Temporal HTML
By
Lina Liu

M.Sc. Harbin Engineering University, [995

A Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE
in the Department of Computer Science

We accept this thesis as conforming to the reguired standard

©Lina Liu, 1999
University of Victoria
All rights reserved. This thesis may not be reproduced in whole or in part, by photocopy

or other means, without permission of the author.

i~l

National Library

of Canada du Canada

Acquisitions and Acquisitions et

Bibliographic Services
395 Wellington Street

Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliotheque nationale

services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your hie Votre reference

Our fie Notre reference

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-48203-0

Canadi

Supervisor: Dr W.W. Wadge

ABSTRACT

Temporal HTML (THTML) as presented in this thesis is an extension of HTML -- a
high level authoring language for World Wide Web documents. THTML incorporates
temporal logic into HTML to provide an efficient solution for authoring and maintaining
time-sensitive web sites. In THTML, the same URL request may result in different
HTML pages for different request times. This request time may be the local time that the
reader sends the request, or it may be sometime in the past or even the future. The
HTML page sent in response to the request is an instance of the page determined by the
particular time context, i.e. the reader’s request time. The instance is generated using the
THTML source files for each web component whose time interval stamps most closely
approximate the time specified. With server push technology incorporated into the
design, the THTML server periodically re-instantiates the previously requested URLs in
each web session and re-issues the updated instances as time elapses. THTML 1.0

implemented the above design partially.

CONTENTS

CON T EN T S . L e e iv

LIST OF FIGURESt e e viii

LIST OF TABLES. ...t ettt tee e e ee e sneas Xi

ACKNOWLEDGEMENTS.............. e TSRO <

Lo IntrodUcCtion ...t e et 1

.1 Introduction to Temporal HTML... ..., 1

LI THTML SOIUtON ... et 3

1.2 The relationship between IHTML and THTML ...l 5

I3 TerminolOgY. e e 6

1.4 The structure of the Thesisc.cuiiiiiiiiiiiiiiiiiiii e 6

2. Back@roUnd ... e 7

2.1 Intensional Logic e 7

2.2 Temporal Logic-An Instance of Intensional Logic............................ 8

2.3 An Application of Intensional Logic on Version Control 8

2.3.1 Existing Problems in Version Control 9

2.3.2 Intensional SOIULION e 11
2.3.2.1 Intensional Configuration Rule and Refinement

Lo (o =] ot 11

2.3.2.2 4SUbVErSION™ ... e 11

2323 Version JOin ..ooonei i 12

2.3.2.4 Discussion of the approach ... 12

2.4 Application of the Version Control Approach to WWW-Intensional

3 10017 P 12
241 IHTML IntroducCtion ..ottt eeee e e eenes 13
2.4.1.1 Intensional Context Switches in Web Elements 14

2.4.1.2 Multiple Candidates and the best-fit ..., 16

iv

25 Base of THTML L0 ..ot e 17

25 THTTP Protocolooinminii e 17

2.5.2 Server Side Software—Apache Server API12.5.1 18

2.5.2.1 Common Server Behavioroocoiiiiiiiiiiiiiiiiiiii i 18

2.5.2.2 Apache Solution Features ... 18

3. Time in THT ML . oo ettt e 20
Bl OVOIVIEW -ttt e ettt e e e e e 20
3.2 Introduction to the Temporal Interval Stamp and the Time sensitive Tag 20
3.3 State-of-art Time Representations.cooo oot 21
3.3.1 Time Interval Stamp Designo ee 21
3.3.2 Time Point and Time-interval Representations in THTML 21
3.3.3 Time Pattern Design in Time-Interval Stamp 23
3.3.3.1 Temporal Data Type in THTML ...t 23
3.3.3.2 Time Pattern Definttiont 24
3.3.3.3 Discussion of Normalization Operation..................ccoeveiiiiiiiiinnne 26

3.3.4 Conclusion of Time Pattern Design ... e, 26
3.4 Best-fit Interval Selectionina TISL. e 27
34. 1 Extensional Rule ... e 27
342 10Intensional Rule ... oo e 28
3.4.2.1 Ambiguity Handling of Same type of Temporal Patterns 29
3.4.2.2 Ambiguity Handling of Different type of Temporal Pattern...............30

3.5 Best-fit Interval Selection among Multiple TIS’s ... 31

3.6 CONCIUSION . ceoiei e et ettt n e s 32
4. THTML System Design ... e e 33
e O L T (L PO 33
4.2Language DeSiSNcounniiiii i e 34
4.2.1 Design Requirement......... ...t eaees 34
4.2.2 THTML Language Enhancementsto HTML ... 35

4.2.2.2 Time Interval Stamp (TIS)cooiniiiiiii e 37
4223 Creationof aTHTML filecoooiiiiiiiiiii e 38
4.2.3 Language SEMANUICSc.ceerunnieiniitiinnterne it ee e s nererananneas 38
4.2.3.1 Semantic Distinction between HTML and THTML 39
4.2.3.1.1 The Global Context and Local Contextcoiiiie 39
4.2.3.1.2 Temporal Context Switches (TCS)..........c.ooiiiiiiiiiiii.. 39
4.2.3.2 Web Intensions and Web Extensions........................... 42
4.2.3.2.1 “Now" Discussion — Intension and Extension 42
4.2.4 CoNCIUSION . .oeit ittt 43
4.3 Back-end System DeSiQNooouiiiiiiiiiii e 43
4.3.1 Design Requirements 43
4.3.1.1 Tree SHUCIUTE ...ttt e eaeees 44
4.3.1.2 Naming Convention of THTML files ... 45
4.3.1.3 Design of Time Interval Stamp (the timetag) 45
4.3.1.4 Conclusion of File System Designcooooiiiiiiiiiiin. 46
4.4 Algorithm Designoooniiiii i 46
441 THTML Web ServerModel ... 46
4.4.2 Time [rregularity, User-defined Temporal Terminology and Hierarchy of
User-defined Calendarscooooiiiiiiiiiiiiii i v 47
4.4.2.1 Gregorian Calendar and its Irregularityoiie 47
4.4.2.2 User-defined Temporal Terminology and Hierarchy of User-Defined
Calendars(not implemented yet) oo 49
4.4.3 Temporal Versioning Algorithm 51
4.4.4 Push Technology and Dataflow Model of WWW 51
4.4.4.1 Problem of Cache in the Existing Web Model 51
4.4.4.2 Possible SOIULIONS ...t 53
4.4.5 Conclusion of Algorithm Designccoooiiiiiiiiiiiiiiiiiiiiiie 54
4.5 Combination with IHTML, 55
4.6 Conclusions and Further Directions of THTML System Design 57

vi

5. Implementationoooiiiiiiiiii it e 60
S EOVEIVIEW ..ot e et e e e 60
5.2Requirement DESignouiniiiiii e 60
53 THTM Implementationoiiiiiiiii ittt e e e ceeeeanan, 62

5.3.1 Hook-up with APACHE API, 62
5.3.2 THTML Request Handler—thtml_xlater 64
5.3.3 THTML Response Handler—thtml_handler 65
S34 AnExample ... 67

5.4 Data SIUCIUTEtiititi ittt et eee e 68
5.5 Retrieving the best-fit THTML fileoo e, 69
5.5.1 Retnieving Candidates ..., 69
5.5.2 Resolving Ambiguityoo i, 71

5.6 Time Irregularity Handling 73
5.7 Other Aspects in Implementation ... 74
S.8An Example Site ...t e 75

6. Conclusion and Further Work ..o s 79

6.1 THTML—"Dynamic HIML” ... e 79
6.2 Further Implementationt e enes 80
6.3 Possibility of Combining THTML, DHTML and XML 81
6.4 PrOSPECT. ... ittt e 82

Bibliography. ... o e 83

vii

LIST of FIGURES

Figure 1.1 Yesterday’s Instanceof a URL........ i, 4

Figure 2.1 IHTML working Model i eiiens 10
Figure 2.2 Typical Client/Server Model........ i, 16
Figure 3.1 Best-fit among the same type of temporal patterns 27
Figure 3.2 Comparison between “After” Pattemns ..o 28
Figure 3.3 Comparison among different types of temporal Patterns 29
Figure 3.4 Comparison between “Recurring” Patterns.......................ooool. 29
Figure 3.5 Comparison between Bounded Interval Patterns................................. 29
Figure 4.1 Three-tier Model of THTML Systemcociciiiiiiiiiiiiiiiiaenan... 34
Figure 4.2 THTML Enhancementinto HTMLo 36
Figure 4.3 Server Interpretation Model 40

Figure 4.4 the Local and Global Context i, 41
Figure 4.5 Time Conveyance in THTML system ..., 44
Figure 4.6 System Structure Designoo it 47
Figure 4.7 THTML Working Model e, 48
Figure 4.8 Interpretation from THTML to conventional HTML 48
Figure 4.9 User-Defined Calendars, Order and Operationsccccoeeeeeeiinn.... 51

Figure 4.10 Intensional tier Supporting User-defined Time Concepts..................... 51

Figure 4.11 Server Push e 55
Figure 4.12 Backend Components of THTML et 56
Figure 4.13 Three-tier Model of THTML Systemccociiiiiiiiiiiiiiiiiiiienn, 59
Figure 5.1 Enlarged HTML Web Server ..., 63
Figure 5.2 Flow Chartinthe Request Handlero, 66

Figure 5.3 Algorithm of refinement relationship resolution between ‘‘before”

Patterns.......... ...l et ettt 72
Figure 5.4 “Overflow” Among Time Units i, 75
Figure 5.5 An Extension Sent to Client at request time 10:10:58 am Jan 14,00 78
Figure 5.6 The THTML source for generated THTML page shown in Figure 56 79

viii

LIST

OF TABLES

Table 1 Storage for User-Defined Versionscc.coooiiiiiiiiiiiiiiiiiiiiineaanne. 69

Table 2 Temporal Pattern Candidates

ix

ACKNOWLEDGEMENTS

[would like to thank my supervisor Dr.W.W.Wadge, for his support, both financial
and intellectual. THTML also originated from him. I also thank ISLIP 17 conference, on
which my imagination is inspired about the high level design of THTML. I would also
like to appreciate my dear sister, Mom and Dad, for their support and courage for
decades.

[would like to appreciate Gordon Brown for his free [HTML 2.0, on which I build
the THTML 10. Finally I would like to thank Som Tang, Micheal Ko and Paul Swoboda

for their help in proofreading the thesis.

Chapter 1

Introduction

1.1 Introduction to Temporal HTML

Since Web technology provides an integrated presentation of all types of
information (text, picture, video and audio) on a single screen, individuals and
institutions are encouraged to establish their own Internet presence. This multi-media
environment can consist of text, graphics, audio, video, three-dimensional models or any
other information that a computer can process.

Web technology is based on 2 protocols, namely HTML and HTTP. Based on the
TCP/IP Internet layer, HTTP dominates the protocols defined by W3C for the World
Wide Web. In HTTP, a set of negotiations is defined between the client and server so
that actions performed at the client can be interpreted by the server and the correct
response can be sent to the client. For example, the ger method is defined to retrieve
certain resources at the server site. HTML (hypertext markup language) is normally
considered a high-leve! authoring tool to write web container documents that hold
different types of multimedia information. Web browsers can interpret the different
types of data and display them on the screen. HTML is actually a protocol implemented
on top of HTTP for presenting information on the web. It features an archor system by
which any web page can refer to other pages, without any knowledge of the contents of
the other page. It gives the web a better look and feel than that of a static electronic
library.

Although HTML serves many applications very well as a high-level authoring
language for the World Wide Web, it provides no temporal support for a site. With the
raptd development of web technology nowadays and the appearance of more time
sensitive applications on the web, it is no longer sufficient to provide only static
information. Creating a dynamic site becomes critical for success. The non-temporal

feature of conventional HTML is a serious hindrance to creating a more dynamic World

Wide Web. Some of the problems are concluded as follows:

1. In addition to retrieving the current version, web clients sometimes wish to
retrieve historical information. This occurs on sites related to the news or
stock market where retrieval of information based on time is necessary.
However, the existing HTML protocol only supports keeping one version of a
document in the system.

2. In time critical web applications, such as the stock market, information being
viewed at one moment might become stale in the next. HTML does not
provide a mechanism for synchronizing the server and clients, so clients will
not be informed of changes to the information.

3. The demand for web authors to create dynamic rather than sratic sites is
increasing dramatically. They need to decide when items should be posted,
and not just what should be posted. The existing web servers do not have a
mechanism selecting the file corresponding to a given time. The author has to
manually update the site to make it appear dynamic from the client’s
perspective.

With the above demands for temporal support on the web, a lot of effort is being
devoted to this area at research institutions and companies such as Netscape and
Microsoft. As a result, many HTML enhancements have appeared such as JavaScript,
DHTML, XML etc.

Although they improve the dynamic features of the web and make the web more
interactive, none of them addressed the temporal demands of the web in a natural way.
For example, XML provides developers with their own special purpose tags that can be
defined for a variety of purposes. DHTML extends HTML by allowing multimedia
applications to run on a user’s desktop without interaction with the server. It also
supports interactive databases and documents. However, the above enhancements don’t
provide a natural and efficient mechanism to allow servers to support complicated
remporal phenomena in web applications.

With the introduction of Temporal Logic (TL), THTML provides an efficient

solution for most temporal demands of a web site. It has great potential for adoption in

N

complicated time-critical web applications such as the stock market, newspaper, web
commercials etc.
THTML enhances the following features to HTML:

1. THTML provides a mechanism to allow one to define arbitrary versions
for the same HTML file. It also allows one to define versions for parts
of a page.

2. THTML also allows the author to define multiple instances of an
HTML page, each of which has a time interval stamp. This time
interval stamp determines what content should be posted based on the
URL request and the request time from a client.

3. A time point can be specified by the client to indicate the specific
instance of an HTML page it requires. The time can be a relative point
to now such as yesterday or the day before yesterday, or an absolute

time point such as May 3rd, 1998 12:12:12, etc.

1.1.1 THTML Solution

THTML is a web-authoring tool intended for time sensitive web sites.

Time critical web sites have two basic requirements. One is that the page being viewed
by the reader (the people who access or browse the site) is dependent on the time. For
example, on a course web site, an instructor often wants assignment one posted during
the first week. The solution of the assignment is posted in the second week along with
the problems for assignment 2 and so on. The course notes should also be posted at
appropriate times to match the schedule of teaching. In a newspaper site, different
content should appear every day, and sometimes the reader would like to view
yesterday’s page as well as today’s page.

The other requirement is that the content can be updated at customizable intervals,
preferably automatically. This is often critical for stock markets where a user would like
to see the most recent content of the site.

THTML fulfills the two requirements with a solution based on discrete temporal

logic. THTML allows a single source file to specify multiple instances of the

corresponding page — different versions whose layout and content vary with time. Every
request for a particular page in a THTML site is accompanied by a request time, which
specifies the instance of the page that the reader wishes to view. The request time is
often the current time but may also be a time in the past or even the future.

The author can specify multiple instances for a source file, each instance associated
with an interval label, in which the author can specify a time period or time point or sets

of time periods or time points. When the server receives a request for a URL from a

| | .
request time calculated
request for a URL P rea l

search for the file pools

reader’s request

generates an

instance of the paged

A &

resulting page most relevant rirle
instance

y issues the resulting page to most relevant banner

instance
the reader as the response

most relevant body
instance

most relevant footer
instance

Client Seerr

Figure 1.1 Yesterday’s Instance of a URL

reader, the instantiation (the process of taking the general definition of a time-varying

page, combining it with a particular time-point and producing the instance) of the source
file begins. The page of the URL is configured dynamically with the THTML source file
of each component whose time interval label is most relevant to the request time
according to the temporal versioning algorithms. The page will be issued to the client
when it is created, and discarded afterwards. The dynamic configuration and the
temporal versioning algorithm guarantee that the resuiting page sent to the client is an
instance at the time context specified in the reader’s request time. Suppose, that a reader
accesses a newspaper URL which has the following components: the title, banner, body
and footer and requests yesterday’s instance. The instance of each component
corresponding to the reader’s request time, namely, the local time the server receives the
request minus one day in this case, constitutes a page for the requested URL and it will
be issued to the reader as the response. An instance of each component is generated
using the THTML source file that is most relevant to the request time.
Further, web pages change as time elapses, the instance a user is viewing may
become obsolete. With push technology, synchronization can be achieved between the
client and the server. After the initial request for a URL, the server sends updated

instances to the reader at frequencies that the reader specifies.

1.2 The Relationship between IHTTML and THTML

The implementation of THTML is based on Intensional HTML 2.0, which
supports sites having multiple user-defined versions. THTML 1.0 extends it by allowing
users to create temporal variants of each arbitrary user-defined version and associate
time with each temporal variant.

Because THTML adds a time dimension to the IHTML version space and specifies
more time related version control algorithms to eliminate temporal version ambiguity,

THTML makes the web site more dynamic and time-sensitive.

1.3 Terminology

A few terms are used in particular ways in this thesis and the meanings are

explicitly declared here:

Readers-- the people who access/browse the web.

Authors-- the people who write the source for the web site.

Source files-- the source which the author writes and which generates pages and
components.

Time point -- a complete temporal context, a particular point in time.

Instance—the version of a page/component/site corresponding to a particular time
point.

Instantiation — the process of taking the general definition of a time-varying page,
combining it with a particular time-point and producing the instance.

Time interval stamp—the time periods or time points specified at the beginning of a
THTML source file, which is the basis for determining the most relevant instance to the
reader’s requested time. It is distinguished with a tag pair <cron> and </cron>.

Temporal versioning algorithm—the rules for determining the most relevant

instance of a source file.

1.4 The Structure of the Thesis

The relevant background knowledge is introduced in Chapter 2, including the
Intensional Logic based version control approach. Knowledge needed to implement
THTML is also introduced. namely the HTTP protocol and the client/server model for
communicating over the Intemet. Chapter 3 examines THTML from three different
perspectives: Language Design, System Design and Algorithm Design. Further
enhancements to each design aspect are also discussed. Chapter 4 shows how to
implement THTML on a web server using the Apache 1.2.5 API. Chapter 5 concludes

the thesis and proposes further directions for research.

Chapter 2

Background

2.1 Intensional Logic

In natural language, there are many situations where the semantics of a sentence
depends on implicit contexts. For example, in the phrase

Today's temperature is five degrees less than yesterday's temperature,
the value of today’s temperature relies on the value of yesterday’s temperature at the
same place, therefore, the sentence “roday’s temperature is 5 degrees” may or may not
be true.

Although implicit context sensitive expressions have for a long time been
considered a non-mathematical and illogical aspect of natural language, logicians have
tried to capture them in formal methods. Intensional Logic is the result. It is the study of
context sensitive properties using formal methods. Intensional Logic uses predicate
calculus to represent these context sensitive expressions.

An Intension is an entity that depends on implicit contexts. For example,
temperature is an intension that is variable in time and space. The time and place that is
implicit in a sentence determines the temperature’s value. In IL, intension and extension
are distinguished for an expression. It is based on the distinction between sense and
denotation of it. Intension is the entire concept of an expression—what we, at some
level, intend when we write it, while the extension denotes the particular object it in fact

denotes (or currently denotes). For example, the expression * the President of France”
denotes currently Jacques Chirac; but no one would claim that M Chirac somehow sums
up the whole concept of the French presidency[18]. As we can see, an intensional object
may have different extensions at different implicit contexts. For example, the French
constitution specifies that the French President is directly elected; this is not the same as
specifying that M Chirac be directly elected[18]}.

The basic concept in IL is the possible world semantics proposed by Montague.

Simply speaking, it refers to a space of indices that an entity varies over -- the implicit
contexts. A simple example is the World Wide Web (WWW). The web can be perceived
as an indexed family of pages, the indices being the URLs. (URL’s are required by the
protocol to be unique, a necessary condition for indexing.)

Another example is the chessboard world, which is composed of all possible
configurations of pieces on the board. As one can see, there may be many possible
worlds in a given scenario. Using particular rules, one can switch from one possible
world to another. (Modal logic is a variant of IL, in which people study the necessity and
possibility of a statement in some or all the possible worlds, and the accessibility among

them. Refer to [1] for more information in Modal Logic.)

2.2 Temporal Logic-An Instance of Intensional Logic

Temporal Logic (TL) is an instance of IL in which the collection of contexts models
a collection of time points. Many areas in computer science adopt it extensively because
high-level languages need a way of describing behaviors of complex systems in time.
TL is useful for reasoning about a changing world. Since the temporal order of
actions/events can be described, they are useful for representing dynamic systems. TLs
are widely used in the specification and verification of reactive systems and in
applications where the concept of time is central, such as temporal planning, temporal
representation and temporal databases. Consequently, programming languages that
provide access to such temporal concepts built on temporal logic such as Chronolog
have a wide range of applications.

Further, the logic power of the language allows people to express complex temporal
properties of the system. For example, if Discrete Temporal Logics (DTL’s) are used,
where time is represented as a sequence of distinct moments, a temporal formula can be
used to effectively represent the individual steps of an execution. THTML adopts DTL

so that the time context of a page can be efficiently reported at discrete moments.

2.3 An Application of Intensional Logic to Version Control

An Intensional Programming Language (IPL), which can be textual or visual,

retains two aspects of IL. First, at the syntactic level, there are context-switching
operators, called intensional operators, that can switch intensional contexts from one
possible world into another. Second, at the semantic level, possible world semantics
must be provided for each intensional operator. THTML is a web authoring too! that
interprets version phenomena on the web using IL and provides an efficient method to
generate instances of a HTML page and allow clients to switch among different possible
worlds. THTML uses the eduction model, which is a tagged, demand-driven dataflow
model. In this model, an intension is computed lazily. Each demand is tagged by an
index, and is evaluated by the extension at that index, the demand and their results flow
as packets in an asynchronous network. In the eduction model in THTML, the server
will generate specific instances and respond to clients only if the client requests it at a

given time.

2.3.1 Existing Problems in Version Control

Many version control systems exist that are very successful in solving particular
problems. For example, pure version control systems, such as SSC and RCS[4], use delta
techniques to solve storage problems and keep track of changes made by different
programmers to a file. Software configuration systems such as MAKE[4] allow for
automatic configuration of a system when changes are made to a component.

The integration of hierarchical-structured entities and version control is still not
satisfactory. Using a system such as RCS and SCCS, for each file, there is a tree of
revisions. The truck is considered to be the main version, the branches correspond to
variants. Often, the changes are merged back into the trunk. The tree structure does not
show how this merge took place. If integrated environments, such as Adele[4], are used,
then for each module, there can be variants of the specification. For each specification,
they can be variants of the implementation. And then for each implementation, there is
an RCS-like structure for the development of implementation. In both cased, a tree
structure is used for versions, yet, the tree structure is not appropriate for software
development, because of the constant merging of different changes to the same system.

A direct acyclic graph would be more appropriate. For example, suppose a program is

written to work with a standard screen in English. Two people independently modify the
program. The first adds a graphics interface, and the other changes the error message to
French. And then someone asks for a version that has both graphics and French
messages. The new version inherits from its two ancestors. The main weakness of
existing tools is that the different versions of a component have only a local
significance. It might be the case for example, that there is third version of component A
and also a third version of component B. But there is no a prori reason to expect any
relationship between the third versions of separate components. This lack of
correspondence between versions of different components makes it difficult to build a
complete system automatically.

An approach proposed by W. W. Wadge and J. A. Plaice based on IL provides an
efficient rule for generating a version [4]. In this approach, variant concept is addressed.
It presents the need for versions of complete systems, and informally presents the
versions of complete system can be generated by the versions of components. The
approach introduced here will give the users the freedom of building any desired
combination, but it is the user’s responsibility of deciding which of the number of
possible combinations will yield a consistent, working instance of the system.

The advantage of the approach is that it is now possible to talk of versions of the
complete system—formed, in the simplest case, by uniformly choosing the corresponding
versions of the components(4). Suppose, that we have created a fasr version of every
component of a compiler. Then we build the fasr version of the compiler by combing the
fast versions of all the components. Of course, in general it is unrealistic to require a
distinct fast version of every component. It may be possible to speed up a compiler by
altering only a few components, and only these components will have fast versions. So
we extend our configuration rule as follows: to build the fasr compiler we take the fast
version of each component, if it exists; otherwise, we take the ordinary vanilla version.
As generalized, in this approach, a system is perceived as a hierarchical structure that is
composed of components or modules, each of which has its own set of versions. The

system is configured with the most relevant versions of each component.

10

2.3.2 Intensional Solution

The following mechanisms are adopted to configure a particular version of a
system.
2.3.2.1 the Intensional Configuration Rule and the Refinement Order

A partially ordered algebra is defined among versions, it reflects their refinement
relations. VC W, read as “V is refined by W, or 'V is relevant to W”, means that W is
the result of further developing version V. The basic concept is that in configuration
version W of a system, we can use version V of a particular component if the component
does not exist in a more relevant version. That is, we can use version V of the component
as long as the component does not exist in version V’, with Vc V'c W[4]. The major
advantage of defining a refinement relationship between versions for each module is that
the creation of a system version can be automated. Note that the most generic version of
each component (vanilla) must be created as a last resort in the system in case the
system cannot find more refined versions of a component.
2.3.2.2 Subversion

If a piece of software is going to be adopted in different environments, it must meet
the different requirements of the users. The differences could exist at many levels. For
example, at the level of user interfaces, some prefer text menus while others prefer the
visual interface and mouse, while at the functionality level, some clients are provided
with full access to all functionality while others only partial access. Different in
implementation may also arise from one machine to another. The versions for machines
X and Y may be identical, but differ with that for machine Z.

In this approach, subversion (variant) is introduced. It is partially addressed in
SCCS and RCS, with the introduction of branches, unfortunately, replying on the
numeric strings to identify the branches becomes very unwieldy. We choose the path of
naming the subversions. For example, a user can define a bugfix version of 2.3.4, and a
release version of 2.3.4, a bluesky subversion of an image version or an indigo
subversion of the image version. Subversions of a version are especially useful for

parallel development.

11

2.3.2.3 Version Join

By joining compatible subversions according to the refinement rule, different
system versions can be created. The “+” sign is used to identify the join operation.

The concept of least upper bound is addressed in the joining of compatible
versions, which refers to the most relevant version of a component according to the
refinement relationship specified.

Consider version V1 and V2, version V1+V2 is the least upper bound of VI and V2,
if and only if for all V such that V1 ¢ V and V2C V then VI+V2 C V exists. In other
words, V1 +V2 is the least upper bound (the most relevant) because of the axiom
(VI+V2) c(V+V) = V[4].

As above, we can create a new version for example, Japanese+ graphics+ infinite

X. if all of the versions of the modules are compatible.

2.3.2.4 Discussion of the Approach

Based on the refinement relationships, a system version can be generated
automatically, and the number of possible system versions is greatly increased, because
this approach allows users to combine arbitrary versions for each component.

The intensional semantics of this version control approach is that the version
universe of the system contains arbitrary user-defined possible worlds. A version of
software can be perceived as variables in the universe. It is configured by the most
relevant coordinate in each possible world. Using this approach, the version universe is
expanded with each increase of user-defined dimensions. This approach was
successfully implemented in [IHTML, which extends HTML by allowing arbitrary user-

defined versions for a site.

2.4 Applications of the Version Control Approach to WWW----Intensional HTML

Based on the TCP/IP protocol implemented in the Internet layer, HTML and HTTP
are used between the clients and the server.
On a web site, HITP is used as the basis for building a true client/server

multimedia environment. HTML documents contain links to different data types. Web

12

browsers use plug-ins to interpret the different types of data and display it on the screen.
This multi-media environment can consist of all kinds of information that a computer
can process.

HTML documents contain markup codes called tags in their body to control how
the text is displayed. The markup tags tell the browser how the marked up text should be
displayed—for example a header, link, bullet. list or body text. They can also contain
other information such as a URL or the file name of an embedded picture. The format

and usage of the different tags are detailed in the following sections.

2.4.1 IHTML Introduction

[HTML introduces a version control mechanism to HTML by providing an efficient
representation of the web’s intensional characteristics. (See more information for
[HTML in reference [3].)

In IHTML, a web site is a hierarchical structure composed of many user-defined
modules, each of which has multiple user-defined versions. A particular version of a
web page is composed of the corresponding versions of each module.

In THTML, a version is specified with a dimension name and a version value in that
dimension. For example: bgc:blue indicates a version is blue at the user-defined
dimension: background. Join is represented as a “+”. A version of a web site can be
bgc:blue+ lang:english, which is composed of the most relevant versions of blue in the
background dimension and english in the language dimension. In all [IHTML systems, a
vanilla version, named aai . html, should be defined for each module.

[HTML follows the configuration rules introduced in the above section. IHTML is
implemented by keeping only one copy of all variants; the server generates the final
system version dynamically using the most appropriate version of each module. After
sending the resulting HTML files to the client, the server discards it, so that maintenance
of these versions can be avoided.

From the intensional semantic perspective, [IHTML provides context-switching
operator. This allows users to switch contexts and modify versions of each element on

web.

13

2.4.1.1 Intensional Context Switches in Web Elements

A web element is an entity defined with a special tag and attributes in HTML such
as a hyperlink, SSI. In [HTML., because context switch operators are inserted into the
web elements, web elements become intensional web elements, each of which has an
intensional and extensional expression. The intensional context switches are
implemented in hyperlinks, images and links in [HTML.

e Intensional Context Switches in Hyperlinks

Extensional expressions in hyperlinks for example, have the following format:

 highlighted_ text

in which the absolute version of the URL is given no matter what context the current
page is in. This means that, for example, if the cumrent page is in
lang: french+pic:big, then the version of the above hyperlink is modified to
lang:english defined by the VERSION tag.

Intensional context switch in a hyperlink defines the version or dimension modifiers
of the link so that the user can switch to the relevant version based on the current one. In
the above example, if the VERSION is changed to VMOD,

 text
the version of the URL therefore becomes lang:english+pic:big, which is the
result of the merge of the current context lang: french+ pic:big and the local
context modifier on the lang dimension, namely lang:english.

» [ntensional Context Switches in Image Elements

Context switching operators are embedded in an image element in the same way as
hyperlink. The extensional and intensional expressions of an image are distinguished
with VMOD and VERSION respectively. For example:

< img src=~"image.gif” VMOD=~lang:french”> French version ,
which defines the version of the image.gi£ based on the current version of the page,
while

 French version ,

14

which defines the absolute version of the image.gif to lang: french.

¢ Intensional Context Switches in Server Side Includes (SSI)

[HTML also has a Server-Side Includes feature that causes the contents of the
included file to be incorporated into HTML page at the server before it is sent back to
the client.

The advantage of it is that the included information is included on the fly at request
time.

A SSI may have multiple versions, the files included in server’s response will be the
best-fit version for the user’s request. For example

<!--#include virtuals="header.html” -- >

if the page’s version is currently French, the file included will be £rench version of

el | english version header:

header: french
french .

french version

body:

body :
french £renc

english version

french version
IHTML from a client IHTML file pools generated HTML sent to the client

Figure 2.1 IHTML Working Model

header.html if it is in storage; otherwise, the vanilla version will be sent instead.

(An error message will be sent to the user if the vanilla version of the target file cannot

be found.)

15

2.4.1.2 Multiple Candidates and the Best-fit

The IHTML system keeps multiple versions of each web module. When the
server receives an [HTML file from a client, the file pools are searched for the one
matching the client’s request. If more than one fits the request, the best-fit version will
be found according to the ambiguity-handling algorithm. Figure2.1 illustrates the

[HTML working mechanism.

2.4.2 Summary of IHTML

As an [P language on WWW, [HTML integrates intensional semantics into the
HTML and context-switching operators for the user to switch among different contexts.

There are many advantages of IHTML over HEML.

Server

socket

bind | _

listen I socket

+ waiting for connection
select
connection
establishment connect
read request I .I request
| |

response

Figure 2.2 Typical Client/Server Model

First, from functionality perspective, it provides a natural method to support
arbitrary user-defined versions for a site, the user can switch versions for an element or a
whole page by context switching operators, and the version of each can be totally or

partially modified. IHTML provides great flexibility to the user in version

16

modifications.

Second, in the implementation, it saves system storage greatly by keeping versions
of variants rather than the system versions, in which there may be cloning parts among
them. The server dynamically creates a page by the configuration rule of the system
version mentioned in Section 2.3. The version configuration of a site is automated to the
greatest extent.

Third, it provides a base from implementation of THTML., which will be presented

from the next chapter.

2.5 Base of THTML 1.0

The software of THTML is implemented on APACHE server API. In order to
introduce the implementation of the THTML system, HTTP protocols, which the HTML
protocols and the servers’ behavior are based are introduced first as the background

knowledge.

2.5.1 HTTP Protocol

HTTP protocol is based on TCP/IP. The typical web model is client/server model,
in which, the client initiates a TCP connection with the server, after the connection is
established, the client sends a request down that channel. The server examines the
request and responds in a manner specified in the server Apache API and third-party
modules. When a user types in a URL, the protocol name, (http in our case), server’s
name(www.somewhere.com), the directory name(/where/foo.html) and the port number
(use the default if not specified, 80) are used to establish a unique connection with the
server. The request for an HTML document is issued to the server on the dedicated
network with the following format:

GET /where/foo.html HTTP/1l.0<CR><LF><CR><LF>

GET defines the method of retrieving a resource (normally a file) from the remote
host. /some/where/£foo.html defines the virtual host and the directory name, i.e.

where the file is located. HTTP/1.0 is the protocol name. The server sends the file

17

back if it can find it on the server or decline the request if the resource does not exist. If

no more requests happen during a certain time, it will close the connection to the client.

2.5.2 Server-Side Software—Apache Server API_1.2.5 [17]

In THTML. special actions are defined at the server to handle THTML requests
from the web clients. The software is implemented by extending a module based on
Apache API server software, which offers a high degree of drop-in compatibility with
the popular NCSA server [2]. Internally, an APACHE server is built around an API
(application programmer interface) that allows third parties to add new server
functionality. Most of the server’s visible features (logging, authentication, access
control, CGI, and so forth) are implemented as one or several modules. The
implementation of request/response handling is discussed in the following sections.
2.5.2.1 Common Server Behavior

At the back-end of the server, after the server software has been compiled and got
running, a daemon process will be running in the background, listening to any requests
for connection. After one is detected, it forks a child process to handle it. Based on the
data structure received from the client, it will determine which host and port number are
the targets of the request. The virtual host then takes the path inserted in the request, and

reads against its configuration to decide on the appropriate response.

2.5.2.2 Apache Solution Features

Apache makes the server running with default behaviors or customized behaviors
defined in users’ configurations and third party modules. There are two factors
determining the server’s request/response, namely the directives in configuration files

and the extended modules at the server.

¢ Directives
Directives are provided in the configuration files to allow a user to specify his/her
preference on server’s behavior. For example, a port number(8080) and the server

name(valdes.uvic.ca) have to be defined as well as a log file for THTML for recording

18

the behavior of the server. These features are all conveniently specified in corresponding

directives in a configuration file.

e Module Structure
Apache handles the requests and response by several steps (phases). They are:

1. URI to filename translation

(£

. Several phases involved with access control

3. Determining the MIME type of the requested entity

4. Actually sending data back to the client

5. Logging the request.

The user can extend modules to handle any or all the phases. Some phases go
through all the modules linked with it before going to the next phase such as logging the
request and handling access control, while others may stop if one of the modules linked
with the step successfully handles the request such as the step of URI to file translations,
in which if one module handles the request and successfully translates the URI to a file,
it will stop and go to the next step.

In the THTML implementation, a module is extended to handle the translation of a
temporal URL and sends clients a response. The implementation of THTML is

presented extensively in Chapter 5.

19

Chapter 3

Time in THTML

3.1 Overview

There are three components that distinguish THTML from conventional HTML for
both the reader and author of web sites.

I. Time sensttive tags are used to allow a reader’s browser to specify a request
time. This request time specifies which instance of a page is desired.

2. The author can create multiple interval-labelled source files for a single page or
component. These interval-labelled files indicate when a particular page should be
posted.

3 The times in these pages and requests can either be relative or absolute
representation.

Some questions still remain, however, on how the above will be implemented.
How will time be specified such that it reflects the temporal requests from readers and
authors? There is also the question of how a request with different possible matches is
resolved. These questions will be answered in the following chapter where we will
introduce the existing temporal models and their advantages and disadvantages. We will
also discuss a time-interval refinement algorithm that will help to resolve any

ambiguities resulting from different possible matches.
3.2 Introduction to the Temporal Interval Stamp and the Time Sensitive Tag

Two new components were incorporated into THTML to support temporal requests.
They are time sensitive tags (TST) and time interval stamps (TIS). TST's are used to
specify which instance of a particular page should be sent to the client. For example, if
we wanted an image of the weather outside at some specific time, we would specify the

exact time in the TST and it would be the server’s responsibility to match that tag to a

particular image.

On the server side, it uses the TIS associated with each HTML file to determine
which instance should be sent to the client. The server is responsible for determining the
best-fit HTML page for each temporal request and sending the results back to the client.
How the server determines the best-fit page and the design of both the TST’s and TIS's

will be discussed further in the following sections.

3.3 TIS Design

3.3.1 State-of-the-art Time Representations

Although time is continuous in nature, two common views have evolved:
continuous versus discrete time. Continuous time is considered to be isomorphic to real
numbers, whereas discrete time is normally isomorphic to natural numbers. The discrete
interpretation of time has been adopted in many real-time systems because of its
simplicity and the relative ease of implementation.

There are two time models widely adopted. One is the linear time model; the other
is the branching time model. In the linear time model, time is considered to be totally
ordered, i.e. if two distinct time points 7 and ¢’ are given, either ¢ is before ¢’ or ¢’ is before
t chronologically. However in the branching time model, multiple time lines are defined
and a chronological ordering only exists between time points on the same time line. The
branching time model is often adopted in hypothetical reasoning, where time in the
future cannot be determined, therefore, multiple time lines are assumed and researched
hypothetically. For simplicity, we only consider the linear time model in this thesis.
Therefore, time points are totally ordered on this single time line. Nevertheless, it is

possible for web designers to use a branching time model, depending on the application.

3.3.2 Time-point and Time-interval Representations in THTML

The time model is not the only issue that needs to be resolved, there has also been a

lot of debate on the most appropriate representation of time. The two most common

representations are the time interval and the time point. An obvious choice is the time
point. One reason for this choice is its simplicity. Time points are isomorphic to
numbers and therefore easy to represent. The other reason is that the computational
complexity of dealing with time points is less than that of time intervais.

The main drawback of the time point representation is that it is cumbersome for
expressing the fact that an entity holds over a time period. As long as time is discrete,
every time span can be represented by a finite set of time points. While this argument is
theoretically correct, it is often not practical. For example, to specify that a THTML file
holds for a period of time on Web, the time period would consist of a list of all valid
time points. This representation is especially cumbersome when the granularity of time
is fine-grained (e.g. seconds or even finer) and the average time a file holds is relatively
long (say months or years). An obvious way out of this dilemma is to use time intervals
in order to capture the duration of a temporal file. In addition to modeling the time span,
the time interval can also be used to model time points if the start and end points are the
same.

The main drawback of the time interval representation is that the domain of the
intervals is not closed with respective to the usual set-theoretic operations (union,
difference and intersection). For example, the union of the two intervals may yield two

intervals or just a single one.

[4-10] v [1520]=([4-10],[15,20]}
[4.10] U [6-17]={[4-17]}

The behavior of subtraction (set difference) is even worse:

[4-10]N\V8-20]={[4-8]}
[4-10]N6-8]=([4-6].[8-10]}
[4-10]N[1-20]=(}

Depending on the operands, subtraction yields zero, one or two intervals as a result.

This property makes it quite awkward and expensive to process time intervals on the
computer. [14] Therefore, a question arises--namely whether we should use the poinr-
based model or the interval-based model in THTML.

Because it is common for people to specify time intervals over which files are to be
posted on web, the time interval representation is needed to represent the valid times of
files. In order to avoid the complexity it may induce, THTML adopts the representation
of a union of sets of time intervals rather than difference in order to simplify the
implementation. Time intervals are perceived as the shorthand of time points within the
starting and ending points inclusively. They are both adopted in the definition of TIS. In
THTML. a reader must supply a complete time point to retrieve an instance. THTML
doesn’t support request intervals, therefore, in the TST specification, only time points
are adopted. However, both time intervals and time points can be defined in the time-

interval stamp.
3.3.3 Time Pattern Design in Time-Interval Stamp

3.3.3.1 Temporal Data Type in THTML

The data type of the TIS should have the capability of presenting both a time
interval and a time point. Before discussing the design of the data type, we first clarify a
terminological problem. There are two terms widely used to represent time: date and
rime. Sometimes, the distinction between a date and time is made based on the chosen
granularity. A date covers the granularity year, month and day while time covers every
time unit below a day. Therefore, for example /985/3/25 is called a date while 13:45 is
called a time. Depending on the chosen granularity, it may be more appropriate to use
one term over the other.

Nevertheless, THTML combines the two as the time type, which is time + date.
There are two main reasons for adopting this data type. First, an acceptable granularity
for representing the valid times of a file needs to be provided. Normally, on a computer,
the granularity of files is in seconds. Although there are some arguments that the

development of files should be granulated to below a second, the speed of web transfers

is insensitive to precision below a second. So the granularity in THTML is a second.
This includes the modified time, the expired time, and the user-request time. This
corresponds nicely with most version control software that also records time with
precision of a second. The second reason is portability. The THTML time-keeping
mechanism is consistent with that of ail computer systems in use today—Unix,
Windows, MAC and DOS. (whose time granularities are all up to seconds) So THTML
is not tied to any specific architecture or operating system.

The time type is specified using six units. The format is as foilows:

second minute hour day month year [dow]
The valid range of each unit is the same as that in the time-keeping mechanism of
Unix as follows:
second [00-59]
minute [00-59]
hour [00-23]
day [00-30/31/29/28]
month [I-12]
vear [0-]
dow (days of week) [0-6]
Legend:

Among the seven units, dow (day of the week) is optional, it is provided to
facilitate the temporal specification. There are two reasons that the unit of dow is added.
First, in some cases, people have a habit of specifying a time pattern based on the day of
week. Second, if there is not sufficient information given by the preceding time units to
calculate the date, the server calculates the date from the data in dow. However, if there
is a conflict between the dow and a specific date of the month, the value in dow is
ignored.

Some users have a habit of specifying some of the time units while ignoring others,

so, ® is specified to indicate arbitrary values in the valid range of a data unit.

3.3.3.2 Time Pattern Definition

There are five basic types that are supported in temporal logic: during, after, before,
point and recurring. Especially, the recurring pattern facilitates the web authors to
specify web postings that occur periodically.

The precise definition and their representations are as follows:

During, after/before and recurring identify time interval patterns; whereas point
indicates a time point pattern on a single time line.

During is a bounded interval specification. It occupies only one segment on the
time line. "-" is used to specify the interval between two points. After/Before are
unbounded intervals. “<" or ">" preceding a time point is used to denote the time period
after and before a particular time point inclusive. Poinr occupies only one point on the
time line. Recurring describes multiple time-points or bounded segments that appear
periodically on the time line. It is provided especially for sites that change contexts
frequently, such as commercial sites, ", " is used to specify a recurring time pattern. So
for example, the time-interval stamp

> 10 30 52 1 2 1998 *
indicates a file should be posted after time point 10:30:52 February 1 1998 while

<10 30 52 1 2 1998 *
indicates a file should be posted before time point 10:30:52 February 1 1998. If a web
author intends to post a file on every Monday in January, February, March 1998, he can
write the following time tag in the TIS:

®»®®1,2,3 1998, 1
If he determines to set the time period from Jan to March 1998 to post a file, he can
write in the TIS:

* % « + 1.3 1998, ®
One can combine recurring patterns with interval patterns in usage. Note that with the
"="in a row, the user can specify the starting and ending points of an interval on the
time line. For example, time-interval stamp

* 1-2 3-4 5-6 1998 1,2,3

indicates a file should be posted every Monday, Tuesday, and Wednesday in the time

period from May 3rd 1998, Iam to Jun 4th 2am 1998

3.3.3.3 Discussion of Normalization Operation

A normalized time pattern is one that consists of only the union of a set of time
intervals. The process of converting all patterns to this form is called normalization. It
has great significance in judging tractability and is also an efficient method for matching
temporal requests with time patterns

Since difference operations are not defined at the moment, normalization is not
needed in THTML.. However, difference operations will be included in the future, and
so all time patterns must be normalized so that the same matching algorithm can be used

without any modifications.

3.3.4 Conclusion of Time Pattern Design

Although there are many data models that can be used to represent time, we have
chosen a model that is able to support most common temporal requests and is also easy
to implement. But the question arises, is it the best representation for a temporal
language? Is there a measure for evaluating the expressive power of a temporal
language? If yes, is it possible to have a canonical expression independent of various
time representations? There are many debates on this topic, so far, there is no answer in
the literature.

Nevertheless, THTML can still be improved in the following aspects:

1. One further direction is incorporating more complex logic into the system so that
the expressive power of simple time patterns can be enhanced. Intensional rules,
including mathematical algorithms, can be adopted to specify more complex temporal
requirements from the web authors.

2. Another direction is to incorporate a data flow language (temporal programming
language) that describes rules for temporal data flow. For example, every other day can
be expressed naturally and efficiently in dataflow programming language with a
definition of time:

n= k fby n+2d; k= $Fri May 3 1998

26

Precisely, an infinite temporal stream of dates, namely every other day, starting
from May 3, 1998 is defined. The backend support for it includes algorithms for parsing

and for temporal rules.

3.4 Best-fit Interval Selection in a TIS

The definition of an interval refinement relationship is the principal design
requirement in THTML, since time plays a key role in retrieving documents and
ambiguity may occur if the time point in request lies in multiple time patterns in a TIS.

A TIS that brackets the specified time point is a candidate. If a single candidate is
found, it is used to generate a conventional HTML page. If no candidates are found, the
absolute source file is used. If multiple candidates exist, the best-fit candidate is chosen.
The rule of retrieving the best-fit pattern is determined by extensional and intensional
rules. With DTL (Discrete Temporal Logic) applied in THTML, an interval can be
perceived as a set of discrete time points on the time line, then the basic rule
(extensional rule) to choose the best-fit candidate becomes the smallest subset
encapsulating a given time point is the best fit.

Since not all candidates can be perceived as subsets of another, the extensional rule
does not eliminate all ambiguities between time interval candidates. For that reason, we

also provide an intensional rule.

3.4.1 Extensional Rule

THTML specifies that the request time in a TST is a time point while the TIS can
be either time points or any combination of time intervals. When a time request is
received, the server searches for the best-fit interval. The best-fit interval is defined to
be the smallest interval encapsulating a given time point. For example, the two time
patterns A and B below are both candidates for a time point P, because P lies in the
intervals of both A and B.

B refines A extensionally because the set of points in B is a subset of the set of the

points in A.

27

-t —-—

[SO

P
Figure 3.1 Comparison between the Temporal Patterns of the Same Type

e The comparison of “after” and “before’” patterns is also simple:

p

Figure 3.2 Comparison between “after’” Patterns

Obviously, in Figure 3.2, the set of points in B is the subset of that in A to the time
criterion P, therefore, B is the better-fit candidate. As the same token, in the comparison
between two before patterns, the one that is the subset of the other is the better-fit.

The absolute time interval refers to the unbounded interval from negative infinity to
positive infinity. A conventional HTML file is perceived as a THTML file labeled with
the absolute time interval. Using the extensional rule, it is easy to see the absolute time
interval is the most generic one among all candidates; for it subsets all time patterns. So,
the HTML file is the most generic source among all THTML file candidates. It is used

as the best-fit when ambiguity happens.

3.4.2 Intensional Rule

The intensional rule applies when comparing as subsets is not enough. It is designed
to minimize ambiguities that could result from the extensional rule. For example, in the
situation in Figure 3.3, an ambiguity exists because neither of them is a subset of the
other.

Ambiguities exist in the comparison of the same time patterns as well as different
time patterns using the extensional rule. Let us first discuss all possible combinations of

patterns and then we will show how the intensional rule resolves these ambiguities.

28

2"

Figure 3.3 Comparison between Different Type of Temporal Patterns

3.4.2.1 Ambiguity Resolution among the Same type of Temporal Patterns

e Since the time tags in TIS are unique, no ambiguity can exist if the TIS consists of
Just a time point.

e When two infinite recurring pattermns are compared, ambiguities may occur if one
is not a subset of the other. For example. in Figure 3.4, whether A or B should be chosen

as the best-fit is hard to judge.

L I 1 |]

A

— [l [.

P

Figure 3.4 Comparison between “recurring” Patterns

To eliminate the ambiguity in this situation, the intensional rule specifies that if the
recurring pattern contains equal sized segments, the candidate with smaller segment is
the best-fit. The ambiguity occurs in other situations.

e In the comparison between two during patterns, extensional rule applies when one
bounded interval is a subset of the other. However, ambiguity occurs if one is not a

subset of the other. For example, in the following scenario:

29

>
(>]

p1' 'P2
Figure 3.5 Comparison between bounded “Interval’” Patterns
If A and B occupy the same length in the time line, ambiguity occurs with request

time Pl or P2.

3.4.2.2 Ambiguity Resolution among Different Temporal Patterns

e The comparison of different time patterns is more complicated than for the same
time patterns. For example, it is hard to tell if a during pattern candidate is more refined
than a recurring pattern candidate, therefore, additional refinement rules are needed in
the intensional rule.

e We can deduce that the during pattern has a smaller temporal gap than the
before/after pattern, because the before/after pattern indicates a time period with an
infinite end. This has a larger gap than the finite interval in a during pattern, therefore, it
is more generic in definition than the during pattern.

e The time point has smaller time gap than any other patterns, therefore, it is more
refined definition than other patterns.

e However, there are some situations where it is hard to find which pattern is more
generic in relationship to a particular time point if two different patterns are given, say, a
before pattern versus an after pattern and a recurring pattern versus a during pattern.

Ambiguity occurs in the first situation because the comparison cannot be solved
mathematically between the two infinite segments; while in the second scenario, one is
an infinite time pattern and the other is finite time pattern. An infinite pattern is not
necessarily less refined than a finite pattern because there may be some situations for
which one of the segments of the recurring pattem is closer than the interval pattern to
the time point.

The recurring pattern describes a file to be posted on the web periodically. The
intensional rule defines that the recurring pattern is the least-refined among all patterns.

One reason why the recurring pattern is the least refined is because it can be

30

represented by a set of during patterns. The user can just use this method if he/she
wants to obtain a higher priority.

The during pattem is defined to be more refined than the before/after pattem. If
instead the during pattern were less refined, one could not use any other alternative time
patterns to give during a higher priority. (Note that we do not allow an interval to be
denoted as time points. Although it is feasible in theory, it is not practical to define a
large time interval with time points.) There is an example to illustrate the above
reasoning. If two time patterns are given, one 1s

> 10 10 10 2 3 4 1988 *,
the other is
* & *« 1,2,3 1988 *

If one intends to give a file, associated with the second pattern, a higher priority
than a file associated with the first pattern in case that both can be candidates to a
request time, he/she can specify the second time pattern as a during pattern.

e o + o 1 1988 °
e *» = o 2 1988 °®

....31938.

As long as the frequency of the file is not very high, the above method is feasible.
Consequently, the refinement order in the intensional rule is as follows. From the
most generic to the least:
recurring before/after during point
Note that the above order is specified in terms of the time interval patterms adopted in

THTML, it may not applicable to other temporal presentations.
3.5 Best-fit Interval Selection among Multiple TIS’s
Because multiple time tags are allowed in a single TIS, confusion may occur to the
besr-fir interval among the THTML files. In THTML 1.0, it is not the result of

comparison among all patterns in all THTML files at once, but among the best-fits of
each file. Precisely, suppose that PI, P2, P3 are time patterns in THTML file 77 while

31

Q1 and Q2 are the time patterns in THTML file T72. Suppose also that the candidate
(relevent) labels are PI, P2, QI and Q2 are all candidates to a given request time RIJ.
The process of retrieving the best-fit is as follows:

First, the best-fit among P/ and P2 in T1 file and the best-fit among Q! and Q2 in
T2 are resolved respectively. The best-fit of each is, say, P’ and Q’ respectively.

Second, P’ and Q' are compared. The result is the best-fit to the client’s request
time R1. The THTML file that associates with it is used to generate the instance. The
extensional and intensional rules are adopted in both steps.

The result is the same as that of comparing once. The reason for two comparisons
twice rather than one is to simplify the implementation. The algorithm is similar to
bubble sorting. the smaller subset of the first two will be kept to compare with the rest.
The more refined in each comparison is always kept to compare with the next pattern. If
ambiguity occurs, the most refined is still kept to compare with the rest. If no other
patterns are more refined than it, the absolute TIS will be adopted, otherwise, the

smallest subset pattern will be adopted as the best-fit.

3.6 Conclusion

The design and reasoning behind the TIS and the rules to retrieve the best-fit
intervals were covered in this section. In order to simplify operations involving the TIS,
a linear time model was adopted. The model supports both a time interval and time
point representation. This was done so that it would be consistent with the different
ways users specify time. Since stating time in terms of a date and time of day is more
complicated to handle, the two elements are combined together into a time data type,
which granulates time in seconds.

This time data type forms the basis for specifying time requests and defining time
intervals. Time points are matched to time intervals using the extensional rule. This rule
is based on DTL, which the time interval is perceived as a set of time points on the time
line. The time interval that is the smallest subset among those encapsulating the time
point is the best-fit. This rule however still leaves some ambiguities. Most of these

ambiguities can be resolved through the use of the intensional rules, which define a

refinement order for the different time patterns. The application of these two rules in
one file or among best-fit patterns of multiple THTML files allows a server to determine

which source file to instantiate given a URL request.

33

Chapter 4

THTML System Design

4.1 Overview

The THTML system can be perceived as a typical three-tier architecture. It

consists of the clients’ browser, file system and web server. Enhancements are adopted

in all three of these tiers. From the clients’ point of view, two features (TIS and TST) are

added to allow the client to specify a time element. The server supports this

enhancement by implementing a tree structure and adopting a naming convention that

maintains the hierarchical relationship between the modules and the different temporal

versions of a module. The server determines which page to return to the reader by using

a temporal versioning and time irregularity handling algorithm to generate the most

relevant instance for a particular URL request. The THTML system can be illustrated by

the communication among the three components (See Figure 4.1).

on D @S SN G GR e,

7" server push™Sg

| request web client
3 Ies p()nse .

esult of the search

£
web server
search return the
target filey
file server

Figure 4.1 Three-tier Model of THTML System

Upon receiving a URL request, the server decodes the address and extracts the

request time. The server then searches the file system for the best-fit THTML. source file

34

for that request time. It will then generate a conventional HTML file in response. In
addition to the enhancements to the conventional web model, in which the server
passively responds to the clients’ requests, the server push (related to client pull)
technology has been incorporated into the THTML server. This allows the THTML web
server to actively feed clients with the most updated information at user-defined
intervals.

In the following sections, we will discuss the issues related to implementing the
above features. First the language design will be introduced in Section 4.2. In Section
4.3, the backend system design is discussed, followed by the algorithm design in Section

4.4. The chapter will conclude with possible future directions for each of the designs.

4.2 Language Design

4.2.1 Design Requirement

In THTML, a web page is assembled using components indicated in a THTML
page. These components are single-versioned entities in conventional HTML, but have
multiple variants in THTML. Semantically, THTML allows a conventional HTML page
or its components to have multiple instances corresponding to the different time points.
The generation of a URL instance at a specific time is, in the simplest case, a point-wise
operation. It is generated by collating an instance of each component evaluated at the
specified time.

The following figure shows the hierarchy in a THTML system. Each web page
contains a list of components (images, sounds etc.) to be included in the page. Under
each of these components, there are multiple instances corresponding to the different time
intervals during which that component should be displayed.

Since THTML allows multiple instances for each URL, there must exist a way of
determining which instance the user wishes to retrieve. This requires enhancements to
the syntax and changes to the semantics of the HTML language. The syntax is enhanced
by adding TIS’s to the source files and allowing users to specify time points along with

their URL requests. On the semantic side, it involves interpreting temporal context

35

==y temporal instance |

component |

I temporal instance 2

a web page
component 2 temporal instance 3
temporal instance 1
temporal instance 2
component 3 po
temporal instance |
Level l Level 2 Level 3

Figure 4.2 THTML Enhancement into HTML

switching operators and helping to evaluate the URL at a particular time context and

generating a response.

4.2.2 THTML Language Enhancements to HTML

As mentioned in Chapter 3, a THTML file differs from an HTML file in two ways,
namely, the addition of TST's and TIS’s. A THTML file has the following format:
<cron> temporal_interval_patterns </cron>
<html >
<title>
</title>
<body>
THTML body
</body>

</html>

36

The TIS is inserted at the beginning of a conventional HTML file with a special pair
of tags <cron> and </cron>. The THTML body is similar to a conventional HTML
page except that it can contain optional TST's.

THTML body : : = THTML components

THTML components : : = (conventional HTML components) | (conventional HTML
components having time sensitive attributes)

THTML does not add any new tags in THTML body, however it modifies the
existing tags by adding a new optional attribute. A TMOD attribute is added to the most
common tags, found in HTML files, to allow them to specify a temporal context switch.
The TST's currently implemented are conventional hyperlinks, images and SSI's. This
attribute can be added to other tags in the future. There is no limit to the number or

sequence of TST's in a THTML source file.

4.2.2.1 Time Sensitive Tag (TST)

Theoretically, any web component can be temporalized (made to vary in time). For
example, temporal applets and images can be created whose response to the reader is
dependent on a time variable. In THTML 1.0, three components were made temporal.
They are images, hyperlinks and SSI's. The BNF format of the TST's for these web
components is specified as follows:

Time-sensitive-tag (TST) : : = [<!--#include virtual=">name.htm}”’
TMOD=temporal_context_switch >
<src img=*“‘imgfile” TMOD =
temporal_context_switch | <a href=

“my filename.html’’ TMOD=

temporal_context_switch >]*
® The syntax of the remporal-contexi-switch (TCS) variable defined in BNF format

is as follows:

TCS: :=“*“" temporal_term “* ™,

37

temporal_term ::= temporal_base |[*“+” [~ 1n (“Y”" | “y) | [“+"[*- "] n
CMEM”) [[“47] <= T n (D7 | A7)+ I CHT] W)
[+ 7)1 T [0 [m (ST 87) [-]
C“Ww”)
n::=digits;
temporal_base ::=¢€| natural_l | absolute_t;
natural_l ::= “tomorrow” | “yesterday” | “now”’;
absolute_t ::="'$” Week_day Mon Date Hour “:" Min “:” Sec :
Week_day ::= “Mon”| “Tue”| “Wed”’| “Thur’’| “Fri’’| “Sat”[Sun’’;
Mon ::= “Jan”| “Feb”| “Mar”| “Apr”| “May”| “Jun”| “Jul”} “Aug”} “Sep”|
“Oct”| “Nov"| “Dec”;
Date::=digits from O to 31;
Hour::=digits from 0 to 23;
Min::=digits from 0 to 59;
Sec::=digits from 0 10 59;
Legend:
e the time unit identifiers: ¥, M, D, H, I, S (capitalized or lower case)
indicate temporal units: vear, month, day, hour, minute and second, respectively.
® As shown above, simple temporal terminology can also used in context switch
attributes. The terms yesterday, tomorrow and now are supported in the current

version and their semantics will be presented in 4.2.3.

4.2.2.2 Time Interval Stamp (TIS)

The TIS is the other feature added in the conventional HTML. TIS’s are
distinguished from other components by a pair of tags <eron> and </cron>. The user
can specify a specific time point, a time period or a set of time points and periods. All
TIS’s can be specified with six time units as follows:

second minute hour day month year [dow]
Each unit is separated with white space. The days of the week (dow) is optional.

Each unit can be specified using a combination of numbers and symbols. The following

38

symbols can also be used:

- denotes a time interval.

, separates a list of valid inputs.

® denotes any arbitrary value in the valid range of a data unit.

Therefore, for example, the time interval from May 3, 1998 to May 20, 1998 can be
represented as follows:

<cron> ® * ® 3.20 S5 1998 </cron>

4.2.2.3 Creation of a THTML file
THTML 1.0 provides a command in the UNIX environment for an author to
create and modify a THTML source file. The command ivi originates from [HTML
2.0 and was used to create an IHTML file (See [10] for more details.) The author
enhanced the command to create a THTML file. The format is as follows:
ivi [-t] [-<number>] filename.html
The command allows the user to edit the specified THTML source file. When it is
invoked, it will open the default editor. (specified by the $EDITOR environment
variable) The -t option is used to create a new version of filename.html using a
copy of the most recently created version. This new version will be saved in the
filename.html directory in the following format: aai.n.html. where n is a
unique number generated automatically by the system for each version. An existing

version can also be edited by specifying the version number in place of <number>.

4.2.3 Language Semantics

Formally, if each conventional HTML page is P and the request time is «, then each
THTML page can be specified by (P, u). At request time u, a unique instance of P is
issued to the client. From the semantic point of view, the response to a URL request is
an HTML page that is dependent on the time point specified. In other words, the URL is
an intension. The response to the reader cormresponds to the process of generating an
extension from the intension. An extension to a particular intension, namely an instance
is generated using two components. One is the URL or HTML component, the other is

the request time. The temporal contexts are not necessarily the client’s request time. The

39

reader can define any time point. The web elements in the response for the URL inherit

the context by default. However, they can also be modified locally by temporal context

switches.

4.2.3.1 Semantic Distinction between HTML and THTML

4.2.3.1.1 The Global Context and the Local Context

<img src=~A_IMG”
TMOD=”~> Image

included | K

<a href=~ ink~
TMOD=” "> <a href="A_Link

THOD=~~ > e Y

<!--#include
virtual="A_inlude~
TMOD="~> ——

Temporal Include

Page | Page 2 Page 3

Figure 4.3 Server Interpretation Model

The Global Context and Local Context are distinguished by their scope. Because the
context for the URL is adopted as default to interpret those for the web elements for the
HTML page. In other words, the elements in the HTML page inherit the context of the
URL by default. However, a context switch operator can be defined in each local
element to modify the global context. It changes the six time units as necessary.

At the server, a THTML document is converted into conventional HTML. Each

component is instantiated using its local context. Figure 4.4 illustrates the conversion

process.

4.2.3.1.2 Temporal Context-Switches (TCS)
Global contexts are converted to local ones by temporal context switches. These
temporal context switches are implemented only in hyperlinks, images and SSI's in

THTML 1.0. The usage and semantics of them are covered as follows:

Temporal Context Switches in Hyperlinks

A temporal context switch can be specified using the attribute TMOD in a

hyperlink:

When the hyperlink is invoked, a conventional HTML file, for the URL, is

instantiated using the context specified in TCS. The local context of a link containing a

in yesterday’s

CONteX (r——

(Timestamp=romor
row)

Img src=...
{Timestamp=yester
day)

A href=....
(timestamp=-2d)

combine local &

global context

>

global context is May 1,98

Today's version of the

The day before

Intensional Elements

Figure 4.4 the Local and Global Context

>

_1 vesterday's image

v

Conventional
HTML file

their Extensions

TCS is a combination of the base temporal context and the local temporal modifier. If a

base temporal context is not specified, the global context of the current page is used.

The temporal words tomorrow, yesterday and now are implemented in

THTML as following manner:

e Tomorrow is equivalent to the local modifier “+ 1d”. In other words, it

represents the same time (the same hour, minute and second) as the default context, but

increments the day by 1.

e Yesterday however has the opposite effect and decrements the day by 1.

e The keyword now however denotes the default global context.

41

These three temporal terms are interpreted in the same manner in the other
elements.

Extensional expressions can also be specified in TCS’s. For example, denotes that the local
context is changed to May 18 10:13:14.

Temporal Context Switches in Images

In an image element, the TCS’s can change only the contexts of the included image
entity. In other words, they perform no modifications to other web components. For
example,

If the page is invoked using a hyperlink that has the context modifier yesterday
(ie. the client’s request time —I1d) and the image link has the local modifier tomorrow,
the image corresponding to the client’s request time will be instantiated. (ie. client’s

request time —lday+lday)

Temporal Context Switches in Server Side Includes (SSI)

As mentioned in Chapter 2, SSI is a feature that the APACHE server supports. It
allows the author to include an HTML file in another HTML file, instead of copying the
same contents. It facilitates web content creation and helps with version control by
avoiding redundant code scattered among separate files. Temporal SSI is similar but
also allows multiple variants in the time dimension. The TCS is inserted into a SSI
component and modifies the local context of the entity. It has the following format <t --
#include virtual = “included_file®” TMOD = + offset>
The offset can be specified using the six time units: year, month, date, hour, minute
and second and is relative to the default temporal context of the TCS. (See 3.2.1 for The
BNF format.)

A local temporal modifier and an absolute time point constitute an extensional
representation of a SSI with TCS. Given <i!--#include virtual=“file.html”

TMOD=" $July 5, 98 12:00:00+7d +4s” >, an instance of “€ile.html” at the

time context: July 12, 98 12:00:04 should be included in the HTML page generated.

4.2.3.2 Web Intensions and Web Extensions

A web intension is the relative expression of a web context in terms of a default
context. Itis specified in a temporal web element with a temporal modifier; while a web
extension is an absolute temporal context value. it is represented using an absolute time
and an optional temporal modifier.

As introduced in Chapter 2, the same intensional expression with the same literal
expression can infer different extensional values depending on the context.
Consequently, the same temporal URL requests can be resolved into different instances

(conventional HTML pages) depending on the time context.

4.2.3.2.1 "Now" Discussion--Intension and Extension

Strictly speaking, there are 24 extensional representations for now because of the 24
time zones in the world. For example, given the following TST:
, and the client lives in a place where
“now” is July 13, 1998, 3:30:00 and he/she issues a THTML request to a server in
another time zone, whose time is “July 13, 1998, 6:30:00”, which time should be chosen
as the default temporal context?

In order to deduce the right answer, let us examine the request process at the server.
The user-request time is sent to the server in GMT (Greenwich Mean Time) format
according to the request protocol. Since no mechanism is provided to retrieve the
reader’s time zone, then the local representation at the server becomes the default
temporal context.

Therefore, the time related process at the server side is as follows:

When the server receives a THTML file, the reader’s request time is computed and
converted into the server’s local time (which forms the basis for retrieving the best-fit
version). The instantiation process begins after the global context is resolved. In the
previous example, the default time context is therefore July 13, 1998 6:30:00+1d-
2h=July 12, 1998 4:30:00 .

If a reader expects to retrieve an HTML page at the server with the same

43

extensional time representation as the client, the extensional representation of now at the

client’s side must be written into the temporal request. For this case, it should request

TMOD="$Fri July 12, 1998 3:30:00 -1d+2h~
The process of conveying temporal information between the web client and the

server is illustrated with the following graph:

User-request time

(GMT format) user-request time in
1) get local time of n GMT format
(GMT format) client’s request

2) process request and
get the best fit

server’s response

Sever Client

Figure 4.5 Time Conveyance in THTML System

4.2.4 Conclusion

With the incorporation of IL, the server's functionality can be perceived as
converting an intension (the URL or THTML tag) into its extensional representation (the
web page generated in response). Temporalized web elements are intensions that use
TCS’s to switch among different possible worlds. Web authors are allowed to define
multiple source files for each element. Their TIS’s determine if it is adopted as the
extensional representation of the element at a particular time context. Due to the above
designs in syntax and semantics, the range of HTML pages viewable at the same URL is

increased dramatically from the client’s perspective. 4.3 Backend System Design

4.3.1 Design Requirements

One of the design requirements was to make the THTML language independent of
web browsers. The browser should not know whether or not the server is a THTML or
regular HTML server. So the temporal enhancements to the language must be supported
only through the backend. In order to support THTML, the server must implement the
following:

® The system should have a mechanism for maintaining multiple THTML source

files for each web component.

e It should also maintain the hierarchical relationship between all THIML sources
and their respective components.

e A time tag is associated with each THTML file, so that the server can determine
which file to retrieve based on the time context.

The above requirements are met in THTML by implementing a free structure to
maintain the hierarchical relationship, adopting a naming convention to differentiate
between multiple source files and including TIS’s in each file. Each of these aspects

will be discussed further in the following sections.

4.3.1.1 Tree Structure

First, in file system design, a free structure is used to maintain the hierarchical
relationship between THTML source files and their respective web components. A
normal URL indicates a directory in the THTML system that holds multiple THTML
sources for that URL.

There are other mechanisms to maintain the hierarchical relationship in version
space besides the tree structure. One commonly used method is to keep the file that
contains the relationship between the THTML sources and web components. There are
several reasons why it was not adopted. First, the web server would have to access the
file for each instantiation process. The file would become a key component of the
system and would requiring special maintenance. If it became corrupted, the whole
system would shutdown. Furthermore, if a search for a target THTML source file was
executed at the same time that the author was creating a new THTML file, the file would
become a critical section and a synchronization mechanism would need to be adopted.

The tree structure has significant advantages in comparison:

e By embedding the hierarchy into the structure it eases system maintenance

e The algorithm to retrieve the best-fit THTML source is simplified as well.

4.3.1.2 Naming Convention of THTML files
Second, a simple naming convention needs to be adopted to maintain the parent-

child relationship between a temporal object and each THTML file. A straightforward

45

naming convention is described below.

When a file is created, it is put in its module’s directory. For example, all THTML
sources for the web component home .html are put under directory home .htm1. The
format of a THTML source file is encoded_filename.n.html, where nn is a number
generated automatically by the system when the file is created. It reflects the order of
creation and distinguishes the different THTML files. An HTML instance, which is an
extensional expression of a web component, has a file name ending with the suffix
html. It is similar to a conventional HTML file, but contains an encoded temporal
context that is inserted between the file name and the suffix. For example, home
@hOdIAYwbySqzGuTi_Rgej_nPkeai.html is an instance of the module home.htmt at

the relative temporal context: osorom-ipomovow. The format of an instance is

retrieve the best-fit THTML file.

module name@encoded context.html. The encoding scheme helps the algorithm

4.3.1.3 Design of Time Interval Stamp (the Time Tag)
Third, the TIS is used to relate time to a specific THTML file. It indicates to the
system which file is most relevant to a temporal request.
There are many reasons for keeping a time-interval stamp in a THTML file.
»[n order to instantiate an HTML page, the system needs to keep time information
for each THTML source file. Keeping the information in the file provides a
straightforward way to link the time and source page.
e[t reduces the time to retrieve the corresponding time interval of a THTML source
file.
® [t provides a natural way to combine THTML files with regular HTML files.
HTML files are just THTML files with time intervals from negative infinity to positive
infinity, which is denoted withtime label = * » » » « »
The TIS is the key to temporal design. It not only specifies the time relevancy of
each file, but also reflects the refinement relationship between the different THTML

files.

46

4.3.1.4 Conclusion of File System Design

The result of combining the tree structure, naming convention and time interval
stamp is shown in Figure 4.6. Each URL corresponds to a module and therefore has its
own directory. Each directory contains all user-defined and temporal source files
associated with the module. They are stored using the naming convention
<module_name»>.<encoded_userdefined_version> nhtmi. Although it is currently

implemented on one computer, the design can be easily incorporated into a distributed

file system.
LPicture.Imnl (directory) i
Timestamp | Timestamp Timest-amp I I Timestamp Timestamp
aai.html] aai.4.html aai.3.html] I aai.l.html aai.2.html
Figure 4.6 System Structure Design
4.4 Algorithm Design

4.4.1 THTML Web Server Model

In a typical client/server model, when the client selects a temporal element on a
THTML site, a connection is created between the client and server. The client then
issues a request for an HTML file with a particular time point to the server and the
server responds with an instance at that time point to the client.

In this model, the web server can be perceived as a black box. With the request of a
temporal HTML file as input; the server outputs its extensional representation.

During this process, a time irregularity-handling algorithm is used to obtain the

correct local context from both the temporal request and the local modifiers. A temporal

47

recmest of @ VML

Server 4' Client

Figure 4.7 THTML Working Model
versioning algorithm is then used to retrieve the best-fit THTML file. These algorithms

will be described in the following section along with the incorporation of push

technology to keep the clients updated with the most current HTML pages.

<src img="A IMAGE” TMOD=...VMOD=....> = A image included
 *
<p>
 <p>

Temporal HTML page Instance Generated

Figure 4.8 Interpretation from THTML to Conventional HTML

4.4.2 Time Irregularity, User-defined Temporal Terminology and Hierarchy of
User-Defined Calendars

4.4.2.1 Gregorian Calendar and its Irregularity

Calculations related to time have an irregular feature. For example, § Fri July
31,1998 + 14, should be August 1, 1998 rather than July 32, 1998. The time
irregularity is caused by the Gregorian calendar people use as an international standard
for civil use.

A calendar is a system used to organize units of time for the purpose of reckoning
time over extended periods. By convention, the day is the smallest calendarical unit of
time; the measurement of fractions of a day is classified as timekeeping. The generality
of this definition is due to the diversity of methods that have been issued in the
development of calendars.

In the Gregorian calendar, years are counted from the initial epoch as defined by

48

Dionystus Exiguus, and are divided into two classes: common years and leap years. A
common year is 365 days in length; a leap year is 366 days, with an intercalary day,
designated February 29, preceding March 1. Leap years are determined according to the
following rule:

Every year that is exactly divisible by 4 is a leap year, except for years that are
exactly divisible by 100; these centurial years are leap years only if they are exactly
divisible by 400.

As a result, the year 2000 is a leap year, whereas 1900 and 2100 are not leap years.
These rules can be applied to times prior to the Gregorian reform to create a proleptic
Gregorian calendar. In this case, year 0 (1 B.C.) is considered to be exactly divisible by
4, 100, and 400: hence it is a leap year.

The Gregorian calendar is thus based on a cycle of 400 years, which comprises
146097 days. Since the number 146097 is evenly divisible by 7, the Gregorian civil
calendar exactly repeats after 400 years. Dividing 146097 by 400 yields an average
length of 365.2425 days per calendar year, which is a close approximation to the length
of the tropical year. Comparison with Equation 1.1-1 reveals that the Gregorian calendar
accumulates an error of one day in about 2500 years. Although various adjustments to
the leap-year system have been proposed, none has been instituted.

Within each year, dates are specified according to the count of days from the
beginning of the month. The order of months and number of days per month were

adopted from the Julian calendar as follows:

January 31 February 28 March 31 April 30 May 31 June 30
July 31 August 31 September 30 October 31 November 30 December 31
In a leap year, February has 29 days.

Based on the representation of time keeping and the Gregorian Calendar currently
used internationally, the default hierarchical concept of the time units used in THTML is
defined as second <minute < hour < day <month <year. A set of functions supporting
the above concept is provided to guarantee the correctness of time calculations, which

are discussed in next chapter.

49

4.4.2.2 User-defined Temporal Terminology and Hierarchy of User-Defined
Calendars (not implemented yet)

¢ User-Defined Temporal Terminology

As the design in further implementation, the TCS can be enriched with more
complex temporal language with enhancement of additional backend supports.

For example, additional religion dates say Easter can be recognized in a TCS by
incorporating the following operations to calculate the date of Easter in Gregorian
calendar in THTML.

Y stands for Gregorian year. All variables are integers and the remainders of all
divisions are dropped. The finai date is given by two values: M (the month) and D (the

day of the month).

C =Y/100,
N=Y-19%Y/19),
K=(C-17)25,

I=C-CH-(C-K)/3+ I9*%N + 15,
I=1-30%l/30),

I=1-(1228)%(1 - (I/28)%29/1 + 1))*((21 - N)/11)),
J=Y+Y4+1+2-C+ CA,

J=J-7%J/7),

L=1-J,

M =3+ (L + 40)/44,

D=L+28-31%M/4).

By the same token, the user-defined calendars and the temporal concepts can be
specified with corresponding backend support. For example, if a student can use the
term semester and academic year in his TCS, operations of parsing these terms and

converting them into Gregorian calendars should be provided.

50

e User-defined Calendars and their Hierarchy

Further, if multiple user-defined calendars are specified in the system, ordering
should also be specified among them to eliminate ambiguity. For example, New Year's
Day has different Gregorian values in the Lunar Chinese Calendar and the Jewish
Calendar. If a temporal request having a term New Year's Day is received, ambiguity
must be resolved if both calendars are specified in the system. Therefore, an order
should be specified between them. In the future, an intensional tier for user-defined
calendars, their ordering and operations should be provided by the system.

The relationship of components in the intensional tier is as follows:

TCS] i’&ns—ﬂ user-defined terms and the supports related algorithms

hierarchy of user-defined for parsing and

F_— calendar conversion
based on ased on

Figure 4.9 User-defined Calendars, Orders and Operations

ner to handle
ume concept and
time irregularity

web server

l

cllem s request

file pools I

Figure 4.10 Intensional Tier Supporting User-defined Time Concepts

The relationship of the intensional tier with other components in the system is illustrated
in Figure 4.10. The server will retrieve the temporal concepts from the intensional tier

and compute the results.

4.4.3 Temporal Versioning Algorithm

The purpose of instantiation is to generate an HTML instance in response to the

URL request. After the time context is extracted, the server will search for all THTML

51

source files that match the time point specified. If there is only one match, that file will
be used to generate the HTML instance. Otherwise a best-fit file is chosen using the
intensional and extensional rules described in Chapter 3. If the rules cannot resolve all
the ambiguities, then the absolute (defauit) THTML source file is used. This file is just
an ordinary HTML file with no time stamp. It is kept in the system as a last resort when
no time intervals match a specific time point.

The THMTL source file is then parsed. Any links, images and other tags with
temporal attributes are also instantiated recursively until all temporal elements are

converted into their respective extensional expressions.

4.4.4 Push Technology and Dataflow Medel of WWW

With the rapid growth of time sensitive information on the web, the reader needs to
be periodically updated with the most up to date information. This is facilitated in

THTML with the incorporation of push technology.

4.4.4.1 Problem of Cache in the Existing Web Model

The cache is one of the most significant features of the major browsers (Internet
Explorer and Netscape Communicator). With a cache, copies of responses are stored in
the local file system and can be reused for the same URLs without successive requests to
the server. Therefore, caching conserves bandwidth and reduces network latency.
However, if the caching mechanism not implemented appropriately, there is a risk of
receiving stale data from the cache.

In order to enhance cache control, the HTTP protocol contains both explicit
specifications as well as heuristic hints in HTTP/1.1, concerning the cacheability of
documents and how often their freshness should be verified in order to guarantee that
they are still up-to-date.

One of the most important features in HTTP/1.0 about caching is the conditional
GET. It allows a document to be retrieved conditionally, based on whether it has been
modified since the last access. If the document has not been changed, a very short not

modified message is issued; otherwise, the updated document is transferred. For

example, after a client requests a document /some/where/£foo.html, the following

response can be sent to the client:

HTTP/1.0 200 OK

Server: Netscape-Enterprise/2.0

Date: Sat, 19 Apr 1997 10:22:00 GMT

Last Modified: Pri, 18Apr 1997 15:12:05 GMT
Content-type: text/html

Content-~length: 6510

The above headers indicate the server and the version of HTTP protocols. The time
the web transaction happens, the last modified date of the file. In the subsequent
requests, a conditional GET request now adopts the timestamp from the Last-
modified header and itssues it along in the request header with an If Modified
Since header to the server. The example of the subsequent requests is as follows:

Get /soma/where/foo.html HTTP/1.0
If Modified Since: Fri, 18Apr 1997 15:12:05 GMT

Accept: text/plain, text/html

It indicates that if the document is not modified since the date defined in the I£
Modified Since header at the server side, the document content is not issued to the
client. Therefore, the following headers but contents will be sent the client as the
response.

HTTP/1.0 304 Not Modified
Server: Netscape-Enterprises/2.0

Date: Sun, 20 Apr 1997 15:45:12 GMT
However, if the document has changed. the server will feed the client with an
updated document and a 200 OK response. 304 Not Modified response saves
bandwidth and reduces latency, as no document transfer actually occurs.
The above mechanism is efficient in conventional HTML to keep the most updated

content in a client’s browser; however, in THTML file system, as the time changes, it is

53

usually a separate file (i.e. a different version) that should be issued to a client because
the original document is not changed and stored as a historical version in the system.
Therefore, the header indicating whether the file has been modified cannot prevent

clients from viewing obsolete versions in THTML system.

4.4.4.2 Possible Solutions

Based on the above problems, two solutions are provided. The advantages and
disadvantages of them are discussed in the following sections.

e Cache Control

The first approach is to delete the cache. HTTP/1.1 allows a client to specify
when the file expires and whether he/she uses cache or not. A typical adoption is web
commercials. Normally, THTML documents do not change while the images within
inline ads are. Therefore, the HTML content is not modified on a per-request or per-user
basis in order to contain a different ad. Instead, only the inline images update with a
particular frequency. With this approach HTML pages can be cached. Only the images
themselves force successive requests to the server instead of being served from the
cache. Although the contents can be updated with this mechanism, the disadvantage of
this approach is that substantial web traffic is induced. Therefore, it is not feasible for it

to adopt in a large, dvnamic HTML file applications.

e Server Push

The other approach is to complement existing web protocols with a new
technology----Push technology (compared to Pull technology), which is considered a
more promising solution.

The original pull technology (client pull) refers to a model in which a client
requests, then the server responds while push (server push) refers to a system in which a
client automatically receives information or applications from a network server. With
server push, clients do not have to issue successive requests to the server for the most
updated versions.

In a server push, the connection between the server and a client does not end until

54

the client closes the session. The server periodically feeds the client with the most
updated version. Because multiple connections need to be kept and the responses to the
previous connected clients should be issued periodically, server push burdens the server.
However, the approach is preferred in THTML. The advantage of it is that web traffic is
reduced to almost half (theoretically for lack of successive requests from the client). It
was shown in a year-long study involving 4,000 users in six Fortune 1000 companies
that just less than 20% of network traffic was raised with the use of push technologies
while 100% with the use of the client pull technology. Another significant reason that
server push is preferred is that no particular software is required with the client, because
the functionality of THTML. is enhanced into the THTML web server.

recmaet I

Server ¢ Client |
" mpsm'_’l
| y
sarvar Push

Figure 4.11 Server Push

With this technology, synchronization can be achieved between a client and a server
with a pre-defined frequency. It not only avoids the likelihood that a client may be
viewing the stale information but also reduces web traffic tremendously. Although
today push technology is still in its infancy, many commercial push products have been
available within industry, and web technology is taken into a promising new research
direction. With fime addressed, an ideal solution is provided with push in order to bring

the increasingly dynamic feature to the World Wide Web.

4.4.5. Conclusion of Algorithm Design

For convenience, THTML allows the author to specify time using the Gregorian
calendar. This however creates a problem when adding or subtracting time due to the
irregular way in which time is denominated in this system. We have therefore
implemented a time irregularity-handling algorithm to perform these operations

correctly. This algorithm can be extended in the future to handle different calendars and

55

temporal terms.

Once the time point has been determined, the best-fit time interval must be found.
The temporal versioning algorithm uses both the intensional and extensional rules to
determine this best-fit interval and resolve any ambiguities.

Push technology was also incorporated into THTML to facilitate the continual
update of a reader’s page. It involves executing the above calculations at user-defined
intervals. Although this results in a heavier load on the server and other solutions may
exist, it is the most efficient solution for some applications where up to date information

1s essential.

time irregularity handling I client pull I

support supports

[instamialion algorithms I_WS.I server push '

Figure 4.12 Backend Components of THTML

4.5 Combination with IHTML

As a side, THTML1.0 is compatible with IHTML. THTML files of a user-defined
version can be created and modified. This indicates a user-defined version can be varied
with time in semantics. Clients can request a particular instance of user-defined version
of a web component at a particular time point. In a THTML file having user-defined

version, the TST’s have the following formats:

TST:: = [<!--#include virtual="included_file’> TMOD="TCS"
VMOD=*intensional_context_switches”> <src img=**imgfile”
TMOD = “TCS” VMOD="intensional _ context_switches” > |
<a href= "[RL_Address® TMOD="TCS”

VMOD=” intensional_context_switches” >]*

56

o The format of intensional_context_switch is detailed in [10]. The TCS has the
same format as introduced in Section 4.2.2.1. Therefore, for example, in a hyperlink
element, a client can write,

.

In THTML1.0, temporal instances are implemented as special subversions of a
user-defined version, so when an element having both TMOD and VMOD attributes is
encountered, the user-defined version is first resolved, and then the process of
instantiation, namely, the instance of the user-defined version is resolved in the time
dimension. The resulting instance is sent to the client*. In the above example, attribute
VMOD specifies the local, user-defined modifiers: pic:big and bgc:blue of the
global user-defined version of the page. If the global, user-defined context of the page is
lang:english, the local user-defined context of the element will be pic:big +
bgc:blue + lang:english. After the best-fit user-defined version at the above
context is resolved, the instance of it will be resolved. Attribute TMOD modifies the
temporal context into current time-1d for the instance. The THTML file whose time
interval stamp best fits the temporal context is instantiated. It replaces the intensional
element into its extensional expression.

In the THTML1.0, multiple HTML files of a user-defined version can be created
and modified in the system. The command for creating a new THTML file from a user-
defined version has the following format:

ivi [-v version [-b baseversion]] [~-t] module
[t indicates that the author can specify a THTML file of a user-defined version of the
module module. The option [-v version [-b baseversion]] is used in
the same manner as in IHTML 2.0 to define a user-defined version. If the version
version does not exist and the base version is supplied, it copies the baseversion
version of the page to the version version.(see the manual of IHTML. 2 [10].) A

THTML file of the user-defined version will be created if there is option -t otherwise a

e The semantic of versioning resolution principle is omitted, because the version resolution principle

will incur more ambiguities.

57

new user-defined version is created. For example, by the command: ivi -i bgc:blue

-t home.html a unique THTML file of a user-defined version bge :blue of a web

component home . html is created.

In the existing file system, both the user-defined version and its THTML files are

put in the directory of their parent module. The name convention of a THTML file of a
user-defined version is module_name.encoded_user_defined_version.nhtml.
The user-defined version information is encoded in
encoded_user_defined_version. Variable n indicates the temporal version of the
user-defined version. For example, home .M11DnCgOxicg.1.htm1 indicates the THTML

source file for english version of home . html.

4.6 Conclusion and Further Directions of THTML System Design

One of the guiding principles behind the design of this THTML system was to
leverage the existing web architecture and HTML language. The language was extended
by adding TST’s and TIS’s. These two enhancements allow web authors to specify
which pages or components should be instantiated given a URL request from the reader.
These times can be conveniently specified using relative terms like, today and tomorrow
or in absolute terms using the Gregorian calendar. Internally, these time elements are
converted to six time units and comparisons between the time request and time intervals
are performed using these units. Both the intensional and extensional rules are used to
resolve any ambiguities and the results of a match are sent to the client.

Since many browsers already exist that support conventional HTML, the system
was designed to be independent of any HTML browsers. All the functionality for
determining which page should be instantiated in response to a request is located at the
server. The server stores the THTML files, along with its time interval stamp, in a tree
structure with a naming convention that encapsulates the parent-child relationship
between the modules and the different temporal versions. Although it is less efficient
than storing all time stamps in a single file, it is more robust and facilitates
implementation on a distributed file system without any bottlenecks.

The server is also responsible for interpreting requests given by the user and

58

generating an HTML page in response. Since users specify time using the Gregorian

Calendar, a time irregularity-handling algorithm needed to be implemented to handle the

o= R D WD Gy,

-
=" server push g

e

web server request web client

response

get the specific user- defined
temporal concepts
and the algorithms

search return the

target fil result of the search

. additional intensional
tier keeping more complex :

~.. rules and logic -
W}’

Figure 4.13 Three-tier Model of THTML System

file server

irregularities when performing addition and subtraction operations. The server uses this
algorithm to determine the correct local context from the inherited temporal context and
a tag’s context modifier. The temporal versioning algorithm uses this local time point to
find the best-fit time interval. The generated page is sent in response to the client’s
request. An updated page can also be sent at user-defined intervals using push
technology. This technology leaves the responsibility with the server to keep the client
up to date with the latest information. The three different tiers are shown in the graph
above along with the communication among them. Additional tiers can also be added to
increase the functionality of the system. Further enhancements to the system can include
the following aspects:
® At the front end, more expressive TST’s can be added, including more user-

defined temporal terminology.

& At the backend, the file system can be separated from the web server. Due to the
exponential growth of versioned entities stored in the file server, the THTML file system
should be made distributed.

® On the web server, another improvement would be to incorporate an additional

59

intensional tier that includes more complex temporal rules that can be used to satisfy
additional requirements from web authors.
o The server push technology can be further improved by including a friendlier user

interface for web authors and more advanced protocols at backend to reduce server load.

Chapter §

THTML Implementation

5.1 Overview

In THTML all functionality is incorporated into the web server. The web client
issues conventional URL and receives conventional HTML file from THTML server.
THTML is implemented independent of web browsers.

We will introduce the implementation of the functionality covered in Chapter 4.
This includes the parsing of THTML files, the temporal versioning algorithm, time
irregularity handling and the generation of conventional HTML pages, along with the
data structures and the push implementation. They are discussed in the following order:
the THTML request handler and response handler will be discussed first. Then the data
structures passing between both functions are discussed. This is to keep user-defined and
temporal versions. The implementation of push technology is then discussed. Finally,

the chapter concludes with an example site written in THTML.

5.2 Design Requirements

THTMLL1.0 implements partially the designs presented in Chapter 4. With
THTMLI.0, TIS's can be specified in an HTML file, which are the time the author
intends to post the file at. The TST’s can also be defined, which can be either intensional
or extensional (including absolute time points) expressions. Server push and the
customized calendars are not implemented at the current stage.

In THTML 1.0, after the reader issues a request to the web server, a particular
instance, namely conventional HTML will be responded to the client at a given time.

The processes at the server are expanded as follows:

= Parsing the global context

First, the temporal context should be extracted from the URL. This context is used

61

by each component of the THTML page as the default global context.

o Time Irregularity Handling

Time related operations are needed to retrieve the correct time context for a request.
These operations are as follows:

First, the GMT format of the user-request is converted into a local time before the

server can compute the global context.

Next, the local modifier and the global context are combined to retrieve the local

context for each temporal element.

e it i Rl Py [y g g g P g N g o

time version]

configure a @
conventional Temporal element 1
HTML search target in file
| pool
| parse the temporal
in file pool |

find the best-fit file ‘@' clements
i Enlarged temporal elementl

ML Respense

Figure 5.1 Enlarged THTML Web Server

Because of the irregularity of the Gregorian calendar, special time irregularity

algorithms are used to obtain the correct temporal context.

62

R R e T T

e Instantiation

The process is illustrated in Figure 5.1. When a temporal component is encountered
in a THTML file, it is converted to an extensional representation.

First, the global context and its local context modifiers are combined according to
the rules introduced in Section 4.2.3.1.1. After the local context is obtained, if the
component is an image or a SSI, the server will search for the corresponding THTML
source and generate its instance. This instance will then be inserted into the newly
created HTML page. The process of instantiating an instance of a temporal component is
the same as converting a web component with TCS into its extensional expression. Steps
3 to 6, above, repeats until all the components with TCS are converted. When

instantiating a component, the process above is applied recursively.

5.3 THTML Implementation

5.3.1 Hook-up with APACHE API

As was introduced in Chapter 2, THTML is implemented by extending a module on
the Apache Server API.

The extended module structure is as follows:

module thtml module =
STANDARD_MODULE_STUPFYF,
thtml_init, /* initializer */
NULL, /* per-directory config creater */
NULL, /* dir config merger-default is to override+*/
thtml_config, /* server config creator */
NULL, /* server config merger */
thtml commands, /* command table */
thtml handlers, /* [8] list of handlers */

thtml xlate, /* [1] URI-to-filename translation */

63

NULL, /* (4] check/validate HTTP user_id */
NULL, /* [5) check HTTP user_id is valid *here**/
NULL, /* (3] check access by host address, etc.*/
NULL, /* [6] MIME type checker/setter */
NULL, /* [7]1 f£ixups */

NULL, /* phase [9] logger °*/

NULL /* phase [2] header parser */

The above structure module is the link between functions defined by third party and
the APACHE APL It defines the 9 phases that the server goes through after receiving a
URL request. In each phase, the third party can specify a handler to customize the
server’s behavior at that phase. NULL indicates that the third party is not interested in
handling that request in that phase. Consequently, from the above THTML structure
module, one can see that there are totally two handlers specified to handle THTML
requests, namely thtml_handler and thtml_xlate, at step [l] and ([8]
respectively.

Each handler is a function taking as an argument, a pointer to a structure called
request_rec. This structure contains all the information for a particular request,
including the user_request_time in GMT format and whether the document sent
to the client should be cached or not.

It also contains information to be sent to the next phase. The thtml_xlate
handler adds user defined version information to the structure to be passed to the
thtml handler.

In each phase, each handler, when invoked to handle a particular request_rec,
has to return an int to indicate what happened.

OK --- the request was handled successfully. This may or may not terminate the
phase.

DECLINED --- no erroneous condition exists, but the module declines to handle the

phase; the server tries to retrieve another.

An HTTP error code---itaborts handling of the request.
Therefore, the request and response handlers in THTML 1.0 have the same data

structure request_rec as input parameter and both handlers return a status code. The

following sections give the functionality of them.

5.3.2 THTML Request Handler--thtml _xlate

The request handler is the first phase of the server. The function is to handle the
user's request by translating the URL to a filename.

First the URI is translated into a filename, the server will search if it is a THTML
request by parsing out the version information in the filename.

If the file is a versioned entity, the server first checks whether it embeds user-
defined context and temporal context. If yes, it will then parse the user-defined version
information first and then the temporal context information. An error message will be
returned if it cannot be parsed.

The next step involves applying the best-fit algorithm to find the best-fit THTML
file. The following steps are involved in this step.

The URI is translated into filename first, the filename is judged. If it is a THTML
directory or a THTML file (implemented in i_is_usexrdir), the temporal contexts
and the user-defined version information if any are parsed out. The request time point is
parsed out if there are no time contexts in the filename.(in translate_userdir)
With the time point and the time contexts in the filename, the server finds the best fit file
(in get_time_vers). The above steps are illustrated with Figure 5.2. In the
get_time_vers function, the following processes are adopted to find the best-fit file:
time_f£it function is adopted first to judge if each time stamp in a THTML file
matches the time point in the request. If yes, put the result pattemn into a two dimensional
array. The all the time patterns in a file are checked,
find least_gap_ time_pattern is adopted to determine the best-fit among all
the candidates.

During the above process, if the best-fit file cannot be found, the server will write

an error message to the log file and return the error code HTTP_NOT_FOUND.

65

Otherwise in step 3, the temporal version will be resolved in two steps. First the time

context is obtained from the THTML input, second we search for the best-fit temporal

version.
N
1_is_userdir g

Y
translate_userdir
get_time_vers

v
return HTTP_OK treate it as a normal HTML file

Figure 5.2 Flow chart in the Request Handler
If the target THTML source file is not found and the absolute THTML file does
not exist, the error message HT'TP_NOT_FOUND is given. The error is also written to a
log file corresponding to the THTML file.
Before an OK is sent, the user-defined and temporal context information is put into
the data member user_request->config. The response handler can use it as the

global context for interpreting local temporal elements in the file.

5.3.3 THTML Response Handler-- thtml_handler

thtml handler is the response handler, which handles the MIME type
“text/html”. It is the last function to be executed before a response is sent to the
client.

Its functionality is to translate the intensional elements in the best-fit file resolved in
the request handler into extensional representations and send the resultant conventional
HTML page to the client. It only handles versioned entities SS/, image and hyperlink.
DECLINE is sent if the config field in the user request is NULL. This indicates that
no version information was given.

First the server opens the best-fit source file that was found by the request handler

and begins to parse it. It is stored in the data structure requst_rec->filename.
When it meets a temporal or user-defined element in the file, it is parsed into an
extensional expression. In the first step, if the local context is not defined, then the
global context will be used instead. It is stored in the request_rec data structure. It
performs the same procedure recursively on any included files. First, it checks if it is an
[HTML file. If yes, it will parse the version information and extract the relevant parts of
the file. The function get_time_vwvers will be adopted again to retrieve the best-fit
file based on a given temporal context. The above steps are illustrated by the following
figure:

While(ts=I_sub translate)

{
case ISELECT: do_select;
case ICOLLECT: do_collect;
default;
}

in the i_sub_tanslate function, if a image, hyperlink and SSI are met, their
temporal contexts will be parsed out, and then the best-fit will be found. If other tags are

encountered, they are interpreted the same as the manner in conventional HTML.

While(next_tag) {

if(interesting tag)

{

Fix_tag,
Print_tag

}

else if(cron tag)
Ignore the content in it and continue parsing

else if(incliude_tagqg)
Do_include

else

67

if(!skep_content)

Print_tag

The interesting tags are the three tags that may include the temporal context
switches. In the £ix_tag function, if a VMOD or TMOD attributes are met, their values
are extracted and merged with the global intensional and temporal contexts. The resulting
context is encoded into the element name. For a SS/ and image tag, the best-fit file will be

retrieved and included.

5.3.4. An Example

When readers go to http://valdes.uvic.ca:8080/~11liu/homepg/home.html,
the following steps are performed in the thtml_xlate phase. The directory
/~1liu/ .www/homepg/home.html is checked to determine if the directory allows global
read/execute access. Then it checks if it is a directory holding multiple versions. By
checking if it has a suffix.html and it is a directory, then goes to next step, check if it
contains any version information. Because home . html carries no temporal contexts.
The request time is retrieved as global context. Files in this directory are searched for
best-fit to the request time. In this example, the file aai.l.html is the best-fit. The file
name along with the user-defined contexts and temporal context are stored. Then the
thtml handler will be executed. First the best-fit file will be opened, whose name is
obtained in thtml_xlate, namely aai.html in this case. In this file, when the
single temporal hyperlink <A HREF="home.html” TMOD="yesterday”
VMOD="lang:english”> yesterday’s english version is met
first, the value of the local modifier in VMOD is "lang:english” while there is no
global version. Therefore, the archor’s version will be changed to 1ang: french. The
archor’s name will be encoded as encoded<lang:english>@encoded<-
1D>.html When the user clicks the above link, the local context will be the global

context of the new page. The same steps are applied to parsing the new page.

68

5.4 Data Structure

The only data structure passed among the handlers is the request_rec structure.
This structure mainly contains protocol-related information from the client, including
cache control. However, there are two fields that are especially relevant to THTML, the
request_config and the request_time ficlds. The request_time is used to
store the client’s request time in GMT format. The request_config field is used to
hold the structure versionp. This structure is where the temporal and user-defined
version values are stored. The time versions are stored in the tval field while the user-
defined versions are stored in the wvals field. The data structure of versionp is

illustrated as follows:

typedef struct vstruct {
int ndims;
char tval(50];
char **dims;
char **vals;

} t*versionp;

The dim and vals variables are used to store the dimension and its corresponding
version information. ndim indicates the number of dimensions, and twval is used to
store the encoded time information. For example, if the following user-defined version:

bgc:blue+lang:english+img:big+platform:unix and temporal context:

dim val

bgc blue
lang english
img big
platform unix

Table 5.1 Storage of User-defined Version

1998 Dec 12/11:11:13 are encountered, they will be stored in versionp While tval

69

stores
Y1998M12D12H11111813 (The format and meaning will be discussed shortly).
ndim is 4 indicating that there are four user-defined dimensions.
This structure holds the global time and user-defined context, which will be used in

the response handler to interpret the local intensional and temporal elements.

5.5 Retrieving the best-fit THTML file

3.5.1 Retrieving Candidates

Function get_time_vers is used to find the best-fit interval candidate. The
process of finding candidates is the process of finding if the time point in a query lies in
the time interval stamps defined in the THTML files.

In order to compare them, THTML puts the parsed time pattern found between the

<cron> and </cron> tags into the following structure.

typedef struct tim({
char* gec;
char* min;
char* hour;
char* dom;
char* month;
char* year;
char* dow;
int flag;

}timeS;

The fields hold respectively: second, minute, hour, day of month, month, year and
day of week. The last flag indicates the time pattern, which can be one of the constants
BEFORE, AFTER, DURING, RECURRING. THTML encodes the two end points of

a time unit into one field and decodes it later when comparing it with a time point. Since

70

only 2 digits are needed to represent each time unit, except for the year, then we can
encode the upper endpoint for each unit as the 3rd and 4th and the lower endpoint in the
Ist and 2nd position. The year is encoded in a similar manner except using 4 digits each
for the upper and lower endpoint. When comparing times, we always start with the most
significant unit, so we compare the year first, followed by month, date, hour, minute and
second. Unnecessary comparisons are avoided by discarding elements as soon as one
time unit does not match.

There are several different situations that need to be handled by the server. These
situations will be described below.

e BEFORE/AFTER pattern comparison:

For the BEFORE pattern, when we compare each time unit, the function
get_time_vers retumns a | if the time request is less than the time stamp, a -1 if it is
greater than the time stamp or continue with the next unit if they are equal. If the 2 time
points are exactly equal, we also return an error, namely —1. A similar situation occurs
for AFTER patterns.

e If a DURING pattern is encountered, the corresponding unit will be decoded
first.

When the first data type is encountered in one time stamp that cannot hold the data
in timestamp exclusively, the matching will stop and the function get_time_vers
returns —~1 to the calling function indicating failure; otherwise, if there is any time unit
that contains the corresponding data unit in time point exclusively, the function returns
immediately with the value 1. Because no matter what value is in the remaining smaller
data units, it is always fits in the time pattern; If either of them overlaps with it, the
process of comparison will continue recursively with the remaining time units until it is
clear whether the time point fits in the time pattern or not. At the end, it turns out that
the tying can not be solved between the two time points, i.e. the time point is overlapped
with one of the end point of the timestamp, 1 is returned.

e If a recurring pattern is encountered, the server compares each individual time
unit. If a time unit containing intervals is encountered, it will be treated in the same

manner as a ‘during’ pattern. The one thing that distinguishes this pattern from all others

71

is that if a match is found in a time unit, only the matched value is stored and the other

BEFORE:
time pattern: yefr mTth day hrxr min:te sech
1 2 3 4 5 6 I
time point: year month day hour jaute second

fetch the next pair
of the largest unit

compare (unit in timestamp, unit
in time pattern)

equal to

latger than

v

succeed (return 1) fail (return —1)

Figure 5.3 Algorithm of Refinement Relationship Resolution between “before” Patterns

recurring values are discarded.

e The situation is simplest in a comparison between two time points. In this case,
we just need to match all time units.

If a match is found, the candidate is stored in an array so that it can be compared

later with other candidates to determine the best-fit.

5.5.2 Resolving Ambiguity
In the following section, only ambiguities among temporal versions are discussed.
The ambiguity of user-defined versions is detailed in the corresponding literature [10].
The ambiguity resolution is handled in the function

find_least_gap_ time_ pattern, which get_time_wvers uses to find the

best-fit THTML file or the best-fit time interval in a single file. In this function, if more
than one pattern matches the time request, the rules introduced in Chapter 3 are applied

to solve the ambiguity. The matched patterns are stored in a two-dimensional array. The

year month date hour minute sec pattern
1998 3 4 5 6 7 RECURRING
1998 3 0504 6 6
1998 3 4 0605 6 6 DURING

Table 5.2 Temporal Pattern Candidates
structure is illustrated in Table 5.2.

The comparison returns the best-fit pattern for further comparison among the
candidates, or —1 to the calling function get_time_vers indicating there is
ambiguity, in which case the server finds the absolute THTML file instead as the best
fit. If it does not exist, a log is written in THTML log file indicating the vanilla version
does not exist.

The server goes through all the candidates, to find the pattern with the highest
refinement level. (The order of refinement, from highest to lowest, is point, during,
after/before, and recurring.)

If only one pattern is found in the server, it will return that pattern.

Note that if one of the matches is a poinr pattern, it is the only one (since time
points are unique). So it becomes our best-fit.

e [f there is more than one during pattern, the difftime function is called to calculate
the time interval. The smallest interval is the best fit.

»[f both a before and an after pattern exist the most refined pattern, the error code
indicating ambiguity is returned in this situation because there is no way to compare the
time gap of these two patterns.

= [f the most refinement patterns are either of after or before, the value of difftime
between the end point and the target end point is the criterion to choose the best-fit
candidate. The one having smaller value is the best-fit indicating that it encapsulates

more closely the time point requested.

73

o If there is more than one recurring pattern candidate, the algorithm to find the
best-fit is similar to the interval pattern, the time units are compared from the highest to
the lowest.

The ambiguity algorithm among files or in one file is the same, except that in the
ambiguity handling among files, a file index is kept along with its best-fit pattern in the
data structure. When the ambiguity is solved, the corresponding file index is returned so

that in the response handler, the server can open the best-fit file.

5.6 Time Irregularity Handling

As mentioned in Chapter 4, special functions (drivers) are provided to handle time
irregularity.

The functions provided are based on the Gregorian Calendar:

1. getDMonth, which returns the number of days in a given month and year.

2. getDow, which returns the day of week for the given date.

& When THTML merges local and global temporal contexts, THTML merges the
two time patterns starting from the smallest time unit to the largest, i.e. from the seconds
to the years.

& In THTML, the day of the week information is calculated when necessary and so
it stores the date using only the 6 time units mentioned above. The reason for this is as
follows:

l. to simplify the algorithm

2. to avoid mismatches in the date and the day of week given. For example, if the
user gives the time pattern:

* ®*5 4 1996 1
and April 5 happens to not be a Monday. THTML assumes that the date is correct in this
situation rather than the day of week. There are however situations when we need to
convert from the date to a day of the week and vice-versa.

When combining local and global contexts, THTML has to convert the week
information given by a user into a date. For example, when a user defines

TMOD="1d+2w” in his query, it adds 2*/4+1 days to the global context.

74

Another situation is when it meets a timestamp indicating the dow. THTML has to
calculate the dow of the time point in clients’ request for comparison.
For example, the timestamp
123 =5 1998 1,2,3
is compared with the time point May 12,12:12:12,1998. The THTML server will
calculate the day of week of the time point to check if it matches the dow given by the

timestamp.

if overflow: n/60 n/60 n/24 n/MaxDOfM n/12
Figure 5.4 “Overflow” Among Time Units

5.7 Other Aspects in Implementation

@ Version Encoding and Version Decoding

As seen in the design section, THTML encodes the version information in the file
name and decodes it when the server retrieves the best-fit version. There are a couple of
reasons why it is encoded. The main reason is to prevent the laymen from hacking the
system based on the version information. The second reason is to standardize the version
information (especially user-defined versions) with standard printable ASCII characters.

In THTML, the absolute and relative time contexts are encoded using different
patterns so that the server can easily differentiate between the two and process them
accordingly.

For example, if a link

i1s encountered, the time context is written as SOMOIOD-13MOYO and encoded

75

following the filename of the link with a separating symbol @ in between.
When the user clicks on it, the server will decode the time information. Since it is
relative time, a global context is needed for it to merge with. Otherwise the global time

context is ignored and the decoded absolute time is used instead as the time for the

query.

o Implementation of Server Push

Server push was not implemented in the current THTML software for the following
reason:

In order to implement server push technology, we need the ability to send multiple
parts of a single document using the HTTP/1.0 protocol. However APACHE_].2.5 has a
bug where the server cannot be modified to keep multiple connections open and
efficiently close them at the user’s request. The details of the bug can be found in

APACHE’s bug reports.

5.8 An Example Site

In order to clarify the design in THTML server. a simple example site is designed
and implemented. The experiment site is about the horoscopes. The time of clients’
request determines the corresponding page to be shown. Each of them also have versions
having the picture of the sign, or not, the user can also change the background of the page
according to their preference.

Each page is linked with the previous sign page and the next sign page, so that the client
can iterate all of the sign pages from either of them. The page combines temporal and
user-defined HTML together. One can see how THTML creates a dynamic site. With
conventional HTML, if each page has three versions of pictures and three versions of
background, the total version will be 3*3 pages, each has the storage equal to the
combined ones of the background and picture version.

While in THTML, 3+3 files are needed for the same amount of versions of the same

site. The storage of the file is the same as each of them, as seen above, THTML save

76

huge storage in versioned site compared with conventional HTML.

In the above THTML, the client will see different pages of horoscope depending
on the time of retrieving the page. The time accords to the time of horoscope at that
time. In it, the request of previous and next one are also implemented with requests for
particular temporal instances. The following two screenshots are a THTML source file
and the corresponding conventional HTML page in response at a particular time. I'rom

this example, one can see how to create a temporal site in THTML.

77

<HTML>
<HEAD>
<TITLE>Capricom information - All sbout Capricomnl</TITLE>

<l Changed by, 13-Jan-2000 -->
<HEAD>
<BODY beckground="Capricom information - All sbout Capricorn! _files/whtmarb gif™>
<CENTER><IMG alt="capricom" border="0" height="121"
sr="Capricom information - All about Capricomn!_fTlesicapricom gif™ width="161">
<ICENTER>
<H1>I
<CENTER>
The Goat
December 22 to January 20</CENTER></H}>

<HR>
<TABLE border="1" cellPadding="3" cellSpacing="3">

<TBODY>

<TR>
<TH elign="middle" vALign="top">

<4 href="home M1DnCgOxjcq@aaervX:0eh-ebwm3FVSA _6FXEwgee html*>

 Last Sign
<[A> <TH>
<TH align="middle" vAlign="top">

<4 href="home M!IDnCeOxicq@/aaervXJOXDQDF 7TV Ls4FRnllai htm]™>

 Next Sign

<> <TH>

<fU><TR>

<[TABLE></[FONT>

<[BODY><HTML>

Figure 5.5 An Extension Sent to a Client at the Request Time 10:10:58 am, Jan 14, 00

78

Fle fdt Seach Heb”

<ron®
DX 121
<kron>
<HTML>
<HEAD>
<TITLE>Capricor mformation - All shout Capricom!<(TITLE>
<l-- Changed by , 13-Jan-2000 —
<HEAD>
<BODY beckground="Caprcom mformation - All showt Capricom! filss/whimarb gif™>
<CENTER><IMG alt="caprcom" border="0" height="121"
swe="Caprrom mformation - All sbout Ceprcom! _fileskeaprcom gf° width="161">
<CENTER>
<Hi>
<CENTER>
The Goat
December 2 to January 20</CENTER></H1>

<HR>
<TABLE border="1" ce[Paddimg="3" ce[Sparmmg="3">
<TBODY>
<TR>
<TH ebign="ruddle * vAlign="top">
<& href="home html* TMOD="§Fri Nov 3 D.2.2>
<[MG border="0" sc="Capricom information - All shout Capricom!_fleshoutton2 g™

 Lsst Sign </TH>
<TH dligr="migdle" vAber="top">
<& href="home html" TMOD="$Fni Jan 2| 22202">

 Next Sign </4> </TH>
<fU=<(TR>
<[TABLE>
<fBCDY><HTML>

Figure 5.6 The THTML Source for the Generated HTML Page Shown in Figure 5.5

79

Chapter 6

Conclusion and Further work

6.1 THTML----Dynamic HTML

There are two ways in which HTML pages can be dynamic. One method is to
have the client’s browser dynamically interpret an html! file. DHTML belongs to this
category. In DHTML, dynamic features can be implemented with functions written in
JavaScript that can be interpreted and run by the clients’ browsers. The other method is
to have the server continually generate HTML files on the fly and sending them to the
client. Examples of this method include Microsoft’s ASP and XML. THTML introduced
in this thesis also belongs to this category.

A THTML server behaves differently than an HTML server.

First, it provides temporal instances of a URL at a particular time context. It is able
to do this by first, providing a system to store and retrieve the most relevant time-
stamped HTML sources. Second, it also allows the client to embed time sensitive tags
into conventional HTML components. Third, with push technology incorporated,
THTML sites are updated using user-defined frequencies and preferences.

The above features are based on two major aspects in design. One is the TIS design
in a temporal HTML file; the other is the refinement ordering of the time intervals.

In the former, the TIS is the time that a web document is expected to post. THTML
combines the two data types in its representation: date and time to cover the required
granularity. The format is as follows:

second minute hour day month year [dow]
With the above data type, basic time patterns in web authors’ demands can be
represented, which includes before, after, during, time point and recurring pattern.

In the latter, the extensional and intensional rules are specified in order to minimize

80

the ambiguity that may occur if multiple time intervals satisfy the time point in a client’s
request. The extensional rule specifies that the smaller time gap of the time interval
stamp to a particular time point, the better-fit of the THTML source file it associates
with. The intensional rule further refines the extensional rule to help resolve any
ambiguities. The refinement order of the five time patterns that THTML supports is
(from the lowest to the highest) recurring, before/after, during, time point. Among them,
before and after have the same priority. Consequently, refinement ordering is not only
related to the temporal gap but also the type of intervals. With the above algorithm, the
ambiguities involved in finding the best-fit interval can be minimized. Therefore, the
instance as server’'s response is generated using the THTML file whose time interval

stamp fits the time point in request best.

6.2 Further Implementations

THTML was designed to fulfill more complex temporal requirements at the front-
end. However some of these features still need to be implemented. They are:

e Server push technology needs to be integrated into the system. The server push
interface needs to be enhanced with more options like allowing an alarm and pop up
window when the site is updated. It should also allow the user to define the frequency
of the updates.

e The file system can be isolated from the file server and developed into a large file
pool. If temporal files are perceived as temporal data, all transactions can be perceived
as storing data in one big repository and allowing the queries to retrieve the needed data
from this repository.

» Natural language can be used in place of the time sensitive tags to make it more
user friendly. In order to support the new features at the front end, another intensional
tier can be incorporated at the back-end. This may include complex reductive rules and
mathematical expressions to support more complex temporal requirements at the front-
end. For example, if the author intends to post a page with a complex time pattern
according to the Fibonacci function based on the two initial time points. With the

Fibonacci rules incorporated at the backend, THTML is expected to fulfill the

81

requirement.

6.3 Possibility of Combining THTML, DHTML and XML

Although the three enhancements of HTML provide dynamic solutions from
different perspectives, due to the fact that they are all based on hierarchical web
document philosophy. there is possibility of combining them in use.

e With Java and JavaScript

Java is an object-oriented programming language that can be run on Web. It is
embedded in HTML file, the browser finds the Java class file in the server and runs the
program with Java Virtual machine installed.

JavaScript is an object-oriented scripting language embedded in HTML file. By
defining

RUNAT tag, the browser can run the script at client side or server side. One
enhancement is making it more interactive with callback functions.

DHTML perceives any part of the content as an object, and allows interaction and
behavior of each with JavaScript and CCS.

THTML is the versioning solution of a web site with time With DHTML combined,
any part of the web content can be distinct as a temporal versioned object (web
elements). It will make the definition of web document beyond the limitation of time
and content, which will give the web author more flexibility in designing web
documents.

A Java and the object including server side JavaScript (Serverlet) can also be made
temporal versioned entities. Based on different time, different Java program will be
triggered at server side. (The author has no clue of how to combine the client-site
JavaScript with THTML)

e With XML

XML allows user-defined tags in HTML file. There is a XML parser to parse it.
Based on the particular data in particular user-defined tag, particular business logic is

adopted at web server. From this aspect, it is similar to THTML. If THTML is

82

combined, XML elements can have multiple versions in time, different versions can be
stored at server side. By combining the two, the user can write a document with user-

defined styles as well as user-defined frequencies.

6.4 Prospect

One can see that as time-sensitive information on the web becomes more prevalent,
the greater the need for adoption of THTML for such applications as newspaper and
stock market sites. It allows the web readers to retrieve a version with a particular time.
It also facilitates the planning of a site that changes very frequently without the user
having to update it with the same frequency. With further implementation and the
combination with the new web technologies, THTML will become a powerful authoring

tool for dvnamic web sites in advanced web applications.

83

Bibliography

[1] W.W.Wadge, “Possible wOOrlds”, in Mehmet A. Orgun, Edward A. Ashcroft,
editors, Intensional Programming 1, pages 56-62. Singapore: World Scientific, 1996.

[2] NCSA server documentation, http://hoohoo.ncsa.uiuc.edu, 1995

[3] W.W.Wadge and Taner Yildirim, “Intensional HTML”, in Bill Wadge, editors,
Proceedings of the Tenth Intensional Symposium on Languages for Intensional
Programming”, Victoria, B.C. Canada, 1997, pp.34-40

[4] J.APlaice and W.W.Wadge, “A new approach to version control”, IEEE
Transactions on Software Engineering, March 1993, pp. 268-276.

[5] Walter F. Tichy, “RCS- A system for version control”, Software-Practice and
Experience, vol. 15, no 7, 1985, pp.637-654

[6] W.W.Wadge and Edward A.Ashcroft, “Lucid, the Dataflow Programming
Language”, Academic Press Inc. 1985

(7] Mehmet A. Orgun and Weichang Du, “Multidimensional Logic Programming:
Theoretical Foundations.” Theoretical Computer Science, Vol185, 1997, pp319-345

[8] Avigdor Gal, Opher Etzion, “Extended Update Functionality in Temporal
Databases”, Temporal Databases, 1997, Dagstuhl, pp 56-95

[9] Robert Thau, “Design considerations for the Apache Server API”, Fifth
International World Web Conference,

http://www3conf.inria.fr/fich _html/papers/P20/Overview.html

[10] Gord Brown, “Intensional HTML 2: a practical approach, Master thesis 1998

[11] Ar Luotonen, “Web Proxy Servers”, Prentice Hall, 1997.

[12] Yijun Lu, *Concept Hierarchy in Data Mining: Specification, Generation and
Implementation”, Master thesis of Simon Fraser University, 1997, pp33-59.

[13] Mehmet A. Orgun, William W. Wadge, “Extending Temporal Logic Programming
with Choice Predicates Non-Determinism.” Journal of Logic and Computation Vol 4,
1994, pp 877-903

[14] Chuchang Liu, Mehmet A. Orgun, “Dealing with Multiple Granularity of Time in
Temporal Logic Programming”, Journal of Symbolic Computation, Vol22. 1996, pp

84

699-720

[15] Mehmet A. Orgun, William W. Wadge: A Relational Algebra as a Query Language
for Temporal DATALOG. Database and Experts Systems Applications, 1992, pp 276-
281

[16] Opher Etzion, Avigdor Gal, Arie Segev, “Data Driven and Temporal Rules in
PARDES", Rules in Database Systems 1993, pp 92-108

[17] Apache server documentation, http://www.apache.org, 1995

(18] W.W.Wadge, “Intensional Logic in Context”, World Scientific, November 23,
1999

[19] Michael Bohlen, “Managing Temporal Knowledge in Deductive Databases™, PhD

thesis, 1995, Swiss Federal Institute of Technolog

85

