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Abstract 

In this thesis, we will examine a card game called MYST, a variant of the Parker Brothers' 

classic board game Clue. In MYST, a set of cards is divided uniformly among a set of 

players, and the remaining cards form a hidden pile. The goal of each ptayer is to be the 

first to determine the contents of the hidden pile. On their turn, a player asks a question 

about the holdings of the other players, and, through a process of elirnination, a player can 

determine the contents of the hidden pile. 

MYST is one of few static information games, wherein the position does not change 

during the course of the game. To do well, players need to reason about their opponents' 

holdings over the course of multiple turns, and therefore a sound representation of knowledge 

is required. MYST is an interesting game for AI because it ties elements of knowledge 

representation to game theory and game strategy. 

After informally introducing the essential elements of the game, we wilt offer a forma1 

specification of the game in terms of first-order logic and the situation calcuius developed 

by Levesque et al.. Strategies will be discussed including: existence of a winning strategy, 

randomized strategies, and bluffing. lmplementation of some strategies will be discussed. 
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Chapter 1 

Introduction 

Through the annals of history, games have been played as  a source of amusement, mental 

exercise and competition. Dificuit gams have traditionally been the most interesting, 

usually because a best strategy is neither easily found nor readily apparent. Difficult usually 

means that there is a finite, but large space of variations, for which a human could not 

possibly memorize the best move. Games with many variations become the subject of study 

over tirne. Chess and bridge are two examples of popular games with a finite, but very large 

number of variations. 

Grand masters of popular games often publish work describing their suggested strate- 

gies, or what they feel are some of the best plays. in cheçs, many have pu blished "opening 

booksn describing the best possible variations For the first 10 to 15 moves by each side. The 

authors are not mathematicians, however, and so the books do not guarantee that such 

and such a move is the best possible first move for White, for instance. Such books are a 

summary of experience and so they represent heuristic strategies. 

Mathematical provabdity about games with large numbers of variations has remained 

insurmountable even with the help of supercornputers. Since their creation, humans have 

postulated that computers wouId be abie to out play humans at games. In fact game playing 

was one focus of initial Artificid Intelligence (AI) research, but the computers of the era 

were not fast enough to compute the existing heuristics in reasonable tirne. However, with 

the advancing speed of supercornputers, we have witnessed computer programs triumph at 

the world championship level in checkers with Chinook [17] [18] and in chess with Deep 

Blue [L21 [19]. These recent triumphs have restimulated research in game playing. 

Checkers and chess are repmentatives from the clas ofgames with perfect information. 



Informally, perfect information means that at any point during the game, each player knows 

the position with absolute clarity. Furthermore, each player can hypothesize the next move 

and derive the next position, again with absolute clarity. Given enough resources, a program 

could search the entire space of positions and determine the best moves for each player, using 

backwards induction. However, this was impractical for Live play and so heuristics and search 

were coupled together to achieve a locally best result. GO is another example of a game 

with perfect information, but the search space is still too large for a computer to do an 

efficient heuristic search. 

We can contrast games with petfect information against those with imperfect informa- 

tion. Inforrnally, imperfect information means that at some point during the game some 

players are not aware of the entire position. Most card games are examples of games with 

imperfect information, the m a t  popular of which are bridge and draw poker. Bridge and 

draw poker are similar to checkers and chess because the available information (the paei- 

tions of the cards) may change during the course of the game. They are called games with 

nonstatic in formation, 

in this thesis we will examine a card game called MYST, a variant of the game of Clue, 

which is a game with static and imperfect information. In MYST, a set of cards is divided 

uniformly among a set of players, and the remaining cards form a hidden pile. The goal of 

each player is to be the firçt to determine the contents of the hidden pile. On their turn, 

a player asks a question about the holdings of the other players, and, through a process of 

elimination, they can determine the contents of the hidden pile. 

Che is an interesting game to study for several reasons. 

a Che has not been formally studied. 

There is enough variation in Che for it to be an interesting, replayable game. 

Most games focus on the competitive dissemination of resources, but Clue focuses on 

the competitive dissemination of knowledge. 

Since there is only one type of information about the position, i.e. what cards each 

player holds, then the dissemination of knowledge about positions is easy to specify. 

Once a card's position has been determined in Clue, it remains in play, which is usudy 

not the case in moût card games, Like bridge. 



This raises some interesting questions about similar games. How do we specib knowl- 

edge? Since each player is trying to glean as much knowledge as possible whilst giving away 

as little as possible, how could we quantify knowledge to determine who is winning? Could 

players use the actions of other players to gain knowledge for themselves? How should 

we base strategies around knowledge? Fortunately, Clue is simple enough to analyze, and 

contains enough variation to make the conclusions profound. 

There are many aspects to Clue, which touch various areas of AI. We wiU give a formal 

specification of the game, which will involve first-order logic and the situation calculus, and 

we will develop strategies for Che, which will involve elements of algorithms and game 

theory. But we will need a mode1 for knowledge, one which handles knowledge in a world 

with static information. 

In this chapter, we will informally describe the essential elements of the game of Clue and 

its variant MYST. Next we will describe the relevant aspects of game theory, what it means 

for a player to have knowledge, and finally the framework known a s  the situation calculus. 

Before we proceed, we should distinguish between the terms information and knowledge. 

Information is a statement which is true, but may or may not be known by a player to 

be true; howledge is the information that a player can prove. 

1.1 Informal Specification of Clue and MYST 

The classic game of Clue is a board game originally released by Parker Brothers and is 

now owned by Hasbro. What is the premise of the game? Six guests are invited to Boddy 

Mansion for a dinner party with Mr. Boddy. After dinner, Mr. Boddy is found dead on the 

main staircase, apparently the victirn of fou1 play. The details of the crime are unknown 

and are to be determined by the guests (the players). The objective of Clue is to be the 

first player to correctly determine the murderer, the murder weapon and the room in which 

Mr. Boddy was killed. 

There are six choices for the suspect: Miss Scarlet, Colonel Mustard, Professor Plum, 

Mrs. Peacock, Mr. Green, Mis. White; six choices for the murder weapon: knife, revolver, 

rope, lead pipe, wrench, candlestick; and nine choices for the room: kitchen, study, ballroom, 

dining room, billiard room, Iounge, library, consenmtory, hall. Each of the Listeci choices is 

represented exactly once in a deck of 21 playing cards. Before the game begins, the cards 

are partitioned into their three sorts and one cacd from each sort is randomly selected and 
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Figure 1.1: The classic game of Che 

hidden inside an envelope. These cards describe the details of the crime, and if a player 

correctly guesses the cards contained within the envelope, then they win the game. The 

remaining 18 cards are shuffled and deait to each player in turn until they are exhausted. 

These cards are not shown to any other player, except by means of a suggestion. 

The players move around Boddy Mansion on a game board and every tirne they enter 

a room, they are permitted to make a suggestion about the details of the crime. In other 

words, they simultaneously suggest a suspect, a murder weapon and a room. The first 

player in a clockwise progression who is able to contradict the suggestion, must privately 

show them a single card which contradicts it. Players take turns making suggestions until 

eventually çomeone has enough evidence to deduce the contents of the envelope and win the 

game. A player may guess the contents of the envelope at the end of their turn, and if they 

are wrong they may not make any other suggestions or guesses. 

For example, suppose player 1 makes the suggestion that, "It was Mrs. White with the 

candlestick in the conservatory." Player 2 is the first to the left of player 1, and she checks if 

they have any of the appropriate cards to contradict the suggestion. Player 2 does not have 

any of the h h .  White, candlestick or conservatory cards and says, "Pass." Player 3 checks 

for the same cards and so on untii a player can contradict the suggestion or ail opponents 
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Figure 1.2: The suggestion "it was Mrs, White with the candlestick in the conservatory." 

pass. Suppose that in this example, player 3 holds both the candlestick and the conservatory 

cards. She is not required to show both of them to phyer 1, so she picks the candlestick 

card and places it face down and slideç it to player 1 for her inspection. After verifying the 

identity of the card, player 1 slides the card back to player 3. Notice that player 3 did not 

announce to al1 the players which card she showed player 1. It was a private show. 

There are other rules in the classic game of Che. 

1. A player may only make a suggestion about the room they currently occupy. 

2. A suggestion about a player automatically rnoves that player to the room about which 

the suggestion was made. 

3. Wiien moving between rooms, no player may walk through a square occupied by 

another player. 

We have reformulated the original game of Che into a simpler, more general game we 

cal1 MYSTL, short for mptery. We can informally describe MYST as follows. 

Consider the game MYST where there is a finite set of cards S frorn which rn > 1 are 

selected randomly to be the unknown mystery pile and the remainder are dealt uniformly 

to each of p 2 2 players in turn. To keep things simple and fair, we consider only the 

case in which each player holds an equal number of cards, Say n > 1 of them. Therefore, 

(SI = m + np and we define the constant c = m + np for the sake of convenience. 

'This is not to be confused with the p d e  adventure game MYST produceci by the cornputer game 
Company Cyan, inc.- 



Each player, starting with player 1, gets a turn in rotation. On their turn, they must 

ask a question about q > 1 different cards of the form, "Do you have at least one of the 

following cards: sa,, . . . , sa,?" This player is referred to as the poser. If the next player in 

rotation can answer yes to this question, then they will prove it to the poser by privately 

showing them the card and player 1's turn is over. However, if the answer is no, then the 

next player will either show a card or Say no and so on. The player whose turn it is to 

answer the poser's question is called the ~sponder. The turn orcier proceeds in a ciockwise 

fashion for both p e r s  and responders. 

After asking their question, a player may guess the contents of the mystery pile. If they 

are right, then t.hey will win the garne; if wrong, they cannot ask another question or gum 

again. The game ends if a winner has been found or if al1 players have been eliminated from 

unsuccessful guesses. 

Most of MYST can be easily expresseci in terms of finite sets. Let P = {1,2,. . . , p )  be 

the set of p players, wUo take their turns in numerical order. Let So C S be the set of cards 

dealt to the mystery pile, and let Si C S be the set of cards dealt to player i. So, lSol = m 

and ISiI = n, when i E P, and all of the subsets Sj are a partition of S. i.e. 

P 

US,=S and V O < i <  j < p  SinSj=O 
j = O  

We can also define a question in terms of sets. Let Q be a question such that Q C S 

and IQI = q, and define Qi = Q nSi. Qi represents the cards in the question held by piayer 

i, or, in the special case of Qo, Qo represents the cards in the question which are in the 

mystery pile So. It follows that since So, Si,. . . , S, is a partition for S, then Qo, QI,. . . , Qp 

is a partition of Q- We adopt this notation of subscripted Qs to represent such partitions. 

To be formal and complete, the constants m, n, p, q are positive integers and p > 2. 

Clue is a special case of W S T ,  where c = 21, m = q = 3 and 2 < p < 6. However, p 

does not divide 18 in al1 cases for p so some players might get extra cards. Furthemore, 

the construction of So and any question is subject to the partitioning of S into the suspect, 

weapon and room subsets. Therefore there are more constraints in Clue than we permit in 

MYST, and so it is not conclusive that by solving M E T  that we wiii solve Clue. 

The generalization into MYST was done in order to make Clue easier to analyze- These 

are our motivations. 

1. The suspect, weapon and room sets are clumsy to work with. Pooling the three 
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partitions into one makes the questions easier to specify. However, since the space of 

possible questions and possible mystery piles is larger for MYST than for Clue, MYST 

is no easier a game than Clue. 

The suspect, weapon and room sets are not of equal size. 

There is no guarantee that each playec will start with the same number of cards, which 

might give one player a clear advantage. 

Instead of moving from room to room to rnake suggestions, which involves unpce 

dictable die rolling, we permit each player to make a suggestion every turn. 

It is possible to force a draw via rnulti-player collusion. 

In fact, al1 draw situations are the result of the "other rulesn of Clue, stated earlier. 

Here are two examples of how collusion could force a draw. 

1. Suppose that you had already proven it was Mr. Green with the candlestick and you 

had eliminated every roorn except the billiard room and the library. Since you already 

know the identity of the killer and the murder weapon, al1 that remains is the room 

and if you could rnake it to either roorn and rnake a suggestion, you would be assuced 

a victory. However, two other (rnean) players who are in rooms far away frmn the 

billiard rcom and the library each take turns making suggestions which include your 

player's narne in the suggestion! These suggestions constantly teleport you to their 

roorns and can prevent you from ever reaching your destination. This is similar to the 

situation in chess where a draw- is forced by perpetually placing the king in check. 

2. Because no player may walk thcough a square occupied by another player, a large 

proup of game tokens may blockade the advancement of another player, or perhaps 

block off al1 the entrances to a specified room. 

In the next chapter, we will give a formai specification of MYST in terms of formai logic 

and the situation calculus. 

1.2 Game Theory 

No diiussion of game strategy wouid be complete without referring to game theory. Game 

theory formalizes ail games and seeks optimal strategies in competitive situations. In this 
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Player 1 Player 2 Payoff (player 1) 

Figure 1.3: The game tree for rock-paper-scissors if player 1 goes first. 

section, we describe the essential elements of game theory and highlight those relevant to 

this research. We introduce the fundarnentals by characterizing the classic garne of rock- 

paper-scissors. 

The game of rock-paper-scissors is a tweplayer game. Each player must make one deci  

sion: choose one of rock, paper or scissors. If one player chooses rock and the other scissors, 

then the player who chose rock wins and earns a payofl of one point to their opponent's 

nil. Sirnilarly, scissors win over paper, and paper wins over rock, each combination earning 

a payoff of 1-0. If both players make the same ctioice, it is a tie and each player earns 4. 
If player 1 goes first and player 2 goes second, then aii possible games can be describeci by 

the game tree shown in Figure 1.3, where each path from the mot to a leaf represents a 

complete twedecision game. 

Since rock-paper-scissors is a noncooperative game, each player wiii make the decision 

which maximizes their payoff. Player 1 goes first, so player 2 can earn a payoff of 1-0 every 

game by ernploying a stmtegy. A strategy is a function which makes a decision at each node 

in the game tree. Player 2's strategy is this. If player 1 pich scissors, player 2 picks rwk; 

if player 1 picks paper, player 2 picks sciçsors; and if player 1 picks rock, player 2 picks 



Player 1 Phyer 2 Payoff (player 1) 

Figure 1.4: The game tree for rock-paper-scissors if both players decide simultaneousIy. 

paper. This strategy could be determined by using backwards induction or by finding the 

path(s) associated with evaluating min rnax payo f j(Player 2). Player 1 can guarantee 
Player 1 Player 2 

no better than 0-1 either. Since rock-paper-scissors has perlecl information player 2 can 

always view player 1's action and respond to it. 

The more standard version of rock-paper-scissors is one in which player 2 is not privy to 

such information. In actud play, the two decisions happen simultaneousiy, and so we need 

injomation sets. Figure 1.4 shows the modified game tree. The two figures are identical 

exept for the dotted box representing the information set. PIayer 2 cannot distinguish 

between the three nodes in the box, that represent player lis decision. The second game is 

a game of imperfect information and the optimal strategy cannot easily be found by using 

backwards induction. 

The god of game theocy is to find the best strategies for each player. Here we introduce 

equilibrium, originally defined by von Neumann and later refined by Nash and others [5]. 

Laasely speaking, an equilibrium point is a tocai minimum in the payofi function. For two 

pIayers, a pair of strategies is in equilibrium if one player's opponent cannot do better by 

switchig to another strategy. In rock-paper-scisson, if player L decides that it is best to 
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choose mck every time, then player 2 could earn a payoff of 1-0 by choosing paper every 

time. Therefore, consistently choosing rock is not an equilibrium strategy. 

Sometimes it is best to probabilistically choose a strategy, which is called a rnized stmt- 

egy. In rock-paper-scisçors, a mixed strategy offers the only equilibrium. If player 1 should 

uniformly pick one of rock, paper or scissors with equal probabilities, then their expected 

payoff is $ no matter what strategy player 2 chooses, and furthermore, $ is the best possible 

expected payoff. This concludes the example. 

There are many works on equilibria in game theory some of which tocus on the two- 

person aspects 1131 [14], and some of which focus on the n-person aspects [5] [15]. The 

most importaiit result is the theorem of von Neumann that ciaims the existence of a mixed 

equilibrium in a finite game with imperfect information. 

Theorem 1.1 (von Neumann) Euey finite game of imperfect information has a mixed 

stmteqy equilibhm. 

We have already introduced the concept of perfect information and static information 

games. Although it is not central to the core of this thesis, we should contrast imperfect 

information against incomplete information. 

A game has compfete information if al1 players can construct the entire game tree. 

Informally stated, a player has complete information if they know everything that could 

possibly happen during the course of the game. Incomplete information rneans that at least 

one player either does not know al1 of the rules or does not know if they know al1 the rules. 

Note that most commonly played games have complete information. Human players who 

do not have complete information usually feel the game is unfair when an unknown rule 

is sprung upon them. Therefore games of incomplete information are rare, unpopular and 

asymmetric. 

The card garne Mao is the best example of a card game with incomplete information. In 

Mao, players are assesseci penaities whenever they break a rule, and players tcy to learn the 

rules from the penalties assessed. Players may also develop new rules as play progresses. 

Some might also suggest that basebaii is a game of incomplete information because it is 

*mpassible to assimilate al1 of the rules. However, the rules of basebaii are weli-defined and, 

although compIicated and detailed, Mure to assimilate the rules is considered a deficiency 

of the player, not the game. To maintain symmetry, it is assumed that: Al1 players am 



perfect masoners. Fagin et al. [4] refers to this as  logical omniscience and discusses it at 

length. In thii thesis, we wüi cal1 this Axiom O and discuss it in Section 1.3. 

Another key assumption is that al1 players are aware of and remember what actions have 

taken place in the coune of the game. This is called perfecl mcall and is also incorporated 

in Axiom O. Once again, human players are iikely to forget the game history in a long game, 

but symmetry again motivates us to make this assumption. 

We conclude this section with a table of some popular complete information games, 

classifieci by their types of information. Static, perfect information games are not interesting 

because they completely lack any variation. 

II Che I[ static 1 imperfect II 

Checliers 

Stud Poker 

Bridge 

1.3 Reasoning About Knowledge 

- -  

static 

nonstatic 

C hess 

Monopoly 

For this thesis, ail reasoning about knowledge utilizes the possible worlds mode1 summarized 

from Fagin et al, [4]. If player p considers the truth of some piece of information 4, p is 

said to h o u  4 if and only if q5 is true in al1 worlds that p considers possible, and we write 

K ( p ,  4)*. The possible worlds mode1 is best illustrated by an example. 

Consider a standard deck of cards uniformly distributeci among 4 players, each player 

receiving 13 cards. The goal of this example is to determine what player 1 knows after the 

deal of the cards. Before Iooking at his cards, player 1 considers al1 of the worlds which are 

possible from his perspective. Player 1 can conceive of a world in which the ace of spades 

is in player 2's hand, and also of a world in which it is in his own hand. The location of 

the ace of spades, or any card for that matter, could be in any pIayer9s hand (with equal 

We use a Function notation instead of the famiiiar expression Iip4 because we intend to augment I< with 
a situation argument. 

- 

imperfect 

imperfect 

nonstatic 

nonstatic 

- 

perfect 

perfect .. 
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probabiiity) and therefore its location is not known by player 1. In fact, before looking at 

his own cards, player 1 only knows that a partitioning of the cards has occurred. In other 

words, he knows that the ace of spades is held once and only once and that each player 

holds exactly 13 cards. 

After player 1 has examined his cards, the number of possible worlds is reduced. If 

he, for instance, holds the ace of spades, then he will elirninate al1 wodds except where he 

holds the ace of spades and the other players do not hold the ace of spades. In similar 

fashion, he knows that he holds every other card in his hand, but again he does not know 

the location of the cards not in his hand. Therefore, the worlds that player 1 considers 

possible are represented exactly by the possible distributions of the cards he does not hold. 

Furthermore, since the initial distribution of the cards was uniform, he cannot decree that 

one possible world is more likely than another. The example is thus concluded. 

We will now introduce common knowledge. Let G be a subset of players and 4 be a piece 

of information. C(G, 4) means that "it is cornmon knowledge among the players in G that 

4," Informally, C(G, 4) means that everyone in G knows d, and everyone in G knows that 

everyone in G knows 4, and everyone knows that everyone knows that everyone knows 4, 

and so on. Algebraically, if we let E(G, 4) i A K(p,  4) represent "everyone in G knows 
PEC 

4", then we define EB(G, 4) by the recurrence 

and then tvrite 

Although first-order Io& prevents the use of an infinite conjunction, there are ways to 

axiomatize C(G, 4) using a finite list of axioms, which capture the meaning understood in 

the definition above. Such a characterization can be found in [4]. 

We now present the S5 Axiorns which describe the most fundamental manipulations of 

WP, 4). 

Distribution Axiom 
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r Knowledge Genemlization Rule 

If, in al[ possible worlds 4 holds true, then K(p ,  4). 

r Truth Axiom 

r Positive Introspection Axiom 

Negative Intmspection clziom 

We rnight also hypothesize how to describe information that players do not know. 

"Player p does not know 4" is written as 4 f p , # ) .  This can allow for some very com- 

plicated expressions with nested Ks. For example, lK(1 ,  K(2 ,  -K(1,4))) rneans "Player 

1 does not know that player 2 knows that player 1 does not know 4." Meta-knowledge 

about what players do not know has limited usefulness in the study of Che and will not be 

considered any furt her. 

There are sorne other assumptions about our belief system that must be considered. The 

first is logical omniscience, which is the assumption that al1 players are perfect reasoners. 

Every player knows al1 tautologies and is able to decive al1 consequent tautologies, and 

every player knows al1 rutes and axioms, and can always understand the full consequences 

of any action. Logical omniscience can be summarized by the following closure property 

of knowledge: an agent is logs'cally omniscient if, whenever he knows al1 of the formulae in 

a set Q, and Q Logicaiiy implies the formula q5 in all possible worlds, then the agent also 

knows 4. A more comptete characterization can be found in [4]. 

The second is perfect recall, which is the assumption that al1 players can remember the 

history of the game. Humans nsuaüy do not have perfect recall because they usuaiiy cannot 

accurately remember what happened more than (say) 20 turns ago. The notions of recaU 

and hiitory brings another knowledge issue to light. Games tike Che take severai turns 

and so a player's knowledge about another player's holding will be increased incrementaliy 
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over time. Since Che is a game with static information, the information does not change 

over time. Therefore, if a playet knows the position of a card, that knowledge wiU never go 

away. We cal1 this immutable howledge. It follows that knowledge of immutable knowledge 

is also immutable, but assertions like "Player 1 does not know that player 2 holds card s,," 

i.e. l IC(1,  q5), are not immutable because player 1 may (on a future turn) discover the true 

location of card s,. 

We will refer to logical omniscience and perfect recaii collectively as AAom O. Akhough 

Axiom O does not include the reality of imperfect human opponents, it makes the analysis 

of strategies rnathematically easier. 

Maintaining knowledge over the course of many turns requires a mathematicai quan- 

tification of history. Here, we employ the situation calculus whose focus is the situation 

structure: a complete list of previous actions. In this work, we will augment the knowledge 

predicates K, E and C with a third, situation argument S. 

1.4 Situation Calculus 

In this section we describe the essentiai elements of the situation calculus, describeci in the 

survey paper of Levesque et al. [IO] and originally developed by Hayes and EvIcCarthy [ll]. 

We employ the situation calculus because it neatly describes the notions of history and time 

in a framework that is suitable to formalize Che. 

The situation calculus is a second order language with equality. It has three disjoint 

sorts: action for actions, situation for situations and o6ject for everything else. First, we 

will define the notion of a situation. Loosely speaking, a situation is a list of actions in the 

order in which they occurred. In fact, a situation s could be viewed as a LISP list structure, 

with functions car(s), cdr(s), cons and so forth. car(s) would represent the most recent 

action and the cdr(s) would represent the history previous to this action. Levesque et al. 

define a function do(a, s) which is similar to cons in LISP. do(a,s) returns a situation with 

a as its most recent action and s as the rest of its history. The special symbol Inàto3 is used 

as the initial situation, which is analogous to a starting state or a NIL list. 

Formaliy, we define the symbols do : action x situation + situation, [nito, C and & 

3Levesclue et al. uses SC,, but that symbol is used exteosively in this work for some other purpose. 
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according to the following four axioms. 

do(a1, S I )  = da(u2, sz) 3 (ai = a 2 )  A (sl = s2)  

-(s c Inito) 

s ~ d o f a , ~ ' )  s C s '  

(VP) .P( in i t~)  ti (Va, s )  [P (s) 3 P(do(a, s))] 3 (Vs) P(s ) .  

Axiom ( 1 . 1 )  is a unique names axiom for situations. Two situations are the same if 

and only if they are the same sequence of actions. Axioms (1.2) and (1.3) axiornatize the 

C relation. Informally, s s' if s is a proper subhistory of s'. Note &O that s C s' is a 

shorthand ror s c s'v s = s'. Axiom (1.4) is a second order induction For situations. 

The situation structure is important for Clue because it forrnalizes gaining knowleàge 

over t h e .  if a player discoven the location of an opponent's card, he has immutable 

knowledge in that and al1 subsequent situations. However that same player did not know its 

location in any pmper subhistory. Therefore, the predicate K(i,  @) depends on the situation, 

and, where relevant, s will be augment4 as a third argument. 

Situations also encapsulate the history of actions and the order in which they occurred. 

In most garnes, the opponent's history can be used to deduce their game plan. 

The language of the situation calculus may also include: 

Countabiy infinitely many uariabh symbols of each sort. 

a The binary predicate symbol Poss : action x situation. The intended interpretation 

of Poss(a,s) is that it is possible to perform the action a in situation S. Poss(a,s) 

will be used to define what actions each player is allowed on their turn. 

Countably infinitely many predicate symbols to denote situation independent relations. 

r Countably infinitely many situation independent functions whose output are of sort 

object- 
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0 Countably infinitely many situation independent functions whose output are of sort 

action. These are called action functions, and they are used to denote actions with 

input variables such as 

play (ace of spades), crsks(i, Q) , etc. 

0 Countably infinitely many predicate symbols, which are situation dependent. These 

are cded relational fluents, and can be used to iieep track of things which change 

during the course of the game. For example, K( i ,  q5, s) is a relational fluent. 

Countably infinitely many functions, which are situation dependent. These are called 

functionul fluents, but they will not be employed in this work. 

We will define the axioms for the special predicate Poss(a, s), which describe ali possible 

actions, and the Successor State Axioms which describe the relationai fluents. We are also 

allowed some uniform formulae. Informally, a formula in the situation calculus is uniform 

if and only if it does not depend on two situations with different histories. A more formal 

description of uniform formulae can be found in [IO]. For example, the S5 Axioms, the 

tautologies of first order logic and the axioms describing the situation [nito are al1 uniform. 

We will use the situation calculus to formalize MYST in Chapter S. 

1.5 Thesis Overview 

In this thesis, we will first gîve a formal description of MYST in terms of the situation 

calculus and al1 game axiorns, described in Chapter 2. Chapter 3 will describe some general 

results and properties of MYST and Chapter 4 will describe some strategies and strategic 

principles of MYST. The body of the research concluded, Chapter 5 will sumrnarize the 

work and suggest avenues of future work. 



Chapter 

Forma1 Specification of MYST 

In this chapter, we wili formalize the game of MYST in terms of logical constructs and the 

situation calculus developed by Hayes and McCarthy [Il] and described in the survey paper 

of Levesque et al. [IO]. This will give a solid foundation for the informal description given 

in Section 1.1. 

The organization of this chapter is modular, but similar to the way Levesque breaks up 

his portions of the situation calculus. We first describe the constants which are fundamental 

to MYST, which include the integers .m,n,p, q, the cards and the players. Next we describe 

ail possible actions and fluents, whose values change over the course of the garne. We 
then describe the initial game conditions for the case of the initial situation [nito and 

then describe which actions are possible in which situations. Finally, we will describe the 

Successor State Axioms which will axiomatize how the values of the fluents are affected by 

actions. 

2.1 Constants 

In the game of MYST, we will need 4 integers which are represented by the symbols m, n, pl q. 

Al1 of these must be positive integers and p >_ 2. We must also have the concept of a card and 

the concept of a player. Informaily, there w i U  be c = m + np cards, denoted by the symbols 

sl, . . . , s,, and p players, denoted by the integers 1,. . . ,p. We will define the predicates 

card(x) and player(i) to encapsulate these symbols into their two sorts. The cards will not 

have any order to them, but the players dl have a cyclical turn order, determined by the 

function incp(i),  which will return the player who is next to act after player i. Without 1 0 s  
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of generaiity, incp(i) will add 1 to (i modulo p). 

In summary, we define syrnbols m, n,p, q of type integer, card(x) and player(i) of type 

predicate, and incp(i) of type function. 

For sirnplicity sake, we define the constant c: 

and then the predicates card(x) and player(i): 

and finally, incp(i): 

incp(1) = 2 

inq(2) = 3 

incp(p) = 1 

or, more succinctly: 

@layer(i) A player( j) A j = i mod p + 1) 3 incp(i) = j. (2-7) 

We will need one more constant: the speciat initial situation constant, denoted by Initol. 

[nito will represent the initiai game situation for MYST, before any players have had an 

opportunity to act. 

'Recall that Inito is usuaily denoted by SI in Levesque et al., but in this thesis So represents the mystery 
pile. 
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2.2 Turns and Phases 

In MYST, every player takes their turn in sequence, starting with player 1. In principle, 

the turn sequence is determined by the function incp(i), and in practice it is the integers 

1,. . . , p  in numerical sequence. Each playerls turn is divided into a sequence of phases. The 

phase sequence is illustrated by the flowchart shown in Figure 2.1. 

To expound on the flowchart, once a player i's turn begins they mvst ask a question 

(askphase), unless they have been eliminated due to a wrong guess (endphase). Piayers in 

order of sequence by incp(i) either answer yes or no until a yes has been answered or al1 

players have been exhausted by no's (ansphase). The player to answer yes shows player i a 

card in the question (showphase). After that, player i may guess or not guess (guessphase). 

IF they guess correctly, they win and the game is over; if they guess incorrectly, they are 

eliminated and they enter the endphase. A wrong guess will permit player i to enter only 

the endphase for the remainder of the game. If player i does not guess, they will enter the 

endphase. Player i's turn ends and player incp(i)'s turn begins. 

This flowchart and the previous informal description is a pictorial representation of the 

situation calculus predicate Poss(a, s). Whether or not an action is possible will be deter- 

mined mostly by the current phase, but other fluents which keep track of the current player 

and which players have been eliminated will also be involved. The focmal axiomatization of 

Poss(a, s) will be given in Section 2.7. 

The finite state diagram in Figure 2.2 shows the relationship between the phases. Only 

one phase may be active at a time, and only the described actions on the transitions can 

change the phase. 

From these two diagrams, we should observe a strong relationship between actions and 

phases. A game can only progress from one phase to another in a specific order and only 

after certzin actions have been performed. On the other hand, each action can only be 

performed in a certain phase. The lock-step between phases and actions WU be a firm base 

for defining the axioms for Poss(a, s). But first we will need to define the necessary actions 

and fluents, which have only been mentioned in the figures so far. 
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Begin twn 

Has player i 

Player i asks 
question Q I askphase 

shows(incp(i), i ,  3,) 1 shows(incpP"(i), i ,  s,) 

: ansphose 

. . . . . - 

i showphase 

- .. -.. 

WIN i guessphase 

. .+ 

player i ,,, : endphase 

Figure 2.1: Flowchart for a single turn of MYST 
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Figure 2.2: Finite state diagram illustrating the progression of phases 

2.3 Notation Abbreviations 

One may have aiready rernarked about the definitions of the predicates card(x) and player(i), 

in that they are equivaient to the member predicates of the welMefined finite sets S and 

P which were introducd in Section 1.1. Since many of the axiorns can be neatly specified 

in terms of S, P and the standard set theoretic operators, we will embed our set theoretic 

notions in first-order Iogic and then adopt this more succinct notation. For instance, we 

could assign a different name to each of the possible subsets of S (there are 2' of them, 

but a finite number nonetheless) and then construct the standard operators n and U, the 

relation C, and the function sizeof(A), which would (albeit exhaustingly) tie these subsets 

together. However, we feel that this would obfuscate the meaning of the d o m s  we are 

presenting, and henceforth we will let 

S {si, ... ,se) and 

P = {l, ... , p l *  

This exhaustive technique is but onb a single implementation of a finite set in terms of 

first-order logic. Ot her implementations are possible, but need not be diussed hem 

In order to simple our equivalences even further, we will adopt a notation For variables. 



We will tend to use the variables: 

0 i ,  j as indices for players, where typically i is the poser and j is the resprinder, 

s, to represent a single card, 

i G to represent a subset of players, Le. G C Pl 

0 Q to represent a set of cards in a question, 

0 M to represent a set of cards in a guess of the mystery pile, 

Si to represent the set of cards held by player J,  

0 So to represent the set of cards contained in the mystery pile, 

a to represent an action, and 

0 s to represent a situation. 

Henceforth, we will no longer explicitly Iist 'Ltype-checking" predicates to ensure that s, 

is a card (for instance). I t  will be assumed that Q is verified to be a subset ofS and of size 

q, and similarly that !CI c S is of size m, even though not ~xplicitly stated. 

2.4 Actions 

The following is the list of action functions and their informal descriptions. The sequence 

in which actions rnay occur will be defined by the predicate Poss(a, s) in Section 2.7. 

Note that the player arguments i and j could be omitted in al1 action functions, because 

of the use of the fluents which maintain the current player's turn, however, we have retained 

thii argument in the interest of readability. 
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Note also that the first argument always represents the player performing the action. 

asks(i, Q )  : Piayer i asks question Q. 

no(j) : Player j says no to question Q, asked by player i .  

yes(j) : Player j says yes to question Q ,  asked by player i .  

shows(j, il s,) : Player j shows card sr E Q f~ Si to player i who asked Q. 

guess(i, M )  : Player i guesses that So = M. 

noguess(i) : Player i makes no guess. 

endturn(t) : Player i ends their turn. 

2.5 Fluents 

The following is a list of fluents and their informal descriptions. The evaiuation of the 

fluents will depend on the situation S. The value of the fluents in Indo will be defined in 

Section 2.6. Their values will change as situations develop according to the Successor State 

Axiorns given in Section 2.9. 

Fluents Describing the Location of Cards 

h(i ,  s,, s )  : Player i hoIds card sr. 

h(0, s,, s )  : The mystery pile hotds card s,. 

Fluents Describing Knowledge 

K(i ,  4 ,  s )  : Player i knows 4. 
C ( G ,  4 ,  s )  : 4 is common knowledge for al1 players in G Ç P.  

Fluents Describing the State of the Garne 

n i ,  s )  : Player i has not yet been defeated due to a wrong guess. 

Question(Q, s )  : Question Q was the most recently asked question. 

Gameover(s) : The game is over. 

Fluents Describing the nirn Order and Phases 

Turn(i, s )  : It is player i's turn. 

AnsTurn(;i, s )  : It is player j 's  turn to answer the question. 
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Fluents Describing the Phases 

askphase(s) : It is the ask phase. 

ansphase(s) : It is the answer phase. 

shouphase(s) : It is the show phase. 

guessphase(s) : It is the guess phase. 

endphase(s) : It is the end phase. 

2.6 The Initial Situation Inito 

Upon initially dealing the cards, each player wvill hold exactly n cards and the mystery pile 

wilI hoId exactly na cards. The cards of S are partitioned among the players and the mystery 

pile. The following three axioms describe al1 possible partitions. 

Disjoint Axiom If player i holds card s,, then a second player j (or the mystery pile) 

does not hold s,. Likewise, if the mystery pile holds s,, s, is not held by any player. 

Existence Axiom Every card is held by at least one player (or the mystery pile). This is 

the converse of the Disjoint I\xiom. 

Set Size Axioms Player i holds exactly n cards and the mystery pile holds exactly m 

cards. 

[ C C S A I C I = ~ ]  3 h(i, s,, [nito) r A -h(i, sr, [nito) 
s&S-L (2.11) 
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Collectively, we will refer to axioms (2.9), (2.10), (2.11) and (2.12) as the Partition 

Axioms. 

Alternatively, we could have specified the Partition Axioms in terms of set theory. Their 

set quivalents would be 

VO 5 i < j < p S; fi Sj = 0 (Disjoint Amïom j 
P 
U Si = S (Ezo'stence Aziom) (2.13) 
i=O 

lSoi = rn, V i  player(i) 3 ]Si( = n (Set Size Aziorns) 

Once the cards are held by the players in Inito, they know they hold their cards. 

Knowledge Initialkation Axiom If player i holds card sz, then it is common knowledge 

for player i that he holds card s,. i.e. 

C'({il, h ( i ,  sr, [nito), [nito) (2.14) 

Initiaibation of Other Fluents Here we define the value of the rest of the fluents in the 

initial situation Inilo. tnformally, they assert that when the game begins 

No one has been eliminated; 

No one has asked a question; 

Plrtyer 1 is in the askyhase of their turn; and 

The gamc is not over. 
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2.7 Possible Actions 

The transitions of the flowchart shown in Figure 2.1 provide a pictorial representation of 

the situation calculus predicate Poss(a, s). We are now ready for its forma1 axiomatization. 

It should be well noted that no action is possible if the game is over. Therefore the 

fluent -Gameover(s) is implicitly conjoined with al1 of the following axioms, but omitted 

for the sake of readability. 

a asks(i,Q) 

Player i must ask a question iff 

1. it is their turn and 

2. it is the askphase. 

Note that player 1 starts in the asrtphase and therefore Poss(asks(1, Q), Inito) is true, 

implied by the consequences of the fluents defined for [nito. Player i may choose any 

ualid question Q which satisfies the necessarily implied type-checking: Q C S and 

IQI = 9- 

Poss(asks(i, Q), s) Turn(i, s) A askphase(s) (2.15) 

O no(j) 

Player j must answer no ifi 

1. Q n Sj = 0, 

2. [t is player j's turn to answer & 

3. [t is the ansphase. 

yes(j) 

Player j must answer yes $ 
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2. It is player j 's  turti to answer 

3. It is the ansphase. 

shows(j, i, s,) 

Player j must show player i a card i f  they just answered yes. 

Poss(shows(j, i, s,), s )  Turn(i, s) A AnsTurn(j, s)  A (s, E Q n Si) A 

showphase(s) A Questim(Q, s )  (2.18) 

guess(i, M )  and noguess(i) 

Player i may guess (or noguess) only in the guessphase of their turn. 

Poss(guess(i, M ) ,  s) G Turn(i, s )  h guessphase(s) 

Poss(noguess(i), s)  T,urn(i, s)  h guessphase(s) 

Player i must end their turn if they are in the endphase. 

2.8 Uniform Formulae 

The definitions of the constants, predicates and the fluents in the situation Inito are al1 

uniform in MYST. Furthermore, ail tautologies in first-order logic are uniform a s  well as al1 
of the knowledge axioms in our belief system such as Axiom O and the Sa Axioms stateà in 

Section 1.3. The only other uniform formulae unique to MYST are those pertaining to the 

Tucn, Question and Phase Fluents. 

The implications in (2.22) state that only one player at a time may have a turn; only 

one player at a time may answer a question; and only one question at a time may be asked. 

Qi, j (Turn(i, s) A i # j )  3 -Turn(j,  s) 

Vi, j (AnsTurn(i, s) A i # j )  2 -AnsTurn(j, s) (2.22) 

QQ, Q' (Questim(Q, s) A Q # Q') 2 -Questim(Qt, s) 
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The tive implications below exhaustively state that only one phase rnay be active in any 

situation. 

askphase(s) 3 iansphase(s)  A ishowphase(s) A iguessphase(s) A iendphase(s) 

ansphase(s) 3 iaskphase(s) A -showphase(s) A -guessphase(s) A -endphase(s) 

showphase(s) 2 -askphase(s) A -.ansphase(s) A -.guessphase(s) A -endphase(s) 

guessphase(s) 2 -askphase(s) A iansphase(s) A -shmphase(s) A -endphase(s) 

endphase(s) 3 -askphase(s) A iansphase(s) i shmphase ( s )  iguessphase(s) 

2.9 Successor State Axioms 

In this section, we list the Successor State Axioms for al1 of the fluents, that is, the axiorns 

which associate actions with the values of the relational fluents. 

Card Fluent Axiom 

Once the cards are initially held by the players in situation Inito, they are fixed and their 

locations do not change for the entire game. 

Therefore h is independent of the situation argument, and so ive will abbreviate h(i ,  s,, s )  

by hi, from this point forward. 

Knowledge Fluent Axioms 

Immutable Knowledge The fluent K(i ,  q5, s )  is supposed to be analogous to the concept 

of modal knowledge, but in a situation dependent setting. In the game of MYST, we 

need to reason about how the players perceive their holdings. Recall that the objective 

of the game is to come up with the correct guess of the contents of the rnystery pile 

So. As we will later prove, there are only two ways to do such a thing. Both of them 

rely on determining the whereabouts of the outstanding cards, the placement of which 

is determined by the Partition Axioms and is fixed throughout the game by the Card 

Fluent Axiom (2.23). Therefore, the primary knowledge and reasoning will be about 

the fluent hiS. 
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Since hi,, is independent of the situation, then so is l h i ,  by the Partition Axioms. 

Any knowledge about h or -h is an irnrnutable, objective truth. Therefore, immutable 

knowledge in any hiitory of s is known in s as well. 

Vi, j, s,, s,sf (s' s h K(i, hi,, s')) 

Vi, s,, S, S' (SI C s A IC(i, lhjrF9 SI)) 

Inductively, it can be seen that knowing any of the knowledge of the form (2.24) is 

also immutable, and so on. Therefore -4xiom (2.24) holds for the common knowledge 

fluent C as  well as K. 

Reasoning about what the players do not know (i.e. knowledge which is not irn- 

mutable) wiii not be considered in this work, as its usefulness is very limited. 

Shows Axiom To describe the knowledge consequence of shows(j, i, s,), we need the fol- 

lowing axiom. 

Garne State Axioms 

We define the Succesor State Axioms for the fluents In(& s), Questim(Q, s) and Gameover(s) 

as follows. 

Player i is still in if they did not guess wrong. 

1n(i, do@, s)) = In(& s) h 

0 The last question asked does not change until a new question is asked. 

VQ, Q' Question(Q, do(a, s)) a = asks(i, Q) V 

0 The game is over when any player has had a successful guess or al1 players have been 

eliminated. 

Gameouer(do(a, s)) (a = guess(l, M) A M = So) V 
P 

I\ +In(i, do(=, s)) 
i=l 
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Turn Order Axiorns 

A player's turn does not change until the endturn(i) action has occurred. The next player 

is determined by incp(i) . 
Turn(incp(.i), do(a, s ) )  r (Turnti, s) a = endturn(i)) V 

Similarly, for AnsTurn(j, s ) ,  players answer in their turn order. It is player j's turn to 

answer if the previous player asked the question or the previous player said no. If player j 

said yes, then AnsTurn(j, s )  is true in the resulting situation. 

AnsTurn(incp(i), do(a, s ) )  a = asks(i, Q )  V 
(2.30) 

a = no(i) V a = yes(incp(i)) 

Phase Axioms 

The Successor State Axioms for the phase fluents are in direct correlation with the finite 

state diagram shown in Figure Z 2 .  

askphase(do(a, s)  ) 

ansphase (do(a, s) ) 

showphase(do(a, s ) )  

guessphase(do(a, s )  ) 

endphase(do(a, s ) )  

2.10 Players Gaining Knowledge 

In this section, we will explore the methods by which knowledge is transferred between 

players. Axiom O asserts that ali players are perfect ceasoners that know a l  of the axioms 

and have perfect recall. At each stage of MYST, each player is trying to determine the 

location of al1 the cards, i.e. they are trying to gain knowledge about the fluent hi,. For 

which actions can a player gain such knowledge? 

Reexamining the function Poss(a, s ) ,  we find four actions which exchange such knowl- 

edge. They are: no(j ) ,  yes(j) ,  shcnvs(j, i ,  s,) and guessci, Ad). The actions no, yes and 
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shows are more frequent actions than guess, and they are much more instructive to exam- 

ine: a correct guess will end the game, and so only an incorrect guess stands to glean any 

information. We List it anyway for sake of completeness. 

Knowledge Gained from no(j) 

From (2.16), if no( j )  is a legai action, then we can conclude that 

VQ Q u e s t i a ( Q ,  s) I> C P, A 4js, do(no(j) ,  s )  (2.32) ( *=EQ 

Stated in words, if player j  answers no to question Q, then it is common knowledge for 

al1 players that player j  does not hold any of the cards in Q. 

Knowledge Gained from yes(j) 

From ('2.17), if yes( j )  is a legal action, then we can conclude that 

VQ Question(Q, s) 2 C P, V hjJ ,  do(yes(j) ,  s )  . 1 (2.33) ( .*.a 

Stated in words, if player j answers yes to question Q ,  then it is common knowledge for 

al1 players that player j holds at le& one of the cards in Q .  

Note that the knowledge gained by player i from s h m s ( j ,  i , sJ  (2.25) implies the com- 

mon knowledge gained by al1 players P from the previous answer yes(j)  in (2.33). 

Knowledge Gained from s  hows(j, i, s,) 

This was described by h i o m  (2.25). 

Knowledge Gained from guess(i,  M) 

if guess(i, LM) is a legai action and the game continues then, player i guessed wrong and 

therefore So # M .  -4111 players can conclude that one of the cards was incorrect. 

a = guess(i, içl) A Cumemer(do(a ,  s ) )  3 C P, V -ha,, do(a, s) 
st EM (2.34) 



Chapter 3 

Properties of MYST 

3.1 A Crucial Theorem 

It is important to recall at this point that MYST is a non-cooperative game, with specific, 

clearly defined goals. For any player to have a certain win, they must be able to determine 

the entire contents of the mystery pile with certainty. Mathematically speaking, player i 

has a certain win in situation s if for some set C of size m, 

The winning condition in (3.1) could be obtained by slowly acquiring several K ( i ,  hoJ, s) 

over the course of a game. Alternatively, (3.1) might be attainable in one fell swoop as a 

consequence of the Set Size Axiorn (2.12). in either case, any positive knowledge regarding 

the holdings of the mystery pile cannot be determined without first determining the card(s) 

are not held in the remaining places. This is the subject of our first theorem. 

Theorem 3.1 If, in situation s, player i has hoioledge K(i, ho,,s), then i f  is both su& 

cient and necessay that he used the EnSknce An'om (2.10) or the Set Size Axiom (1.12) 

to proue it. i.e. 
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Proof: It is easily seen that these conditions are sufficient, by use of the appropriate axiom. 

The proof of necessity follows directty from the axioms in the forma1 specification. There 

are only two axioms which can conciude ho, and they are the Existence Axiom and the 

Set Size Axiom. So any condusions about ho, must use one of the premises of these two 

axioms. O 

We might try to extend Theorem 3.1 to include reasoning about the cards not held by 

the mystery pile. We would have to make a similar conclusion about the Disjoint Axiom, 

and this is not possible. Here is a counterexample wherein a player will know a card is not 

held in the mystery pile without first knowing which player holds it. 

Suppose that in a 5 player game of MYST al1 players ask twecard questions. Player 

1 asks {sl,s2) and player 2 says yes, and then on a later turn, player 3 asks {sl,s2} and 

player 4 says yes. All of players (1,2,3,4} have enough knowledge to deduce the location 

of both cards {si, s2), but what about player 5? 

Intuition suggests that the cards {sl, s2) can be only in one of two configurations: h2,1 A 

h4.2 or h4,1 (see equation (*) below), and therefore neither card can be in anyone else's 

hand, including the mystery pile. Player 5 knows (hs,i v A (h4,1 V h4,2) and can resolve 

this using the auioms as  follows: 

Therefore player 5 knows -holi and but might not know for certain the location 
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of either {si, s2). In fact, player 5 does not need to know the exact locations of these cards 

to win, which was asserted by Theorem 3.1. 

To conclude the discussion of what is and what is not possible, we will present some 

elementary knowledge consequences of asking questions. Disjunctions are generated only by 

questions for which some opponent asks the question and some other opponent answers yes. 

In practice, these end up comprising most of the questions, and so a disjunction is usually 

generated every turn. As we will see in Section 3.2, deductions using disjunctions could be 

computationally expensive. 

Here are the knowledge consequences. 

A response of no. By Equation (2.32), if a player responds no to a question, the infor- 

mation gleaned is the same for every player. The poser does not glean any more 

information than any other player who witneçses this action. Note also that ail infor- 

mation is expressed a s  a conjunction of primitive predicates. 

A response of yes and a shows action. Examine and compare equations (2.25) and 

(2.33). A response of yes yields a disjunction of hi,, predicates, except for the poser 

and the responder who said yes. Because of the rules of the game, the responder must 

follow their yes response by a shows action, and therefore, the poser will for certain 

know the location of a card in  the responderts hand. Therefore, from the poser's 

perspective, the information gleaned by (2.33) is an implication of the information 

gleaned by (2.25) and so the poser gleaned no Less than any of his opponents. 

Moreover, the result of the yes response is of no direct use to the responder, because 

the Knowledge Initialization Axiom ('2.14) implies the information gleaned by (2.25). 

One could make a similar self-knowledge observation for the no response. 

Everyone responded no. Every player desires this result on their turn. ifevery opponent 

says no to a question Q, then for every card s, E Q and opponent j, the poser can 

conclude -hi,,. However, from the Knowledge Initialization Axiom (2.14) and the 

Partition .4xioms, the poser knows which cards they do not hold. For every card 
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s, E Q which is also not held by the poser, we obtain 

3 hoJ (Existence Axiom) 

Therefore, a question for which al1 opponents respond no determines a portion of the 

cards in the mystery pile. 

This is the only result of a question which guarantees that a portion of the mystery 

pile is determined. Theorem 3.1 confirms this because it guarantees only two ways of 

determining positive truths about the holdings of the mystery pile. If the entire pile 

has not been determined by deductive elimination via the Set Size Axiom, then the 

card must have been determined by deductive elimination via the Existence Axiorn. 

In conclusion, there are two principle methods to determine the holdings of the mystery 

pile. The first method is by determining portions of the pile, one at a tirne, until the whole 

mystery pile has been determined. We cail this the direct methd, and we cal1 the questions 

that yield a no response from al1 opponents thereby determining a portion of the mystery 

pile, direct questions. The second method is by determining the c - m cards not contained 

in the mystery pile and then, by the Set Size Axiom, conciude the m cards in the mystery 

pile. We cal1 this the indirect rnethod. 

3.2 Implementation of the Set Size Axiom (SSA) 

How can we write an algorithm so that a player can take advantage of the Set Size Axiom 

(2.11) and (2.12)? First, the SSA aserts that if a player knows al1 the cards in So, then 

they have won. By Theorem 3.1, only direct questions can determine a portion of So. 

Algorithrnically, we can keep track of So by maintaining a ternary artay and a counter. 

Each ce11 of the array will represent a different card and its entry wili be one of (yes, no, ?). 

It will be yes if the player knows the cad  is in So, no if the player knows the card is not 

in Sol and ? if the player does not know. The counter will total the yes entries, until there 

are m of them. 

Second, the SSA asserts that if player i knows that player j holds n cards, they can 

deduce he does not hoId the remaining cards. K the n cards are known to be held for 
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certain, then this is no more interesting to implement than for So because the same ternary 

array and counter will suffice. However, it is possible to use the SSA to make conclusions 

even if there is some uncertainty about player j's cards. To illustrate this, let us consider 

the following example game of MYST. 
Consider a 3 player game where n = q = 2 and S = {si, s2,. . . , sis). Player 1 has asked 

two questions so far, and each time, player 2 answered yes and showed player 1 a card. 

Player 1's questions were Q1 = {si, sz),Q2 = ($3, s4}. Of course, player 1 has completely 

determined player 2's hand, but player 3 may still be in doubt. Player 3 uses (2.32) on 

QLl  Q2, and concludes [(h2,i V h2,2) A (h2 V h2,4)], and therefore deduces that player 2 must 

hold two of these cards and therefore cannot hold any of {ss, se, . . . , s15}, because IS21 = 2. 
What deduction takes place for player 3 to make such a conclusion? 

If player i is suggested to hold two cards, Say Si = {sa, sb), then they are suggested not 

to hold S - Si. Using the SSA, we get 

hi,a A hi,b A -hi,z- 
*a& 

Therefore for player 3 in this esample we get 

Since each conjunction describes player 2 holding at least two cards, player 3 can conclude 

from the disjunction that player 2 holds at least two cards in one of these configurations by 

using the substitution in (3.2) as follows. 

And therefore any card not in any conjunction is known to be not in player 2's hand. We 

can now conclude K 3, A -hZF, s . ( 5Sz515 ) 
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This concludes the example. What can we glean from similar examples, but in which the 

search space is large? if, by witness, player 3 observes player 2 answer yes to five questions 

to get the expression K (3,4, s) , where 

then al1 five of si, s2, . . . , ss might be in player 2's hand. But really, we are interested in 

the minimum required number of cards which make 4 true. If the minimum equals n, then 

we can apply the SSA. In this example 4, there must be at least 3 cards in player 2's hand 

and we therefore need n = 3 to use the SSA. 

This is algorithmically equivalent to expanding the expression 4, but that would Iead 

to a likely 't7 conjunctions stemming from 7 original disjunctions. What is the underlying 

problem and can it be solved efficiently? 

Problem: Let q5 be a monotonic logical expression in conjunctive normal form, where each 

clause has two literals, and 4 may contain up to c different literals. 

Question: Are there p different literals, Il,. . . , lp such that {II,. . .,ID) i- q5? 

This is the (rnonotonic) MIN MAT problem which is known to be reducible to VERTEX 
COVER [6], and therefore is NP-hard. We conclude that there is no known efficient way of 

practically applying the SSA algorithmically for arbitrary c. it should be noted, however, 

that for most practical instances of gameplaying, c will be no larger than a few dozen and 

expanding 4 can be easily handled by today's processors. 

3.3 Solvable and Unsolvable Instances of MYST 

In what instances of MYST does a solution exist? Since we can define any instance of MYST 
in terms of the constants m, n,p, q, we might reformulate the above question and ask: for 

which Ctuples of constants (m, n, p, q) can a player determine the cards in the mystery pile 

with certainty? 

Let u s  assume that this player lives in a "vacuumn wherein the opponents will not divuIge 

any information about t heir hands by the questions they ask. Aiternately stated, this player 

can only glean information from the questions they ask. For readabity, we wiii we assume 

the rote of this playet and speak in the first person. Our goal is to determine if there always 
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exists a sequence of questions which will determine So with certainty. Such a sequence wiU 

be referred to as a winning sequence of questions. We show that such a sequence exists ifl 

l < q < r n + n + l .  

Without any loss of generality, in each of the four lemmas and the discussion which 

follows, it is assumed that we are acting as player 1 and that our opponents are acting in 

the most rational manner. 

Lemma 3.1 A urinning sequence 01 questions exists then 1 5 q < m. 

Proof: Since lSol = m is finite, we can enumerate its contents, Say by the sequence 

8 0 , .  . . , s,,,-i. 
We define the winning sequence of (71 questions Q1,. . . , as follows. 

r y  
It is clear that al1 of QI,. . . ,Q~?' are direct questions. Since U Q: = So, then by the 

j=l 
Partition Axiorns, the resuit follows. U 

Lemma 3.2 A winning sequence 01 questions exists when ,m < q 5 m  + n.  

Proof: Let T C Si, where ITI = q - m. It is possible to find such a subset since m < q 5 
m + n ,  and therefore O < q - m  5 n =  lSiI. 

Now let Q = TU So. Note that IQI = (q - m) + m = q because of the Disjoint Axiom. 

The single direct question Q is sutficient to win iviYST. By the Existence Axiom, Qo = 
Q E So and since lQol = ISol, then the mystery pile is completely determined. O 

Lemma 3.3 A winning sequence of questions exists whera q = ,m + n + 1. 

Proof: Unlike in the above lemmata, no direct questions are possible when q = rn + n  + 1. 
This is easily seen by applying the Pigeonhole Prînciple: for every question of size q, there 

is at least one card which is in an opponent's hand. 

By Theorem 3.1, we must use the indirect method to win the game, i.e. determine the 

location of aU the cards which are not in the mystery pile. We clah t hat for q = m + n + 1, 
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there exists a question which will locate an opponent's card whose location we did not 

already know. 

To prove the claim, suppose that at a certain stage of the game, player i has shown u s  

a! cards as the result of some previous questions. Now, O 5 cr < n, otherwise if a = n we 

know al1 there is to know about player i's hand. Our strategy is: do not ask about the cr 

cards we already know. 

So, let's ask about the n  cards in our own hand, plus So, plus a card in the opponent's 

hand that we have not yet seen. This question will only be answered yes by ptayer il and 

they must prove it to us by showing us  the card we have not yet seen! O 

Lemma 3.3 is interesting because it makes comments about how hard a game MYST 

could be for large q. When q = na + n + 1, it is possible for any single player to construct 

at moçt n ( p  - 1) questions and determine So with absolute certainty, and this certainly 

continues to hold as an upper bound when q is smaller. In a future section we will describe 

an algorithm which achieves the upper bound independently of the initial distribution of the 

cards. This algorithm is a h  the optimal strategy for the case when p = 2 and q = m+n+ 1. 

For a lower bound, it is possible (but improbable) for us to succeed in only n questions, 

simply by asking questions constructed using the claim and the cards held by player p. 

While on the subject of lower bounds, for 1 5 q 5 m, the lower bound of questions required 

is min{n(p - l), [YI) and for m < q 5 m + n, the lower bound is 1 question. 

Lemma 3.4 No roinning sequence of questions ezists when q > m + n + 1. 

Proof: It is sufficient to prove the lemma for q = m + n + 2, because the argument is 

extendible for any larger q. We can claim that for q = rn + n + 2, our right hand opponent 

(player p) can prevent us from knowing at least one card in his hand. If the claim is true, 

then by using Theorem 3.1, neither the direct method nor the indirect method is possible 

and a guess cannot be made with certainty of a win. 

Let Sp c Sp be the set of cards that player p  has shown us to date and suppose lSpl = 

n  - 1. If we can show that no question can force player p to disclose hii last card, we have 

proven the claim. 

Consider the existence of such a question Q. If Q makes reference to any card held by 

players 2,. . . , p -  1, then that opponent wüi answer yes bdore player p has to respond, and 

Q wüi gain us nothing about player p's holdiigs. Therefore, we are left with 2n + rn cards 



which could possibly be in Q. 

O n cards in our hand. (Si) 

O m cards in the mystery pile. (So) 

O 1 card in player p's hand which is unknown. (S, - S,) 

O n - 1 cards in player p's hand which are known. (S,) 

By the pigeonhole principle, any question with n + m +S cards will contain at least one 

card, s, E S,. Since it is common knowledge between players 1 and p that player p holds 

al1 the cards in S,, and since player p is acting in the most rational manner, player p will 

show us card s, again. U 

Theorem 3.2 A winning seqvence O/ quesiions ezists iff 1 5 q < ,m + n + 1. 

Proof: This follows directly from the proofs of the previous four lemmas. 0 
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The Two-Player Version of MYST 

The only analyzable game which is free from the aspects of collusion (but not luck) is the 

two player version of MYST. For instance, in a game with three (or more) players, a player 

may intentionally ask questions whose yes response from one opponent will guarantee to 

supply extra information to a third party. What alliances each player chooses to make (or 

break) with other players and the strategy involved in picking alliances requires the analysis 

of n-person game theory. For the instance of W S T ,  this anaiysis is infeasible. 

Assuming p = 2 makes MYST aviomatically simplet. For instance, the knowledge 

gleaned from a response of yes (2.33) can never be witnessed by a third party because there 

are only two players. Therefore, this knowledge is aiways implied by the knowledge gleaned 

from the subsequent shows action ('2.25) or by the Knowledge Initialization Axiom (2.14). 

(Refer to the discussion in Section 3.1.) A h ,  the s h m s  action, which implies common 

knowledge shared between the poser and the responder, reduces to common knowledge 

among al1 players in a two player game. 

In fact, there can only be two results from a question in a two player game. 

Lernma 4.1 In a two-ployer game of MYST, thew are only two possible outcomes to a 

question Q: 

pmuing a single carà in the opponenl's hand, or 

Proof: Without loss of generaiity, suppose player 1 asks Q. Player 2 can respond either 

yes or no. A yes response will lx followed by a shows action which will prove a single 
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card in the opponent's hand, and a no response makes Q a direct question thereby proving 

Qo ç So. 

Knowledge gleaned from questions with a response of yes is common knowledge between 

both players. But what if a player responds no? We will later prove that if both players 

separately glean the same information from a no response, then that information is also 

common knowledge. 

In the next section, we will present a randomized aigorithm which is optimal in the case 

of maximum q. The ideas presented here will carry over into strategies for smaller q. 

4.1 An Optimal Strategy for q = m + n + l ; p  = 2  

In this section, we present a summary of an optimal strategy for when q = m + n + 1. The 

maximum q case reduces the axiom set even further than suggested by Lemma 4.1, because, 

by the Pigeonhole Principle, no matter what question is asked by the poser, there exists a 

card in the question held by the opponent and therefore, they must respond yes. 

Here is a summary of the strategy. 

Suppose player 1 goes first and player 2 second. Let Si be the set of cards that player 

i has shown player incp(i). At any turn, player 1 (and symrnetrically, player 2) will ask 

a question constructed as follows. Pick a mndom subset of q cards from S -Si - S2. If 
IS - SI - S4 < q, then pick al1 of them plus some cards from SI to make up the difference. 

The construction of this algorithm and proof of its optimality are the result of the 

following two daims. 

Claim 4.1 Forq = mf n f l ,  the most information that a player can glean /mm a question 

is the location of one of their opponent's cards. 

Clairn 4.2 For q = m + n + 1 ,  a player can ask a question which giues no information to 

their opponent. 

Proof of Claim 4.1: Using the Pigeonhole Principle, for every question of size q = m+n+l, 

there exists a card held by their opponent. Therefore, the only possible outcome (listed in 

Lemma 4.1) is to prove a single card in the opponent's hand. 0 
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Proof of Claim 4.2: Without loss OF generality, assume that player 1 is the poser and 

player 2 is the responder. Assuming a uniform distribution of the cards in In&, player 2 

considers d possible worlds equdy likely. 

Now suppose player 1 asks a random question Q, as prescribed in the strategy summary. 

Player 2 wiil know the locations of some cards in Q and at the very least he wiil know Qz. 
The cards about which player 2 is unaware might be in player 1's hand or in the mystery 

pile. But since the question was randomly chosen with qua1 probability, player 2 cannot 

probabilisticaily partition Q. Therefore, al1 possible worlds for player 2 remain equally 

likely. 0 

Clairn 4.3 The algorithm is optimal. 

Proof: Since each question constructed by the algorithm gleans the maximum possible 

amount of information, while simultaneously preventing the opponent from gleaning any 

information, then the algorithm is optimal, O 

Randomizing questions in this way coutd be viewed as bluffing, because one might ask 

questions pertaining to cards in one's own hand. However, since this sort of randomization 

will still glean information from the opponent, it carries no risk. We might better describe 

the randomization proces as  camouflage for one's own questions. We will discuss bluffing 

and camouflage in more detail in Section 4.2. 

This algorithm guarantees to find a card in the opponent's hand on every turn and 

therefore will establish the contents of the opponent's hand with certainty in n turns. This 

algorithm can be extended for more players, however it may not remain optimal. The 

extended algorithm will continue to guarantee that the location of a card will be gleaned 

on any given question, and therefore, the mystery pile wili be determined in no more than 

n(p - 1) questions, which was the upper bound suggested in Section 3.3. 
This aigorithm can also be extended for smaller q. But since it is possible to construct 

direct questions when q < m + n + 1, it might require up to n(p - 1) + rn - 1 questions 

to determine the mystery pile. No matter which extension, the principle of the algorithm 

remains the same: a question is chosen randomiy from a set useful questions. 

Note that the algorithm presented is optimal for choosing a question, and we have 

ignored the possibiity that either player might try to guess before the entire contents of the 

mystery pile become known. The following thporem states when each player should guess. 
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Lemma 4.2 Ajter the initial deal, ihere are ( ) diflerent possible uodds for each 

ployer. After asking a questions, there ore ( m + z - a ) .  
Proof: There are m + 'Zn car& in total and, in Inito, a player will know the location of 

only their n personally held cards, leaving rn + n cards whose location is uncertain. By the 
I . 

Set Size Axiom (2.11). there are ( mI ) possible distributions of the cards. ail of them 

equally likely. After a questions, ihe poser'will know a cards in their opponent's hand and 
t \ 

therefore, there remains m + n - a cards and ( +- - a ) possible worlds. tï 

Lemma 4.3 After player 1's nth question, thcy d l  know with certainty the set So. Fur- 

thennore, player 1 and 2 can do this analgsis and conclude this. 

Proof: We have already argued that n questions will determine n cards in the opponent's 

hand with certainty. Using the Set Size Axiom (2.11), player I can dediice the mystery pile. 

Since both players are logically omniscient (Axiom O), they are able to conclude this lemma. 

O 

Theorem 4.1 Player 2 '9 6est chance to uin is to gvess the contents of So after their n - lSt 

turn. Their pmhbility of winning is at most *. Player l'a best dance to toin is to ask 

their n - lst question and not guess, 

Proof: If player 2 does not guess after their n - lst turn, player 2 has no chance by Lemma 
, m + n - ( n -  1) 

4.3. By Lemma 4.2, the number of possible worlds is = m+ 1, and 

therefore their probability of success is &. Game theory suggests that player 2 cannot 

help but gain by guessing at this stage of the game. 

How should player 1 react to player 2's early guess strategy? Should player 1 prevent 

player 2's guessing strategy by guming after their 1% - lst tum, or should they let player 2 

guess? 

In a case by case andysis, 
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1. Player 1 guesses at turn n - 1 

1 (a) Player 1 was right: P(P1ayer 1 wins) = ~;TT. 

(b) Player 1 was wrong: P(P1ayer 1 loses) = e. 
2. Player 1 does not guess at turn n - 1 3 player 2 guesses at turn n - 1. 

(a) Player 2 was right: P(Player 1 loses) = &. 
(b) Player 2 was wrong: P(PIayer 1 wins) = &. 

It is clear that decision 2 is better than decision 1 for player 1. 0 

4.2 Camouflage and Blufang 

The aigorithm presented for 9 = m + n + 1 uniformly setects a question from a set of useful 

questions, with the intention of carnouflaging the poser's holdings. Nearly al1 of the usefui 

questions name a card held by the poser with the intention of avoiding predictability. tn 

fact, a player must not choose their questions in a predictable fashion, because the questions 

wiIl divulge more information than they will stacd to gain. Here is an example. 

Suppose player 1 guesses cl cards From t heir hand mixed with q - ct cards from the rest, 

and that player 2 can predict player 1 will use this strategy. We should note that a < q 

or else player 1 is not asking a useful question. Player 2's counter-strategy is to ask the 

same question at Least a times, but replacing already shown cards one at a time with other 

(randomiy chosen) cards. After 7 questions, where y 2 a, player 2 will have determined 

the a cards used in player 1's original question. Since player 1 is acting predictably, player 

2 will consequently know the locations of the remaining (q - (Y) cards. We should view this 

last consequence as "bonus knowledge" for player 2. 

Can player 1 recoup the los? After y questions, player 1 will determine the locations of 

7 cards, but after the same y questions, player 2 will have located y cards as  well, plus the 

bonus q - a cards. Therefore player 2 has the advantage. 

It is dear €rom th'ï analysis, that any good strategy must vary the constant a in some 

random fashion. 
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Although some might view the subterfuge of camouflage as an act of bluffing, it is not 

so because the poser does not risk anything by asking such a question. A true bluff would 

be to ask a nonuseful question with the intention of rnisleading the responder. 

When q > 1, bluffing is of no use. For maximum q, a question could be asked that 

gleans sorne fixed amount of information, while simultaneously divulging no information 

to the opponent. The question could be constructed by uniformly picking frorn a set of 

questions which were guaranteed to glean sorne information, i.e. useful questions. Since al1 

questions are equally likely, the opponent cannot probabilistically reduce their number of 

possible worlds. This technique is stiU valid for smailer q, even as small as q = 2. 
Can it ever be advantageous to bluff completely? In other words, could it be to a playerb 

advantage to intentionally ask a question whose cards are al1 in their own hand? It is clear 

that this is really a bluff and not the random camouflage discussed earlier: such a question 

gleans no information for the poser, and can only serve to mislead their opponent, Our 

clairn is that bluffing is not an optimal strategy when q > 1. 

Claim 4.4 Any stmtegy which employs blufing is not optimal when q > 1 .  

Proof: Recall that MYST is a game of gleaning information to conclude the contents of 

the mystery pile. Since information does not change and irnrnutable knowledge does not 

go away, then if a player h a s  more information than his opponent, they are more likely to 

win. Since player 1 goes firçt, then they have a decided advantage over player 2, because 

he can pick a question which is guaranteed to glean himself some information. In terms of 

probabilities, player 1's chances of winning MYST using this "slow and steady" approach 

are at Ieast 0.5. 

Now assume that a bluffing strategy is optimal for player 1. Player 2's counter-strategy 

is to use the "slow and steady" approach. Player 2 sirnply ignores what player 1 is doing, 

and the turn imrnediately after ptayer 1 has bluffed, player 2 will ask a question which will 

(on average) glean thernselves more information than player 1. Or, in other words, player 

2 treats al1 of player 1's turns as bluffs, and therefore can never be misled. When player 1 

bluffs, they have wasted a turn, and it 'cj now as if player 2 had gone first. Since the "slow 

and steady" approach yields a probability of at Ieast 0.5 for player 2, then player 1 can do 

no better than a probability of 0.5. 

Since, player 1 could have used the "sIow and steady" approach and done better, the 

bluffing strategy is not optimal by contradiction. U 
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and makes it common knowledge. A no response reveals a portion of the mystery pile to 

the poser, and this is not common knowledge. 

But what if both players (on separate turns) determine the same portion of the mystery 

pile? We claim that the knowledge in common about the mystery pile is common knowledge. 

To establish the claim, let's define çome new sets. 

Let Si be the set ofcards that player i has shown player j. By Lemma 4.1, both players 

have common knowledge about SI U S2. Let JWi be the set of cards that player i knows are 

in the rnystery pile So. The contents of Mi are not necessarily common knowledge (usuaily 

not). But we claim that for every sr E Ml Ci Jbf2, hoJ is common knowledge. 

Theorem 4.3 JW 1 Ci M2 is common knowledge. 

Proof: Take any card s, E J W ~  fi M2. By Theorem 3.1, there eiasts questions Q1 and Q2 

which satisfied Lemma 4.1 for each respective player. i.e, 

Without los~ of generality, we will complete the argument €rom player 1's perspective. 

Player 1 has proven using Q1 that s, E So. Player 1 knows the above lemmata, so he knows 

that player 2 knowç Q;. Since player 1 knows s, E So, he knows that sr f Qi and therefore 

K ( L ,  K ( 2 ,  ho&, s), s). By following this argument by induction, ho, is common knowledge. 

O 

Why is Theorem 4.3 important? Since the positions of al1 cards in Si U S2 are common 

knowledge, these cards can be treated like they have been eliminated from play entirely; the 

original game has been reduced to a game of MYST with a smaller value of n. Sirnilarly? 

Theorem 4.3 is a reduction result, because M1nM2 can be eliminated from play. Thecefore, 

we could mathernatically quantify a two-player garne of MYST in  terms of the number of 

cards in each other's hand which remain undiscovered, and the number of cards each player 

has discovered in the mystery pile which are not common knowledge. i.e. the four-tuple: 

Unfortunately, for the sake of analysis, it is difficult to quantify and compare the two 

different types of information gained by S; and Mi and an optimal algorithm was not found. 

However, since the game is finite, an optimal strategy exists, and for q > 1 we claim: 
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Claim 4.5 For a two-player game 01 MYST where 1 < q 5 ni + n + 1, the probobility that 

player 1 wins is at least 0.5. 

Proof: To prove the clairn we foUow a similar argument used by Nash to prove the existence 

of a winning strategy for HEX [3], known as "strategy stealing." Suppose, by means of 

contradiction, that player 2 has an optima1 strategy that guarantees the probability that 

player 2 wins is more than 0.5. In other words, this strategy means that the probability 

player 1 wins is l e s  than 0.5. Since player 1 goes fint, he can ask a useful randorn question 

at no cost and then employ player 2's strategy himself to get a probability of more than 0.5. 

O 

Note that we proved player 1 has a clear advantage, without exhibiting an optimal 

strategy. However, some general principles must be followed in order to have a successful 

strategy. As discussed in Section 4.2, players shouid always camouflage their questions and 

should never bluff when q > 1. In the next section, we will use backwards induction to 

analyze when q = 1 and bluffing is not allolved. 

4.4 Backwards Induction for q = 1 

In this section, we will examine the probability of winning if q = 1, which, as estabiished 

in Section 4.2 is the only case where bluffing might be useful and camouflage is irnposçible. 

Initiaily we will assume that bluffing is not perrnitted, i.e. that players may only ask 

questions about cards that are not in their own hand. 

A question about a card in the mystery pile rnakes that card's position known to both 

players (under the no blufiing assumption), which effectively reduces m by 1. A question 

about a card in the opponent's hand effectively reduces the opponent's n by 1. With these 

two results in mind, it becornes natural to describe any game in progress by a state vector: 

(ni, n1, nz), where 

m is the current number of unknown cards in the mystery pile; 

nl is the current number of unknown cards in player 1's hand; and 

nz is the current number of unknown cards in player 2% hand. 
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Al1 values for m, nl and n2 must be positive for the game to continue, because a value 

of O means that one player has completely determined the mystery pile. Since, on each 

player's turn, a question will reduce one of these numben by 1, we can conclude that the 

game is finite and that the state vectors are related by a partial order. 

After a player asks a question, which places them in state (ml,ni,ni), they have two 

options. 

1. Try to guess the mystery set. Note that in this case, the game ends. 

P(Gueçç right, (m',ni, ni))  = ( "2 -' 
2. Let his opponent play. 

P(No guess, (m', ni, ni)) = 1 - P(win, (m', ni, ni)) 

Since they are behaving rationally, then they will take the maximum payoff of these two 

options. This description suggests a recursive relationship, described below. Note that we 

drop the "win" argument From al1 probability expressions, 

Basis : 

P b ,  n1, n2) = 

Recursiue Relation: 

Because the state vectors are related by a partial order, any probabüity can be computed 

in polynomial time using dynarnic programming. Here are some observations. 
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For ni = n2 = n, Lm P(m, ni, n2) = 0.5. 
m,n+oo 

-4lthough analyzing the large (m,n) cases might prove laborious, there appear to be 

some patterns For n = 1 or m = 1. They are summarized by the Following two theorerns, 

which tend to support the validity of the limit. 

Theorem 4.4 Let nl = n2 = 1 .  For e v e y  integer cr 2 1, 

Theorem 4.5 Let m = 1 and ni = n:! = n. For e v e y  integer n 2 2, 

Proof: We will prove Theorem 4.4 by a straightforward induction on m. Theorem 4.5 could 

be proved in  a similar fashion. 

The bais cases for P(m = 1), P(m = 2) and P(m = 3) are verified by simple substitu- 

tion into the recurrence (4.1). 

Assume true for some LY 2 1 that m = 2a and m = 2a + 1, Le. 

and show true for m = 2a + 2 and m = 2a + 3. i.e. 
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Chapter 5 

Conclusions and Future Work 

MYST is a game of static information which, because of its question asking actions, has 

strong ties to first-order Logic and reasoning. To quantify the nature of MYST, we have 

used elernents of the situation calcuius and analyzed MYST using elements of garne theory. 

Although lengthy but rnoduIar, the specification of MYST using the framework of the 

situation calculus has proven useful. A11 of the essential elements of MYST were axiornatized, 

including: 

rn turn order; 

rn possible actions; 

rn augrnenting of knowledge by situations, and implementation of imrnutable knowledge; 

rn the Partition Axioms and Knowledge initialization Axiorn; 

rn gleaning knowledge frorn actions no, yes, shows and guess; and 

0 game ending conditions. 

In examining MYST ourselves, we proved in Theorem 3.1 that there are only two possible 

ways that a player can conclude a card, say s,, is in the mystery pile. The two ways are by 

first concluding: 

rn that s, is not in any player's hand; or 

that c - m different cards are not in the mystery pile. 
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This theorem is important because it describes what the players must accomplish in order 

to win. The theorem also suggests two different types of questions: d i m f  questions for 

which al1 players say no and indirect questiotu for which same player says yes. 

Using Theorem 3.1, we were able to prove Theorem 3.2 which asserted that a winning 

sequence of questions exists if 1 5 q m + n + 1. Thiç is an interesting result for two 

reasons. First, it is independent of the number of players. Second, the proof of the theorem 

suggested an optimal algorithm for the lacgest possible q: q = rn + n + 1. 

We were atso able to show that an algorithmic implementation of the Set Size Axiom 

is NP-hard, and therefore might be computationally eqxnsive. This analysis also suggests 

that resolving disjunctions may be equally as  expensive. 

An optimal question constructing algorithm was presented for q = m+n+l which utilized 

the structure of the proof of Theorem 3.2, This led to the optimal strategy presented in 

Theorem 4.1, which asserted that player 2's best strategy is to guess after they have asked 

their n - lSt question. The question construction algorithm uniformly picks one from a set 

of questions which wilt glean new information. The random choice served as camoupage 

for the poser's own holdings, therefore gaining the maximum amount of information, while 

giving none away. Game theory concludes that camouflage is required when q > 1, or else 

the opponents will take advantage. 

in Claim 4.4, we showed that any strategy which empluys bluffing is not optimal when 

q > 1, however, bluffing rnight be useful when q = 1. 

In searching for optimal strategies for srnaller q, we proved the reduction Theorem 1.3, 

which asserts that al1 knowledge in common is common knowledge. Therefore, if a card's 

position is known by both playen, then we can eliminate it from play entirely, thereby 

reducing the number of cards in play. Threiore it was possible to develop a recurrence 

relation (4.1) for q = 1. Using dynamic prograrnming, we computed some probabilities for 

this stochastic proces, and we were able to prove Theorems 4-4 and 4.5 for the small cases. 

In conclusion, we have presented some useful results that touch many areas of AI, includ- 

ing first-order logic, knowledge representation, the situation calculus and game theory, the 

center point of which is the game of MYST, our variant of the game of Clue. In forrnalizing 

the problem, we used the framework of the situation calculus to characterize the notion of 

immutable knowledge. The presented axiornatization of hJ.YST will aiiow ot her research 

about this problem within our framework, 

The aviomatization describing the gleaaing of knowledge from actions ïs the basis for 
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al1 strategy development. In the other half of this work, we presented strategies for playing 

MYST, the conclusions for which were based on the earlier axiomatization. Therefore al1 

the presented strategies and theorems about playing MYST are useful, since MYST (and 

Clue) have never been formally studied. 

Although we have made much progres, there is always future work to be done. In 

closing, here are çome problems that would build on this work or would have made this 

work more complete. 

0 Incorporate the partitioning of S, just like in real Clua. 

Let S be a set of rn sorts (in Clue, m =: 3). Restrict So to contain exactly one card of 

each sort and restrict al1 questions Q to contain exactly one card of each sort. Note 

that rn = q. 

Theorem 3.2 still applies, so every instance is solvable since q = m < m + n + 2. The- 

orem 3.1 applies also as does the requirement of mixed strategies. Does partitioning 

S make the game any easier or any harder? 

This is an important problem because this property of Che was not carried over to the 

variant MYST. Computer programs which play Clue will have to address this issue. 

0 Implement a computer program which plays Clue. 

0 For q = 1, show the recurrence relation (4.1) implies the limit: 

ni = nz = n, lim P(win,  (ni, R I ,  4) = 0.5. 
m,n+ca 

Theorems 4.4 and 4.5 surely suggest this result is true. This would be a great stochastic 

process research problem. 

0 Examine the strategies in multi-player games of MYST. 

The two-player assumption made the knowledge axioms lot easier to handle. Could 

observations be made in a three-player game that could not be made in a two-player 

game? Also, how should a player pick their questions in a multi-player game? 
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