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h this thesis we introduce the CSSAME form, a new analysis hamework 

for explicitly parallel programs that recognizes three fundamental elements 

of a parallel program: (1) parallel structure, (2) memory semantics, and (3) 

synchronization structure. By modehg these three elements in a single unified 

fiamework, a compiler can better exploit optimization opportunities in parallel 

programs. 

We also develop a new synchronization analysis technique to detect mutual 

exclusion synchronization patterns that cannot be analyzed with existing 

techniques. We introduce the notion of mdtipleentry/mdtiple-exit mutex 

regions and provide methods for validating mutual exclusion synchronization 

at compiletirne. This analysis provides the basis for the elimination of 

superfiuous memory codict edges in the program's fiowgraph, leading to a 

simpler representation and allowing more optimization opportunities. 

We integrate reaching definition analysis and dead-code elimination into 

the CSSAME framework. Furthemore, we introduce new optimization 

techniques to reduce mutual exclusion synchronization overhead: Lock 

Picking, Lock Independent Code Motion and Mutex Body Localbation. We 

study the &ects of these trainsformations in the context of SPLASH and Java 

applications, prove theh correctness, and provide a l g o r i t h  that implement 

them. 
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Chapter 1 

Introduction 

Parallel computers have the potential to solve cornplex problems much faster 
than conventional sequential computers. Unfortunately, the rnere presence 
of multiple processors does not automatically guarantee better performance. 
Piiltalle1 programs must explicitly distribute the work among the available 
processors and coordinate their activities. In turn, this division of labor 
also afbects the algorithm used to solve the problem. While some sequential 
algorithms lend themselves to parallel implementations, others do not. 

Sequential algorithms amenable to parallelization have been extensively 
studied and existing tools c m  automatically tum some algorithms into 
their paralle1 counterpart. This approach, known as implicit or automatic 

pudlelimtion works well on some application domains but it is not a univend 
solution (Blume and Eigenmann 1992; Eigenmann and Blume 1991). In this 
dissertation we are interested in algorithms that are parallel fkom the outset. 
These algorithms express the solution to a problem in ter- of subproblerns 
to be solved concurrently. The necessary allocation of work to the different 
processes, coordination and data sharing are explicitly stated in the algorithm. 
Languages that support the implementation of explicitly pardel algorithms 
are called explicitly pumllel languages. 

In an explicitly paralle1 language, the programmer has full control over the 
parallelisrn in the program. This is an expressive mode1 because it allows the 
user to take full advantage of the system capabilities. However, performance 
is still an issue; using an explicitly pardel language does not necessady 



1.1 The Problem 2 

lead to optimum nuitime performance. In addition to good algorithm design 
and implementation, an essential key to obtsining good performance is the 
compiler. The compiler is responsible for translating a program written 
in a high-level language to an equivalent program in a low-level language 
that the target architecture can understand. During this translation process 
the compiler applies optimizing transformations to the code to improve its 
performance. In general these transformations have an important property: 
they preserve the semantics of the original program (i.e., the optimized 
prograrn behaves like the original one). In certain circumstances, however, 
optimizing transformations can alter the semantics of the program. Typical 
examples include transformations that trade-off floating point arithmetic 
precision in favor of speed. 

To successfully transform a program the compiler must gather information 
about it. This process, knovvn as p m p m  ontzlysis, builds the necessary 
data structures representing the flow of control and data in the original 
prograrn. This information is vital for the subsequent process of progmm 
optirnizution that improves the original program. It  should be noted that the 
term optimimtion is really a misnomer. Optimizing trdormations try to 

improve the original code but they make no guarantees that the transformation 
will actually be optimd. The transformations are intended to produce code 
that is no worse than the original one. 

This thesis introduces novel compiler analysis and transformation 
techniques to optimize the performance of explicitly parallel programs. In 
the following sections we describe the problem in detail (Section 1.1), present 
our main contributions of this work (Section 1.2) and describe the organization 
of this thesis (Section 1.3). 

1.1 The Problem 

Arguably, the easiest way to develop a paralle1 program is to mite sequential 
code and have the system automaticdy generate an equivalent parallel 
program. This process, known as automatic or zmplicit paratlellzation, has 
been the focus of intense research and development for over three decades. 
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Conceptually, this process works like any other optimizing transformation; the 
pardelizer (often built into the compiler) look for constructs in the original 
program that cm be executed concurrently without altering the original 
semantics. By executing multiple instructions simultaneously, the execution 
path of the program is shortened, thus reducing its mtime. 
This approach to generating parailel code has been extremely successful in 

certain application domains. Traditionaliy, programs performing matrix and 
vector computations using regular loops are prime candidates for automatic 
pardelizstion. Msny scientific problems in physics, engineering and chemistry 
fall into this category. Unfortunately, the state of the art in pardelking 
technology has not advanced much beyond this. Parallelizing cornpilers are 
fundament ally limited by the need to preserve the original sequential semantics 
of the program. The transformations must be such that the resulting parallel 
program should produce exactly the same results as the sequential version. 
For many application domains implicitly psrallelizing a sequential algorithm 
is seldom better than using an explicitly parallel algorithm fiom the outset. 
For instance, the parallel version of the well-known quicksort algorithm, a 
very good sequential dgorithm, performs very poorly compared to PSRS, an 
expiicitiy parallel sorting algorithm (Shi and Schaeffer 1992). 

The recognition of these limitations has resulted in an increased dernand 
for expticitly parallel languages. An explicitly pardel language provides 
language constructs or library functions that ailow the programmer to 
describe concurrent activity inside the program. This added Bexibility is 
a double-edged sword; programmers are hee to specify parallel algmîthms 
any way they choose at the potential expense of increased programming 
complexity. For some time now, researchers have developed new programming 
models, programming environments and automatic validation techniques to 
simpl* the development of pardel programs. However, developing pardel 
programs is complex in another dimension: performance. Most of the exMing 
work in the language area has addressed expressibirity and fleiribility issues. 
Progriimming environments like Enterprise (Schaeffer et al. 1993) provide 

an integral framework for developing pardel programs based on common 
pardel constructs. Analysis tools exist to statically detect deadlock patterns 
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(Masticola and Ryder 1993) and shared memory conflicts (Emrath et al. 
1992; Helmbold and McDowell 1994; Callahan et al. 1990). New languages 
and programming models are being constantly introduced; each typically 
well-suited to a few specific classes of problems. However, these developments 
rarely address performance, which is, in our view, the main reason for using a 
pardel computer in the first place. 

Little research has been done on making cornpilers understand explicit ly 
pardel  code for the purpose of optimization. Typically, existing systems 
and tools rely on the programmer to develop efficient code. The system 
understands explicitly parallel semantics only to the extent of mapping the 
program to the target architecture. Little or no attempt is made to optimize 
the code. In fact, current commercial compiles treat explicitly parallel 
sections of the code as a "black box" and Ieave them untouched. There is 
a good reason for this limitation: transformation techniques for optimizing 
sequential programs cannot be directly applied to explicitly parallel code 
because they may generate incorrect transformations (Mi= and Padua 
1990). The techniques developed in this thesis fiIl part of the void. We present 
a unifiecl fkarnework for andyzing and o p t i m h g  explicitly pardel programs. 
The optimizations describeci here fd into two classes: the adaptation of 
sequential opthbations to a pardel environment; and the direct optunization 
of the paralle1 and synchronization structure of the program. 

1.2 Summary of Major Contributions 

The techniques developed in this thesis can be organized into two categories: 
analysis and transformation techniques. Analysis techniques allow the 
compiler to reason about an explicitly pardel program. We prove correctness 
properties about the and@ and provide algorithms that implernent the 
techniques. Tkansformation techniques use the information gathered by the 
analysis and convert parts of the program into a more efficient but semantically 
eqnivalent form. We prove correctness properties about the transformations 
and provide algorithrns that implement them. We have also implemented m a t  
of these algonthms in the SUIF compiler infiastructure (Hall et al. 1996). 
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We apply them to several explicitly pardel programs and show that these 
optimizations can r d t  in significant improvements in performance. The 
following sections provide an o v e ~ e w  of the specific contributions of this 
work. 

1.2.1 Andysis Techniques 

Static Single Assignment Form for Parallel Programs 

This thesis introduces the Concurrent Static Single Assignment form 
with Mutual Exclusion (CSSAME). CSSAME1 is an intemediate program 
representation based on the the well-known Static Single Assignment (SSA) 
form (Cytron et al. 1991). The SSA form is based on the fundamental premise 
that every memory variable in the intermediate program can only be assignecl 
once. If a program is transformeci to comply with this condition we Say that 
the program is in SSA fom. 

An SSA form for parallel programs with interleaving memory semantics 
must take into account that write and read operations to a given variable 
can take place simultaneously fiom dinerent processes. The CSSAME fonn 
extends the single assignrnent concept to the pardel case. It is based on 
the Concurrent Static Single Assignment (CSSA) form (Lee et al. 1997b). 
CSSAME extends the CSSA form to support two important synchronization 
mechanisms, namely mutual exclusion and barrier synchronization. Chapter 
4 presents a formal description of the CSSAME framework. 

Mutual Exclusion Synchronization Detection 

Mutuai exclusion synchronization is used when a process needs to have 
exclusive access to a shared resource. Exclusive access to a shared resource 
prevents simultaneous modifications which might lead to an inconsistent state. 
We will mode1 mutual exclusion using lock and unîock operations. Exclusive 
access to a shared resource is requested using a lock operation. Once the 
requesting thread is done accessing the resource, it c& unïock to free the 
resource and allow other threads to access it. AU the instructions executed 
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between the lock and the correspondhg unïock operation are said to be inside 
a mutual ezclusion sedion. Other names for mutual exclusion section include 
mutez body and critacai section. In the context of concurrent prograrns, mutual 

exclusion is typically used to access shared variables that might be otherwise 
modified by several concurrent threads. 

Since synchronization operations c m  occur in arbitrary sections of the 
code, the mutual exchsion sections defined by lock and unlock operations 
can be diffcdt to discem. In this thesis we develop a new analysis technique 
to detect mutual exclusion sections in the program. Although techniques emst 
to detect mutual exclusion sections, they are limited in the types of locking 
patterns that they can detect. We formulate a dinerent algorithm for detecting 
critical sections that can cope with irregular locking patterns in the code. This 
analysis provides the fondation for d the transformations that optimize the 
synchronization structure of the program, and c m  ais0 be used to warn the 
programmer about illegal locking pattern. 

We apply the CSSAME analysis framework to perform two types of 
optimizations: (1) the adaptation of known sequential transformations to the 
pardel case and (2) the development of new transformations that target the 
parallel and synchronization structure of the program directly. 

Current research efforts in the field are geared t o m &  the îmt type of 
t rdormations (Knoop et al. 1996; Lee et al. 1998; Lee et al. 1999). In this 
thesis we adapt a sequential dead-code elirnination algorithm to the pardel 
case. 

Trandorming the paralle1 and synchronization structure of explicitly 
parallel code has received l e s  attention (Krishnamurthy and Yelick 
1996; Novillo et al. 1998). We contribute new algorithms to elimuiate 
synchronization overhead fkom evplicitly pardel programs: lock picking, 
lock-independent code motion and mutex body localization. 
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When a statement cornputes a value that is not used anywhere else in the 
program we say that that computation is deod. Dead code is usually removed 
fiom the program because it serves no usefd purpose. In this thesis we adapt a 

sequential dead-code elimination algorithm (Cytron et al. 1991) to the parallel 
case. 

Lock Picking 

Using lock information collectai during the construction of the CSSAME fom, 
it is possible to detect lock and unlock operations that are not needed 
in the program. As a simple case, consider a sequential program or a 
sequential section of a parallei program. Since there is no pardel activity, 
any synchronization operation in that section is not necessary and can be 
removed. We c d  this transformation lock picking. 

Lock-Independent Code Motion (LICM) 

Mutual exciusion cm become a performance bottleneck if used excessively 
because it restricts paralie1 activity in the program. In general it is desirable 
to reduce the size and number of mutud exclusion sections in the code. 
Lock-Independent Code Motion (LICM) tries to reduce the size of mutud 
exclusion sections by moving code outside mutual exclusion sections. This 
technique scans aIl the mutual exclusion regions in the program looking for 
interior code that does not need to be protected by the correspondhg lock. The 
algorithm can move expressions, statements and ewn whole control stmctures 
out of critical sections. 

Mutex Body Localization (MBL) 

Mutex Body Localization is a new transformation that converts references to 

shared rnemory into references to local memory inside critical sections of the 
code. This transformation can potentialiy create more lock-independent code 

that can be later optimized by LICM. 



1.3 Thesis Orghation 

The rest of this thesis is organized as follows: 

Chapter 2 provides background information and related work about 
pardel programming, synchronization models and optimizing compilers. 
It also provides details about the necessity of adapting sequential 
optimization techniques to work on explicitly pardel  programs. The 
specific language mode1 that we assume in the rest of this thesis is 
inti-duced: an explicitly paralle1 language with interleaving memory 
semantics and three different synchronization mechanisms (mutual 
exclusion, barriers and event variables). 

Chapters 3 and 4 desaibe the analysis framework that we use to r e m n  
about pardel programs. We describe the Concurrent Control Flow 
Graph (CCFG) that represents the control and synchronization stmcture 
of parallel programs, the technique used to identifjr mutual exclusion 
synchronization pat t m  and the CSSAME form. 

Chapter 5 b d d s  on the CSSAME form to develop the following 
optimizing transformations: concurrent dead-code elimination, 
lock-independent code motion, mutex body localization, lock picking 
and lock partitioning. 

Experimental r d t s  are presented in Chapter 6. We illustrate the 
benefits of using the CSSAME fkamework and the effects of the different 
transformations on selected parallel programs taken fiom SPLASH 
(Singh et al. 1992) and TkeadMarks (Keleher et al. 1994). We &O 

investigated the potentid benefits of our optimizations on programs 
written in Java. We found that the generic nature of Java's thread-safe 
libraries leads to correct but consemtive implementations that are 
often overly synchronized. When our optimizations are applied to 
sample Java prograrns we obsemed up to a factor of 4 improvement 
in nintime compared to the original pardel program. In fact, because 
the same iibraries are used for sequential programs, we were able to get 



between 10% and 25% improvement in sequentid programs when our 

optimizations are applied. 

a Conclusions and future work are the subject of Chapter 7. 

With low-cost multiprocessor systems now being ubiquitous, the need for 
tools to mlurimize parallel performance has never been greater. This thesis 
represents a significant step fornard in improving the capabilities of compilers 
for psrallel programs. In particular, we expect these techniques to have a 
significmt impact in high-level concurrent or thread-based languages. Of 
particular importance in these environments is the ability of the compiler to 
understand synchronization operations which can be a source of substantial 
overhead in some applications. 



Chapter 2 

Background 

This chapter introduces the fundamental concepts used as the foundation for 
the techniques developed in this thesis. The discussion starts with an ovenriew 

of the more popular pardel programming models, including the specification 
of parallei activity, memory semantics and synchronization constructs (Section 

2.1). 
The discussion continues with a description of the structure and 

responsibilities of a typical optimizing compiler. The emphasis is on the data 
structures and program representations used in the optimization phase of the 
compilation process (Section 2.2). 

Finally, Sections 2.3,2.4 and 2.5 provide background information about the 
field of analysis and optimization of explicitly parallel programs. Techniques 
used in sequential compilers cannot be directly applied to parallel programs. 
We will describe the reasons for this limitation and survey existing work in 

the area This discussion will motivate the new techniques developed in the 
rest of this dissertation. 

2.1 Parallel Programming Models 

Several issues must be considered in a pardel programming environment: 

specincation of pardel activity (language model), data sharing semantics 

(memory model) and synchronization operations to order the access to shared 
resources (synchronization model) . 



Language model. The specification of psrallel activity determines how the 
diffexent processes participate in a computation. There are two types of 
parallelism: tmk and data In s twk-pamllel program, Merent threads 
execute different sections of the program on different data elements. 
Conversely, in a data-purollel program, different threads execute the 
same code on different data elements. 

Memory model. Unlike sequential programs, the different processes that 
execute a padlel  program do not necessady have access to the same 
memory address space. The memory can be shared arnong the processes, 
or distributed. The choice of memory model WU have a significant 
impact on the implementation and even on the algonthms used. 

Synchrordzation model. Synchronization is necessary to protect the 
integrity of resources shared by several processes. It prevents a process 
fiom computing with stale or incomplete data. 

2.1.1 Language Mode1 

For a long tirne, research in the field of paraliel compilation has focused on the 
automatic transformation of sequential programs into their paralle1 equivalent 
(Gupta and Banerjee 1992; Wilson et al. 1994). The compiler analyzes the 
program looking for sections of the code that can be executed in pardel 
without a k t i n g  the original data dependencies in the program. 

Parallelizing compilers are very useful for some application domains. They 
typically excel in numeric and scientSc applications involving computations on 
regular data structures lîke matrices. Unfortunately, there are some important 
problem domains that p a r a l l e k g  compilers cannot handle efficiently (Blume 
and Eigenmann 1992; Eigenmann and Blume 1991) (e.g., sorting, s e a r h g ,  
sparse matrix computations, etc). 'ïhese shortcomings are not always due 
to limitations in the pardelization techniques used. For some applications, 
the best sequential algorithms contain data and control dependencies that 
current automatic parallelization techniques cannot handle. To overcome these 
limitations, paraUelizing compilers provide a set of annotations and directives 
so that the programmer can direct the actions of the parallelizer. Even these 
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/* Start N threade to execute dinerent 
sections of code mneurrently. 

*/ 
cab- 
T,: begin 

statements 
end 

T2: begin 
statements 

end 

/r Start N threads ta execute the same 
code concumntly. Each threôd executes 

t with a different value of i. 
*/ 

parloop (4 f ,  N) { 
Btmt,; 
atmf2; 

. . . 
TN: be@ 

statements 
end 

coend 

(a) A task-parailel program. (b) A data-parailel program. 

Figure 2.1: Syntsx for specifying pardel activity in a program. 

extensions are often not enough; often the best solution is to solve the problem 
using a parallel aigorithm £rom the outset (Shi and Schaeffer 1992). All the 
techniques and algonthms developed in this thesis work on explicitly parallel 
programs. Our goal is not to extract psrdelisrn fiom a sequential program 
but to analyze and optimize a progam that is already parallel. This applies 
to programs that are explieitly parallel fkom the outset and to the output of 
an automatic pardehation tool. 

We assume that explicitly parallel programs start as a single thread of 
computation. New threads are logically created when execution reaches 
a parallel section in the program. Although the creation, placement and 
scheduling of threads is not si@cant for our research, the compiler must 
be able to recognize parallel sections in the code. There are a variety 

of mechanisms for expressing parallel activity. Some examples include 
cobegin/coend constructs, f ork statements and pardel  loops. 

We wu represent task-pardel progams using cobegin/coend constnicts 
(Figure 2.l(a)) and data-pardel programs using pardel  loops (Figure 
2.l(b)). The program fiagxnents in Figure 2.1 launch N threads that execute 

independently and join with the invoking thread at the end of the parallel 
section. The threads created by the cobegin/coend constnict will execute 
different code sections while the the& created by the parloop loop will 
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Figure 2.2: A distributeci-memory system. Processors have their own memory. 

Figure 2.3: A shared-memory system. Processors share the same address space. 

execute the same piece of code. With these two constructs it is possible to 
express both task-parallel and data-pardel algorithms. 

2.1.2 Memory Mode1 

Memory can be shared or distributed among the processors in the system. 
On a distributeci-memory system, each processor has its own Iocal memory 
which cannot be accessed by other processors in the system (Figure 2.2). 
Interprocessor communication is based on message passing. Data is sent fkom 
one processor to another via data communication primitives send and meive. 

In contrast to the distributecl approach, a shared-memory system provides 
a single address space that can be accessed by all the processors in the 
system (Figure 2.3). ?Zaditionally, shared memory has been provided in 

hardware with processors comected to a common rnemory pool through a 
shared bus. These systems, known as Symmetric Multiprocessors (or SMPs), 
suffer fiom scalabiliw problems; beyond a certain number the performance of 



SMP systems degrades greatly because of the increased trafnc on the shared 
memory bus. 

To address the scalability problem, research has focused on providing 
a shared memory image on top of physically distributed hardware. These 
systems, known as Distributed Shared Memory (or DSM) or Non-Uniform 
Memory Access systems (NUMA), mask the distributeci nature of the memory 
by providing an abstraction that t r d o r m s  shared memory references into 
messages between different memory modules. 

A sometimes heated debate exkts in the paralIelism community about 
the relative benefits of shared-memory versus distributed-memory systems. 
Supporters of the shared memory model argue that its d e d  data 

access notation rnakes for simpler and easier to maintain programs. Any 
communication required to access the common memory is transparently 
handled by the system. The current trend is for these two types of architectures 
to merge into hybrid architectures with features from both types of systems. 

While this is a convenient prograrnming model, the overhead of repeated 
shared-memory references can restrict the performance of the program 
significantly. The focus of current research into shared-memory systerns is in 
mbimhkg communication due to shared-memory t r a c .  This has produced 
compiler techniques, caching algorithms and latency-Ming techniques at the 
hardware and operating system level. In this work we assume that thresds nui 

in a shared address space with interleaving semantics (Le., updates to shared 
memory made by one thread are immediately visible to the other threads). 
Programs share memory via shared variables. 

The analysis techniques discussed in this document rely on the effects that 
synchronization operations have on the flow of data in the pardel program. 
The algorithms developed in this thesis support three standard synchronization 
constmcts, namely mutual exclusion, events and bamers: 

Mutual exciusion is used to serialize references to shared variables in 

the program. We will assume that programmers use standard lock 



and unïock instructions to serïalize access to shared variables. Both 
instructions operate on lock miables which can only be referenced in a 
lock or unïock statement. hirthermore, we assume that lock(L) reads 
and writes to the lock variable L and unlock(L) only writes to L. 

lock(L) blocks the c a l h g  thread util it is granted exclusive access 

to the lock variable L. If a thread ta tries to acquire a lock already 
held by another thread ti, t2 will block until t l  releases the lock. If 
multiple threads try to acquire the lock simultaneously, exactly one 
is guaranteed to succeed. The other threads are forced to wait. 

unlock(L) reieases the lock on L and allows one of the threads waiting 
on the lock to proceed. 

Event synchronization is supported using event variables. An event 
variable is an integer with two possible d u e s ,  posted and deared. Three 
operations apply to an event variable e: 

set (el sets event variable e to posted. 

wait (a) if e is set to demed, it blocks the calling thread until e is set 

to posted. 

clear(e) sets e to deared. 

Event synchronization is used as a signahg mechanism between threads. 
By using events, the programmer can introduce a partial order in the 
execution of concurrent threads. Assume that some computation B 
in thread Tz can only execute after thread Tl has produced another 
computation A. This relation can be implemented by using an event 
variable e that is set by Tl immediately &ter cornputing A and waited 
by Tz immediately prior to computing B. Our work does not address 

event synchronization directly; all the support for event synchronization 
is derived £rom the precedence algorithms in (Lee et ai. 1997a). 

0 Barriers are used in algorithms that need to proceed in phases. A 
barrier(b, N) instruction forces the calling thread to m i t  until N 

threads have executed the statement barrier (b , N) . 
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In termediaie Object 
(Analy sis) Representation (S yathesis) 

Figure 2.4: A hi&-level view of the compilation proceso. 

O pt imizing Compilers 

A compiler andyzes an input program written in one lmguage (source code) 
and transforms it into a semantically equivalent program in another language 
(object code). During translation an optimizing compiler applies certain 
transformations to the input program to improve its efficiency. There are 
two fundamental ways of measuring efficiency: performance and space. Most 
optimizing transformations are meant to improve performance. In certain 
situations, space consideratioas are more important (e.g., systems wit  h limited 
amounts of memory and/or registers) . 

We should point out that the transformations appüed by an optimizing 
compiler are generdy not optimal; they merely attempt to improve certain 
aspects of the program. Optimizing transformations try to be as aggressive 
as possible without modifyhg the original semantics of the program. To 
achieve this the optimization algorithms always en on the safe side; a 
trandormation d l  only be appüed if it is valid for every possible execution of 
the program. To summarize, an optimizing transformation must be aggressive 
but conservatively correct. 

This section starts 6 t h  an o v e ~ e w  of a typical compiler system. 
Compilers have two major components: the front-end, which is responsible 
for recognizing and validating the input program; and the back-end, which 
translates the input program into the target language and applies optimizing 
transformations to make the program more efficient (Figure 2.4). Special 
attention is given to the badc-end of the compiler; we will only briefly describe 
the compiler front-end (an in-depth description of this topic can be found in 

(Aho et al. 1986)). 



2.2.1 Front-End 

Before the program can be optimized and translated into code for the target 
machine, the compiler must understand its lexical and syntactic structure. 

The front-end of the compiler converts the string of characters representing 
the input program into data structures that convey aJl the information needed 
by the back-end to transfocm the program and generate object code. The 
recognition of the input program is done in three phases, narnely lexical 
analysis, syntax analpis and intemediate code generation (Figure 2.5). 

Figure 2.5: The fiont-end analyees and prepares the program for opthization. 

Lexical Analysis 

This phase reads the stream of characters that make up the input program and 
groups them into tokens. Tokens are symbols with a predetermined meaning 
in the grammar of the input language (Le., the WO& of the language). This 
tokenitotion process produces a more synthetic version of the input program 
that simplifies the task of subsequent phases. For example, given the following 
stream of characters representing an assignment ststement 

foo = bar + 30.4 - foo 

a lexical analyzer might produce the following seven tokens 

IDENT ASSIGN IDENT PLUS NUM MINüS IDENT 

foo - - bar + 30.4 - foo 

Limitecl error checking is performed at this phase. Basically, the lexical 

analyzer can only determine whether a string of characten is a valid token 
of the input language. The hierarchical grouping of tokens h t o  statements is 
performed by the syntax analyzer. 



foo 

I 

bar 

Figure 2.6: Parse tree for the statement f oo = bar + 30.4 - f 00. 

Syntruc and Semantic Analysis 

The syntax analyzer, &O known as parser, uses the grammar rules of the input 
language to group the tokens into statements. Statements are hierarchical 
groupings ofken represented by parse trees. Information contained in parse 

trees is used to validate the syntax of the input program and generate 
intermediate code used for optimization and ha1 object code generation. 

Figure 2.6 shows the parse tree corresponding to the statement foo = bar  

+ 30.4 - foo. Interior nodes of the tree correspond to grammar constructs 
(e.g., statements, expressions, declarations, etc); leaves correspond to the 

individual tokens recognized by the lexical analyzer. 
Grammar des are defined recursively in terms of statements, expressio11~, 

procedures and control structures. Semantic analysis is also performed during 
this phase. It mainly involves checking expressions to detect operations that 
are not allowed by the typing rules of the language (e.g., mdtiplying a string 
by a floating point number) . 

Interniediat e Code Generat ion 

Once the program syntax has been verified, the compiler generates 

intermediate code which is a more synthetic representation of the original 
program. The intermediate representation used by the compiler oRen 



resembles assembly language for an abstract machine. By separating the 
language (fkont-end) fkom the architecture (back-end), it is possible to re-use 
the same optimization and code generation techniques for a variety of input 
languages. F'urthermore, the simpler form of this intermediate language 
simplifies the task of optimizing and generating object code. Returaing to 
our running example, the expression f oo = bar + 30.4 - f oo is translated 
to the folIowing intermediate form in SUIF (Stanford University Intermediate 
Form) (Hall et al. 1996): 

1: ldc nd#4 = 3.040+01 /* Load nd#4 with constant 30 - 4  */ 
2: add nd#3 = .bar, ndM /* Add nd#3 = bar + nd#4 */ 
3: sub .foo = nd#3, .foo /* Subtract foo = nd#3 - foo */ 

In this code fragment, the symbols nd#i are temporary variables used 
internaily by the compiler and actud program variable names are preceded 
by a ".". AU the analpis and transformation techniques performed by the 
compiler are applied to this intermediate representation. The amount of 
detail provided by the intermediate representation depends on the type of 
optimization being performed. Optimizing compilen typicdy have more than 
one intermediate representation, each suited for different transformations. For 
example, hi&-level transformations like loop trdormations are typically 
performed by the front-end while low-level transformations like code scheduling 
are typicdy done by the back-end (code scheduling reorders the generated 
instructions to take advantage of the target processor). 

2.2.2 Back-End 

The compiler back-end is responsible for appiying optimizing transformations 
to the intermediate code and generating the object code that will execute 
on the real machine. The front-end for compilers for both sequentiai and 
paralle1 languages use similar methodologies. The techniques for recogniPng 
and validating the input program are well-known and do not vary much when 
moving from the sequential to the parde1 case. However, fundamental changes 
are necessary to the compiler's back-end when moving from the sequential to 
the pardel case. 
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There are also sigaiâcant differences between compiler techniques for 
explicitly parallel languages (like the ones developed in this thesis) and the 
techniques used in parallelizing compilers. ParalleliPng compilers analyze 

sequential programs to generate parallel code with sequential semantics. On 
the other hand, compilers for explicitly pardel languages analyze and optimize 
programs that already have parallel semantics. 

Optimizing Tkansformat ions 

The compiler fiont-end acquires very little knowledge of what the program 
actually does. Optimization is possible when the compiler understands the 
flow of control in the program (control-flow analysis) and how the data is 
transformecl 8s the program executes (data-0ow analysis). Both types of 
analysis are discussed in Sections 2.4 and 2.5. 

Analysis of the control and data-fiow of the program allows the compiler to 
improve the nuitirne performance of the code. Many different optimizations 
are possible once the compiler understands the control and data-flow of the 
program. The following are a few of the more popular optimization techniques 
used in standard optimizing compilers: 

Algebraic simplifications. Expressions are simplifieci using algebraic 
properties of their operaton and operands. For instance, i + 1 - i is 
converted to 1. Other properties like associativi@, commutativity and 
distribut ivity are also used t O simplify expressiom. 

Constant folding. Expressions for which all operators are constant c m  be 
evaluated at compile time and replaced with their value. For instance, 
the expression a = 4 + 3 - 8 can be replaced with a = -1. Shis 
optimization (usually performed by the front-end) yields best results 
when combined with constant propagation (page 22). 

Redundancy elimination. There are several techniques that deal with the 
elimination of redundant computations. Some of the more common ones 
indude: 
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Loop-invariant code motion. Computations inside loopa that produce 
the same result for every iteration are moved outside the loop. 

Cornmon sub-expression elMnution. If an expression is computed more 
than once on a specitic execution path and its operands are never 

modified, the repeated computations are replaced with the r e d t  
computed in the ht one. 

Partial redundancy elàmanation. A computation is partially redundant 

if some execution path computes the expression more than once. 
This optimization adds and removes computations fiom execution 
paths to minimire the number of redundsnt computations in the 
program. It encompasses the effects of loopinvariant code motion 
and common sub-expression elimination. 

Register allocation. Regkiters are memory locations inside the processor 
itself that are extremely fast and scarce. Register allocation tries to keep 
memory tr&c within the CPU registers as much as possible. 

Code Generation 

Final target code consists of machine or assembly code for the target 
architecture. Fùrther optimizations are enabled during this translation. 
Register allocation and code scheduling are typically applied during this phase. 
Code scheduling refers to a family of instruction re-ordering techniques that 
take a d m a g e  of specinc features of the processor (e.g., pipelining, VLIW, 
super-scdar features, etc). 

2.3 Analysis and O ptimizat ion of Explicit ly 
Parallel Programs 

In 1990 MidkifF and Padua published a study that showed how optimizing 
transformations designed for sequential programs may f d  when applied to 

expiicitly pardel code (Midkin and Padua 1990). The core of the problem is 
that techniques for seqnential languages have no concept of concurrent activity, 
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they assume a single thread of execution. Consequent1y, they cannot assert 
whether it is safe to apply the transformations. 

Current work-arounds to this problem involve disabhg optimizations in 
parallel sections of the program and/or restricting data sharing between 

thresds. Both are inappropriate because they are too restrictive. This means 
that the compiler can only optimize the sequential parts of the prograrn. 
The compiler should "understandn parallel code and be able to make valid 
optMizing transformations. A classic example of how sequential compilers 

fail on explicitly parallel code is shown in Figure 2.7. The program shows two 

threads sharing a common array. Thread To (the pmducer) creates new values 

while thread Ti (the consumer) waits for To to generate dl the values before 
doing its work. The two threads are synchronized using a busy-wait loop on 
variable done. When thread To finishes updating the array, it sets variable 

done to 1 which terminates the uhile loop in thread Tl. 
A common transformation used in optimizing compilers is called constant 

pmpagution. Basicdy, a constant propagation algorithm replaces variables 
by their values if they are known to be constant. Consider variable done; 
since a sequential constant propagation analyzer does not know about the 
pardel structure of the prograrn, it wiIl produce incorrect transformations. 
If the compiler considers that To and Ti execute in sequence, it wîll conclude 
that variable done is always 1 when control reaches the while loop in Ti. 
Therefore, constant propagation WU effectively remove the busy-wait loop 
and the program will likely produce the wrong results at  runtime. 
This example illustrates the hindamental reason why we need compilen 

to understand explicitly pardel code. Concurrent threads of actîvity on 

shared data introduce data dependencies that a sequential compiler cannot 
see because it assumes a single thread of execution. 

There are other elements in a parallel program that a compiler must 

understand, namely the synchronization and memory models. Different 
synchronization schemes will impose different constraints on how data is 
shared. As we will see in later sections this can create more opportunities 

for the compiler to apply more aggressive optimizations. 
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done = 0; 
cobegin 
T,: begin 

for (i = 0; i < N; i++) 
A[iJ = pduce(i); 

done = 1; 
end 

T,: begin 
whUe (done == 0) 
; /* busy-wait */ 

for (i = O; i < N; i++) 
print(AM); 

end 
coend 

done = O; 

T,: begia 
for (i = O; i < N; i++) 

Ab] = produce(i); 
done = 1; 

end 

Tl: begia 
whiïe (1 --= 0) /* Always f&! a/ 
; /* buey-wait never executed */ 

for (i = O; i < N; i++) 
pkt(AE]); 

end 
coend 

(a) Original program. @) Constant propagation oliminates synchronîzation, 

Figure 2.7: Constant propagation problems in an explicitly pardel program. 

2.4 Control-Flow Analysis 

The goal of control-flow analysis is to discover the control structure of the 
program. This task might seem trivial when one examines the origbal source 
code, but recall that the compiler does not deal with the original code. 
Depending on the intemediate representation used, when the code is converted 
to its intermediate fonn, all the high-Ievel control constructs like loops and 
conditionals are sometimes lost. Even if the control information was preserved, 
propam.m.ers can still write obfuscated code that hide the high-level control 
structures of the program. 

The control-flow of the program is often represented in a graphical fonn 
called the eontml-flow gmph. The nodes of the graph, cded  basic blocks, 
represent a non-branching sequence of statements (i.e., execution starts with 
the b t  instruction in the group and it only Ieaves the block after the last 

instmction has been executed). The edges of the graph represent possible 
execution paths in the flow of control (Le., conditionals, loops, etc.). 

2.4.1 The Control-Flow Graph 

The control-flow graph (&O known as the flowgraph) is a graphical 
representation of the control structure of the program. Its nodes represent 



computations and its edges reptesent the flow of control. The nodes of a 
flowgraph are called basic blocks. 
D e t i o n  2.1 (Basic block) A basic block is a sequence of consecutive 
statements in which flow of control enters at  the beginning and leaves at the 
end without any possibility of branching except at  the end (Aho et al. 1986). 

O 

Formally, a control-flow graph is dehed as  a directed graph G = 

(N, E, begin, end) such that N is the set of basic blocks (or nodes), E C N x N 
is the set of control-flow edges, begin is the unique entry point to the graph and 
end is the unique exit point from the graph. An edge between basic blocks n 
and m is denoted n -t m. We Say that node n is the Wnmediote predecessor of 
m and node m is the immedàate successor of n. Similarly we define the sets of 
Succ(n) and Pd@) to be the sets of immediate successors and predecessors 
of n respeetively. 

a = f(); 
b = go; 
c = ho; 

Figure 2.8: A sequential program and its control-8ow graph. 



Figure 2.8 shows a sample flowgraph for a sequential program. While there 
is little variation in the conventions used to represent flowgraphs for sequential 
programs, there does not exkt a unique notation to represent flowgraphs 

for paralle1 programs. The dinerent representations share commonalities, 
but some inciude extra edges to represent synchronization and have dinerent 

notions of basic blocks. 

Paralle1 Flow Graph 

Sriniman and Grunwald introduce the Pamllel Flow Gmph (PFG) (Grunwald 
and Srinivasan 1993). In their language mode1 synchronization is specified 

using Post and Wait statements and paralle1 sections in the code are specified 
using cobegin/coend or parailel-sect ions/end,parallel-sect ions. 

The nodes of a PFG represent extendecl basic blocks. An eztended basic 
block is a basic block with at most one W a i t  statement at  the start of the block 
and at mast one Post statement at the end of the block. Statements demarking 
pardel sections are denoted by cobegin and coend nodes in the graph. There 
are three types of edges: a sequential control-&w edge represents sequential 
flow of control within sequential parts of the program. A pamllel control-flow 
edge represents paralle1 control flow. It comects a cobegin node with its 
Mmediate successon and a coend node with its immediate predecessors. A 
synchronization edge is a directed edge between a node containing a Post 

statement to a node containing the c o ~ e ~ p o n d h g  Wait statement. 

Extended Flow Graph 

Sriniman, Hook and Wolfe introduce the Eztended Flow Gmph (EFG) 
(Srinivasan et al. 1993). Paralle1 activity is specifd using Parai lel  
Sections. Each section within a Parallel Sections construct has its own 

identifyllig name. The only synchronization supported is the Wait (sec) clause 
which can only be used at  the beginning of a section. The Wait (sec) command 

causes the invoking section to wait until section sec has finished. 
The EFG is composecl of two separate abstractions; the Pamllel Controt 

FIow Gmph (PCFG) which represents the sequential sections of the code 
and the Pamllet P d e n c e  Gmph which represents the paralle1 sections. 



The PCFG is a standard control-flow graph with one special node called 
supernode that represents an entire Paralle1 Sections constmct. Each 
section within a Parallei. Sections is a node of a Pamllel Pfecedence Gmph. 
Synchronization between parallel sections is represmted with directed edges 

between the co~~esponding nodes in the PPG. in tum, each node of the PPG 
is expanded into a PCFG representing the code inside the section. 

Concurrent Control Flow Graph 

Lee, MidkifFand Padua introduce the Concurrent Control Row Gmph (CCFG) 
(Lee et al. 1997b). It is similar to the Parallel Flow Graph but since 
the memory mode1 that they use ailows concurrent modifications to shared 
memory locations, the CCFG also contains conflict edges between basic blocks 
t hat contain contlicting memory references (Le., at least one of the basic blocks 
is attempting to modify that location). 

The nodes of a CCFG are called concurrent basic blocks and are exactly like 
the eztended bosic blocks of a PFG. The flowgraph representation used in this 
thesis is based on the CCFG. We will describe CCFGs in detail in Chapter 3. 

2.4.2 Common Graph Concepts 

In this section we define several relations between nodes in a control-flow gaph 
that are commody used by the analysis a lgor i th .  In what follows we assume 
a control-flow graph G = (N, E, E&yG, E d o )  and two nodes x, y E G. 
Dehition 2.2 (Dominance) Node x dominotes node y, denoted x DOM y, 
if every control path fiom Entryc to y contains x. Node x is in the set 
of dominators of y, denoted x E DOM (y). Node y is in the set of nodes 
dominated by x,  denoted y E DOM-'(2). Note that every node always 
domhates itself. O 

Dennition 2.3 (Strict dominance) Node x strictly dominates node y, 
denoted x SDOM y, if x DOM y and x # y. Node z is in the set of 
strict dominators of y, denoted x E SDOM(y). Node y is in the set of nodes 
strictly dominated by z, denoted y E SDOM-'(Z). O 
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Definition 2.4 (Post-domhance) Node y post-dominates node x, denoted 
y PDOM x, if every control path nom x to ExitG contains y. Node y is in the 
set of post-dominators of x, denoted y E PDOM(x). Node z is in the set of 
nodes posMominsted by y, denoted x E PDOM-'(y). Note that every node 
dways post-dominates itselt O 

Definition 2.5 (Strict poetdominance) Node y strictly post-dominates 
node x ,  denoted y SPDOM x, if y PDOM z and x # y. Node y is in the 
set of strict post-dominators of x, denoted y E SPDOM(z). Node x is in the 

set of nodes strictly postdominated by y, denoted x E SPDOM-'(y). O 

Definition 2.6 (Dominance fkontier) The dominance frontier for node x, 
denoted DE"(%) is the set of aU nodes y in the flowgraph such that x dominates 
an immediate predecessor of y but it does not dominate y. O 

De5i t ion  2.7 (fmmediate dominator) If x DOM y, we Say that node x 

is the immediote dominator of node y, denoted x [DOM y, if z is the last 
dominator of y on any path from the entry node to y. D 

Dehi t ion 2.8 (Dominator tree) The dominator tree is dehed recursively 
using the dominance relation between the nodes in the graph. The root of the 
dominator tree is the entry node to the graph. The children of a node n in the 
dominator tree are the nodes imrnediately dominated by n in the flowgraph. 

O 

We illustrate these concepts using the fiowgraph shown in Figure 2.9(a). 
The entry node (node O) dominates every node in the graph. Consequently its 
dominance fkontier is empty. Nodes 1,2,6 and 7 posMominate node O because 
every path O + 7 must go through those nodes. The dominance fkontier for 
node 4 is node 6 because node 4 dominates an immediate predecessor of node 
6 (i.e., node 5), but it does not dominate node 6 itself (Le., there is a path 
kom O to 6 that does not indude node 4). Using the dominance relation on 
the nodes of the graph we obtain the dominance tree shown in Figure 2.9(b). 
The tables in Figures 2.10 and 2.11 show the dominance and post-dominance 
relations for the nodes in the example flowgraph. 
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(a) Flowgraph. (b) Dorninator tree. 

Figure 2.9: An example lowgraph and its dominator tree. 

2.5 Data-Flow Analysis 

A data-flow analyzer explores ail the possible executions of the program to 
determine how it transforms the data it manipulates. A fundamental property 
of data-flow analysis is that it must guarantee that the information it gathers is 
valid for ewry possible execution of the program. Othetwise, decisions based 
on this analysis could yield erroneous results. 

This section describes some of the more common data-flow analyses found 
in optimizing compilers. Two popular data-flow analysis frsmeworks are 
discussed: iterative data-flow analysis and the Static Single Assigrnent fom. 
We also survey proposed analysis techniques for arplicitly pardel languages 
based on these data-fiow fkameworks. 
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- Node (n) 
O 
1 
2 
3 
4 
5 
6 
7 

DOM (n) 
(0) 
{O, 1) 
(07 1?2) 
{O, 1,2,3) 
{O, 1,2,4) 
(07 1 7  2,4,5) 
{O, 1 7  2,6) 
{O, 1 9 %  697) 

Figure 2.10: Dominance sets and dominance h t i e r s  for Figure 2.9. 

Node (n) 
O 
1 
2 
3 
4 
5 
6 
7 

PDOM (n) 
{0,1,2,6,7) 
( 1 7 %  6 7 )  
(29% 7) 
(37 697) 
{4,5,6? 7) 
(57 6,7) 
(69 7) 
17) 

Figure 2.11: Post-dominance sets for the flowgraph in Figure 2.9. 

2.5.1 Cornmon Data-Flow Problems 

Data-flow problems mode1 properties about various program objects at speciftc 
points in the program. The information gathered when solving a specific 
problem is then used by the optimizer to make the actual transformations. 

Reaching Definitions 

A variable v is defined (denoted D,) every time a new value is assigned to it. 
We Say that a definition LI,, of v recches a certain point p in the program if 
there exists a path r between Dv and p such that r contains no definitions to v. 

For example, the program in Figure 2.12 contains three definitions of variable 
a, namely Di at line 1, D: at line 4 and D: at Iine 7. Reaching definition 
analysis on this program should determine that definition Dt reaches the use 
of a at lines 2,4 and 6 but it does not reach line 8 because of definition D: at 
line 7. 
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Figure 2.12: Ezrample of the reaching definitions problem. 

Figure 2.13: Reaching d a t i o n s  and reached uses sets for the program in Figure 

Use 

Q! 
vg 
u: 
u: 

mching-defs 

{D:) 
{ D : ? m  
{D:?D:) 
(2) 

(a) Reached uses for each dehition of a. 
(b) Reaching definitions for each use of a. 
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D a t i o n  2.9 (Use-def chains) Reaching definition information is usually 

stored in we-def chahs or ud-chaitis which are lists of definitions reaching a 
part idar use of a variable. O 

Use-def chains for variable a are shown as dashed arrows in the controEflow 
graph for the program (Figure 2.12). Other data structures of interest include 
re~ched-uses and mdiing-defs sets which are defined as foliows: 
Dennition 2.10 (Reached-uses set) Given a dehition 4 for variable v ,  

the set teaehed-uses for D, is the set of all uses of v that are reached by D,. 

DefMtion 2.11 (Reaching-de&) Given a use UV of variable v, the set 
mching-defs for UV is the set of all definitions for u that can reach UV. O 

Note that in coilecting r e d g  definition information for this program we 
have said that dehition D: reaches line 6. This might appear counter-intuitive 
because there appears to be another definition in the path fkom line 1 to line 
6, namely definition Dg at line 4. However, definition at line 4 is not always 
executed therefore the conservatively correct decision is to assume that both 
definitions, Di and D:, reach line 6. Reaching definitions and reached uses 

sets for variable a are shown in Figure 2.13. 

Live Variables 

A variable v is live at a certain point p in the program if the value of v at 
p could be used dong some path starting at p. Otherwise, we say that v is 
deod at p. Going back to the example progam in Figure 2.12, the value of b 
computed at line 2 is live at Line 3 but it becornes dead at line 5 because it is 
not used anymore. 

Available Expressions 

An expression a + b is availuble at a point p in the program if ail the paths 
from the entry node to point p in the graph compute a + b. The notion 
of availability is used in optimizations like redundancy elimination. If an 
expression is repeatedly computed without its operands being modified, then 
redundant computations cm be removed. 



2.5.2 Iterative Data-Flow Analysis 

lterative datadow analysis is the traditional method for solving data-flow 
problems. Dat~flow information is collecteci in sets that represent the 
information needed by each particular problem. 'Itaditionally, optimizing 
transformations are phrased in terms of d a t d o w  problems. For instance, in 
the case of constant propagation each element of the data-flow set corresponds 
to a dinerent variable in the program. 

The analysis is perforrned by setting up and solving systems of equations, 
known as data-fiw equatiow, that describe the local effeds that each basic 
block has on the data-flow sets. The propagation of data-flow properties is 
done localiy to each basic blodc and the results are aggregated over al l  the 
basic blocks to determine global properties of the program. Each data-flow 
problem must define appropriate data-flow sets and equations needed to gather 
the required information. 

Data-Bow information is typically stored in four main sets: in is the set 
representing information entering the block, out is the information that exits 
the block, kilt is the information invalidateci (or killed) by the block and gen 

is the information generated locaily by the block. In generd, the equations 
are set up so that they follow the naturd flow of control of the program. In 
other words, the set out is dehed in terms of in, gen and ML These are 
known as fornaml data-flow problems. But for some other problems, known 
as baekward data-flow problems, the data-flow equations and their associated 
iterations proceed backwards. 

Once set up, data-flow equations are solved iteratively fiom an initial set 
of values. The most common implementation of iterative data-flow analyzers 
uses bit-vectors to represent the sets in the data-flow equations. This is why 

this is sometirnes called bit-vector analysis. More information about these 
techniques can be found in (Aho et al. 1986) and (Muchnick 1997). 

Iterative Data-Flow Analysis for Explicitly Parallel Programa 

Grunwald and Srinivasan developed data-fiow equations to compute reaching 
defmition information on explicitly parallel pro- with cobegin/coend 
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parallel sections (Grunwald and Srinivasan 1993). They assume a weak 
memory consistency mode1 in which pardel sections are required to be data 
independent; memory updates are done at specific points in the program using 
copy-in/copy-out semantics. They support event-based synchronization 
synchronization using set and wait operatiom. 

Knoop, Steffen and Vollmer developed a bit-vector analysis fiamework for 
paraIlel programs with interleaving memory semantics (Knoop et al. 1996). 
They show how to adapt standard optimization aigorithm to their hmework. 

However, they do not incorporate synchronization operations in their analysis. 
They use this fkamework to adapt lazy code motion optimization which is a 

redundancy elimination rnethod. 

2.5.3 Static Single Assignment Form 

S tatic Single Assignment (SS A) is a relatively new intemediate representation 
that is becorning increasingly popular because it leads to efficient algorithmic 
implementations of dat*flow andyzers and optimizing transformations 
(Cytron et al. 1991). The SSA form is based on the premise that program 

variables are only assigned once. Multiple assignments to the same variable 
create new versions of the variable. In essence, the SSA form makes all the 
use-def chahs explicit in the program, because every use of a variable is reached 

by exactly one dennition. 
Actud programs are seldom in SSA form initially because variables tend to 

be assigned multiple times; not just once. An SSA-based compiler modifies the 
program representation so that every t h e  a variable is assigned in the code, a 

new version of the variable is created. DXerent versions of the same variable 
are disthguished by subscnpting the variable name with its version number. 
Variables used in the right-hand side of expressions are renamed so that their 

version number matches that of the most recent assignment. Notice that it is 
not always possible to statically determine what is the most recent assignment 
for a given use. These ambiguities are the r d t  of branches and loops in the 
program fiow of control. To solve this ambiguity, the SSA form introduces 

the mcalled q5 functions. q5 functions merge multiple incoming assignments to 
generate a new definition; they are placed at points in the program where the 
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1 : a = 4  
2 : b = a + 3  
3: iî (a > 3) { 
4: print a 
5: a = a + 3  
6: ) 
7: 
8 : b = 5  
9: prbt a +  b 

1 : a , = 4  
2 : b 1 = a , + 3  
3: if (a, > 3) { 
4: print a, 

(a) Original program. @) Program in SSA form. 

Figure 2.14: An exampie sequential program and its SSA form. 

flow of control causes more than one assignment to be available (essentidly, a 
4 functions are needed at dominance frontier nodes). 

Figure 2.14 shows a sequential program and its corresponding SSA form 
(Figures 2.14(a) and 2. M(b) respectively). Notice that every a s s i v e n t  
in the program introduces a new version number for the corresponding 
variable. Every t h e  a variable is used, its name is replaced with the version 
corresponding to the most recent assignment for the variable. Now consider 
the use of Mnable a in line 9. There are two assignments to a that could reach 
iine 9; the assignment at line 1 and the assignment inside the if statement 
at line 5. To solve this ambiguity, SSA introduces a q5 fuaction for a which 
merges both assignments to create a new version of a (a3). The semantics of 
the q5 funetion dictate that as will take the value trom one of the hinction's 
arguments. The specific argument returned by the t$ function is not known 
until runtime. 

Static Single Assignment for Explicitly ParaUeI Programs 

SrininSan, Hook and Wolfe developed a Static Single Assignrnent (SSA) 
framework for explicitly parallel programs (Sriniman et al. 1993). Their 
analysis kamework works on the Parailel Sections model (page 25). Two 
different merge operators are used; t# and 41, hinctions. A $ function serves the 
same purpose as in sequential programs, it is placed at nodes that represent 
merge points in the program. 11 functions model multiple pardel updates; 
they are placed at synchronization points in the program if two or more 
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concurrent sections modify the same variable. 
Lee, Midkin and Padua propose a Concurrent SSA fkamework (CSSA) for 

explicitly parallel programs and interleaving memory semantics (Lee et al. 

199%). Our work builds on the CSSA form; a more detailed description can 
be found in Chapter 4. Lee et al. also adapt some sequential optimizing 
transformations to the pardel case using CSSA (Lee et al. 1998; Lee et al. 
1999). 

2.5.4 Other Approaches to Optimizing Explicitly 
Paraiiel Programs 

Shasha and Snir proposed an analysis technique called cycle detectton that 
allows re-ordering of memory references in a program to increase concurrency 
while maintaining the sequential consistency dictated by the code (Shasha and 
Snir 1988). 

Krishnamurthy and Yelick extended cycle detection analysis to incorporate 
additional information from synchronization in the program (Krishnamurthy 
and Yelick 1996). AIthough their work supports post/wait, barrier and 
mutual exclusion synchronization, they only focus on optimizing remote 
memory references on a specific class of explicitly parallel programs. 

Recent research efforts in the area have focused on the Java language. Since 
Java is a multi-threaded language, its class libraries mu& support concurrent 
acceases by multiple threads of execution. This is supported at the language 
level using s ynehronized methods, also known as monitors, which are a variation 
of the traditional mutual exclusion section. AR important aspect of optimizing 
Java programs is reducing the overhead imposed by the thresd-safe nature of 
Java's libraries. Di&, Rinard and Whaley have developed several techniques 
to reduce the impact of synchronization in Java programs (Whaley and b a r d  
1999; Dinh and Rinard 1998). 



Modern compilers are organized around two major phases: anuZys5s and 
s y n t h k .  During analysis, the compiler extracts detailed information about 
the program. In particular the analysi~ phase discovers how the program is 
structured and how it manipulates its data. The optimization phase uses 

this information to t r d o r m  the original program into an equivalent but 
more efficient version. In this context, efficiency is usually associated with 
performance; we wsnt to produce code that executes as fast as possible on the 
target architecture. Finally, the synthesis phase generates object code that 
cm be executed on the target machine. 

While analysis and optimization techniques for sequentid languages are 
well-known, these techniques camot be used in explicitly parailel programs 
that share memory. Concurrent execution, data sharing and synchronization 
operations affect the control and data flow of the program in ways that 
the sequential techniques are unable to handle. There have been recent 
advances in developing analysis fiameworks for explicitly parallei programs 
and adapting traditional optimization techniques such as constant propagation 
and dead-code elimination to the parallel case. However, there has been 
less emphasis on optimizing the paraIlel and synchronization structure of the 
program itself. 

In the following chapters we introduce novel analysis techniques that 
incorporate both the pardel and synchronization structure of the program into 
a iinified kamework for analyzing and optunizing explicitly paralle1 programs. 



Chapter 3 

Analyzing Explicit ly Parallel 
Programs 

In an explicitly parallel program with shared memory semantics, the use 
of a shared variable v can be reached by any definition of v in another 
concurrent thread. However, synchronization constmcts may prevent some 
variable definitions from being visible to other threads. For example, consider 
the program in Figure 3.1. If the compiler ignores the mutual exclusion 
regions created by the lock operations, it will conclude that the definition 
for variable a in thread To can reach both uses of a in thread Tl. However, 
the synchronization used in the program serializes the referaces to a so that 
the assignment to a in To cannot reach the second use of a in Tl. Therefore, 
the cal l  to function g( )  in Tl will always be exemted with a = 3. 

This chspter introduces the foundations for the analysis framework 
developed in Chapter 4. We start with a description of the Concurrent Control 
Flow Graph (CCFG) (Section 3.1). Section 3.2 describes the process used to 
build the CCFG for a @en program. We then use the CCFG to analyze 
the synchronization pattern in the program to gather non-concurrency 
information. As observed in Figure 3.1, synchronization can reduce data 
dependencies across concurrent threads in the program. This reduction of 

data dependencies rnay d o w  more aggressive optimization in subsequent 
transformation passes. In this work we support three types of synchronization 
operations: events, mutual exclusion and barriers (Section 3.3). 
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/* Begin concurrent execution */ 
/* Lauach thread T,, */ 

/* This küh the assignment to a in T, */ 
/* Variale a ia al- 3 */ 

Figure 3.1: Mutual exclusion can reduce data dependencies across threads in a 
par allel program. 

3.1 Concurrent Control Flow Graph 

A Concurrent Control Flow Graph (CCFG) (Lee et al. 199%) is simüar to its 
sequential couterpart, the Control Flow Graph (Aho et al. 1986). It represents 
the control structure of a pardel program including the parallel constructs 
cobegin/coend and parloop. In addition, a CCFG contains edges to represent 
memory conflicts acrass concurrent threads and event synchronization. We 
extend the CCFG so that each lock, unlock and barrier operation is 
represented by a separate node. 
D a t i o n  3.1 (Variable references) Variables are referenced every t h e  
their values are read or modified by the program. Read references are also 
known as uses, while write references are also known as definitiow. O 

Definition 3.2 (Shared variable teference codicts)  Two variable 
references in different threads confict if (a) both reference the same miable, 
(b) one of them is a write reference, and, (c) the threads can execute 
concurrently. O 

Definition 3.3 (Concurrent basic block) A concurrent busic block is a 

basic block (Aho et al. 1986) with the folIowing additional properties: 

1. Only the first statement of the block can be a wait statement or contain 
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a use of a codicting variable. 

2. Only the last statement of the block can be a set statement or contain 
a definition of a conflicting variable. 

3. Synchronization operations rock, unlock and barrier are placed in 
theY own block. 

4. Parallel control instmctions cobegin, coend and parloop are placed in 

their own block. a 

D a t i o n  3.4 (Confllcts between concurrent basic blocks) Two 
concurrent basic blocks a and b in different threads wnfict if they can 

execute concurrently and contain codcting variable references. O 

D m t i o n  3.5 (Concurrent Control Flow Graph (CCFG)) 
A Concurrent Contml Flow Gmph (CCFG) is a directed graph 
G = (N, El EntryG, E ~ t o )  such that: 

1. N is the set of nodes in the graph. Esch node in N corresponds to a 
concurrent basic block. 

2. Entryo and Ezito are the unique entry and exit points of the program. 

3. E = Ef U Es U Ec is the set of edges in the graph such that: 

(a) EI is the set of control flow edges. These edges have the same 
meaning as in a sequential Control Flow Graph. 

(b) Es is the set of edges representing event synchronization. These are 
directed edges that job related set and oait nodes in concurrent 
threads. 

(c) Ec is the set of conflict edges. Codict edges are bi-directional edges 
that join any two concurrent basic blocks that confüct. There is a 
label on a codlict edge that represents the memory operations done 
at each end of the edge. There are two kinds of confticts: 

i. def-use: one of the nodes mites to the shared variable and 

the other one reads from it. These conflicts are Iabeled D U W ,  
where v is the name of the variable being accessed. 
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ii. def-def: both nodes write to the shared variable. These 
confticts are labeled DD(v), where v is the name of the variable 
being modified. a 

Definition 3.6 (Entry and exit nodes) Given a thread T, begiw is the 
entry node for T, endT is the exit node for T ,  cobeginT is the co6eg-h node 
for the innermost cobeginfcoend structure containhg T, and coendT is the 
corresponding eoend node for c o b e g i ~ .  O 

Definition 3.7 (Control path) Given two nodes x and y in a CCFG G, a 
path fkom z to y is a umtrol poth if it only contains edges in El. O 

3.1.1 Graphical Representation of a CCFG 

This section describes the graphical notation we use to represent CCFGs. 
Figures 3.2(a) and 3.2(b) show the representation for cobegin/coend and 
parloop constmcts respectively. Figure 3.2(c) illustrate the representation of 
event synchronization edges. 

Graph nodes are represented using three dinerent shapes. Ellipses represent 
entry and exit nodes for the graph, loops, pardel structures (cobeginfcoend 
and parloop) and nested scopes in the source program. Header nodes for 
conditional statements are represented using diamonds. Finally, rectangles 
represent concurrent basic blocks. Control flow edges are represented using 
solid lines. Conflict edges are represented with dotted hes. Dashed lines 
represent event synchronization edges. 

Each cobegin node has one outgoing control edge for each child thread it 
launches. Graphically, each thread is represented as a subgraph rooted at the 
cobegin node (Figure 3.2(a)). All the children threads join at  the coend node. 
Codict edges dways join nodes in threads that share at least one common 
cobegin node. 

We experimented with two Merent ways of representing pardel loops. 
Since a pardel  loop is not r e d y  an iterative control structure, we initidy 
represented pardel loops as a cobegin/coend with one thread. Each node 
inside the parloop stmcture had the property of being concurrent with itself. 
Therefore, the a l g o r i t h  and data stmctures have to support self-referencing 
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(a) cobegin/coend construct. (b) parloop construct. 

(c) Event synchronization edges. 

Figure 3.2: Representation of paraIlel constructs and synchronization in a CCFG. 



3.2 Building the CCFG 42 

confüct edges. This is partidarly important in building the CSSAME form 
for the program (Chapter 4). 

Although this representation was enough for our purposes, it can be 
confusing to visualize and it does not permit certain analyses used in the 
literature (iüre cycle detection (Shasha and Snir 1988)). The other method 
to represent parallel loop is to replicate the body of the loop and consider 
it Like a cobegia/coend structure with two threads: the original and the 
replica (Figure 3.2(b)). This representation is identical to the cobegin/coend 
representation, confiict edges join distinct nodes (there are no selfkeferencing 
codicts) and it fiditates the design of some of the analysis aigorithms 
proposed in the iiterature (Krishnamurthy and Yelick 1996; Lee et al. 1999). 
From an implementation point of view, this representation has the drawback of 
potentially doubling the memory requirements. In subsequent sections we use 
this representation to simplify the exphnation of some algorithms. However, 
in our current implementation we do not create replicas of parallel loop bodies. 

Event synchroaization operations (set and wait) are represented in the 
flowgraph using directeci edges from set nodes to the corresponding vait node. 
Notice that set and wait are the only synchronization operations that create 
additional edges in the CCFG. This is used during synchronization analysis 
t O comput e guarant eed precedence ordering (Section 3.3.3). Mutual exclusion 
and bamier synchronization are supported but no additional edges are required 
by the synchronization malysis phase. An example of an explicitly parallel 
program and its CCFG are illustrated in Figures 3.3 and 3.4. 

3.2 Building the CCFG 

Algorithm 3.1 builds the concurrent control flow graph for an expücitly pmallel 
program P. It consists of three phases: (a) placement of nodes and control 
edges, (b) placement of conflict edges and (c) placement of synchronization 
edges. 

Graph nodes and control edges are created using a slightly modifieci version 
of a standard algorithm to build control flow gaphs (Aho et al. 1986). The 
modification allows the original algorithm to recognize the cobegin/co end 
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Tt: begin 
Iock(t): 
a = b f  6; 
Y = a; 
unlock(L) ; 

end 
coead 
print(x, y); 

Figure 3.3: A task paralle1 program. 

and parïoop constructs. Basic blocks are built using a linear scan of all the 
statements in the program. This step builds basic blocks, not concurrent basic 
blocks. Subsequent phases of the algorithm wiU split the basic blocks to create 
concurrent basic blocks, and incorporate confiict and synchronization edges to 
the base graph. 

Algorithm 3.1 Build a Conment Control Flow Graph. 
mm: An explicitly paraiid program P 
OUTPUT: The concurrent control iiow graph G = (N, E, BnttyG, E d o )  for P 

1: Buiid maximai basic blocks and controt edges (Aho et al. 1986). 
2: Add contlict edgea (Algorithm 3.3). 
3: Add synchronisation edges (Algorithm 3.4). 

Once the basic stmcture of the flowgraph has been built, conflict and 
synchronization edges are added to the graph. To add codict edges, the 
graph is traversed looking for nodes that cm execute concurrently and access 
the same memory location in a codlicting marner. Algorithm 3.2 is used to 
determine whether two arbitrary nodes in the graph can execute concurrently. 
The algorithm assumes the existence of two data structures: 

Threod(n) is the thread that contains node n. Threads are assumeci to have 
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Figure 3.4: Concurrent Conhl Flow Graph for the program in Figure 3.3. 
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a unique id computed automatically by the compiler. The sequential 
parts of the prognun are dways executed by thread T,q. 

ParAwstors(n) is the set of cobegin and parloop nodes that cm be 
reached in a backwards traversal of the dominator tree from node n 
to the entry node of the CCFG. 

Algorithm 3.2 Concurrency relation. 
mm: Two concurrent baeic blocks a, b E G = (IV, E, Entwo, E d e ) .  
omtrr: TRUB if a and b can execute coucurrently, PA= otherwise. 

1: fkmction -(a, 6) 
2: /* if a or b are in a aquential region, they cannot be concurrent. */ 
3: if T h d ( a )  = Taro V T h d ( b )  = T., then 
4: r e t u r n P A M B  
5: end if 
6: 
7: /* If a and b have a couunon parloop n d e  in their ParAnccstm set, they are concurrent. */ 
8: if 3n E ParAnastm(a) s.t, n = parloop h n E ParAncestors(6) then 
9: M t W l l T R U E  
10: end if 
11: 
12: /* If a and b have a common cokgfrr node in their */ 
13: /* ParAnocstots set and they are on different threaàs */ 
14: /* and they are not the eame node, then they are concurrent. */ 
15: if 3n E ParAmcdm(a) a.t, n = cobagip ~ThrcOd(a) # ThrcOd(6) A o # b then 
16: retum  ive 
17: end if 
18: 
19: /* Noue of the previoue tests 8ucceeded. The nodes are not concurrent. */ 
20: retura  ruse 

Concurrent nodes with memory codicts are msrked as conflicting and split 
up to create concurrent basic blocks according to the d e s  given in Definition 
3.3. Codict edges are created to join the confücting nodes (Algorithm 3.3). 
Notice that at this stage we do not use the non-concurrency information that 
can be gathered fiom the synchronization structures of the program. As we 

wilI discuss in Section 3.3, it is generally more convenient for synchronization 
analysis to have the basic CCFG already built. In practice, however, this 
analysis could be performed in conjunction with synchronization analysis. 

When implementing the compiler, we discovered that it is easier to b d d  
concurrent basic blocks fiom the outset than it is to build m;wcimal basic blocks 
and then split them up. The main reason is that when splitting basic blocks 
one must take care of boundary conditions so that no empty basic blocks axe 
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created. What we implemented is a two pass algorithm that will fht scan 
the program and determine conilict lists at the level of instructions. During 
the concurrent basic block building pas,  the conflict list in each instruction 
is checked to see if the instruction should be added to the current block or a 
new block be created. This is more memory intensive, but it simplified our 
implementation. For clarity of presentation we have decided to describe them 
as two separate phases. 

Algorithm 3.3 Add con£Lict edges. 
INPUT: An incomplete concurrent control tlow graph G = ( N , E ,  h W G ,  6 n t ~ )  with no confüct 

~ g e s -  
OUTPUT: The CCFG G givem as input with codict eàges Ec added. 

1: E c t 8  
2: foreach u E N do 
3: forsachbE Ndo 
4: /* Cali Algorithm 3.2 ( m e )  to determine whetber a and b are concurrent */ 
5: if (-(a, 6) = TRUB) A (a confiicts with b) then 
6: EC + Ec U{(aB b ) )  
7: end if 
8: end b r  
9: end for 
1 0  foreach (a, 6) E Ec do 
11: Split blocks a and b to cornply with definition 3.3. 
12: end h r  

The last step in the construction of the CCFG is to add directed 
synchronization edges for related set and w a i t  operations in the program 
(Algorithm 3.4). For every pair of nodes set and wait the algorithm checks 
if they can execute concurrently and operate on the same synchronization 
variable. If so, a directed edge fiom the set node to the wait node is added. 

Algorithm 3.4 Add synchronization ed-. 
INPUT: An hcomplete concurrent contml Baw graph G = (N, E, Entryo, Bzito) with no 

synchronisation edges. 
OUTPUT: The graph C with synchmaiaation edges E, aàded. 

1: E,+B 
2: /* For every event variable v add an edge h m  each rat (w) to mry mit Cw). */ 
3: foreachaENdo 
4: fotsachbENdo 
5: if ~ c ( u ,  6) = TRüE th- 
6: if (a = sct(o)) A (b  = tooit(w)) then 
7: E' + E* U ((a, 6)) 
8: end if 
9: end if 
1& end for 
13: end for 



3.3 Synchronization Analysis 

Parallel programs use synchronization to order the access to shared data 
by the different threads in the program. Typically, synchronization 
operations introduce non-concurrency among otherwise concurrent regions of 
the program. The goal of synchronization analysis is to determine which nodes 
in concurrent sections of the program will not execute concurrently. This 
information is used to disregard memory conflicts from the CCFG that cannot 
occur at runtime due to synchronization restrictions. Reducing the nurnber of 
memory c o ~ c t s  gives more keedom to the compiler when applying optirnizing 
transformations. Whermore, information about synchronization semantics 
d o m  the development of techniques to validate the synchronization structure 
of the program. 

In this work we support three types of synchronization: mutual exclusion, 
events and barriers. Section 3.3.1 develops new techniques to analyze mutual 
exclusion synchronization patterns in parallel programs. Techniques for 
staticaily validating mutual exclusion are discussed in Section 3.3.2. We 
use existing synchronization andysis techniques to gather non-concurrency 
information for setluait and barrier operations (Jeremiassen and Eggers 
1994; Lee et al. 199%) (Sections 3.3.3 and 3.3.4). 

3.3.1 Mutex Synchronization 

Given an arbitrary statement s in a program and a lock variable L, a mutex 
structure analyzer should be able to answer the question "does s execute under 
the protection of lock L?". The answer to that question should be one of 
always, never or sometimes. 

In the context of this work, the answers never and sometimes are 
equivalent. If the compiler cannot assert that statement s wi l l  always be 
protected by L at runtime then the consenmtively correct decision is to assume 
that s is never protected by L. Firrthermore, if the andysis determines that s 
is sometimes protected and sometimes not, this information codd be used to 
wani the user about an anomdous locking pattern. 



Motivation 

Existing work on mutual exclusion synchronization is based on a structural 
definition of mutex bodies (Krishnamurthy and Yelick 1996; Masticola and 
Ryder 1993; Novillo et al. 1998). A mutex body is indicated by a pair of lock 

and unïock nodes. AU the graph nodes dominsted by the lock node and 
post-dominated by the unlock node are part of the mutex body. Although 
correct, this notion of mutex body fails to identify some valid locking patterns 
present in some programs (i.e., the mutex body recognizer responds never too 
oft en). 

Initially, we had only considerd traditional single-entry, single-exit mutex 
bodies (Novillo et al. 1998) but we soon discovered that some programs contain 
mutex bodies that do not fit that structure. For instance, consider the code 
Fagment in Figure 3.5. This routine is part of a quicksort algorithm taken from 
the sample application programs bundled with the TkeadMarks DSM system 
(Keleher et al. 1994). This routine grabs a piece of work to be done fiom a 
shared stack. We are interested in the mutual exclluson sections created by 
the lock variable TSL. 

Notice that a structural definition of mutex bodies will identify no mutex 
bodies in this function. The only lock/uiilock pair that might qualify as 
a mutex body are the statements Li and U3 (lines 6 and 48 respectively). 
However, the presence of other lock and unlock operations in between these 
statements forces the compiler to disregard this pair as a valid mutex body. 

Despite the irregular locking pattern present in this code bagment, it is 
possible to identify sections that will always execute under the protection of the 
TSL variable. A closer inspection of the code reveals that the only statement 
that executes without lock protection is the busy wait statement Si (line 31). 

Informally, we modify every lock or unlock node for lock variable L so 

that they contain a definition and a use for L. AU the other nodes in the graph 
are modifiecl to contain a use for lock variable L. To determine whether or 
not a flow graph node n is protected by lock L we compute reaching definition 
information for the use of L at n. If at le& one of the reaching definitions 
cornes from an uiilock node or if there are no reaching definitions, then node 
n is not protected by lock L. 



Mefine NPROCS 5 
tdeflne DONE -1 

int PopWork(TàtMiement *ta&) 

whüe ('IgelrStsdrTap == 0) { 
iî (++NumWaiting == NPROCS) { 

/a Aii the threads are waiting for work. 
W e  am done. 

*/ 
10Wpausa,l=k); 
pause,ftag = 1; 
u n l o C k ( ~ 0 c k ) ;  

/* Wait for work. This is the only 
r statement not protected by TSL. 
*/ 
S, =, whfle ( ! p a u d a g )  ; /* busy-mit */ 

if (NumWaiting == NPROCS) { 
U, * unlo&(TSt); 
return DONE; 

1 
--NumWaiting; 

1 

/* Pop a piece of work h m  the stack */ 
'IgskStacKIbp--; 
task->Mt = TBakStack~tackTop] Jeft; 
task->ri& = ?BslrStack~tack'Ibp].right; 

Figure 3.5: Locking pattern in huiction Pop WorkO. 



Figure 3.6: Partrd %A fom for function ~opworkO. 



The process is illustrateci in Figure 3.6. For simplicity, the graph only 
shows the SSA information related to the lock variable TSL. Consider, for 
instance, node 7. A use of TSL in that node c m  be reached by definitions T S h  
and T S k .  Since both definitions corne from a lock operation, we conclude 
that node 7 is protected by the lock TSL. Similady, if we compute reaching 
definition information for node 9, we conclude that the only dennition for TSL 
that c m  reach it is T S k .  Since TS& cornes from an unïock operation, node 
9 is not protected by the lock. 

Detecting Mutex Structures 

The detection of mutex structures is reduced to the problem of computing 
reaching definitions for the lock variables in the program. The Concurrent 
Control Flow Graph (CCFG) for the program is modifiecl so that: 

1. every graph node contains a use for eoch lock variable in the program, 

2. every lock and unïock node for lock variable L contains a definition for 
L, and 

3. for each lock variable L the entry node of the graph is assumeci to contain 
an unlock(L) operation (this assumption can be overridden using c d  
graph information). 

D a t i o n  3.8 (Lock-protected nodes) We Say that a flowgraph node b 
is lock-protected by lock L if, and only if, the use of L at b is only reached by 

definitions of L in ïock(L) nodes. Therefore, if at least one of those sequential 
reaching definitions coma fiom an unlock(L) node, then b is not protected 
by L. O 

Mutex bodies are defined in terms of lock-protected nodes. For instance, 

in Figure 3.7(a), the c d  to a() at line 4 is protected by lock L because it is 
ody reached by the lock operation at line 1 and the lock operation at line 7. 

In general, a mutex body is a multiple-entry, multiple-exit region of the graph 

that encompasses all the flowgraph nodes that are reached by a common set 

of lock nodes. In contrast, previous work (Krishnamurthy and Yelick 1996; 



(a) Original program. a() and c() are @) SSA form for the program. b()  is not 
protected by L. b()  is not. protected because it is reached by au 

unlock operation* 

Figure 3.7: Detecting irregular mutex structures in a pardel program. 

Masticola and Ryder 1993) has treated mutex bodies as single-entry, singleexit 
regrom. 
Definition 3.9 (Mutex body) Given a lock variable L and a set of lock(L) 
nodes N = {nl, m, . . . , %) known as the lock nodes, a mutez body &(N) = 
(4, b, . . . ,4) is a set of nodes such that: 

1. Every node in {bi, b, . . . , bs) is reached by at least one node E N. 

2. There exists at least one node bi E BL(N) that is reached by al2 the 
nodes in N. 

3. For every node E N, there exists at least one node xi = unlock(L) 
such that xi is reached by n(. AU the unlock(L) nodes are known as the 
unlock nodes of the mutex body. 

4. No node E BL(N) can be a ïock(L) node. a 

The fbt two conditions establish that the nodes in a mutex body must 
be related in two ways. First, all the nodes in the body must be reached 
by a common set of lock(L) nodes. Second, ali the lock nodes must reach 
at least one common node in the mutex body. Without this restriction, the 
analysis would consider two disjoint sets of nodes to be the same mutex body. 



This clearly makes no sense because they have nothing in common. The third 
condition defines the exit points of a mutex body. There must be a "way out" 
of the mutex body ftom every entry point. 

Finslly, the fourth condition explicitly excludes lock nodes from the mutex 
body. This is an important distinction because of the serialization semantics 
imposed by lock operations. A fundamental property of muta: bodies is 
that given two nodes a and b in two different mutex bodies for the same lock 
variable, a and b annot execute concmently. If the lock nodes were considered 
part of the mutex body, the compiler would think that two concurrent threads 
can never execute different lock(L) nodes at the same tirne. This is incorrect 
and therefore not allowed. 

Subsequent to this work, Hendren (Hendren 2000) p r o p d  an alternative 
definition of mutex bodies. For every lock(L) node n, d the nodes reachable 
from n are marked in one color. For every unlock(L) node x, ail the nodes 
reachable from x are marked in another color. The mutex body is the set 
of nodes that are marked in both colors. This is a much simpler alternative 
that should lead to more efficient implementations of mutex synchronization 
analysis. 
Deflnition 3.10 (Mutex structure) A mutex structure ML for lock 

variable L is the set of all the mutex bodies &(N) in the program. O 

Mutex structures are detected using sequential reaching definition 
information for each lock variable L. Nodes that are only reached by definitions 
of L coming from lock(L) nodes are protected by L. Nodes that c m  be 
reached by at least one unlock(L) node are not protected by L. Using this 
information Algorithm 3.5 builds an initial set of mutex for each individual 
lock(L) node in the graph. It then refines this initial set by merghg mutex 
bodies with common nodes (see Algorithm 3.5). 

We illustrate the process using the SSA form for the sample program in 
Figure 3.?(b). For simplicity, assume that each line of the program corresponds 
to a node in the program's fiowgraph. The mutex structure for lock L initially 

contains one mutex body for each lock(L) node. In this case there are two 
mutex bodies for L: &((Il) and BL({7)). Node 1 defines LI while node 7 

d&es L3 (Figure 3.7(b)). 



Using reached-uses information for definitions Li and Ls we determine 
which nodes are reached by each lock operation. Consider for instance the 
node hoIduig the cal1 to a() (node 4). The use of L at node 4 can be reached 
by definitions Li and La. Since both definitions corne from lock(L) nodes, 
node 4 is added to both mutex bodies for L. Now consider the call to &() at 
node 6. The use of L at this node can be reached by definition & which is 
an unlock(L) node. Therefore, node 6 is not protected and it is not added to 
any mutex body. 

Proceeding in this fashion for all the nodes in the reached-uses set for L, 
Algorithm 3.5 produces two mutex bodies for L (underlined node numbers 
represent unlock nodes in the mutex body): BL ((1)) = (2,3,4,& 9,10, u} 
and BL({7}) = {8,9, IO,= 2,3,4,5}. 

Notice that these two mutex bodies have several nodes in common. 
Therefore, it is possible to merge them into one mutex body. The resulting 
mutex structure for L for the program in Figure 3.7(a) contains only one mutex 
body: BL({l, 7)) = {2,3,4,5,8,9,10,fi}. 

The fiamework descnbed in the previous section can be used as a validation 
tool in a compiler. Using this analysis, a compiler can detect irregularities 
like lock tripping, deadlock patterns, incomplete mutex bodies, dangling lock 
and uniock operations and partially protected code (Le., code that may not 
slways execute under the protection of a lock). 

In this section we describe several dinerent illegal locking patterns that 
cm be incorporated into the compiler as compile-time warnings. We Say that 
a lock (LI node n reaches another node rn if and only if the set of reaching 
definitions for the use of L at m includes the definition in node n. 

We say that a lock has been tripped over if the same thread tries to acquire it 
more than once without releasing it first. This is important to detect because 
in some systems lock tripping can cause the program to deadlock. 



Alnorit hm 3.5 Identification of mutex structures. - 
INPUT: A CCFG G = (N, E, 6ntwCS, E2itG) in CSSA form, a set L  = ( L i ,  L2,. . . ,Lm) containhg 

ail the Iock variables used in the program 
OUTPUT: A set of mutex stnxctures M = { M i ,  M2,. . . , Mm) where Mi is the set of mutex bodies for 

IO& variable Li- 

Compute aequeatiai reaching definitions for C. 
/* Find candidate mutex bodies and mutex structures. */ 
kreach lock variable Lj do 

Mi i-8 
foreach Bawgraph node n euch that n = lo&(Li) do 
create mutex body Bt,({n)) = 0 and add it to Mi 

end for 
end for 
/* Determine nodea protected by each Io&. In this phase mutex bodies are aingle-node sets. */ 
î o n &  mutex atni~t~re Mi do 

foretach mutex body BL, ({n)) E Mi do 
d t. d a t i o n  of Li in n 
U no node in SqRerrJitdUsu(d) is an tinlock(Li) node then 

disffgard BL, ({nN 
ei8e 

foretach use u E SqRclrchdUam(d) do 
nodc t no&(u) 
proteded t TROB 
foteach dennition d f ScgRadiingDefs(u) do 

i f  d ( d )  ie &O&(&) then 
protcctd c P A M  

end U 
end tor 
if pmtectd then 

add node to mutex body Bt,({n)) 
end iî 

end ibr 
and if 

end h r  
end îor 
/* Merge mutex bodies that have common nodes. Lock nodes can now have more than one node. */ 
foreach mutex structure Mi do 
f0-d body B~,(N*) E Mi do 

? o h  mut= body 82, (Na) E Mi do 
iî B & ( N i ) n B t , ( N 2 )  # 0  then 

BL, Wl U N2) + B i ,  ( N i )  U B i 6  W2)  

remove BZ, ( N t )  and 82, (N2) h m  Mi 
end if 

end ibr 
end for 

end for 
return { M l ,  M2,. . . , Mm) 



Figure 3.8: Some lock tripping scenarios. 

Let L be a lock variable and n be a lock(L) node. Recall that n contains 
both a definition and a use for L. Suppose that n is reached by other hck(L)  

nodes (Figure 3.8)'. If all the dennitions come fiom other lock(L) nodes 

(Figure 3.8(a)), the program is guaranteed to trip over lock L at nuitirne. If 
only some d a t i o n s  come from other lock(L) nodes, the program may or 
may not trip over lock t (Figure 3.8(b)). Depending on the runtime semantics 
of lock tripping, a compiler may warn the user about the potential problem. 

Let L and M be two different lock variables such that in thread Tl there is a 
lock(L) node that reaches a lock(M) node. In another thread T2 a lock(M1 
node reaches a lock(L) node. If both Tl and T2 can execute concurrentiy, 

then the program may deadlock at runtime. 
Two different deadock scenarios are Uustrated in Figure 3.9. Both 

programs launch two threads that satisfy the deadlock requirement describeci 
previously. The program in Figure 3.9(a) may or msy not deadlock because 
the mutex body for M in Tl is not aiways executed. However, the program 
in Figure 3.9(b) is lîkely to deadlock because both threads will execute the 

lThe subscripts in the figure ref- to SSA numbering. They do not represent different 
variables. 



mutex bodies for L and M for every execution of the program. 
Notice that even if these conditions hold, the program may or may 

not deadlock at runtime. Other conditions like the scheduling of threads 

or additional synchronizat ion might prevent deadlock situations. A 

comprehensive deadlock analysis is beyond the scope of our research. Masticola 
developed techniques that deal specincally with static deadlock detection 

(Masticola and Ryder 1993). 

T,: begin 
... 
lock(L); 

Aod<(L): 
end 

cobegin 
T,: begin 

&1ok(~) :  
end 

T,: begin 

i;Kk(M): 

~O&(L); 

ü g i o a ( ~ ) ;  
... 
unlodc(M) ; 

end 
c o a d  

Figure 3.9: Some deadlock scenarios. 

Other Locking Irreguiarities 

Incomplete mutex bodies. Let &(n) be a partidy built mutex body for 
L such that no node in &(n) is an w o c k ( l )  node. At nintime, if lock 
L is acquired at n, it w i l l  not be released. In the presence of incomplete 

mutex bodies, the compiler may still choose to regard incomplete mutex 
bodies as complete when optirnizing. Nodes that belong to incomplete 
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a in thread T' cornes from within a mutex body. Since the reference to 
a made by To is not protected and the other concurrent ieferences are, 
then the compiler can issue a message warning the programmer about 
the mismatch. 

The code fkagments shown in Figure 3.10 illustrate each of the locking 
irregularities previously described. 

3.3.3 Event Synchronization 

Event synchronization imposes execution precedence between related set and 
wait nodes. Precedence between set and wait nodes will also establish 
precedence for other nodes in the program. Intuitively, nodes preceding the 
set node will execute before nodes sfter the vait node. 

The method developed by Lee et al. (Lee et al. 1997%) provides a 
consenrative approximate solution to the problem of finding the guaranteed 
ordering between nodes in the CCFG. In general this problem has been shown 
to be co-NP hsrd (Netzer and Miller 1990). For reference, we include th& 
algorithm as Algorithm 3.6. 

For esch node n in the CCFG of the program, Algorithm 3.6 cornputes 
prec(n), the set of nodes guaranteed to execute before n. Notice that this 
particular algorithm has some Limitations on the types of programs that it can 
analyze (Lee et al. 199%): 

1. The body of a sequential loop rnay not contain the cobegin/coand 
construct . 

2. Pardel loops may not c o n t a  set laa i t  constmcts. 

Simüar to event-based synchronization, barriers impose ordering constraînts 
in a parallel program. To gather non-concurrency information fkom barrier 
synchronization in the program we use the analysis dweloped by Jeremiassen 
and Eggers (Jeremiassen and Eggers 1994). This analysis was developed 



... 
/* Th- statements are 

protected by L but the Iodt 
r is naver reieased. */ 
... 

end 

Tt: ... 
coend 

(a) Incomplete mutex bodies. 

cobegin 
T,: - 

if (=Pr) { 
10ck(L1); 

1 ... 
/* These ~tatmrents may or 

may not be protected 
depending on 'expr' 

*/ 

cobegh 
T,: begh 

Tl: .. . 
coend 

(b) Dangling unlock operationa 

a = 0; 
cobegin 
T,: beetn 

/* These refmmces to a 
* are not protected by lodr L 
*/ 

a = a + S ;  
end 

Tl: begin 
lock(L): 
a = b + 3 ;  
unlock(l): 

end 

Figure 3.10: Locking irrepuiarities. 



Algorithm 3.6 Guannteed partial execution ordering. 
LNPIJT: A Paralleti Flow Graph G = (N, E, &&yQ, 
OUTPUT: pfec(n) fix each aode n E N 

1: /* Fold loop bodies into a repteeantative node. */ 
2: /* Laup(n) P a function that returns the set of nodes in a loop whoee header is n. */ 
3: Buiid a subgraph of C mch that: 

NB t N -  { n : m , n ~  N h n ~  Loop(m)hrn haloop headtxhmfn) 
E' +(Er uE,)-{(m,n) : m , n € N h ( m Q  N ' v n e  Nt)) 

4: foIBdCh n E N' do 
5: prec(n) t- 8 
6: end for 

18: if p r e ~ i d  # prec(n) then 
19: Put immediate control 0ow and synchronhtion mccesa~ts of n in Q 
20: end U 
21: end wme 

22: foreach n € N - N' do 
23: /* h&(n) is a fuaction th& returns the header node */ 
24: /* of the outarmost loop encIoeSng n */ 
25: prec(n) t ptec(htodct(n)) 
2 6  end I;or 

for explicitly paralle1 programs that conform to the SPMD (Single-Program 
Multiple-Data) model which is compatible to the parloop model used in this 
thesis. In their analysis barriers are assumeci to be global: when a thread 
reaches a barrier it must wait until dl the other threads in the program cross 
the same barrier. 

The barris analysis algorithm divides the program into a set of 
non-concurrent phases. This information is used later on to disregard rnemory 
codicts between nodes in different phases. In what follows we have adapted 
some of the notation developed in (Jeremiassen and Eggers 1994) to use 

flowgraph nodes instead of statements. 
We denote barrier nodes B(i, x), where i is a unique integer identifying 

the barrier c d  site and z is the name of the barrier variable being crossed 
(Figure 3.11, adapted from Jeremiassen's paper (Jeremiassen and Eggers 



produceB(); 
bamer(b, N); 

Figure 3.11: An example of bamer synchronization. 



1994)). Barrier nodes defme pzocess segments. A process segment is the set 
of ail the flowgraph nodes along barrier hx control paths between one barrier 
node B(i, x) and another barrier node BO', y). Process segments are denoted 
using the barrier cal1 sites at either end of the segment: (Bi, Bj) .  There is an 
implicit barrier at the &art of the program denoted S. 

A phage of the program is the set of process segments that may execute 
concurrently between two global barriers. The goal of the baxrier analysis 
algorithm is to divide the flowgraph into a set of process segments and partition 
these segments into a set of phases. Nodes in segments from two dinerent 
phases cannot execute concurrently. 

There are two stages to the algorithm. The first stage divides the program 
into sets of process segments by computing which other barriers can be reached 
from each barrier. This is similar to the problem of matching lock and unlock 
operations describeci in Section 3.3.1 but they use a different approach. For 
each barrier node B(n, x) in the CCFG a variable SynchVarn is created. Then, 
each barrier node B(n,x) is modifieci so that right afker the banier c d  the 
node contains a use of variable SynchVar, foilowed by a definition of d l  the 
variables Synch Vari. 

The next step is to determine which of the SynchVari variables are h e  
at the end of each barrier node. If variable SychVarj is live at barrier node 
B(i,x) (i.e., its value is going to be used again along some program path 
starting at that node), then we create the process segment (Bi, Bi). 

We illustrate this process using the program in Figure 3.11. Consider the 
barrier node B(3, c). We modify the node so that it contains a use of variable 
Synch Var3 followed by definitions of six other S p c h  Var variables used for this 
program. Variable SynchVar, is live at node B(3, c) because its value is used 
again at node B(1, a). Therefore, (Ba, BI) is a proces segment of the program. 
Proceeding in this fashion we obtain the complete set of process segments for 

the program: (S7B1)7 (S7B4)7 (BisB2)7 (&>&)Y (B37B1)i (B4r&)7 (B51B6) 
and (B6, B4) 

The second stage of the algorithm partitions the process segments into 
non-concurrent phases using a work queue approsch. The initial set of phases 
Ïs created by assuming that all the process segments that &art at the same 



faftial date Iteration 1 Iteration 2 Final datek 

Figure 3.12: Partition of pmcess segments into phases for the program in Figure 
3.11. 

barrier call site and end at  bariier nodes that cross the same variable can 
execute concurrently. The initial set of phases is refined in an iterative process 
by merging phases that can execute concurrently. Each phase f i  is examined so 
that for each pair of process segments (BO', x )  , B(k, y)) a d  (B(r, 2) , B(s, y)) 

in Pi it m a t e s  a new phase with ail the phases that start with B(k, y) or 
B(s, y) in any of their process segments and whose process segments end in 

the same barrier node. Figure 3.12 illustrates this iterative process applied to 
the example program in Figure 3.11. 

The algorithm stops when the work queue is ernpty (i.e., no more phases 
can be merged into a new one). The output of the algorithm is a set of 
non-concurrent phases Pl, P2, . . . Pm. Each phase f i  contains a set of process 
segments which, in turn, delMit sets of CCFG nodes. The data-Bow analysis 
techniques developed in Chapter 4 will use this information tu determine 
whether two arbitrary CCFG nodes can execute concurrently. If nodes a and b 
belong to process segments fkom two different phases then they cannot execute 
concurrent ly. 

The Conment  Control Flow Graph (CCFG) is the basic data structure 
used to andyze and optimize an exp1icitIy pardel program. It describes the 
control structure of the program as weli as memory codÏcts and event-based 
synchronization. We then use the CCFG to gather non-concurrency 
information. First, the pardel structure of the CCFG detennines an initial 
set of graph nodes that may execute concurrently (Algorithm 3.2). 



The initial set of concurrent flowgraph nodes is then refbed by andyzing 
the synchronization structure of the program (Section 3.3). We have developed 
a new technique to analyze non-concurrency for mutex synchronization that 
can hande locking patterns not supported by d i n g  techniques. This 
is a significant improvement that allows the analysis of more cornplex 

mutual exclusion synchronization patterns in explicitly pardel programs. 
We also adapt d i n g  techniques that analyze set/wait and barrier 
synchronization. 

Non-concurrency techniques are important in the context of an optimiPng 
compiler for explicitly paralle1 programs. Since the problem of andyzi~g 
non-concurrency is orthogonal to the data-flow framework, as new techniques 
are discovered they cm be readily incorporatecl into the compiler with Little 
or no moditications to the overlying data-flow framework. In the next chapter 

we develop an SSA-based data-flow framework that uses the synchronization 
analyses developed in this chapter to determine whether some memory codlicts 

can be disregardeci because of synchronization constraints. 



Chapter 4 

The CSSAME Form 

This chapter describes the CSSAME form, a data-flow fiamework for analyzing 
explicitly pardel program. The CSSAME form builds on and extends the 
CSSA form (Lee et al. 199%) which is described in Section 4.1. Section 
4.2 introduces the extensions necessary to buiid the CSSAME form. The 
extensions allow the framework to handle pardel loopsl, mutual exclusion 
and barrier synchronization in explicitly pardel programs. 

Algorithm and tirne complexiQ analyses are included in the discussion. 
We point out that algorithmic design decisions have been made to favor 
clarity of presentation, they should not be an indication of how an actual 
implementation should be organized. In particuiar, an implementation might 
decide to perform all the n rewriting actions of Sections 4.2.4 and 4.2.5 prior 
to the placement of conflict edges to simpw the task of placing r hc t i ons  
in the first place. 

4.1 The CSSA Form 

A program in SSA form has the property that each use of a variable is 
reached by exactly one definition. When the fiow of control causes more 
than one definition to reach a particular use, a q5 function is introduced 
to resolve the ambiguity. The q5 fimction merges all the incoming reaching 

'In recent work, Lee et al. have independently incorporateci parallei loops into th& 
6ramework (Lee et al. 1999). 
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definitions to mate  a new definition for the variable (Cytron et 81. 1991). 
In a paraliel program, the single assigrnent property is disrupted by the 
presence of concurrent definitions to the variable because definitions made in 

concurrent threads may be observed at the thread reading the shared variable. 
The CSSA framework solves this ambiguity with r fuactions. A r fwiction 
mages the definitions coming from the current thread via control paths and 
other concurrent threads via conflict edges. 

This section describes the algorithms needed to build the CSSA fom as 
described in (Lee et al. 1997b). Algorithm 4.1 cornputes the CSSA form of a 

program. The algorithms to place 4 functions and build factored use-def chains 
compute the sequential SSA form (Wolfe 1996). Note that all the algorithms 
in this section are unmodified versions of the original references. They are 
only included to facilitate an implementation of the CSSAME &amework and 
simplify the discussion of the complexiQ anaiysis of the CSSAME algonthm. 

Algorithm 4.1 Build the CSSA form. 
INPUT: An expLiutly parallei pmgmm P and its CCFG 
OUTPUT: The program P in CSSA form 

1: Fmd guarsnteed execution ordering using Aigorithm 3.6. 
2: Build sequentiai SSA form using Algorithms 4.2 and 4.3. 
3: Phce n functionrr using Algorithm 4.4. 

4.1.1 Computing the Sequential SSA Form 

The CSSA algorithm cab for the computation of the sequential SSA form for 

the program. We compute the sequential SSA fonn using factored use-def 
c h a h  (Wolfe 1996). Algorithm 4.2 ad& qb functions to the graph and 
Algorithm 4.3 builds the usdef  chahs that link every variable use to its 
unique control r e d g  definition. These algorithms assume the existence of 
the following data structures: 

&22d(n) is the set of dominator children for node n. 

succ(n) is the set of immediate successors of node n. 

whichPred(n + nt) is an index t e b g  which immediate predecesmr of m 
corresponds to the control edge fiom n. 
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DF(n) is the dominance fiontier for node n E G. 

D(v) is the set of nodes in G that contain a dennition for variable u. 

Sgmbols is the set of variables used in the program. 

Algorithm 4.2 Place t# fùnctions. 
~NPUT: A ParaUel Flow Gmph C = (N, E, EntryG, Wa) 
OUTPUT: Graph G with t# funetions added at join noder, 

foreach n E N d o  
inWmk(n) t I 
d d d ( n )  t I 

end for 

worktist c Q 
fomch o E Symbds do 

foceach n E D(v) do 
tuorkList t workLwt U {n) 
inWork(n) t u 

11: whae workLiat # 0 do 
12: Remove soma node n h m  worklist 
13: foreach w E DF(n) do 
14: if a&d(w) # v then 
15: ~ d d  g huiction for u at w 
16: crddcd(w)+u 
l?: if inWork(w) # u then 
18: wo+tList +- wmk&ist u {w) 
19: inWork(w) = w 
2 0  end if 
21: end iî 
22: end b r  
23: end wiûie 
24: end for 

4.1.2 Placing n Functions 

The final phase of the CSSA algorithm traverses the graph placing T functions 
at every node that contains one or more codicting variable uses. Algorithm 
4.4 adds the required n functions to the graph. The basic principle is 
straightforward, if a shared variable is used in a node and there exist concurrent 
dennitions for that variable, a T function is needed in the node where the 
variable is rad.  

RecaII from section 3.1 that nodes with codicting use references for 
variable v have one DUb) codict edge for each dehition of v in concurrent 
threads. nirthermore, there will be a definîtion of v coming &om the incoming 
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Algorit hm 4.3 Build FWD chains. 
INPUT: A Patafei Flow Graph G = (N, E, E d o )  with 4 hinctiom added 
OUTPUT: The graph with factored uee-def chaina 

hireach v E Syrbds  do 
cuwDef(v) t I 

end for 
call search(Entrgo) 

produre  search(z) 
hmach variable use or def or 4 function r E z do 

m t miable referenced at r 
i fr  isausethen 

10: e h  if r is a def or a # fuaction then 
11: aaueChoin(r) t currDe f (m) 
12: cuw& f (m) 4- + 
13: end if 
14: end for 

15: foreach E mcc(r) do 
16: j t whichPred(z 4 y) 
17: foreach 4 hinetion r in y do 
f 8: m c variable rafmnced at r 
19: 4 - chain(r)lj] t c u w D e  f (m) 
20: end for 
21: end for 

22: foreach p E child(x) do 
23: cuiî sea+ch(g) 
24: ead for 

25: fomach variabb um or def or # fundon r E z in teverse order do 
26: m t variable referenced at r 
27: if r is a def or a # function then 
28: c u w D e  f (m) t saveChcrin(r) 
29: end iî 
30: ead for 

control edge. Therefore, Each r function has n + 1 arguments; the unique 
incoming control flow edge and the n incomllig conflict edges. As we will 

discuss later in this document, some of these arguments to a T fundion may 
be proven redundant because of synchronization operations in the prograrn. 

4.1.3 Time Complexity of the CSSA Algorithm 

The computation of the CSSA f om is done in three phases. The first phase 

computes guaranteed partial execution ordering for all the nodes in the graph 
(Algorithm 3.6). In the woRt case, every node wïIl have to be compared to 
every other node in the graph. Hence, computing partial ordering c m  be 
done in O(INI2). 

The second phase computes the sequential SSA forrn for the prograrn 
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Algorithm 4.4 Phce r functio~u~ 
INPUT: APasaüeiFlowGraph G=(N,Ethrtryot~to)withFUDchains 
OUTPUT: The graph G with r h a i o n s  added 

1: foraachbE Ndo 
2: foreach DU confüd edge e = (a, b) do 
3: v t variable d&ed in a 
4: if b does not have a r hrnction for v then 
5: Iasert anew .n function for u in b 
6: u t d c t i n g u a e o f u i n b  
7: n(zt)[O] t chrrin(u) 
8: end if 
9: if n Q ptec(s) then 
10: d t confiicting def of v in s 
11: append d to r(u) 
12: end if 
13: a d  for 
14: end for 

(Algorithms 4.2 and 4.3). This phase cornputes the SSA form in 0 ( r 3 )  t h e ,  
where r is the maximum of the number of nodes (IN(), number of control 
edges (1 El 1 ) , number of assignments and number of variable references in the 
program (Brandis and Moessenboeck 1994; Cytron et al. 1991). Note that it 
is possible to place 4 hinetion using the linear t h e  algorithms in (Johnson 
et ai. 1994) and (Sreedhar and Gao 1995). We use the algorithms fiom (Wolfe 
1996) solely because they are easier to hplernent. 

The third phase of the computation of the CSSA form places n functions 
at the concurrent join nodes of the graph (Lee et al. 1997%). By examining 
the r placing algorithm (Algorithm 4.4) we conclude that this phase cm be 

computed in O(INIZ) tirne. 
In conclusion, the CSSA fom can be computed in 0(IN12) t h e  when using 

the linear time algorithms for placing #J functions. If the traditional 4 placing 
algorithms are used, then the CSSA form can be computed in 0( r3 )  tirne. 

4.2 The CSSAME Form 

Mutual exclusion analysis identifies memory interleavings that are not possible 
at m t i m e  due to the synchronization structure of the program. This analysis 

allows the compiler to d u c e  the number of incoming confiict edges to nodes in 
the CCFG that use shwed variables. This section describes our refinements to 
the CSSA Eramework (Lee et al. 1997b). We c d  this new form CSSAME 
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(Concurrent SSA with Mutuel Exclusion synchronization) . While CSSA 
ody  recognizes set/wait synchronization, CSSAME extends it to include 
ïock/unlock synchronization. Note that although we indude lock variables 
in our anaiysis, for clarity of presentation we will not use SSA numbering 
for lock variables in the example programs. Since lock operations typically 
read and write to the lock variable and uniock operations only write to it, an 
implementation should create T functions for every lock node in the graph. 

The key observation that gives rise to the CSSAME f om is that 7r functions 
inside mutual exclusion sections might have one or more arguments for memory 
interleavings thst cannot occur at runtime. We have developed two sufticient 
conditions, d e d  consecutive kükr and pmteded wes, for the removd of 
arguments from r functions inside mutex bodies (Sections 4.2.2 and 4.2.3). 
This analysis is important because it allows the removal of redundant codlict 
edges which in turn allows the optimizer to safely apply more aggressive 
transformations and generate faster code. Both removal conditions can be 
implemented as predicates called by the compiler when analyzing mutex 
bodies. 

4.2.1 Parallel Loops 

Pardel  loops are treated similady to cobegin/coend structures. The 
loop body is replicated to allow the paralle1 bop to be considered like a 

cobegin/coend structure with two identid bodies. This is enough for the 
purposes of this analysis because we are only interesteci in determining whether 
there is a memory referencing conflict or not. It is not necessary to determine 
how many threads participate in the codlict. Knowing that there is at 
le& two threads in conftict is enough? A M a r  approach is taken in 

(Krishnamurthy and YeIick 1996) and (Lee et al. 1999). The proces of adding 
r functions does not need to be modifieci to handle psrallel loops because every 
node in the loop body is concurrent with its replica and with every other node 
inside the pardel loop. 

W the trandormations to r functions due to synchronization are performed 
- -- - . - - - 

=This of course may have to be revised if other d y s e s  need more s p d c  information 
about the confiict. 
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Figure 4.1: r fimctions inside a paraIlel loop. 

on the original loop body. For instance, consider the code fragment in Figure 
4.1. The codict analysis algorithm has determinecl that there is a conflict 
between the node that defines a and the node that uses o to compute a + 
4. Notice that the z function generated for the second node contains the 
arguments ai and 4. The first ai is the definition inherited via the control 
path. The second a; is the definition coming fkom the loop body's replica. 
This replica represents one of the N concurrent threads executing the body of 
the pardel loop. 
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... 
= ..* 

unlock(L); 
end 

cobegin 
T,: begh 

lo*); 

... 
"r = ... 
d o w 4 ;  

end 
coend 

(a) Consecutive m. (b) Protected uses. 

Figure 4.2: Removing memory confiicts. 

4.2.2 Consecut ive Kills 

If a &able is defined more than once inside a mutex body b, the only 
defmitions that can be observed by other mutex bodies (in the same mutex 
structure) are those that reach the exit node of b. This is because a l l  the mutex 
bodies in the same mutex structure are serialized and execute atomically. This 
situation is Wustrated in Figure 4.2(a) where definition al in thread To is 
ovemdden by definition t~ in the same thread. Therefore, the read reference 
a3 in thread Ti can only be reached by dennition 02. 
D a t i o n  4.1 (Reachability) Given a CCFG G, a definition D, for a 
variable v maches node n E G if there is a control path £rom the node 
containing Dv to n such that there is no other definition of u dong that path 
(Aho et al. 1986). O 

Theorem 4.1 (Consecutive kills) Let ML be a mutex structure for lock 
variable L. Let D: be a definition for a shared variable a inside a mutex body 

BL(N) E Mt. If Df does not reach any exit node x E BL(N) then D: can 
be removed fkom all the T functions in any other mutex body BL(N') E ML 
that have Dt as an argument. O 

PROOF Let U? be a use of a in BL(N1). Let d be the node containing Dt . 
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Let u be the node containhg u:. Since d and u are inside mutex bodies in the 
same mutex structure they cannot execute concurrently. Therefore, for every 
execution of the program that includes both mutex bodies there c m  only be 
two possible partial orderings between them: 

1. BL(N) executes to completion before BL(Nt). Even though node 
d executes before node u, the definition D: cannot reach u:' 
because it is always killed by some other definition before it 

reaches one of the exit nodm of BL(N). 

2. BL(N1) executes to completion before Bt(N).  Node u executes 
before node d, therefore D: camot reach u , .  

Since it is impossible for the definition Dt to reach the use U: then 
the argument representing Df for the T function in Ug is not necessary. 
Therefore, it can be safely removed and the DU(a) conflict edge between d and 
u can be eliminated fiom the CCFG. 

4.2.3 Protected Uses 

The second confüct removal opportunity is for uses that cannot be affected 
by defmitions in other mutex bodies because they are protected by a local 
definition. Suppose that a codlicting variable a is used inside a mutex body 
B but its control reaching definition is inside B (Figure 4.2(b)). Since a is 
dehed inside the mutex body, definitions made in other mutex bodies are 
kiUed by the intemal definition of a. 
Definition 4.2 (Upward exposure for mutex bodies) Given a mute. 
body B, a use Ut in B for a variable u is upward-exposed (Aho et al. 1986) 

fkom B if U .  may use a definition outside of B. O 

Theorem 4.2 (Protected uses) Let ML be a mutex stmcture for Iock 
variable L. Let UE be a c o ~ c t î n g  use for a shared variable a inside a 

mutex body Bt(N) E ML. If Uf is not upward-exposecl fiom BL(N) then 
the arguments for the r function for a coming from any other mutex body 
Bi(Nf)  E Mt c m  be removed. O 

PROOF Let D: be a definition for variable a in mutex body Bi (NI). Let d 
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be the node in BE(Nf) that contains the definition D:. Let u be the node 
in mutex body BL(N) that c o n t a  the use Ut. Since d and u are inside 
mutex bodies in the same mutex structure they cannot execute concurrently. 
Therefore, for every execution of the program that includes both mutex bodies 
there can only be two possible partial orderings between them: 

1. BL(N) executes to completion before BE(NF). This means that 
node u executes before node d, therefore cannot reach Uf. 

2. BL(Nt) executes before BL (Ai). Since UE i9 not upmd-exposed 
fÎom Bt(N) ,  any definitions of o made before &(IV) starts 
executing are guaranteed to be k i U d  by some other definition 
inside BL(N) .  Therefore, D? carmot reach U'. 

Since the definition D: cannot reach the use U ,  then the argument 
representing D: for the r function in Ut is not necessary. Therefore, it 
can be safely removed and the DU(a) co&ct edge between d and u can be 
eliminated korn the CCFG. rn 

4.2.4 Modifyuig ?r hinctions Inside Mutex Bodies 

U&g the properties of consecutive kiki  and protected uses inside mutex 
bodies, we now examine every mutex body of the program trying to remove 
arguments fkom each of its r functions. Algorithm 4.5 traverses all the mutex 
bodies in the graph looking for T functions to rewrite. There are three main 
steps to the algorithm: 

1. Lines 1-6 traverse alI the mutex bodies in the program. For each mutex 
body b, it invokes the analysis routine in lines 7-27. 

2. Lines 9-20 analyze all the T functions inside a mutex body b. For each 
r function, each of its arguments d is analyzed for cornpliance with 
Theorems 4.1 and 4.2. 

Checkhg for protected uses is a simple matter of cheeking whether the 
control r eachg  definition for the z function is reached by at least one 
lock node in N. This information has aheady been computed by the 
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mutex stmcture detection algorithm (Section 3.3.1). Therefore, it can 
be accessed in essentially constant time. 

Checking for consecutive lrills can be done in 0(lwnfdefs12) time, where 
the value 1 confdefsl represents the number of conflicting definitions made 
in the program. To check ifa dennition d reaches the acit node of a mutex 
body we traverse the p&-dominator tree for d looking for a definition 
that post-dominates d and is post-dominated by some exit node (Le., we 
check whether there is another definition d' on every path from d to an 
exit node that kills d). 

3. Lines 21-25 remove any r functions with no arguments for codlicting 
references. 

Examining the nesting structure of the r rewriting algorithm we conchde 
that the total time complexity of the algorithm is O(m x mb x mbsz x Ir1 x 
(confdefas(2), were m is the number of lock variables in the program, mb is the 
total number of mutex bodies in the program, mbsz is the mzucimum number 
of nodes that a mutex body can contain, is the number of n hinctions 
in the program and lconfdefsl is the number of codicting definitions in the 
program. A worst case scenario with a codicting definition in every node and 
a confücting use in eveqy node will yield a time complexity of O(INI3). 
Lemma 4.1 (Correctness of the r rewriting algorithm) The only 
arguments fkom r functions removed by Algorithm 4.5 represent memory 
interleavings that cannot occur at runtime. O 

PROOF The algorithm only exami~es n functions inside mutex bodies. For 
each x function found it checks all the arguments that corne fiom other mutex 
bodies in the same mutex structure. These are the only potentid candidates 
for removal because they represent memory references protected by the same 
lock (line 15). 

If d complies with one of the two d u e n t  conditions given by Theorems 
4.1 and 4.2 then it may be safeiy removed because the dennition represented 
by d cannot reach that particular use. 

Finally, if after this analpis is done a r function p contains exactly one 
argument, it must be the argument for the incomuig control edge to the node 
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because this is the only argument that is never removed by Algorithm 4.5. 
Hence, this n function p can be removed fiom the graph. Before removing p, 
the algorithm updates the use-def pointer of the use &ted by p (chain(u)) 
so that it points to p's control reaching definition (line 23). H 

Alnorithm 4.5 Rewrite R functions to account for mutual exclusion. 
V 

mm: A CCFG G = (N, E, Entryc, Bzito) in CSSA fom 
orrr~rrr: The graph C in CSSAME form 

/* l'hverse all the muter bodies in the graph looking for z functions to rewrite. */ 
foreach lodr variable Li do 

lbreach mutex body b E MuttzStruEt(Li) do 
caii mwite(b) 

end for 
end for 

/* Exadne ail the ar hrnctions in b. */ 
procedura rC(mitG(b) 
loreach node n E b do 

10: &mach z fiandon p E n do 
If: o is the variable rderanced by p 
12: /* If an argument of the x function p complies with Theorems 4.1 or 4.2, */ 
13: /* then wa ma;y aafely move the argument b m  p bction.  */ 
14: foreda argument d of p corning from a confüct edge do 
15: if d cornes h m  another mutex body ù' f MukzStrum(b) thon 
16: if (the use of v is not upward-expoetd h m  6) or (d does not mach ariy exit nala of 6') then 
12 temm d from p 
18: and if 
19: end if 
20: end for 

/* If p is le& with oniy one argument, remcm p. */ 
iî p has ody one argument then 

Jlcrin(u) t Brst argument of p 
remove p from n 

25: end iî 
26: end for 
27: end b r  

Barrier synchronization offer another source of non-concurrency information in 
pardel programs. Using the barrier andysis algorithm describecl in Section 
3.3.4 it is paPsbIe to remove r-function arguments for some confikt edges 

that cross phase boundaries. Since nodes in dinerent phases of the program 
are guaranteed to execute in sequence, some of the c o ~ c t s  that might exist 
between these nodes can be eliminated. 

Barrier syncbronization is "weaker" than mutex synchronization in the 
sense that it does not serialize the execution of threads. The ordering created 
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by barriers m a t e  phases in the execution of the program. Within a phase, 
threads execute concurrently. Consider for instance the pardel loop in Figure 
4.3. If we disregard the presence of the b-r, then both defmitions ai and 
01 can reach the use of a (a3) at line 10. However, the presence of the barrier 
at h e  5 guarantees that d a t i o n  al wil l  be killed by all the thrack before 
crossing the barria. Therefore, ai cannot reach the use of a at Line 10. The 
same cannot be said about definition az. Although all threads join at  the 
barrier, we cannot statically determine which thread will be the last to reach 
the barrier. Tbis means that there are two defmitions for variable a that 
could reach 03: the control reaching definition (i.e., a*, the sequential reaching 
definition) and the definition made by the last thread to j ob  the barrier (4). 
In general, in the presence of barriers the ody  arguments that can be removed 
kom a r function are those that represent definitions from a different phase 
and do not reach the r function via control edges. 
Theorem 4.3 (Barrier protection) Let UV be a codicting use for shared 
variable v.  Let Du be a definition for v such that Du reaches U, via a codiict 
edge and Dv does not sequentidy reach UV. If Du and U. are in different 
phases due to barrier synchronization, then D, cm be removed from the r 
function associateci with 9. a 

PROOF Since Du reaches via a confüct edge, there is a T function associated 
with UV that has Du as one of its arguments. If Du and UV are on dinerent 
phases as determined by barrier synchronization analysis (Section 3.3.4), then 
they cannot execute concurrently. Mhermore, since 4 does not reach UV 
via control edges, it means that there exists at least one other definition for v 
that kills Du. Since Dv cannot reach UV via control edges nor codict edges, 

it is safe to remove it fiom the r function associated with UV. 

Algorithm 4.6 rewrites r hinctions to account for barrier synchronization. 
It assumes that program phases have already b e n  computed (Section 3.3.4). 
The algorithm traverses aU the r functions in the program. For every axgument 
d, of a T funetion p it checks which node contains 4. If the node of di is inside 
a dinerent phase than the node holding p and c& does not sequentidy reach 
the use associated with p, then c& can be removed h m  the argument list. 

Figure 4.3 shows a program fiagrnent with its CSSAME form partially 
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Figure 4.3: Effects of barrier synchronization on r hinctions. 

built. The assignment to b in line 10 makes a codicting use of variable a. 

Hence the r function at line 9 contains only two arguments and both corne from 
the same definition (al is both the control-reaching and the confüct-reaching 
defînition). The computation of phases for this program will result in two 
phases, one containing iines 1 - 4 and the other one containing Lines 6 - 10. 
Therefore, definitions al and will be in one phase and use a3 will be in 
another one. Since definition al is kiIled by t~ and it is in a dinerent phase 
than the use a3, we can remove the second argument of the 7r function at iine 
9 because ai cannot reach this use. 

Notice that unlike mutex synchronization, this pnining process wil l  never 
lead to the elimination of T functions. The reason is that inside a parailel loop 
r functions have two arguments coming kom the same definition, namely the 
control reaching definition. The control reaching definition appears twice in 

the T argument list because it reaches the use via control and conflict edges. 

The argument coming via control edges cannot be eliminated because it is 
not affecteci by synchronization and the argument coming via a conflict edge 

cannot be eliminated because it is not possible to determine which thread 

was the Iast one to make that definition. It might be possible to eliminate 
a r function if one could prove that both arguments are dmys the same 
value using techniques like value numbering, copy propagation or constant 

propagation. We have not considered these extensions in this document. 
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Algorithm 4.6 Rewrite r functions to account for barrier synchroniitation. 
INPUT: A Parallel Flow Graph G = (N, E, EntryG, E*) in CSSA form 
OUTPUT: The graph G in CSSA form with n functions moditied to account for bamer 

synckuonization 

/* This algorithm assumes that phases due to b d e r  */ 
/* synchronhtion have already been computed (Section 3.3.4). */ 
compute sequential reaching definitions (SqReuchingDefa) 
foreach n-functioa p do 
u t use referace associated with p 
foreach paralle1 argument d of p do 

if n&(p) and d ( d )  are in Werent phases and d 4 SqReachingDefs(u) then 
remove d from p 

end if 
end for 

end for 

4.2.6 Computing the CSSAME Form 

Algorithm 4.7 transforms an explicitly paralle1 program P to its CSSAME 
fom. The algorithm is a direct extension of the CSSA algorithm (Lee et al. 

1997b). Steps 2 and 4 incorporate the modifications needed to handle mutual 
exclusion synchronization. 

The algorithm starts by building the concurrent control flow graph for 
P using the algorithms described in Section 3.2. Once the CCFG has been 
buiit, the algorithm creates the mutex stmctures for the mutual exclusion 
synchronization used in the program. The next step builds the CSSA form 
using the algorithms described in Section 4.1. Once the CSSA form has been 
computed, T functions are modifieci to account for any mutex and/or barrier 
synchronization in the program. Notice that it might be possible to compute 
the CSSAME fom directly, without cornputhg the CSSA form M. We 
decided to use this approach because the analysis needed to remove supeduous 
synchronization edges is simpler if CSSA is computed first. 
Theorem 4.4 (Comectness of the CSSAME algorithm) A program in 
CSSAME form is also in CSSA form and retains the single assignment 
property: every use is reached by exactly one definition. O 

PROOF The CSSAME form is a direct extension of the CSSA form. The 
computation of the CSSA form is done using existing algorithm known to 
be correct (Lee et al. 1997a; Wolfe 1996). Lemma 4.1 proves that the only 



Algorithm 4.7 Build the CSSAME fom 
mm: An explidtly parallel program P 
o m u ~ :  The program P in CSSAME fona 

1: Build the CCFG G for P wing Algorithm 3.1. 
2: Iden* mutsr structures using Algorithm 3.5. 
3: Cornpute the CSSA fonn for the graph using Algorithm 4.1. 
4: Rewrite n functiom ilaing Algorithm 4.5. 
5: Rewrite n functions asing AIgorithrri 4.6. 

transformation done to the underlying CSSA form does not alter the single 
Bssignment property. Therefore, a program in CSSAME form is also in CSSA 
form and retains the single LLSSignment property. a 

4.2.7 Time Complexity of the CSSAME Algorithm 

Computing the CSSAME form does not increase the complexity of the CSSA 
algorithm signincantly. The two major modifications to the original algorithm 
are s t ep  2 (computation of mutex structures) and 4 (rewriting of n functions). 
As discussed in Chapter 3, the identification of mutex structures can be done 
in O(IEjI) tirne. The CSSA form is computed in 0(r3) time, where r is 
the m&um of the number of nodes (1 NI), number of control edges ( (E l ( ) ,  
number of assignments and number of variable references in the program 

(Section 4.1.3). Finaliy, rewriting T functions can be done in O (INI3) tirne. 
Therefore, the CSSAME algorithm has a worst time complexity of O(I NI3). 

In this chapter we have developed a new data-flow framework foc explicitly 
pardel programs: the CSSAME form. It supports both task and data parallei 
programs that shate memory and synchronize using three types of mecbanisms: 
mutual exclusion, bankm and events. 

The CSSAME form represents a significant step t o m &  an integrated 
analysis Wework  that can be adapted to support various types of parallel 
constnicts, memory semantics and synchronization constmcts. For instance, 

to add a new type of synchroonization mechanism, we only need to gather 
non-concurrency information due to synchronization and modify the r 



functions appropriately. Diffwent memory semantics can be supporteci in 
a similm fashion. Memory conflicts across concurrent threads need only 
be added if the memory semantics of the target architecture d o w  such 
intedeaving. For instance, in a release-consistent memory (Keleher et al. 1994) 
memory CO&& need only be added at synchronization points in the program. 

In the following chapter we use the CSSAME fkamework to optimize 
pardel programs. We wil l  consider two types of optimization, the adaptation 
of sequential techniques to the parallel case and the direct optimization of 
the synchronization structure of a paralle1 program. Emphasis wil l  be on the 
opthbation of mutual exclusion patterns. 



Chapter 5 

Opt imizing explicit ly par allel 
prograrns 

Using the CSSAME fom, new optimization opportunities are now possible. 
This section describes six optimization techniques. The first two are 
adaptations of weU-known sequential optimizations: constant propagation 
(Section 5.1) and dead code elimination (Section 5.2). The other four are 
new optimizations specifically designecl for explicitly parallel programs: Iock 
picking (Section 5.3), lock-independent code motion (Section 5.4 ,  mutex 
body localization (Section 5.5) and single-writ er multiple-readers code motion 
(Section 5.5.1). AU the mutual exclusion transformations in this chapter 
assume that the program contains well-formed mutex structures. 

5.1 Constant Propagation 

Lee et al. (Lee et al. 1997b) adapted the seguential Sparse Conditional 
Constant propagation (SCC) algorithm (Wegman and Zadeck 1991) to work 
with explicitly pardel programs; Concurrent Sparse Conditional Constant 
propagation (CSCC). We will use the program in Figure 5.l(a) to show how 
our extensions to the original CSSA fkamework can be used to improve the 
constant propagation algorithm when mutual exclusion is taken into account. 
Figure 5.l(b) is the original CSSA form without mutual stclusion extensions. 

Figure 5.2(a) shows the CSSAME form built using the a l g o r i t h  in Section 
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4.2. Notice that the CSSAME f o m  has fewer r functions than the CSSA 
form. 

a = &  
b = 0; 

T,: begin 
lock(L); 
a = 5; 
b = a + 3 ;  
if (b > 4) { 

a = a + b ;  
1 
x = a; 
unto&(L); 

end 

T,: begh 
lo&(L); 
a = b + 6 ;  
y = a; 
unlock(L); 

and 
coend 
print(x* Y); 

(a) 0rigi.d p r ~ g m .  (b) CSSA form. 

Figure 5.1: Constant propagation example (CSSA). 

We now apply the CSCC algorithm to both the original CSSA form and the 
new CSSAME form. Notice that since CSSA does not recognize the mutual 
exclusion semantics of the program, the constant propagation algorithm cannot 
propagate any constants. On the other hand, translating the program to 
CSSAME d o w s  the compiler to temove aU the r functions for variable a in 

thread To. The key factor that allows the compiler to do this optimization is 
the assigmnent to variable o in thread To immediately after the Iock operation. 
Since ail the statements in thread To execute indivisibly, uses of variable a aRer 
the first assignment cannot possibly be affected by de6nitions of a made by 

thread Ti. This dows the compiler to propagate constants inside thread as 
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if it were a sequentid program. Figure 5.2(b) shows the r d t s  of applying the 
CSCC algorithm using CSSAME. Notice that we also include the r d t s  of the 
constant folding and unreachable code elimination. Both passes are possible 
using information gathered by the constant propagation algorithm (Wegman 
and Zadeck 1991). Since we have not modified the CSCC dgorithm, the 
optimizations performed are still correct as proved in (Lee et al. 199%). 

Further optimizations can still be done in this example program. The 
redundant assignments in Figure 5.2(b) are the result of applying the 
concurrent constant propagation on the program in Figure 5.2(a). These 
redundant assignments can be removed using the concurrent dead-code 
elimination algorithm developed in Section 5.2. 

(a) CSSAME f ~ r m  fa pro- @) CO-t propagation m g  CSSAME- 
in Figure 5.l(a). 

Figure 5.2: Constant propagation example (CSSAME). 
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5.2 Concurrent Dead Code Elimination 

Dead code refexs to program statements that have no effect on the program 
output (Cytron et al. 1991). Although it is not common for the programmer to 
introduce dead code intentionally, dead code may be generated by optimizing 
transformations (Aho et al. 1986). We introduce the Concurrent Dead Code 
Elimination algorithm (CDCE), an extension of the dead code elimination 
algorithm proposed by Cytron et al. (Cytron et al. 1991) to work on explicitly 
paralle1 programs. The algorithm starts by marking as dead all the statements 
of the program except those that are assumeci to afF& the program output 
such as 110 statements or itssignments to variables outside the current scope. 
This initial set of live statements is used to seed the work list maintained by 
the algorithm. The list is updated with every new statement that is marked 
live. When the list empties, aU the statements stiii marked dead are removed 
£rom the program. A statement will be marked live if it satisfies one of the 
following conditions (Cytron et al. 1991): 

1. The statement is assumed to afkct the program output. Examples 
include 110 statements, calls to  procedures that may have side effects, 
etc. 

2. The statement contains a definition that reaches a use in a statement 
dready marked as Live. 

3. The statement is a conditional branch and there is a live statement that 
is control dependent on this conditional branch. 

The CDCE algorithm is the same algorithm developed by Cytron et al. 
(Cytron et al. 1991) with the following modifications: 

Condition 2 of Cytron et al.k algorithm calls for the computation of 
resching definition information for each live statement of the program. 
The rationale is that if statement s is tive then any other statement 
that makes dehitions with r e h e d  uses in s must also be marked live- 
We incorporate reaching dennition and reacbed uses information in our 
CSSAME framework. We have adapted the correspondhg sequential 
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aigorithms (Woife 1996) by incorporating additional tests for n hinctions 
when traversing the SSA use-def chahs. Concurrent reaching definition 
information is computed by Algorithm 5.1. 

a A cobegin statement will be rnarked live if there is at l e s t  one statement 
in two or more of its threads marked live. If the transformation leaves 
only one thread with live statements, the cobeginfcoend constmct wiU 
be replaced by the sequential code corresponding to the live thread. 
Serialking this live thread wil l  cause ali the synchronization operations 
in the thread to become dead. Hence, they can be safely removed. 

These modifications to the sequential DCE algorithm are necessary to 
account for the concurrent activity in the program. Since reaching definition 
and reached uses information will be computed using both T and 4 functions, 
a Iive use u in one thread will keep concurrent definitions that reach u 
alive. Furthemore, the reduction of dependencies made possible by CSSAME 
directly benefits the elimination of dead code in the program. Most notably, 
the detection of consecutive kills inside a mutex body (Theorem 4.1) wil l  help 
the detection of dead code inside mutex bodies. 
To show the effects of CDCE, consider the program in Figure S.l(a) after 

constant propagation has been pedormed (Figure 5.2(b)). As can be seen in 

the exampie program, alI the assignments to variable a in To are dead because 
they do not affect the output of the program (i.e., they do not reach any other 
use of a in the program). On the other hand, the assignment to b in To cannot 
be considered dead because it is used by Tl. Note that a sequential dead 
code elimination algonthm would have erroneously marked the assignment to 
b dead because it lacks the appropriate reaching definition information. Figure 
5.3 shows the result of a dead code pass on the code in Figure 5.2(b). 
Theorem 5.1 (Correctness of the CDCE algorithm) The connurent 
dead code elimination algorithm is correct. It ody removes code that has no 
e f f '  on program output. a 

PROOF We will show that the CDCE algorithm does not mark dead 
statements that are really Iive. Since the sequential version is known to 
be conservafive, we only need to consider the two modifications we have 
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Figure 5.3: Concurrent Dead Code Elhination for program in Figure 5.2(b). 

introduced. 
Let D, be a definition of variable v in thread To. Let UV be a use of 

v in thread Ti. Assume that there is a contlict edge between the node 
containhg D, and the node holding U, (Le., the threads are concurrent 
and no synchronization prevents both memory operations fkom executing 
concurrently). Since the reaching definition information includes definitions 
resching through codict edges, if the statement holding U' is rnarked live 
then the statement that contains Dv will also be marked live. The second 
condition is guaranteed by sirnply considering cobegin/coend structures as 
conditional branches- m 

5.3 Lock Picking 

Sometimes it is possible to remove synchronization operations fiom a 
program without afkting its semantics. For example, mutual exclusion 
synchronization is umecessary in a sequential program and can be safely 
removed. In this section we describe lock picking, a transformation that fin& 
and removes supduous ïock and unîock operations. We say that a mutex 
body can be ld -p ieked  if its lock and d o c k  nodes can be removed. An 
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- 

Algorithm 5.1 Concurrent reaching definitions. 
INPUT: A CCFG G in CSSAME form 
OUTPUT: The set of reachiag dedinitions for each variable used in the program and the set of d e d  

 use^ for each variable deflned in the program 

/* rnarked(d) is d to mark vjsited definitions * /  
r wea(d) is the set of uses reached by d */ 
fbreach variable deâoition d in the program do 

marktd(d) t l 
wu(d) c 8 

end fbr 
foreach variable use u in the ptogram do 

&fs(u) c 8 
c d  foUotRChain(Chain(u), u) 

end for 

/* Recursiveiy foilow d e f  r.hains set up by the CSSAME algorithm */ 
procedure f dlattChoin(d, u) 
if mwAcd(d) = u then 

return 
end iî 
morked(d) t u 
j* If the refere~lce d is a ddaition, add it to the set of */ 
/* reaching deîmitioos for u, and add u to the sat of reached uses of d */ 
if d ie a definition For u then 

Add d to &fi(u) 
Add u to wa(4 

end if 
/* If the reference d is a # or a n hmction, foiiow the arguments */ 
if (d  is a 4 function) or (d  is a n funniou) then 
ib& fundion argument j do 

cal1 foIlowWn(j, u) 
end for 

end if 

important property of lock picking is that it does not need to examine the 
mutex bodies of the program. Only the lock and d o c k  nodes are analyzed. 

Lock picking uses reaching definition information for al1 the lock variables 
to determine whether a mutex body cm be lock-picked or not. The algorithm 
for recopizing mutex bodies developed in Section 3.3.1 modifies the flowgraph 
so that every lock(L1 node contains one definition of variable L and a use for 
each lock variable used in the program (including L). As such, the CSSAME 
form will initially place a T function for all the uses of lock vaziables at 
each mutex body's lock node. However, if the program contains additional 
synchronization, it is possible that some of these n functions will be removed 
by the CSSAME 7r pruning phase. Fiirthermore, in the case of sequential 
sections of the program, a functions will not be placed at all. 

The lock picking algorithm (Algorithm 5.2) examines the lock nodes for 
every mutex body in the program. The decision to Io&-pick a mutex body 
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(a) Origind CSSAME form. 

(b) CSSAME form aRer inlining and r (c) After lock pidring. 

p*g- 

Figure 5.4: Effects of lock picking on nested muter bodies. 
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is based on the absence of r bct ions  for one or more lock variables at each 

mutex body lock node. Recd  that the absence of r functions for lock variables 
at lock nodes means that there are no concurrent threads trying to acquire that 
lock. This might make the lock operation unnecensary. These conditions are 
typically discovered ushg whole program analysis. For example, conside. the 
program in Figure 5.4(a). The inner loop calls the hinction sumduction to 
update a global reduction miable. Since sumreduction is a generic reduction 
huiction, it locks the variable before doing the reduction. However, as a result 
of inlining, reduction lock S is no longer necessary because the reduction is 
always protected by lock R (Figure 5.4(b)). When function sumreduction is 
inlined, the use of lock R at the lock node of the mutex body for S becomes a 
protected use and its r function can be removed (Novillo et al. 1998) (Figure 
5.4(b)). 
Lemma 5.1 (Nested mutex structures) Let L = {LI, &, . . . , Lm) be the 
set of lock variables used in the program. Let MLj be the mutex structure 
for lock variable Li. If al1 the lock nodes in every mutex body of ML, are 

lock-protected by the same lock variable Li, then the lock and unlock nodes 
for mutex bodies in ML, are unnecessary and can be removed. In this case, 

we say that mutex stmchire ML, is nested inside mutex structure ML,. O 

PROOF Since all the lock nodes in all the mutex bodies in MLj are 
lock-protected by the same lock variable Li, ail the lock operations on Lj 
are serialized by lock Li. Therefore, they are mecessary because they are 
always guaranteed to succeed. Consequently, all the lock and unlock nodes for 
Lj can be safely removed. rn 

The second oppominity to lock-pick mutex bodies is when a particular 
mutex body cannot execute concurrently with any other mutex body of its 
same mutex stmcture. If this happens, we Say that the mutex body is 
non-confkting. Typically, a mutex body wiIl be non-codicting when it 
ôppears in sequential sections of a pardel  program or if the program itself 
is sequential. Non-confiïcting mutex bodies can also be discovered if all the 
mutex bodies in the same mutex structure are totdy ordered by some other 
synchronization mech- (e.g., set/wait, barriers, coend nodes). Al1 the 
sequential programs described in Section 6.2 had their locks picked because 
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Algorithm 5.2 Lock-picking. 

mm: A CCFG in CSSAME fom 
OUTP~T: The graph with m e c e ~ ~ ~ t y  lock and d o c k  opemtioas r e m d  

rapeat 
/* F i  p b .  Fiid neefed mutex bodies. */ 
foreach Iock variable Li do 

breach mutax body BL, (N) E Mt, do  
foreach lock -able Lj do 

nuted t TRUE 
foreach aode n E N do 
if n CO- a n ftmction for Lj then 

R G I ~ C ~  4- PALSE 
ead if 

end for 
if nesteù then 

h w ( l V )  + Lj 
end if 

end for 
end for 
if n, RW~C&WS(N) # 0 then 

remove aiî lock and uniodc nodes for mutex bodies in ML$ 
update CSSAME information for Li 

end u 
end bt 
/* Secund phasa. Find notwontlictiog mutex bodies. */ 
fo- lodt variable Li do 

foreach mutex body BL, ( N )  E M t i  do 
luuConflictr +- PALse 
foreach node n E N do 

if n contains a n function for Li then 
hasc4npick + TRUB 

and iî 
end for 
if not b C o n m  thea 

remove aU Io& aiid dock nodea for BL, (n) 
update CSSAME infomtion for Li 

end if 
snd ibr 

end for 
untU no more changes have been made 

they had no confiicts. 
Lemma 5.2 (Non-conflicting mutex bodies) Let ML be the mutex 
structure for lock variable L. Let BL(N) be a mutex body in ML. If no lock 
node n E N contains a n function for L then the lock and unïock operations 
for mutex body BL(N) are unnecessary and can be removed. CI 

PROOF If no lock node n E N contains a n function for L then no definition 
for L cornes from other concurrent threads. Since lock variables are defined 
at lock(L) nodes, this means that no other lock(L) node can execute 
concurrently with the lock nodes of BL(N).  Therefore, the mutex body BL(N) 
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is not necessary because ail its lock nodes are guaranteed to acquire L every 
time it executes. u 

The conditions for lock picking given by these two lemmas have subtle 
merences that are worth noting. The conditions for Lemma 5.2 are only 
required to be met by a single mutex body. In contrast, Lemma 5.1 needs 
to check al1 the mutex bodies in the same mutex structure. It is not enough 
for one mutex body to be nested inside another. The whole mutex structure 
must be nested inside the sume lock. Otherwise, the transformation cannot 
be doae. 

5.4 Lock-Independent Code Motion 

Because of the sequential semantics irnposed by mutud synchronization 
operations, it is desirable to minimize the time spent Uiside mutex bodies 
in the program. To achieve this goal we can optimize the code inside mutex 
bodies as much as p d b l e .  Alternatively, we can minimize the amount of 
code executed inside a mutex body by moving code that does not need to be 
locked outside the mutex body. 

Lock-Independent Code Motion (LICM) is a code motion technique that 
attempts to minimize the amount of code executed inside a mutex body. This 
optimization H e r s  fiom lock picking in that it does not target the lock 

operations directly. Rather, it analyzes the mutex body itseif to find code that 
can be moved outside. If at the end of the transformation a mutex body only 
contains unlock nodes, then the lock and d o c k  instructions are removed. 
Definition 5.1 (Lock-independence) An expression E inside a mutex 
body BL is lock-independent with respect to L if moving E outside BA does 
not change the meaning of the program. Similarly, a statement (or goup of 
statements) S is lock independent with respect to L if ail the expressions and 
definitions in S are lock-independent. A flowgraph node n is lock independent 
if all its statements are Io&-independent. O 

Lock-independent code is moved to special nodes cded premuta and 
postmutez nodes. For every mutex body Bt(N) there is a premutex node, 
denoted pmutez(nJ ,  for each lock node 4 E N. Prernutex nodes are created 
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as immediate dominators of each lock node W. Similady, there is a postmutex 
node, denoted postmutez(xi) for every unlock node xi. Postmutex nodes are 
created as immediate pmdominators of each exit node xi. 

The concept of lock-independence is simiiar to the concept of loopinvariant 
code for standard loop optimization techniques (Aho et al. 1986). However, 
the conditions that make code to be lock-independent are different from those 
that rnake it loop invariant. Lock-independent code cornputes the same 
r d t  whether it is inside a mutex body or not. For instance, a statement 
that references variables private to the thread wil l  compute the same value 
whether it is executed inside a mutex body or not. This is also tnie if the 
statement references variables not modifiecl by any 0th- concurrent thread in 
the program. 

5.4.1 Moving Lock-Independent Statements 

Lock-hdependence is a necessary condition for moving a statement outside 
the mutex body, but it is not SUfficient. The sufncient condition is that after 
the motion, the statement should preserve aII its original control and data 
dependencies. For instance, if the statement is inside a loop it cannot be 
moved out unies it is also loop invariant. This section develops an algorithm to 
detect and move lock-independent statements outside mutex bodies. Sections 
5.4.2 extends thin to control structures and 5.4.3 de& with lock-independent 
expressions. 

Moving Statements to Premutex Nodes 

Given a lock-independent statement s inside a mutex body BL(N), LICM will 
attempt to move s to premutex or postmutex nodes for Bt(N). This section 
describes the conditions tequird when attempting to move s to premutex 
nodes for BL(N). The seleetion of lock nodes to receive statement s in their 
premutex node is done satisfyllig the following conditions: 

Protection. Candidate lock nodes are initially selected among 
alI the lock nodes in N that reach the node containhg s 

(denoted node(s)). For instance, consider the program in Figure 
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A = 0; 
cobegin 
T,: begh 

X = 1; 
y = &  
doue = O; 
Io&(L); 
while (!done) ( 

y = y + 3 ;  
A = A + x ;  
unlock(L); 
x = x + l ;  
if (X > 0)  I 

fock(L); 
done = 1; 
x = x - A ;  

) * {  
loctc(L); 
A = A s x ;  
x = x + s ;  

1 
y = y - 2 ;  

1 
if (A < x) { 

A = A + x ;  
dock&);  
x -= 3; 

leire{ 
A = A - x ;  
dock(L);  

1 
print(A, x, y); 

end 

T,: begin 
lock(L); 
A += f(); 
uIllock(L); 

end 
coend 

y = O; 
doue = O; 
fodr(L); 
white (Idone) { 

A = A + x ;  
udock(L); 
x = x + l ;  
if (x > 0) { 

y = y + 3 ;  
=, doue = 1; 

lock(L); 
x = x - A ;  

) e h {  * y = y + 3 ;  
focw);  
A = A * x ;  
x = x + 5 ;  

1 
y = y - 2 ;  

(a) Original program. @) After LICMS. 

Figure 5.5: Moving Io&-independent statements. Moved statements are marked 
with arrows (*). 
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5.5(a). Thread To contains one mutex body BL({7, 14,181) = 
{8,9,10,11,15,16,19,20,21,22,23,24,25,28,29)1. Statement A = A+x 
at line 10 is reached by the lock nodes at lines 7, 14 and 18. However, 
statement x = x + 5 at line 20 is only reached by the lock node at line 
18. This condition provides an initiai set of candidate lock nodes called 
pmtectors (3). 

Reachability. Since s is reached by ail the nodes in protectors(s), there 
is a control path between each lock node in pmtectors(s) and node($). 

Therefore, when statement s is removed from its original location, the 
statement must be replaced on every path fiom each lock node to 
node(s). This impües that s may need to be replicated to more than 
one premutex node. 

To determine which lock nodes could receive a copy of s we perform 
reachabüity analysis among the lock nodes reaching s (pmtectors(s)) . 
This analysis cornputes a partition of protectors (s) , cailed metvers(s) , 
that contains all the iock nodes that may receive a copy of statement 
S. The selection of receiver nodes is done so that (a) there exists a path 
between s and every lock node in pmtectors(s), and (b) instances of 
s occur only once dong any of these paths (i.e., s is not unnecessarily 
replicated) . 
Besides having multiple premutex nodes that could receive s, a mutex 
body could have multiple combinations of receiver nodes for S. For 
instance, in the program fragment of Figure 5.5(a), lock-independent 
statement s : y = y + 3 at line 9 is reached by lock nodes 7, 
14 and 18. For the purpose of this discussion we disregard other 
considerations that might prevent moving s outside the mutex body 
(e.g., data dependencies). Notice that moving s to dl three premutex 
nodes is not a vaüd option because this creates duplicate instances of s 

on a single control path. There are two sets of receiver nodes for s in 
this program, namely (7) and {14,18). M h e r  analysis WU determine 
which of these receiver sets is the better choice. 

lFor simplicity we are assuming that eacii h e  corresponds to a nude in the CCFG. 
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Algorithm 5.3 computes ali the different sets of lock nodes that 
may receive a lock-independent statement s in their premutex nodes. 
Bssicdly, the algorithm computes reachabiiity sets among the nodes 
in pmtectors(s). The set proteetors(s) is partitioned into k partitions 

Pl, 4,. . . Pk. Nodes in each partition Pi c m o t  reach each other but put 
together they reach or are reached by every other node in pmtectors(s). 
These partitions are the sets of lock nodes that can receive a copy of s 

in their premutex nodes. 

Data Dependencies. When moving a statement s to one of the receiver 
sets for s, the motion mu& not alter the original data dependencies for 
the statement and other statements in the program. If Pj is the selected 
receiver set for s, two restrictions must be observeci: 

1. No variable dehed by s may be used or defined along any path 
fiom node(s) to every node in P'. 

2. No variable weà by s may be defined along any path h m  node(s) 
to every node in Pj- 

These two restrictions are used to prune the set of receiver nodes 
computed in Algorîthm 5.3. Notice that since the program is in CSSAME 
form, q5 functions are &O considered definitions and uses for a variable. 

In the example program of Figure 5.5(a) the receiver node for statement 
x = x + 5 a t  üne 20 is node 18, which cannot receive it because z is used 
at line 19. Statement y = y + 3 has two sets of receiver nodes: (7) and 
(14,181. Node 7 cannot be used because of the q5 hinction for y at the 
head of the while loop. However, both nodes 14 and 18 codd receive a 
copy of the statement. 

When more than one statement is moved to the same premutex node, the 
original data dependencies among the statements in the same premutex 
node must also be presened. This is accomplished by msintaining the 
original control precedence when moving statements into the premutex 
node. 
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Algorithm 5.3 Compute candidate premutex nodes (mitfers) .  
m ~ m :  A mutex body BL(N) and a lock-independent statement r. 
OWVT: A kt of re&m eets. Eh& d v e r  set Pi con- the lock nodes whose premutex nodes 

may receive s. 

1: proS#tors(s) t set of lock nodes tbat mtch a. 

2: Q c p r o t e c m ( a )  
3: k t 1  
4: whUeQ#@do 
5: ni t nrrrt node in Q 
6: P(k) +- (ni) 
7: remove irom Q /* Add to P(k) ail the ndes  that are not connectai with */ 
8: foreach UO& nj E and # 8 do 
9: i f ( t h ê ~ b n ~ ~ h ~ + n j ) ~ d ( t h ~ i ~ ü ~ @ h n j + ~ ) t h e n  
10: 
11: 

P(k)  4- P(k) U h  1 
nj Q 

12: end if 
13: end for 
14: k t k + i  
15: end whiie 

16: return meiuera t P(1), ~ ( 2 ) ,  . . . , P(k - 1) 

Theorem 5.2 (Etoistable statements) Let s be a lock-independent 
statement s inside a mutex body BL(N).  Let protectors(s) be a set of iock 
nodes in N such that : 

2. there exkt k partitions P : Pl, Pz,. . . , Pk (k > 1) of the set 

pmtectors(s) computed as per Algorithm 5.3, and 

3. there exists a partition Pi E P for which (a) no variable defined 
by s is defmed nor used in any path between node(s) and nodes in 
P,, and (b) no variable used by s is defined in any path between 
node(s) and nodes in Pi. 

If these conditions hold for at least one partition Pi then it is possible to 

move s to the prernutex nodes for the lock nodes in Pi. O 

PROOF Since node(s) is reached by every node E pmtectors(s), there exists 
a path between and node($). Let Pi be a set of nodes that complies with the 
three conditions in the theorem. The nodes in Pj have the following properties: 
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1. V*, nk E 4 such that # nk, there is no control path between 
and nk. This is immediate fiom the way the algorithm selects 

the nodes (lines 9-10 of Algorithni 5.3). 

2. V- E pmtectors(s) : if 6 Pj  then 3nk E Pi such that there 
is a path between and nk. Suppose that there is a node E 

protectors(s) that cannot be reached by any node in P j  then the 
algorithm would have placeci in Pj, which is a contradiction. 

The previous two conditions parantee that if s is removed £rom node(s) 
and replicated to every node in Pi then one and only one instance of s will 
stiU be available on paths leading to or from nodes in protectors(s). Findy, 
let Ds be the set of variables defined in S. Since no path between node(s) and 
the nodes in Pj defines or uses a variable in DST moving s will not alter data 
dependencies for s. Similady, let U, be the set of vaxiables used in S. Since no 

path between node(s) and defines defines variables in Us, it is safe to move 
S. rn 

Moving Statements to Postmutex Nodes 

The LICM transformation may aiso move statements to postmutex nodes of 
a mutex body BL(N) .  The analysis for postmutex nodes is similar to the 
previous case. The conditions are essentially the reverse of the conditions 
required for premutex nodes. 

Protection. Udock node xi must be reached by the same lock nodes that 
reach statement S. This guarantees that there exists a control path 
between node(s) to xi. This condition provides an initial set of unlock 
nodes to consider as candidates. In the example program in Figure 

5.5(a), the statement y = y + 3 at line 9 is reached by lock nodes 7,14 
and 18 which also reach unlock nodes 11,26 and 30. 

Reachability. Aigorithm 5.4 cornputes all the dX"rent sets of d o c k  nodes 
that may receive a lock-independent statement s in their postmutex 
nodes. The algorithm performs the same reachability analysis done 
by Algorithm 5.3. The set reIeusers(s) contains all the d o c k  nodes 
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reached by the same lock nodes that reach S. The set releusers(s) is 

partitioned into k partitions XI, X2, . . . Xk. Nodes in each partition Xi 
cannot reach each other but put together they reach or are reached by 
every other node in releosers(s). These partitions are the sets of d o c k  
nodes that can receive a copy of s in their postmutex nodes. 

Data dependencies. The ssme requirements needed for premutex nodes 
are necessary for postmutex nodes. Ifany variable definecl by s is dehed 
or used in any path hom s to a node in releasers(s) then s may not be 
moved. Similarly, if any variable used by s is defmed in any path fiom s 
to a node in releusers(s) then s may not be moved. 

Alaorithm 5.4 Compute candidate postmutex nodes ( releasers) . 
- - - - - - - - - - 

PIPUT: A mutex body BL(N) and a Io&-indepandent statament S. 

OUTPC~T: A list of relesaer sets. Ea& releaer set Xi contains the odlock  nodes w h ~  paetmutex 

1: prote&m(a) c set of IO& nodes that reach S. 

2: Q t- (xi ti EBt(N) SU& that xi is d e d  by a node in ptotcctms(~)) 
3: k t 1  
4: while Q # 8 do 
5: zi +- nrst aode in Q 
6: X(k) t { x i )  
7: remove zi Eim Q /* Add to X(k)  aii the nodes that are not connecteû with zi */ 
8: f o d n o d e ~ ~ ~ Q ~ d Q # @ d ~  
9: f f ( t h ~ i ô ~ ~ p a t h ~ ; + ~ ~ ) a r i d ( t h e r û i s ~ ~ p a t h ~ j + ~ ~ ) t h ~  
10: X(k) + X(k) U{zj 1 
Il: remove zj ftom 0 
12: end if 
13: end for 
14: k t  k +  i 
15: and whIle 

Theorem 5.3 (Downward-mwable statements) Let s be a 
lock-independent statement s inside a mutex body BL(N).  Let releasers(s) 
be a set of unïock nodes in Br. such that: 
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1. Vxi E relecsers(s) : node xi is reached by a node in pmtecton(s), 

2. there exist k subsets X : XI, X2,. . . , XI (k 2 1) of the set 
reIeasers(s) computed as per Algorithm 5.4, and 

3. there exists a partition Xi E X for which (a) no variabie defineci 
by s is dehed nor used in any path between node(s) and nodes in 

Xi, and (b) no variable used by s is dehed in any path between 
node(s) and nodes in Xi. 

If these conditions hold for at least one partition Xi then it is possible to 
move s to the postmutex nodes for the d o c k  nodes in Xi. O 

PROOF Sirnilar to the proof for Theorem 5.2. m 

LICM for Statements (LICMS) 

Theorems 5.2 and 5.3 are used as the bais for the algorithm to move 
statements outside mutex bodies (Algorithm 5.5). Notice that even though we 
refer to hoistable statements for statements that can be moved to a premutex 
node, the movement is not necessarily made against the flow of control. The 
name was chosen because that is what happens in the rnost general case. 
Similady, downwani-mouable statements may be moved up. 

The LICMS algorithm scsns all the mutex bodies in the program lookùig 
for lock-independent statements to move outside the mutex body. Each 
lock-independent statement s is checked against the conditions described 
previously. Lines 8 - 15 in Algorithm 5.5 determine the sets of premutex 
receivers for 8. The initiai set of candidates computed by Algorithm 5.3 checks 
every lock node in a mutex body against each other looking for paths between 
them. If mb is the number of mutex bodies in the program, t h  can be 
accomplished in 0(mb2) tirne. To check data dependencies each statement 
has to be compared with aIl the statements in paths to each premutex node 
(lines 9 - 15). Given that there may be up to ml premutex nodes, data 
dependencies can be checked in O(mb x IS12), where S is the set of statements 
in the program. This yields a total t h e  complexiw for lines 8 - 15 of 

0(mb2+mb x IS12). Simiiarly, lines 16-24 compute sets of postmutex receivers 
in time 0(mb2 + mb x IS12). 
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Notice that it might be possible that a ststement can be m o d  to both 
the premutex and the postmutex nodes. In that case a cost model should 
determine which node is more convenient. We will base our cost model on the 
effects of lock contention. Suppose that there is high contention on a particular 
lock. Ali the statements moved to premutex nodes will not be affecteci by 
it because they execute before acquisition of the lock. However, statements 
moveci to the pofltmutex node will be delayed if there is contention because 
they execute f i e r  the lock has been released. Therefore, when a statement 
can be moved to both the premutex and postmutex nodes, the premutex node 
is selected. 

When more than one set of premutex or postmutex nodes can receive a 
statement s a cost model should be use to select the more profitable target. 
Although not addressed in this document, cost models may include simple 
factors like checking that statements are not moved into loops or even delaying 
alI the hoistîng decisions until the algorithm has fmished analyPng alI the 
statements in a Sinde mutex body. 

Findy, if the mutex body is empty at the end of the transformation, the 
lock and imlock nodes are removed (Iines 36-39). The total time complexity 
for the LICMS algorithm is then O(m x mb x (mb2+mb x (SI2)). In general, we 
expect the cost to be dominated by [SI because m (number of lock variables) 
and mb (number of mutex bodies in the program) will be relatively small 
compared to ISI. The effects of LICMS on the program in Figure 5.5(a) are 
shom in Figure 5.5(b). Notice that the statement y = y +3 at line 9 in Figure 
5.5(a) as been replicated into lines 13 and 18 in the t r d o r m e d  program 
of Figure 5.5(b). It is necessary to replicate the statement, otherwise the 
transformed program will not compute the same value of y than the original 
one. 

5.4.2 LICM for Control Structures 

The basic mechanism for moving statements outside mutex bodies can be used 
to move lock-independent control structures. Control structures are handled 
by checkhg and aggregating all the nodes contained in the structure into a 
single super-node and treating it like a single statement. M e r  this process, 
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Algorithm 5.5 Lock-Independent Code Motion for Statements (LICMS) . 
mm: A CCFG G = (N, E,Bntryg,Gzita) in CSSAME form with pre and postmutax nadm 

inserted in every mutex body 
OUTPUT: The program with Mc-independent statements moved to the carresponding premutex and 

pastnrutex nodm 

1: f o d  l e  variable Li do 
forsach mutex body BL, (N) € M~ttrSttud(Li)  do 
ni +- n d ( L i )  
foreacü lock-independent statement s reached by nj do 
D. c variables d&ed by s 
U' + variables used by s 

/* Datermine which premutex nodea can receive S. */ 
P t reœi~efil of s at premutex nodes (Algorithm 5.3) 
f0ceac.h Pi f P do 

foreach node n € Pi do 
V (aay path between n aud node(s) d a e s  or uses a variable in D,) 

or (any path betweea n and nocle(s) d&es a variable in U.) then 
remove Pi from P 

end iî 
end for 

end for 

/* Determine which poetmutex nodes can receive S. */ 
X t reœivem of s et patmutex nodee (Algorith 5.4) 
f o d  Xi E X do 
forsach oode z E Xi do 

ï î  (any patb batwean x and Rode($) d&es or use8 a variable in Da) 
or (any path betftteen t and h ( s )  defines a variable in U,) then 

LPIIIOVB Xi From X 
end if 

end fit 
end for 

/* Sets P and X contain sets of prernutex and poetmutex nodea that can receive s. */ 
i f P # @ t h e n  

select one Pi f P (cast madel or tandom) 
remove s fmm fts original location 
replicate s to each node n E Pi 

e ise i fX#@then 
dect one Xi E X (ust mode1 or random) 
r e m m  s h m  its original location 
replicate s to each node x E Xi 

end iî 
end for 

/* Remove the mutex body if it is empty. */ 
if B,,(N) = 0 then 

remove aii the lock and rinlocl; nodes of Bt, (N) 
end if 

end for 
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Aigorithm 5.5 can be used to hoist the stmctures outside mutex bodies. 
Algorithm 5.6 looks for control structures that only contain 

lock-independent statements. Control structures are identified using 
standard interval analysis techniques (Aho et al. 1986). Basically, control 
structures form a single-entry, single-ecit region of the graph. An entry node 
dominates all the nodes in the control structure. An a i t  node post-dominates 
all the nodes in the control structure. 

Once identified, sub-graphs inside a mutex body are scanned to determine 
ifd their interior statements are lock-independent. If so, the variables defined 
and used by each statement are aggregated into the sets Da and Ua for each 
sub-graph (lines 9 - 22 in Algorithm 5.6). After all the sub-graphs in every 
mutex body of the program have been identified, Algorithm 5.5 is usecl to hoist 
them out of mutex bodies. The identification of lock-independent subgraphs 
can be done in O(m x mb x ISI) t h e .  Where m is the number of lock variables 
useci in the program, mb the number of mutex bodies and S is the set of 
statements in the program. 

Alnorithm 5.6 LICM for Control Structures (LICMT). - 
[NPuT: A CCFG G = (N, El &to) in CSSAME form 
~(PPPUT: The p p h  with Iock independent coritrol etructurea moved to the correepanding p m u t e x  

and poetmutex nodes 

1: build subgraphs for al1 control structures in the program 
2: fireach lock variable Li do 
3: fo-ch muta body Bti(N) E MutctSttUCt(Li) do 
4: /* Build aubgraphs for al1 the control structures in the mutex body. */ 
5: /* Fid Iock-independent subgraph. */ 
6: foreach subgraph H inaide Bti (N) do 
7: DH +-a 
8: U H t Q  
9: foreach daternent s in H do 
10: if s is not ld-independent then 
11: mark ZI as lodc-dependent (Le., it canot  be moved) 
12: continue with next subgraph 
13: ebe 
14: /* Add defines and uses made by a to the subgraph. */ 
15: Da 4- DrrUDa 
16: UR +tlsUCI, 
17: aad if 
18: end ibr 
19: mark H as lock-independent 
2 0  endlar 
21: end nir 
a: end for 

23: hoist lodc-independent sub-graphs using Algorithm 5.5 
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5.4.3 LICM for Expressions 

If hoisting statements or control stmctures outside mutex bodies is not 
possible, it may still be possible to consider moving lock-independent 
sub-expressions outside mutex bodies. This strategy is s W a r  to moving 
statements (Algorit hm 5.5) with the following clifferences: 

1. Sub-expressions do not define variables. They only read variables or 
program constants. 

2. If a subexpression is moved £rom its original location, the computation 
performed by the expression must be stored in a temporary variable 
created by the compiler. The original expression is then replaced by 
the temporary variable. This is the same substitution performed by 
common subexpression and partial redundancy elimination a l g o r i t h  
(Aho et al. 1986; Chow et al. 1997). 

3. Contrary to the case with statements and control structures, expressions 
can only be moved against the flaw of control. The reason is that the 
value computed by the expression needs to be available at the statement 
containhg the original expression. 

Algorithm 5.7 fin& and removes lock-independent expressions fiom mutex 
bodies in the program. The process of gathering candidate expressions is 
similar to that of SSAPFE, an SSA based partial redundancy elimination 
algorithm (Chow et al. 1997). Mutex bodies are scanned for lock-independent 
first-order expressions, which are expressions that contain only one operator. 
Higher order expressions are handled by successive iterations of the algorithm. 

Once lock-independent expressions are identifid, the algorithm looks for 
suitable premutex or postmutex nodes to receive each expression. We observe 

that since expressions can only be hoisted up in the graph, it is not necessary 
to consider postmutex nodes when moving lock-independent expressions. 
Theorem 5.4 (Target nodes for lock-independent expressions) Let e 

be a lock-independent expression inside mutex body BL(N). Ife cm be hoisted 
to a postmutex node of &(IV) there exists a premutex node of Bc(N) that 
cm also receive e. ~1 
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Algorithm 5.7 Lock-Independent Code Motion for Expressions (LICME). 

mm: A CCFG in CSSAME fonn 
omm: The graph with Io&-independent expressions m d  to the cotte~ponding premutex nodes 

1: repeat 
foreach lock variable ï& do 

fbreach mutex body BL, (N) E M L ~  do 
E c- E lJ set of Io&-independent expreasioiu, in B L ~  (N). 
i fE#@then 

f;oreach e ~ p - 0 ~  Ej E E do 
P t prernutea receivers for E, (Aigon'thm 5.3) 
aIndid4tuc-0 
foreach P, E P do 

if Vn E Pi : (n DOM nodc(Ej)) or (nobt(Ej) PDOM n) th- 
cxdi&&s t Pi 
stop looking for candidates 

end if 
end hr  
i î  cunàidotc~ # 0 them 

insart the statement tj = Ej in ali the premutex nodes for Io& nodes in cundidotcs 
end if 

end ibr 
end if 

end for 
end br 

Replace hoisted exptessl*ons inside each mutex body. */ 
foreach lock variable Li do 

foreach mutex body BL, (N) E ML, do 
replace hoisted eacpreesions in BL, (N) with their corresponding temporan'ar 

end for 
end for m. untiî no more changes have been made 

PROOF Let x be an iinlock node in BL(N)  such that postmutez(x) can receive 
e. Since e can only be moved against the flow of control, there exists a control 
path fkom x to node(e). Whermore, since e is inside the mutex body, node(e) 
must be reached by some lock node a E N such that every path from x to 
node(e) goes through n. Therefore, if e can be placed in postmuta(x) it can 
aIso be moved to ptemutex(n). m 

W e  use the previous r d t  to reduce the number of candidate nodes to be 
considered when moving Io&-independent expressions. Only lock nodes are 
considered by the algorithm. Mhermore, the candidate lock must dominate 
or be posMominated by the node holding the expression (lines 7 - 13 in 
Algont hm 5 3). 

The acceptable receiver sets are stored in the set condidates. Using a 
çimüar reasoning to Theorem 5.4 it can be shown that in this case, the 
algorithm for cornputhg receiver premutex nodes (Algorithm 5.3) will find 
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none or exact1y one set of lock nodes that can receive the expression in their 
premutex nodes. 

Figure 5.6 shows an example program before and after ninning the LICM 
algorithm. When LICM is applied to the program in Figure 5.6(a), the first 
phase of the algorithm rnoves the statement at line 9 and the assigrnent j = O 

to the premutex node. The statement at h e  13 is sunk to the postmutex 
node resulting in the quivalent program in Figure 5.6(b). There is still some 
lock-independent code in the mutex body, namely the expressions j < M at 
line 11, the statement j ++ at  line 11 and the expression ylj] + s@(a) * sqrt (b) 
at line 12. The only hoistable expression is sprt(a) * sprt(b) because it is the 
only expression with all its reaching definitions outside the mutex body. Note 
that a loopinvariance transformation would have detected this expression and 
hoisted it out of the loop. LICM goes a step further and hoists the expression 
outside the mutex body. 

5.4.4 Putting it Al l  Together: Lock-Independent Code 

Motion (LICM) 

The individual algorithm discussed in previous sections can be combined into 
a single LICM algorithm (Algorithm 5.8). There are four main phases to 
the algorithm. The first phase looks for mutex bodies that have nothing but 
Io&-independent nodes. These are the simplest cases. If all the nodes in 

a mutex body are lock-independent, then the lock operations at the lock 
nodes and the unlock operations in the body can be removed. The next 
three phases move interior lock-independent statements, control structures and 
expressions outside the mutex bodies in the program (Algorithms 5.5, 5.6 and 
5.7). We show the effect of the LICM trandormation in several explicitly 
parde1 programs in Chapter 6. 

5.5 Mutex Body Localization 

In this section we discuss a transformation technique that may enhance the 
opportunities for further optixnization of the program. Consider a mutex body 



double X[]; /* abared */ 

(a) Program before LICM. 

double Xi]; /* shared */ 

parloop (i, 0, N) { 
double a, b; /* local */ 
double y[]; /* I d  */ 

double XI]; /* s h d  */ 

parIoop (i, O, N) { 
double a, b; /* I d  */ 
double y[]; /r local */ 

S . .  

b = a ain(a); 
j=O; 
tl = -(a) sqrt(b); 
bck&); 
for (; j < M: j++) ( 

XE] = yu] + t,; 
1 
unlock(l); 
a = y[il; 

(b) mer UCM on statements. (c) Mer LICM on expressions. 

Figure 5 -6: Effects of lock-independent code motion (LICM) . 



A l m i t h  5.8 Lock-Independent Code Motion (LICM). 

INPUT: A CCFG in CSSAME form 
OUTPUT: The graph with Iock-independent expressions moved to the correapondiag premutex nodes 

/* F i  phase. Try to remove lo& and dock  nodes for mutex bodies with nothing but LI nodes. */ 
toreach lock variable Li do 

fomch mutex body BL, (N) do 
if ail the nodes a E BL, (N) are lock independent thea 

remove ail lack and uniode nodes for BL, (N) 
end if 

end fir 
end for 
/* Second phase. M m  whole contra1 stnicturea out. */ 
pedorm LICM on structures (Algorithm 5.6) 
/* Thirà p h  Move individual statementa out. */ 
perfonn LICM on statemants (Aigorithm 5.5) 
/* Fourth phase. Tiy to move expressio~ */ 
perfom LICM on expressions (Algorithm 5.7) 

Bt that modifies a shared variable V (Figure 5.7(a)). With the exception of 
the definition reaching the unlock node of BL, all the modifications done to V 
inside the mutex body can ody be observed by the thread. 

Given these conditions, it is possible to create a local copy of V and replace 
all the references to V inside the mutex body to referencea to the local copy 

(Figure 5.7(b)). We call this t r d o m a t i o n  mutez body locaIUation (MBL). 
It is the dual technique to LICM. WhîIe LICM look for lock-independent 
code, MBL creates lock-independent code by modifjing the leRhand side of 
statements. The basic transformation is straightforward: 

1. At the start of the mutex body a local copy of the shared miable 
is created if there is at least one use for the variable with reaching 
dehitions outside the mutex body. 

2. At the mutex body ai&, the shared copy is updated fkom the local copy 
of the variable if at least one intemal definition of the variable reaches 
that particulax uniock node. 

3. Al1 the interior references to the shared variable are modified so that 
they reference the local copy. 

Notice that this transformation is legd provided that the affecteci references 
are always made inside mutex bodies. Otherwise, the transformation might 
prevent memory interleavings that were allowed in the original program. 
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double V = 0; 
parloop (i, O, N) { 

double x, y[l; 
ht i; 

(a) A mutex body before lo&tion. 

doubla V = 0; 
p-1-p (i, O, N) ( 

double x, y(], p-V; 
int i; 

Li&); 
p,v = O; 
i = O; 
while ( p J  <= x) { 

p-v = p-v + yP++]; 

(c) ARer reduction recognition. 

double V = 0; 
patioop (i, 0, N) ( 

double x, y[], p-V; 
int i; 

iLk(L); 
p-v = V; 
i=0; 
while @-V <= x) { 

p-V = p-V + y[i++]; 

(b) After localization. 

double V = 0; 
par1-p (i. 0, N) { 

double x, y[], p-V; 
int i; 
S . .  

p-v = O; 
i = O; 
whne (p,V <= x) { 

p-v = p-v + YEU]; 

Figure 5.7: Applications of mutex body loealization. 
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Algori th 5.10 makes local copies of a variable a inside a mutex body 
BL(N) if the variable can be locaüzed. To determine whether the variable a 
can be localized it calls Algorithm 5.9 (a subrouthe of Algorithm 5.10) which 
retunis TRUE if a can be localized inside mutex body BL (N). The locakation 
algorithm relies on two data structures that can be built during the 7r rewriting 
phase of the CSSAME algorithm (Algorithm 4.5): 

qosedUses(N)  is the set of upwazd-exposed uses fiom the mutex body 
BL(N). This set is associatecl with the entry nodes in N. 

mchingDefs(X) is the set of definitions that can reach the exit nodes X of 

B L ( ~ *  

Aigorithm 5.10 starts by checking whether the variable can be localized 
( 1 - 4). It then checks where the local copies are needed. If there are 
upward-exposeci uses of a, a copy is needed at the start of the mutex body 
(lines 5 - 16). If there are definitions of a reaching an exit node, the shared 
copy of a must be updated before exiting the mutex body (lines 17 - 29). The 
final phase of the algorithm updates the intenor refwences to a to be teferences 
to p a  (lines 30 - 34). M e r  this phase, the CSSAME form for the program 
has been altered and it should be updated. The simplest way to do this is to 
r u  the CSSAME algorithm again (Algorithm 4.7). However, this might be 

expensive if the localization process is repeated many times. 
An aiternete solution is to incrementdy update the CSSAME form after 

the variable has been localized. The following are some guidelines that should 
be considered when performing an incrementsl update of the CSSAME forrn: 

1. If the local copy is created at the start of the mutex body, the statement 
p n  = a contains a use of a. This use of o will have the same control 
reaching definition that the upward-exposed uses of a have. Notice 
that all the upmd-exposed uses of a have the same control reaching 
definition. 

Since this statement has a conflicting use of a, it requires a n function. 
The argument list to this r function is the union of all the arguments 
to alI the r functions for a inside the mutex body. Notice that the r 



functions for a should be for upward-exposed uses of a. This is because 
the program is in CSSAME form and all confücting references to a 

are made inside mutex bodies of the same mutex structure (Le., a is 
Iocalizable) . 

2. AU the r huictions for a inside the mutex body must disappear because 
all the interior references to a are replaced by references to pn. 

3. AU the interior qb functions for a must be converted into 6 functions for 

PA- 

4. If the shared copy is updated at the end of the mutex body, the statement 
o = p n  contains a use of p a  whose control reaching definition should 
be the definition of p l r  reaching the exit node x. 

Algorithm 5.9 Locaiization test (loculizable ) . 
mm: A -able a and mutex body BL(N) 
OUTPUT: T R ~  if a cau be locaüaed in B&(N), PA- othenviae 

ML t mutex structure c~ntaining BL(N) 
/* Check every coatlicting d i c e  r to a in the program. Ail the conflicting */ 
/* nfefences to a most o c m  inside mutex bodies of ML, otherwise a ia not locaülable. */ 
forsach conflictbg reférence r E Refa(a) do 

/* If we cannot 5 d  r in aay of the mutex bodies of Mt, then a is not locaüôable. */ 
protcetcd t PALSB 
f b d  mutex body HL (N') f ML do 

î î  no&(+) in d e d  by mme lock n d e  in 1V' then 
pmtcckd t TROB 

10: end if 
11: end fbr 
12: if acit protcctcd then 
13: return PALSE 
14: end if 
15: end for 
16: /* AU the referenœa to a are protected. Therefore, a is locaihble. */ 
17: retptp TRUB 

The MBL traudorrnation by itself does not necessady improve the 
performance of a program but it opens up new optimization opportunities. 
The main &ixt of localization is that it might create more lock-independent 
code. For instance, if a thread contains read-only references to a variable V, 

localizing V will make those reads into bck-independent operations which in 
tum might make the whoIe staternent lock-independent. Consider the sample 
program in Figure 5.?(a). After localization (Figure 5.7(b)), most statements 
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Algorithm 5.10 Mutex body loealization. 
mm: (1 1 Aa expiicitly pBtaUel program P iu CSSAME fom, (2) A vaRable a to be I e e d ,  (3) - - 

Àemutex body B; (N)  
OUTPUT: BL(N)  with Miciable a iocabd 

/* Check if a can be localid (Algorithm 5.9) */ 
î î  aot hakable(a, BL(N)) then 

raturn 
end if 
/* Check for upward-exposed uses of a. Since the program is in CSSAME fom, */ 
/* upwardsxposed uses hsva atready ben coniputed (figorithm 4.5). if there ate */ 
/* upwardexpOBed uses of o thai we need to maka a l d  copy of a at the start of Bt(N). */ 
nadsntryCm +- P A .  
foreach usa u f exporedUnes(N) do . . 

10: ~ t b h ~ ~ 8 e 0 f ~ t h e t l  
11: nœ&WryCopv c- TRUB 
12: end iï 
13: end for 
14: if m d h t r y C ~  then 
15: insert the statement p n  = a at the start of the mutex body 
16: end if 
17: /* Check if any de&iition of a naches the exit nodes of BL (N). */ 
18: /* Smce the program is in CSSAME fom, the deflrritione that reach the exit nodes X */ 
19: /* have already been computed (Algorithm 4.5). if a defition */ 
20: /* of a reachee z, we need to make a copy of a before leaving the mutez body. */ 
21: n a d s z i t c ~  t P U B  
22: foreach deaoitioa d E d i n q D e f n ( X )  do 
23: U d is a definition of a theu 
24: nadBntCop~ t TRUE 
25: end if 
26: end br 
27: if lwAslitCopy then 
28: insett the stateunent a = p s  at the exit nodes of the mutex body 
29: end if 
30: /* Update refcrenees to a inside the mutex body to refarence */ 
31: /* the local d o n  p, iastesd of the ahared version a. */ 
32: foraaeh refer&~~ut to a inside BL(N) d o  
33: replace a with p s  
34: end ibr 
35: udate CSSAME informirtfon for all derences to p n  inaide BL(N) 

inside the mutex body for L are lock-independent. However, none can be 

moved outside because of the read and write operations to the shared variable 
V at the £ringes of the mutex body. If the compiler incorporates a reduction 
recognition pas,  it is possible to do the reduction locally and only update V 
at the end (Figure 5.7(c)). Now all the lock-independent code in the mutex 
body can be moved to the premutex node resulting in the equivalent program in 

Figure 5.7(d). As we will discuss in Chapter 6 this is a common transformation 
perfomed manudy by programmerS. Using these techniques, it is possible to 
make this t randormation aut omatically in the compiler. 



5.5.1 Single Writer, Multiple Readers Lock Picking 

Suppose that a paralle1 program exhibits an access pattern to a shared variable 

V such that 

1. V is read and written by exactly one thread Tw and it is read-only in 

all of the threads concurrent with Tw (Le. there is a single writer and 
multiple readers for V), 

2. dl the references to V are atomic with respect to the operation being 
performed (i.e., V is not an aggregate data type that may require 
multiple rnemory operations to update or retrieve), 

3. within the concurrent threads (Le., the writer T, and all the readers), 
variable V is only accessed inside critical sections of the code, and 

4. the underlying memory mode1 is strongly consistent. 

Under these cVcumstances it is possible to localize the references to V in 

Tw so that atomicity can be maintaineci without requiring locks. For example, 
consider the program in Figure 5.8(a). Thread To computes a value for V, 
checks a bound and updates V if necessary (assume that global variables X 
and Y have no conflicts). Both threads Ti and Ta read V but never modify 
it. The synchronization on V is necessary to prevent threads Ti and Ta fkom 

reading intermediate values of V while To computes. Suppose that we localize 
variable V inside To to obtain the equivalent program in 5.8(b). Since X 
and Y contain no conflicts and the references to V have been localized, all 

the statements inside the mutex body are now lock-independent and can be 
moved out to obtain the program in Figure 5.8(c). Finally, since thread To 
writes to V only once, the locks are not really necessary and can be removed 
to obtain the equivalent program in in Figure 5.8(d). 

In this chapter we used the CSSAME framework to develop two types of 
optimiPng transformations: the adaptation ofsequential techniques to work on 



X = ... 
Y = ... 
wbegln 
T,: begin 

T,: begin 
lock(L); 
... = a; 
d o c k & ) ;  

end 

T,: begill 
lock(L); 
... =a; 
unIock(L); 

end 
coend 

(a) Onpinal program. 

a = p a  
ualock(L); 

end 

TI: begin 
lock(L) ; 
... = 8; 
unlock(L); 

end 

T2: begin 
lock(l); 
... = a; 
d o c k ( L ) ;  

aad 
Coend 

(c) After LICM. 

X = ... 
Y = ** .  

cobe%n 
T,: begin 
.*. 

tock(l); 
p-a = 0; 
whiie (p-a <= X) { 

p-a = p-a + Y; 
1 
a = p-a; 
unlock(L); 

end 

T,: bagin 
lock(L); 
.,. = a; 
unIock&); 

end 

T,: begia 
tock&); 
... = a; 
d o c k & ) ;  

end 
coend 

(b) After localbation. 

X = ... 
Y = ... 
cobegJa 
T,: begIn 
. . . 
p-a = 0; 
whiïe @-a <= X) ( 

p-s = p-a + Y; 
1 

end 

T,: begin 

end 

T,: begtn 

end 
coepd 

(d) ARer relaxhg lock independence. 

Figure 5.8: Effects of MBL in the presence of singlewriter, multiple-dm. 



explicitly paralle1 programs and the direct optimization of the synchronization 

structure of a pardel program. To our knowledge the techniques presented in 

this chapter are the first to address the problem of optimining mutual exclusion 
stmctures in an explicitly parallel program. 

These transformations wil l  benefit explicitly pardel programs that use 

mutex synchronization frequently. In particular, programs that make use 
of thread-safe 1ibra.rie.s (e.g., multi-threaded Java applications) may contain 
supduous mutex synchronization that slow down the program unnecessarily. 
In this context we observed that these techniques can have a significant 
impact on performance. Even sequentid progrmm can benefit from these 
transformations. In the folIowing chapter we study the effectiveness of these 
techniques in several C and Java applications. 



Chapter 6 

Results 

The techniques developed in this thesis are the first step towards a general 
optimizing compiler for explicitly parallel programs. We have implemented 
many of the andysis and optimization algorithms presented in this thesis into 

a compiler for the C language. AU the example program fragments d&bed 
in previous chapters have been analyzed and optunized by our compiler. We 
have also been able to perform experiments to demonstrate the potential for 
some of these techniques in complete prograrns. 

We studied two main types of applications: those in which the user has 

little control over synchronization structures in the program and those in which 
the user has complete control over all the synchronization used in the program. 

Applications in the first group are developed in languages that expose 

most of the synchronization and parallelism details. We have selected some 
applications fkom the SPLASH suite of shared-memory pardel programs 

(Singh et al. 1992) and applications bundled with the 'IteadMarks DSM system 
(Keleher et al. 1994). These applications represent code developed by expert 
programmers who are very conscious about the performance implications 

of synchronization operations. The synchronization structures found in 

these applications have been optimized manually by the programmer. As 
a consequence we did not expect to h d  many opportunities for optimization 
in the context of the techniques developed in this thesis. However, we did find 

that some of the manual modiftcations macle by the programmer could have 

been performed automatically using our techniques. 



The second coup  consists of applications typically developed in 
programming enWonments that produce g e k c  skeleton code and systems 
that provide thread-safe libraries. Consider a high-level programming language 
like Java. Due to the thread-safe characteristics of the Java libraries, 
application prograrns may spend up to haIf their execution time performing 
unnecesssry synchronization (Bacon et al. 1998). The key reason for this 
overhead is that the Iibraries are generic and are not specific to an individual 
application's context. Hence, they have to be conservative in the assumptions 
they make. Therefore, when considered within the context of an actual 
program it might turn out that most of the synchronization operations are 
not necessary. Techniques like the lock-picking strategies or lock-independent 
code motion benefit t hese applications. Sirnilar benefits are obtained in 
pardef programs generated via high-level programming environments. These 
tools must generate conservatively correct code, and are typically based on 
code skeletons that, because of their generality, must contain over-constrained 
synchronization. Similar to the previous case, machine generat ed code must 
be overly conservative for generality and safefy. 

6.1 Implement at ion 

Many of the algorithms discussed in previous sections have been implementedl 
in a prototype compiler for the C language using the SUIF compiler system 
(Hall et al. 1996). To avoid modifying SUIF'S front-end we added support for 
cobegin/coead and parloop pardel structures via language macros. These 
macros re-define control structures of the C language so that the compiler 
can recognize them at the intermediate language level. The cobegui/coend 
structure is represented by a switch statement. A specially named index 
variable helps the compiler distinguish a regular switch statement fkom a 
cobegin. Each different case section will be executed by a dinerent thread 
at  runtime. Our system leverages on the SUIF runtime system to execute 
the parallel program. SUIF'S rutirne system is designed to run SPMD style 
programs. Our compiler annotates cobegin statements to be executed in 

'A preliminary version is available at http://uw. cs .aalbarta. ca/-jonathan/CSSAHE/ 
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parallel and modifies the index variable to be the thread id. Parallel loops are 
recognized using a similar technique. A parloop is a f o r  loop with a specialIy 
named index variable. Since SUIF directly supports parloop style parallelism 
all the compiler has to do is mark selected f o r  loops as pardel loops. 

Once the program has been parsed by the SUIF fiont-end, the compiler 
creates the corresponding CCFG and its CSSAME fom. We do not transform 
the input program into SSA fom. Instead we use factored use-def chains 
(Wolfe 1996) in the flowgraph and display the source code annotated with 
the appropriate 7r and 4 functions (variabies are not renamed but referenced 
using line number information in the corresponding K or q5 firnctions). The 
CCFG irnplementation is an extension of the sequential Control Flow Graph 
library provided by Machine SUIF (Holloway and Young 1997). The CCFG 
can be displayed using a variety of graph visualization systems. The fiow 
graphs in this thesis were generated by the compiler and laid out using 
the GraphVi systern (North and Koutsofios 1994). The CSSAME form 
for the program can also be displayed as an option. Finally, the mutual 
exclusion validation techniques discussed in Section 3.3.2 are implemented as 
compilc+time wamings to the user. 

A basic form of inter-procedurd analysis (PA) information is gathered 
by the current implementation. At each procedure c d ,  shared variables 
referenced and mutex bodies defined by the called procedure are propagated 
to the call site. This allows the codict and synchronization anaiyzer to 
treat function c& almost as if they were inlined code. Finaily, we have 
implemented partial support for reductions 
recogpher. Currently, the compiler is limited 

6.2 Experimental Results 

Synchronization overhead is sometimes caused 

based on the SUIF reduction 
to redudions inside f o r  loops. 

by an expensive implementation 
of lock and unïock operations. To addtess this problem, several techniques 
have been proposed to implement more efficient locking primitives (Bacon et ai. 
1998; Mellor-Crummey and Scott 1991; Unrau et al. 1994). The techniques 
for eliminating supeduous synchronization operations developed in this thesis 



can complement the benefits of using an efficient locking mechanism. 
There is another source of overhead that even the most efficient 

imp1ernentation camot alleviate: contention. Lock contention occurs when 
the demand for a particular lock variable is so high that threads spend a 
significant amount of time waiting for other threads to release the lock. In the 

following sections we demonstrate the effects of the techniques developed in 

this thesis on several programs. Section 6.2.1 describes two applications fiom 
the SPLASH suite. Section 6.2.2 studies some parallel and sequential Java 
programs. 

Note that at the tirne of this writing, the compiler is not yet ready to tackle 
all the prograrns described in this section. IR the current implementation, 
alias andysis is lirnited to simple pointer aliasing: the compiler only detects 
aliases for pointers that explicitly take the address of a shared variable. The 
compiler also Iacks array anaiysis; it treats arrays as atomic memory references. 
The Omega übrary (Pugh and Wonnacott 1992) could be used to perform 
array section analysis. Alternatively, the array SSA f om propoged by Couard 
(Collard 1999) could be used. This work is beyond the scope of the thesis. 

Because of these Limitations we simplifieci the input program for some of 
these applications to help the current implementation analyze and optimize the 
code. The modifications included replacing the original thread creation code 
with paralle1 loops and/or cobegin/coend structures, inlining some functions 
to circumvent limitations during synchronization analysis and substituting 
arrays of locks by single scalar lock variables. Once the compiler analyzed 
and optimized the simplifieci version, we made the same modifications to the 
original programs. This process was applied to the applications in Sections 
Sections 6.2.1 and 6.2.3. 

The hmework developed in this thesis cannot be directly applied to 
Java because Java has a different high-level model for concurrency and 
synchronization. However, we believe that it is possible to adapt the techniques 
developed in this document to fit the Java model. As a preliminary feasibility 
study, we manudy applied the transformation algorithms to a set of Java 
applications. The results of our experirnentation are d d b e d  in Section 
6.2.2 where we describe the results and the potential performance benefits 



of adapting our transformations to Java. 

6.2.1 SPLASH Applications 

SPLASH (Stanford Parallel Applications for Shared-Memory) (Singh et al. 
1992; Woo et al. 1995) is a benchmark suite for shared memory architectures 
designed as a case study to evaluate different issues in shared memory 
architectures. In the following sections we discuss our optimization techniques 
in the context of two SPLASH applications: Water and Ocean. 

Some of the mutual exclusion synchronization structures used in these 
applications were manually optimized by the original developers. We wilI 
show that using the techniques describeci in this thesis, it would have b e n  
possible to obtain similar performance benefits without the added complexity 
of manually modifying the code. 

Water 

The Water application simulates forces and potentials in a system of liquid 
water molecules. The simulation is done over a specified number of time-steps 
until the system reaches equilibrium. Mutual exclusion synchronization is used 
when computing inter-molecular interactions and for keeping a global sum that 
is computed evezy thestep.  

The computation of inter-molecular interactions is synchronized using 

one lock per molecule. The code fragment in Figure 6.1 shows the 
mutex bodies in the procedure UPDATLFORCES. Each mutex body updates 
a shared threeiiimensional array. The right hand side of each expression 
is lock-independent. M e r  the LICM transformation, the mutex bodies in 
this procedure are converted to their quivalent versions shown in Figure 6.2 

(for space reasons we only include the first mutex body, the modifications 
to the second mutex body are identical). The transformation hoisted the 
ri&-hand side of every assiment statement to the temporary variables 
t l ,  t2, . . . tg. Fiirthermore, the address computation needed to perform the 
array referaces are also lock-independent. Therefore, the compiler was able 
to move the assignmeats to variables suif-tmp19, suif-tmpz1, . . . suif-tmpS 



UPDA!TJLFORCES(DEST, mol, comp, XL, YL, ZL, FF) 
/* from the computed distarices etc., compute the 

intermolecuiar forces and update the force (or 
acceleration) locations */ 

/* compute local arrt~% G,,,, G=, Glb, ?Tl, TT, TT2 and GG */ . . * 

Figure 6.1: Computation of inter-molecular interactions in Water. 



outside the mutex body. The resulting mutex body contains the minimal 
set of computations needed to maintain the semantics of the original code in 

Figure 6.1. 
In a more recent version of the SPLASH suite, the Water application has 

been modified so that the code that cornputes inter-molecular interactions 
does not need this synchronization anymore (Woo et al. 1995). Therefore, 
when applied to the new version, the LICM optimization has no effect. The 
&ect of reducing the size of mutual exclusion sections is only measurable if 
there eiriPts a high lock overhead in the original program. In the case of Water, 
mutual exclusion sections are very small (the sections in Figure 6.1 are the two 
biggest ones) and total synchronization overhead can be reduced by solving 
larger problem (Singh et al. 1992). 

To study the effects of LICM in Water, we perforrned experiments that 
affected the total number of molecules (N), the number of molecde locks 
(ML), and, the number of simulation tirnesteps (TS). Ekperiments were 
performed on an SGI PowerChallenge with 8 processors and 384Mb of memory. 
The implementation uses SGI native threads (sproc) and hardware locks 
(dock). Ali the experiments were executed on 8 processon with no other 
system activity. 

The first experiment studies the performance effects of LICM as a function 
of synchronization overhead. As the number of time-steps increases, so does 
synchronization overhead. Table 6.1 shows the speedups obtained as a function 
of the number of time-steps and number of molecules simulated. Notice how 
the speedups obtained by LICM are lower when a larger number of molecules 
are simulated. This is caused by the larger computation to synchronization 
ratio in the larger problem. Also, by restricting the number of molecule 
loch available we are increasing lock contention. Naturally, as the number 
of available locks inmeases, the e f f ' s  of LICM are diminished. 

Since molecule locks are accessed more as the number of time-steps 
incresses, the contention on these locks &O increases. To measure lock 
contention we used the hardware timers provïded by the systern to measure 
the average delay of acquirbg a Lod. We then computed the average delay 
over the 10 molecde locks. This is shown in Table 6.2. This table shows how 



. .* 
/r Second mutex body removed for spiace corniderationa */ 

1 

Figure 6.2: E f k t  of LICM on the fht mutex body of Figure 6.1. 

1 1 64 m o l d e s  f 10 m o l d e  lockd 11 216 molecules (10 m o l d e  Io&) 
ReIat ive 

Table 6.1: Speedups obtained by LICM on Water as a fundion of the : 
simthtion tïmesteps. 

T i e  
steps 

70 
80 
100 
120 

. , 
Unopt 

time (secs) 
1527 
1772 
2344 
2827 

Unopt 
time (secs) 

157 
183 
235 
296 

 OP^ 
time (secs) 

1463 
1763 
2285 
2809 

@t 
t h e  (secs) 

144 
171 
219 
269 

Relative 
Speedup 

1.09 
1.07 
1.07 
1.10 



64 m o l d e s  
Unoptimized Optimized 

T i e  avg delay avg delay Ratio 

Table 6.2: Effects of LICM on lock contention in Water. 

average lock contention on the molecule loch increreas as a fimation of the 
number of simulation timesteps. Notice that although LICM reduces lock 
contention signiscantly, its impact on the runtime of the program may not be 
too noticeable if the ratio of computation to synchronization is high enough. 
Again notice how lock contention decreases with the larger problem size. This 
explains the diminished effeds of LICM on large problems. 

This implementation of Water contains another optimization that has been 
applied manually by the progrAmmer: the simulation computes global sums 
that are first computed locally and then propagated to the global counter. To 
test the effects of MBL and LICM, we simplifieci these routines to perfonn 
all the computations on the shared variables directly. The intent of this 
experiment is to show that it is possible to automate common optimization 
patterns that experienced programmers implernent manually. 

Figure 6.3 shows a fiagrnent of a routine that computes a reduction on 
the global variable VIR. m e r  recognizing the reduction, the compiler applied 
MBL and LICM to obtain the equivalent and more efficient code in Figure 6.43 
This is virtually the same code included in the original Water application. 

Ocean 

Ocean studies eddy and boundary currents in large-scale ocean movements. 
Mutual exclusion is used to update global sums and to access a global 
convergence flag used in the iterative solver. The update of global sums is 
done with the same strategy used in Water. A local sum is computed and 

-- -- - - -- 

2We needed to annotate derences to array V U  as non-confiicting to circumvent 
limitations in the compiler. 



6.2 Emerimental Resuits 

/* caiculate summatian of the p d u c t  of the diaplacement and cornputecl 
force for every molede, direction, and atom */ 

for (mol = StartMol[ProcID]; mol < StartMol[ProJD+1]; mol++) 
for ( dir = XDIR; dir <= ZDIR; diri-+) 

for (atorn = O; atom < NATOM; atomU) 
VIR += Vwrnol].F[DISP][dir][atomJ r VAEymol~.F~RCESj[~[atomj; 

ualock(g1->InWuLods) 
) /* end of eubrouthe INTRAF */ 

Figure 6.3: Simplifiecl version of huiction in Water. 

-lbcd,vLR = 0.0; 
for (mol = StarMol-]; mol < StartMol[ProcID+L]; mol++) 

for (dir = 0; dit <= 2; dir++) 
for (atom = O; atom < 3: atorn++) 

10cai-VIR = 1ocaLVtR + VAR[mol).F[O][dir)[atorn] VAR(mol]Sm[~[atom]; 

Figure 6.4: Effects of MBL and LICM on the code in Figure 6.3. 



1 Ocean 1 Unoptimized ( Optimiaed ( Relative 1 

Table 6.3: Effects of MBL and LICM on Simple Ocean. 

size 
66 x 66 

aggregated to the global sum. 
To study the effed of MBL and LICM on this application, we re-wrote 

some routines in Ocean to use the simpler method of updating global sums. 
We nameci this new version Simple Ocean. The intention is to demonstrate 

how some of the optimizations that are traditionally performed manudy by 

the programmer can be automated using the techniques developed in this 
thesis. Table 6.3 shows the performance improvements obtained by appl ying 
MBL and LICM to Simple Ocean. The program was executed on 8 processors 
with four different ocean &es and a the-step of 180 seconds. 

Procedure slave in Figure 6.5 contains a mutex body that updates a global 
sum (variable psibi). This version is dinerent from the original in that the 
reduction is computed directly on the shared variable psibi. After reduction 
recognition and the application of MBL and LICM to the code in Figure 6.5, 

time (sec) 
21 

the compiler generated the quivalent and more efficient version of Figure 
6.6. The resulting code is the same code for procedure slave included in 

the original Ocean application, but in this case the compiler performed the 
optimiÿation, not the programmer. 

The performance improvements obtained on Simple Ocean are the same 
improvements obtained by the manual optimizations done in the original 

time (sec) 
19 

program. The important point of this experiment is to show that using 
the techniques devdoped in this thesis it is possible to automatically 
optimize inefficient (but simple) synchronization patterns. We do not expect 

Speedup 
1.11 

experienced programmers to write such inefncient synchronization, but this 
kind of code could be found in prograns wRtten by a I g s  experienced 

programmer or generated from generic code templates in a programming 
environment. 



S . .  

/* update the shared variable peibi by summing all the peibii 
of the individual procésses into it. This is a simpler but 
more inefficient version of the original Ocean appiication. */ 

Iode (p6iWodt); 

if (procid == -) { 
peibi = peibi + 0.25 * (wrkl->peib[O](O)); 

J 
if (procid ==: xproca - 1) { 

pmii = peibi + 0.25 * (wrkl->psib(O]ürn - 1)); 
1 
fi (p-d = nprocs - xprocs) { 

psibi = w'bi + 025 * (wrk,->peib[im - 1][0]); 
1 
if (procid == nprocs - 1) { 

peibi = peibi + 0.25 * (wrkl->psibri - llljm - 1)); 
1 
u (fhtrow == 1) { 

fbr (j = tùstcol; j <= Mcol; j++) { 
per'bi = psibi + 0.5 * wkl->psib[O]Ü]; 

1 
1 
iî ((Bratrow + numrows) == im - 1) ( 
for (j = h c o l ;  j <= tastcol; j++) { 

peibi = peiii + 0.5 wrk,->@brun - l][j]; 
1 

k 
u (rtrstcoi == 1) { 
for (j = Brstrow; j <= las tm;  j ~ )  { 

p s i i  = p i i  + 0.5 wrkl->pst'btij[O]; 
3 

1 
if ((Bratcot + nnmcoia) = jm - 1) { 
for (j = firstrow; j  <= lastrow; j++) { 

psi  = peibi + 0.5 wk,->pi~][ im - 1); 
1 

1 - 
ibr (idex = nrstcol; iindex <= tastcol; iindex++) { 

for (i = htmw;  i <= Iastrow; i++) { 
patii = puibi + wrk,->paibfi]ridex]; 

3 
1 

Figure 6.5: Procedure slave in Simple Ocean. 



if (procid = MASTER) { 
JocaLpsiii = JocaLpaibi + 0.25 (wrkl->peib[O][O)); 

1 

1 
if (procid = n p m  - 1) ( 

J d p e i b i  = JocaLpeibi + 0.25 (wrk,->peibri - l]Üm - 1)); 
1 
if (finrtrow == 1) ( 

ibr 6 = M a l ;  j <= lastcd; j++) { 
l&ptiibi = J d p e i b i  + Ob mll->paib[O]~]; 

1 
1 - 
iî ((firetrow + namrows) =2 im - 1) { 

for (j = firstcol; j <= laatcol; j++) { 
J&peibi = JocaLpaibi + 0.5 * wrk,->psib(im - l]D]; 

1 
1 
if (Iirstwi = 1) { 

b r  (j = 6irstrow; j <= la~trow; j++) { 
l d p s i b i  = JocaLpei'bi + 0.5 wrk,->per'b[j][Oj; 

1 
1 - 
i î  ((firatcol + numeois) == jm - 1) { 

for (j = arstrow; j <= lastrow; j++) { 
JocaLpeibi = JOCELf,pdii + 0.5 wrkl->paibfi]m - 11; 

Figure 6.6: Enects of MBL and LICM on the code in Figure 6.5. 



6.2.2 Java Applications 

We selected programs originally written in Java because we anticipated 
optimization opportunities due to the thread-safe nature of its libraries. 
Although the concurrency and synchronization mode1 used in Java are dinerent 
kom the assumptions made in this thesis, we think that it might be possible 
to apply these ideas to the Java environment. We study the potential benefits 
of LICM and Lock Picking in the context of concurrent and sequential Java 
programs. To illustrate the effects of LICM we show two parallel applications: 
parallel sorting and parallel rnatrix multiply. 

PSRS (ParaIlel Sorting by Regular Samplhg) is an expücitly parallel 
sorting algorithm (Shi and Schaeffer 1992) that samples the data 
to generate pivot elements that evenly distribute data among the 
processors. Each process uses a sequential sort algorithm to sort its 
own partition. The resulting data is then merged to obtain the final 
sorted list. The original Java program was implemented using the 
JGL (Java Generic Library) class library which provides a sequential 
quicksort algorithm and classes for creating abstract arrays. Since JGL 
is a thread-safe library, mmany of its classes and rnethods are synchronized. 
In this particular application, some of the synchronization is unnecessary. 

When a process is sorting, it never reads or writes outside its designated 
partition. Therefore, references to the shared array are lock independent 
and can be hoisted using LICM. 

Matrix multiply (MM): input matrix A is blocked into non-overlapping 
sections which are assigned to a dinetent process. Each process writes 
to a different cell of the result matrix C and makes read-ody references 
to the input matrices A and B. No synchronization is required in this 
algorithm but the class l i b r h  make use of synchronized methods to 
read and mite to the dinerent arrays. 

Jara Implementation 

We performed two sets of experiments with these applications. First, we 
modified the Java implementation of these a l g o r i t h  to emulate the efkt of 



List size 

50,000 
100,000 
500,000 
750,000 

1,000,000 
l,25O,OOO 

Unopthbed 
time 

Optimized 
time 
(secs) 

11 
13 
51 
75 

113 
141 

Table 6.4: Effects of LICM on the original Java implementation of the PSRS sorting 

Table 6.5: Effects of LICM on the Java implementation of matrix multiplication (8 
processors) . 

Lock-Independent Code Motion. Essentidy we transformecl two synchmnized 
methods into regutar methods. In the case of PSRS, this is the at method 
in the JGL Objecthay clans. In the case of matrix multiply, this is the 
i n t A t  method in the JGL BtArray class. Both methods are automatically 
synchronized by the Iibrary but in these applications, such synchronization is 
unnecessary because the different threads never make conflicting references 
to common array locations. Tables 6.4 and 6.5 show the performance 
improvements obtained by applying LICM to the PSRS and matrix multiply 
applications respeetively. The programs were executed on a dedicated 

û-processor SGI PowerChallenge. 
Notice that this seeming1y simple transformation has a noticeable impact 

on performance. On average, the optimized version of PSRS performs twice 
as fast as the unoptimized version. This is a strong indication of the potential 
that these types of techniques have on high-level languages like Java. We 

Relative 
Speedup 

Unoptimized 
time 

Optimized 
time 



optimiaed 
tirne 

Relative 
Speedup 

2-94 
2.70 
2.74 
3.93 
2 5 4  
1-72 

Table 6.6: Effkcts of LICM on the C implementation implementation of the PSRS 
sorthg algorithm (2 processors). 

Table 6.7: Effects of LICM on the C implementation of ma& multiplication (2 
procesgors). 

obtained similm improvement factors in rnatrix multiply. For small matrices, 
both versions performed roughly the same but as the size of the matrices grows, 
the effects of LICM tend to be more significant. 

Relative 
Speedup 

2 .O0 
2.40 
3.73 
3.91 
3.98 

C Implementation 

Optimized 
tirne 
(-) 

1 
5 

22 
163 
1276 

Matrix size 

64x64 
128x 128 
256 x256 
512x512 

1024 x 1024 

In the second expriment we converteci the Java programs into C using the 
Toba transistor (Proe-g et al. 1998). Since the compiler c w t  handle the 
code generated by Toba automatically, we manually applied the optimizations 
to the generated C programs. 

These experiments were executed on a different machine because the Toba 
runtime libraries did not work on the PowerChalIenge. We used a dedicated 
tweprocessor SGI Octane for the C implementation of PSRS and matrix 
multiply. Tables 6.6 and 6.7 show the results obtained for PSRS and mat* 

Unoptimized 
tirne 

2 
12 
82 
638 
5077 



multiply respectivel~? 
Although the execution environment for both experiments is Merent, 

we observed an interesthg fa&. The performance improvements obtained 
in the C version of these programs are better than those obtained in their 
Java counterparts. In the case of matrix multiply, these improvements are 
sigdicantly better. Using the SpeedShop profiling tool available on SGI 
machines we determined that in some cases the unoptimized programs spent 
up to 30% of their time trying to enter the monitor protecting the synchronized 

methods. In these experiments we only used two threads to execute the 
application and the profiling tool did not report any other thread activity. 
There are two explanations for this excessive synchronization overhead: (a) 

the implementation of locks in Toba is inferior to that of Java, or, (b) the 
individual threads in the C version are so much faster than the Java version 
that once they leave the critical section they quickly try to acquire the lock 
again. 

The pronling logs show that the fiinction acting as  the entry point to 
the monitor spends roughly 70% of its t h e  spinning on the lock variable 
that implements the monitor. We conclude that the excessive synchronization 
overhead of the C version is mostly due to lock contention. However, as the 
results in the next section show, the lock implementation is also important as 
it may &O &ect the pedormance of sequential programs. 

Sequential Java Programs 

In this section we show how our transformation techniques might benefit 
sequential programs. Since the CSSAME form for a sequential program has no 
r functions, the Lock-Picking transformation can easily traverse all the mutex 
bodies in the program removing the synchronization operations. To illustrate 
the potential benefits of this optimization we used a set of benchmark programs 
that exercise dinerent components of the JGL abstract class library. There are 
three programs: 

(1) A m y  exercises common operations on abstract arrays: get, put, 
3We aîso ran the Java version on the SGI Octane. The speedup ratios were the same as 

those shown in Tables 6.4 and 6.5. 



1 Unoptimized ( Optimized 1 Relative 1 
Benchmark 1 time 1 t h e  1 Speedup 1 

Table 6.8: Enect of Lod-Picking (LP) on sequential Java programs. 

Array (1,000) 
Array (10,000) 
Map (3,000) 
Map (30,000) 
Sort (3,000) 
Sort (30,000) 

iterate, clear and remove. 
(2) Map exercises common operations on hash tables: add, b d ,  remove 

and clear. 
(3) Sort compares the sorting algorithm provided by JGL against a 

hand-coded quicksort algorithm. 
Table 6.8 shows the improvements obtained by applying lock-picking to 

these programs. We executed both the Java and C versions of these programs; 
in both cases the r d t s  were simüar. In general, we obtained performance 
improvements between 10% and 20% when lock-picking was applied. 

The performance gains obtained by removing the unnecessary locks are 
directly related to this particular implementation of mutual exclusion. Since 
these are sequential programs, dl the synchronization overhead is caused by 
the actual call to lock and unïock. There is no lock contention. An alternative 
to removing the locks would have been to use a more efficient mutual excIusion 
synchronization implementation (Bacon et al. 1998). We are convinceci that 
a combination of compiler optimizations and efficient lock implementations is 
the best approach in these cases. 

6.2.3 Other Applications 

(secs) 
23 

547 
32 

273 
32 

407 

We also studied two applications included in the TkeadMarks DSM system 
(Kdeher et al. 1994), namely the Traveling Salesman Problem (TSP) and 
a pardel quicksort implementation (QS). Lock contention is not a problem 
in these two implementations. The LICM transformation made some minor 

(-1 
20 

534 
30 

227 
30 

327 

1.15 
1.02 
1 .O7 
1.20 
1.07 
1.24 
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modifications to the mutex structures in these programs that did not d e c t  
the runtime performance of eithw program. However, the analysis techniques 
helped us locate data races and locking ùregularities. 

This TSP implementation t&s advantage of the weak memory semantics 
in TreadMarks. Since updates to shared variables are only visible at 
synchronization points, TSP mak- unprotected references to shared vanables 
without causing data races. However, with the strong memory semantics used 
in our model it was necessary to p h t i z e  some global variables to avoid data 
races in the program. While none of the synchronization transformations 

found opportunities for optimization, the and@ of mutex sections detected 

an irreguiarity in the original program: one of the procedures was tripping 
over a lock. (Le., the same lock was being acquired more than once). The 
compiler also found several data races triggered by conflicting data references 
outside mutex bodies. 

The quicksort implementation used ano t her implementation Utri&" to 
force propagating the update to a flag variable shared between the worker 
threads. The code fragment in Figure 6.7 shows how this is implemented. 
Note that this is the same code from Figure 3.5. We have reproduced it 

here for easier reference. To popagate an update of the shared variable 
pauaefïag in 'IieadMarlcs, it is necessw to use lock and unïock operations 
to force a consistency operation in the DSM system. However, using the 
stronger memory semantics m e d  in our model the compiler determizled 
that since the mutex body for lock variable pauselock was always nested 
inside a mutex body for lock variable 'EL, it could be eliminated. Therefore, 
the lock operations a t  lines 13,15,21 and 23 were ail removed by the compiler. 

6.3 Conclusions 

The programs described in this chapter represent two dinerent types of 

exp1icitly pardel pr~gram~ whi& we call high-level and low-level p a r d w .  
The first group (low-lm1 pardelism) are programs developed in enviroments 

where the user has complete control over the pardel and synchronization 
stmcture of the program. ' Q p i d y ,  these programs have ben mmudy 



1 a-e NPROCS 5 
2 tdaflne DONE -1 
3 
4 int PopWork(ïbkElement *task) 
5 { 

bck(TSL); 

while (îbkStacKIbp == 0) { 
if (++NurnWaiting = NPROCS) { 

/* GU the tbresds are waiting for work. 
W e  are done. 

*/ 
lock(padodr) ;  
paludhg = 1; 
d o c k ( p a d 0 c k ) ;  

unlock(TSL); 
return DONE: 

1eJ-1 
iî (NumWaiting --= 1) { 

lock(pause,lodr); 
patw-hg = O; 
ualoCk(pau8tLlodz); 

1 

/* Wait for work. This L the only 
r statement not protected by TSL. 
*/ 

whüe (Ipawdag) ; /* busy-wait r/ 

if (NumWaiting === NPROCS) { 
unlock(TSL); 
return DONE; 

1 
) /* whiie taak-rrtack empty */ 

/* Pop a piece of work h m  the stack */ 
'IgskStack'Ibp-; 
task->la = TbkStack~tackTbp]. left;  
ta&->right = 'LBsLStack~tacMbp].r&ht; 

5 1  1 

Figure 6.7: Nested mutex bodies in function Pop Wow. 
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optimized by experienced programmers who make an effort to rninimize mutual 
exclusion sections as much as possible. 

The second group (high-level parallelism) indudes systems that offer 
thread-safe libraries and prograrns developed in programming enWonments 
that generate generic code templates on behalf of the user. These 
applications can contain conservative mutud exclusion structures that may 
hurt performance unnecessarily. 

We have shown that the techniques developed in this thesis can have 
a significant impact on the performance of high-level parallel applications. 
Mhermore, we have also shown that performance gains can be obtained 
in low-level parallel programs. We have demonstrated that it is possible to 
automate some of the manual transformations that programmers routinely 
make to rninimize mutual exclusion sections. 

We consider these techniques a first step to fully exploithg the optimization 
pdbil i t ies  in explicitly parallel programs. Currently, our technology allows 
the compiler to perfonn some of the same optimisations that an expenenced 
programmer can do manually. In the future we expect this situation to 
be reversed: cornpilem for pardel prograns will make more and better 
transformations that cannot be easily duplicated by programers. 



Chapter 7 

Conclusions and Future Work 

7.1 Sumrnary of Contributions 

Explicitly parallel programs for shared memory architectures offer new 
challenges to an optimizing compiler; multiple threads of activity in a pardel 
program can alter data and control dependencies in ways that existing compiler 
technology cannot detect. The new analysis and optimization techniques 
developed in this thesis represent a significant step towards improvbg the 
capabilities of compilers for explicitly parallel programs. We expect these 
techniques to be particularly useful in the context of high-ievel concurrent or 
thread-based languages. Of particular importance in these environments is the 
ability of the compiler to understand synchronization operations which can be 
a source of substantial overhead in some applications. 

Although compilers for pardel computing have been the focus of 
intense research and development, most efforts have been concentrated on 
the automatic transformation of sequential programs into their paralle1 
counterpart . Parallelizing and vectorizing compilers take a sequential program 
and turn it into their equivaient paralle1 version. The topic of analyzing 
explicitly pardel code for the purpose of optimization has received scant 
attention. The CSSAME fiarnework proposed in this thesis provides the 
necessary tooh for a compiler to reason about and optimize an explicitly 
parallel program contaihg synchronization. 
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The CSSAME f o m  provides a comprehensive dsta-ffow framework for 
analyl;ing explicitly parallel programs. Inter-process interactions via data 

sharing and synchronization coIlstmcts are taken into consideration. In this 
thesis we have shown how to build the fundamental data structures and we 

have used them to h d  basic information like reaching defhitions, reached 
uses and mutual exclusion synchronization patterns. We have also shown how 
exMing synchronization analyses can be incorporated into the base framework 
to augment the non-concurrency information needed to disregard shared 
memory interactions that are made impossible by synchronization restrictions. 

The memory semantics considered by this work represent the most general 
scenario fiom the point of view of an optimizing compiler, since every update to 
a shared memor y variable is immediately visible t O ot her t hreads, the compiler 

can make no assumptions about the value of the variable at any point in the 
program. 

W d e r  memory models allow shared memory updates to be propagated 
at later t h e .  This is t y p i d y  used in Distributed Shared Memory systems to 

optMize t r a c  through the memory intercomect. Shared memory is updated 
after certain evenfs like synchronization points or via specific memory b d e r  

instructions inserted in the program. Incorporating these semantics into the 
CSSAME construction algorithm may lead to fewer r fiinctions which in turn 
wil l  allow more aggressive transformations. 

Synchronization is an important component of every parallel program. An 
optimizing compiler must be aware of synchronization constructs in a parallel 
program for two fundamental reasons: 

1. Validation. We have shown how the compiler can wam the user 

about ülegal or inconsistent synchronization patterns when using mutual 
exclusion. This can be augmentecl with other existing synchronization 
analysis methods that can detect deadlocks and race conditions in a 

program. Although it has b e n  shom that some of these methods are 

exponentially expensive, simplified versions can still be used to provide 
compile-time warnings to the user. 
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2. Optimization. Synchronization can provide several optimization 
opportunities. The main effect of synchronization is the elimination 
of some shared memory interactions that may be preventing a 
transformation. It is slso possible to detect overly restrictive 

synchronization pattern lüre nested mutex structures that c m  be 
eliminated (Section 5.3). 

7.1.2 Optimisation 

We have shown how the CSSAME form is unique in allowing new 
optimization opportunities by t a h g  advantage of the semantics imposed 

by synchronization. Two types of optimization are possible: the adaptation 
of existing sequential techniques and the direct optimization of pardel and 
synchronization structures in the program. 

Adapting Sequential Techniques 

The reduction of memory codicts aeross threads can irnprove the effectiveness 

of adapted scalar optimbation strategies like constant propagation. We have 
adapted a sequentid dead-code elimination algorithm. In general, the process 
of adapting an eicisting sequential technique is mainly an implementation issue, 
especially if the technique is SSA based. 

The concurrent version ne& to consider T functions in addition to 4 
functions. Also, cost models might need to be altered. For instance, in common 
sub-expression elimination, if a subexpression is common across several threads 
it might be cheaper to make each thread compute the expression M e a d  of 
p u s h g  it up into a sequential section of the program. 

Optîmizing the Structure of a Parallei Program 

In this thesis we have introduced three new optimization techniques that are 

specifically targeted at explicitly paralle1 prograns: lock pickàng examines 

and removes unnecessary lock and udock operations, lock-independent code 

motion moves code that does not need to be locked outside critical sections 
and mutez body locoluation converts shared memory references into local 
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memory references. Although we do not expect experienced programmers 
to write overiy restrictive synchronization patterns, high-level systems like 
Java make use of genenc thread-safe Iibraries that mu& make consemtive 
assumptions about the application's context. Therefore, when considered 
within the context of a particular program it might tum out that many 
synchronization operations are not necessary. We have shown how techniques 
like lock picking and lock independent code motion benefit these applications. 

We consider these techniques a significant step t o m &  facilitating the 
adoption of high-level systems with languagesupported pardelism and 
synchronization. These systems typically provide powerful abstractions that 
make parallel programming easier, but those same abstractions often hinder 
performance. Expenenced programmers recognize these limitations and 
manually circumvent them by removing abstraction layers to speed-up their 
code. This defeats the purpose of having the high-level abstractions and it is 
something that should be addresseci by the compiler, not the user. 

7.2 Fhture Work 

Our long-tenn goal is to achieve the same levei of sophistication in 
compilers for explicitly paralle1 languages as that of curent compiler 
technology for sequential languages. The development of a complete 
compilation/perfomance tuning system for explicitly pardel programs is 
a massive multi-year project. In this thesis we have presented the base 
framework for such a project. The following sections discuss future work 
directions and our vision for what an optimizing compiler for paralle1 languages 
should provide. 

Shere are many ways of specifying pardel activity in a program. The 
primitives used in this work, cobegin/coend and parloop, were selected 
because of their conceptual simplicity and expressive power. They can be 
used to describe a wide variety of task and data parallel programs. 
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/* Wait for child thread. */ 
wait(); 

1 

Figure 7.1: Expressing pardel activity wing f ork. 

Other mechanisms can be incorporated into the framework. For instance, 
many platforms provide a fork system c d  that takes a h c t i o n  nsme as its 
argument. When invoked, fork launches a new thread to execute the given 
fiuiction in puailel. The calling thread continues to execute concurrently with 
the newly launched thread (Figure 7.1). 

The important information to be gathered is the concurrency relation given 

by Algorithm 3.2. Given two 0owgraph nodes a and b, the concurrency analysis 
determines whether a and b may execute concurrently. This accuracy of the 

concurrency information is subject to the assumptions made by the andysis 
method, but it must be conservativdy correct. When it is not clear whether 
two nodes rnay execute concurrently or not, the andysis must assume that 
they will. 

In some cases, gathering this information may be a simple task. For 

instance, in a high-level programming environment like Enterprise (Schaeffer 
et al. 1993), all the concurrency information is contained in an extemal graph 
representation of the program modules which can be readily used by the 

compiler. In other cases, this might be more diEcuIt. In the case of the 

example program in Figure 7.1 the analysis should traverse the flow graph for 
each fimction marking for each statement which other statements can execute 
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concurrently. Initial support for the pthmds library (Lewis and Berg 1998) 
has been implemented in out compiler. 

7.2.2 Synchronization 

Synchronization andysis is a fundamental component of every optimizing 
compiler for explicitly pardel languages. Idormation gathered fiom the 
synchronization patterns in the program cm be used to warn the user about 
potential problems and to make optimization decisions. 

It is important to observe that some synchronization mechanisms offer 
little non-conctmency information to a static anaiyzer. Consider for instance 
mnting semaphores (Tanenbaum 1992). Counting semaphores are us4 to 
allow a limited number of threads to have concurrent access to the same 
resource pool. These semantics do not facilitate the elimination of r functions 
as is the case with lock, barrier and setlaait constructs. However, if 
the compiler cm determine that a particular counting semaphore is always 
initialized to 1 then it can be treated like a mutual exclusion operation. 

Synchronization can also be achieved without using special constructs. A 
typical example is given in Figure 7.2. Thread Ti will not start executing 
until thread Ta sets variable busy to O. Although detecting this pattern 
might be more involveci than recognizing synchronization primitives, it still 
codd be incorporated and its effects would be the same as any other mutual 
exclusion constnict. Both calls to function compute () in this example will be 
non-concurrent . 

7.2.3 Other Memory Models 

Dinerent memory models have an impact on the placement of r functions 
because they d o w  dXerent memory interleavings than the semantics 
considerecl in this thesis. EarIier SSA firameworks for explicitly parallel 
programs were based on copy-in/copy-out semantics, a weaker form 
of consistency that guarantees npdates at certain synchronization points 
(Sriniman et al. 1993). 

We plan to adapt the CSSAME infrastructure to dinerent memory models. 



7.2 Future Work 144 

busy = 1; 
cobegfa { 
TQ: begin 

cornpute(); 
busy = O; 

end 

Tl: begin 
/* busy-wait until To has cornputed */ 
while ( busy == 1 ) 
; /* busy wait */ 

Figure 7.2: Mutual exclusion synchronization wit hout locks. 

Currently we are investigating release-consistent models (Keleher et al. 1994). 
In a release-consistent memory, updates to shared variables are only visible at 
synchronization points. This may lead to the elimination of more r functions 
which in turn allow more aggressive optimizations. 

7.2.4 Dependency Analysis 

Results obtained in vectorizing and pardeking compilers are ais0 important 
in a compiler for explicitly parallel programs. In particular, the dependency 
analysis techniques developed for vectorizing and pardelizing compilers are 
an invaluable tool to fine-tune information about shared array references. 
Recent work proposes adapting a sequential array SSA form to the pardel 
case (Collard 1999). 

7.2.5 Other Optimizations 

Partial Redundancy Elimination (PRE) 

Chow et al. developed an SSA-based partial redundancy elimination 
algorithm for sequential programs cded SSAPRE (Chow et al. 1997). 
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a = 5; 
b = 4; 
c = 2; 
cobegin 
T,: begin 

t = a * b ;  
end 

Tl: begin 
v = c / 3 ;  

end 
coend 
print(t, v); 

cobegin 
T,,: befgin 

a = 5; 
b = 4: 
t = a * b ;  

end 

Tl: begin 
c = 2 ;  
v = c / 3 ;  

end 
coend 
print(tt v); 

(a) Before thread propagation. (b) After thread propagation. 

Figure 7.3: ~hread propagation optimization. 

The transformation builds SSA information for selected subexpressions. 
Expressions are assigneci to hypothetical temporaries and the SSA information 
is b d t  on those temporaries. Whenever one of the operands of the expression 
is modified, the associated temporary is also considerd modifieci. Adapting 
SSAPRE to the pardel case involves building CSSAME information for the 
tempotaries and treating them like any other variable in the program. 

Thread Propagation 

Thread Propagation is a code motion strategy designed to increase the 
granularity of individual threads and avoid the sequential processing overhead 
for threads that do not use computations made in sequential portions of the 
code. We will use a simple srample to illustrate the idea. Consider the 
program in Figure 7.3(a). The fmt three ünes of the program compute new 
values for variables a, b and c. Thread To uses variables a and 6 and thread Tl 
only uses c. Figue 7.3(b) shows the r d t s  of applying the thread propagation 
optimization to the program on the left. Since thread Ti does not use variables 
o or 6, both assignments in the sequential section of the program can be 
moved inside To so that Ti does not have to pay the sequential overhead for 
computations that it will not use. The same reasoning is applied to thread To 
when moving the assignment of variable c to the body of thread Ti. 
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Lock Partitionhg 

Lock partitioning examines ail the mutex bodies in a single mutex stmcture to 
determine whether they access the same set of variables. Consider a program 
that uses a single lock L to serialize the access to variables a, b, x and y. 

Asmime that only one m u t a  body references x and y while the other mutex 

bodies in the program reference a and 6. We can safely replace L with two 
loch, one for the mutex body referencing x and y and another one for the 
mutex bodies referencing a and 6. 

The key idea is that if the mutex bodies are accessing dinerent sets of 

variables, then protecting all the references with a single lock is not necessary 
and restricts concurrency in the program. Lock partitioning shouid determine 
how many disjoint sets of variables are referenced by the difEerent mutex bodies 
and replace the original lock with one lock for each set of miables. 

7.3 Conclusions 

An optimizing compiler for explicitly parallel languages must be able 
to handle different types of parallelism, syachronization constructs, and 

shared memory semantics. For instance, the compiler should recognize 
difEerent synchronization constmcts and adjust the data-0ow representation 
appropnately. In this thesis we developed an SSA-based fkamework for 
analyzing these three elements. Regardless of the chosen analysis framework, 
it is important that it incorporates these three elements. Otherwise, decisions 
based on this andysis might yield erroneous transformations. 

Optimizing transformations can be categorized as either adaptations of 

traditional sequential optimizations from or t ethniques t hat t arget one of 
the three elements mentioned above: parallelism, synchronization and shared 
memory semantics. In this thesis we have concentrated on the optimization 
of mutual exclusion synchronization. Using the prototype compiler that we 

are building, we will continue to investigate new analysis and optimization 
techniques for explicitly paralle1 programs. 
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