, MAC and DOS. (whose time granularities are al1 up to seconds) So THlML

is not tied to any specific architecture or operating system.

The time type is specified using sir units. The format is as foilows:

second minute hour day month year [dow]

The valid range of each unit is the same as that in the time-keeping mechanism of

Unix as foilows:

second LOO-591

minute [OU-591

lzort r [ûû-231

d q [OO-30/31/29/28]

month [I - IZ]

year [O-]

dorv (days of rueek) [O-61

Legend:

Among the seven units. dow (day of the week) is optional, it is provided to

facilitate the temporal specification. There are two reasons that the unit of dow is added.

First, in some cases, people have a habit of specifying a time pattern based on the day of

week. Second, if there is not sufficient information given by the preceding time units to

calculate the date, the server calculates the date from the data in dow. However, if there

is a confiict between the dow and a specific date of the month, the value in dow is

ignored.

Some users have a habit of specifying some of the time units while ignoring others,

so, is specified to indicate arbitrary values in the valid range of a data unit.

3.3.3.2 Time Pattern Definition

There are five basic types that are supported in temporal logic: dunitg, afier, before.

point and recrirring. Especially, the recrirring pattern facilitates the web authors to

specify web postings that occur periodicaily.

The precise definition and their representations are as follows:

During, afierhefore and recuning identify time intervai patterns; whereas point

indicates a time point pattern on a single time line.

Drlt-ï~~g is a bounded interval specification. It occupies only one segment on the

time iine. "-" is used ta specify the interval between two points. AfierBefore are

unbounded intervals. "<" or ">" preceding a time point is used to denote the time period

ufier and before a particular time point inclusive. Point occupies only one point on the

time l i ne. Recrirring descri bes multiple time-points or bounded segments that appear

periodically on the time line. It is provided especially for sites that change contexts

frequently, such as commercial sites, ", " is used to specify a recurring time pattern. So

for example, the time-interval starnp

> 10 30 52 1 2 1998 +

indicates a file should be posted afier time point 10:30:52 February 1 1998 while

< 10 30 52 1 2 1998 +

indicates a file should be posted before time point 10:30:52 February 1 1998. If a web

author intends to post a file on every Monday in January, February, M a c h 1998, he c m

write the following time tag in the TIS:

1.2,3 1998. 1

If he determines to set the time period from Jan to March 1998 to post a file, he cm

write in the TIS:

+ + + + 1-3 1998,

One can combine recurnilg patterns with interval patterns in usage. Note that with the

Il- " in a row, the user can specify the srarting and ending points of an interval on the

tirne line. For example, time-interval starnp

+ 1-2 3-4 5-6 1998 l.2,3

indicates a file should be posted every Monday, Tuesday, and Wednesdq in the time

period from May 3rd 1998, lam to Jun 4th 2am 1998

3.3.3.3 Discussion of Normalization Operation

A normalized time pattern is one that consists of only the union of a set of time

intervals. The process of converting al1 patterns to this form is cdled nonnalization. It

has great significance in judging tractability and is also an efficient method for matching

temporal requests with time patterns

Since diference operations are not defined at the moment, normalization is not

needed in THTML. However, diflérence operations will be included in the future, and

so ail time pattems must be normalized so that the same matching aigorithm can be used

without any modifications.

3.3.4 Conclusion of Time Pattern Design

Although there are many data models that can be used to represent time, we have

chosen a mode1 that is able to support most comrnon temporal requests and is aiso easy

to implement. But the question arises, is it the best representation for a temporal

Ianguage? 1s there a measure for evaluating the expressive power of a temporal

Ianguage? If yes, is it possible to have a canonical expression independent of various

time representations? There are many debates on this topic, so far, there is no answer in

the literature.

Nevertheless, THTML c m still be improved in the following aspects:

1. One further direction is incorporating more complex logîc into the system so that

the expressive power of simple time pattems cm be enhanced. Intensional rules,

including mathematical algorithms, can be adopted to specify more complex temporal

requirements from the web authors.

2. Another direction is to incorporate a data flow language (temporal prograrnming

language) that describes mles for temporal data flow. For example, every o~her day can

be expressed naturally and efficiently in dataflow programming language with a

definition of time:

n= k fby n+2d; k= $?ri May 3 1998

Precisely, an infinite temporal strearn of dates, namely every other day, starting

from May 3, 1998 is defined. The backend support for it includes algonthms for parsinp

and for temporal rules.

3.4 Best-fit Interval Selection in a TIS

The definition of an interval refinement relationship is the principal design

requirement in THTML, since time plays a key role in retrieving documents and

ambiguity may occur if the time point in request lies in multiple time patterns in a TIS.

A TIS that brackets the specified time point is a condidate. If a single candidate is

found. it is used to generate a conventional HTML page. If no candidates are found, the

absolute source file is used. If multiple candidates exist, the best-fit candidate is chosen.

The rule of retrieving the best-fit pattern is detexmined by exîensional and intensional

rules. With DTL (Discrete Temporal Logic) applied in THTML, an interval can be

perceived as a set of discrete time points on the time line, then the basic rule

(extensional rule) to choose the best-fit candidate becomes the smallest sirbset

etzcapsrtlating a given time point is the best fit.

Since not al1 candidates can be perceived as subsets of another, the extensionai rule

does not eliminate al1 ambiguities between time interval candidates. For that reason, we

also provide an intensional rule.

3.4.1 Extensional Rule

THTML specities that the request time in a TST is a tirne point while the TIS can

be either time points or any combination of time intervais. When a time request is

received, the server searches for the best-fit interval. The best-fit interval is defined to

be the smallest interval encapsulating a given time point. For exarnple, the two time

patterns A and B below are both candidates for a time point P, because P lies in the

intervals of both A and B.

B refines A extensionally because the set of points in B is a subset of the set of the

points in A.

Figure 3.1 Comparison between the Temporal Patterns of the Same Type

The comparison of "afrei' and "before" patterns is also simple:

Figure 3.2 Comparison between %fier" Patterns

Obviously, in Figure 3.2, the set of points in B is the subset of that in A to the time

criterion P, therefore, B is the better-fit candidate. As the same token, in the comparison

between two before pattems, the one that is the subset of the other is the better-fit.

The absolute tirne interval refers to the unbounded interval from negative infinity to

positive infinity. A conventional HTML file is perceived as a THTML file labeled with

the absolute time interval. Using the extensional nile, it is easy to see the absolrrte tirne

irzren~al is the most generic one among al1 candidates; for it subsets dl time pattems. So,

the HTML file is the most generic source among al1 THTML file candidates. It is used

as the best-fit when ambiguity happens.

3.4.2 Intensional Rule

The intensional mle applies when comparing as subsets is not enough. It is designed

to minimize ambiguities that could result from the extensional rule. For example, in the

situation in Figure 3.3, an ambiguity exists because neither of them is a subset of the

other.

Ambiguities exist in the comparison of the same time pattems as well as different

time pattems using the extensional rule. Let us first discuss al1 possible combinations of

patterns and then we will show how the intensional rule resolves these arnbiguities.

Figure 3 3 Comparison between Different Type of Temporal Patterns

3.4.2.1 Ambiguity Resolution among the Same type of Temporal Patterns

Since the time tags in TIS are unique, no arnbiguity c m exist if the TIS consists of

just a time point.

When two infinite recurring patterns are compared, ambiguities may occur if one

is not a subsec of the other. For example. in Figure 3.4, whether A or B shouid be chosen

as the best-fit is hard to judge.

Figure 3.4 Comparison between b4recurring" Patterns

To eliminate the arnbiguity in this situation, the intensional rule specifies that if the

recurring pattern contains equal sized segments, the candidate with smaller segment is

the best-fit. The ambiguity occurs in other situations.

In the cornparison between two during patterns, extensional rule appiies when one

bounded interval is a subset of the other. However, arnbiguity occurs if one is not a

subset of the other. For exampie, in the following scenario:

I
I I
1 1
I l

B
I

P I ' 'P2

Figure 3 3 Cornparison between bounded %terval" Patterns

If A and B occupy the same length in the time line, arnbiguity occurs with request

3.1.2.2 Ambiguity Resolution among Different Temporal Patterns

The comparison of different time patterns is more complicated than for the same

time patterns. For example, it is hard to tell if a durirzg pattern candidate is more refined

than a recwring pattem candidate, therefore, additional refinement rules are needed in

the intensionai nile.

We can deduce that the during pattern has a smaller temporal gap than the

before/a_Fer pattern, because the before/afrer pattem indicates a time period with an

infinite end. This has a larger gap than the finite intervai in a during pattern, therefore, it

is more genenc in definition than the during pattern.

The time point has smaller time gap than any other patterns, therefore, it

refined definition than other patterns.

However, there are some situations where it is hard to Find which pattern

generic in relationship to a particular tirne point if two different patterns are givei

s more

s more

, Say,

before pattern versus an afier pattem and a recurring pattem versus a during pattern.

Ambiguity occurs in the first situation because the comparison cannot be solved

mathematically between the two infinite segments; while in the second scenario, one is

an infinite time pattem and the other is finite time pattern. An infinite pattem is not

necessarily less refined than a finite pattem because there may be some situations for

which one of the segments of the recurring pattern is doser than the intemal pattern to

the time point.

The recurring pattern describes a file to be posted on the web periodically. The

intensional rule defines that the recurring pattern is the least-refined among al1 patterns.

One reason why the recurring pattem is the least refined is because it c m be

represented by a set of during patterns. The user can just use this method if he/she

wants to obtain a higher priority.

The durirrg pattern is defined to be more refined than the beforehfier pattern. If

instead the during pattern were less refined, one could not use any other alternative time

patterns to give during a higher priority. (Note that we do not allow an intervai to be

denoted as time points. Although it is feasible in theory, it is not practical to define a

large time intervai with time points.) There is an example to illustrate the above

reasoning. If two time patterns are given, one is

> 10 10 10 2 3 4 1988 +.
the other is

+ + + 1,2,3 1988 +

If one intends to give a file, associated with the second pattern, a higher priority

than a file associated with the first pattern in case that both cm be candidates to a

request time, hefshe can specify the second time pattern as a drtrirzg pattern.

+ 1 1988

+ * 2 1988

+ 3 1988

As long as the frequency of the file is not very high, the above method is feasible.

Consequently, the refinement order in the intensionai rule is as follows. From the

most generic to the lest:

recurring be fore/ufier dunitg point

Note that the above order is specified in terms of the tirne intewal patterns adoptçd in

THTML, it may not applicable to other temporal presentations.

3.5 Bat-fit Intewal Selection among Multiple TIS's

Because multiple time tags are ailowed in a single TIS, confusion may occur to the

besr-fi? interval among the THTML files. In THTML 1.0, it is not the result of

cornparison among ail patterns in ail THTML files at once, but among the best-fits of

each file. Precisely, suppose that PI, P2, P3 are time patterns in THTML file TI while

QI and QZ are the time patterns in THTML file 72, Suppose also that the candidate

(relevent) labels are PI, P2, Ql and Q2 are al1 candidates to a given request tirne R I .

The process of retneving the best-fit is as follows:

First, the best-fit among PI and PZ in Tl file and the best-fit among QI and Q2 in

T2 are resolved respectively. The best-fit of each is, Say, P' and Q' respectively.

Second, P' and Q ' are compared. The result is the best-fit to the client's request

tirne RI . The THTML file that associates with it is used to generate the instance. The

extensional and intensional rules are adopted in both steps.

The result is the same as that of comparing once. The reason for two cornparisons

twice rather than one is to simplify the implementation. The algorithm is similar to

brtbble soning. the smaller subset of the first two will be kept to compare with the rest.

The more refined in each cornparison is always kept to compare with the next pattern. If

ambiguity occurs, the most refined is still kept to compare with the rest. If no other

patterns are more refined than it, the absolute TIS will be adopted, otherwise, the

srnaIlest subset pattern will be adopted as the best-fit.

3.6 Conclusion

The design and reasoning behind the TIS and the rules to retrieve the best-fit

intervals were covered in this section. In order to simplify operations involving the TIS,

a linear time mode1 was adopted. The mode1 supports both a time interval and time

point representsition. This was done so that it would be consistent with the different

ways users specify time. Since stating time in tems of a date and time of day is more

complicated to handle, the two elements are combined together into a time data type,

which granulates time in seconds.

This time data type foms the bais for specifying time requests and defining time

intervals. Time points are matched to tirne intervals using the extensional rule. This nile

is based on DTL, which the time interval is perceived as a set of time points on the time

line. The time interval that is the smallest subset among those encapsulating the time

point is the best-fit. This rule however still leaves some arnbiguities. Most of these

arnbiguities can be resolved through the use of the intensional rules, which define a

refinement order for the different time pattems. The application of these two niles in

one file or among best-fit pattems of multiple THTML files allows a server to determine

which source file to instantiate given a URL request.

Chapter 4

THTML System Design

4.1 Overview

The THTML system can be perceived as a typical three-tier architecture. It

consists of the clients' browser,fiIe ?stem and web server. Enhancements are adopted

in riIl three of these tiers. From the clients' point of view, two features (TIS and TST) are

added to allow the client to specify a time element. The server supports this

enhancement by implementing a tree structure and adopting a naming convention that

maintains the hierarchical relationship between the modules and the different temporal

versions of a module. The server determines which page to return to the reader by using

a tenipural versioning and time irregidatity handling algoritIm to generate the most

relevant instance for a particular URL request. The THTML system can be illustrated by

the communication among the three components (See Figure 4.1).

e--0-
/#- server push N,
I

web server request

.J response

searc h return the
target f i l q result of the search

Figure 4.1 Tbree-tier Mode1 of THThfL System

Upon receiving a URL request, the server decodes the address and extracts the

request time. The server then searches the file system for the best-fit THTML source file

for that request time. It will then generate a conventional HTML file in response. In

addition to the enhancements to the conventional web model, in which the server

passively responds to the clients' requests, the server push (related to client pull)

technology has been incorporated into the THTML server. This allows the THTML web

server to actively feed clients with the most updated information at user-defined

intemals.

In the following sections, we will discuss the issues related to implementing the

above features. First the language design will be introduced in Section 4.2. In Section

4.3, the backend system design is discussed, followed by the aigorithm design in Section

4.4. The chapter will conclude with possible future directions for each of the designs.

4.2 Language Design

4.2. l Design Requirement

In THTML, a web page is assembled using components indicated in a THTML

page. These components are single-versioned entities in conventional HTML, but have

multiple variants in THTML. Semantically, THTML ailows a conventional HTML page

or its components to have multiple instances corresponding to the different time points.

The generation of a URL instance at a specific time is, in the simplest case, a point-wise

operation. It is generated by collating an instance of each component evaluated at the

specified time.

The following figure shows the hierarchy in a THTML system. Each web page

contains a list of components (images, sounds etc.) to be included in the page. Under

each of these components, there are multiple instances corresponding to the different time

intervals during which that component should be displayed.

Since THTML allows multiple instances for each URL, there must exist a way of

determining which instance the user wishes to retrieve. This requires enhancements to

the syntax and changes to the semantics of the HTML language. The syntax is enhanced

by adding TIS's to the source files and allowing users to specify time points dong with

their URL requests. On the semantic side, it involves interpreting temporal context

temporal instance 1

temporal instance 1

tempord instance 2

Figure 4.2 THTML Enbancement into HTML

switching operators and helping to evaluate the URL at a particular time context and

generating a response.

4.2.2 THTML Language Enhancements to HTML

As mentioned in Chapter 3, a THTML file differs from an HTML file in two ways,

namely, the addition of TST's and TIS's. A THTML file has the following format:

<cran> t e m p o r a l - i n t e r v a l s a t t erns </cran>

< h m >

<ti t la>

-...
< / t i t l m >

<body>

TH% body

< /body>

< / h m >

The TIS is inserted at the beginning of a conventional HTML file with a special pair

of tags <croa> and </cran>. The THTML body is sirnilar to a conventional HTML

page except that it can contain optional TST's.

THTML body : : = THTML cornponents

THEML components : : = (conventional HTML components) 1 (conventional HTML

cowporr en rs Itaving tirne sensitive attributes)

THTML does not add any new tags in THTML body, however it modifies the

existing tags by adding a new optional attribute. A atuibute is added to the most

common tags, found in HTML files, to dlow them to specify a temporal context switch.

The TST's currently implemented are conventional hypertinks, images and SSI's. This

attribute c m be added to other tags in the future. There is no Iimit to the number or

sequence of TST's in a THTML, source file.

4.2.2.1 Time Sensitive Tag (TST)

Theoretically, any web component can be temporalized (made to Vary in time). For

exarnple, temporal applets and images cm be created whose response to the reader is

dependent on a time variable. In THTML 1.0. three components were made temporal.

They are images, hyperlinks and SSl's. The BNF format of the TST's for these web

components is specified as follows:

The-sensitive-rag (TST) : : = [<!-4nciude virtual="name.html"

TMOD=temporal~conte~l:tfwitclz >

a r c img='?mgtileW TMOD =
temporal_conte~t~switch 1 <a href=

"my filename.htm19' TMOD=

t e n ~ p o r a l ~ ~ o n t e x t ~ ~ ~ i t c ~ z >] *

The syntax of the temporal-context-swirch (TCS) variable defined in BNF format

is as follows:

TCS: := r c '6 r t temporal-temz " " " ;

9 9 ' 9 'b

temporal-term ::= temporal-base I['+ 1 -] n ("Y" 1 "y") 1 ["+" 1"- "1 n

(uM-~u,,,") 1 ["+*YI b4 - fi] (" D W 1 .bdW)l[bb+Vl bb-Wl(bbH991 "hW)
1(bb+V1 b6-W) ("1")I[6b+l7 I b b - 9 9 1 (US"[) [b&+"I 6' -bb]

(b b w 9 1 6 & w 9 9)

12: .- =digits;

temporaiJose : : = ~ l naturaiJ 1 absolute-t;

natztral-l ::= "tomorrow" (b'yesterday" 1 "now";

absolute-t : := "$" Week-day Mon Date Hour ": " Min ":" Sec ;

Week-da) ::= "Mon9'l "Tue9'l "Wed"J 'ThuPl "Fri"l %at9'r<Sun";

Mon ::= "Jan"1 "Feb"1 "Mar9'["Apr"I "Mayl'I "JuII"~ b'J~l"I "'AugT'I "Sep9'I
Lb&t991 &<NOV9VI 6'-9;

Date:: =digitsfiom O to 31;

Hour:: =digits from O to 23;

Min::=digits from O to 59;

Sec:: =digits fiom O to 59;

Legend:

the time unit identifiers: Y, M. D, 8, 1, S (capitalized or lower case)

indicate temporal units: year. niontla, day. hour, minute and second, respectively.

As shown above, simple temporal terminology can also used in context switch

attnbutes. The terms yesterday, tomorror and now are supponed in the curent

version and their semantics will be presented in 4.2.3.

4.2.2.2 Time Interval Stamp (TIS)

The TIS is the other feature added in the conventionai HTML. TIS's are

distinpuished from other components by a pair of tags <eton> and </cran>. The user

can specify a specific time point, a time period or a set of time points and periods. Al1

TIS's can be specified with six time units as follows:

second m i n u t e hour day month year [dow]

Each unit is separated with white space. The days of the week (dow) is optional.

Each unit can be specified using a combination of numbers and symbols. The following

symbols can also be used:

- denotes a time interval-

, separates a list of valid inputs.

denotes any arbitrary value in the valid range of a data unit.

Therefore, for example, the time interval from May 3, 1998 to May 20, 1998 can be

represented as follows:

<CZOD> + 3-20 5 1998 c/cronw

1.2.2.3 Creation of a THTML file

THTML 1.0 provides a conunand in the UNIX environment for an author to

create and modify a 'lWïML source file. The command ivi originates from IHTML

2.0 and was used to create an MTML file (See [IO] for more details.) The author

enhanced the command to create a THTML file. The format is as follows:

i v i [-tl t-cnumber>] fi1ename.h-

The command ailows the user to edit the specified THTAML source file. When it is

invoked, it will open the default editor. (specified by the $EDITOR environment

variable) The -t option is used to create a new version of filename. html using a

copy of the rnost recently created version. This new version will be saved in the

fil ename. html directory in the following format: aai . n. htmi. where n is a

unique number generated automatically by the system for each version. An existing

version can also be edited by specifying the version number in place of cnumber>.

4.2.3 Language Semantics

Formally, if each conventional HTML page is P and the request time is r r , then each

THTML page can be specified by (P. (4) . At request time u, a unique instance of P is

issued to the client. From the semantic point of view, the response to a URL request is

an HTML page that is dependent on the time point specified. In other words, the bXL is

an intension. The response to the reader cornesponds to the process of generating an

extension from the intension. An extension to a particular intension, narnely an instance

is generated using two components. One is the URL or HTML component, the other is

the request time. The temporal contexts are not necessarily the client's request time. The

reader can define any time point. The web elements in the response for the URL inherit

the context by default. However, they can also be modified locally by temporal context

switches.

4.2.3.1 Semantic Distinction between HTML and THTML

4.2.3.1.1 The Global Context and the Local Context

<a hrmf--A-Li*

Temporal Include

Page 1 Page 2 Page 3

Figure 1.3 Server lnterpretation Mode1

The Global Conte-rt and Local Contexz are distinguished by their scope. Because the

context for the URL is adopted as default to interpret those for the web elements for the

HTML page. In other words, the elements in the HTML page inhent the context of the

URL by default. However, a context switch operator cm be defined in each local

element to modify the global context. It changes the six time units as necessary.

At the server, a THTML document is converted into conventional HTML. Each

component is instantiated using its local context. Figure 4.4 illustrates the conversion

process.

4.2.3.1.2 Temporal Context-S witches (TCS)

Global contexts are converted to local ones by temporal context nvitches. These

temporal context switches are implemented only in hyperlinks, images and SSl's in

THTML 1.0. The usage and semantics of them are covered as foilows:

Temporal Context Switches in Hyperlinks

A temporal context switch can be specified using the attribute TMOD in a

hyperlink:

<a hraf- 'A LINK" MOD-TC-

When the hyperlink is invoked, a conventional HTML file, for the URL, is

instantiated using the context specified in TCS. The locd context of a link containing a

in yesterday' s

context-0

Img sr-.
(Tiniesratnp = romo r

) row)

Img src=. . .
(Tiniestanrp=yesrer
d e)

combine local &

gtobal context inmg e

;lobal context is May 1,98 Tite do'. befofe
yesrerday 's inuzg e

Intensional ElemenLs L their E-xtensions

Figure 4.4 the Local and Global Context

TCS is a combination of the base temporal context and the local temporal modifier. If a

base temporal context is not specified, the global context of the curent page is used.

The temporal words toanorraw, yemterday and now are implemented in

THTML as following manner:

Tomorrow is equivalent to the local modifier "+ ld". In other words, it

represents the s m e time (the same hour, minute and second) as the default context, but

increments the day by 1.

Yesterday however has the opposite effect and decrements the day by 1.

The keyword now however denotes the default global context.

These three temporal terms are interpreted in the same manner in the other

eIements.

Extensional expressions c m also be specified in TCS's. For example, denotes that the local

context is changed to May 18 10:13:14.

Temporal Context Switches in Images

In an image element, the TCS's cm change only the contexts of the included image

enti ty. In other words, they perform no modifications to other web components. For

example,

<- mrc- mgraphic~-filem T X O D = m t w r r o w m >

If the page is invoked using a hyperlink that has the context modifier yesterday

(ie. the client's reqltest tirne -ld) and the image link has the local modifier tomorrow,

the image corresponding to the client's request time will be instantiated. (ie. client's

reqztest tinie -Iday+tday)

Temporal Context Switches in Server Side Inctudes (SSI)

As mentioned in Chapter 2, SSI is a feature that the APACHE server supports. It

alIows the author to include an HTML file in another HTML file, instead of copying the

same contents. It facilitates web content creation and heips with version control by

avoiding redundant code scattered among separate files. Temporai SSI is similar but

also allows multiple variants in the time dimension. The TCS is inserted into a SSI

component and modifies the local context of the entity. It has the following format < I --
#include virtual r -included-filen TMOD = + offset>

The off set can be specified using the sLr time units: yeur, month, date, haur. minute

atzd second and is relative to the default temporal context of the TC'S. (See 3.2.1 for The

BNF format.)

A local temporal modifier and an absolute time point constitute an extensional

representation of a SSi with TCS. Given <! --#includm virt~rl=~fila,html~

TMOD=" $mly 5, 98 12 :oo: 0 0 + 7 d +4sœ > , an instance of "fils. htmi" at the

time context: July 12, 98 12:OO:W should be included in the HTML page generated.

1.2.3.2 Web Intensions and Web Extensions

A rveb inrension is the relative expression of a web context in ternis of a default

context. It is specified in a temporal web element with a temporai modifier; while a web

exremiorr is an absolute temporal context value. it is represented using an absolute time

and an optional temporal modifier.

As introduced in Chapter 2, the sarne intensional expression with the sarne literal

expression can infer different extensional values depending on the context.

Consequently, the same temporal URL requests can be resolved into different instances

(conventional HTML pages) depending on the time context,

4.2.3.2.1 "Now" Discussion--1ntension and Extension

Strictly speaking, there are 24 extensional representations for now because of the 24

time zones in the world. For example, given the following TST:

. and the client h e s in a place where

"now" is Jtdy 13. 1998, 3:30:00 and helshe issues a TiITML request to a server in

another time zone, whose time is "Jrtly 13, 1998, 6:30:00", which time should be chosen

as the default temporal context?

In order to deduce the right answer, let us examine the request process at the server.

The user-request time is sent to the server in GMT (Greenwich Mean Tirne) format

according to the request protoçoi. Since no mechanism is provided to retrieve the

reader's time zone, then the local representation at the server becomes the default

temporal context.

Therefore, the time related process at the server side is as follows:

When the server receives a THTML file, the reader's request time is computed and

converted into the server's local time (which forms the basis for retrieving the best-fit

version). The instantiation process begins after the global context is resolved. In the

previous exarnple, the default time context is therefore July 13, 1998 6:30:00+ld-

211 = J d y 12, 1998 4:30:00 .

If a reader expects to retrieve an HTML page at the server with the same

extensional time representation as the client, the extensionai representation of now at the

client's side must be wntten into the temporal request. For this case, it should request

The process of conveying temporal information between the web client and the

server is illustrated with the following graph:

1) get local time of
(GMT format)
2) process requesr and
get the best fît

User-request time
(GMT format)

client's requést

I

sewer's response

user-request time in
GMT format

Figure 1.5 Time Conveyance in THTML System

4.2.1 Conciusion

With the incorporation of IL, the server's functionality can be perceived as

converting an intension (the URL or THTML tag) into its extensional representation (the

web page generated in response). Temporaiized web elements are intensions that use

TCS's to switch among different possible worlds. Web authors are allowed to define

multiple source files for each elernent. Their TIS's detennine if it is adopted as the

extensional representation of the elernent at a particular time context. Due to the above

designs in syntax and semantics, the range of HTML pages viewable at the same URL is

increased drarnatically frorn the client's perspective. 4.3 Backend System Design

4.3.1 Design Requirements

One of the design requirements was to make the THTML language independent of

web browsers. The browser should not know whether or not the server is a THTML or

regular HTML server. So the temporal enhancements to the language rnust be supported

only throu~h the backend. In order to support THTML, the server m u t implement the

following:

The system should have a mechanism for maintaining multiple THTML source

fiIes for each web component.

It should d s o maintain the hierarchical relationship between al1 THïML sources

and their respective components.

A time tag is associated with each TIFTML file, so that the server can determine

which file to retrieve based on the time context.

The above requirements are met in THTML by implementing a rree structure to

maintain the hierarchical relationship, adopting a narning convention to differentiate

between multiple source files and including TIS's in each file. Each of these aspects

\vil1 be discussed further in the following sections.

4.3.1.1 Tree Structure

First, in file system design, a rree structure is used to maintain the hierarchical

relationship between THTML source files and their respective web components. A

normal URL indicates a directory in the THTML system that holds multiple T m

sources for that URL.

There are other mechanisms to maintain the hierarchical relationship in version

space besides the tree structure. One commonly used method is to keep the file that

contains the relationship between the THTML sources and web components. There are

several reasons why it was not adopted. First, the web server wouId have to access the

file for each instantiation process. The file would become a key component of the

system and would requiring special maintenance. If it became compted, the whole

system would shutdown. Furtherrnore, if a search for a target THTML source file was

executed at the same time that the author was creating a new THTML fiIe, the file would

become a critical secrion and a synclzronizarion mechanism would need to be adopted.

The tree structure has signifiant advantages in comparison:

By embedding the hierarchy into the structure it eases system maintenance

The algorithm to retrieve the best-fit THTML source is simplified as well.

4.3.1.2 Naming Convention of THTML files

Second, a simple naming convention needs to be adopted to maintain the parent-

chiid relationship between a temporal object and each THTML file. A straightforward

narning convention is described below.

When a file is created, it is put in its module's directory. For exarnple, al1 THTML

sources for the web component hcaar-htinl are put under directory b- . h m . The

format of a THTML source file is mcoded-filename.n.htmï, where n is a number

oenerated automatically by the system when the file is created. It reflects the order of .#
creation and distinguishes the different THTML files. An HTML instance, which is an

extensional expression of a web component, has a file name ending with the suff ix

.htmï. It is similar to a conventional HTML file, but contains an encoded temporal

context that is inserted between the file name and the suffix. For example, homm

cZhOd~rwbySqzGuTi-~ga j-nPk0.i. h m is an instance of the module hamm . h W at

the relative temporal context: osoxoa-iooiaorow. The format of an instance is

r n o d ~ l e nameencoded con text-hW. The encoding scheme helps the algorithm

retrieve the best-fit THTML file.

1.3.1.3 Design of Time Interval Stamp (the Tirne Tag)

Third, the TIS is used to relate time to a specific THTML file. It indicates to the

system which file is most relevant to a temporal request.

There are many reasons for keeping a time-interval stamp in a THTML file.

In order to instantiate an HTML page, the systern needs to keep time information

for each THTML source file. Keeping the information in the file provides a

straightforward way to link the time and source page.

It reduces the time to retrieve the corresponding time interval of a THTML source

file.

It provides a naturai way to combine THTML files with regular HTML files.

HTML files are just THl'ML files with time intervals fron negative infinizy to positive

irzfiziry, which is denoted with time label + * *.
The TIS is the key to temporal design. It not only specifies the time relevancy of

each file, but also reflects the refinement relationship between the different THTML

fiIes.

1.3.1.1 Conclusion of File System Design

The result of combining the tree structure, narning convention and time interval

starnp is shown in Figure 4.6. Each URL corresponds to a module and therefore has its

own directory. Each directory contains al1 user-defined and temporal source files

associated with the module. They are stored using the naming convention

<modu1e~nme~.cencoded~userdefined~version~. n-h-. Altho~gh it is culTently

irnplemented on one cornputer, the design can be easily incorporated into a distributed

file system.

Picrure-htrnl (direcrory)

Timestamp Tirnestamp Timestamp

aai-html aai.4.html aai.3.html aai. 1 .htd aai.2.html

J

Figure 4.6 System Structure Design

3.1 Algorithm Design

4.41 THTML W e b Server Model

In a typical client/server model. when the client selects a temporal elernent on a

THTML site, a connection is created between the client and server. The client then

issues a request for an HTML file with a particular time point to the server and the

server responds with an instance at that time point to the ciient.

In this model, the web server can be perceived as a black box. With the request of a

temporal HTML file as input; the server outputs its extensionai representation.

During this process, a time irregularity-handling algorithm is used to obtain the

correct local context from both the temporal request and the local modifiers. A temporal

Client 1

Figure 4.7 THTML Working Mode1

versioning algorithm is then used to retrieve the best-fit THTML file. These algorithms

will be described in the following section dong with the incorporation of push

technology to keep the clients updated with the most current HTML pases.

esrc i mg=" A IMAGE" TMOD=. . .Vb¶OD=. . . .>

CP'

A

Temporal HTML page

- . - - --

A image included

Instance Geaerated

Figure 4.8 Interpretation from THTML to Conventional HTML

4.4.2 Time Irregularity, User-defined Temporal Terminology and Hierarchy of
User-Defined Calendars

4.4.2.1 Gregorian Calendar and its Irregularity

Calculrttions reIated to time have an irregular feature. For example, $ Fri July

3 1.19 9 8 + Id, should be Arrgust 1, 1998 rather than J d y 32, 1998. The time

irregularity is caused by the Gregorian calendar people use as an international standard

for civil use.

A calendar is a system used to organize units of time for the purpose of reckoning

time over extended periods. By convention, the day is the srnallest calendarical unit of

time; the measurement of fractions of a day is classified as timekeeping. The generaiity

of this definition is due to the diversity of methods that have been issued in the

development of calendars.

In the Gregorian calendar, years are counted from the initial epoch as defined by

Dionysius Exiguus, and are divided into two classes: common years and leap years. A

common year is 365 days in length; a leap year is 366 days, with an intercalary day,

designated February 29, preceding March 1. Leap years are determined according to the

following rule:

Every year that is exactly divisible by 4 is a leap year, except for years that are

exactly divisible by 100; these centurial years are leap years only if they are exactly

divisible by 400.

As a result, the year 2000 is a leap year, whereas 1900 and 2100 are not leap years.

These rules can be applied to times pnor to the Gregorian reform to create a proleptic

Gregorian calendar. In this case, year O (1 B.C.) is considered to be exactly divisible by

3, 100, and 400; hence it is a leap year.

The Gregorian cdendar is thus based on a cycle of 400 years, which comprises

146097 days. Since the number 146097 is evenly divisible by 7, the Gregorian civil

calendar exactly repeats after 400 years. Dividing 146097 by 400 yields an average

length of 365.3425 days per calendar year, which is a close approximation to the length

of the tropical year. Cornparison with Equation 1.1- 1 reveds that the Gregorian cdendar

accumulates an error of one day in about 2500 years. Although various adjustments to

the leap-year system have been proposed, none has been instituted.

Within each year, dates are specified according to the count of days from the

beginning of the rnonth. The order of months and number of days per month were

adopted from the Julian calendar as follows:

Jarzrrary 31 Febrrrary 38 March 31 April30 May 3 1 June 30

Jtily 31 Arigrtst 31 September 30 October 31 Novernber 30 December 31

In a leap year, February has 29 days.

Based on the representation of time keeping and the Gregonan Calendar currently

used internationally, the defauIt hierarchical concept of the time units used in THTML is

defined as second crnintrfe I hour I day Srnonth l yeor . A set of functions supparîing

the above concept is provided to guarantee the correctness of time calculations, which

are discussed in next chapter.

4.4.2.2 User-defined Temporal Terminology and Hierarchy of User-Defined
Calendars (not implemented yet)

User-Defined Temporal Terminology

As the design in further implernentation, the TCS can be enriched with more

complex temporal language with enhancement of additional backend supports.

For example, additionai religion dates Say Easter can be recognized in a TCS by

incorporating the following operations to calculate the date of Easter in Gregorian

calendar in THTML.

Y stands for Gregorian year. Al1 variables are integers and the remainders of al1

divisions are dropped. The finai date is given by two vaiues: M (the month) and D (the

day of the month).

By the same token, the user-defined caiendars and the temporal concepts can be

specified with corresponding backend support. For example, if a student can use the

term semester and acadernic year in his TCS, operations of parsing these terms and

converting them into Gregorian caiendars should be provided.

User-defined Calendars and their Hierarchy

Funher, if multiple user-defined calendars are specified in the system, ordering

should also be specified among them to eliminate ambiguity. For example, New Yenr's

Da? has different Gregorian values in the Lunar Chinese Calendar and the Jewish

Calendar. If a temporal request having a term New Year's Da)t is received, ambiguity

must be resolved if both calendars are specified in the system. Therefore, an order

should be specified between them. In the future, an intensiond tier for user-defined

calendars, their ordenng and operations should be provided by the system.

The relationship of cornponents in the intensiond tier is as follows:

Figure 4.9 User-defined Caleadars, Orders and Operations

L

web server , tier to handle , . time concept and
time irregulririty

client's request

Figure 4.10 Intensional Tier Supporthg User-defmed Time Concepts

The relationship of the intensional tier with other cornponents in the system is illustrated

in Figure 4.10. The server will retrieve the temporal concepts from the intensional tier

and compute the results.

1.4.3 Temporal Versioning Algorithm

The purpose of instantiation is to generate an HTML instance in response to the

URL request. After the time context is extracted, the server will search for al1 THTML

source files that match the time point specified. if there is only one match, that file will

be used to generate the HTML instance. Otherwise a best-fit file is chosen using the

intensional and extensional niles descnbed in Chapter 3. If the niles cannot resolve al1

the ambiguities. then the absolute (default) THlML source file is used. This file is just

an ordinary HTML file with no time stamp. It is kept in the system as a last resort when

no time intervals match a specific time point.

The THMTL source file is then parsed. Any links, images and other tags with

temporal attnbutes are also instantiated recursively until al1 temporal elements are

converted into their respective extensional expressions,

4.4.4 Push Technology and Dataflow Model of WWW

With the rapid growth of tirne sensitive information on the web, the reader needs to

be periodicalIy updated with the most up to date information. This is facilitated in

THTML with the incorporation of push technology.

4.1.3.1 Problern of Cache in the Existing Web Model

The cache is one of the most significant features of the major browsers (Internet

Explorer and Netscape Communicator). With a cache. copies of responses are stored in

the local file system and can be reused for the same URLs without successive requests to

the semer. Therefore, caching conserves bandwidth and reduces network tatency.

However, if the caching mechanism not implemented appropriately, there is a risk of

receiving stale data from the cache.

In order to enhance cache controt, the H?TP protocol contains both explicit

specifications as well as heuristic hints in HTTP/1.1, conceming the cacheability of

documents and how often their freshness should be venfied in order to guarantee that

they are still up-to-date.

One of the most important features in HTTP/l.O about caching is the conditional

GET. It allows a document to be retrieved conditionally, based on whether it has been

modified since the last access. If the document has not been changed, a very short not

modif ied message is issued; otherwise, the updated document is transferred. For

exarnple, after a client requests a document /so~./where/f oo. htrt. the following

response c m be sent to the client:

Server: Natscrpa-brtarprisa/2.0

Date: Sat, 19 w r 1997 IO :22 :O0 Oçr

Last Modifiad: Iri, 18-r 1997 15:12:05 QîT

Content-tme: taxt/htd

Content-length: 6510

The above headers indicate the server and the version of HTTP protocols. The time

the web transaction happas, the last modified date of the file. In the subsequent

requests, a conditionai GET request now adopts the timestamp from the Last-

modif ied header and issues it dong in the request header with an I f M d i f i e d

Since header to the server. The exarnple of the subsequent requests is as folIows:

Get /somm/whare/foo.html ETTP/1.0

If Hodif iad Sincm: Pri, 18-r 1997 1S:lZ:OS

Accept: taxt/plain, taxt/html

It indicates that if the document is not modified since the date defined in the f f

Modif ied Since header at the server side, the document content is not issued to the

client. Therefore, the following headers but contents will be sent the client as the

response.

fmTP/1.0 304 No+ Modifiod

Sarvax: Not8capo-~ta~ri8a/2.0

-te: Sun, 20 a r 1997 15t4Stl2

However, if the document has changed. the server will feed the client with an

updated document and a 20 0 OR romponse. 3 04 N o t Modif i d response saves

bandwidth and reduces latency, as no document transfer actuaily occurs.

The above mechanism is efficient in conventional HTML to keep the most updated

content in a client's browser; however, in THTML file system, as the time changes, it is

usualiy a separate file (i.e. a different version) that should be issued to a client because

the original document is not changed and stored as a histoncal version in the system.

Therefore, the header indicating whether the file has been modified cannot prevent

clients from viewing obsolete versions in THTML system.

3.4.4.2 Possible Solutions

Based on the above problems, two solutions are provided. The advantages and

disadvantages of them are discussed in the folfowing sections.

Cache Control

The first approach is to delete the cache. HTTP/l. 1 allows a client to specify

when the file expires and whether he/she uses cache or not. A typical adoption is web

commercials. Normally, THTML documents do not change while the images within

inline ads are. Therefore, the HTML content is not modified on a per-request or per-user

basis in order to contain a different ad. instead, only the inline images update with a

particular frequency. With this approach HTML pages can be cached. Only the images

themselves force successive requests to the server instead of being served from the

cache. Although the contents can be updated with this mechanism, the disadvantage of

this approach is that substantial web traffic is induced. Therefore, it is not feasible for it

to adopt in a large, dynamic HTML file applications.

Server Push

The other approach is to complement existing web protocols with a new

technology----Prtsh technology (compared to Pull technology), which is considered a

more promising solution.

The original pull technology (client pull) refers to a mode1 in which a client

requests, then the server responds while push (server push) refers to a system in which a

client automaticail y receives information or applications from a network server. Wi th

server push, clients do not have to issue successive requests to the server for the most

updated versions.

In a server push, the connection between the server and a client does not end until

the client closes the session. The server periodicdly feeds the client with the most

updated version. Because multiple connections need to be kept and the responses to the

previous connected clients should be issued periodically, server push burdens the server.

However, the approach is preferred in THTML. The advantage of it is that web traffic is

reduced to dmost h d f (theoretically for lack of successive requests from the client). It

was shown in a year-long study involving 4,000 users in six Fortune 1Oûû companies

that just Iess than 20% of network traffic was raised with the use of push technologies

while 100% with the use of the client pull technology. Another significant reason that

semer prrsh is preferred is that no particular software is required with the client, because

the functionality of THTM. is enhanced into the THTML web server. -
Client 1

Figure 4.1 1 Server Push

With this technology, synchronization can be achieved between a client and a server

with a pre-defined frequency. It not only avoids the fikelihood that a client may be

viewing the stde information but aIso reduces web traffic tremendously. Although

today prtsh techology is still in its infancy, many commercial push products have been

available within industry, and web technology is taken into a promising new research

direction. With rime addressed, an ideal solution is provided with push in order to bring

the increasingly dynanzic feature to the World Wide Web.

4.4.5. Conclusion of Algorithm Design

For convenience, THTML dlows the author to specify time using the Gregorian

calendar. This however creates a problem when adding or subuacting time due to the

irregular way in which time is denominated in this system. We have therefore

i mplemented a time irregularïty-handling algorithm to perform these operations

correctly. This algorithm can be extended in the future to handle different calendars and

temporal terms.

Once the time point has k e n determined, the best-fit time interval must be found.

The temporal versioning algorithm uses both the intensional and extensional rules to

determine this best-fit intervai and resolve any ambiguities.

Push technology was also incorporated into THTML to facilitate the continual

update of a reader's page. It involves executing the above calculations at user-defined

intervals. Although this results in a heavier load on the server and other solutions may

exist, it is the most efficient solution for some applications where up to date information

is essential.

time irregularity handling

support3

instantiation algorithrns

Figure 1.12 Backend Components of THTML

1.5 Combination with IHTML

As a side, THTML1.0 is compatible with MTML. THTML files of a user-defined

version can be created and modified. This indicates a user-defined version c m be varied

with time in semantics. Clients can request a particular instance of user-defined version

of a web component at a particular time point. In a THTML file having user-defined

version, the TST's have the following formats:

TST : : = [<!-4include virtual="includedJle" TMOD="TCS "

VMOD="irztensi~riul~conte.rt~~)vitcizes " > <src img="imgfile9'

TMOD = "TCS " VMOD="intensional co~itext~switches " > 1
<a hre f - a URL_Address" TMOD-a TCS "

VMOD=aintensional-context-swi tches" >] *

The format of intensional-conte~t~m~itch is detailed in [IO]. The TCS has the

sarne format as introduced in Section 4.2.2.1. Therefore, for example, in a hyperlink

element, a client c m wnte,

.

in THTMLl.0, temporal instances are implemented as special subversions of a

user-defined version, so when an element having both TMOD and VMOD attributes is

encountered, the user-defined version is first resolved, and then the process of

instantiation, namely, the instance of the user-defined version is resolved in the time

dimension. The resulting instance is sent to the client*. In the above example, attribute

VMOD specifies the local, user-defined modifiers: pic :big and bgc tblue of the

global user-defined version of the page. If the global, user-defined context of the page is

lang : english, the local user-defined context of the eiement will be p ic :big +
bgc : blue + lang : english. After the best-fit user-defined version at the above

context is resolved, the instance of it will be resolved. Attribute TMOD modifies the

temporal context into current time-Id for the instance. The THTML file whose tirne

interval stamp best fits the temporal context is instantiated. It replaces the intensional

element into its extensional expression.

In the THTML1.0, multiple HTML files of a user-defined version c m be created

and modified in the system. The command for creating a new THTML file from a user-

defined version has the following format:

ivi [-v version [-b baseversion] 1 [-tl module

It indicates that the author cm specify a THTML file of a user-defined version of the

module module. The option [-v versi on [-b baseversion]] is used in

the sarne manner as in IHTML 2.0 to define a user-defined version. If the version

version does not exist and the base version is supplied, it copies the baseversion

version of the page to the version version.(see the manual of MTML. 2 [lO].) A

THTML file of the user-defined version will be created if there is option -t; otherwise a

--

a The semantic o f versioning resolution principle is omitted. because the version resolution principle

will incur more ambiguities.

new user-defined version is created. For example, by the command: i v i -i bgc : bluo

-t h ~ ~ . h t m l a unique THTML file of a user-defmed version bgc 3 blue of a web

component home = htmi is created.

In the existing file system, both the user-defined version and its THTML files are

put in the directory of their parent module. The narne convention of a THTML file of a

user-defined version is modul ename. encoded-user-def ined-versi on n-html.

The userdefined version information is encoded in

encoded-user-de f ined-vers ion. Variable n indicates the temporal version of the

userdefined version. For example, homm . n i ï ~ c a ~ i c o . 1. htnd indicates the THTML

source fiIe for erzglislt version of home, h W .

3.6 Conclusion and Further Directions of THTML System Design

One of the guiding principles behind the design of this THTML system was to

leverage the existing web architecture and HTML language. The language was extended

by adding TST's and TIS's. These two enhancements ailow web authors to specify

which pages or components should be instantiated aven a URL request from the reader.

These times can be conveniently specified using relative tems like, today and tomorrow

or in absolute tems using the Gregorian caiendar. Internally, these time elements are

converted to six time units and cornparisons between the time request and time intervals

are performed using these units. Both the intensionai and extensional rules are used to

resolve any arnbiguities and the results of a match are sent to the chent.

Since many browsers aiready exist that support conventional HTML, the system

was designed to be independent of any HTML browsers. Al1 the functionality for

determining which page should be instantiated in response to a request is located at the

server. The server stores the THTML files, along with its time interval starnp, in a tree

structure with a naming convention that encapsulates the parent-child relationship

between the modules and the different temporal versions. Although it is less efficient

than storing ail time stamps in a single file, it is more robust and facilitates

i mplernentation on a distri buted file system without any bottlenecks.

The server is also responsible for interpreting requests given by the user and

generating an I-ITML page in response. Since users specify time using the Gregorian

Calendar, a time irregularity-handling algorithm needed to be implemented to handle the

I web server req uest web clic

get the specific user- defined

target file result of the search

, tier keeping more cornplex i ,
rules and logic

Figure 4.13 Three-tier Model of THTML System

irregularities when perforrning addition and subtraction operations. The server uses this

algorithm to determine the correct local context from the inherited temporal context and

a tag's context modifier. The temporal versioning algorithm uses this local time point to

find the best-fit time interval. The generated page is sent in response to the client's

request. An updated page c m also be sent at user-defined intervals using push

technology. This technology leaves the responsibility with the server to keep the client

up to date with the latest information. The three different tiers are shown in the graph

above along with the communication among them. Additional tiers can also be added to

increase the functionality of the system. Further enhancements to the system can include

the following aspects:

At the front end, more expressive TST's can be added, including more user-

defined temporal terminology.

At the backend, the file system can be separated from the web server. Due to the

exponential growth of versioned entities stored in the file server, the THTML file system

should be made distributed.

On the web server, another improvement would be to incorporate an additional

intensional tier that includes more complex temporal rules that can be used to satisfy

additional requirements from web authors.

The server push technology c m be funher improved by including a friendlier user

interface for web authors and more advanced protocols at backend to reduce server load.

Chapter 5

THTML Implementation

5.1 Overview

In THTML al1 functionality is incorporated into the web server. The web client

issues conventional URL and receives conventionai HïML file from THTML server.

THTML is implemented independent of web browsers.

We witl introduce the implementation of the functionality covered in Chapter 4.

This includes the parsing of THTML files, the temporal versioning aigorithm, time

irregularity handling and the generation of conventional HTML pages, dong with the

data structures and the push irnplementation. They are discussed in the following order:

the THTML request handler and response handler will be discussed first. Then the data

structures passing between both functions are discussed. This is to keep user-defined and

temporal versions. The implementation of pusla technology is then discussed. Finally,

the chapter concludes with an example site written in THTML.

5.2 Design Requirements

THTml .O implements partial1 y the designs presented in Chapter 4. With

THTML1.0, TIS's c m be specified in an HTML file, which are the time the author

intends to post the file at. The TST's can also be defined, which can be either intensional

or extensional (including absolute time points) expressions. Semer push and the

cicstonzized calendars are not i mplemented at the current stage.

In THTML 1.0, after the reader issues a request to the web server, a particular

instance, narnely conventional HTML will be responded to the client at a given time.

The processes at the server are expanded as follows:

Parsing the global context

First, the temporal context should be extracted from the W. This context is used

by each component of the THTML page as the default global context.

Tirne Irregularity Handling

Time related operations are needed to reuieve the correct time context for a request.

These operations are as follows:

First, the GMT format of the user-request is converted into a local time before the

server can compute the global context.

Next, the local modifier and the global context are combined to retrieve the local

context for each temporal element.

- - - - - * - . - * - - - - - - - - - - - - * * - - - * - - - - - . - - - - - -

time version

configure a
conventional L Temporai element 1
HTML search target in file

prirse the temporal
L -

find the best-fit file elemenrs

I in file pool Enlarged temporal element 1
1

Figure 5.1 Enlarged THTML Web Server

Because of the irregularity of the Gregorian calendar, special tirne irregulariry

algorithms are used to obtain the correct temporal context.

Instantiation

The process is illustrated in Figure 5.1. When a temporal component is encountered

in a THTML file, it is converted to an extensional representation.

First. the global context and its local context rnodifiers are combined according to

the rules introduced in Section 4.2.3.1.1. After the local context is obtained, if the

component is an image or a SSI, the semer will search for the corresponding THTML

source and generate its instance. This instance will then be inserted into the newly

cseated HTML page. The process of instantiating an instance of a temporal component is

the same as converting a web cornponent with TCS into its extensional expression. Steps

3 to 6, above, repeats until al1 the components with TCS are converted. When

instantiating a component, the process above is applied recursively.

5.3 THTML Implementation

5.3.1 Hook-up with APACHE API

As was introduced in Chapter 2, THTML is implemented by extending a module on

the Apache Semer APL

The extended module structure is as follows:

modula thtml-module = €

sT-ANDARDnomm-sTmr,

th--ini t , /* initializar +/

NPLL, /+ par-diroctory config crartar * /

=,/* dir config mmrgar-dafault is to ovocrido*/

thtnil-conf ig, /+ remraz conf i g crortor +/

n r /+ sarvar config mmrgar * /

thtaU-c~lnllllrnd8, /+ C- tabla */

th--huadlars, / * 181 lis+ of handlers +/

tht~nl-wlata, /* [I l m1-to-filanrriu t r ~ s l a t i o n * /

m r / * [I l chack/vrlidata FPTP usor-id * /

NtRJi, /* [SI chock HTTP usor-id i 8 vrlid %ara**/

NüLL, / * (31 chock rccmss by host rddross, etc.+/

-8 / * 161 NIME typm chockor/imttmr */

N [f L L r /* 171 fixup~ * /

m r / * pb80 [9] loggar /

NtrL /+ phrsm [2J hardor prrsar * /

The above structure module is the link between functions defined by third party and

the APACHE API. It defines the 9 phases that the server goes through after receiving a

URL request. In each phase, the third party can specify a handler to customize the

senler's behavior at that phase. NULL indicates that the third party is not interested in

handling that request in that phase. Consequently, from the above THTML structure

module, one can see that there are totdly two handlers specified to handle THTML

requests, namely tbt-mi-handler and thtmixlate, at step [l] and [SI

respecti vel y.

Each handler is a function taking as an argument, a pointer to a structure calied

request-rec. This structure contains al1 the information for a particular request,

including the user-request-time in GMT format and whether the document sent

to the client should be cached or not.

It also contains information to be sent to the next phase. The thtmixlate

handler adds user defined version information to the structure to be passed to the

thtmlhandler.

In each phase, each handler, when invoked to handle a particular request-roc,

has to return an in+ to indicate what happened.

OK --- the request was handled successfully. This may or may not terminate the

phase.

DECLINED --- no erroneous condition exists, but the module declines to handle the

phase; the server tries to retrieve another.

An HTTP exror code--- it aborts handling of the request,

Therefore, the request and response handlers in THlML 1.0 have the same data

structure r e q u e s t - r o c as input parameter and both handlers return a status code. The

following sections give the functionality of them.

5.3.2 THTML Request Handler- t htmîxlat e

The request handler is the first phase of the server. The function is to handle the

user's request by translating the URL to a filename.

First the URI is translated into a filename, the server will search if it is a THTML

request by parsing out the version information in the filename.

If the file is a versioned entity, the server first checks whether it embeds user-

defined context and temporal context. if yes, it will then parse the user-defined version

information first and then the temporal context information. An error message wi11 be

returned if i t cannot be parsed.

The next step involves applying the best-fit algorithm to find the best-fit THTML

file. The following steps are involved in this step.

The URI is translated into filename first, the filename is judged. If it is a THTML

directory or a THTML file (implemented in i - i s -u se rd i r) , the temporal contexts

and the user-defined version information if any are parsed out. The request time point is

parsed out if there are no time contexts in the filename.(in t r a n s l a t e u s e r d i r)

With the time point and the time contexts in the filename, the server fin& the best fit file

(in get-th-vers). The above steps are illustrated with Figure 5.2. In the

get-the-vers function, the following processes are adopted to find the best-fit file:

the-f it function is adopted first to judge if each time stamp in a THTML file

matches the time point in the request. If yes, put the result pattern into a two dimensionai

array. The al1 the time patterns in a file are checked,

find-least-gap_timasatte~ is adopted to detexmine the best-fit among ail

the candidates.

Dunng the above process, if the best-fit file cannot be found, the server will wnte

an error message to the log file and return the error code ~TTPNOT-POUND.

Otherwise in step 3, the temporal version will be resolved in two steps. First the time

context is obtained from the THTML input, second we search for the bat-fit temporal

version.

translate-userdir

retum HïTP-OK treate it as a normal HTML file

Figure 5.2 Flow chart in the Request Handlet

If the target THTML source file is not found and the absolute THTML file does

not exist, the error message IfTTPNOT-FOU= is given. The error is dso written to a

Iog file corresponding to the THTML file.

Before an OK is sent, the user-defined and temporal context information is put into

the data member usrr-request->confia. The response handler can use it as the

global context for interpreting local temporal elements in the file.

5.3.3 THTML Response Handler- thtmi-handler

thtml-handler is the response handler, which handles the M I M E type

"text/htrmW. It is the last function to be executed before a response is sent to the

client.

Its functiondity is to translate the intensional elements in the best-fit file resolved in

the request handler into extensional representations and send the resultant conventional

HTML page to the client. It only handles versioned entities SSI, image and hyperlink.

~ECLINE is sent if the conf ig field in the user request is NULL. This indicates that

no version information was given.

First the server opens the best-fit source file that was found by the request handler

and begins to parse it. It is stored in the data structure requst-roc->f ilenrinsrr.

When it rneets a temporal or user-defined element in the file, it is parsed into an

extensional expression. In the first step, if the local context is not defined, then the

global context will be used instead. It is stored in the requsstrec data structure. It

performs the same procedure recursively on any included files. First, it checks if it is an

MTML file. If yes, it will parse the version information and extract the relevant parts of

the file. The function getfims-vers will be adopted again to retrieve the best-fit

file based on a given temporal context. The above steps are illustrated by the following

figure:

Whilm (ts=I-sub-translate)

C

case Z S m C T : do-select;

casa ICOLLZCT: do-col 1 ect ;

dmf ault t

1

in the i-euh-tanslate function, if a image, hyperlink and SSI are met, their

temporal contexts will be parsed out, and then the best-fit will be found. If other tags are

encountered, they are interpreted the sarne as the manner in conventional HTML.

While(next-tag) €

if (interesting-tag)

C

Fix- tag,

Print-tag

1

else if (c ron tag

Ignore the content in it and continue parsing

else if e indude-tag)

Do-incl ude

else

if (! skep-content)

P r i n t - t a g

The interesting tags are the three tags that may include the tempord context

switches. In the f ix-tag function, if a VMOD or TMOD attributes are met, their values

are extracted and merged with the globa! intensional and temporai contexts. The resulting

context is encoded into the element name. For a SSI and image tag, the best-fit file will be

retrieved and included.

5.3.1. An Example

When readers go to h t t p : / / v a l d e s . u v i c . c a : 8 0 8 0 / - l l i u / h o m e p g ,

the following steps are performed in the thtml-xlate phase. The directory

/-lliü/ .www/hornepg/home .html is checked to detennine if the directory allows global

readexecute access. Then it checks if it is a directory holding multiple versions. By

checking if it has a suffix . hfml and it is a directory, then goes to next step, check if it

contains any version information. Because home. html carries no temporal contexts.

The request time is retrieved as global context. Files in this directory are searched for

best-fit to the request time. In this example, the file aai.l.htm1 is the best-fit. The file

name dong with the user-defined contexts and temporal context are stored. Then the

th--handler will be executed. First the best-fit file will be opened, whose narne is

obtained in thtinlxlate, narnely aai.h+-mi in this case. In this file, when the

single temporal hyperlink <A HREF-"home. btmlu TMOD-ayesterdaym

VMOD="lang:englishu> yesterdayt s eaglish version is met

first, the value of the local modifier in VMOD is "langreaglish" while there is no

global version. Therefore, the archor's version wilI be changed to lang r french. The

archor's name wi11 be encoded as encoded<lang:english>6encoded<-

1~ .html When the user clicks the above link, the local context will be the global

context of the new page. The same steps are applied to parsing the new page.

5.4 Data Structure

The only data structure passed among the handlers is the roqueet-rec structure.

This structure mainly contains protocol-related information from the client, including

cache control. However, there are two fields that are especially relevant to THTML, the

requestconf i g and the requert-time fields. The raques+-time is used to

store the client's request time in GMT format. The request-conf i g field is used to

hold the structure versionp. This structure is where the temporal and user-defined

version values are stored. The time versions are stored in the tval field while the user-

defined versions are stored in the vals field. The data structure of versionp is

illustrated as follows:

in+ ndiau;

char tvrlt503 ;

c h u **dims;

1 *veraioxap;

The dim and vals variables are used to store the dimension and its comesponding

version information. n d h indicates the number of dimensions, and tval is used to

store the encoded time information. For exarnple, if the following user-defined version:

bgc : bl ue t lang : engl ish+img: big+platform: unix and temporal context:

d i m
L

bgc

- -

Table 5.1 Storage of User-defined Version

val

b lue

--

i m g

platform

1998 Dec I2/11:11:13 are encountered, they will be stored in versionp While tval

big
1

unix

stores

Y1998M12P12H11 I llSl3 (The format and meaning will be discussed shortly).

ndim is 4 indicating that there are four user-defined dimensions.

This structure hoids the global tirne and user-defined context, which will be used in

the response handler to interpret the local intensionai and temporal elernents.

5.5 Retrieving the best-fit THTML file

S.S. 1 Retrieving Candidates

Function get-th-vers is used to find the best-fit interval candidate- The

process of finding candidates is the process of finding if the time point in a query lies in

the time interval starnps defined in the THTML files.

In order to compare them, THTML puts the pmed time pattern found between the

<won> and c/cron> tags into the following structure.

typedœf struct t h {

char* .oc;

char* zain;

char* hour ;

char* dom;

chrr* amnth;

char* yorr;

char* dw;

in+ f lrgt

> t i a u S ;

The fields hold respectively: second, minute, hour, day of month, month, year and

day of week. The last flag indicates the time pattern, which can be one of the constants

BEFORE, AFTER, DURING, RECURRING. TH"ïML encodes the two end points of

a time unit into one field and decodes it later when cornparhg it with a time point. Since

onIy 2 digits are needed to represent each time unit, except for the year, then we cm

encode the upper endpoint for each unit as the 3rd and 4th and the lower endpoint in the

1st and 2nd position. The year is encoded in a sirnilar manner except using 4 digits each

for the upper and lower endpoint. When comparing times, we always start with the most

significant unit, so we compare the year first, followed by month, date. hori+, minute and

second. Unnecessary cornparisons are avoided by discarding elements as soon as one

rime unit does not match.

There are severd ilfferent situations that need to be handled by the server. These

situations will be described below.

BEFORWAFTPIR pattern comparison:

For the BEFORE pattern, when we compare each time unit, the function

get-the-vers retums a 1 if the time request is less than the time starnp, a -1 if it is

greater than the time starnp or continue with the next unit if they are equal. If the 2 time

points are exactly equal, we also return an error, namely -1. A similar situation oçcurs

for AFTER patterns.

If a DffRING pattem is encountered, the corresponding unit will be decoded

first.

When the first data type is encountered in one time starnp that cannot hold the data

in timestarnp exclusively, the matching will stop and the function get-tirna-vers

returns -1 to the calling function indicating failure; otherwise, if there is any time unit

that contains the corresponding data unit in time point exclusively, the function retums

immediately with the value 1. Because no matter what value is in the remaining smdler

data units, it is always fits in the time pattern; Lf either of them overlaps with it, the

process of comparison will continue recursively with the remaining time units until it is

clear whether the time point fits in the tirne pattem or not. At the end, it tums out that

the tying crin not be solved between the two time points, i.e. the time point is overlapped

with one of the end point of the timestamp, 1 is returned.

If a recurring pattem is encountered, the server compares each individual time

unit. If a time unit containing intervais is encountered, it will be treated in the same

manner as a 'during' pattern. The one thing that distinguishes this pattern from al1 others

is that if a match is found in a time unit, only the matched value is stored and the other

time pattern :

1 2 3 4 5 6
""Y"

of the Iargest unit

1

Figure 5 3 Algorithm of Refmement Relationsbip Remlution berneen '%eforeW Patterns

recurrïng values are discarded.

The situation is simplest in a comparison between two time points. In this case,

we just need to match al1 time units.

If a match is found, the candidate is stored in an array so that it can be compared

Iater with other candidates to determine the best-fit.

5.5.2 Resolving Ambiguity

In the fol lowing section, on1 y ambiguities among temporal versions are discussed.

The ambigui ty of user-defined versions is detailed in the corresponding literature [101.

The ambiguity resolution i s handled in the function

find-least-gap-tiiH~attern, which get-thne-vers uses to find the

best-fit THTML file or the best-fit tirne interval in a single file. In this function, if more

than one pattern matches the time request, the rules introduced in Chapter 3 are applied

to solve the ambiguity. The matched patterns are stored in a two-dimensional m a y . The

year month date hour minute sec pattern

Table 5.2 Temporal Pattern Candidates

structure is illusuated in Table 5.2.

The cornparison retums the best-fit pattem for further cornparison among the

candidates, or -1 to the calling function get-th-vers indicating there is

ambiguity, in which case the server finds the absolute THTML file instead as the best

fit. If it does not exist, a log is written in THTML log file indicating the vanilla version

does not exist.

The server goes through al1 the candidates, to find the pattem with the highest

refinement level. (The order of refinement, from highest to Iowest, is point, during,

nfierhefore, and recurn-ng.)

If on1 y one pattern is found in the server, it will return that pattern.

Note that if one of the matches is a point pattern, it is the only one (since time

points are unique). So it becomes our best-fit.

If there is more than one drrnng pattem, the difftime function is cailed to calculate

the time intervaI. The smallest interval is the best fit.

If both a before and an a/er pattern exist the most refined pattern, the error code

indicating arnbiguity is retumed in this situation because there is no way to compare the

time gap of these two patterns.

If the most refinement patterns are either of afler or before, the value of dfl ime

between the end point and the target end point is the criterion to choose the best-fit

candidate. The one having smaller value is the best-fit indicating that it encapsulates

more closel y the time point requested.

If there is more than one recwring pattem candidate, the algorithm to find the

best-fit is sirnilar to the interval pattem, the time units are compared frorn the highest to

the lowest.

The arnbiguity aigorithm among files or in one file is the same, except that in the

ambiguity handling among files, a file index is kept dong with its best-fit pattern in the

data structure. When the ambiguity is solved, the corresponding file index is returned so

that in the response handler, the server can open the best-fit file.

5.6 Time irregularity Handling

As mentioned in Chapter 4, speciat functions (cirivers) are provided to handle time

irregularity.

The functions provided are based on the Gregorian Calendar:

1. getDMonth, which returns the number of days in a given month and year.

2. getDorv, which returns the day of week for the given date.

When THTML merges local and global temporal contexts, THTML merges the

two time patterns starting from the smallest time unit to the Iargest, i.e. from the seconds

to the years.

In THTML, the day of the week information is calculated when necessary and so

it stores the date using only the 6 time units mentioned above. The reason for this is as

follows:

1. to simplify the algorithm

2. to avoid mismatches in the date and the day of week given. For example, if the

user gives the time pattern:

f + 5 4 1996 1

and April 5 happens to not be a Monday. lXTML assumes that the date is correct in this

situation rather than the day of week. There are however situations when we need to

convert from the date to a day of the week and vice-versa.

When combining local and global contexts, THTML has to convert the week

information given by a user into a date. For example, when a user defines

TMOD=#f1d+2wu in his query, it adds 2 *M+l days to the global context.

Another situation is when it meets a timestamp indicating the dorv. THTML has to

calculate the dow of the time point in clients' request for comparison.

For example, the timestamp

1 2 3 5 1998 1,2,3

is compared with the time point May IZ,12:12:I2,1998. The THTML server will

calculate the day of week of the time point to check if it matches the dow given by the

timestamp.

if overflow: n/60 n/60 n/24 n/MaxDOfM n/12

Figure 5.4 660verflow" Arnong Time Units

5.7 Other Aspects in Implementation

Version Encoding and Version Decoding

As seen in the design section, TIïï'ML encodes the version information in the file

narne and decodes it when the server retneves the best-fit version. There are a couple of

reasons why it is encoded. The main reason is to prevent the laymen frorn haccking the

system based on the version information. The second reason is to standardize the version

information (especially user-defined versions) with standard printable ASCII chmcters.

In THTML, the absolute and relative time contexts are encoded using different

patterns so that the server can easily differentiate between the two and process them

accordingly.

For example, if a link

Cr hrmf- "A L I W , T1(00-ald-2w**>

is encountered, the time context is written as SOMOIOD-13MOYO and encoded

foIIowing the filename of the link with a separating symbol Q in between.

When the user clicks on it, the server will decode the time information. Since it is

relative tirne, a global context is needed for it to merge with. Otherwise the globai time

context is ignored and the decoded absolute time is used instead as the time for the

query.

Implementation of Server Push

Semer push was not implemented in the current THTML software for the following

reason:

In order to implement server push technology, we need the ability to send multiple

parts of a single document using the HTïP/1.0 protocol. However APACHE-1.2.5 has a

bug where the server cannot be modified to keep multiple connections open and

efficiently close them at the user's request. The details of the bug can be found in

APACHE'S bug reports.

5.8 An Example Site

In order to clarify the design in THTML server. a simple example site is designed

and implemented. The experiment site is about the horoscopes. The time of clients'

request determines the corresponding page to be shown. Each of them also have versions

having the picture of the sign, or not, the user can also change the background of the page

according to their preference.

Each page is linked with the previous sign page and the next sign page, so that the client

can iteraie al1 of the sign pages from either of them. The page combines temporal and

user-defined HTML together. One can see how THTML creates a dynamic sire. With

conventional HTML, if each page has three versions of pictures and three versions of

back~ound. the total version will be 3*3 pages, each has the storage equai to the

combined ones of the background and picture version.

While in THTML, 3+3 files are needed for the same arnount of versions of the same

site. The storage of the file is the same as each of them, as seen above, THTML Save

huge storage in versioned site compared with conventionai HTML.

In the above THTML, the client wilI see different pages of horoscope depending

on the time of retneving the page. The time accords to the time of horoscope at that

time. In it, the request of previous and next one are also implemented with requests for

particular temporal instances. The following two screenshots are a THTML source file

and the corresponding conventional HTML page in response at a particular time. Fiam

this example, one can see how to create a temporal site in THTML.

Figure 5.5 An Extension Sent to a Client at the Request Tirne 10:10:58 am, Jan 14,OO

Figure 5.6 The THTML Source for the Generated HTML Page Shown in Figure 5.5

79

Chapter 6

Conclusion and Further work

6.1 THTiML----Dynamic HTML

There are two ways in which HTML pages can be dynamic. One method is to

have the client's browser dynamically interpret an html file. DHTML belongs to this

category. In DHTML, dyniunic features can be implemented with functions written in

Javascript that can be interpreted and run by the clients' browsers. The other method is

to have the server continually generate HTML files on the fly and sending them to the

client. Examples of this method include Microsoft's ASP and XML. THTML introduced

in this thesis also belongs to this category.

A THTML server behaves differently than an HTTML server.

First, it provides temporal instances of a URL at a particular tirne context. It is able

to do this by first, providing a system to store and retrieve the most relevant time-

stamped HTML sources. Second, it also allows the client to ernbed time sensitive tags

into conventional HTML components. Third, with push technology incorporated,

T H T m sites are updated using user-defined frequencies and preferences.

The above features are based on two major aspects in design. One is the TIS design

in a temporal HTML file; the other is the refinement ordering of the time intervals.

In the former, the TIS is the time that a web document is expected to post. THTML

combines the two data types in its representation: date and time to cover the required

ganularity. The format is as follows:

second m i n u t e hour day month year [dow]

With the above data type, basic time patterns in web authors' demands can be

represented, which includes before, afier, during, time point and recurring pattern.

In the latter, the extensional and intensional rules are specified in order to minimize

the ambiguity that may occur if multiple time intervals satisfy the tirne point in a client's

request. The extensional mle specifies that the smaller tirne gap of the time interval

stamp to a particular time point, the better-fit of the THTML source file it associates

with. The intensionai rule further refines the extensional rule to help resolve any

ambiguities. The refinement order of the five time patterns that THTML supports is

(from the lowest to the highest) recirrring, before/after, during. tirne point. Among them,

before and @er have the same priority. Consequently, refinement ordenng is not only

related to the temporal gap but also the type of intervals. With the above algorithm, the

ambiguities involved in finding the best-fit interval can be minimized. Therefore, the

instance as server's response is generated using the THTML file whose time interval

stamp fits the time point in request best.

6.2 Further Implemen tations

THTML was designed to fulfill more complex temporal requirements at the front-

end. However some of these features still need to be implemented. They are:

Server push technology needs to be integrated into the system. The server push

interface needs to be enhanced with more options like alIowing an aiarm and pop up

window when the site is updated. It should also allow the user to define the frequency

of the updates.

The file system can be isolated from the file server and developed into a large file

pool. If temporal files are perceived as temporal data, ail transactions can be perceived

as storing data in one big repository and allowing the quenes to retrieve the needed data

from this repository.

Natural language can k used in place of the time sensitive tags to make it more

user friendly. In order to support the new features at the front end, another intensional

tier can be incorporated at the back-end. This may include compiex reductive niles and

mathematical expressions to support more complex temporal requirements at the front-

end. For example, if the author intends to post a page with a complex time pattern

according to the Fibonacci function based on the two initial time points. With the

Fibonacci rules incorporated at the backend, THTML is expected to fulfill the

requirement.

6.3 Possibility of Combining THTML, DHTML and XML

Although the three enhancements of HIML provide dynamic solutions from

different perspectives, due to the fact that they are al1 based on hierarchical web

document philosophy, there is possibility of combining them in use.

With Java and JavaScript

lava is an object-oriented programming language that can be run on Web. It is

embedded in HTML file, the browser fin& the Java class file in the server and runs the

program with Java Virtual machine instailed.

Javascript is an object-oriented scripting language embedded in HTML file. By

defining

RVNAT tag, the browser can run the script at client side or server side. One

enhancement is making it more interactive with callback functions.

DHTML perceives any part of the content as an object, and allows interaction and

behavior of each with JavaScript and CCS.

THTML is the versioning soiution of a web site with time With DHTML combined,

any part of the web content c m be distinct as a temporal versioned object (web

elements). It will make the definition of web document beyond the limitation of time

and content, which will give the web author more flexibility in designing web

documents.

A Java and the object including server side Javascript (Serverlet) can also be made

temporal versioned entities. Based on different time, different Java program will be

triggered at server side. (The author has no clue of how to combine the client-site

JavaScript with THTML)

With X M L

XML allows user-defined tags in HTML file. There is a XML parser to parse it.

Based on the particular data in particular user-defined tag, particular business logic is

adopted at web server. From this aspect, it is sirnilar to THTML. If THïML is

cornbined, XML elements can have multiple versions in time, different versions can be

stored rit server side. By combining the two, the user can write a document with user-

defined styles as well as user-defined frequencies.

6.4 Prospect

One can see that as tirne-sensitive information on the web becornes more prevalent,

the greater the need for adoption of THTML for such applications as newspaper and

stock market sites. It ailows the web readers to retrieve a version with a particular time.

It also facilitates the planning of a site that changes very frequently without the user

having to update it with the same frequency. With further implementation and the

combination with the new web technologies, THTML will become a powerful authoring

tool for dynamic web sites in advanced web applications.

Bibliography

[1] W.W.Wadge, "Possible wOOrlds", in Mehmet A. Orgun, Edward A. Ashcroft,

edi tors, Intensionai Programming 1, pages 56-62. Singapore: World Scientific, 1996.

[3] NCS A server documentation, http://hoohoo.ncsa.uiuc.edu, 1995

[3] W. W-Wadge and Taner Yildirim, "Intensional HTML", in Bill Wadge, editors,

Proceedings of the Tenth Intensional Symposium on Languages for Intensional

Programming", Victoria, B.C. Canada, 1997, pp.34-40

[4] J.A.Plaice and W.W.Wadge, "A new approach to version control", IEEE

Transactions on Software Engineering, March 1993, pp. 268-276.

[5] Walter F. Tichy, "RCS- A system for version control", Software-Practice and

Experience, vol. 15, no 7, 1985, pp.637-654

[6] W. W .Wadge and Edward A. Ashcroft, "Lucid, the Dataflow Progamming

Language", Academic Press hc. 1985

[7] Mehmet A. Orgun and Weichang Du, "Multidimensional Logic Programming:

Theoretical Foundations." Theoretical Computer Science, Vol 185, 1997, pp3 19-345

[8] Avigdor Gal, Opher Etzion, "Extended Update Functionality in Temporal

Databases", Temporai Databases, 1997, Dagstuhl, pp 56-95

[9] Robert Thau, "Design considerations for the Apache Server M I " , Fifth

International World Web Conference,

tittw://w\v\v5conf.inria.fr/t?ch htmi/paoermO/Overview.html

[101 Gord Brown, "Intensional HTML 2: a practical approach, Master thesis 1998

[I l] Ari Luotonen, "Web Proxy Servers", Prentice Hall, 1997.

[I l] Yijun Lu, "Concept Kierarchy in Data Mining: Specification, Generation and

Implementation", Master thesis of Simon Fraser University, 1997, pp33-59.

[13] Mehmet A. Orgun, William W. Wadge, 'Extendmg Temporal Logic Programming

with Choice Predicates Non-Deterrninism." Journal of Logic and Computation Vol 4,

1994, pp 877-903

[14] Chuchang Liu, Mehmet A. Orgun, "Dealing with Multiple Granularity of Time in

Temporal Logic Programming", Journal of Symbolic Computation, Vo122. 1996. pp

[15] Mehmet A. Orgun, William W. Wadge: A Relational Algebra as a Query Language

for Temporal DATALOG. Database and Experts Systems Applications, 1992, pp 276-

28 1

[16] Opher Etzion, Avigdor Gal, Arie Segev, "Data Driven and Temporal Rules in

PARDES", Rules in Database Systems 1993, pp 93-108

[171 Apache server documentation, http://www.apache.org, 1995

[IS] W.W.Wadge, "Intensional Logic in Context", Worid Scientific, November 23,
1999

1191 Mchael Bohlen, "Managing Temporal Knowledge in Deductive Databases", PhD

thesis, 1995, Swiss Federal Institute of Technology

