NOTE TO USERS

Page(s) not included in the original manuscript and are unavailable from the author or university. The manuscript was microfilmed as received.

52

This reproduction is the best copy available.

UMI

Autonomic Modulation of Heart Rate in Men and Women following Coronary Artery Bypass Graft Surgery

by

C. Ann Brown

-

A dissertation submitted in conformity with the requirements for the degree of Doctor of Philosophy

Queen's University Kingston, Ontario, Canada October 24, 2000.

Copyright [©] C. Ann Brown, 2000

National Library of Canada

Acquisitions and Bibliographic Services

395 Wellington Street Ottawa ON K1A 0N4 Canada Bibliothèque nationale du Canada

Acquisitions et services bibliographiques

395, rue Wellington Ottawa ON K1A 0N4 Canada

Your file Votre rélérence

Our file Notre rélérence

The author has granted a nonexclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of this thesis in microform, paper or electronic formats.

The author retains ownership of the copyright in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission. L'auteur a accordé une licence non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de cette thèse sous la forme de microfiche/film, de reproduction sur papier ou sur format électronique.

L'auteur conserve la propriété du droit d'auteur qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

0-612-59518-8

Canadä

Abstract

Four studies were conducted to assess autonomic modulation of heart rate in men and women with ischemic heart disease before and following coronary artery bypass graft (CABG) surgery. In the first three studies, R-R interval and systolic blood pressure data were collected in the supine and standing postures; in study 4, in the supine posture and during low intensity steady-state exercise. Breathing frequency was paced at 12 breaths per minute in the supine position. Autonomic modulation of heart rate was determined by spontaneous baroreflex (SBR) sensitivity and spectral analysis of heart rate variability (HRV).

The first study examined the differential effects of ischemic heart disease in 25 men and 13 women. There were no significant differences in HRV measures between men and women in the supine posture, but women had significantly lower SBR sensitivity than men in both supine and standing postures. The change in position from supine to standing revealed that women decreased high frequency power, low frequency power, parasympathetic indicator, and total harmonic power, and increased sympathetic indicator; SBR sensitivity did not change. Men decreased parasympathetic indicator and SBR sensitivity.

The second study evaluated the early effects of CABG surgery. Eleven women and 23 men were tested preoperatively and 5 days postoperatively. Autonomic modulation of heart rate declined in men after surgery, but not in women. Men decreased the indices of parasympathetic modulation of heart rate, that included high frequency power, parasympathetic indicator and SBR sensitivity.

The third study assessed the course of recovery for 12 weeks following CABG surgery in 6 women and 16 men. Men, but not women, exhibited an increase in the indices of parasympathetic modulation of heart rate (i.e., the parasympathetic indicator and SBR sensitivity) throughout 12 weeks of recovery. Neither men nor women showed any significant change in the sympathetic indicator. There were significant effects of posture (supine vs. standing) in both men and women on indices of parasympathetic modulation of heart rate that were similar to responses in older healthy individuals. Women decreased high frequency power and the parasympathetic indicator in the standing position compared with supine; men decreased the parasympathetic indicator and baroreflex sensitivity.

The fourth study measured the effects of time from 6 to 12 weeks and low intensity steady-state exercise in 6 women and 16 men. Men improved the indices of parasympathetic modulation of heart rate, as seen by increases in high frequency power and parasympathetic indicator. The improvement in parasympathetic modulation of heart rate was manifested in increased supine SBR sensitivity and R-R interval in men. Women showed no improvement from 6 to 12 weeks in these measures. Exercise significantly decreased SBR slope and R-R interval, and increased systolic blood pressure in men and women. The effects of exercise on heart rate variability measures were different in men and women; exercise significantly decreased low frequency power and high frequency power in men only.

The results of these studies suggest that men and women responded differently to CABG surgery and during the course of recovery for 12 weeks. The significantly higher age of the women, the small sample of women, and large variability in our measures may have contributed to the findings.

iii

Acknowledgements

A Research Fellowship from the Heart and Stroke Foundation of Canada provided personal financial support for this research for two years. I am most grateful to the subjects, who, at a stressful and difficult time in their lives, generously participated in the study. I am very grateful to my supervisor, Dr. Larry Wolfe, and to the continuing members of my advisory committee, Dr. Joel Parlow and Dr. Sylvia Hains, for their assistance. Dr. Wolfe provided guidance and support, and the opportunity for me to do the research. Dr. Parlow, Department of Anaesthesia, helped me understand the complexity of the spectral analysis and spontaneous baroreflex sensitivity, and with clinical interpretation of the findings. Dr. Hains, Department of Psychology (retired), exhibited considerable patience and tact in helping me with data management and statistical analysis.

Several other people contributed to the completion of this work. Dr. Glorianne Ropchan, Department of Surgery (Cardiothoracic Surgery), provided encouragement and clinical guidance regarding the study population and facilitated the conduct of the hospital portion of the study. Her interest in gender differences in the outcomes of coronary artery bypass graft surgery stimulated many discussions and generated many questions. Dr. T. O'Brien, Department of Surgery (Emergency Medicine), facilitated the recruitment of qualified residents to provide some of the medical services required during exercise testing. The technical assistance of Marvin Switzer and James Colgrave, Queen's/ Hotel Dieu Hospital Biomedial Engineering Department, and Ken Hall, School of Physical & Health

iv

Education, was gratefully appreciated.

To my husband, Dr. Hugh Brown, Department of Anaesthesia, who volunteered his medical expertise and considerable time to provide medical supervision of the exercise tests, I extend my gratitude. I was tremendously relieved when he consented to be a "test" subject on several occasions prior to conducting the study on real subjects. I also thank Peter Fenwick, B.Sc., Mechanical Engineering, formerly of Datex-Ohmeda, who secured the last two Finapres monitors available in Canada for this study. In addition, Peter served as the first "test" subject.

Finally, to Dr. Barbara Kisilevsky, friend and colleague, I extend my gratitude for all the support and advice over the years. My daughters, Jennifer and Angela, have been generous in their understanding, support and humour related to my endeavors; they managed to provide a balanced perspective.

Table of Contents

Abstract	ii
Chapter 1: Introduction	1
Chapter 2: Review of the Literature Regulation of Heart Rate Autonomic Nervous System Regulation of Heart Rate Baroreceptor Reflex Regulation of Heart Rate Respiratory Modulation of Heart Rate Effects of Physiological Perturbations Effects of Orthostatic Stress Effects of Acute Exercise Effects of Cardiovascular Disease Effects of CABG Surgery Effects of Acute Exercise following CABG Surgery Effects of Age Effects of Gender Summary Purpose of the Study	5 7 74 27 29 33 34 38 42 42 50
Chapter 3: Study 1 Introduction Methods Results Discussion Summary and Conclusions	51
Chapter 4: Study 2 Introduction Methods Results Discussion Summary and Conclusions	77
Chapter 5: Study 3 Introduction Methods Results Discussion Summary and Conclusions	99
Chapter 6: Study 4 Introduction Methods Results Discussion Summary and Conclusions	121
Chapter 7: Conclusions	148

References

Appendices Appendix A Letter of Information & Consent 160 Appendix B Emergency Management 164 Chapter 3 ANOVA Tables Appendix C 166 Appendix D Chapter 4 ANOVA Tables 178 Appendix E Chapter 5 ANOVA Tables 223 Appendix F Chapter 5 ANOVA Tables 246 Appendix G Curriculum Vitae 269

CHAPTER 1

Introduction

Cardiovascular disease remains the leading cause of death and disability in Canada, accounting for 36% of all deaths in men and 39% in women (Heart and Stroke Foundation of Canada, 1999). Ischemic heart disease, also known as coronary artery disease, continues to cause 21% of all deaths in Canada (Heart and Stroke Foundation of Canada, 1999). The mortality rates in men increase gradually from 35-84 years, whereas in women, the rates increase at age 45 years and increase dramatically after menopause (Cardiovascular Disease and Women, 1996; Heart and Stroke Foundation of Canada, 1997). The performance of coronary artery bypass graft (CABG) surgery as a method of treatment for ischemic heart disease has increased during the last decade, particularly in women and in the age groups over 55 years (Heart and Stroke Foundation of Canada, 1997; 1999).

Autonomic modulation of heart rate is impaired in people with cardiovascular disease (Schwartz *et al.*, 1988a; Ryan *et al.*, 1989; Lipsitz *et al.*, 1990; Craelius *et al.*, 1991; Huikuri *et al.*, 1995) and following CABG surgery (Niemela *et al.*, 1992; Piha & Hamalainen, 1994; Yang *et al.*, 1994; Komatsu *et al.*, 1997). Heart rate variability decreases with increasing age (Docherty, 1990; Ryan *et al.*, 1994), and during physiological perturbations, such as orthostatic stress and exercise (Pomeranz *et al.*, 1985; Lipsitz *et al.*, 1989; Butler *et al.*, 1990; Kamath *et al.*, 1991; Yamamoto *et al.*, 1991; Nakamura *et al.*, 1993; Fei *et al.*, 1995). Decreased heart rate variability is an independent risk factor for sudden cardiac death in individuals with cardiovascular disease (Schwartz *et al.*, 1988a; Ryan *et al.*, 1989; Lipsitz *et al.*, 1990; Craelius *et al.*, 1991; Huikuri *et al.*, 1995).

The issue of whether cardiac baroreflex sensitivity declines after CABG surgery has not been reported. However, a reduction in cardiac baroreflex function has been observed following myocardial infarction (Schwartz *et al.*, 1988), with increasing age (Docherty, 1990; Folklow & Svanborg, 1993; Poller *et al.*, 1997; Laitinen *et al.*, 1998; Brodde & Michel, 1999), and during submaximal exercise (Fei *et al.*, 1995; Shi *et al.*, 1995). Damage to aortic baroreceptors during surgery could limit afferent input; damage to autonomic nerves could reduce autonomic output to the sinoatrial node.

Men and women differ in measures of heart rate variability and baroreflex sensitivity. Ryan *et al.* (1994) and Liao *et al.* (1995) found higher high frequency power and ratio of high frequency to low frequency power, and lower low frequency power, in women. Huikuri *et al.* (1996) reported that women had lower low frequency power, lower low frequency to high frequency power ratio, and a lower baroreflex sensitivity than men. Laitinen *et al.* (1998) found that baroreflex sensitivity was lower in women. Dougherty (1999) revealed that middle-aged women had higher high frequency power than men in supine and standing positions, and that supine baroreflex sensitivity was higher in women.

Decreased heart rate variability reflects an imbalance in the competing efferent influences of the parasympathetic and sympathetic divisions of the autonomic nervous system on the modulation of heart rate; specifically, it reflects a reduction in the parasympathetic modulation of heart rate (Akselrod et al., 1981; Goldberger, 1991). A decrease in parasympathetic modulation of heart rate reduces the ability of the cardiovascular system to adapt to rapidly changing stimuli, and increases the potential for sympatheticallymediated cardiac dysrhythmias to occur (Huikuri et al., 1995; Task Force of the European Society of Cardiology & the North American Society of Pacing & Electrophysiology [TFESCNASPE], 1996). These factors may explain, in part, the sinus tachycardia and cardiac dysfunction observed during the early postoperative and post-discharge periods (Niemela et al., 1992; Komatsu et al., 1994; Piha & Hamalainen, 1994; Yang et al., 1994; Huikuri et al., 1995; TFESCNASPE, 1996). Thus, the measurement of beat-by-beat arterial blood pressure and spectral analysis of heart rate variability will greatly enhance the amount of information that can be gained regarding responses to common physical perturbations during early recovery following CABG surgery.

Purpose of the Study

The primary purposes of this research were (1) to describe the effects of ischemic heart disease on autonomic modulation of heart rate in men and women, as measured by heart rate variability and spontaneous baroreflex sensitivity, (2) to describe the effects of CABG surgery on these measures, (3) to document the course of recovery for 12 weeks following CABG surgery, and (4) to examine the effects of standing and low intensity steady-state exercise. A secondary purpose was to determine the influence of tidal volume and breathing frequency on the outcome measures.

The present investigation is at the interface of the two disciplines of health science and exercise physiology, and integrates the knowledge from both in order to study a high risk clinical population. Both disciplines use basic and biological sciences; each applies the basic and biological sciences in a unique way. The present study incorporated concepts from neurocardiac physiology and exercise physiology in a clinical human population with ischemic heart disease before and following coronary revascularization surgery. Newer techniques of non-invasive measurement of arterial blood pressure and sophisticated computer data acquisition and analysis programs were used to collect the data, to conduct the spectral analysis of heart rate variability, and to determine spontaneous baroreflex sensitivity. The study contributed to the body of knowledge of women's health by documenting the similarities and differences in autonomic modulation of heart rate between women and men with ischemic heart disease prior to and during recovery from CABG surgery. The research extended our knowledge (1) by extending the duration of study to 12 weeks following CABG surgery, (2) by studying the responses of women as well as men, and (3) by determining the influence of respiratory variables on the cardiovascular responses.

CHAPTER 2

Review of the Literature

Coronary artery bypass graft (CABG) surgery is done primarily to improve coronary blood flow and, thus, relieve cardiac ischemia due to narrowing or obstruction of coronary arteries (Heart and Stroke Foundation of Canada, 1999). Although newer medical and surgical techniques are evolving, the most common method of coronary revascularization is achieved by bypassing large epicardial coronary arteries with grafts using the saphenous vein, the internal mammary artery, the intrathoracic artery and the gastroepiploic artery (Merrilees et al., 1988; Weinstein et al., 1989; Grondin et al., 1989; Pym et al., 1997). Individuals recovering from CABG surgery not only have undergone major cardiac surgery with the associated peri- and postoperative risks, but also still have the chronic risk factors predisposing them to progressive coronary atherosclerosis and the vasoconstrictor effects of diffuse ischemic heart disease in small coronary arteries. During CABG surgery, several cardiac control mechanisms are affected (1) by the surgical manipulation of the heart, cardiac autonomic nerves and coronary arteries; (2) by aortic clamping and vein grafting to the aorta; and (3) by cardiopulmonary bypass. In addition, general anaesthesia, mechanical ventilation and the intravenous infusion of various pharmacological agents affect cardiovascular function intraoperatively and possibly postoperatively (Yang et al., 1994; Haggenmiller et al., 1996).

The purpose of this literature review is to discuss the autonomic and baroreflex modulation of heart rate. In addition, the respiratory influence on heart rate modulation will be examined. The discussion will focus specifically on cardiac baroreflex sensitivity and heart rate variability before and after CABG surgery during supine rest, standing and low intensity steady-state exercise. Due to the characteristics of the population under investigation, the effects of increasing age and gender on autonomic and baroreflex modulation of heart rate will be reviewed.

Regulation of Heart Rate

Autonomic Nervous System Modulation of Heart Rate

The regulation of heart rate is controlled primarily by the autonomic nervous system (Berne & Levy, 1997). Both sympathetic and parasympathetic nerve fibres synapse on the SA node and influence heart rate. Parasympathetic fibres also synapse on the atrioventricular node and junction, whereas sympathetic fibres innervate atrial and ventricular myocardial tissue. In resting healthy adults, parasympathetic modulation predominates. Parasympathetic activity, mediated by the neurotransmitter acetylcholine (ACh) acting on muscarinic receptors in the SA node, inhibits pacemaker activity and slows heart rate. The parasympathetic effects terminate within milliseconds after cessation of stimulation due to the rapid hydrolysis of acetylcholine, a process catalyzed by acetylcholinesterase, at vagal nerve endings (Hainsworth, 1996; Berne & Levy, 1997). The brief latency (50-100 ms) and rapid decay of parasympathetic responses enable the vagus nerve to exert a beat-by-beat control of SA nodal function within 400 ms (Hainsworth, 1996; Berne & Levy, 1997).

In contrast, sympathetic activity, mediated by the neurotransmitter norepinephrine (NE) acting on beta adrenergic receptors, stimulates pacemaker activity and increases heart rate; sympathetic stimulation requires approximately 5 sec for the effects to occur (Hainsworth, 1996). The effects of sympathetic stimulation decay gradually because most norepinephrine released at sympathetic nerve endings is taken up again by the cardiac nerves and the remainder is carried away in the circulating blood. Moreover, the released ACh by vagal nerves inhibits the release of NE at nearby sympathetic nerve endings, effectively inhibiting sympathetic effects on heart rate (Berne & Levy, 1997). Rapid changes in heart rate, therefore, are due to the parasympathetic pathway (Akselrod *et al.*, 1981; Akselrod *et al.*, 1985; Hainsworth, 1996; Berne & Levy, 1997).

Spontaneous variability in heart rate occurs on a beat-by-beat basis in healthy individuals (Akselrod *et al.*, 1981; Goldberger, 1991). This variability is an important mechanism for adaptability and flexibility in cardiovascular responses to unpredictable and varying internal and external stimuli (Akselrod *et al.*, 1981; Goldberger, 1991). Pharmacological and physiological studies support the hypothesis that the R-R interval varies on a beat-to-beat basis, depending on the interaction of sympathetic and parasympathetic autonomic influences on the SA node (Akselrod *et al.*, 1981;1985; Goldberger, 1991; Hainsworth, 1996).

Measurement of Heart Rate Variability

Heart rate variability refers to the beat-by-beat variations in cardiac cycle or the instantaneous variation in heart rate (TFESCNASPE, 1996). Terminology in the literature has been inconsistent and, thus, confusing. Other terms that are used synonymously with heart rate variability include heart period variability, cycle length variability, R-R interval variability and instantaneous heart rate variability. Because the term heart rate typically refers to the number of cardiac cycles per minute, the other terms describe more accurately that it is the interval between consecutive heart beats that is being analyzed rather than variability in heart rate, but have not gained general acceptance (TFESCNASPE, 1996).

<u>Time domain methods.</u> Time domain methods of analysis of heart rate variability calculate the beat-by-beat variations in heart rate with respect to time from a continuous electrocardiograph (ECG) recording (TFESCNASPE, 1996). Each QRS complex originating from a sinus node depolarization is detected, and the intervals between adjacent QRS complexes are referred to as the normal-to-normal (NN) R-R intervals. Time domain variables are calculated from the NN R-R intervals; some examples include the mean NN interval, the mean heart rate, the difference between longest and shortest NN interval. Statistical analysis can be conducted on either the direct measures of NN intervals, or the differences between NN intervals. For example, the standard deviation of NN intervals (SDNN), which reflects all cyclic variations during the period of recording, can be calculated (TFESCNASPE, 1996). These analyses can be obtained from both short-term 5 minute recordings and traditional long-term recordings of 24 hours.

<u>Frequency domain methods.</u> Frequency domain methods of analysis of heart rate variability, using power spectral density analysis, provide data on how power (variance) distributes as a function of frequency (TFESCNASPE,

9

1996). Akselrod (1995) explains that, by definition, "spectral analysis separates the components of a signal based on their frequency and should thus directly discriminate between the frequency ranges to which slower or faster mechanisms contribute" (P. 151). Spectral analysis of R-R interval variability transforms the time signal of continuous R-R interval data into their frequency components. After filtering the raw R-R interval data for extra or missing beats, fast Fourier transformation (FFT) converts the time series data into an interval tachogram. By using the techniques of spectral analysis, Akselrod et al. (1981; 1985) verified that the sympathetic and parasympathetic nervous systems are the principal mechanisms involved in short-term cardiovascular control on the time scale of milliseconds (parasympathetic) to seconds (sympathetic), and that they make frequencyspecific contributions to the heart rate power spectrum. In addition to the well-known high frequency variations in heart rate associated with the respiratory cycle, the authors reported that there were two other periodic variations at lower frequencies, typically 0.04 and 0.12 Hz., that were attributed to cyclic variations in vasomotor tone and the frequency response of the baroreflex, respectively.

Akselrod et al. (1981) confirmed that power spectrum analysis of heart rate variability provides a quantitative noninvasive method of studying the short-term, beat-to-beat cardiac control mechanisms in conscious trained dogs. By selectively blocking either the parasympathetic nervous system by

glycopyrrolate, or the sympathetic nervous system by propranalol, or combined blockade of both parasympathetic and sympathetic divisions, the authors found that parasympathetic blockade abolished the mid- and highfrequency peaks of the power spectrum, and decreased the low frequency peak. Combined β - sympathetic and parasympathetic blockade eliminated all R-R interval variations. Sympathetic blockade tended to decrease the low frequency peak; however, this effect was inconsistent due to the low level of resting sympathetic activity. Subsequently, under the same conditions of selective autonomic blockade, the authors varied arterial blood pressure by administering the vasodilator sodium nitroprusside or the vasoconstrictor methoxamine by intravenous bolus. They found that increasing either parasympathetic or sympathetic activity increased the low frequency peak. Their data showed that the parasympathetic nervous system mediates R-R interval variations in the mid- and high frequency peaks of the power spectrum, and that both sympathetic and parasympathetic systems mediate the low frequency peak. Akselrod et al. (1981) also showed that blockade of the renin-angiotensin system resulted in large increases in the low frequency peak at 0.04 Hz, suggesting that the renin-angiotensin system contributed to short-term cardiovascular modulation. The authors suggested the possibility that the renin-angiotensin system attenuates the normal fluctuations in peripheral vasomotor tone. They also supported the conclusions of others, that the lower frequency peak (0.04 Hz) was related

to cyclic variations in vasomotor tone associated with thermoregulation and the mid-frequency peak (0.12 Hz) was related to the frequency response of the baroreflex in humans. Cerutti, Bianchi, & Mainardi (1995) concluded that very low frequency power (<0.03 Hz) reflected long term regulatory mechanisms, probably related to thermoregulation, the renin-angiotensin system, and humoral factors.

Spectral analysis methods are recommended for short-term (2 to 5 min) recordings of R-R interval under physiologically stable conditions (TFESCNASPE, 1996). Spectral analysis yields three main components: very low frequency, low frequency and high frequency power. In general, studies which have employed spectral analysis methods support the concept that high frequencies of heart rate variability (>0.15 - < 0.40 Hz) are the result of parasympathetic influences, lower frequencies of heart rate variability (> 0.04 Hz - < 0.15 Hz) result from both sympathetic and parasympathetic activity and baroreflex modulation, and the very low frequency component is inversely proportional to frequency (1/f) (Akselrod et al., 1981; Akselrod et al., 1985; Saul et al., 1988; Lipsitz et al., 1990; Yamamoto et al., 1991; Malliani et al., 1994; Persson, 1996; TFESCNASPE, 1996). Malliani et al. (1994) and Malliani (1995) maintained that the low frequency component reflects sympathetic activity, and that sympathetic and parasympathetic activities interact in modulating heart rate.

In 1991, Yamamoto and Hughson developed a new method of spectral analysis, the coarse-graining spectral analysis (CGSA) method, a modified version of general spectral analysis. The CGSA extracted the very low frequency component (1/f) from the total power of the power spectrum, thereby facilitating the definition of the high frequency and low frequency power peaks. In the general spectral analysis method, after searching and filtering the raw R-R interval data for extra or missing beats, fast Fourier transformation converted the time series data into an interval tachogram; the filtering process either deleted ectopic beats or inserted missing beats. In CGSA, after filtering, each R-R interval was repeated so that the length of the data set was twice as long as the original. The CGSA was conducted on the first half of the data set. Total power was separated into harmonic and nonharmonic (fractal) components; the harmonic component was further divided into low frequency (0.0-0.15 Hz) and high frequency (0.15-0.50 Hz) components (Yamamoto & Hughson, 1991; Yamamoto et al., 1991; Nakamura et al., 1993). In comparing the results of CGSA with general spectral analysis on the same data, Yamamoto & Hughson found that the low frequency peak was more easily identifiable in CGSA, and that there was no significant effect of duration of data sampling on the results, in contrast with the results from general spectral analysis. In general spectral analysis, the low frequency component of the power spectrum was affected by duration of data set; very short data sets (1.5 min vs. 4 and 12 min) reduced

the low frequency power, but not the high frequency power. Consequently, the ratio of low frequency power to high frequency power was reduced.

Baroreceptor Reflex Modulation of Heart Rate

The baroreflex is a negative feedback system of neural and hormonal pathways to maintain arterial blood pressure within a normal range for any given individual, that involves input via an afferent limb, central processing in the medulla oblongata, and output via an efferent limb (Dampney et al., 1994; Smit, 1996). Baroreflex afferents arise from two types of receptors: high pressure arterial receptors in the carotid sinus and aortic arch that respond to stretch, and low pressure cardiopulmonary receptors in the atria that respond to changes in blood volume. Input from the afferent receptors is transmitted via afferent nerve fibres to the nucleus tractus solitarius and a complex wiring system ending in the nucleus ambiguus and ventrolateral medulla (Dampney et al.; Smit et al.). The efferent limb consists of pathways from the latter brain stem structures to the heart and blood vessels, influencing heart rate, cardiac contractility, venous capacitance and systemic vascular resistance (Hainsworth, 1996; Smit, 1996). In addition, central nervous system activity may alter the degree of parasympathetic nervous system and sympathetic nervous system output (Persson, 1996). Thus, to counteract a reduction in arterial blood pressure, heart rate and cardiac contractility are increased and vasoconstrictor tone is augmented (Hainsworth, 1996; Smit, 1996). The change in heart rate occurs within one

heart beat by influencing parasympathetic outflow from the nucleus ambiguus to the SA node (Blaber *et al.*, 1995; Hainsworth, 1996; Smit, 1996). The change in blood pressure is achieved by withdrawal of inhibitory influence on the rostroventrolateral medulla, resulting in increased sympathetic outflow to, and vasoconstriction of, the resistance and capacitance vessels (Hainsworth, 1996; Smit, 1996).

Adaptation and resetting are important properties of baroreceptors (Hainsworth, 1996). Adaptation is a property of many sensory receptors to a sustained application of a stimulus, in which the discharge frequency declines after the initial high frequency response. Baroreceptors adapt only partially, because their discharge frequency decreases only part way toward the initial level following an increase in pressure. Resetting is a phenomenon that occurs after a sustained stimulus, i.e., a sustained change in pressure; the response may be acute (partial resetting) or chronic (complete resetting). Acute resetting of the baroreceptors occurs within 30 seconds after the beginning of the sustained change in pressure and continues for 20-30 minutes, such that if blood pressure increases, there is a shift of the stimulus-response curve to the right so that the baroreceptor range moves toward the pressure change, and a decrease in the slope of the stimulusresponse curve (Hainsworth, 1996). Posture change or acute exercise might elicit acute resetting. Chronic resetting requires prolonged pressure changes

15

from months to years; this response changes the position of the stimulusresponse curve and reduces the overall sensitivity of the baroreceptors.

This thesis will focus on the function of cardiac arm of the arterial baroreflex, i.e., the short-term beat-by-beat change in heart rate as a consequence of a change in arterial blood pressure. The cardiac baroreflex reflects the sensitivity of the arterial baroreceptors in the aortic arch and carotid sinus to detect and respond to changes in arterial pressure, the central integration and processing of afferent neural inputs from the baroreceptors, and the competing influences of the two efferent divisions of the autonomic nervous system on the sinoatrial (SA) node (Goldberger, 1991; Dampney *et al.*, 1994; Smit, 1996). Beat-by-beat changes in heart rate are mediated by the parasympathetic division of the autonomic nervous system via the vagus nerve to the SA node (Akselrod *et al.*, 1981; Hainsworth, 1996; Smit, 1996). The minimum time needed for a baroreflex-mediated change in R-R interval is 750-775 ms (Blaber *et al.*, 1995; Hainsworth, 1996).

The R-R interval response to a sustained arterial pressure change, rather than to an abrupt pressure change as a consequence of vasoactive drugs, has been termed the "steady-state" cardiac baroreflex response, and is quantified by a sigmoidal curve that relates variations in blood pressure to changes in pulse interval (Parlow, 1993). Three properties of the cardiac baroreflex curve have been identified and include set-point, sensitivity and

16

range. The set-point, or BP50, is defined as the arterial pressure at the pulse interval which is equidistant from the upper and lower plateau of the curve. The sensitivity is the slope of the curve that joins the two plateaux, and reflects the magnitude of the pulse interval response to a given change in blood pressure. The upper and lower plateaux represent the minimum and maximum responses (Parlow, 1993).

A decline in the sensitivity of the baroreflex reflects a decrease in the magnitude of the pulse interval response to a given change in blood pressure. A decline in the beat-by-beat interaction between arterial blood pressure and heart rate could be due to (1) decreased or impaired afferent input from the aortic baroreceptors, (2) altered central integrating and processing functions in the medulla oblongata, (3) altered efferent nerve activity in both parasympathetic and sympathetic nerves, and (4) impairment of the SA node (Docherty, 1990).

Methods of Measurement of Baroreflex Function

<u>Traditional methods of baroreflex assessment.</u> Historically, the function and sensitivity of the cardiac baroreflex have been evaluated by acutely altering arterial pressure, and measuring the degree of pulse interval change in response to the degree of change in arterial pressure (Parati *et al.*, 1988). Arterial pressure can be altered either by infusion of vasoactive drugs (Parlow, 1993; Parlow *et al.*, 1995) or by mechanical stimulation of carotid receptors by the application of external neck pressure or suction (McDonald *et al.*, 1993; Potts *et al.*, 1993; Shi *et al.*, 1993; 1995).

Vasoactive drugs, such as phenylephrine and sodium nitroprusside (Parlow *et al.*, 1995), administered intravenously by bolus injection, acutely alter arterial blood pressure. Baroreflex sensitivity is determined by the slope of the linear interaction between increasing (or decreasing) blood pressure and the resultant increase (or decrease) in R-R interval (Parlow *et al.*, 1995).

The neck chamber method, either neck suction or neck pressure, provides mechanical activation or deactivation of carotid baroreceptors. Baroreflex sensitivity is determined by the slope of the carotid transmural pressure, i.e., mean arterial pressure minus neck chamber pressure, and the resultant effect on R-R interval. This method is limited to measuring the sensitivity of the carotid baroreflexes, or the combined sensitivity of carotid and aortic baroreceptors. However, Shi *et al.* (1993) and Shi *et al.* (1995) reported that aortic baroreceptors predominate over carotid baroreceptors in the modulation of heart rate in healthy young men.

These methods have advantages and several general limitations. One advantage of the pharmacological method is that it measures range and BP50, and differentiates resetting of the baroreflex from changes in sensitivity (Parlow, 1993). The invasive nature of the techniques limits their usefulness in long term testing. The extreme and potentially dangerous elicited response to the stimuli limits their use in high risk individuals. Moreover, the acute and brief elicited responses do not represent normal physiological adaptation in range or sensitivity of baroreflex response (Parlow, 1993).

Spontaneous methods of baroreflex assessment. Spontaneous variations in blood pressure and pulse interval response can be observed at rest and during normal daily activities, or elicited experimentally by postural changes, deep-breathing, mental stress, and exercise in healthy individuals (Goldberger, 1991; Rimoldi *et al.*, 1990; Hughson *et al.*, 1993; Parlow, 1993; Potts *et al.*, 1993; Blaber *et al.*, 1995; Parlow *et al.*, 1995; Smit *et al.*, 1996).

Recently, a noninvasive method of assessing spontaneous baroreflex (SBR) sensitivity during any given set of conditions has been developed (Hughson *et al.*, 1993; Blaber *et al.*, 1995; Parlow *et al.*, 1995). The spontaneous baroreflex method has been shown to be a valid measure of baroreflex sensitivity when compared with the drug-induced method (Parlow, 1993; Parlow *et al.*, 1995). Spontaneous baroreflex sensitivity is determined either by the sequence method or by spectral analysis; Hughson *et al.* (1993) found that the sequence method of data analysis yielded similar results for baroreflex slope as the spectral analysis method.

In the sequence method, computer analysis of continuous recordings of beat-by-beat blood pressure and R-R interval data identified sequences of spontaneously fluctuating blood pressure accompanied by parallel variations

in R-R interval (Hughson et al., 1993; Blaber et al., 1995; Parlow et al., 1995). A baroreflex sequence was defined as a series of at least 3 consecutive heart beats in which systolic blood pressure and the following R-R interval either both increased or both decreased (Parati et al., 1988; Hughson et al., 1993; Blaber et al., 1995). Computer analysis of continuous recordings of beat-by-beat blood pressure and R-R interval data identified sequences of spontaneously fluctuating blood pressure accompanied by parallel variations in R-R interval. Linear regression was calculated to determine the slope for each SBR sequence; subsequently, the mean slope for all SBR sequences with r^2 values > 0.85 was calculated. SBR sensitivity was expressed as the mean slope of the SBR sequences, which represented the beat-by-beat interaction between systolic blood pressure (mmHg) and R-R interval (ms), in ms/mmHg. (Appendix, Figure 3). The authors found that 23-27% of all beats were baroreflex sequences in healthy adults, concluding that this was a negative feedback physiological response of the arterial baroreflex.

A non-baroreflex sequence was defined as a series of at least three consecutive heart beats in which systolic blood pressure and the following R-R interval changed in opposite directions (Hughson *et al.*, 1993). Both baroreflex and non-baroreflex sequences occurred in their analyses; however, there were three to four times more baroreflex than non-baroreflex sequences. The finding of non-baroreflex sequences suggests that changes in R-R interval influenced systolic blood pressure via a positive feedback or feed forward mechanism. The authors speculated on this interesting finding, but suggested that further research was necessary.

Until recently, our knowledge of the normal beat-to-beat blood pressure variability, and the interaction between changes in blood pressure and heart rate was limited to data collected during invasive direct arterial blood pressure monitoring. The development of the Finapres (**Fin**ger **A**rterial **Pres**sure) 2300 (Datex-Ohmeda, Rexdale, Ontario) allows the noninvasive detection of beat-by-beat changes in blood pressure, which, along with spectral analysis of heart rate variability, yields important new information about blood pressure regulation and heart rate control mechanisms.

The main advantages of the spontaneous method are that it assesses SBR sensitivity noninvasively in the normal physiological range over a period of time, can be used for serial measurements, requires minimal subject cooperation and causes little distress. The limitations of the method are that it assesses only the baroreflex gain and resting point, and that it measures only the rapid parasympathetic heart rate response to a change in blood pressure. Moreover, as in the pharmacological method, the vasomotor efferent arm of the baroreflex is not evaluated (Parlow, 1993).

Parlow *et al.* (1995) compared two methods of assessment of cardiac baroreflex sensitivity, the vasoactive drug-induced method and the spontaneous method, in 8 healthy supine men, aged 25-46 years. Data were

collected on three consecutive days. On day 1, measurements were made under conditions of parasympathetic blockade with atropine sulphate, βadrenergic blockade with propranalol, and combined parasympathetic and β adrenergic blockade. On day 2, data were collected following β -adrenergic blockade with propranalol. On day 3, data were collected following oral ingestion of clonidine hydrochloride, a central nervous system sympathetic inhibitor. For the spontaneous baroreflex method, data were collected during supine rest for 20 min prior to the administration of vasoactive drugs. For the drug-induced method, intravenous bolus injections of the vasopressor phenylephrine hydrochloride, alternating with the vasodilator sodium nitroprusside, were administered serially in increasing doses over 45-60 min. The sequence method of baroreflex determination was used (Blaber et al., 1995). The findings showed that both the spontaneous and drug-induced methods resulted in a substantial decrease in slope during parasympathetic blockade, and an increase in slope during propranalol or clonidine alone. The authors found that the spontaneous and drug-induced methods yielded baroreflex slopes that were highly correlated. Rimoldi et al. (1990) studied the neural determinants of spontaneous variations in R-R interval and arterial pressure in conscious dogs. The investigators simultaneously measured R-R interval and arterial pressure variabilities. Under a variety of experimental conditions, including denervation of the aortic arch and carotid sinus, they studied the effects of baroreceptor loading and unloading. The authors found

22

that both neural and mechanical factors of respiration influenced the high frequency component of arterial pressure variability; that neural factors were responsible for R-R variability; and that the sympathetic nervous system influenced the low frequency component of arterial pressure variability.

Respiratory Modulation of Heart Rate

Rhythmic variations in R-R interval and heart rate occur in response to respiration. Typically, during inspiration, sympathetic neural activity increases and heart rate increases, whereas during expiration, parasympathetic neural activity increases and heart rate decreases (Haggenmiller *et al.*, 1996; Berne & Levy, 1997). The very rapid removal of acetylcholine released at parasympathetic nerve endings means that rhythmic changes in respiratory activity elicit rhythmic changes in R-R interval and heart rate. In contrast, the slow removal of norepinephrine released at sympathetic nerve endings means that sympathetic nerve endings means in respiratory activity cannot exert instantaneous changes in heart rate and R-R interval. The phrase "respiratory sinus arrhythmia" describes the rhythmic changes in R-R interval decreasing during inspiration and increasing during expiration (Haggenmiller *et al.*, 1996).

In addition, reflex and central nervous system factors influence the variations in R-R interval associated with respiratory activity (Berne & Levy, 1997). During inspiration, intrathoracic pressure decreases, facilitating an increase in venous return to the heart. Consequently, cardiac output and

arterial blood pressure increase, causing a baroreflex-mediated reduction in heart rate. Similarly, moderate inflation of stretch receptors in the lungs during inspiration may increase heart rate reflexly. Central nervous system factors contribute to respiratory cardiac arrhythmia through the influence of the respiratory centre in the medulla on cardiac autonomic centres (Haggenmiller *et al.*, 1996; Berne & Levy, 1997).

Haggenmiller et al. (1996) used spectral analysis to analyze the effects of active and controlled breathing, by measuring the effects of breathing frequency, tidal volume, and mechanical ventilation, on high frequency power as an indicator of respiratory sinus arrhythmia, in 12 healthy men. In part 1, breathing frequency was paced at 8/min, 12/min and 18 breaths/min; tidal volume was not controlled. In part 2, breathing frequency was controlled by mechanical ventilation via a face mask at 8/min, 12/min and 18 breaths/min; tidal volume was adapted to physiologic condition and controlled by end-tidal pCO₂ monitoring. In part 3, breathing frequency was controlled by mechanical ventilation via a face mask at 8/min, 12/min and 18 breaths/min; tidal volume was controlled at 700 ml. Subjects were in the supine position and awake without medication. Mechanical ventilation decreased respiratory sinus arrhythmia at all breathing frequencies. Increasing breathing frequency (active and passive breathing) resulted in decreasing respiratory sinus arrhythmia; increasing tidal volume resulted in increasing respiratory sinus arrhythmia. During active breathing, breathing frequency correlated with

power spectral density; during passive breathing, tidal volume correlated linearly with power spectral density.

The heart rate response to deep-breathing and the valsalva manoeuver are standard tests of cardiac parasympathetic control and baroreflex sensitivity (Saul et al., 1989; Niemela et al., 1992; Novak et al., 1993; Brown et al., 1993; Piha & Hamalainen, 1994). Novak et al. (1993) examined the effect of respiration on heart rate and blood pressure variations in 14 men and 2 women (aged 23-37 years). Subjects were tested in the supine position in a light-attenuated room. Using a taped recording, the deepbreathing test consisted of inspiration-expiration in synchrony with each tone in a sequence of 100-ms beeps, with a progressive lengthening of the respiratory cycle from 2.17 to 20 seconds within an 8.5 minute interval. This resulted in a continuous slowing of the respiratory rate, from 0.46 to 0.05 Hz. Tidal volume was measured but not controlled. Data acquisition consisted of heart rate (by electrocardiogram, Lead II), respiratory signal (by nasal thermistor), and beat-to-beat blood pressure (noninvasively, by photoplethysmographic transducer, Ohmeda Finapres). The findings revealed a close nonlinear coupling between the respiratory and cardiovascular systems. The authors concluded that the amplitude of R-R variations was proportional to the tidal volume, and, for a given tidal volume, the amplitude of R-R interval variations increased as respiratory frequency decreased.

Saul *et al.* (1989) investigated the effect of respiration over a broad range of frequencies on autonomic regulation in both the supine and upright postures. Eighteen healthy non-smoking adult volunteers (10 male and 8 female, aged 21-34_years) participated in the study. Ventilatory intervals were controlled in an erratic manner, but mean respiratory frequency was 12 breaths/minute. Tidal volume was not controlled. Their findings indicate that rising heart rate is synchronous with respiration only at typical respiration frequencies between 0.15 and 0.25 Hz (9 and 15 breaths per min), and that the respiratory modulation of heart rate was lower in the upright posture.

Brown *et al.* (1993) determined the effect of breathing frequency and tidal volume on R-R interval power spectra in 9 healthy young adults (8 men and 1 woman, age 23-32 years) in the supine position. The authors also reviewed the literature to determine how the potential influence of respiration on the measurements of R-R interval power was being investigated in human studies. Their results showed that respiratory frequency (6 to 24 breaths/min) and nominal tidal volumes of 1000 and 1500 ml influenced low frequency (0.06-0.14 Hz) and respiratory frequency R-R interval power spectra. The R-R interval variability and_spectral power decreased as breathing frequency increased from 10 to 15_breaths/min. Slow breathing yielded large increases in low frequency power; low frequency power declined at \geq 10 breaths/min. The R-R interval power at respiratory frequencies increased as tidal volume increased. The authors concluded that
breathing frequencies of \leq 10 breaths/min resulted in maximum R-R interval power; breathing frequencies of \geq 10 breaths/min resulted in decreased R-R interval power in an inverse relationship to frequency. The authors also revealed that only 51% of human studies controlled respiratory rate, 11% controlled tidal volume, and 11% controlled both rate and tidal volume. Controlled ventilation,_however, may confound the variables under investigation by increasing the psychological stress response or by altering the normal mechanics of ventilation (Haggenmiller *et al.*, 1996).

Effects of Physiologic Perturbations on Modulation of Heart Rate Effects of Orthostatic Stress

The effects of orthostatic stress due to posture changes, i.e., sitting, standing or passive head up tilt, on heart rate variability and baroreflex sensitivity have been examined in numerous studies (Pomeranz *et al.*, 1985; Lipsitz *et al.*, 1989; Saul *et al.*, 1989; Rimoldi *et al.*, 1990; Butler *et al.*, 1993; Kamath *et al.*, 1991; Fei *et al.*, 1995; Smit, 1996). Normally, the upright posture produces deactivation of afferent nerve impulses from arterial baroreceptors, resulting in an increase in efferent sympathetic activity and a concurrent withdrawal of parasympathetic activity, to the SA node (Kamath *et al.*, 1991; Persson, 1996). Consequently, parasympathetic modulation of heart rate decreases and sympathetic modulation increases. Kamath *et al.* (1991) measured the power spectrum of heart rate variability in 19 healthy subjects in response to orthostatic stress and steady-state exercise, two

physiologic stresses normally associated with increased sympathetic activity. To test the effects of orthostatic stress, subjects were asked to stand upright after 15 minutes of supine rest, and then to maintain a free standing posture for 10 minutes. As the subjects stood upright, there was a substantial (51%) increase in the ratio of the low frequency to high frequency power, indicating an increase in sympathetic activity.

Pomeranz et al. (1985) used autonomic blocking agents and posture changes (supine, sitting, standing) to assess autonomic function in healthy men by heart rate spectral analysis. They also examined the effects of respiratory frequency and depth on these responses, by using a metronome to regulate respiratory rate. In the supine position, low frequency fluctuations (< 0.12 Hz) were mediated by the parasympathetic nervous system. On standing, the low frequency fluctuations increased and were mediated by both the sympathetic and parasympathetic nervous systems. In contrast, the high frequency fluctuations at a respiratory rate of 15 breaths per minute (0.25 Hz) decreased on standing, and were mediated solely by the parasympathetic nervous system in both the supine and standing postures. The authors concluded that sympathetic influences on heart rate are present only in the standing posture, whereas parasympathetic activity influences heart rate at both low and high frequencies in both supine and standing postures.

Fei *et al.* (1995) assessed responses to passive head up tilt by spectral analysis of heart rate variability. They found a significant decrease in high frequency power, a non-significant increase in low frequency power, and an increase in the ratio of low frequency to high frequency power in their healthy middle-aged control subjects. In survivors of sudden cardiac death, there was a significant decrease in high frequency power.

Lipsitz *et al.* (1990) analyzed heart rate variability by spectral analysis in response to 60 degree passive head up tilt in healthy young (18-35 years) and old (71-94 years) subjects. Old subjects had lower total power, high frequency power and low frequency power in both supine and tilt position than young subjects. During tilt, young subjects increased total power and low frequency power.

Butler *et al.* (1993) used CGSA to assess heart rate variability in response to 70 degree passive head up tilt in healthy young women and men. During tilt, the authors found a decrease in low frequency power, high frequency power and parasympathetic indicator, and an increase in sympathetic indicator.

Effects of Acute Exercise on Modulation of Heart Rate

Cardiovascular responses to exercise are regulated by neural, humoral and autoregulatory mechanisms (Stone, 1983). The neural factors include the autonomic nervous system, reflex mechanisms in working muscle and the baroreceptor reflexes. Central activation of the autonomic nervous system during exercise normally inhibits parasympathetic activity while stimulating sympathetic discharge, producing increases in heart rate, myocardial performance, and levels of catecholamines in plasma. The heart rate increases linearly in proportion to metabolic demand during physical exercise. Myocardial oxygen demand is determined by the type and amount of cardiac work and is estimated from the rate-pressure product (RPP). Active tissues respond to the metabolic demands of exercise by local vasodilation. Increased cardiac output, decreased peripheral vascular resistance, redistribution of blood flow to active muscles, venoconstriction, and increased oxygen extraction constitute these initial responses to exercise (Stone, 1983).

Several investigators have examined the effects of exercise on heart rate variability and baroreflex function (Kamath *et al.*, 1991; Yamamoto *et al.*, 1991; Nakamura *et al.*, 1993; O'Leary & Seamans, 1993; Potts *et al.*, 1993; Fei *et al.*, 1995; Shi *et al.*, 1995). Fei *et al.* (1995) found that submaximal exercise on a motorized treadmill (modified Bruce protocol) reduced total power, high frequency power, low frequency power and the sympathetic indicator.

Kamath *et al.* (1991) investigated the effects of steady-state exercise at 50% of maximum predicted power output on a cycle ergometer on the power spectrum of heart rate variability. In contrast to the effects of orthostatic stress, which increased the sympathetic indicator by 51%, steady-state exercise produced a suppression of both low and high frequency power spectra. The authors concluded that neuroregulatory factors exerted a major influence during orthostatic stress, but humoral factors were responsible for maintaining heart rate during steady-state exercise. However, the authors did not provide any evidence to support the latter conclusion. Similar results were reported by Arai *et al.* (1989), that moderate exercise on a cycle ergometer decreased both low and high frequency power, with no change in the ratio of low frequency to high frequency power.

Yamamoto *et al.* (1991) and Nakamura *et al.* (1993) studied the autonomic control of heart rate during exercise by measuring heart rate variability in healthy men and women. They reported that, during low intensity exercise, the parasympathetic effects on heart rate predominated; the parasympathetic effects diminished when exercise intensity exceeded 50% of peak oxygen uptake or a work rate equivalent to 60% of the ventilatory threshold (Tvent), allowing heart rate to increase. The sympathetic effects increased initially at 50-60% of peak oxygen uptake, and increased significantly further at >60% of maximal oxygen uptake, coinciding with marked increases in plasma epinephrine and norepinephrine.

Potts *et al.* (1993) studied carotid baroreflex responsiveness during exercise on a cycle ergometer to volitional fatigue in 7 healthy men (age 18-35 years). They utilized brief (5 seconds) perturbations to the carotid sinus by the neck pressure and neck suction method, at rest and during steadystate exercise at 25% and 50% of previously measured peak oxygen uptake. Arterial pressure was measured directly from the radial artery, and by finger photoplethysmography (Finapres, Model 2300, Ohmeda). Data were collected during a 10-12 second held breath at end expiration, to minimize the respiratory modulation of heart rate and mean arterial pressure. Results suggested that there was an upward resetting of the carotid baroreflex to a higher range of systemic pressure during exercise at 50% peak oxygen uptake, with no attenuation in maximal gain or sensitivity.

Shi *et al.* (1995) studied aortic-cardiac baroreflex responsiveness to low intensity cycle exercise (25% of previously measured maximum oxygen consumption) in 10 young adults. Carotid and aortic baroreceptors were isolated during the measurements by using neck pressure, low level lower body negative pressure, and phenylephrine infusion. Baroreflex function was calculated as the ratio of the change in heart rate to change in mean arterial pressure. Their results showed that, during supine rest and steady-state exercise, aortic baroreceptors predominated over carotid baroreceptors in the modulation of heart rate.

O'Leary and Seamans (1993) examined the effects of moderate exercise on the baroreflex control of heart rate in conscious dogs, and whether the autonomic mechanisms mediating arterial baroreflex control differed between rest and exercise. Studies were conducted before and after infusions of either phenylephrine or nitroglycerine, and were repeated after parasympathetic blockade by atropine, then beta-adrenergic sympathetic blockade by propranolol, during rest and exercise. Results revealed that, during control studies at rest and during moderate exercise, baroreflexmediated changes in heart rate were greater in response to decreases than to increases in mean arterial pressure. Furthermore, at rest, bradycardia was mediated by parasympathetic activation, but tachycardia was the result of combined parasympathetic inhibition and sympathetic activation. During moderate exercise, the authors found that the magnitude of the baroreflex response was unchanged. However, the autonomic mechanisms mediating the baroreflex changes in heart rate were altered, in that baroreflex tachycardia and bradycardia were due to changes in both parasympathetic and sympathetic tone.

Effects of Cardiovascular Disease on Modulation of Heart Rate

Craelius *et al.* (1991) measured heart rate variability during early recovery after a myocardial infarction (MI) to determine autonomic nervous system activity. Eight men who had suffered an MI within the previous 2-6 weeks were compared with 8 age matched controls free of cardiac disease, and with 8 patients who had had an MI more than 1 year previously. Postural changes, using a motorized tilt table were used to elicit changes in heart rate and heart rate variability. Breathing rates were within normal range (11-17 breaths per minute). Their results indicated that, during early recovery following MI, parasympathetic nervous system activity is depressed. These findings were consistent with the early results of Kleiger *et al.* (1987) and Bigger *et al.* (1988), who found reduced heart rate variation in recent MI patients, and Schwartz *et al.* (1988), who found reduced baroreflexes in patients following MI. Decreased heart rate variation and depressed baroreflex activity are suggestive of reduced parasympathetic activity. Moreover, Lombardi *et al.* (1987) demonstrated increased sympathetic activity in addition to decreased parasympathetic activity in subjects within 2 weeks of an MI. These findings have implications for sympatheticallymediated cardiac rate and rhythm disturbances.

Effects of CABG Surgery on Modulation of Heart Rate

During the surgical procedure several cardiac control mechanisms are disrupted by manipulation of the heart, cardiac autonomic nerves and coronary arteries; by aortic clamping and vein grafting; and by cardiopulmonary bypass (Yang *et al.*, 1994). Mechanical injury to cardiac autonomic nerves, baroreceptors in the aortic arch, and the SA node can alter heart rate regulation postoperatively (Piha & Hamalainen, 1994; Yang *et al.*, 1994). These factors may contribute to the sinus tachycardia and labile blood pressure observed during the early postoperative and post-discharge periods (Niemela *et al.*, 1992; Komatsu *et al.*, 1994; Piha & Hamalainen, 1994). Trauma to the efferent fibres of either the sympathetic or the parasympathetic division of the cardiac autonomic nervous system alters the balance between the two divisions on the modulation of heart rate. Damage to aortic baroreceptors due to aortic clamping and manipulation during vein grafting may limit afferent input. The duration of these effects during early recovery from surgery has not been established.

Yang *et al.* (1994) utilized power spectral analysis to examine changes in autonomic function during unspecified cardiac surgery in 10 patients. Results were as follows: the sympathetic indicator decreased after induction of anaesthesia, during bypass, and after surgery; low frequency and very high frequency areas decreased during bypass. These findings may indicate a shift in dominance to the parasympathetic division of the autonomic nervous system during surgery. Baroreflexes, however, were not studied.

Niemela *et al.* (1992) studied the effect of CABG surgery on parasympathetic function by spectral analysis of heart rate variability and heart rate response to deep-breathing. Thirty-five patients (27 men, 8 women) were studied on the day before and one week after CABG surgery; twenty-six of these patients were also evaluated six weeks after surgery. In the supine position, subjects performed four maximal inspirations and expirations at the rate of six cycles per minute. The heart rate response to deep-breathing was assessed as the mean difference between maximum and minimum heart rates during the deep-breathing cycles. Tidal volume during deep-breathing was not reported. The authors observed depressed autonomic function in low frequency (0.00-0.07 Hz), mid-frequency (0.07-0.15 Hz) and high frequency (0.15-0.50) power after surgery, and a marked attenuation of heart rate variability and heart rate response to deep-breathing. These reductions persisted for six weeks after surgery. Thus, the authors concluded that CABG surgery caused irreversible impairment of parasympathetic modulation of heart rate, which they attributed to perioperative mechanical injury to the autonomic nerve fibres or the SA node. However, loss of afferent input from aortic baroreceptors may contribute to this impairment, in addition to injury to efferent parasympathetic fibres.

Komatsu *et al.* (1994) analyzed heart rate variability in 9 patients before and 1, 3, 7, 14, 21, and 28 days after unspecified open heart surgery. Results were that low frequency, mid-frequency, and high frequency components of the power spectral analysis all decreased postoperatively, compared with the preoperative (control) values. These findings suggest that cardiac surgery inhibits all autonomic control of the heart, and are consistent with the results of Niemela et al. (1992). However, the effects of surgery on cardiac baroreflexes were not studied.

Piha & Hamalainen (1994) studied the effects of CABG surgery on cardiovascular reflexes in 15 subjects, by measuring the heart rate and beatto-beat blood pressure responses to the deep-breathing test, the Valsalva manoeuver and standing. Their results revealed that supine and standing heart rate increased after CABG surgery, that the indices reflecting parasympathetic function were attenuated after CABG surgery, and that CABG surgery had no effect on beat-to-beat blood pressure. The authors concluded that the attenuation of heart rate was due to perioperative damage to efferent nerves or to the effector organ (i.e., the SA node), and not to baroreceptor dysfunction. These findings have not been confirmed by other investigators.

Effects of CABG Surgery on Myocardial Function

Cardiac function may be altered as a result of CABG surgery, due to decreased autonomic (both sympathetic and parasympathetic) nervous control (Komatsu et al. 1994). Injury to efferent parasympathetic nerves during surgery may attenuate the inhibitory effects on atrioventricular conduction tissue and on the atrial and ventricular myocardium (Berne & Levy, 1997). Attenuation of parasympathetic effects, which reportedly persists for at least 6 weeks after surgery, may lower the threshold for the stimulatory effects of sympathetic stimuli or circulating catecholamines to occur during stress or physical activity (TFESCNASPE, 1996). Consequently, the sympathetic effects may occur even at a low intensity of exercise or physical activity during the early post-discharge period. This resulting sensitivity of myocardial tissue to local or circulating vasoconstrictors may trigger cardiac irritability, atrial and ventricular dysrhythmias and distressing symptoms during moderate intensity exercise. Moreover, the depressed autonomic nervous function of the heart has been implicated in postoperative cardiac dysfunction and failure (Komatsu et al., 1994).

Effects of Acute Exercise following CABG Surgery

Moderate intensity exercise. Performing moderate intensity exercise during the early weeks after CABG surgery increases the incidence, symptoms, and potential risks of cardiac arrhythmias, coronary artery spasm, myocardial ischemia, and sudden cardiac death (Dion et al., 1982; Rod et al., 1982; Silvidi et al., 1982; Ehsani et al., 1984; Christopherson et al., 1984; Foster et al., 1984; Gwirtz & Stone, 1984; Bove & Dewey, 1985; Hanson et al., 1985; Hands et al., 1987; DiCarlo et al., 1988; Chilian et al., 1989; Grondin et al., 1989). Dion et al. reported that the incidence of ventricular arrhythmias was 70% during exercise two weeks postoperatively, whereas Hartman et al. (1981) reported an incidence of 22% at four weeks recovery. Evidence for myocardial ischemia occurred in 30% of patients at two weeks post-surgery (Silvidi et al., 1982), and only 14% at twelve weeks (Hanson et al., 1985). These responses may be due to the combined effects of (1) impaired neural regulation which may lower the threshold for the stimulatory sympathetic effects on heart rate to occur (TFESCNASPE, 1996), (2) the supersensitivity of myocardial tissue and coronary arteries to circulating plasma catecholamines during the first few weeks after CABG surgery, and, (3) the increased plasma catecholamine levels which rise as a function of exercise intensity (Yamamoto et al., 1991; Nakamura et al., 1993; TFESCNASPE, 1996).

Attenuation of the parasympathetic modulation of heart rate has implications for heart rate response during acute moderate intensity exercise. In addition, the early supersensitivity of cardiac tissue may trigger atrial or ventricular arrhythmias at a lower concentration of plasma catecholamines than usual (Grondin *et al.*, 1989), and may account, in part, for the frequency of atrial and ventricular arrhythmias observed during the early post-discharge period (Huikuri *et al.*, 1995; TFESCNASPE, 1996). Moreover, individuals with cardiovascular disease are more sensitive than others of similar age to the vasoconstrictor effects of circulating catecholamines (Shephard, 1982).

Low intensity exercise. The guidelines of the American College of Sports Medicine (ACSM) (1995) recommend low intensity exercise, between 40 and 60% of maximum oxygen uptake (VO_{2max}) for deconditioned people and during early recovery after CABG surgery. During low intensity exercise in healthy adults, parasympathetic modulation of heart rate predominated; parasympathetic modulation diminished when exercise intensity exceeded 50% of peak oxygen uptake (Yamamoto *et al.*, 1991; Nakamura *et al.*, 1993). Thus, low intensity exercise after CABG surgery reduces the sympathetically-mediated risks associated with moderate intensity exercise (TFESCNASPE, 1996).

Two recent studies by this investigator evaluated the cardiovascular responses of men to a low-level graded exercise test at discharge, and six

and twelve weeks following discharge after CABG surgery (Brown, 1990; Brown *et al.*, 1992; Brown *et al.*, 1994}. In the first study (Brown, 1990; Brown *et al.*, 1994), in subjects who were on a low intensity exercise conditioning regime, resting heart rate declined from 101 to 86 beats-min⁻¹ six weeks later. Responses to acute treadmill exercise, using a modified Naughton protocol, revealed that peak exercise heart rate increased linearly with increases in functional capacity, from 121 beats-min⁻¹ at discharge, to 134 beats-min⁻¹ at six weeks, and 136 beats-min⁻¹ at twelve weeks. Systolic blood pressure at peak exercise also increased, from 146 mm Hg at discharge to 166 mm Hg at six weeks. Whether the increase in heart rate with acute exercise was due to decreased parasympathetic and/or increased sympathetic effects was not determined. Similarly, the autonomic mechanisms responsible for the decline in resting heart rate after a conditioning program were not studied.

The second study (Brown *et al.*, 1992) replicated the exercise conditioning and low-level graded exercise testing components of the first. Resting heart rate and rate-pressure product declined, and systolic blood pressure increased from discharge to twelve weeks. Peak exercise heart rate, systolic blood pressure, and rate-pressure product increased in relation to the increase in functional capacity during treadmill testing. The autonomic and baroreflex mechanisms responsible for these responses, however, were not measured. Neither of these studies investigated the responses of women.

Effects of Age on Modulation of Heart Rate

Increasing age is reported to be associated with a loss of heart rate variability and baroreflex sensitivity (Pagani et al., 1986; Docherty, 1990; Lipsitz et al., 1990; Ryan et al., 1994; Liao et al., 1995; Shi et al., 1996; Stanley et al., 1996; Poller et al., 1997; Laitinen et al., 1998; Brodde & Michel, 1999). Lipsitz et al. assessed changes in autonomic function in two conditions: aging and vasovagal syncope, representing extremes of autonomic activity. Healthy human subjects included 12 young (5 women, 7 men; median age, 21.5 years; range, 18-35 years) and 10 old individuals (6 women, 4 men; median age, 76.5 years; range, 71-94 years). After 1 hour of supine rest, subjects were inclined, over 10 seconds, from 0 degrees to 60 degrees, by means of a tilt table. They were maintained in the inclined position for 15 minutes. During postural tilt, heart rate variability was unchanged for the old subjects, but increased for the young subjects. The findings revealed that old subjects have lower total power in supine and tilt positions, lower high frequency power in both positions, and either absent or attenuated low-frequency activation during tilt than younger subjects, confirming earlier reports that elderly subjects have a restricted range of responsiveness to physiological stress.

Poller *et al.* (1997) examined baroreceptor sensitivity and muscarinic receptor function in young (22-29 years) and older (54-67 years) healthy men. Baroreceptor function was evaluated by acutely altering arterial pressure by intravenous injection of phenylephrine, and measuring the degree of R-R interval change in response to the degree of change in arterial pressure. Muscarinic receptor function was evaluated by intravenous injection of atropine sulphate and pirenzepine over 5 min in increasing doses and measuring the blood pressure at one min intervals. The results showed that atropine sulphate in low doses caused a significant decrease in heart rate in young but not older subjects; in higher doses, there was a dosedependent decrease in heart rate that was similar in both groups. Low dose pirenzepine had similar effects on heart rate as atropine sulphate; in contrast, higher doses caused a slight increase in heart rate for both groups. Phenylephrine resulted in a significantly larger increase in systolic blood pressure and a smaller decrease in R-R interval in the older subjects than in the younger subjects. The authors concluded that cardiac muscarinic receptor activity diminished with increasing age and may explain the decrease in baroreceptor function.

Effects of Gender on Modulation of Heart Rate

Several cardiac structural and functional differences exist between women and men. Women have smaller left ventricular chamber size and myocardial mass, even after body surface area and height have been considered, and lower cardiac pump and myocardial performance than men (Cowley & Dzau, 1992; Douglas et al., 1992). Heart rate in women is higher than that of men for any given absolute cardiac output or oxygen uptake; women have smaller hearts and smaller stroke volumes (Cowley & Dzau, 1992; Douglas *et al.*, 1992). Gender-related differences in plasma catecholamines and the autonomic nervous system may contribute to differences in responses to exercise and non-exercise stress (Cowley & Dzau, 1992; Douglas *et al.*, 1992). Women secrete more plasma catecholamines during exercise than men and the age-related increase in blood pressure during exercise is greater in women. Women have a 14%-15% lower maximal oxygen uptake than men and a lower arterial oxygen content at rest, which may be attributed to lower hemoglobin levels in women (Cowley & Dzau, 1992; Mitchell *et al.*, 1992).

The comparison of the effects of gender on heart rate variability and baroreflex sensitivity has been reported for healthy women and men. Ryan *et al.* (1994) analyzed heart rate variability by spectral analysis in 67 healthy subjects in three age groups: young (20-39 years, n = 21), middle-aged (40-64 years, n = 26) and elderly (> 65 years, n = 20). Measurements were made in the supine position during spontaneous breathing and during metronome breathing at 15 breaths/min. Results revealed that, overall, women had higher high frequency power and higher high frequency to low frequency power ratio, and lower low frequency power than men. The high frequency to low frequency power ratio was used as an index of parasympathetic relative sympathetic nervous system tone, and was significantly different between women and men in the young and elderly groups, but not in the middle-aged group. Most of the gender differences occurred in the high frequency power; high frequency power was enhanced by metronomic breathing.

Liao *et al.* (1995) studied the influence of age, race, and sex on autonomic cardiac function in the supine position by spectral analysis of heart rate variability in a large random sample of the general population; low frequency (0.25-0.15 Hz) and high frequency (0.16-0.35 Hz) bands were calculated from the power spectrum. This investigation was part of the Atherosclerosis Risk in Communities (ARIC) study. Results were that women, after adjusting for age and race, showed lower low frequency power, and higher high frequency to low frequency ratio than men; high frequency power was not significantly different between women and men.

Huikuri *et al.* (1996) studied heart rate variability in middle-aged (mean age, 50 + 6 years) women (n = 186) and men (n = 188) in supine and sitting positions, and studied baroreflex sensitivity in the sitting position only. Results showed that blood pressure, baroreflex sensitivity, low frequency power and low frequency to high frequency power ratio were lower in women than men; high frequency power was higher in women. The authors concluded that baroreflex responsiveness is attenuated in women, that low frequency power reflects baroreflex-mediated oscillations in arterial pressure, and that tonic vagal activity is augmented in women. In addition, women's responses to cardiovascular unloading in the sitting position compared with

supine was smaller than men's responses, suggesting that vagal responses were attenuated in women.

Laitinen et al. (1998) reported that baroreflex sensitivity was dependent on age and gender in 117 healthy subjects. The subjects were divided into three age groups: young (23-29 years, n = 44), middle-aged (40-59 years, n = 38) and old (60-77 years, n = 35), with approximately an equal number of men and women in each group. Heart rate variability and baroreflex sensitivity were assessed in the supine position, in response to intravenous injections of phenylephrine, and in response to exercise to capacity on a cycle ergometer. Venous blood samples for plasma levels of catecholamines, insulin, arginine vasopressin, and plasma renin activity were taken prior to the phenylephrine tests. Results were that women had lower body mass index, exercise capacity and very low frequency power (0-0.07 Hz) than men, and higher heart rate than men. Baroreflex sensitivity correlated inversely with aging in men and women; baroreflex slopes were lower in women over all age ranges. Young and middle-aged women had lower baroreflex slopes than men in the same age groups. Age and gender together accounted for 52% of the variance in baroreflex sensitivity. Baseline plasma norepinephrine increased with aging whereas baseline plasma renin activity decreased with aging; there were no differences between women and men. An important finding was that 24% of middle-aged and old healthy women had markedly depressed baroreflex sensitivity, which has been

associated with increased risk of arrhythmias following myocardial infarction. Low barcreflex sensitivity was correlated with elevated blood pressure, and inversely correlated with plasma norepinephrine concentration, an indicator of sympathetic activity. Baroreflex sensitivity also correlated with heart rate variability. Thus, the authors concluded that baroreflex sensitivity was influenced by both divisions of the autonomic nervous system.

Dougherty (1999) studied heart rate variability and baroreflex sensitivity in healthy middle-aged (40-60 years) men and women in supine and standing positions, with breathing frequency paced at 12 breaths/min. She reported that middle-aged women had higher high frequency power in both supine and standing postures than men. Dougherty also found that supine baroreflex sensitivity was higher in women compared with men, that baroreflex sensitivity decreased in the standing position compared with supine in men and women, and that there was no significant difference between men and women in standing baroreflex sensitivity.

In general, women bypass patients are older than men, have a greater reported incidence of post-surgical complications and symptoms of chest discomfort consistent with angina, shortness of breath, and a lower graft patency rate, particularly of saphenous vein grafts (Zyzanski *et al.*, 1981; Becker, 1990; Cowley & Dzau, 1992; Wenger *et al.*, 1993; Heart & Stroke Foundation of Canada, 1999). Despite gender differences in body composition, cardiac size and function, neural and hormonal influences, very little is known about the course of recovery for women after CABG surgery. In women with ischemic heart disease following CABG surgery, baroreflex and autonomic modulation of heart rate has not been studied.

<u>Summary</u>

Cardiovascular disease and aging are associated with decreased heart rate variability and reduced baroreflex sensitivity (Schwartz *et al.*, 1988; Craelius *et al.*, 1991; Lipsitz *et al.*, 1990). Typically, men who undergo CABG surgery are over 40 years of age; women are approximately 10 years older than men (Heart & Stroke Foundation of Canada, 1997). Thus, in addition to gender differences, the higher age of women than men in this population may contribute to differences between them in autonomic modulation of heart rate. Healthy women and age-matched men differ in measures of heart rate variability and baroreflex sensitivity (Ryan *et al.*, 1989; Huikuri *et al.*, 1996; Dougherty, 1999). Elderly subjects have a restricted range of cardiovascular responsiveness to physiological stress in both supine and tilt positions (Lipsitz *et al.*, 1990).

Physiological factors, such as breathing frequency and tidal volume, influence heart rate and rhythmic variations in R-R interval (Saul *et al.*, 1989; Brown *et al.*, 1993; Novak *et al.*, 1993; Haggenmiller *et al.*, 1996). Novak *et al.* (1993) concluded that the amplitude of R-R variations was proportional to the tidal volume, and, for a given tidal volume, the amplitude of R-R interval variations increased as respiratory frequency decreased. Saul *et al.* (1989)

reported that increasing heart rate is synchronous with respiration only at typical respiration frequencies between 0.15 and 0.25 Hz (9 and 15 breaths/min), and that the respiratory modulation of heart rate was lower in the upright posture. Similarly, Brown et al. (1993) showed that R-R interval variability and spectral power decreased as breathing frequency increased above 10 breaths/min; the R-R interval power at respiratory frequencies increased as tidal volume increased from 1000 to 1500 ml. The authors concluded that breathing frequencies of < 10 breaths/min resulted in maximum R-R interval power; breathing frequencies of > 10 breaths/min resulted in decreased R-R interval power in an inverse relationship to frequency. Typically, in subjects during the first week following CABG surgery, breathing frequency is higher than 10 breaths/min in the resting state and during physical perturbations. Several factors contribute to this rapid respiratory rate: 1) reduced oxygen carrying capacity postoperatively due to low hemoglobin, 2) altered mechanics of ventilation due primarily to the sternal incision, resulting in low tidal volume and 3) atelectasis due to prolonged immobility during surgery and postoperatively. Consequently, respiratory rate increases; the combination of low tidal volume and increased respiratory frequency may decrease heart rate variability in this population.

Physiologic perturbations, such as orthostatic stress and acute physical exercise decrease heart rate variability and baroreflex sensitivity (Pomeranz *et al.*, 1985; Lipsitz *et al.*, 1989; Saul *et al.*, 1989; Rimoldi *et al.*,

1990; Kamath et al., 1991; Yamamoto et al., 1991; Butler et al., 1993; Nakamura et al., 1993; O'Leary & Seamans, 1993; Potts et al., 1993; Fei et al., 1995; Shi et al., 1995; Smit, 1996). Pomeranz et al. (1985) reported that high frequency heart rate variability decreased on standing, but was mediated solely by parasympathetic activity in both supine and standing postures. Kamath et al. (1991) revealed that, compared with the supine position, the free standing posture elicited a substantial (51%) increase in sympathetic activity. Fei et al. (1995) found that submaximal exercise reduced total power, high frequency power, low frequency power and the sympathetic indicator. Yamamoto et al. (1991) and Nakamura et al. (1993) reported that, during low intensity exercise, the parasympathetic effects on heart rate predominate; the parasympathetic effects diminish when exercise intensity exceeds 50% of peak oxygen uptake. The sympathetic effects increase initially at 50-60% of peak oxygen uptake, and increase further at >60% of maximal oxygen uptake, coinciding with marked increases in plasma epinephrine and norepinephrine.

CABG surgery may attenuate the rapid and short-term adaptations in heart rate variability and baroreflex sensitivity required by standing and exercise. In addition to intraoperative trauma to efferent cardiac autonomic nerves and the SA node, the postoperative increase in respiratory frequency could contribute to the reduced autonomic modulation of heart rate during supine rest and in response to standing and exercise. The duration of the postoperative decline in autonomic modulation of heart rate beyond six weeks postoperatively has not been reported. Yang *et al.* (1994) found that there was a decrease in sympathetic indicator during and after CABG surgery, and a shift in dominance of the parasympathetic modulation of heart rate. Komatsu *et al.* (1997) and Niemela *et al.* (1992) reported that CABG surgery attenuated all autonomic activity. Niemela *et al.* concluded that the attenuation of parasympathetic activity was irreversible.

Purpose of the Study

The primary purposes of this research were 1) to describe the effect of ischemic heart disease on heart rate variability and spontaneous baroreflex sensitivity in men and women in supine and standing postures (Study 1); 2) to assess the effect of CABG surgery on heart rate variability and spontaneous baroreflex sensitivity, in men and women in supine and standing postures Study 2); 3) to assess effect of 12 weeks recovery following CABG surgery on heart rate variability and spontaneous baroreflex sensitivity, in men and women in supine and standing postures (Study 2); 3) to assess effect of 12 weeks recovery following CABG surgery on heart rate variability and spontaneous baroreflex sensitivity, in men and women in supine and standing postures (Study 3); 4) to assess the effect of low intensity exercise 6 and 12 weeks recovery following CABG surgery on heart rate variability and spontaneous baroreflex sensitivity, in men and women (Study 4). A secondary purpose in Study 4 was to determine the influence of tidal volume and breathing frequency in the supine posture and during exercise.

CHAPTER 3

Study 1

Autonomic Modulation of Heart Rate in Women and Men with Ischemic Heart Disease

Ischemic heart disease, defined as any condition in which cardiac muscle is damaged, or functions inefficiently, due to inadequate coronary blood flow, causes 21% of all deaths annually in Canada (Heart and Stroke Foundation of Canada, 1999). Mortality rates in men increase gradually after 35 years of age; in women, the rates increase dramatically after menopause (Cardiovascular Disease and Women, 1996; Heart & Stroke Foundation of Canada, 1997; 1999).

Decreased heart rate variability, implying a reduction in the parasympathetic modulation of heart rate, has been reported following myocardial infarction (Akselrod *et al.*, 1981; Kleiger *et al.*, 1987; Pagani *et al.*, 1988; Schwartz *et al.*,1988; Billman & Hoskins, 1989; Bigger *et al.*, 1992; Huikuri *et al.*, 1995; Copie *et al.*, 1996), in hypertension (Guzzetti *et al.*, 1988; Pagani *et al.*, 1988; Parati *et al.*, 1988; Malliani *et al.*, 1991; Craelius *et al.*, 1992), and during unstable angina (Huang *et al.*, 1995). Moreover, sympathetic activity increases following myocardial infarction (Lombardi *et al.*, 1987). This shift in autonomic balance, due to decreased parasympathetic activity and increased sympathetic activity, increases the

NOTE TO USERS

Page(s) not included in the original manuscript and are unavailable from the author or university. The manuscript was microfilmed as received.

52

This reproduction is the best copy available.

ŮMI

cardiovascular system to adapt to rapidly changing stimuli (Akselrod *et al.*, 1981), 2) an increase in the potential for sympathetically-mediated cardiac dysrhythmias, and 3) an increase in the risk for sudden cardiac death (Algra *et al.*, 1993; Huikuri *et al.*, 1995; TFESCNASPE, 1996). Decreased SBR sensitivity reflects a reduced ability of the cardiovascular system to adapt to rapidly changing stimuli (Akselrod *et al.*, 1981; Dampney *et al.*, 1994; Smit *et al.*, 1996; Hainsworth, 1996). Decreased heart rate variability following myocardial infarction is predictive of mortality. Thus, it is important to identify men and women with ischemic heart disease who may be at risk for sudden cardiac death.

This study assessed SBR sensitivity and autonomic modulation of heart rate in middle aged men and women with ischemic heart disease in the supine posture and during free standing. Based on gender differences in healthy men and women, we hypothesized that women would show lower SBR sensitivity and low frequency power, and higher high frequency power and parasympathetic indicator, than men. We hypothesized that the indices of parasympathetic modulation, including SBR sensitivity, high frequency power, and the parasympathetic indicator would decrease, and that low frequency power and the sympathetic indicator would increase, as a function of posture from supine to standing in men and women.

Methods

Subjects

Subjects were recruited from a population of men and women with ischemic heart disease who were scheduled for elective coronary artery bypass graft (CABG) surgery at Kingston General Hospital. Those who met the eligibility criteria were recruited following admission to hospital on the day prior to their scheduled CABG surgery. The study design and informed consent form was approved by the Queen's University Faculty of Health Sciences and Affiliated Hospitals Research Ethics Board.

Patients were eligible to participate in the study if they were Englishspeaking, \leq 70 years of age, whose preoperative ejection fraction was \geq 40% as determined by coronary angiography, and whose physician confirmed health status and consented to patient participation. Exclusion criteria were: myocardial infarction (MI) within the previous 3 months; unstable angina pectoris at rest or with minimal exertion; cardiac electrical instability; extreme fatigue or dyspnea at rest; postural or supine hypotension (systolic BP < 90 mmHg) or hypertension (systolic BP > 240 mmHg) at rest. Thirty-eight eligible patients, 13 women and 25 men, participated in the study.

<u>Procedure</u>

Prior to testing, subjects provided biographical information on age, marital status, occupation & occupational status, family and personal history, lipid

profile, blood pressure, smoking behaviour, normal activity profile, and current use of cardiovascular medications. Body height, body mass, and results from coronary angiography, exercise stress testing and pre-admission medical examination were obtained with permission from their medical records.

<u>Supine Position.</u> Subjects lay in the supine position on a comfortable cot in a quiet, light attenuated room on the hospital unit. They remained awake, but relaxed during 20 minutes of data recording (Parlow *et al.*, 1995). They were advised not to speak or move during this time. With the help of a metronome, subjects paced their respiratory rate at a frequency of 12 breaths per minute. R-R interval and beat-by-beat blood pressure data were collected for 20 minutes; data collected during the last 10 minutes, for at least 512 cardiac cycles, were analyzed (Blaber *et al.*, 1995a; 1995b).

Standing Position. Following supine testing, subjects stood upright beside the cot and maintained a free standing posture for a period of 15 minutes (Kamath *et al.*, 1991). They were advised not to speak or move during the testing, unless they experienced symptoms of dizziness or light-headedness, shortness of breath, or palpitations. Spontaneous breathing rate was between 12 and 16 breaths per minute. Following 5 minutes of equilibration in the standing position, R-R interval and beat-to-beat blood pressure data were collected for 10 minutes during standing, for a minimum of 512 cardiac cycles (Blaber *et al.*, 1995a; Blaber *et al.*, 1995b). Data Collection. The computer program "Data Collection of Beat-by-Beat Heart Rate and Blood Pressure" (Hughson & Yamamoto, 1993) was used for data acquisition of R-R interval and beat-by-beat finger arterial blood pressure. Standard surface electrocardiographic (ECG) electrodes were placed on the subjects; lead II was employed to provide the best amplitude of R waves of the QRS complexes. The R-R interval data were obtained continuously for a minimum of 512 cardiac cycles (Blaber *et al.*, 1995), using a Spacelab 514T cardiac monitor with a QRS detector. The analog R-R interval output from the cardiac monitor was digitized by an analog-digital converter (DAS-16, Metrabyte) at a sampling rate of 1000 Hz.(Yamamoto *et al.*, 1991; Parlow *et al.*, 1995). This provided an R-R interval accuracy of 1ms. The digital R-R output from the cardiac monitor was stored on an IBMcompatible personal computer for later spectral analysis according to the methods of (Yamamoto & Hughson, 1991; Parlow *et al.*, 1995).

Arterial blood pressure was measured on a beat-by-beat basis by the Finapres 2300 digital automated blood pressure monitor (Datex-Ohmeda, Rexdale, Ontario), by finger photoplethysmography, using the unloaded artery principle. This method is reliable in tracking beat-by-beat changes in arterial blood pressure (Lal *et al.*, 1995; lellamo *et al.*, 1996). A finger cuff was placed on the middle phalanx of the middle finger and connected to a transducer that was placed on top of the hand and aligned with the left ventricle of the heart, at approximately the fourth intercostal space in the mid-axillary line. In the supine position, this was achieved with a pillow under the arm to raise the level of the transducer. In the standing position, the hand was positioned comfortably on a cushioned vertically movable table (lellamo *et al.*, 1996).

Spectral Analysis of Heart Rate Variability. The computer program "Analysis of Beat-by-Beat Heart Rate and Blood Pressure" (Hughson & Yamamoto, 1993) was used for spectral analysis of R-R interval variability. Frequency domain methods of analysis of heart rate variability, using power spectral analysis, provide data on how power (variance) distributes as a function of frequency (TFESCNASPE, 1996). Spectral analysis transforms the time signal of continuous R-R interval data into their frequency components, including both harmonic and nonharmonic (fractal) components. After searching and filtering the raw R-R interval data for extra or missing beats, fast Fourier transformation converts the time series R-R interval data into an interval tachogram. Spectral analysis methods are recommended for short-term data recordings, from 2 to 5 minutes (TFESCNASPE, 1996).

For this study, coarse graining spectral analysis (CGSA) was used to analyze the R-R interval data (Yamamoto *et al.*, 1991; Yamamoto & Hughson, 1991). This method extracted the very low frequency component (i.e., the fractal dimension) from the total power of the power spectrum, thereby facilitating the definition of the high frequency and low frequency power peaks. Thus, total power was separated into harmonic and nonharmonic (fractal) components; the harmonic component was further divided into low frequency and high frequency components (Yamamoto & Hughson, 1991; Nakamura *et al.*, 1993). Low frequency (0-0.15 Hz) and high frequency (0.15-1.00 Hz) power, expressed in ms²/Hz, were calculated from R-R interval data obtained in the supine position and during standing (Yamamoto *et al.*, 1991; Yamamoto & Hughson, 1991). Parasympathetic modulation was considered to be the ratio of high frequency power to total spectral power; sympathetic modulation, the ratio of low frequency to high frequency power (Yamamoto & Hughson, 1991).

<u>SBR Sensitivity</u>. SBR sensitivity (ms/mmHg), determined by the sequence method, reflects the R-R interval (ms) response to changes in arterial blood pressure (mmHg) (Hughson *et al.*, 1993; Blaber *et al.*, 1995a; Blaber *et al.*, 1995b; Parlow *et al.*, 1995). The SBR method is a valid measure of SBR sensitivity when compared with the drug-induced method (Parlow, 1993; Parlow *et al.*, 1995). Hughson *et al.* (1993) found that the sequence method of determining SBR sensitivity yielded similar results for SBR slope as the spectral analysis method (Hughson *et al.*, 1993; Blaber *et al.*, 1995a; b).

A SBR sequence was defined as a series of at least 3 consecutive heart beats in which systolic blood pressure and the following R-R interval either both increased or both decreased (Parati *et al.*, 1988; Hughson *et al.*, 1993; Blaber *et al.*, 1995a; b). Computer analysis of continuous recordings of beatby-beat blood pressure and R-R interval data identified sequences of spontaneously fluctuating blood pressure accompanied by parallel variations in R-R interval. Linear regression was calculated to determine the slope for each SBR sequence; subsequently, the mean slope for all SBR sequences with r² values > 0.85 was calculated. SBR sensitivity was expressed as the mean slope of the SBR sequences, which represented the beat-by-beat interaction between systolic blood pressure (mmHg) and R-R interval (ms), in ms/mmHg.

Statistical Analysis

The variables of importance for statistical analysis of SBR sensitivity included SBR slope, systolic blood pressure and R-R interval. The variables of importance for statistical analysis of heart rate variability included fractal power, high frequency power, low frequency power, total harmonic power, total power, the ratio of high frequency to total power (parasympathetic indicator) and the ratio of low frequency to high frequency power (sympathetic indicator). The standard deviation (SD) of the normal to normal (SDNN) R-R interval was also analyzed as a time-domain measure of heart rate variability. Student *t*-statistics were done to determine if the two groups differed in any of these variables.

Descriptive statistics were used to determine the means and standard deviations of the following characteristics in the male and female groups: age, body surface area (BSA) and ejection fraction (EF). Student *t*-statistics were used to determine if the two groups differed in any of these variables.

Repeated measures analysis of variance (ANOVA), with gender (two levels: women, men) as the between-subjects factor, and condition (two levels: supine, standing) as the within-subjects factor, was done to determine if there were any significant differences due to the experimental condition between men and women. Subsequently, repeated measures ANOVA was conducted separately for women and men to determine the differential effect of condition on each group. Differences for all analyses were significant at $\underline{p} < .05$.

Results

Sample Characteristics

The characteristics of the sample are presented in Table 3.1. Women (n = 13) were significantly older, and had significantly lower BSA, than men (n = 25). The mean age for women was 64 years (range 54-70 years); for men, the mean age was 56 years (range 45-68 years). For clinical and ethical reasons, subjects continued to take their cardiovascular medications until the day of CABG surgery. These included ß-adrenergic antagonists (men, 56%; women, 50%), calcium channel antagonists (men, 32%; women, 83%), nitrates (men, 32%; women, 42%) and angiotensin converting enzyme (ACE) inhibitors (men, 12%; women, 0.2%). Twelve of the 13 women were postmenopausal; three women were taking unopposed estrogen replacement.

Variable	Women	Men (all)	Women > 55	Men>55 years
	(all)		years	
	(n = 13)	(n = 25)	(n = 12)	(n = 12)
Age (years)	64 ± 5	56 ± 8#	65 ± 4	63 ± 4
Body Surface Area (m ²)	1.8 ± 0.1	2.0±0.2#	1.8 ± 0.1	2.0±0.2#
Ejection Fraction (%)	55 ± 8	60±8	56±8	58±8

Table 3.1: Sample Characteristics for Women and Men

Values are means \pm SD.

Significant difference between genders, p < .05.

Because the male and female groups were significantly different in age, the data were analyzed for all women and men over 55 years (women, n = 12; men, n = 12). Women had significantly smaller BSA than men (Table 3.1). All women were postmenopausal; three (25%) were taking unopposed estrogen replacement.

Heart Rate Variability

Heart rate variability results for the whole sample are presented in Table 3.2; for the subset of subjects over 55 years, in Table 3.3. In the supine position, women had significantly lower total harmonic power than men. In subjects over 55 years, there were no significant differences between women and men in the supine position.

In the whole sample, there was a significant main effect of gender on low frequency power, total harmonic power, and total power; men were significantly higher than women. There was a significant main effect of standing on the parasympathetic indicator; compared with the supine position, the parasympathetic indicator declined in the standing position. The analysis of each group separately showed a main effect of standing in women; women significantly decreased high frequency power, low frequency power, and total harmonic power, and increased sympathetic indicator. There was a main effect of standing on parasympathetic indicator in men that showed a decrease in the standing posture.
Please Note: For the purpose of this dissertation, the **Tables** contain the following analyses:

1. Repeated measures analysis of variance (ANOVA), with gender (two levels: women, men) as the between-subjects factor and condition (two levels: supine, standing) as the within-subjects factor. The data are represented by "Total" in the Tables.

2. Repeated measures ANOVA, with condition (two levels: supine, standing) as the within-subjects factor, for each gender separately to determine the effect of condition on each group. The data are presented for "Women" and "Men" separately in the Tables.

		Supine	Standing	
Measure	Gender	Mean ± SD	Mean ± SD	
Fractal Power (ms²/Hz)	Women	289 ±285	246 ±176	
	Men	546 ±435	451 ±405	
	Total	458 ±405	381 ±355	
High Frequency Power (ms²/Hz)	Women	46 ±46	9 ±8 !	
	Men	207 ±413	45 ± 57	
	Total	152 ± 342	32 ±49	
Low Frequency Power (ms²/Hz)	Women	103 ± 75	64 ± 51 !	
	Men	132 ± 146	250 ± 338	
	Total	122 ± 125	186±287 #	
PNS Indicator (high/total)	Women	.12±.1	.03 ±0 !	
	Men	.19±.2	.06±.0!	
	Total	.17±.2	.05 ± .0 !	
SNS Indicator (low/high)	Women	4 ±3	16 ±17!	
	Men	7 ±20	47 ±136	
	Total	6 ±16	36 ±111	
Total Harmonic Power (ms²/Hz)	Women	149 ±85	73 ±54 !	
	Men	342 ±437	301 ±365	
	Total	276 ±367	223 ±315#	
Total Power (ms²/Hz)	Women	439 ±325	319 ±196	
	Men	900 ±748	768 ±625	
	Total	742 ± 668	614 ±559#	

Table 3.2:Effects of Posture (Supine to Standing) on Heart Rate Variability Measures in
Women (n = 12) & Men (n = 23)

* Significant change from supine to standing, p < .05.

Significant difference between genders, p < .05.

		Supine	Standing
Measure	Gender	Mean ± SD	Mean ± SD
Fractal Power (ms ² /Hz)	Women	255 ±272	222 ± 163
	Men	625 ± 474	560 ± 510
	Total	440 ±422	391 ±408#
High Frequency Power (ms²/Hz)	Women	39 ±41	8 ±7!
	Men	234 ± 547	60 ±68
	Total	136 ±392	34 ±54 #
Low Frequency Power (ms²/Hz)	Women	105 ±78	65 ±53 !
	Men	112 ±98	247 ± 428
	Total	108 ±87	156 ±312
PNS Indicator (high/total)	Women	.12 ±.1	.03 ±.0 !
	Men	.15 ±.2	0.± 80.
	Tota!	.13 ±.2	.05 ±.0 #!
SNS Indicator (low/high)	Women	5 ±3	18 ±18!
	Men	3 ±3	9 ±21
	Total	4 ±3	14 ±20 !
Total Harmonic Power (ms²/Hz)	Women	145 ±87	73 ±56 !
	Men	349 ±582	320 ± 455
	Total	247 ±419	197 ±341 #
Total Power (ms²/Hz)	Women	400 ±310	295 ±187
	Men	1000 ± 951	914 ±746
	Total	700 ±755	605 ±618 #

Table 3.3:Effects of Posture (Supine to Standing) on Heart Rate Variability Measures in
Women (n = 11) and Men (n = 11) over 55 Years

! = Significant change from supine to standing, p < .05.

= Significant difference between genders, p < .05.

In subjects over 55 years, there were significant main effects of standing on the parasympathetic indicator and the sympathetic indicator; the parasympathetic indicator decreased, and the sympathetic indicator increased, in the standing position compared with supine. There were significant gender effects on fractal power, total harmonic power, and total power; women were lower than men. When the data were analyzed separately for men and women over 55 years for the effects of standing, women showed significant decreases in high frequency power, low frequency power, parasympathetic indicator, and total harmonic power, and a significant increase in sympathetic indicator. The men over 55 years of age in the present study showed no significant effects of standing.

In summary, there was only one difference in the effects of standing between the whole sample and the subjects over 55 years. Men in the whole sample decreased parasympathetic indicator from supine to standing; in the sample of men over 55 years, there were no effects of standing. Women in the whole sample and in the subset over 55 years had the same effects of standing.

SBR Sensitivity

The baroreflex data for the whole sample are presented in Table 3.4; for the subset over 55 years, in Table 3.5. Supine SBR slope was significantly lower in women than men. Women over 55 years had significantly lower SBR slope in the supine posture than men. There was a significant main effect of standing on SBR slope, R-R interval, and systolic blood pressure; a condition X gender interaction on systolic blood pressure was also present. SBR slope and R-R interval decreased, and systolic blood pressure increased, during standing compared with supine; the increase in systolic blood pressure was greater in women than men. When the data were analyzed separately for men and women, men decreased SBR slope from supine to standing; women and men decreased R-R interval from supine to standing; and women increased systolic blood pressure from supine to standing.

Similarly, in subjects over 55 years, there was a significant main effect of standing on SBR slope, systolic blood pressure and R-R interval; SBR slope and R-R interval decreased, and systolic blood pressure increased, from supine to standing. Women over 55 years had a significantly lower SBR slope and shorter R-R interval than age-matched men. When the data were analyzed separately for men and women over 55 years, men decreased SBR slope from supine to standing; men and women decreased R-R interval from supine to standing; and women increased systolic blood pressure from supine to standing. Thus, the effects of standing were the same for the subjects over 55 years and the whole sample.

		Supine	Standing
Measure	Gender	Mean ± SD	Mean ± SD
R-R Interval (ms)	Women	991 ±152	834 ± 131!
	Men	1024 ±136	906 ±165!
	Total	1013 ±141	881 ±156!
Systolic Blood Pressure (mmHg)	Women	116 ± 21	144 ±187!
	Men	120 ± 18	128 ± 19
	Total	119 ±18	133 ± 20!⊽
Baroreflex Slope (ms/mmHg)	Women	$5.6 \pm 2.8 \#$	3.89 ± 2.0
	Men	10.2 ±5.0	$5.6 \pm 2.8!$
	Total	8.7 ±4.9	5.1 ± 2.7!#

Table 3.4:Effects of Posture (Supine vs. Standing) on Baroreflex Measures for Women
(n = 12) and Men (n = 23).

Table 3.5:Effects of Posture (Supine vs. Standing) on Baroreflex Measures for Women
(n = 12) and Men (n = 12) Over 55 Years

		Supine	Standing
Measure	Gender	Mean \pm SD	Mean ± SD
R-R Interval (ms)	Women	968 ±135	819 ± 127 !
	Men	1076 ±126	981 ±160!
	Total	1022 ±139	900 ±163 !#
Systolic Blood Pressure (mmHg)	Women	116 ± 22	142 ±18!
	Men	126 ± 20	134 ± 22
	Total	121 ±21	138 ±20!
Baroreflex Slope ms/mmHg	Women	5.9 ±2.7	3.8 ± 2.1
	Men	10.4 ± 5.6	6.0±2.6!
	Total	8.3 ±4.8	4.9 ± 2.6 !#

Significant change from supine to standing, p < .05.

Significant difference between genders, p < .05.

 ∇ Significant condition x gender interaction, p < .05.

Discussion

The sample of 13 women and 25 men represented a higher proportion of women relative to men with ischemic heart disease; typically, women comprise about 25 to 30% of this population (Heart and Stroke Foundation of Canada, 1997; 1999). The women were significantly older than the men, and 12 of the women were postmenopausal; these findings reflect the characteristics of the general population of people with ischemic heart disease in Canada (Cardiovascular Disease and Women, 1996; Heart & Stroke Foundation of Canada, 1997; 1999).

The major new finding in this study was that there were no differences between men and women with ischemic heart disease in the supine heart rate variability indices of parasympathetic modulation, including parasympathetic indicator and high frequency power, or the sympathetic indicator. In contrast, women had significantly lower SBR sensitivity than men. The second finding was that the effects of standing on the indices of parasympathetic modulation, including SBR sensitivity, parasympathetic indicator and high frequency power, were different in men versus women with ischemic heart disease.

Some of the differences between our findings and those of others in healthy subjects could be due to four factors: cardiovascular medications, the significantly higher age of the women compared with the men, the hormonal effects of female gender and estrogen replacement, or the extent of cardiovascular disease in our subjects. In addition, due to the large variance in some of our measures, the small sample size may have precluded statistical significance in some of our findings.

Cardiovascular medications were continued until the time of surgery, and may have affected our results. Both ß-adrenergic antagonists and calcium channel antagonists have been reported to increase heart rate variability, by decreasing sympathetic activity (Airaksinen *et al.*, 1996; Kontopoulos *et al.*, 1996; TFESCNASPE, 1996). The attenuated sympathetic activity shifted the balance in autonomic modulation, resulting in increased parasympathetic influence in heart rate modulation. In our study, a high proportion of men (50%) and women (56%) received ß-adrenergic antagonists that may have attenuated the overall sympathetic influences on heart rate. Moreover, 83% of women and only 32% of men received calcium channel antagonists; the effects may have masked actual gender differences in sympathetic influences on heart rate.

The lack of significant differences between men and women in supine heart rate variability measures in our study contrasts with the reported findings in healthy age-matched middle aged and older subjects. Women are reported to have higher high frequency power, lower low frequency power and lower sympathetic indicator than men (Ryan *et al.*, 1994; Liao *et al.*, 1995; Huikuri *et al.*, 1996; Dougherty, 1999). Our finding that SBR slope was significantly lower in women than men was consistent with the reports of Huikuri *et al.* (1996) and Laitinen *et al.* (1998) in middle aged and older women. In contrast, Dougherty (1999) found that supine SBR sensitivity was higher in age-matched middle aged women than men. However, in the present study, when the subjects were matched for age over 55 years, there were still no significant differences between men and women in the supine position in the indices of parasympathetic modulation, including the parasympathetic indicator and high frequency power, or in the sympathetic indicator; SBR sensitivity was lower in the women. The lower supine SBR slope for women suggests that there was lower parasympathetic activity in women than men, resulting in less beat-by-beat interaction between systolic blood pressure and R-R interval. However, in the present study, the difference between men and women in parasympathetic indicator did not reach statistical significance.

The higher mean age of the women (64 years) versus the men (56 years) in our overall sample may have contributed to our results; higher age has been reported to blunt the range of autonomic responses in the supine posture (Lipsitz *et al.*, 1990). Lipsitz *et al.* revealed that old subjects (71-90 years) have lower high frequency power and lower total power in the supine position, and either absent or attenuated low-frequency activation during tilt than younger subjects. Aging has been shown to decrease both SBR function and parasympathetic modulation of heart rate; these effects have been attributed to reduced muscarinic receptor density and function with

increasing age (Docherty, 1990; Poller *et al.*, 1997; Brodde *et al.*, 1998; Brodde & Michel, 1999). Stimulation of cardiac muscarinic receptors in the atria results in negative chronotropic effects, due to the high density of parasympathetic innervation in the SA and atrioventricular nodes (Brodde & Michel, 1999). Loss of muscarinic receptors in the SA node would attenuate the decrease in heart rate mediated by parasympathetic modulation.

The hormonal effects of estrogen may have affected our results. Huikuri et al. (1996) found that women on estrogen replacement therapy (ERT) had higher SBR sensitivity than men of the same age, and higher SBR sensitivity than age-matched women who were not taking ERT. Twelve of the 13 women in our study were postmenopausal, three of whom were taking estrogen replacement; one woman, age 54 years, was menopausal. However, our women subjects had lower SBR sensitivity than men, thus, the effect of estrogen in some of our subjects does not explain our overall findings on autonomic modulation. The women over 55 years were all postmenopausal; three (25%) were taking estrogen replacement. The mechanism by which estrogen exerts a cardioprotective effect may be via the effects on coronary arteries (Williams et al., 1990). Estrogen potentiates endothelium-dependent vasodilation in healthy postmenopausal women, and in postmenopausal women with risk factors for atherosclerosis (Gilligan et al., 1994). Collins et al. (1995) reported that estrogen attenuated acetylcholine-induced coronary artery responses in women with ischemic

heart disease, but not men. Thus, the primary benefit of estrogen may be its contribution to improved coronary blood flow prior to, and following, the development of ischemic heart disease in women, and not its effect on autonomic modulation.

The extent of cardiovascular disease and autonomic deterioration may be comparable in the men and women in our study, and may have contributed to the lack of significant differences in heart rate variability measures. The incidence of ischemic heart disease increases dramatically in women only after menopause, whereas there is a gradual increase in incidence in men after 34 years of age (Cardiovascular Disease and Women, 1996). The length of time since onset of ischemic heart disease may have been similar in the men and women in the present study, thus, the degree of cardiovascular autonomic deterioration may have been comparable.

The second major finding was that the effects of standing on the indices of parasympathetic modulation, including SBR sensitivity, parasympathetic indicator and high frequency power, were different in men versus women with ischemic heart disease. Men decreased parasympathetic indicator and SBR sensitivity; men over 55 years decreased SBR sensitivity only. Women decreased parasympathetic indicator, high frequency power and low frequency power, and increased sympathetic indicator; SBR did not change significantly. The increase in sympathetic indicator during standing in women was accompanied by an increase in systolic blood pressure and heart rate.

The most likely mechanism for the decline in SBR slope in men from supine to standing was the decrease in efferent parasympathetic activity to the SA node. The low supine SBR sensitivity in women may have precluded any decrease in the standing posture, in spite of the decrease in parasympathetic indicator and concurrent increase in sympathetic indicator and systolic blood pressure. Normally, the upright posture produces deactivation of afferent nerve impulses from arteria! baroreceptors, resulting in an increase in efferent sympathetic activity and a concurrent withdrawal of parasympathetic activity, to the SA node (Kamath *et al.*, 1991; Persson, 1996). Consequently, parasympathetic modulation of heart rate decreases and sympathetic modulation increases, thereby increasing heart rate, consistent with our results.

Using spectral analysis of heart rate variability, Kamath *et al.* (1991) reported that, in 19 healthy young subjects, there was a 51% increase in the sympathetic indicator as they stood upright. Fei *et al.* (1995) found that passive head up tilt resulted in a significant decrease in high frequency power, a non-significant increase in low frequency power, and an increase in the sympathetic indicator, in healthy middle-aged subjects. Lipsitz *et al.* (1990) revealed that old subjects (71-94 years) had lower total power, high frequency power and low frequency power in both supine and tilt position,

74

than healthy young subjects (18-35 years). Butler *et al.* (1993) found a decrease in low frequency power, high frequency power and parasympathetic indicator, and an increase in sympathetic indicator, during 70 degree head up tilt, in healthy young women and men.

Our findings were consistent with results in older healthy individuals to the upright posture. The absence of changes in men over 55 years in parasympathetic or sympathetic indicators suggests a decline in their autonomic responsiveness with increasing age. However, SBR sensitivity declined during standing, indicating that the integrated function of the SBR was maintained in the older men.

Summary and Conclusions

There were two major findings in this study. Women and men with ischemic heart disease have similar supine autonomic modulation of heart rate, as seen by the lack of significant differences in heart rate variability measures. However, the women were significantly older than the men, suggesting that they maintained cardiovascular adaptability comparable to the younger men, despite their older age. Cardiovascular autonomic deterioration may have begun at a later age for women, due to the cardioprotective effects of estrogen until menopause. Although most of the women were postmenopausal, three women were taking estrogen replacement, which may have contributed to our findings. Medications, such as ß-adrenergic antagonists and calcium channel antagonists, may have altered our results, by decreasing the sympathetic influence in the autonomic modulation of heart rate.

The effects of posture from supine to standing were consistent with responses of healthy middle aged and older men and women to the upright posture. These findings suggest that men and women with ischemic heart disease maintain cardiovascular adaptability to the upright posture. Eliminating the age bias in the sample showed that autonomic adaptability in men over 55 years may be reduced, as seen by the lack of parasympathetic withdrawal to the upright posture. However, these men maintained the integrated response of the arterial SBR to standing.

CHAPTER 4

Study 2

Effects of Coronary Artery Bypass Graft Surgery on Autonomic Modulation of Heart Rate in Women and Men

The use of coronary artery bypass graft (CABG) surgery to treat ischemic heart disease has risen during the last decade in women and in the age groups over 55 years (Heart and Stroke Foundation of Canada, 1997;1999). During CABG surgery, cardiac control mechanisms are perturbed by the manipulation of the heart, cardiac autonomic nerves and coronary arteries, aortic clamping and vein grafting to the aorta, and cardiopulmonary bypass (Yang et al., 1994; 1995; Haggenmiller et al., 1996; Komatsu et al., 1994; 1997). Furthermore, general anesthesia, mechanical ventilation and intravenous medications alter cardiovascular function during and following cardiac and non-cardiac surgery in patients with ischemic heart disease (Yang et al., 1994; Haggenmiller et al., 1996; Dworschak et al., 1997; Komatsu et al., 1997). Potential postoperative consequences of CABG surgery include alterations in autonomic modulation of heart rate and spontaneous baroreflex (SBR) sensitivity, due to impaired afferent input via the aortic baroreceptors, impaired efferent parasympathetic and sympathetic modulation of the sinoatrial (SA) node, or dysfunction of the SA node.

Spectral analysis of heart rate variability has shown that autonomic

modulation of heart rate, as reflected by parasympathetic and sympathetic indicators, decreases during and following CABG surgery (Niemela et al., 1992; Piha & Hamalainen, 1994; Yang et al., 1994; Komatsu et al., 1997), and during physiological perturbations, such as orthostatic stress (Pomeranz *et al.*, 1985; Lipsitz *et al.*, 1989; Butler *et al*., 1990; Kamath *et al.*, 1991; Fei et al., 1995). Consequently, beat-by-beat changes in heart rate and SBR sensitivity may be compromised (Akselrod et al., 1981; Dampney et al., 1994; Hainsworth, 1996; Smit et al., 1996). The loss of beat-by-beat parasympathetic modulation of heart rate decreases the ability of the cardiovascular system to respond to rapidly changing stimuli, increases the potential for sympathetically-mediated cardiac dysrhythmias, and increases the risk of sudden cardiac death (Akselrod et al., 1981; Alga et al., 1993; Huikuri et al., 1995; Task Force of the European Society of Cardiology & the North American Society of Pacing & Electrophysiology [TFESCNASPE], 1996). These effects may persist at the time of discharge, typically 5 days following CABG surgery.

Whether the effects of CABG surgery are similar in women and men has not been reported. In our preoperative study (Study 1), we found that there were no significant differences in heart rate variability measures between men and women in the supine posture, but women had significantly lower SBR sensitivity than men in both supine and standing postures. The change in position from supine to standing revealed that women decreased high frequency power, low frequency power, parasympathetic indicator, and total harmonic power, and increased sympathetic indicator; SBR sensitivity did not change. Men decreased parasympathetic indicator and SBR sensitivity.

This study assessed the effects of CABG surgery 5 days postoperatively on SBR sensitivity and autonomic modulation of heart rate in the supine and standing positions, in women and men. We hypothesized that, compared with preoperative levels, the indices of parasympathetic modulation of heart rate, including high frequency power, parasympathetic indicator and SBR sensitivity, would decline postoperatively, based on findings by Yang *et al.* (1994) and Komatsu *et al.* (1997, and on expected consequences of surgery. We also hypothesized that the indices of parasympathetic modulation would decline in the standing position compared with supine, and that the sympathetic indicator would increase, based on overall results from our preoperative study of these subjects. We predicted that women would show lower SBR sensitivity than men postoperatively, based on our preoperative findings.

79

Methods

<u>Subjects</u>

Subjects were recruited preoperatively from a population of men and women scheduled for elective CABG surgery in Kingston General Hospital (Study 1). Patients who participated in the preoperative study were eligible to continue in the postoperative study, unless they withdrew or were declared off-study. The off-study criteria included the following intraoperative or postoperative complications: MI; cardiac electrical instability; hypotension; neurological, pulmonary or vascular complications (e.g., stroke, pulmonary embolus, thromboemboli, sternal wound infection).

Thirteen women and 25 men participated in the preoperative study; 11 of the women and 23 of the men were eligible to participate in the postoperative study. Postoperatively, four subjects were excluded for the following reasons: one woman died, one man had frequent multifocal premature ventricular contractions (bigeminy) and moderately severe anxiety, and one woman and one man withdrew for personal reasons. Preoperatively, subjects took their usual cardiovascular medications on the day of testing. These included β-adrenergic antagonists, calcium channel antagonists, nitrates and angiotensin converting enzyme (ACE) inhibitors. Preoperative cardiovascular medications were not resumed postoperatively. Ten of the 11 women were postmenopausal; three women were taking unopposed estrogen replacement on the day of preoperative testing, as prescribed.

80

Procedures

Subjects were tested preoperatively and 5 days postoperatively. The procedures and measurements were the same as in Study 1, with one exception. In addition to the information obtained preoperatively, the following information was obtained postoperatively: operative details regarding the number and types of grafts; postoperative course of recovery; intraoperative and postoperative complications.

Data Analysis

The data analyses were the same as Study 1, with these exceptions. Descriptive statistics were used to determine the means and standard deviations of the following variables in the men and women who completed both the preoperative and the postoperative studies: age, body surface area (BSA), ejection fraction (EF), number and types of grafts. Student-*t*-statistics were done to determine if the two groups differed in any of these variables.

Repeated measures ANOVA, with 1-between factor (gender) and 2within factors (time [preoperative, postoperative] and condition [supine, standing]), was done to identify any significant differences due to CABG surgery or the standing posture between men and women. Subsequently, to understand the interactions more fully, repeated measures ANOVAs were done separately for each gender. Differences for all analyses were significant at $\underline{p} < .05$.

Results

Sample Characteristics

Eleven women and 23 men completed both the preoperative and postoperative supine studies; 10 women and 21 men completed both supine and standing studies. One man fainted during standing preoperatively, one woman was unable to complete the standing test postoperatively due to postural hypotension and dizziness, and one man had frequent premature ventricular contractions postoperatively that precluded data analysis. Women were significantly older, had significantly smaller BSA, and received fewer arterial grafts and more venous grafts, than men (Table 4.1). Nine women were postmenopausal; two women were taking oral estrogen replacement medication. As prescribed preoperatively, subjects took their cardiovascular medications on the day of preoperative testing. These included β -adrenergic antagonists, (men, 56%; women, 50%), calcium channel antagonists (men, 32%; women, 83%), nitrates (men, 32%; women, 42%) and ACE inhibitors (men, 12%; women, 0.2%). Preoperative medications were not resumed postoperatively.

Subsequently, since the female and male groups were significantly different in age, the data were analyzed for all subjects over the age of 55 years. The subset of subjects over the age of 55 years consisted of 9 women and 11 men. Women over 55 years had significantly lower BSA than age-matched men (Table 4.1).

Variable	Women (n = 10)	Men (n = 23)	Women> 55 years (n=9)	Men> 55 years (n=11)
Age (years)	65±5	56±8 #	66±4	64 ± 4
Arterial Grafts (number)	1.0±0	1.8±1 #	1.0±0	1.5 ± 1
Venous Grafts (number)	2.7 ± 1	1.4 ± 1	3.0±1	2.0 ± 1
Total Grafts (number)	3.7 ± 1	1.4 ± 1	4.0±1	3.5 ± 1
Body Surface Area (m²)	1.8±1	2.0±0 #	1.8±1	2.0±0 #
Ejection Fraction (%)	56 ± 9	60±9	56 ± 9	58±8

Table 4.1: Sample Characteristics for Women and Men

Values are means \pm SD.

Significant difference between genders, p < .05.

Heart Rate Variability

Effects of CABG Surgery. The heart rate variability data for the whole sample are presented in Table 4.2. There were significant main effects of time, from preoperatively to postoperatively, on heart rate variability measures. There were significant decreases in fractal power, low frequency power, total harmonic power, and total power. There was a significant time X gender interaction on low frequency power, total power and parasympathetic indicator. Parasympathetic indicator and high frequency power decreased significantly in men postoperatively; low frequency power and total power decreased in men and women. Separate analyses for each gender revealed that both women and men decreased fractal power, low frequency power, total harmonic power and total power postoperatively. The heart rate variability data for the subjects over 55 years are presented in Table 4.3. In subjects over 55 years, there were significant overall decreases postoperatively in fractal power, low frequency power, and total power. A time X gender interaction was present on total power; total power decreased significantly less for women than men. In women over 55 years, there were significant decreases postoperatively in fractal power, low frequency power, total harmonic power and total power. In men over 55 years, fractal power, low frequency power and total power decreased postoperatively.

Effects of Posture. There were significant main effects of posture on the parasympathetic indicator; compared with the supine posture, the parasympathetic indicator decreased in both women and men in the standing position. The sympathetic indicator increased significantly in men only. Men showed a time X posture interaction in the parasympathetic indicator; the parasympathetic indicator decreased postoperatively, and decreased in the standing posture. The effects of posture in women over 55 years revealed that the parasympathetic indicator decreased and the sympathetic indicator increased in the standing position.

84

Table 4.2:	Effects of Time (Preoperatively to Postoperatively) and Posture (Supine to
	Standing) on Heart Rate Variability (HRV) Measures.

		Preop	eratively	Postoper	atively
		Supine	Standing	Supine	Standing
Measure	Gender	Means±SD	Means±SD	Means±SD	Means±SD
Fractal Power (ms ² /Hz)	Women	361±415	266±186	37±35	70±99 *
	Men	571±447	481±412	65±68	78±156 *
	Total	503±441	411±366	56±61	75±138 *
High Frequency Power (ms²/Hz)	Women	36±35	9±8	16±45	12±31
	Men	220±43 0	48±59	4±5	12±50 *
	Total	161±362	35±51	8±25	12±44
Low Frequency Power (ms2/Hz)	Women	98±77	69±53	11±13	18±18 *
	Men	136±152	269±348	16±17	18±33 *
	Total	123±132	204±301	14±16	18±29 *¤
PNS Indicator (high/total)	Women	.11±.11	.03±.02	.16±.17	.04±.05 !
	Men	.20±.21	.06±.06	.04±.04	.02±.03 *!•
	Total	.17±.18	.05±.06	.08±.11	.03±.04 !¤
SNS Indicator (low/high)	Women	5 ±3	18±18	10±26	15±17
	Men	7±21	53±146	8±9	32±44 !
	Total	6±18	42±119	10±17	26±38 !
Total Harmonic Power (ms²/Hz)	Women	134±88	79±55	29±48	38±61 *
	Men	359±453	324±374	25±25	101±402 *
	Total	286±388	245±328	26±34	80±332 *
Total Power (ms²/Hz)	Women	495±434	344±204	66±79	107±156 *
	Men	943±770	822±629	91±87	178±557 *
	Total	799±705	668±572	82±84	156±464 *¤

! Significant change from supine to standing, p < .05.
* Significant change from preoperatively to postoperatively, p < .05.
• Significant time x posture interaction, p < .05.

• Significant time x gender interaction, p < .05.

Table 4.3:	Effects of Time (Preoperatively to Postoperatively) and Posture (Supine to
	Standing) on HRV Measures for Women (n=7) and Men (n=10) Over 55 Years

		Preoperatively		Postoperatively	
		Supine	Standing	Supine	Standing
Measure	Gender	Means±SD	Means±SD	Means±SD	Means±SD
Fractal Power (ms ² /Hz)	Women	236±279	276±182	34±39	70±118 *
	Men	667±478	602±518	51±65.6	107±227 *
	Total	490±453	467±437	44±55	92±186 *
High Frequency Power (ms²/Hz)	Women	28±19	10±8	23±53	16±37
	Men	245±575	65±70	2±3	24±72
	Total	156±446	42±59	11±34	21±59
Low Frequency Power (ms ² /Hz)	Women	113±88	79±61	6±7	21±22 *
	Men	108±103	266±446	9±13	20±45 *
	Total	110±94	189±350	8±11	21±36 *
PNS Indicator (high/total)	Women	.12±.1	.03±.0	.20±.2	.05±.0 !
	Men	.14±.2	.09±.0	.04±.0	.03±.0
	Total	.13±.2	.06±.0	.10±.1	.04±.0 !
SNS Indicator (low/high)	Women	6±4	19±21	4±7	19±20 !
	Men	3±3	10±23	5±6	13±18
	Total	4±4	14±22	4±6	15±18 !
Total Harmonic Power (ms²/Hz)	Women	142±94	89±64	31±58	46±72 *
	Men	357±613	346±472	17±17	193±584
	Total	268±476	240±379	23±39	132±447
Total Power (ms²/Hz)	Women	378±304	365±198	65±94	115±190 *
	Men	1052±985	983±748	68±76	299±810 *
	Total	775±835	729±654	67±81	223±626 *¤

! Significant change form supine to standing, p < .05.
Significant change from preoperatively to postoperatively, p < .05.
Significant time x gender interaction, p < .05.

Spontaneous Baroreflex Sensitivity

Effects of CABG Surgery. The baroreflex data for the whole sample are presented in Table 4.4. There were significant main effects of time (preoperatively to postoperatively) on baroreflex measures; SBR slope, systolic blood pressure and R-R interval decreased postoperatively compared with preoperative levels. There was a time X gender interaction on SBR slope; men showed a significant decrease in SBR slope postoperatively. Women decreased systolic blood pressure postoperatively; men and women decreased R-R interval following surgery.

The baroreflex data for subjects over 55 years are presented in Table 4.5. In subjects over 55 years, there were significant overall decreases postoperatively in SBR slope, systolic blood pressure, and R-R interval. A time X gender interaction was present for SBR slope. In women over 55 years, there were significant decreases postoperatively in systolic blood pressure and R-R interval; a time X posture interaction was present on R-R interval. In men over 55 years, there were significant decreases postoperatively in SBR slope and R-R interval; SBR slope and R-R interval decreased following CABG surgery. A time X posture interaction on SBR slope was also present.

Effects of Posture. There were significant main effects of posture (supine vs. standing) on SBR slope, systolic blood pressure, and R-R interval. SBR slope and R-R interval decreased in the standing posture compared with

		Preoperatively		Postoperatively	
		Supine	Standing	Supine	Standing
Measure	Gender	Means±SD	Means±SD	Means±SD	Means±SD
R-R Interval (ms)	Women	996±146	852±128	673±105	641±107 *!°
	Men	1039±127	920±162	719±91	631±110 *!
	Total	1025±132	898±153	704±96	634±108 *!°
Systolic Blood Pressure (mmHg)	Women	117±21	144±19	96±20	119±27 *!
	Men	120±19	129±19	114±29	123±18
	Total	1 19±2 0	134±20	108±28	122±21 *!
Baroreflex Slope (ms/mmHg)	Women	5.7 ±2. 9	3.8±2.1	3.8±3.9	3.6±3.1
	Men	9.9±5.3	5.1±2.6	2.5±1.6	1.8±1.5 *!•
	Total	8.5±5.0	4.7±2.5	3.0±2.6	2.4±2.3 *!o

Table 4.4: Effects of Time (Preoperatively to Postoperatively) and Posture (Supine to Standing) on Baroreflex Measures for Women and Men (n=30).

Table 4.5: Effects of Time (Preoperatively to Postoperatively) and Posture (Supine to Standing) on Baroreflex Measures for Women and Men Over 55 Years.

		Preoperatively		Postoperatively	
······································		Supine	Standing	Supine	Standing
Measure	Gender	Means±SD	Means±SD	Means±SD	Means±SD
R-R Interval (ms)	Women	942±121	843±138	681±122	656±20 *!•
	Men	1084± 129	990±166	748±90	679±114 *!
	Total	1026±141	929±168	721±106	669±113 *!
Systolic Blood Pressure (mmHg)	Women	118±24	141±19	92±21	114±28 *!
	Men	128±20	138±20	116±37	121±19
	Total	124±22	139±19	106±32	118±23 *!
Baroreflex Slope (ms/mmHg)	Women	6.0±3.1	3.3±2.0	4.2±4.3	3.3±3.0 !
	Men	10.2±5.8	5.7±2.5	2.6±1.8	2.1±1.8 !0
	Total	8.4±5.1	4.6±2.5	3.3±3.2	2.6±2.4 *!o¤

! Significant change from supine to standing, p < .05.

• Significant change from preoperatively to postoperatively, p < .05.

• Significant time x posture interaction, p < .05.

• Significant time x gender interaction, p < .05.

supine; systolic blood pressure increased. There were time X posture interactions on SBR slope and R-R interval. SBR slope decreased postoperatively compared with preoperative levels and decreased in the standing position compared with supine. Similarly, the R-R interval decreased postoperatively compared with preoperative levels and decreased in the standing position compared with supine. Separate analyses for men and women showed that men decreased SBR slope significantly from supine to standing; men and women decreased R-R interval from supine to standing; women increased systolic blood pressure from supine to standing.

In subjects over 55 years, there were significant main effects of standing on SBR slope, systolic blood pressure, systolic blood pressure and R-R interval; SBR slope and R-R interval declined in the standing position, systolic blood pressure increased. There were significant time X posture interactions for SBR slope and R-R interval. In women, there were significant effects of standing on SBR slope, systolic blood pressure, and R-R interval; SBR slope and R-R interval decreased in the standing posture, systolic blood pressure increased. In men, there were significant effects of standing on SBR slope and R-R interval; both measures decreased in the standing position.

In summary, in women over 55 years, SBR slope and R-R interval decreased during standing compared with supine; R-R interval decreased postoperatively compared with preoperative levels. Systolic blood pressure increased during standing compared with supine, and decreased postoperatively compared with preoperative levels. In men over 55 years, SBR slope and R-R interval decreased postoperatively compared with preoperative levels, and decreased during standing compared with supine.

Discussion

Our sample of men and women reflected the age characteristics of the population who typically undergo elective CABG surgery; women were approximately 10 years older than men (Heart and Stroke Foundation of Canada, 1999). Our small sample size, consistent with others, illustrates the difficulties in conducting such studies following CABG surgery; Niemela *et al.* (1992) studied 8 women and 27 men, Piha and Hamalainen (1994) and Yang *et al.* (1995) each studied 15 subjects, and Komatsu *et al.* (1997), 10 subjects. Despite these limitations, there were two interesting findings that warrant discussion: 1) CABG surgery had different effects on heart rate variability measures and SBR sensitivity in men and women, and 2) women and men responded differently to the standing posture.

Effects of CABG Surgery

The major new finding in this study was that CABG surgery had different effects on autonomic modulation of heart rate in men and women. Men significantly decreased the indices of parasympathetic modulation of heart rate that included high frequency power, parasympathetic indicator and SBR sensitivity postoperatively. In our age-matched subjects over 55 years, the main difference between men and women was that men decreased SBR sensitivity postoperatively, whereas women did not. Thus, aging may have accounted for the differential effects of CABG surgery in men and women. Postoperatively, in women, there were no significant changes in the indices of parasympathetic modulation of heart rate, nor was there a significant change in the sympathetic indicator. The low preoperative SBR sensitivity in women may have precluded any decline postoperatively. These findings suggest that cardiac parasympathetic activity in women was not attenuated as a consequence of CABG surgery, in contrast to findings in men (Niemela *et al.*, 1992; Komatsu *et al.*, 1997). The results in women postoperatively were unexpected findings and have not been reported by other investigators.

In contrast to our results, Yang *et al.* (1994) found a decrease in the sympathetic indicator immediately after CABG surgery that indicated damage to the sympathetic division of cardiac autonomic nerves. Consequently, the authors speculated that there may be increased dominance of the parasympathetic modulation of heart rate following CABG surgery. Preoperatively, our subjects had taken their usual cardiovascular medications that included β-adrenergic antagonists (men, 56%; women, 50%), calcium channel antagonists (men, 32%; women, 83%), nitrates (men, 32%; women, 42%) and ACE inhibitors (men, 12%; women, 0.2%). These medications were not resumed following surgery. Both β-adrenergic antagonists have been reported to increase heart rate variability (Airaksinen *et al.*, 1996; Kontopoulos *et al.*, 1996; TFESCNASPE, 1996). Thus, the sympathetic indicator should have increased

following cessation of those medications postoperatively. The lack of significant change in sympathetic indicator postoperatively may reflect an actual decrease in sympathetic activity following surgery, and indicate sympathetic dysfunction.

In men following CABG surgery, there were decreases in the indices of parasympathetic modulation of heart rate; the sympathetic indicator did not change. These results were in accordance with reported findings in studies on men (Niemela *et al.*, 1992; Piha & Hamalainen, 1994; Yang *et al.*, 1994; Komatsu *et al.*, 1997). Niemela *et al.* (1992) and Komatsu *et al.* (1997) found that, compared with preoperative levels, all autonomic activity was significantly lower one week after surgery. Piha & Hamalainen (1994) reported that cardiac parasympathetic activity was depressed one week postoperatively, which they attributed to local damage to the parasympathetic division of cardiac autonomic nerves or to the SA node.

Our results support their conclusions of damage to cardiac autonomic nerves. Typically, an external temporary cardiac pacemaker remains *in situ* for 3 to 4 days following CABG surgery, due to the high potential for postoperative dysfunction of the SA node during this period. In our subjects, as per standard practice, the temporary pacemaker wires were removed the day before discharge, after confirmation by ECG that the SA node had resumed its beat-by-beat pacemaker function. Thus, during autonomic testing on the day of discharge, loss of parasympathetic efferent modulation of heart rate was most likely due to damage to cardiac autonomic nerves, and not to SA node dysfunction.

Effects of Posture

Preoperatively, as reported in Study 1, the effects of posture, supine vs. standing, were consistent with responses of healthy middle aged and older men and women to the upright posture (Pomeranz *et al.*, 1985; Lipsitz *et al.*, 1989; Butler *et al.*, 1990; Kamath *et al.*, 1991; Fei *et al.*, 1995). Men decreased SBR slope and parasympathetic indicator; women decreased parasympathetic indicator and increased sympathetic indicator. Women had lower supine SBR sensitivity than men, which may have precluded any reduction in the upright posture. These findings suggested that men and women with ischemic heart disease maintained cardiovascular adaptability to the upright posture. Eliminating the age bias in the sample showed that autonomic adaptability in men over 55 years may be reduced, as seen by the lack of parasympathetic withdrawal to the upright posture. However, the older men maintained the integrated response of the arterial baroreflex to standing.

Similarly, postoperatively, the effects of posture were consistent with preoperative effects and responses of healthy middle aged and older men and women to the upright posture (Pomeranz *et al.*, 1985; Lipsitz *et al.*, 1989; Butler *et al.*, 1990; Kamath *et al.*, 1991; Fei *et al.*, 1995). Men decreased SBR sensitivity and parasympathetic indicator, and increased sympathetic indicator, in the standing position. Women decreased the parasympathetic indicator in the standing posture, but not SBR sensitivity. Our results were consistent with the attenuated responses of older subjects to head up tilt (Lipsitz *et al.*, 1990).

In the subset of subjects over 55 years, the effects of standing showed some interesting differences between women and men, and between the subset over 55 years and the larger sample. In women over 55 years, SBR sensitivity and R-R interval decreased, and systolic blood pressure increased during standing, consistent with the observed decrease in parasympathetic activity and increase in sympathetic activity. In men over 55 years, SBR sensitivity and R-R interval decreased during standing. The lack of significant changes in parasympathetic and sympathetic indicators in men over 55 years was similar to the diminished responses of healthy older subjects to orthostatic stress (Lipsitz *et al.*, 1990).

The decline in parasympathetic indicator from supine to standing for women over 55 years probably accounted for the decrease in SBR slope, reflecting the reduction in parasympathetic modulation of heart rate and the beat-by-beat interaction between systolic blood pressure and heart rate. The concurrent increase in sympathetic indicator for the women over 55 years contributed to the autonomic imbalance in heart rate modulation. In contrast, the decrease in SBR slope from supine to standing for men over 55 years cannot be explained by the same mechanism, given the lack of significant change in parasympathetic and sympathetic indicators.

Our findings suggest that standing following CABG surgery resulted in autonomic changes that are similar to those in healthy older men and women (Lipsitz *et al.*, 1990; Butler *et al.*, 1993; Fei *et al.*, 1995; Dougherty, 1999), and that these changes were not affected by CABG surgery. The age factor alone did not account for all the posture related differences between women and men in our study, consistent with Laitinen *et al.* (1998), who found that age and gender together accounted for 52% of the variance in SBR sensitivity.

Summary and Conclusions

The major new finding in this study was that CABG surgery had different effects on autonomic modulation of heart rate in men and women. Postoperatively, in women, there were no significant changes in the indices of parasympathetic modulation of heart rate, nor was there a significant change in the sympathetic indicator. These findings suggest that the efferent autonomic nerve fibres in women were not attenuated as a consequence of CABG surgery. In contrast, in men following CABG surgery, there were decreases in the indices of parasympathetic modulation of heart rate; the sympathetic indicator did not change. These findings in men suggest that efferent cardiac autonomic nerves may have been damaged during CABG surgery.

The lack of significant change in sympathetic indicator following surgery may be masked by the effects of cardiovascular medications preoperatively that were not resumed postoperatively. β-adrenergic antagonists and calcium channel antagonists increase heart rate variability (Kontopoulos *et al.*, 1996; TFESCNASPE, 1996). Thus, following cessation of those medications postoperatively, the sympathetic indicator should have increased. The lack of significant change in sympathetic indicator postoperatively may reflect an actual decrease in sympathetic activity, and indicate sympathetic dysfunction. Some of the differences between men and women may be due to the higher age of the women. The extent of autonomic deterioration may be similar in our sample of men and women undergoing CABG surgery, due to the later onset of ischemic heart disease in women. Other differences could have been due to the hormonal effects of estrogen in two post-menopausal women. Increased technical difficulty during surgery in small women with small coronary arteries could account for greater variation in damage to nerve fibres. The women in our study were significantly smaller than the men, as measured by body surface area. However, the women did not show significant decreases in the indices of parasympathetic modulation of heart rate as a consequence of CABG surgery.

These findings suggest that men may be more vulnerable than women following CABG surgery to the risks of sympathetically-mediated cardiac dysrhythmias and sudden cardiac death. In addition, the decrease in SBR sensitivity means that the interaction between blood pressure and heart rate was attenuated postoperatively, thereby decreasing the ability of the cardiovascular system to respond to rapidly changing stimuli. Despite these findings, both men and women responded appropriately to the standing posture, compared with responses in healthy older individuals.

98
CHAPTER 5

Study 3

Autonomic Modulation of Heart Rate in Women and Men during Twelve Weeks Recovery Following Coronary Artery Bypass Graft Surgery

Although newer methods of coronary revascularization have evolved, the most common surgical procedure for improving coronary blood flow continues to be coronary artery bypass graft (CABG) surgery (Heart and Stroke Foundation of Canada, 1999). The incidence of CABG surgery has risen in women and in the age groups over 55 years. The improvement in coronary perfusion is achieved by bypassing stenosed or blocked epicardial coronary arteries with arterial and venous grafts (Grondin *et al.*, 1989; Pym *et al.*, 1997).

During CABG surgery, short-term cardiac control mechanisms that regulate beat-by-beat heart rate and blood pressure are perturbed by the manipulation of the heart, cardiac autonomic nerves and sinoatrial (SA) node, and by trauma to the aortic baroreceptors due to aortic clamping, cardiopulmonary bypass and vein grafting (Yang *et al.*, 1994; Komatsu *et al.*, 1997). Consequently, heart rate variability and spontaneous baroreflex (SBR) sensitivity are decreased during and immediately after surgery (Yang *et al.*, 1994; Komatsu *et al.*, 1997). The intraoperative trauma and subsequent autonomic dysfunction would be expected to be temporary, because cardiac nerves remain structurally intact throughout the surgical procedure.

Decreased heart rate variability reflects a reduction in the parasympathetic modulation of heart rate (Akselrod *et al.*, 1981; Goldberger, 1991; Hainsworth, 1996; Smit *et al.*, 1996). A reduction in SBR sensitivity following CABG surgery reflects either impaired afferent input via the aortic baroreceptors, or decreased efferent parasympathetic influence on the SA node (Dampney *et al.*, 1994; Smit *et al.*, 1996). Shi *et al.* (1995) reported that aortic baroreceptors predominate over carotid baroreceptors in the modulation of heart rate in healthy young men.

In our previous study of patients preoperatively and 5 days following CABG surgery, we found that autonomic modulation of heart rate declined in men after surgery, but not in women. Men decreased the indices of parasympathetic modulation of heart rate, that includes high frequency power, parasympathetic indicator and SBR sensitivity. These findings suggested that cardiac parasympathetic nerves were damaged in men as a consequence of CABG surgery, but not in women. Our results in men were consistent with the findings of others (Niemela *et al.*, 1992; Piha & Hamalainen, 1994; Yang *et al.*, 1994; Komatsu *et al.*, 1997). Komatsu *et al.* (1997) found that CABG surgery resulted in decreased autonomic function that persisted 4 weeks postoperatively. Niemela *et al.* (1992) reported that parasympathetic function remained low 6 weeks after CABG surgery, which the authors attributed to irreversible damage to cardiac autonomic nerves or to the SA node.

By decreasing the parasympathetic modulation of heart rate, CABG surgery attenuated the short-term adaptations in heart rate and SBR sensitivity required by changing internal and external conditions, and increased the risk of heart rate and rhythm disturbances immediately postoperatively (Huikuri *et al.*, 1995; Task Force of the European Society of Cardiology & the North American Society of Pacing & Electrophysiology [TFESCNASPE], 1996). Decreased heart rate variability persists in men for 6 weeks following surgery (Niemela *et al.*, 1992). Whether autonomic function remains depressed for 12 weeks in men after CABG surgery is not known; the course of recovery in women has not been studied.

This study assessed the effects of recovery time and posture on autonomic modulation of heart rate for 12 weeks following CABG surgery in men and women. We hypothesized that, compared with Day 5 postoperatively, the indices of parasympathetic modulation of heart rate, i.e., high frequency power, parasympathetic indicator and SBR sensitivity, would increase throughout 12 weeks postoperatively, due to improved coronary circulation and postoperative healing. We hypothesized that the indices of parasympathetic modulation of heart rate would decline in the standing position compared with supine, and that the sympathetic indicator would increase, based on our preoperative findings.

Methods

<u>Subjects</u>

Subjects were recruited preoperatively, as described in Study 1. Patients who participated in the preoperative study were eligible to continue in the postoperative study for 12 weeks, unless they withdrew or were declared off-study because of the following intraoperative or postoperative complications: myocardial infarction, cerebral vascular accident (CVA), pulmonary embolus, thromboemboli.

Preoperatively, 38 eligible patients (13 women and 25 men) signed informed consent and completed testing; postoperatively, on Day 5, 11 women and 23 men completed testing. Following hospital discharge, 5 women and 5 men withdrew from the study, citing travel distance as the reason. A sample of 22 subjects, 6 women and 16 men, completed testing at all three postoperative times: on postoperative day 5 (T1), 6 weeks after surgery (T2) and 12 weeks (T3) after surgery.

Procedures

At all three testing times, cardiovascular responses were measured in two postures: supine and standing. The procedures and measurements were the same as in the previous study, with one exception. The following information was obtained from the subjects prior to each post-discharge testing session: activity profile (mode, intensity, frequency, and duration of activity), cardiovascular status, responses to physical activity, and

102

medications which could affect the study variables.

Data Analysis

Descriptive statistics was used to determine the means and standard deviations (SD) of the following variables in the men and women who completed testing at all four times: age, body surface area (BSA), ejection fraction (EF), total number of grafts, number of arterial grafts and number of venous grafts. Student *t*-statistics were used to determine if the two groups differed in any of these variables.

Repeated measures analysis of variance (ANOVA), with 1-between factor (gender) and 2-within factors (time: 3 levels [Day 5 (T1), 6 weeks (T2) and 12 weeks (T3) postoperatively] and posture: 2 levels [supine, standing]), was employed to determine if there were significant differences over time throughout 12 weeks recovery following CABG surgery, or significant differences in the effects of posture, in men and women. Subsequently, repeated measures ANOVAs were done separately for each gender. Withinsubjects contrasts were done to identify trends, and to determine at which time there were significant differences compared with day 5 postoperatively. Differences for all analyses were significant at $\underline{p} < .05$.

Results

Sample Characteristics

Twenty-two subjects (women, n = 6; men, n = 16) completed testing at all three times following CABG surgery. The women were significantly older, received fewer arterial grafts, and had lower BSA, than men (Table 5.1). Enteric coated aspirin was prescribed, as per standard practice, for all subjects at discharge. Postoperative cardiovascular medications at discharge (T1) only was a β -adrenergic antagonist for one man. Postoperative cardiovascular medications at all three times for women included ACE inhibitor (1), calcium channel antagonist (1), β -adrenergic antagonist (1) and digoxin (1); for men, ACE inhibitor (1) and β -adrenergic antagonist (1).

Variable	Women (n = 6)	Men (n = 16)
Age (years)	65 ± 6	57 ± 8 #
Body Surface Area (m ²)	1.8 ± .1	2.0 ± .2 #
Ejection Fraction (%)	56 ± 11	58 ± 7
Total Grafts (number)	3 ± 1	3 ± 1
Arterial Grafts (number)	1 ± 0	2 ± 1#
Venous Grafts (number)	2 ± 2	1 ± 1

Table 5.1. Sample Characteristics for Women and Men

Values are means \pm SD.

Significant value, $\underline{p} < .05$ between Genders

Heart Rate Variability Day 5 (T1) to 12 Weeks Postoperatively (T3)

The heart rate variability data are presented in Table 5.2. There were no significant differences between women and men in baseline supine heart rate variability measures.

The ANOVA for the effects of recovery time in the supine position showed a significant gender difference on the parasympathetic indicator. Parasympathetic indicator was higher in women. When the data were analyzed separately for each gender, men significantly improved the parasympathetic indicator throughout recovery.

The ANOVA for the effects of recovery time and posture revealed that there was a significant main effect of posture on the parasympathetic indicator, and a posture X gender interaction. Separate analyses for men and women showed that, in men, there was a significant effect of postoperative recovery time on the parasympathetic indicator; the parasympathetic indicator increased throughout the 12 weeks. In women, there was a significant effect of posture on the parasympathetic indicator and high frequency power; women decreased the parasympathetic indicator and high frequency power in the standing position relative to supine.

	Gender	5 Days Supine	5 Days Standing	6 Weeks Supine	6 Weeks Standing	12 Weeks Supine	12 Weeks Standing
Measure			<u> </u>		<u> </u>	<u></u>	
Fractal Power (ms ² /Hz)	Women	50±40	44 ±48	345±495	196±183	204±134	152± 87
	Men	61±72	83±180	1065 ±3628	177±222	363±371	174±114
	Total	58±52	73±155	868±3093	182±208	320±329	168±106
High Frequency Power (ms²/Hz)	Women	26±58	2±3	48±55	22±34	42±62	13±14 !
	Men	2±3	15± 57	17±21	60± 216	56±105	18±26
	Total	9±32	12±49	25±35	49±184	52±94	16±23
Low Frequency Power (ms²/Hz)	Women	10±9	19±21	155 ±227	19±25	78±68	44±42
	Men	13±16	18 ±37	88 ±103	35±42	223±565	67±81
	Tota!	13±14	18±33	107±144	31±38	183±484	61±73
PNS Indicator (high/total)	Women	.15 ±.2	.03± .0	.12 ±.1	.05±.1	.10±.1	.05±.0!
	Men	.03±.0	.03±.1	.06±.1	.07±.1	.08±.1 *	.07±.1 *
	Total	.06±.1	.03±.0	.08±.1	.07±.1	.09±.1 #	.06±.1 !∞
SNS Indicator (low/high)	Women	13±21	14 ± 16	3±6	8±14	3 ±3	10±11
	Men	9 ±10	34±48	19±35	14±18	8±15	13±22
	Total	10±13	28±42	15±31	12±17	6±13	12±20
Total Harmonic Power (ms²/Hz)	Women	38±61	21±23	234±257	61±61	165 ± 208	83±57
	Men	22±25	127±461	117±128	98±215	299±717	92±92
	Total	27±37	98±393	149±174	88±185	262±617	90±83
Total Power (ms ² /Hz)	Women	88 ± 96	65± 59	579±730	257±239	369±311	236±118
	Men	84±92	210±639	1177±3697	275±429	652±996	267±182
	Total	85±91	170±545	1014±3156	270±381	575±865	258±165

Effect of Postoperative Recovery Time (5 Days to 12 Weeks) and Posture (Standing vs. Table 5.2: Supine) on Heart Rate Variability Measures in Women (n=6) & Men (n=16)

Values are Means ±SD

Significant difference due to time from 5 days, p < .05.
∞ Significant posture x gender interaction, p < .05;
! Significant difference due to posture, p < .05.

Significant gender difference, p < .05.

SBR Sensitivity Day 5 (T1) to 12 Weeks Postoperatively (T3)

Baroreflex data are presented in Table 5.3.There was a main effect of postoperative recovery time on supine SBR slope, R-R interval and systolic blood pressure throughout the 12 weeks; SBR slope, R-R interval and systolic blood pressure increased significantly. Separate analysis for each gender revealed that men increased SBR slope; men and women increased R-R interval.

There were significant main effects of postoperative recovery time and posture on SBR slope; SBR slope increased over time and decreased in the standing posture compared with supine. There were main effects of postoperative recovery time and posture on R-R interval; R-R interval increased over time and decreased in the standing posture. There were main effects of postoperative recovery time and posture on systolic blood pressure and a posture x gender interaction; blood pressure increased over time and in the standing posture.

When the data were analyzed separately for men and women, there were significant main effects of postoperative recovery time and posture, and a time x posture interaction, on SBR in men; SBR increased over time and decreased in the standing posture. Similarly, in men, there were significant main effects of time and posture on R-R interval; R-R interval increased over time and decreased in the standing posture compared with supine. In women, there was a significant effect of posture on R-R interval that showed a decrease in the standing posture relative to supine. In men and woemn, systolic blood pressure increased in the standing posture compared with supine.

Table 5.3:Effect of Postoperative Recovery Time (5 Days to 12 Weeks) and Posture (Supine vs.
Standing) on Baroreflex Measures in Women (n=6) and Men (n=16).

		5 Days	5 Days	6 Weeks	6 Weeks	12 Weeks	12 Weeks
Measure	Gender	Supine	Stand	Supine	Stand	Supine	Stand
R-R Interval (ms)	Women	719±114	690±114	756± 120	702±109	810± 85 *	739± 66 !
	Men	707±92	628±116	780±113	720±143	882±121*	770±104 •!
	Total	710±96	645±116	774±113	715±133	862±115*	761±95 •!
Systolic Blood Pressure (mmHg)	Women	99±22	125±30	117±39	147±36	133±31	152±31 !
	Men	109±20	[21±16	110±16	121±11	119±16	126±14 !
	Total	107±21	122±20	112±23	128±24	123±19 *	134±23 *!∞
Baroreflex Slope (ms/mmHg)	Women	3.7±3.3	2.5±2.0	4.6±2.8	3.5±1.6	4.8±2.7	3.4±2.0
	Men	2.8±1.8	1.9±1.6	4.8±2.4	2.3±.9	6.9±4.4 *	2.9±.9 *!0
	Total	3.0±2.2	2.1±1.7	4.8±2.5	2.6±1.2	6.3±4.0 •	3.0±1.3 *!

Values are Means ± SD

.

* Significant difference due to time, 5 days to 12 weeks, p < .05.

! Significant difference due to standing posture, p < .05.

•Significant time x posture interaction, p < .05.

 ∞ Significant posture x gender interaction, p < .05.

Discussion

The most important new finding in this study was the differential effect of CABG surgery on recovery of autonomic function in men and women throughout 12 weeks after surgery. A second finding was that there were significant effects of posture on indices of parasympathetic modulation of heart rate, as expected.

In our previous study (Study 2), we found that, compared with preoperatively, the indices of parasympathetic modulation of heart rate were significantly lower on Day 5 postoperatively in men. These findings suggested that cardiac parasympathetic nerves may have been damaged in men as a consequence of CABG surgery.

The primary purpose of this study was to measure autonomic modulation of heart rate and SBR sensitivity in men and women during 12 weeks recovery following CABG surgery. Men exhibited a significant increase in the indices of parasympathetic modulation of heart rate throughout the 12 week recovery period, probably due, in part, to improved coronary circulation following CABG surgery. Thus, cardiovascular adaptability to rapidly changing stimuli improved in men throughout 12 weeks recovery. These recovery results in men are contrary to the conclusions of others, that the attenuation of parasympathetic modulation of heart rate following CABG surgery was due to irreversible intraoperative damage to efferent cardiac autonomic nerves (Niemela *et al.*, 1992; Piha and Hamalainen, 1994; Komatsu *et al.*, 1997). Men showed significant evidence of functional recovery following CABG surgery, compared with 5 days postoperatively.

CABG surgery disrupts the short-term cardiac control mechanisms that modulate beat-by-beat heart rate and blood pressure. Mechanical injury to the heart, SA node, and cardiac autonomic nerves can be caused by manipulation, stretching and compression; damage to the aortic baroreceptors may occur as a result of aortic clamping and vein grafting (Yang *et al.*, 1994; Komatsu *et al.*, 1997). SBR reflects both the sensitivity of arterial baroreceptors to detect and respond to changes in arterial blood pressure, and the ability of the efferent autonomic nervous system to effect beat-by-beat changes in heart rate. A decline in SBR sensitivity following CABG surgery may be due to (1) impaired afferent input from the aortic barorceptors, (2) altered efferent nerve activity in parasympathetic and sympathetic nerves, and (3) dysfunction of the SA node (Docherty, 1990). Central nervous system activity may alter the degree of parasympathetic and sympathetic output (Persson, 1996).

Impairment of efferent autonomic nerves, especially the vagus nerve, seems to be the most likely explanation for our results. Although intraoperative trauma to the vagus nerve to the heart could result in edema of the nerve and subsequent postoperative dysfunction, the nerves remain structurally intact throughout the surgical procedure. Thus, the autonomic dysfunction that was observed on Day 5 postoperatively would be expected to be temporary. The persistent absence of significant functional improvement in women throughout 12 weeks of recovery was unexpected, and suggests that the cardiac parasympathetic nerves require a longer time period for recovery. Thus, restoration of function would be expected to occur; the time required for this restoration may be longer than 12 weeks following surgery.

Cardiac reinervation or regeneration following transection of cardiac autonomic nerves during cardiac transplantation remains controversial. Fallen *et al.* (1988) found that functional reinervation of cardiac parasympathetic nerves, as quantified by spectral analysis of heart rate variability, occurred in only one of nine patients 33 months following heart transplant. Fitzpatrick *et al.* (1993) showed evidence of efferent vagal reinervation after heart transplant, by the presence of the vasovagal reflex response to supported head up tilt. Kaye *et al.* (1993) reported that partial reinervation of cardiac sympathetic nerves began approximately two years following heart transplant in humans. However, during CABG surgery, cardiac autonomic nerves are not transected; nerve injury is attributed to manipulation, stretching or compression of the nerve fibres.

Aortic baroreceptors may have been damaged during surgery. Both men and women received vein grafts that were sutured into the aortic arch, which may have caused temporary or permanent damage to aortic baroreceptors. This trauma could decrease baroreceptor sensitivity and, hence, reduce or delay afferent input via these receptors. Shi *et al.* (1993) and Shi *et al.* (1995) reported that aortic baroreceptors predominate over carotid baroreceptors in the modulation of heart rate in healthy young men. Our findings suggest that men and women may have experienced different trauma to aortic baroreceptors or to efferent cardiac autonomic nerves during CABG surgery (Niemela *et al.*, 1992; Komatsu *et al.*, 1997).

In addition, mechanical damage to the SA node could reduce the ability of the effector organ to respond to autonomic stimuli (Niemela *et al.*, 1992; Piha and Hamalainen, 1994; Komatsu *et al.*, 1997). Dysfunction of the SA node is a potential complication that occurs immediately following CABG surgery; consequently, temporary cardiac pacemaker wires are inserted during surgery and remain *in situ* for 3 to 4 days postoperatively, to provide emergency cardiac pacing in the event of SA node failure. In the present study, the normal pacing function of the SA node was confirmed by ECG prior to discontinuation of the temporary pacemaker, and prior to testing at discharge on Day 5. Subjects showed ECG evidence of normal sinus rhythm at each subsequent testing time, verifying that the SA node was the cardiac pacemaker.

Surgical trauma to efferent cardiac autonomic nerves could explain the lack of significant improvement in parasympathetic function throughout recovery in women, in spite of improved coronary circulation (Niemela *et al.*, 1992; Piha and Hamalainen, 1994; Komatsu *et al.*, 1997). However, the lack

of postoperative decline in these measures in women is the more likely reason for our results during recovery. Komatsu et al. (1997) and Niemela et al. (1992) found that, compared with preoperatively, high frequency and low frequency power decreased 1 week postoperatively and remained low 4 and 6 weeks after surgery. The results were not related to aortic clamping time, nor to intraoperative myocardial damage as measured by serum enzymes. Niemela et al. attributed their findings to irreversible damage to cardiac autonomic nerves or to the SA node, but not to ischemic myocardial damage. Komatsu *et al.* also found that the ratio of low frequency to high frequency power did not decrease significantly postoperatively, consistent with our results. Piha and Hamalainen (1994) showed that although heart rate increased and parasympathetic reflexes decreased postoperatively, blood pressure responses, which are sympathetically-mediated via arterial baroreceptors, were unchanged. The authors concluded that mechanical damage to local cardiac autonomic pathways or the SA node, rather than alterations in baroreflex function, caused the attenuation in parasympathetic reflexes.

Our results in men of an increase in parasympathetic modulation throughout 12 weeks of recovery are in contrast to the findings of Niemela *et al.* (1992); our finding that there was no significant improvement in women may support their conclusion that the attenuation of parasympathetic activity following CABG surgery was irreversible. Alternatively, restoration of parasympathetic nerve function in women may require longer than 12 weeks. The lack of significant increase in parasympathetic indicator 12 weeks following surgery in women was unexpected, and could indicate important differences in the responses of men and women throughout the 12 week course of recovery following CABG surgery that have not been reported previously. The longer duration of our study versus the shorter periods of study of 4 weeks (Komatsu *et al.*) and 6 weeks (Niemela *et al.*) may have accounted for some of the discrepancies. Neither of these investigators reported the responses of women; nor did they compare two postures. Consequently, there are no available comparisons for women following CABG surgery.

There was no significant change in the sympathetic indicator throughout 12 weeks postoperatively, suggesting that the cardiac sympathetic nerves were not affected by CABG surgery. The apparently selective intraoperative damage to the parasympathetic division of the cardiac autonomic nervous system in women, and not to the sympathetic division, could be due to 1) the different structure of the nerve pathways or 2) the masking of the level of sympathetic activity by the use of β-adrenergic antagonist and calcium channel antagonist medications in some subjects throughout recovery.

Sympathetic preganglionic axons extend from neurons in the spinal cord to postganglionic neurons that are far from the target organ (Kandel *et*

al., 1991). Parasympathetic preganglionic axons extend from the parasympathetic nucleus to postganglionic neurons near the target organ, in this case, the heart and SA node; preganglionic axons are considerably longer than those of postganglionic neurons (Kandel *et al.*, 1991). Manipulation injury during CABG surgery may have affected the parasympathetic postganglionic neurons near the heart, thereby decreasing the ability of the nerve to activate the SA node. Alternatively, damage to the sympathetic nerve fibres may have been masked.

Postoperatively, from discharge to 12 weeks, more women (67%) than men (13%) resumed preoperative cardiovascular medications, including β-adrenergic antagonists and calcium channel antagonists; one women received digoxin throughout the study. Thus, the sympathetic indicator should have increased after surgery in men. The lack of increase in sympathetic indicator throughout recovery following surgery may reflect an actual decrease in sympathetic activity, and, thus, indicate sympathetic dysfunction.

Both women and men increased R-R interval and systolic blood pressure throughout 12 weeks recovery. Functional recovery of cardiac parasympathetic nerves, resulting in a shift in autonomic balance toward the parasympathetic nervous system modulation of heart rate, could account for these results in men. However, postoperative healing and improved hemoglobin level, which typically occur during the postoperative period, may have contributed to the findings. In contrast, women showed no significant change in either parasympathetic or sympathetic indicators, suggesting either that no impairment of autonomic modulation of heart rate had occurred as a consequence of surgery, or that functional recovery of efferent cardiac autonomic nerves had not occurred by 12 weeks after surgery. The increase in R-R interval and systolic blood pressure in women may be due to postoperative healing, including improved hemoglobin level and restoration of fluid balance.

The effects of posture were consistent with the attenuated responses of older subjects to orthostatic stress (Lipsitz *et al.*, 1990; Kamath *et al.*, 1991; Butler *et al.*, 1993; Fei *et al.*, 1995). Normally, the upright posture produces deactivation of afferent nerve impulses from arterial baroreceptors, resulting in an increase in efferent sympathetic activity and a concurrent withdrawal of parasympathetic activity, to the SA node (Kamath *et al.*, 1991; Persson, 1996). A decrease in parasympathetic influence on the SA node indicates a shift in the balance between parasympathetic and sympathetic efferent activity.

The women and men in our study responded differently to the standing position throughout recovery, although both groups showed some evidence of decreased parasympathetic modulation of heart rate. Our findings are consistent with our two previous studies and reported results in older healthy men and women to the upright posture (Lipsitz *et al.*, 1990). The lack of significance in all indices of parasympathetic modulation in both men and women in response to standing may be due to the high variability in SBR sensitivity and the small sample of women. The significantly higher age of the women compared with the men may have accounted for the difference in SBR response, which decreases with increasing age. The combination of CABG surgery and attenuated responses in older women subjects may have contributed to our findings.

The increase in systolic blood pressure in the standing position was accompanied by a significant decrease in parasympathetic indicator and a significant decline in SBR slope. This suggests that there was a shift in autonomic balance toward decreased parasympathetic and increased sympathetic influence on heart rate and blood pressure. The decrease in R-R interval and increase in systolic blood pressure in the standing position reflect changes in autonomic balance that are consistent with typical responses to orthostatic stress in older individuals.

Summary and Conclusions

The 12 week recovery period following coronary revascularization showed significant evidence of autonomic recovery in men. Men exhibited an increase in the indices of parasympathetic heart rate modulation throughout the 12 weeks of recovery after CABG surgery. These findings suggest that functional recovery of parasympathetic nerves can occur within 12 weeks in men.

The results of the present study imply that the short-term ability of the cardiovascular system to adapt rapidly to changing stimuli may be attenuated in women and that the potential for sympathetically-mediated cardiac dysrhythmias remained a risk throughout recovery. Injury during CABG surgery to cardiac parasympathetic nerves, followed by prolonged functional recovery, probably accounted for these results. Given that the cardiac autonomic nerves were not transected during CABG surgery, restoration of function should occur postoperatively; the time frame for functional recovery of the parasympathetic nerves seems to be longer than 12 weeks following surgery in women.

However, in our previous study (Study 2), we found that, compared with preoperatively, the indices of parasympathetic modulation of heart rate were significantly lower on Day 5 postoperatively in men, but not women. These findings suggested that cardiac parasympathetic nerves may have been damaged in men as a consequence of CABG surgery. In summary, in women, CABG surgery did not decrease the indices of parasympathetic modulation of heart rate, nor did the recovery period result in an increase. In contrast, in men, CABG surgery caused a decrease in these indices, but the recovery period showed a significant improvement. Although women had lower SBR than men preoperatively and postoperatively, there were no significant differences between them in the other measures. In conclusion, there is no evidence to suggest that CABG surgery affected parasympathetic modulation in women.

CHAPTER 6

Study 4

Autonomic Modulation of Heart Rate in Women and Men during Low Intensity Exercise 6 and 12 Weeks after Coronary Artery Bypass Graft Surgery

Heart rate variability and spontaneous baroreflex (SBR) sensitivity decrease following coronary artery bypass graft (CABG) surgery (Niemela et *al.*, 1992; Piha & Hamalainen, 1994; Yang *et al.*, 1994; Komatsu *et al.*, 1997) and during physiological perturbations, such as exercise (Pomeranz et al., 1985; Lipsitz et al., 1990; Kamath et al., 1991; Yamamoto et al., 1991; Butler et al., 1993; Nakamura et al., 1993; Fei et al., 1995; Shi et al., 1995). Decreased heart rate variability reflects decreased parasympathetic modulation of heart rate (Akselrod et al., 1981; Goldberger, 1991). This reduces the ability of the cardiovascular system to adapt to rapidly changing stimuli, decreases the beat-by-beat heart rate response to changes in arterial pressure, and increases the potential for sympathetically-mediated heart rate and rhythm disturbances (Akselrod et al., 1981; Huikuri et al., 1995; Hainsworth, 1996; Smit et al., 1996; Task Force of the European Society of Cardiology & the North American Society of Pacing & Electrophysiology [TFESCNASPE], 1996).

In our previous study of men and women following CABG surgery, we

found gender differences in autonomic function throughout 12 weeks recovery after surgery (Study 3). Men, but not women, exhibited an increase in the indices of parasympathetic modulation of heart rate (i.e., the parasympathetic indicator and SBR sensitivity) throughout 12 weeks of recovery. Neither men nor women showed any significant change in the sympathetic indicator. However, we found that there were significant effects of posture (supine vs. standing) in both men and women on indices of parasympathetic modulation of heart rate that were similar to responses in older healthy individuals. Women decreased high frequency power and the parasympathetic indicator in the standing position compared with supine; men decreased the parasympathetic indicator and baroreflex sensitivity.

Reduced parasympathetic modulation of heart rate following CABG surgery may decrease cardiovascular responses to acute physical exercise, by decreasing the beat-by-beat heart rate response to changes in arterial blood pressure (Kamath *et al.*, 1991; Yamamoto *et al.*, 1991; Niemela *et al.*, 1992; Nakamura *et al.*, 1993; Yang *et al.*, 1994; Komatsu *et al.*, 1997). Moreover, the combination of diminished parasympathetic activity postoperatively, and enhanced sympathetic activity with the associated increase in plasma catecholamines during exercise, increases the risk of sympathetically-mediated cardiac electrical instability and life-threatening arrhythmias (Yamamoto *et al.*, 1991; Nakamura *et al.*, 1993; Huikuri *et al.*, 1995; TFESCNASPE, 1996). In addition, increased breathing frequency and

122

tidal volume during exercise may cause a further reduction in the parasympathetic modulation of heart rate (Saul *et al.*, 1989; Brown *et al.*, 1993; Novak *et al.*, 1993). Thus, the measurement of beat-by-beat arterial blood pressure and spectral analysis of heart rate variability during low intensity steady-state exercise will greatly enhance the amount of information that can be gained regarding responses to exercise during early recovery 6 and 12 weeks following CABG surgery.

This study assessed 1) the effects of postoperative recovery time from 6 to 12 weeks following CABG surgery on the indices of parasympathetic modulation of heart rate (i.e., high frequency power, parasympathetic indicator and SBR sensitivity) in men and women, and 2) the effects of low intensity steady-state exercise on these measures. A secondary purpose was to determine the influence of tidal volume and breathing frequency on the study outcome measures. We hypothesized that the indices of parasympathetic modulation would increase from 6 to 12 weeks, and decrease from supine to exercise. Based on our previous findings, we predicted that women would show lower baroreflex sensitivity than men. We hypothesized that tidal volume and breathing frequency during exercise would influence baroreflex slope, high frequency power and parasympathetic indicator.

Methods

<u>Subjects</u>

Subjects were recruited preoperatively as described in Study 1. A sample of 22 subjects, 6 women and 16 men, completed testing at 6 and 12 weeks following CABG surgery, as described in Study 3.

The following information was obtained from the subjects prior to each testing session: activity profile (i.e., mode, intensity, frequency, and duration of activity), cardiovascular status, responses to physical activity, and medications which could affect the study variables.

Procedures **Procedures**

The procedures and measurements were the same as in the previous studies, with some exceptions. In the previous studies, subjects were tested in two postures: supine and standing. In the present study, subjects were tested in the supine position and during low intensity steady-state exercise in the Clinical Exercise Physiology Laboratory at Queen's University. Testing was conducted in a quiet, light-attenuated room; room temperature was similar for all tests. Cardiovascular data, as described previously, and ventilatory data were collected during the supine and exercise tests.

<u>Steady-State Exercise</u>. Approximately 15 minutes following a 20 minute supine test, subjects performed low intensity steady-state exercise, using an upright constant work rate cycle ergometer (Sensor-Medics, Model 800). Initially, the men and women performed 3 minutes of unloaded

pedaling, followed by 10-15 minutes of pedaling at 20 watts at 60 cycles per minute. They exercised to a heart rate of 50% age-predicted maximum heart rate, corresponding to a rating of perceived exertion (RPE) 11 on the Borg 15 point (6-20) scale, for a period of 10 minutes, unless stopped for signs or symptoms of exercise intolerance, following standard criteria for cardiac patients (ACSM, 1995). During exercise testing, heart rate and rhythm were monitored continuously by ECG, and blood pressure was monitored continuously by a Finapres 2300 finger arterial blood pressure monitor (Datex-Ohmeda, Rexdale, Ont.). For safety reasons, a physician was present during the exercise testing component, and an emergency cart with standard drugs and resuscitation equipment was available in the testing laboratory. Cardiovascular were collected during steady-state conditions for a minimum of 512 cardiac cycles; ventilatory responses were measured throughout the exercise test (Hughson *et al.*, 1991).

Data Collection

The methods of collecting and analyzing the cardiovascular data was described in Study 1. In this study, in addition to cardiovascular data, ventilatory data were collected during supine rest and during exercise.

<u>Ventilatory data.</u> Breath-by-breath measurements of tidal volume, breathing frequency, oxygen uptake, and carbon dioxide output were collected using a computerized system (First Breath Inc., St. Agatha, Ont.), which incorporates a respiratory mass spectrometer (Perkin-Elmer, MGA- 1100) with a volume turbine (Alpha Technologies VMM-110). In the present study, tidal volume and breathing frequency were analyzed to determine their effects on heart rate variability and baroreflex sensitivity; peak oxygen uptake and the calculation of percent of predicted maximum oxygen uptake were used to verify the intensity of exercise performed.

Statistical Analysis

Repeated measures analysis of variance (ANOVA), with 1-between subjects factor (gender), and 1-within subjects factors (time: 6 weeks vs. 12 weeks), was done to determine if there were any significant effects of recovery time in the supine position between men and women. Subsequently, repeated measures ANOVA, with time (6 weeks vs. 12 weeks) as the within-subjects factor, was done separately for women and men to determine if there were any significant effects of time in the supine position from 6 to 12 weeks in each group.

ANOVA, with 1-between subjects factor (gender), and 2-within subjects factors (time [6 weeks vs. 12 weeks] and condition [supine vs. exercise]), was done to determine if there were any significant effects of recovery time and exercise between men and women. Subsequently, repeated measures ANOVA, with time (6 weeks vs. 12 weeks) and condition (supine vs. exercise) as the within-subjects factors, was done separately for women and men to determine if there were any significant effects of time from 6 to 12 weeks and exercise in each group. Analysis of covariance (ANCOVA), with gender as the betweensubjects fixed factor, and breathing frequency and tidal volume as covariates, was conducted in the supine position and during steady-state exercise at each testing time, to determine the influence of these factors on the selected heart rate variability measures (i.e., high frequency and low frequency power, parasympathetic indicator and sympathetic indicator) and baroreflex slope, R-R interval and systolic blood pressure. Differences were significant at $\underline{p} < .05$.

Results

Sample Characteristics

Six and 12 weeks following CABG surgery, 6 women and 16 men from the preoperative sample of 38 subjects remained in the study. The women were significantly older, received fewer arterial grafts, and had lower BSA, than the men (Table 6.1). One man was stopped during exercise testing for ECG evidence of an unusual cardiac dysrhythmia, without symptoms; he was referred immediately to his cardiologist and surgeon, and experienced no untoward effects. Postoperative cardiovascular medications at 6 and 12 weeks for women included ACE inhibitor (1), calcium channel antagonist (1), β -adrenergic antagonist (1) and digoxin (1); for men, ACE inhibitor (1) and β -adrenergic antagonist (1).

Ta	ble 6	5.1. 9	Sample	Characteristics	for	Women	and	Men
----	-------	--------	--------	-----------------	-----	-------	-----	-----

Variable	Women	Men
Age (years)	64 ± 6	57 ± 8 #
Body Surface Area (m ²)	1.8 ± .1	2.0 ± .2 #
Ejection Fraction (%)	54 ± 11	58 ± 7
Total Grafts (number)	3 ± 2	3 ± 1
Arterial Grafts (number)	1 ± 0	2 ± 1#
Venous Grafts (number)	2 ± 2	1 ± 1

Significant Gender difference, $\underline{p} < .05$

Baseline Measures 6 Weeks Following CABG Surgery

There were no significant differences between women and men in the heart rate variability measures in the supine position or during exercise at 6 weeks. Similarly, there were no significant differences between women and men in SBR sensitivity in the supine position or during exercise at 6 weeks. Women had significantly higher breathing frequency and lower tidal volume in the supine position, than men.

Six to Twelve Weeks Following CABG Surgery

Heart Rate Variability

The heart rate variability data are presented in Table 6.2. In the supine position, there were no main effects of time. When the data were analyzed separately for men and women, in men, there were significant effects of time in the supine position on high frequency power and total power; both increased from 6 to 12 weeks.

Analysis of the effects of time and condition showed that there were no main effects of time on heart rate variability measures. There was a significant time X gender interaction on parasympathetic indicator. There were significant main effects of exercise on fractal power, high frequency power, low frequency power, total harmonic power and total power; these measures decreased during exercise.

Separate analysis for the male and female groups showed that, in men, there was a main effect of time on fractal power, high frequency

		6 Weeks		12	Weeks
		Supine	Exercise	Supine	Exercise
Measure	Gender	Means±SD	Means±SD	Means±SD	Means±SD
Fractal Power (ms ² /Hz)	Women	272±334	41±38	204±134	72±34
	Men	137±80	87±71	281±244	102±86 *!
	Total	180±198	73±65	257±215	92±74 !
High Frequency Power (ms ² /Hz)	Women	45±50	8±11	42±62	10±13
	Men	17±24	5±6	32±32	20±22 *!
	Total	26±35	6±8	35±42	17±20 !
Low Frequency Power (ms²/Hz)	Women	149±217	19±31	78±68	8±6
	Men	75±93	24±23	90±107	48±52 !
	Total	98±142	22±25	86±94	35±47 !
PNS Indicator (high/total)	Women	.11±.06	.09.±09	.10 ±.05	.10±.08
	Men	.07±.08	.04±.05	.08±.11	.09±.10 *
•	Total	.1±.1	.1±.1	.1±.1	.1±.1 ¤
SNS Indicator (low/high)	Women	3±.6	3±2	3±3	3±3
	Men	22±39	25±46	9±16	7±8
	Total	16±33	18±39	7±13	6±7
Total Harmonic Power (ms²/Hz)	Women	222±238	34±42	165±208	28±22
	Men	96±107	33±28	[24±99	73±9 *!
	Total	136±164	33±31	137±137	59±61!
Total Power (ms²/Hz)	Women	481±536	75±74	369±311	100±50
	Men	233±140	120±92	405±263*	177±0.4 *!
	Total	312±327	106±87	394±271	152±94 !

Effects of Time (6 to 12 Weeks Postoperatively) and Condition (Supine to Exercise) on Heart Rate Variability Measures for Women (n=6) and Men (n=13). Table 6.2:

! Significant effect of condition, from supine to exercise, p < .05.
Significant gender difference, p < .05.
* Significant effect of time, p < .05.

• Significant time x gender interaction, p < .05.

power, parasympathetic indicator, total harmonic power and total power; these measures increased from 6 to 12 weeks. In men, there was a main effect of exercise on fractal power, high frequency power, low frequency power, total harmonic power and total power; these measures decreased during exercise compared with the supine position.

SBR Sensitivity

The baroreflex data are shown in Table 6.3. In the supine position, there was a significant main effect of time on R-R interval; R-R interval increased from 6 to 12 weeks. Separate analyses for each group showed that, in the supine position, men increased R-R interval, SBR slope and systolic blood pressure significantly from 6 to 12 weeks.

Analysis of the effects of time (6 to 12 weeks) and condition (exercise) showed that there was a main effect of condition on SBR slope; SBR slope declined during exercise. When the data were analyzed separately for women and men, SBR slope decreased from supine to exercise in both men and women.

There were also significant main effects of time and exercise on R-R interval; the R-R interval increased over time from 6 to 12 weeks, and decreased from supine to exercise. Separate analysis for each group showed that there was a significant main effect of time and exercise in men, and a significant main effect of exercise in women, on R-R interval. In men, the R-R interval increased from 6 to 12 weeks and decreased from supine to exercise;

Table 6.3:	Effects of Time (6 to 12 Weeks Postoperatively) and Condition (Supine to
	Exercise) on Baroreflex Measures.

		6 Weeks		12 W	eeks
		Supine	Exercise	Supine	Exercise
Measure	Gender	Means±SD	Means±SD	Means±SD	Means±SD
R-R Interval (ms)	Women	756±120	628±81	810±85	670±45 *
	Men	805±107	680±96	904±124*	763±97 *!
	Total	790±110	664±93	875±120*	733±94 *!
Systolic Blood Pressure (mmHg)	Women	117±39	167±52	133±25	[72±21 !
	Men	109±16	152±16	119±18*	153±24 !•
	Total	111±25	157±32	124±21	159±25 !
Baroreflex Slope (ms/mmHg)	Women	4.6±2.8	2.4±1.1	4.8±2.7	2.6±0.8 !
	Men	4.5±2.4	4.3±4.6	5.8±2.4*	3.7±1.7 !
	Total	4.6±2.4	3.6±3.9	5.4±2.5	3.3±1.6 !

Significant effect of condition, from supine to exercise, p < .05.
Significant effect of time, p < .05.
Significant time x condition interaction, p < .05.

in women, the R-R interval decreased from supine to exercise.

There was a significant main effect of exercise on systolic blood pressure; systolic blood pressure increased from supine to exercise. Separate analysis for each group showed that systolic blood pressure increased from supine to exercise in both women and men. Men also showed a significant time X condition interaction; blood pressure increased from 6 to 12 weeks, and increased from supine to exercise.

Breath-by-Breath Ventilation

There was a significant overall main effect of exercise on breathing frequency and tidal volume; both increased from supine to exercise (Table 6.4). There was also a significant gender difference in tidal volume; women had lower tidal volume than men. Women showed a significant increase in tidal volume from supine to exercise; men showed a significant increase in breathing frequency from supine to exercise.

There was a significant main effect of exercise on maximum oxygen uptake and percent of predicted maximum oxygen uptake; both increased in men and women from supine to exercise. The percent of predicted maximum oxygen uptake during exercise was significantly higher in women than men.

		6 Weeks		12 Weeks		
		Supine	Exercise	Supine	Exercise	
Measure	Gender	Means±SD	Means±SD	Means±SD	Means±SD	
Breathing Rate (/min)	Women	18±3	21±3	17±3	20±3	
	Men	13±3	20±5	14±1	20±4 !	
	Total	14±3	20±5	15±2	20±4 !	
Tidal Volume (ml)	Women	534±154	760±122	483±86	780±54 !	
	Men	876±270	904±157	775±207	927±166	
	Total	811±284	877±159	720±222	899±161 !#	
Oxygen (O2) Uptake (ml/min)	Women	327±39	704±45	327±38.7	708±79!	
	Men	383±79	774±292	452±230	832±113 !	
	Total	372±75	760±262	427±211	807±117 !	
% Predicted Max O ₂ Uptake	Women	19±2	40±3	19±3	41±4 !	
	Men	14±3	28±11	16±7	30±5	
	Total	15±4	30±11	17±7	32±6! ∞	

Table 6.4: Effects of Time (6 to 12 Weeks Postoperatively) and Condition (Supine to Exercise) on Ventilatory Measures for Women and Men.

! Significant effect of exercise condition, p < .05.

Significant gender difference, p < .05.
∞ Significant condition x gender interaction, p < .05.
Influence of Tidal Volume and Breathing Frequency

Heart Rate Variability Measures. At 6 weeks, in the supine position, there were significant effects of tidal volume and gender on the sympathetic indicator, together accounting for 42% of the variance. There was also a significant gender effect on supine parasympathetic indicator, accounting for 40% of the variance. During exercise, there were significant effects of breathing frequency and tidal volume on high frequency power, together accounting for 31% of the variance.

At 12 weeks, in the supine position, there was a significant effect of tidal volume on the sympathetic indicator. During exercise, there was a significant effect of tidal volume on high frequency power, accounting for 30% of the variance, and on the parasympathetic indicator, accounting for 18% of the variance.

SBR Sensitivity. At 6 weeks, there were no significant effects of breathing frequency and tidal volume on SBR slope. At 12 weeks, during exercise, there was a significant effect of breathing frequency and tidal volume on SBR slope, together accounting for 51% of the variance.

Summary of the Influence of Breathing Frequency & Tidal Volume

In the supine position 6 weeks postoperatively, there were significant effects of gender and tidal volume on the sympathetic indicator; there was a significant effect of gender on the parasympathetic indicator. Twelve weeks postoperatively, there was a significant effect of tidal volume on the sympathetic indicator.

-

During low intensity steady-state exercise 6 weeks postoperatively, there were significant effects of breathing frequency and tidal volume on high frequency power. Twelve weeks postoperatively, there was a significant effect of tidal volume on high frequency power and the parasympathetic indicator; there was a significant effect of breathing frequency and tidal volume on SBR sensitivity.

Discussion

The major finding in this study was the differential effect of recovery time, from 6 to 12 weeks following CABG surgery, on heart rate variability measures in women and men. The effects of acute low intensity steady-state exercise on heart rate variability measures were different in men and women; exercise significantly decreased low frequency power and high frequency power in men. In contrast, the effects of acute low intensity steady-state exercise on baroreflex measures were similar in women and men, consistent with the hypothesis; exercise significantly decreased SBR slope and R-R interval, and increased systolic blood pressure in men and women.

The primary purpose of this study was to measure the effects of recovery time (6 to 12 weeks) following CABG surgery on the indices of parasympathetic modulation of heart rate in men and women. Baseline measurements at 6 weeks postoperatively showed that there were no significant differences between women and men in SBR slope or heart rate variability measures, consistent with the results of Arai *et al.* (1989) in healthy subjects. Our findings contrast with those in healthy age-matched middle aged and older subjects, in which women are reported to have higher high frequency power, lower low frequency power and lower sympathetic indicator than men (Ryan *et al.*, 1994; Liao *et al.*, 1995; Huikuri *et al.*, 1996; Dougherty, 1999). The significantly higher age of the women in the present study may account for the lack of significant differences between men and women. Increasing age decreases parasympathetic modulation of heart rate and SBR function, most likely due to reduced muscarinic receptor density and function (Docherty, 1990; Poller *et al.*, 1997; Brodde *et al.*, 1998; Brodde & Michel, 1999). Loss of muscarinic receptors in the SA node could attenuate the decrease in heart rate mediated by parasympathetic modulation, and decrease the beat-by-beat interaction between systolic blood pressure and heart rate (Brodde & Michel, 1999).

The major finding in this study was that men improved the heart rate variability indices of parasympathetic modulation of heart rate from 6 to 12 weeks recovery. The significantly higher age of the women compared with the men may have attenuated the functional recovery in women (Docherty, 1990; Poller *et al.*, 1997; Brodde *et al.*, 1998; Brodde & Michel, 1999).

Damage during surgery to aortic baroreceptors, the efferent cardiac autonomic nerves and the SA node could have the following effects: decrease the ability of the arterial baroreceptors in the aortic arch to detect changes in arterial blood pressure (Yang *et al.*, 1994; Shi *et al.*, 1995), decrease the efferent parasympathetic influence on the SA node, or cause dysfunction of the SA node (Docherty, 1990; Niemela *et al.*,1992; Komatsu *et al.*, 1997). Aortic baroreceptors may lose their sensitivity to changes in blood pressure, due to intraoperative crushing injury caused by aortic clamping, and by direct piercing injury due to vascular suturing. The efferent cardiac autonomic nerves, although not transected during CABG surgery, may lose functional ability due to compression or stretching injury during surgery. Intraoperative disruption of aortic baroreceptors and cardiac autonomic nerves may result in temporary dysfunction; consequently, restoration of autonomic and baroreflex function would be expected to occur during recovery. Dysfunction of the SA node reduces the ability of the SA node to respond to autonomic stimuli; this potential complication typically occurs immediately after surgery and is a risk for 3 to 4 days following CABG surgery (Niemela *et al.*, 1992; Piha and Hamalainen, 1994; Komatsu *et al.*, 1997). Temporary cardiac pacemaker wires that are inserted during surgery remain *in situ* to provide emergency cardiac pacing in the event of SA node failure, until normal SA node pacemaker function is verified by ECG.

In Study 2, we showed that, 5 days postoperatively, men significantly decreased the indices of parasympathetic modulation of heart rate, compared with preoperative levels. In contrast, women showed no significant changes in any of these measures. These findings suggested that the efferent cardiac autonomic nerves may have been damaged in men during CABG surgery, but that cardiac parasympathetic activity in women was not attenuated as a consequence of CABG surgery. In Study 3, we found that, throughout 12 weeks recovery following CABG surgery, men, but not women, exhibited a significant increase in the indices of parasympathetic modulation of heart rate, thereby reversing the effects of CABG surgery. Thus, in women, CABG surgery did not cause a significant decrease in the indices of parasympathetic

modulation of heart rate, nor did the recovery period result in an increase. In contrast, in men, CABG surgery caused a decrease in these indices, but the recovery period showed a significant improvement. Our results suggest that CABG surgery disrupted the efferent cardiac parasympathetic nerves in men, consistent with other studies (Niemela *et al.*, 1992; Piha & Hamalainen, 1994; Yang *et al.*, 1994; Komatsu *et al.*, 1997).

In the present study, the men improved the parasympathetic modulation of heart rate from 6-12 weeks postoperatively, contradicting the conclusions of Niemela *et al.* (1992) that the impairment of parasympathetic function was irreversible. The duration of 4 and 6 weeks in previous studies of heart rate variability following CABG surgery may not have been long enough to show significant functional restoration. Our findings in men have not been reported previously.

The surgical trauma to cardiac autonomic nerves might disrupt the autonomic nervous system to the heart differently in men and women, and differently in any individual. The women in our study were significantly smaller than the men, as estimated by body surface area. Women tend to have smaller coronary arteries than men; this could present greater technical challenges during surgery and account for greater variation in damage to nerves in women compared with men. However, given that the women showed no significant decline in autonomic measures postoperatively, this does not explain the differential effects of CABG surgery in men and women. Aortic baroreceptors are disrupted during surgery by aortic clamping and vein grafting in the region of the aortic arch; all subjects received vein grafts. This disruption may affect modulation of heart rate (Shi *et al.*, 1993; Shi *et al.*, 1995). Shi *et al.* (1995) showed that, during supine rest and steady-state exercise, aortic baroreceptors predominated over carotid baroreceptors in the modulation of heart rate. Piha & Hamalainen (1994) reported that, although the indices reflecting parasympathetic function were attenuated after CABG surgery, CABG surgery had no effect on beat-to-beat blood pressure. The authors concluded that the attenuation of heart rate was due to perioperative damage to efferent nerves or to the effector organ (i.e., the SA node), and not to baroreceptor dysfunction. These findings have not been confirmed by other investigators.

In summary, the increase in high frequency power, parasympathetic indicator and SBR sensitivity in men from 6 to 12 weeks postoperatively confirms that functional improvement of the efferent cardiac parasympathetic influence on heart rate had occurred. In women, the lack of significant improvement in the indices of both parasympathetic and sympathetic modulation may reflect continuing impairment of all autonomic activity 12 weeks following CABG surgery. However, given that, compared with preoperatively, there was no significant decline in women postoperatively, this interpretation is questionable. Lack of significant decrease in autonomic function as a consequence of CABG surgery in women could have been due to the low preoperative level of autonomic activity that prevented any reduction. Similarly, the low preoperative SBR may have precluded any decline postoperatively. The higher age of the women may account for the failure to improve these measures significantly during recovery, in spite of improved coronary circulation and postoperative healing 6 and 12 weeks after surgery. Smaller coronary arteries in women may have attenuated the expected improvement in coronary perfusion following surgery.

We also assessed the effects of low intensity steady-state exercise from 6 to 12 weeks, on the indices of parasympathetic modulation of heart rate in men and women. We found that the effects of exercise on SBR sensitivity, R-R interval and systolic blood pressure were similar in men and women. These results are consistent with findings in healthy subjects during low intensity exercise (Kamath *et al.*, 1991; Yamamoto *et al.*, 1991; Nakamura *et al.*, 1993; Fei *et al.*, 1995).

Central activation of the autonomic nervous system during exercise normally inhibits parasympathetic activity while stimulating sympathetic discharge, producing increases in heart rate, myocardial performance, and levels of catecholamines in plasma (Stone, 1983). However, the autonomic effects occur when exercise intensity exceeds 50% maximum oxygen consumption, coinciding with marked increases in plasma epinephrine and norepinephrine (Yamamoto *et al.*, 1991; Nakamura *et al.*, 1993).

In our study, acute low intensity steady-state exercise caused

significant decreases in baroreflex slope, high frequency power and low frequency power in men, and a decrease in baroreflex slope in women. Men and women decreased R-R interval and increased systolic blood pressure during exercise. The parasympathetic and sympathetic indicators did not change significantly in men or women. These findings partially supported the hypothesis, and were consistent with the reports of Arai et al. (1989), Kamath et al. (1991) and Fei et al. (1995) in healthy young subjects. The lack of change in the parasympathetic and sympathetic indicators during exercise was consistent with the findings of Yamamoto et al. (1991) and Nakamura et al. (1993) for low intensity exercise in healthy young subjects. The latter investigators found that an increase in sympathetic activity accompanied by a withdrawal of parasympathetic activity occurred only when exercise intensity exceeded 50% maximum oxygen uptake. Our subjects achieved 30% (men) and 40% (women) of maximum oxygen uptake during exercise.

In contrast to our results that SBR sensitivity declined during exercise, Shi *et al.* (1995) found that baroreflex sensitivity was maintained during low intensity steady-state exercise; in particular, aortic baroreflex gain was maintained. In addition, the authors confirmed that aortic baroreceptors predominated over carotid baroreceptors in the reflex modulation of heart rate. In our subjects following CABG surgery, aortic baroreceptors may have been damaged during surgery, contributing to the discrepancy between our results in men and women and those of Shi et al. (1995) in healthy subjects.

A secondary purpose of this study was to determine the influence of tidal volume and breathing frequency on the indices of parasympathetic modulation of heart rate. The effect of tidal volume on supine sympathetic indicator at 6 and 12 weeks was contrary to expectations, given that the mean tidal volume for both groups in the present study was lower than the nominal tidal volumes used by Brown *et al.* (1993), and was within the normal range for resting supine adults. This effect suggests that the mechanical effort required by the subjects during inspiration in the supine position increased sympathetic activity. Following CABG surgery, the mechanics of ventilation are altered due to the sternal incision. This may have resulted in chest splinting, causing an increase in the work of breathing in the supine position.

During low intensity steady-state exercise 6 weeks postoperatively, there were significant effects of breathing frequency and tidal volume on high frequency power. Twelve weeks postoperatively, there was a significant effect of tidal volume on high frequency power and the parasympathetic indicator; there was a significant effect of breathing frequency and tidal volume on SBR sensitivity. Our findings during exercise are similar to those of others (Saul *et al.*, 1989; Brown *et al.*, 1993; Novak *et al.*, 1993). Brown *et al.* reported that R-R interval power declined at higher breathing frequencies. Novak *et al.* reported that the amplitude of R-R fluctuations was proportional to tidal volume, and that for a given tidal volume, the amplitude of R-R fluctuations increased as breathing frequency decreased. The breathing frequencies during exercise in our study were substantially higher than the low rate of 0.05 Hz, and lower than the high rate of 0.46 Hz, in the study by Novak *et al.*; the exercise tidal volumes in our study were lower than the nominal tidal volumes of Brown *et al.* (1993).

A decrease in R-R interval power implies a decline in parasympathetic influence on heart rate and may explain the significant effect of breathing frequency and tidal volume together on SBR slope during exercise. Our findings were consistent with expectations of a decrease in parasympathetic modulation of heart rate during exercise.

Summary and Conclusions

From 6 to 12 weeks after CABG surgery, men improved the indices of parasympathetic modulation of heart rate, as seen by increases in high frequency power, parasympathetic indicator and SBR sensitivity; total harmonic power and total power also increased. As expected, men increased R-R interval over the 6 weeks.

Acute low intensity steady-state exercise resulted in decreased low frequency power, high frequency power, SBR slope and R-R interval, and increased systolic blood pressure, in men; in women, exercise decreased SBR slope and R-R interval, and increased systolic blood pressure. The parasympathetic and sympathetic indicators did not change significantly. These results were similar to findings in healthy young subjects, and suggest that subjects following CABG surgery experienced appropriate cardiovascular responses to low intensity exercise 6 and 12 weeks postoperatively.

There were significant effects of breathing frequency and tidal volume on high frequency power during low intensity steady-state exercise 6 weeks postoperatively. Twelve weeks postoperatively, there was a significant effect of tidal volume on high frequency power and the parasympathetic indicator; there was a significant effect of breathing frequency and tidal volume on SBR sensitivity. There were no differences between men and women.

Aging in women and restoration of parasympathetic nerve function following surgical damage to cardiac autonomic nerves in men were the most likely reasons for our findings. Women were significantly older than men, which probably accounted for the differences in improvement of autonomic responses from 6 to 12 weeks between women and men. Aging decreases muscarinic receptor density and function, thereby reducing parasympathetic modulation of heart rate. Moreover, men showed evidence of partial recovery of autonomic function, as seen by the improvement in high frequency power and the parasympathetic indicator, but not in the sympathetic indicator. There was no evidence of improved parasympathetic or sympathetic modulation in women from 6 to 12 weeks.

Chapter 7

Conclusions

The results of these studies suggest that men and women responded differently to CABG surgery and during the course of recovery. Preoperatively, there were no significant differences between men and women in supine heart rate variability measures; SBR sensitivity was lower in women. Compared with preoperative findings, autonomic modulation of heart rate was significantly lower in men 5 days postoperatively. During the 12 week course of recovery, men improved the indices of parasympathetic modulation of heart rate. Women showed no significant decline postoperatively, nor improvement throughout recovery. SBR sensitivity decreased during low intensity exercise in men and women, as expected.

The improvement in men during recovery suggests that the observed postoperative dysfunction of efferent cardiac autonomic nerves was reversible by 12 weeks following CABG surgery. The absence of significant decline postoperatively in women may account for the lack of significant improvement throughout recovery, in spite of increased coronary perfusion and postoperative healing. Smaller coronary arteries in women and the higher age of the women may have blunted any improvement in coronary perfusion autonomic function. The small sample of women and large variability in the results may have contributed to the lack of statistical significance.

References

- Airaksinen, K.E., Ikaheimo, M., Niemela, M., Valkama, J., Peuhkurinen, K., & Huikuri, H. (1996). Effect of beta blockade on heart rate variability during vessel occlusion at the time of coronary angioplasty. *American Journal of Cardiology, 77,* 20-24.
- Akselrod, S., Gordon, D., Madwed, J.B., Snidman, N.C., Shannon, D.C., Cohen,
 R.J. (1985). Hemodynamic regulation: investigation by spectral analysis.
 American Journal of Physiology, 249 (Heart Circ. Physiol. 18).
- Akselrod, S., Gordon, D., Ubel, F.A., Shannon, D.C., Barger, A.C., & Cohen, R.J. (1981). Power spectrum analysis of heart rate fluctuation: A quantitative probe of beat-to-beat cardiovascular control. *Science*, *213*, 220-222.
- Akselrod, S. (1995). Components of heart rate variability. In M. Malik & A.J. Camm (Eds.), *Heart Rate Variability.* (pp. 147-163). New York: Futura.
- Algra, A., Tijssen, J., Roelandt, J., Pool, J., & Lubsen, J. (1993). Heart rate variability from 24-Hour electrocardiography and the 2-year risk for sudden death. *Circulation, 88,* 180-185.
- American College of Sports Medicine. (1995). *Guidelines for Exercise Testing and Prescription.* Baltimore: Williams & Wilkins.
- Arai, Y., Saul, P., Albrecht, P., Hartley, L.H., Lilly, L., Cohen, R., & Colucci, W. (1989). Modulation of cardiac autonomic activity during and immediately after exercise. *American Physiological Society*, H132-H141
- Berne, R.M., & Levy, M.N. (1997). *Cardiovascular Physiology.* St. Louis: Mosby-Year Book, Inc.
- Bigger, J.T., Hoover, C., Steinman, R., Rolnitzky, L., Fleiss, J., & The Multicenter Study of Silent Myocardial Ischemia Investigators. (1990). Autonomic nervous system activity during myocardial ischemia in man estimated by power spectral analysis of heart period variability. *American Journal of Cardiology, 66,* 497-498.
- Bigger, J.T., Fleiss, J., Steinman, R., Rolnitzky, L., Kleiger, R., & Rottman, J. (1992). Frequency domain mearsures of heart period variability and mortality after myocardial infarction. *Circulation*, 85, 164-171.
- Billman, G., & Hoskins, R. (1989). Time-series analysis of heart rate variability during submaximal exercise: Evidence for reduced cardiac vagal tone in animals susceptible to ventricular fibrillation. *Circulation, 80,* 146-157.

- Blaber, A.P., Yamamoto, Y., & Hughson, R.L. (1995). Change in phase relationship between SBP and R-R interval during lower body negative pressure. *American Journal of Physiology, 268*, H1688-H1693
- Blaber, A.P., Yamamoto, Y., & Hughson, R.L. (1995). Methodology of spontaneous baroreflex relationship assessed by surrogate data analysis. *American Journal of Physiology*, 268, H1682-H1687
- Brodde, O.-E., & Michel, M.C. (1999). Adrenergic and muscarinic receptors in the human heart. *Pharmacological Reviews*, *51*, 651-689.
- Brown, A., Laschinger, S., Hains, S., & Parry, M. (1992). Discharge functional capacity and self-efficacy of men after coronary artery bypass graft surgery. *Canadian Journal of Cardiovascular Nursing, 3*, 18-24.
- Brown, C.A., Wolfe, L.A., Hains, S., Pym, J., & Parker, J.O. (1994). Early low intensity home exercise after coronary artery bypass graft surgery. *Journal of Cardiopulmonary Rehabilitation*, 14, 238-245.
- Brown, T., Beightol, L., Koh, J., & Eckberg, D. (1993). Important influence of respiration on human R-R interval power spectra is largely ignored. *Journal of Applied Physiology*, *75*, 2310-2317.
- Butler, G., Yamamoto, Y., Xing, H., Northey, D., & Hughson, R. (1993). Heart rate variability and fractal dimension during orthostatic challenges. *Journal of Applied Physiology*, 75, 2602-2612.
- Cerutti, S., Bianchi, A.M., & Mainardi, L.T. (1995). Spectral analysis of the heart rate variability signal. In M. Malik & A.J. Camm (Eds.), *Heart Rate Variability.* (pp. 63-74). New York: Futura Publishing Company.
- Collins, P., Rosano, G.M.C., Sarrel, P.M., Ulrich, L., Adamopoulos, S., Beale, C.M., McNeill, J.G., & Poole-Wilson, P.A. (1995). 17B-Estradiol Attenuates
 Acetylcholine-Induced Coronary ARterial Constriction in Women but Not Men With Coronary Heart Disease. *Circulation*, *92*, 24-30.
- Copie, X., Hnatkova, K., Staunton, A., Fei, L., Camm, A.J., & Malik, M. (1996). Predictive power of increased heart rate versus depressed left ventricular ejection fraction and heart rate variability for risk stratification after myocardial infarction: Results of a two-year follow-up study. *Journal of the American College of Cardiology*, 27, 270-276.
- Christopherson, D., Shively, M., Sivarajan, E. (1984). Low-level exercise testing before and after coronary artery bypass surgery. *Int J Nurs Stud, 21*(4), 241-253.

- Cowley, A.W., Dzau, V. (Co-Chairs). (1992). Working group on noncoronary cardiovascular disease and exercise in women. *Medicine and Science in Sports and Exercise, 24*(6), Supplement):S277-S287.
- Craelius, W., Akay, M., & Tangella, M. (1992). Heart rate variability as an index of autonomic imbaliance in patients with recent myocardial infarction. *Medical and Biological Engineering and Computing, 30,* 385-388.
- Dampney, R.A.L. (1994). Functional organization of central pathways regulating the cardiovascular system. *Physiological Reviews*, 74, 323-364.
- Davy, K.P., Miniclier, N.L., Taylor, J.A., Stevenson, E.T., & Seals, D.R. (1996). Elevated heart rate variability in physically active postmenopausal women: a cardioprotective effect? *American Journal of Physiology*, 271, H455-H460.
- Dion, W., Grevenow, P.P.M., Squires, R., Foster, C., Johnson, W., & Schmidt, D. (1982). Medical problems and physiological responses during supervised inpatient cardiac rehabilitation: The patient after coronary artery bypass grafting. *Heart & Lung*, *11*, 248-255.
- Docherty, J.R. (1990). Cardiovascular responses in ageing: A review. *Pharmacological Reviews, 42,* 103-125.
- Dougherty, J.M. (1999). Autonomic modulation of heart rate in healthy middle-aged adults. Queen's University, Kingston, Canada.
- Douglas, P.S., King, S.B.I., Jones, E.L., Craver, J.M., Bradford, J.M., & Hatcher, C.R.Jr. (1981). Reduced efficacy of coronary bypass surgery in women. *Circulation, 64,* 11-16.
- Ehsani, A., Heath, G., Martin, W., Hagberg, J., Holloszy, J. (1984). Effects of intense exercise training on plasma catecholamines in coronary patients. J Appl Physiol: Respirat Environ Exercise Physiol, 57(1), 154-159.
- Fallen, E.L., Kamath, M.V., Ghista, D., & Fitchett, D. (1988). Spectral analysis of heart rate variability following human heart transplantation: evidence for functional reinervation. *Journal of the Autonomic Nervous System, 23*, 199-206.
- Fei, L., Anderson, M., Statters, D., Malik, M., & Camm, A.J. (1995). Effects of passive tilt and submaximal exercise on spectral heart rate variability in ventricular fibrillation patients without significant structural heart disease. *American Heart Journal*, 129, 285-290.
- Fitzpatrick, A., Banner, N., Cheng, A., Yacoub, M., & Sutton, R. (1993). Vasovagal reactions may occur after orthotopic heart transplantation. *Journal of American College of Cardiology*, *21*, 1132-1137.

- Folkow, B., & Svanborg, A. (1993). Physiology of cardiovascular aging. *Physiological Reviews,* 73, 725-764.
- Gilligan, D.M., Badar, D.M., Panza, J.A., Quyyumi, A.A., & Cannon, R.O. (1994). Acute vascular effects of estrogen in postmenopausal women. *Circulation*, 90, 786-791.
- Goldberger, A. (1991). Is the normal heartbeat chaotic or homeostatic? *NIPS, 6,* 87-91.
- Grassi, G., Seravalle, G., Calhoun, D.A., Matturri, M., Mancia, G., & Zanchetti, A. (1992). Monitoring of sympathetic activity in man: physiology and pharmacology. *European Heart Journal,* 13, 22-25.
- Grondin C, Campeau L, Thornton J, Engle J, Corss F, Schreiber H. (1989). Coronary artery bypass grafting with saphenous vein. *Circulation*, 79(suppl 1),24-29.
- Haggenmiller, C., Baumert, J.H., Adt, M., & Frey, A.W. (1996). Modulation of respiratory sinus arrhythmia by breathing pattern. *Clinical Science*, 91, 40-42.
- Hainsworth, R. (1996). The physiological approach to cardiovascular reflexes. *Clinical Science*, *91*, 43-49.
- Halpert, I., Goldberg, D., Levine, A.B., Kornberg, R., Kelly, C., & Lesch, M. (1996). Reinervation of the transplanted human heart as evidenced from heart rate variability studies. *American Journal of Cardiology*, 77, 180-183.
- Hanke, H., Hanke, S., Finking, G., Muhic-Lohrer, A., Muck, A.O., Schmahl, F.W., Haasis, R., & Hombach, V. (1996). Different Effects of Estrogen and Progesterone on Experimental Atherosclerosis in Female Versus Male Rabbits: Quantification of Cellular Proliferation by Bromodeoxyuridine. *Circulation, 94*, 175-181.
- Hands, M., Briffa, T., Henderson, K., Antico, V., Thompason, P., Hung, J. (1987). Functional capacity and left ventricular function: The effect of supervised and unsupervised exercise rehabilitation soon after coronary artery bypass graft surgery. J Cardiopulmonary Rehabil, 7,578-585.
- Hanson, P., Stevens, R., Berkoff, H., Chopra, P., Kroncke, G., Myerowitz, D.,
 Albrecht, A., Christopherson, B., Eyherabide, A., Bruskewitz, E. (1985).
 Exercise capacity and cardiovascular responses to serial exercise testing in men and women after coronary artery bypass graft surgery. J
 Cardiopulmonary Rehabil, 389-397.

- Hayes, O. (1996). Fact Sheet: Cardiovascular disease (ICD-9 390-448) and women. *Chronic Diseases in Canada, 17,* 28-30.
- Heart and Stroke Foundation of Canada (1999). *Heart and Stroke Foundation of Canada: The Changing Face of Heart Disease and Stroke in Canada 2000,* Ottawa, Canada.
- Heart and Stroke Foundation of Canada (1997). *Heart Disease and Stroke in Canada*, Ottawa, Canada.
- Hohnloser, S.H., Klingenheben, T., Zabel, M., Schroder, F., & Just, H. (1992). Intraindividual reproducibility of heart rate variability. *Pace*, *15*, 2211-2214.
- Huang, J., Sopher, S.M., Leatham, E., Redwood, S., Camm, A.J., & Kaski, J.C. (1995). Heart rate variability depression in patients with unstable angina. *American Heart Journal, 130,* 772-779.
- Hughson, R.L., Northey, D.R., Xing, H.C., Dietrich, B.H., & Cochrane, J.E. (1991). Alignment of ventilation and gas fraction for breath-by-breath respiratory gas exchange calculations in exercise. *Computers and Biomedical Research, 24,* 118-128.
- Hughson, R.L., Quintin, L., Annat, G., Yamamoto, Y., & Gharib, C. (1993). Spontaneous baroreflex by sequence and power spectral methods in humans. *Clinical Physiology*, 13, 663-676.
- Hughson, R.L., Maillet, A., Gauguelin, G., Arbeille, P., & Yamamoto, Y. (1995).
 Investigation of hormonal effects during 10-h head-down tilt on heart rate and blood pressure variability. *Journal of Applied Physiology*, 78, 583-596.
- Huikuri, H.V., Koistinen, J., Yli-Mayry, S., Juhani Airaksinen, K.E., Seppanen, T., Ikaheimo, M.J., & Myerburg, R.J. (1995). Impaired low-frequency oscillations of heart rate in patients with prior acute myocardial infarction and life-threatening arrhythmias. *American Journal of Cardiology*, 76, 56-60.
- Huikuri, H.V., Pikkujamsa, S.M., Juhani Airaksinen, K.E., Ikaheimo, M.J., Rantala, A.O., Kauma, H., Lilja, M., & Kesaniemi, A. (1996). Sex-related differences in autonomic modulation of heart rate in middle-aged subjects. *Circulation*, 94, 122-125.
- Iellamo, F., Hughson, R.L., Castrucci, F., Legramante, J.M., Raimondi, G., Peruzzi, G., & Tallarida, G. (1994). Evaluation of spontaneous baroreflex modulation of sinus node during isometric exercise in healthy humans. *American Journal* of Physiology, 267, H994-H1001
- Ireland, H., Meagher, J., Sleigh, J.W., & Henderson, J.D. (1996). Heart rate variability in patients recovering from general anaesthesia. *British Journal of Anaesthesia, 76,* 657-662.

- Kandel, E.R., Schwartz, J.H., Jessell, T.M. (Eds) (1991). *Principles of Neural Science*, 3rd ed. New York: Elsevier.
- Kamath, M.V., Fallen, E.L., & Mckelvie, R. (1991). Effects of steady state exercise
 on the power spectrum of heart rate variability. *Medicine and Science in* Sports and Exercise, 23, 428-434.
- Kamath, M.V., & Fallen, E.L. (1995). Correction of the heart rate variability signal for ectopics and missing Beats. In M. Malik & A.J. Camm (Eds.), *Heart Rate Variability.* (pp. 75-85). New York: Futura Publishing Company.
- Kastello, G.M., Sothmann, M.S., & Murthy, V.S. (1993). Young and old subjects matched for aerobic capacity have similar noradrenergic responses to exercise. *Journal of Applied Physiology*, *74*, 49-54.
- Kaye, D., Esler, M.D., Kingwell, B., McPherson, G., Esmore, D., & Jennings, G. (1993). Functional and neurochemical evidence for partial cardiac sympathetic reinervation after cardiac transplantation in humans. *Circulation*, 88, 1110-1118.
- Keyl, C., Lemberger, P., Frey, A.W., Dambacher, M., & Hobbhahn, J. (1996). Perioperative changes in cardiac autonomic control in patients receiving either general or local anesthesia for ophthalmic surgery. *Anesth Analg, 82,* 113-118.
- Kleiger, R.E., Miller, P., Bigger, J.T., Moss, A.J., & Multicenter Post-Infarction Reserach Group. (1987). Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. *American Journal* of Cardiology, 59, 256-262.
- Komatsu, T., Kimura, T., Nishiwaki, K., Fujiwara, Y., Sawada, K., & Shimada, Y. (1997). Recovery of heart rate variability profile in patients after coronary artery surgery. *Anesthesia Analgesia*, 85, 713-718.
- Komatsu, T., Kimura.T., Sakakibara, Y., Shimada, Y. (1992). Depression of heart rate variability after cardiac surgery in patients. *Anesthesiology* 81(3A), A338.
- Komatsu, T., Kimura, T., Nishiwaki, K., Sawada, K., Shimada, Y. (1994). Fractal dimension of heart rate variability after coronary artery surgery. *Anesthesiology* 77(Supplement), A94.
- Kontopoulos, A.G., Athyros, V.G., Papagerorgiou, A.A., Papadopoulos, G.V., Avramidis, M.J., & Boudoulas, H. (1996). Effect of *Quinapril* or *Metoprolol* on heart rate variability in post-myocardial infarction patients. *American Journal of Cardiology*, 77, 242-246.

- La Rovere, M.T., Mortara, A., Pinna, G.D., & Bernardi, L. (1995). Baroreflex sensitivity and heart rate variability in the assessment of the autonomic status. In M. Malik & A.J. Camm (Eds.), *Heart Rate Variability.* (pp. 189-205). New York: Futura.
- Laitinen, T., Hartikainen, J., Vanninen, E., Niskanen, L., Geelen, G., & Lansimies, E. (1998). Age and gender dependency of baroreflex sensitivity in healthy subjects. *Journal of Applied Physiology,* 84, 576-583.
- Lakatta, E.G. (1993). Deficient neuroendocrine regulation of the cardiovascular system with advancing age in healthy humans. *Circulation*, *87*, 631-636.
- Lal, S.K.L., Henderson, R.J., Cejnar, M., Hart, M.G., & Hunyor, S.N. (1995). Physiological influences on continuous finger and simultaneous intra-arterial blood pressure. *Hypertension, 26,* 307-314.
- Liao, D., Barnes, R.W., Chambless, L.E., Simpson Jr., R.J., Sorlie, P., & Heiss, G. (1995). Age, race, and sex differences in autonomic cardiac function mearsured by spectral analysis of heart rate variability-the ARIC study. *American Journal of Cardiology*, *76*, 906-912.
- Lipsitz, L.A., Mietus, J., Moody, G.B., & Goldberger, A.L. (1990). Spectral characteristics of heart rate variability before and during postural tilt: Relations to aging and risk of syncope. *Circulation, 81,* 1803-1810.
- Lipsitz, L.A., & Goldberger, A.L. (1992). Loss of 'complexity' and aging: Potential applications of fractals and chaos theory to senescence. *Journal of the American Medical Association, 267,* 1806-1809.
- Lombardi, F., Sandroni, G., Pernpruner, S., Sala, R., Garimoldi, M., Cerutti, S., Baselli, G., Pagani, M., Malliani, A. (1987). Heart rate variability as an index of sympathovagal interaction after acute myocardial infarction. *Am J Cardiol* 60,1239-1245.
- Malliani, A. (1995). Association of heart rate variability components with physiological regulatory mechanisms. In M. Malik & A.J. Camm (Eds.), *Heart Rate Variability.* (pp. 173-188). New York: Futura.
- Malliani, A., Pagani, M., Lombardi, F., Furlan, R., Guzzetti, S., & Cerutti, S. (1991). Spectral analysis to assess increased sympathetic tone in arterial hypertension. *Hypertension*, *17*, 36-42.
- Malliani, A., Lombardi, F., & Pagani, M. (1994). Power spectrum analysis of heart rate variability: a tool to explore neural regulatory mechanisms. *British Heart Journal,* 71, 1-2.

- McDonald, M.P., Snafilippo, A.J., & Savard, G.K. (1993). Baroreflex function and cardiac structure with moderate endurance training in normotensive men. *Journal of Applied Phsiology,* 74, 2469-2477.
- Nakamura, Y., Yamamoto, Y., & Muraoka, I. (1993). Autonomic control of heart rate during phsical exercise and fractal dimension of heart rate variability. *Journal of Applied Physiology,* 74, 875-881.
- Niemela, M.J., Airaksinen, K.E.J., Tahvanainen, K.U.O., Linnaluoto, M.K., & Takkunen, J.T. (1992). Effect of coronary artery bypass grafting on cardiac parasympathetic nervous function. *European Heart Journal*, *13*, 932-935.
- Novak, V., Novak, P., De Champlain, J., Le Blanc, A.R., Martin Richard, & Nadeau, R. (1993). Influence of respiration on heart rate and blood pressure fluctuations. *Journal of Applied Physiology*, *74*, 617-626.
- O'Leary, D.S., & Seamans, D.P. (1993). Effect of exercise on autonomic mechanisms of baroreflex control of heart rate. *Journal of Applied Physiology*, 75, 2251-2257.
- Pagani, M., Lombardi, F., Guzzetti, S., Rimoldi, O., Furlan, R., Pizzinelli, P., Sandrone, G., Malfatto, G., Dell'Orto, S., Piccaluga, E., Turiel, M., Baselli, G., Cerutti, S., & Malliani, A. (1986). Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. *Circulation Research*, 59, 178-193.
- Parati, G., DiRienzo, M., Bertinieri, G., Pomidossi, G., Casadei, R., Groppelli, A., Pedotti, A., Zanchetti, A., & Mancia, G. (1988). Evaluation of the baroreceptor-heart rate reflex by 24-Hour intra-arterial blood pressure monitoring in humans. *Hypertension*, 12, 214-222.
- Parlow, J. (1993). Assessment of spontaneous cardiac baroreflex activity in humans: a comparison with pharmacologically-induced responses. Queen's University, Kingston, Canada.
- Parlow, J., Viale, J.-P., Annat, G., Hughson, R., & Quintin, L. (1995). Spontaneous cardiac baroreflex in humans: Comparison with drug-induced responses. *Hypertension*, 25, 1058-1068.
- Persson, P.B. (1996). Modulation of cardiovascular control mechanisms and their interaction. *Physiology Review*, 76, 193-244.
- Piccirillo, G., Fimognari, F.L., Santagada, E., Munizzi, M.R., Viola, E., Monteforte, G., Bucca, C., Durante, M., DiGioacchino, C., Tarantini, S., LoVerde, A., Cacciafesta, M., & Marigliano, V. (1996). Power spectral analysis of heart rate in elderly hypertensive subjects with or without silent coronary disease. *Angiology*, 47, 15-22.

- Piha, S.J., & Hamalainen, H. (1994). Effect of coronary bypass grafting on autonomic cardiovascular reflexes. *Annals of Medicine*, 26, 53-56.
- Poller, U., Nedelka, G., Radke, J., Ponicke, K., & Brodde, O.-E. (1997). Agedependent changes in cardiac muscarinic receptor function in healthy volunteers. *Journal of the American College of Cardiology, 29,* 187-193.
- Pomeranz, B., Macaulay, R.J.B., Caudill, M.A., Kutz, I., Adam, D., Gordon, D., Kilborn, K.M., Barger, A.C., Shannon, D.C., Cohen, R.J., & Benson, H. (1985). Assessment of autonomic function in humans by heart rate spectral analysis. *American Journal of Physiology*, 248, H151-H153
- Potts, J.T., Shi, X.R., & Raven, P.B. (1993). Carotid baroreflex responsiveness during dynamic exercise in humans. *American Journal of Physiology*, 265, H1928-H1938
- Pym, J., Luffman, B., & Parry, M. (19970). Total arterial revascularization of the heart: intentional or inevitable. *Issues in Critical Care Nursing, 8,* 9-19.
- Rimoldi, O., Furlan, R., Pagani, M.R., Piazza, S., Guazzi, M., Pagani, M., & Malliani, A. (1992). Analysis of neural mechanisms accompanying different intensities of dynamic exercise. *Chest*, 101, 226S-230S.
- Robinson, B.F., Epstein, S.E., Beiser, G.D., & Braunwald, E. (1966). Control of heart rate by the autonomic nervous system. *Circulation Research*, 19, 400-411.
- Ryan, S.M., Goldberger, A.L., Pincus, S.M., Mietus, J., & Lipsitz, L.A. (1994). Gender- and age-related differences in heart rate dynamics: Are women more complex than men? *Journal of American College of Cardiology*, 24, 1700-1707.
- Saul, J.P., Arai, Y., Berger, R., Lilly, L.S., Colucci, W.S., & Cohen, R.J. (1988). Assessment of autonomic regulation in chronic congestive heart failure by heart rate spectral analysis. *American Journal of Cardiology*, 61, 1292-1299.
- Saul, J.P., Berger, R.D., Chen, M., & Cohen, R.J. (1989). Transfer function analysis of autonomic regulation II. Respiratory sinus arrhythmia. *American Journal of Physiology*, 256, H153-H161
- Seals, D.R., Johnson, D.G., & Fregosi, R.F. (1991). Hypoxia potentiates exerciseinduced sympathetic neural activation in humans. *Journal of Applied Physiology*, 71, 1032-1040.
- Seals, D.R., Taylor, J.A., Ng, A.V., & Esler, M.D. (1994). Exercise and aging: autonomic control of the circulation. *Medicine and Science in Sports and Exercis*, 26, 568-576.

- Shi, X., Andresen, J.M., Potts, J.T., Foresman, B.H., Stern, S.A., & Raven, P.B. (1993). Aortic baroreflex control of heart rate during hypertensive stimuli: effect of fitness. *Journal of Applied Physiology*, 74, 1555-1562.
- Shi, X., Potts, J.T., Raven, P.B., & Foresman, B.H. (1995). Aortic-cardiac reflex during dynamic exercise. *Journal of Applied Physiology*, 78, 1569-1574.
- Shi, X., Gallagher, K.M., Welch-O'Connor, R.M., & Foresman, B.H. (1996). Arterial and cardiopulmonary baroreflexes in 60- to 69- vs. 18- 36-γr-old humans. *Journal of Applied Physiology*, 80, 1903-1910.
- Smit, A.A.J., Wieling, W., & Karemaker, J.M. (1996). Clinical approach to cardiovascular reflex testing. *Clinical Science*, *91*, 108-112.
- Stanley, G., Verotta, D., Craft, N., Siegel, R.A., & Schwartz, J.B. (1996). Age and autonomic effects on interrelationships between lung volume and heart rate. *American Journal of Physiology*, 270, H1833-H1840
- Stone, H.L. (1983). Control of the coronary circulation during exercise. Annals Review Physiology, 45, 213-227.
- Schwartz, P.J., Vanoli, E., Stramba Badiale, M., De Ferrari, G.M., Billman, G.E., Foreman, A.D. (1988). Autonomic mechanisms and sudden death: New insights from analysis of baroreceptor reflexes in conscious dogs with and without a myocardial infarction. *Circulation*, 78, 969-979.
- Sullivan, J.M. (1995). Coronary Arteriography in Estrogen-Treated Postmenopausal Women. *Progress in Cardiovascular Diseases, 38,* 211-222.
- Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. (1996). Heart Rate Variability: Standards of Measurement, Physiological Interpretation, and Clinical Use. *Circulation*, 1043-1065.
- Williams, J.K., Adams, M.R., & Klopfenstein, H.S. (1990). Estrogen Modulates Responses of Atherosclerotic coronary Arteries. *Circulation*, 81, 1680-1687.
- Yamamoto, Y., Hughson, R.L., & Peterson, J.C. (1991). Autonomic control of heart rate during exercise studied by heart rate variability spectral analysis. *Journal of Applied Physiology,* 71, 1136-1142.
- Yamamoto, Y., & Hughson, R.L. (1991). Coarse-graining spectral analysis: new method for studying heart rate variability. *Journal of Applied Physiology*, 71, 1143-1150.

- Yang, M.W., Kuo, T.B.J., Lin, S.M., Chan, K.H., & Chan, S.H.H. (1995). Continuous, on-line, real-time spectral analysis of SAP signals during cardiopulmonary bypass. *American Journal of Physiology*, 268, H2329-H2335.
- Yang, M.W., Kuo, T.B.J., Lin, C.Y., Chan, K.H., Chan, S.H.H. (1994). Power spectral analysis of arterial blood pressure during open-heart surgery. *Anesthesiology Abstracts A489*, (abstract).

APPENDIX A Letter of Information & Consent Form

QUEEN'S UNIVERSITY SCHOOL of PHYSICAL & HEALTH EDUCATION LETTER OF INFORMATION AND INFORMED CONSENT RESEARCH STUDY

Title of Study:	Autonomic control of heart rate during early recovery following
	coronary artery bypass graft surgery: comparison of men and women.
Researcher:	Ann Brown, Registered Nurse, MSc., & Doctoral student, Queen's
	University.
Supervisors:	Dr. Larry Wolfe, Exercise Physiologist, and Dr. Glorianne Ropchan,
	Heart Surgeon.

WOMEN & MEN HAVING BYPASS SURGERY

are needed for a research study on heart rate & blood pressure before & after surgery.

Men and women may respond differently to rest, standing, and mild physical activity during early recovery after coronary bypass surgery. You are invited to participate in a research study conducted by Mrs. Ann Brown, a nurse, about heart rate, blood pressure, & breathing responses in men & women after coronary bypass surgery. This study, therefore, has two main objectives: (1) To compare heart rate and blood pressure regulation **before and after** surgery, and (2) To compare heart rate and blood pressure regulation of **men and women**. Your participation will help us to learn more about the course of recovery after bypass surgery, in particular, about heart rate & blood pressure responses to rest, standing, & mild physical activity, during early recovery.

The study involves 2 in-hospital sessions of approximately 30 minutes, and 2 postdischarge sessions of 45 minutes to one hour. The 2 in-hospital sessions include 1 before surgery and 1 after surgery; the post-discharge sessions will be 6 weeks after surgery, and 12 weeks after surgery.

1. In-hospital testing: 2 testing sessions @ Kingston General Hospital

- 1) Pre-operative testing (before surgery) will be done on the day of admission to hospital, in a quiet private room on Kidd 3, and will take approximately 30 minutes. Your heart rate and blood pressure will be recorded during a resting period of 20 minutes. Then, you will be asked to take 6 deep-breaths while still resting. Following this, you will be asked to stand at the side of the bed for approximately 10 minutes. Your blood pressure will be monitored by a small cuff which fits on your middle finger; your heart rate and rhythm will be monitored by an heart monitor similar to an electrocardiogram. Neither device should cause you any discomfort.
- 2) Post-operative testing (after surgery) will be done in exactly the same way in the same quiet private room on Kidd 3, on the day before your expected discharge from hospital, and will take approximately 30 minutes. Your level of discomfort from your surgery will be assessed prior to the testing.

2. Post-discharge testing: 2 testing sessions @ Queen's University

Testing will be done **6 weeks and 12 weeks** after surgery, in the exercise physiology laboratory in the Physical Education Centre at Queen's University, under medical supervision. At each of these times, testing will take approximately 45 minutes to one hour. The same test as described above will be repeated. Afterwards, you will perform a low intensity exercise test on an exercise bicycle. Prior to the test, a small tube may be placed in a vein in your arm, for the purpose of blood sampling before and after the exercise test. We will monitor your heart and blood pressure before, continuously throughout the testing session, and for a short period after the test, using the same methods used in the previous tests. We will also monitor your breathing during the test, by means of a mouthpiece.

3. Potential Risks and Discomforts during Low Intensity Exercise

Normally, pulse rate, blood pressure, and breathing rate increase during exercise. There exists the *unlikely* possibility of certain other changes occurring during the exercise or testing sessions. These include abnormal blood pressure changes, heart beat irregularities, fainting or dizziness, chest or leg discomfort, and, in very rare instances, a heart attack. These are *unlikely* to occur with the level of exercise you will be instructed to do. We will stop any test or exercise session *at your request* or if we observe any signs or symptoms of distress. In accordance with standard protocol, emergency equipment and trained personnel will be available during exercise testing sessions.

4. Benefits to be Expected

Participation in this study may not benefit you directly in any way. The information from the tests will provide us with information about normal responses during the early recovery period following heart surgery. This should enable us to provide more specific and helpful information to other people undergoing this type of surgery in the future. It may be helpful to you to know your responses, which we will share with you and your physician.

5. Responsibility of the Participant

To promote your safety, it is important for you to follow instructions carefully. This involves the following:

- 1) DO NOT withold any information about how you feel during exercise or testing sessons, or any symptoms you have been experiencing at home
- 2) DO follow your written instructions regarding eating, drinking stimulant or alcoholic beverages, or exercise before your 6 and 12 week tests.

6. Confidentiality

All information obtained during the course of this study is strictly confidential and your anonymity will be protected. Information from your hospital record concerning your heart surgery and postoperative recovery period is necessary to ensure your safety and monitor your responses. The information obtained during your participation in this study will be used only for the purposes of this study. It will not be released or revealed to anyone except your physician without your written consent. The information may be used for scientific purposes and be published in a scientific journal, with your right to privacy retained. Information which could identify you will remain confidential. All records will be stored in a locked file at Queen's University. Only the researchers will have access to these files.

7. Inquiries

SIGNATURES

Any questions about the study, the testing, or the researchers are welcome. If you have questions or concerns about the study, please consult Ann Brown (545-2668 or 389-6795), Dr. L. Wolfe, Supervisor (545-2666), Dr. Glorianne Ropchan (549-6345), or Dr. G. Reid, Director of the School of Physical and Health Education (545-2666). You are encouraged to discuss the study with your doctor.

8. FREEDOM OF CONSENT

Your participation in this study is voluntary. You are free not to participate, or to withdraw consent at any time, without affecting your usual care.

VOLUNTARY PARTICIPATION

I acknowledge that I have read this form in its entirety or it has been read to me, and I understand that I will participate in a study to examine my heart rate, blood pressure, and breathing responses after heart surgery. I understand that I will have one testing session before surgery, and one after surgery in hospital before discharge, which involve monitoring my heart rate and blood pressure during a rest period, during six deep breaths and when I stand up. I understand that I will have two (2) testing sessions after discharge, one at 6 weeks, and one at 12 weeks. These sessions will include monitoring my heart rate, blood pressure, and breathing at rest, standing, and during a low intensity exercise on a stationary bicycle, and may involve blood sampling from a vein in my arm. I accept the potential risks and my obligations as described in this form. I voluntarily consent to participate in this study, and understand that I may withdraw at any time without affecting my care.

For your information, you may keep a copy of this **LETTER OF INFORMATION AND INFORMED CONSENT form.**

Participant:	Signature:	
Witness:	Signature:	
Physician:	Signature:	
DATE:		

APPENDIX B Emergency Management

QUEEN'S UNIVERSITY SCHOOL OF PHYSICAL & HEALTH EDUCATION EMERGENCY MANAGEMENT *

Research Study:Autonomic control of heart rate during early recovery following
coronary artery bypass graft surgery: comparison of men and women.Researcher:Ann Brown, RN, MSc., Doctoral student, Queen's University.Supervisor:Larry A. Wolfe, PhD, School of Physical & Health Education, Queen's
University.

- * ACSM's Guidelines for Exercise and Prescription, 1995, pp 253-262.
- 1. All personnel should be trained in basic cardiopulmonary resuscitation (CPR) and preferably Advanced Cardiac Life Support (ACLS).
- Telephone numbers for emergency assistance should be clearly posted on all telephones. Emergency communication devices must be readily available and working properly.
- 3. Emergency plans should be established and posted. Regular rehearsal of emergency plans and scenarios should be conducted and documented.
- 4. Regular drills should be conducted at least quarterly for all personnel.

If a problem occurs during exercise testing, the nearest physician available should be summoned immediately. The physician should make the decision whether or not to call for evacuation to the nearest hospital. If a physician is not available and there is question as to the status of the patient, then emergency transportation to the closest hospital should be summoned immediately.

See also (Attached)

Table B-1	Emergency Equipment and Drugs
Table B-2	Plan for Nonemergency Situations
Table B-3	Plan for Potentially Life-threatening Situations
Table B-4	Plan for Life-threatening Situations

APPENDIX C ANOVA TABLES Chapter 3

<u>Ch. 3.</u>	ANOVA Table for	Fractal Power with	<u>1-between</u>	(gender) and	1-within	subjects (factor (condition:	-
supine	1] vs. standing [2]).								

Descrip	tive Stati	stics								
	GENDEF	2	Mean		Std. Dev	viation	N			
FPR1	FEMALE		379.28	49	392.882	26	12			
	MALE		546.13	74	434.91	53	23			
	Total		488.93	08	422.833	32	35			
FPS1	FEMALE		246.12	90	175.728	35	12			
	MALE		451.34	92	404.778	39	23			
	Total		380.98	80	354.650	00	35			
Tests c	of Within-S	Subjects	Effects							
Measur	e: MEASI	JRE_1								
Source		_	Type III	SS	df	Mean So	quare	F	Sig.	
COND			204864	.949	1	204864	.949	2.426	.129	
COND	 GENDER 	3	5804.2	37	1	5804.23	37	.069	.795	
Error(C	OND)		278677	1.403	33	84447.6	618			
Tests o	of Within-S	Subjects	Contrast	s						
Source			COND	Type III	SS	df	Mean Se	quare	F	Sig.
COND			2 vs. 1	409729	.898	1	409729	.898	2.426	.129
COND	 GENDER 	۲	2 vs. 1	11608.4	474	1	11608.4	474	.069	.795
Error(C	OND)		2 vs. 1	557354	2.807	33	168895	.237		
<u>Tests o</u>	f Betwee	n-Subjec	ts Effect	s						
Source		Type III	SS	df	Mean So	quare	F	Sig.		
Interce	pt	519236	0.516	1	519236	0.516	48.839	.000		
GENDE	R	272920	.838	1	272920	.838	2.567	.119		
Error		350838	8.373	33	106314	.799				

<u>Ch. 3.</u> <u>ANOVA Table for Fractal Power with 1-within subjects factor (condition: supine [1] vs. standing [2]) in Men & Women Separately.</u>

Tests o	f Within-Subjects	s_Effects							
Measur	e: MEASURE 1								
gender	Source	Туре	III SS	df	Mean S	Square	F	Sig.	
female	COND	1122	23.527	1	11223	.527	.202	.662	
	Error(COND)	6116	571.235	11	55606	.476			
male	COND	1033	325.083	1	10332	5.083	1.448	.242	
	Error(COND)	1569	9772.128	22	71353	.279			
<u>Tests o</u>	f Within-Subjects	<u>Contrasts</u>							
Measur	e: MEASURE_1								
gender	Source	COND	Type II	ISS	df	Mean S	Square	F	Sig.
female	COND	2 vs. 1	22447	.054	1	22447	.054	.202	.662
	Error(COND)	2 vs. 1	12233	42.471	11	11121	2.952		
male	COND	2 vs. 1	20665	0.166	1	20665	0.166	1.448	.242
	Error(COND)	2 vs. 1	31395	44.257	22	14270	6.557		
<u>Tests o</u>	f Between-Subje	cts Effects							
Measur	e: MEASURE_1								
Transfo	ormed Variable: A	verage							
gender	Source	Type III SS	df	Mean S	Square	F	Sig.		
female	Intercept	860306.138	1	86030	6.138	30.523	.000		
	Error	310036.099	11	28185	.100				
male	Intercept	5721132.363	31	57211	32.363	40.627	000.		
	Error	3098083.386	5 22	14082	1.972				

<u>Ch. 3.</u>	<u>ANOVA</u>	Table	for High	Frequency	Power	<u>with</u>	1-between	(gender)	and	<u>1-within</u>	subjects	factor
(conditio	on: supine	e [1] v	s. stand	ing [2]).								

Descript	ive Stati	stics									
	GENDEF	2	Mean			Std. Dev	viation	N			
HFR1	FEMALE		45.71	66	592	45.7130	040	12			
	MALE		207.0)42	2776	412.513	3703	23			
	Total		151.7	30	976	341.790	0577	35			
HFS1	FEMALE		8.491	97	73	7.59148	83	12			
	MALE		44.69	69	964	56.8486	621	23			
	Total		32.28	38	324	49.1304	494	35			
Tests of	Within-S	Subjects	Effect	<u>s</u>							
Source			Type		SS	df	Mean S	quare	F	Sig.	
COND			1570	37	.680	1	157037	.680	3.152	.085	
COND *	GENDER	3	6172	6.5	64	1	61726.	564	1.239	.274	
Error(CC	ND)		1644	25	2.810	33	49819.	782			
Tests of	Within-S	Subjects	Contra	ist	S						
Source			CONE)	Type III	SS	df	Mean So	quare	F	Sig.
COND			2 vs.	1	157037	.680	1	157037	.680	3.152	.085
COND *	GENDER	2	2 vs.	1	61726.5	564	1	61726.5	564	1.239	.274
Error(CC	ND)		2 vs.	1	164405	2.810	33	49819.7	782		
<u>Tests of</u>	Betweer	n-Subject	s Effe	cts	<u>i</u>						
Source		Type III	SS		df	Mean So	quare	F	Sig.		
Intercep	t	369068	.884		1	369068	.884	5.550	.025		
GENDER		153844	.471		1	153844	.471	2.314	.138		
Error		219435	2.686		33	66495.5	536				

<u>Ch. 3.</u> <u>ANOVA Table for **High Frequency Power** with 1-within subjects factor (condition: supine [1] vs. standing [2]) in Men & Women Separately.</u>

Tests of	Within-Subjects	Effects							
Measure	e: MEASURE_1								
gender	Source	Type III S	SS	df	Mean So	quare	F	Sig.	
female	COND	8314.07	8	1	8314.07	78	8.204	.015	
	Error(COND)	11147.2	92	11	1013.39	90			
male	COND	303095.	871	1	303095	.871	4.084	.056	
	Error(COND)	1632905	5.519	22	74222.9	978			
Tests of	Within-Subjects	Contrasts	5						
Measure	EXEASURE 1		-						
gender	Source	COND	Type III	SS	df	Mean So	quare	F	Sig.
female	COND	2 vs. 1	16628.1	157	1	16628.1	57	8.204	.015
	Error(COND)	2 vs. 1	22294.5	583	11	2026.78	30		
male	COND	2 vs. 1	606191	.743	1	606191	.743	4.084	.056
	Error(COND)	2 vs. 1	326581	1.037	22	148445	.956		
Tests of	Between-Subject	ts Effects							
Measure	E: MEASURE 1								
Transfor	med Variable: Av	erade							
gender	Source	Type III S	SS	df	Mean So	uare	F	Sig.	
female	Intercept	8815.73	8	1	8815.73	38	15.549	.002	
	Error	6236.57	4	11	566.961				
male	Intercept	364394.	156	1	364394	.156	7.348	.013	
	Error	1090939	9.769	22	49588.1	71			

<u>Ch. 3.</u>	ANOVA	Table for	Low Frequ	ency Pow	er with	<u>1-between</u>	(gender)	and	<u>1-within</u>	subjects	factor
(conditio	on: supine	e [1] vs. s	tanding [2	1).							

Descrip	<u>tive Stati</u>	stics								
	GENDEF		Mean		Std. Dev	viation	Ν			
LFR1	FEMALE		102.8	51182	74.671	165	12			
	MALE		132.34	17896	145.74	5017	23			
	Total		122.234737		125.500	0181	35			
LFS1	FEMALE		64.44	829	50.5766	690	12			
	MALE		249.64	1792	337.600	0477	23			
	Total		186.14	4662	287.28	1382	35			
T <u>ests o</u>	f Within-S	Subjects	Effects							
Source			Type II	ISS	df	Mean Se	quare	F	Sig.	
COND			24535	.498	1	24535.4	498	.471	.497	
COND	GENDER	{	95588	.664	1	95588.6	564	1.836	.185	
Error(C(OND)		17181	91.401	33	52066.4	406			
Tests_o	f Within-S	ubjects	Contras	sts						
Source			COND	Type III	SS	df	Mean So	quare	F	Sia.
COND			2 vs. 1	24535.4	498	1	24535.4	498	.471	.497
COND	GENDER	1	2 vs. 1	95588.	664	1	95588.6	564	1.836	.185
Error(CC	(DNC)		2 vs. 1	171819	1.401	33	52066.4	406		
Tests o	f Betweer	-Subiec	ts Effec	ts						
Source		Type III	SS	df	Mean So	uare	F	Sia.		
Intercep	ot	118960	5.276	1	118960	5.276	29,165	.000		
GENDE	٦	181744	.672	1	181744	.672	4.456	.042		
Error 1346025.448 33		33	40788.6	550						

<u>Ch. 3.</u> <u>ANOVA Table for Low Frequency Power with 1-within subjects factor (condition: supine [1] vs.</u> standing [2]) in Men & Women Separately.

Tests of Measure	Within-Subjects	Effects						
gender	Source	Type III SS	df	Mean Se	quare	F	Sig.	
female	COND	8851.670	1	8851.6	70	5.924	.033	
	Error(COND)	16435.138	11	1494.10	23			
male	COND	158215.369	1	158215	.369	2.045	.167	
	Error(COND)	1701756.263	22	77352.	557			
		_						
Tests of	Within-Subjects	Contrasts						
Measure	e: MEASURE_1							
gender	Source	COND Type III	SS	df	Mean So	quare	F	Sig.
female	COND	2 vs. 1 17703.	340	1	17703.3	340	5.924	.033
	Error(COND)	2 vs. 1 32870.	275	11	2988.20)7		
male	COND	2 vs. 1 316430	.738	1	316430	.738	2.045	.167
	Error(COND)	2 vs. 1 340351	2.526	22	154705	.115		
Tests of	Between-Subjec	ts Effects						
Measure	e: MEASURE_1							
Transfor	rmed Variable: Av	verage						
gender	Source	Type III SS	df	Mean So	quare	F	Sig.	
female	Intercept	83960.854	1	83960.8	354	25.291	.000	
	Error	36518.246	11	3319.84	41			
male	Intercept	839017.699	1	839017	.699	29.000	.000	
	Error	636494.478	22	28931.5	567			

•

Descript	tive Statis	stics								
GENDER		Mean		Std. Deviation		Ν				
PNSR1	FEMALE		.118287		9.71625E-02		12			
	MALE		.192036		.199923		23			
	Total		.166751		.173719		35			
PNSS1	FEMALE		2.59292E-02		2.13639E-02		12			
	MALE		5.9278	3E-02	6.20898	3E-02	23			
	Total		4.78443E-02		5.38527E-02		35			
Tests of	Within-S	Subjects	Effects							
Source			Type III	SS	df	Mean So	quare	F	Sig.	
COND			.200		1	.200	•	14.891	.001	
COND *	GENDEF	3	6.435E-	-03	1	6.435E-	03	.480	.493	
Error(CC	ND)		.443		33	1.342E-	02			
Tests of	Within-S	Subjects	Contrast	s						
Source			COND	Type III	SS	df	Mean S	quare	F	Sia.
COND			2 vs. 1	.200		1	.200	- ·	14.891	.001
COND * GENDER			2 vs. 1	6.435E-	03	1	6.435E-	03	.480	.493
Error(COND)		2 vs. 1	.443		33	1.342E-02				
Tests of	Betweer	n-Subject	ts Effects	s						
Source	ce Type III		SS df		Mean Square		F	Sig.		
Intercep	t	.617		1	.617		32.300	.000		
GENDER	GENDER 4.522E-		02	1	4.522E-02		2.368	.133		
Error		.630		33	1.910E-	02				

<u>Ch. 3.</u> <u>ANOVA Table for Parasympathetic (PNS) Indicator with 1-within subjects factor (condition: supine [1] vs. standing [2]) in Men & Women Separately.</u>

Tests of	Within-Subjects	Effects							
ivieasure	. MEASURE_I								
gender	Source	Type III SS	df	Mean Square		F	Sig.		
female	COND	5.118E-02	1	5.118E-02		11.915	.005		
	Error(COND)	4.725E-02	11	4.295E-	03				
male	COND	.203	1	.203		11.273	.003		
	Error(COND)	.396	22	1. 798E-02					
Tests of	Within-Subjects	Contrasts							
Measure	EXEASURE 1								
gender	Source	COND Type III	SS	df	Mean So	uare	F	Sia.	
female	COND	2 vs. 1 .102		1 .102		1	11.915	.005	
	Error(COND)	2 vs. 1 9.450E-	02	11	1 8.591E-(
male	COND	2 vs. 1 .405	1		.405		11.273	.003	
	Error(COND)	2 vs. 1 .791		22	3.596E-02				
Tests of	Between-Subject	ts Effects							
Measure	: MEASURE 1								
Transfor	med Variable: Av	erage							
gender	Source	Type III SS	df	Mean So	auare	F	Sia.		
female	Intercept	6.239E-02	1	6.239E-	02	22.278	.001		
	Error	3.081E-02	11	2.801E-	03				
male	Intercept	.363	1	.363 28.103 1.292E-02		28.103	8.103 .000		
	Error	.284	22						
<u>Ch. 3.</u> <u>ANOVA Table for SDNN with 1-between (gender) and 1-within subjects factor (condition: supine [1] vs. standing [2]).</u>

Descriptive Sta	tistics						
GENDE	R Mean		Std.	Deviation	N		
SDNNR1 FEMA	LE 28.93	340	11.4	964	12		
MALE	42.06	579	9 17.4935		23		
Total	37.56	648	16.7565		35		
SDNNS1 FEMA	ONNS1 FEMALE 27.7281		1 9.2385		12		
MALE 40.469		693	16.9	658	23		
Total	36.10	009	15.8	591	35		
Tests of Within	-Subjects Effect	s					
Source		Type II	I SS	df	Mean Square	F	Sig.
COND		31.010	2	1	31.010	.283	.598
COND . GENDI	ER	.608		1	.608	.006	.941
Error(COND)		3613.3	712	33	109.506		
Tests of Betwe	en-Subjects Effe	cts					
Source	Type III SS	df	Mean	Square	F	Sig.	
Intercept	76398.555	1	7639	8.555	212.866	.000	
GENDER	2639.806	1	2639	.806	7.355	.011	
Error	11843.848	33	358.9	904			

<u>Ch. 3.</u> <u>ANOVA Table for SDNN with 1-within subjects factor (condition: supine [1] vs. standing [2]) in Men & Women Separately.</u>

Tests of Within-Subjects Effects

Measure	BEASURE_1							
gender	Source	Type III SS	df	Mean S	quare	F	Sig.	
female	COND	884.256	1	884.25	6	5.222	.048	
	Error(COND)	1523.926	9	169.32	5			
male	COND	4638.543	1	4638.5	43	9.458	.006	
	Error(COND)	10299.187	21	490.43	7			
<u>Tests of</u> Measure	Within-Subjects	Contrasts						
gender	Source	COND Type III	SS	df	Mean So	quare	F	Sig.
female	COND	2 vs. 1 1768.5	11	1	1768.5	11	5.222	.048
	Error(COND)	2 vs. 1 3047.8	51	9	338.650)		
male	COND	2 vs. 1 9277.0	86	1	9277.08	36	9.458	.006
	Error(COND)	2 vs. 1 20598.	374	21	980.875	5		

Tests of Between-Subjects Effects Measure: MEASURE 1

Incasul	e. MILAJORE	1				
Transfo	rmed Variable	: Average				
gender	Source	Type III SS	df	Mean Square	F	Sig.
female	Intercept	5543.083	1	5543.083	67.081	.000
	Error	743.694	9	82.633		
male	Intercept	21658.534	1	21658.534	47.166	.000
	Error	9643.173	21	459.199		

	GENDEF	1	Mean		Std. De	viation	N			
SNSR1	FEMALE		4.1934	44	3.3834	15	12			
	MALE		6.6064	03	19.611	310	23			
	Total		5.7791	03	15.934	713	35			
SNSS1	FEMALE		16.429	479	17.209	467	12			
	MALE		46.878	527	136.33	0987	23			
	Total		36.438	854	111.07	2851	35			
-										
lests of	vvitnin-s	bubjects	Effects	~~				~	<u>.</u>	
Source			lype III	SS	df	Mean S	quare		Sig.	
COND		_	10870.	878	1	10870.	878	2.332	.136	
COND *	GENDEF	3	3099.1	74	1	3099.1	74	.665	.421	
Error(CC	ND)		153848	.898	33	4662.0	88			
Tests of	Within-S	Subjects	Contrast	s						
Source			COND	Type III	SS	df	Mean Se	quare	F	Sig.
COND			2 vs. 1	10870.8	378	1	10870.8	378	2.332	.136
COND *	GENDEF	3	2 vs. 1	3099.1	74	1	3099.1	74	.665	.421
Error(CO	ND)		2 vs. 1	153848	.898	33	4662.0	38		
	_									
lests of	Betweer	n-Subject	ts Effect	<u>s</u>						
Source		Type III	SS	df	Mean S	quare	F	Sig.		
Intercep	t	21654.0)69	1	21654.	069	2.677	.111		
GENDER	1	4257.93	37	1	4257.9	37	.526	.473		

<u>Ch. 3.</u> <u>ANOVA Table for Sympathetic (SNS) Indicator with 1-within subjects factor (condition: supine [1] vs.</u> standing [2]) in Men & Women Separately.

Tests_of	Within-Subjects	Effects						
Measure	e: MEASURE_1							
gender	Source	Type III SS	df	Mean S	quare	F	Sig.	
female	COND	898.323	1	898.32	3	6.698	.025	
	Error(COND)	1475.301	11	134.11	8			
male	COND	18651.205	1	18651	205	2.693	.115	
	Error(COND)	152373.597	22	6926.0	73			
Tests of	Within-Subjects	Contrasts						
Measure	: MEASURE 1							
gender	Source	COND Type I	II SS	df	Mean Se	quare	۴	Sig.
female	COND	2 vs. 1 1796.	647	1	1796.64	47	6.698	.025
	Error(COND)	2 vs. 1 2950.	603	11	268.23	7		
male	COND	2 vs. 1 37302	2.411	1	37302.4	411	2.693	.115
	Error(COND)	2 vs. 1 30474	7.194	22	13852.	145		
Tests of	Between-Subjec	ts Effects						
Measure	: MEASURE 1							
Transfor	med Variable: Av	erage						
gender	Source	Type III SS	df	Mean Se	quare	F	Sig.	
female	Intercept	1275.915	1	1275.9	15	14.708	.003	
	Error	954.222	11	86.747				
male	Intercept	16448.667	1	16448.0	667	2.731	.113	
	Error	132491.359	22	6022.3	35			

Decorio	tivo Stati									
Descrip	CENDER	SUCS	14		C					
TUDD1	GENDER	1	Mean	05	Sta. De	viation	N			
INPRI	FEMALE		149.37	95	84.888	8	12			
	MALE		341.78	05	436.68	84	23			
	Iotal	_	275.81	44	366.48	21	35			
THPS1	FEMALE		73.200	2	53.658	1	12			
	MALE		301.06	47	364.68	98	23			
	Total 222.9		222.93	97 314.		314.6933 35				
Tests o	f Within-	Subiects	Effects							
Source				Type III	SS	df	Mean S	Guare	F	Sia.
COND				53877.	056	1	53877	056	.501	484
COND .	GENDE	3		4958.7	83	1	4958.7	83	046	831
Error(CC	OND)			354715	8.390	33	10748	9.648		
Tests of	f Within-9	Subjects	Contras	te						
Source	<u> </u>	00010013	COND	Type III	22	df	Moon S	auaro	F	Sia
COND			2 ve 1	53877	056	1	52977		501	707
COND		2	2 v 5. 1	AGE0 7	000	1	105077	000	.046	.404
ErroriCC		1	2 vs. 1	4500.70	0.000	22	4906.7	03	.040	.031
			2 VS. 1	354715	8.390	33	10748	9.648		
Tests of	Betwee	n-Subject	ts Effect	s						
Source		Type III	SS	df	Mean S	quare	F	Sig.		
Intercep	t	295304	3.575	1	295304	3.575	26.445	.000		
GENDER	۶	696399	.311	1	696399	.311	6.236	.018		
Error		368507	8.314	33	111669	.040				

<u>Ch. 3.</u> <u>ANOVA Table for Total Harmonic Power with 1-between (gender) and 1-within subjects factor</u> (condition: supine [1] vs. standing [2]).

<u>Ch. 3.</u> <u>ANOVA Table for Total Harmonic Power with 1-within subjects factor (condition: supine [1] vs.</u> standing [2]) in Men & Women Separately.

Tests of	Within-Subjects	Effects						
reasure	Source	Turne III CC	21	Max- C		-	<u> </u>	
fomolo	COND	1 ype III 55		Nean S	quare		Sig.	
remaie		34819.743	1	34819.	743	11.345	.006	
	Error(CUND)	33761.965	11	3069.2	/0			
male	COND	19064.425	1	19064.4	425	.119	.733	
	Error(COND)	3513396.426	22	159699	.838			
Tests of	Within-Subjects	Contrasts						
Measure	: MEASURE 1							
gender	Source	COND Type II	I SS	df	Mean So	quare	F	Sig.
female	COND	2 vs. 1 69639	.485	1	69639.4	485	11.345	.006
	Error(COND)	2 vs. 1 67523	.930	11	6138.53	39		
male	COND	2 vs. 1 38128	.849	1	38128.8	349	.119	.733
	Error(COND)	2 vs. 1 70267	92.851	22	319399	.675		
Tests of	Between-Subject	ts Effects						
Measure	E: MEASURE 1							
Transfo	med Variable: Av	rage						
aender	Source	Type III SS	df	Mean So	nuare	F	Sia	
female	Intercent	148625 256	1	148625	256	. 42 367	000	
10111010	Frror	38588 176	11	3508.01	16	42.007	.000	
male	Intercent	2376187 030	1	227619	7 030	28 979	000	
maiç	Error	1902050 091	, ,,	23/010	7.000	20.373	.000	
	LIIUI	1003330.301	<u> </u>	01337.	//2			

<u>Ch. 3.</u> <u>ANOVA Table for Total Power with 1-between (gender) and 1-within subjects factor (condition: supine [1] vs. standing [2]).</u>

Descrip	tive Stati	<u>stics</u>								
	GENDER	3	Mean		Std. Dev	viation	N			
TPR1	FEMALE		438.758	36	324.599	90	12			
	MALE		900.446	54	748.236	50	23			
	Total		742.153	34	667.672	26	35			
TPS1	FEMALE	:	319.329	90	196.379	37	12			
	MALE		768.156	58	625.200	05	23			
	Total		614.273	30	558.675	56	35			
Tests o	f Within-	Subjects E	Effects							
Source				Type III	SS	df	Mean S	quare	F	Siq.
COND				249829	.446	1	249829	.446	1.056	.312
COND * GENDER				652.061 1		1	652.06	1	.003	.958
Error(CC	OND)			780459	6.545	33	236502	.926		
Tests o	f Within-S	Subjects (Contrast	s						
Source		(COND	Type III	SS	df	Mean S	quare	F	Siq.
COND		:	2 vs. 1	249829	.446	1	249829	.446	1.056	.312
COND .	 GENDER 	א ב	2 vs. 1	652.061	l	1	652.06	1	.003	.958
Error(CC	OND)	:	2 vs. 1	780459	6.545	33	236502	.926		
Tests of	f Betwee	n-Subjects	s Effects	5						
Source		Type III S	SS	df	Mean So	quare	F	Sig.		
Intercep	ot	2321880	9.026	1	232188	09.026	52.142	.000		
GENDER	7	3268780).204	1	326878	0.204	7.341	.011		
Error		1469474	8.230	33	445295	.401				

<u>Ch. 3.</u> <u>ANOVA Table for Total Power with 1-within subjects factor (condition: supine [1] vs. standing [2]) in Men & Women Separately.</u>

<u>Tests o</u> Measure	f <u>Within-Subjects</u> e: MEASURE 1	<u>Effects</u>							
gender	Source	Type III	SS	df	Mean S	quare	F	Sig.	
female	COND	85580.0	608	1	85580.0	508	1.449	.254	
	Error(COND)	649493	.890	11	59044.8	399			
male	COND	201256	.031	1	201256	.031	.619	.440	
	Error(COND)	715510	2.655	22	325231	.939			
Tests of	f Within-Subjects	Contrast	S						
Measure	E: MEASURE 1		-						
gender	Source	COND	Type III	SS	df	Mean Se	quare	F	Sig.
female	COND	2 vs. 1	171161	.217	1	171161	.217	1.449	.254
	Error(COND)	2 vs. 1	129898	7.780	11	118089	.798		
male	COND	2 vs. 1	402512	.063	1	402512	.063	.619	.440
	Error(COND)	2 vs. 1	143102	05.310	22	650463	.878		
Tests of	Between-Subjec	ts Effect	s						
Measure	E: MEASURE 1		-						
Transfo	rmed Variable: Av	rage							
gender	Source	Type III	SS	df	Mean So	quare	F	Sig.	
female	Intercept	172409	0.742	1	172409	0.742	40.622	.000	
	Error	466865	.342	11	42442.3	304			
male	Intercept	160093	59.890	1	160093	59.890	51.189	.000	
	Error	688050	8.773	22	312750	.399			

<u>Ch. 3.</u> <u>ANOVA Table for SBR Slope with 1-between (gender) and 1-within subjects factor (condition: supine [1] vs. standing [2]).</u>

Descrip	<u>tive Stati</u>	stics								
	GENDER	3	Mean		SD	N				
SLR1	FEMALE		5.6120		2.7979	11				
	MALE		10.163	0	4.9985	23				
	Total		8.6906		4.8681	34				
SLS1	FEMALE		3.8948		2.0213	11				
	MALE		5.6392		2.8308	23				
	Total		5.0748		2.6956	34				
Tests of	<u>f_Within-</u>	Subjects	Effects							
Source			Type III	SS	df	Mean S	quare	F	Sig.	
COND			144.91	6	1	144.910	5	19.826	.000	
COND*	GENDER		29.307		1	29.307		4.009	.054	
Error(CC	DND)		233.90	6	32	7.310				
Tests of	f Within-S	Subjects	Contrast	:5						
Source			COND	Type III	SS	df	Mean So	uare	F	Sig.
COND			2 vs. 1	144.916	6	1	144.916	5	19.826	.000
COND *	GENDER	7	2 vs. 1	29.307		1	29.307		4.009	.054
Error(CC	ND)		2 vs. 1	233.906	5	32	7.310			
Tests of	Betweer	n-Subject	s Effect	s						
Source		Type III	SS	df	Mean So	uare	F		Sig.	
Intercep	t	2383.19	95	1	2383.19	95	124.777	,	.000	
GENDEF	۲	147.453	3	1	147.453	3	7.720		.009	
Error		611.187	,	32	19.100					

<u>Ch. 3.</u> <u>ANOVA Table for SBR Slope with 1-within subjects factor (condition: supine [1] vs. standing [2]) in Men & Women Separately.</u>

Tests of	Within-Subjects	Effects						
gender	Source	Type III SS	df	Mean Se	quare	F	Sig.	
female	COND	16.218	1	16.218		2.541	.142	
	Error(COND)	63.829	10	6.383				
male	COND	235.344	1	235.344	1	30.443	.000	
	Error(COND)	170.077	22	7.731				
Tests of	Within-Subjects	Contrasts						
gender	Source	COND Type III	SS	df	Mean So	quare	F	Sig.
female	COND	2 vs. 1 32.436		1	32.436		2.541	.142
	Error(COND)	2 vs. 1 127.658	3	10	12.766			
male	COND	2 vs. 1 470.689	Э	1	470.689	Э	30.443	.000
	Error(COND)	2 vs. 1 340.154	1	22	15.462			
Tests of	Between-Subjec	t <u>s Effects</u>						
gender	Source	Type III SS	df	Mean So	uare	F		Sig.
female	Intercept	248.542	1	248.542	2	89.878		.000
	Error	27.653	10	2.765				
male	Intercept	1435.821	1	1435.82	21	113.651		.000
	Error	277.940	22	12.634				

<u>Ch. 3.</u> <u>ANOVA Table for **R-R Interval** with 1-between (gender) and 1-within subjects factor (condition: supine [1] vs. standing [2]).</u>

Descrip	tive Sta	<u>tistics</u>								
	GENDEF	1	Mean		Std. De	eviation	N			
RRIR1	FEMALE		991.14	88	152.10	85	12			
	MALE		1023.6	183	136.23	45	23			
	Total		1012.4	859	140.49	67	35			
RRIS1	FEMALE		833.92	78	131.28	59	12			
	MALE		906.00	79	164.66	38	23			
	Total		881.29	47	155.96	74	35			
Tests of	Within-S	Subjects	Effects							
Source			Type III	SS	df	Mean S	auare .	F	Sia.	
COND			297812	2.976	1	297812	.976	45.666	.000	
COND *	GENDER	3	6186.3	31	1	6186.3	31	.949	.337	
Error(CO	ND)		215210	.675	33	6521.5	36			
Tests of	Within-S	Subjects	Contrast	S						
Source			COND	Type III	SS	df	Mean So	uare	F	Sia.
COND			2 vs. 1	297812	.976	1	297812	.976	45.666	.000
COND *	GENDEF	1	2 vs. 1	6186.33	31	1	6186.33	31	.949	.337
Error(CO	ND)		2 vs . 1	215210	.675	33	6521.53	86		
Tests of	Betweer	<u>-Subject</u>	s Effect	s						
Source		Type III	SS	df	Mean So	quare	F		Sia.	
Intercept		555855	83.880	1	555855	83.880	1486.82	24	.000	
GENDER		43097.9	945	1	43097.9	945	1.153		.291	
Error		123372	0.101	33	37385.4	158				

<u>Ch. 3.</u> <u>ANOVA Table for **R-R Interval** with 1-within subjects factor (condition: supine [1] vs. standing [2]) in Men & Women Separately.</u>

Tests of	Within-Subjects	Effects						
gender	Source	Type III SS	df	Mean S	quare	F	Sig.	
female	COND	148310.588	1	148310	.588	12.443	.005	
	Error(COND)	131113.473	11	11919.4	407			
male	COND	159070.363	1	159070	.363	41.613	.000	
	Error(COND)	84097.202	22	3822.60	00			
Tests of	Within-Subjects	Contrasts						
gender	Source	COND Type III	SS	df	Mean So	quare	F	Sig.
female	COND	2 vs. 1 296621	.176	1	296621	.176	12.443	.005
	Error(COND)	2 vs. 1 262226	.947	11	23838.8	313		
male	COND	2 vs. 1 318140	.726	1	318140	.726	41.613	.000
	Error(COND)	2 vs. 1 168194	.403	22	7645.20	00		
Tests of	Between-Subject	ts Effects						
Transfor	med Variable: Av	erage						
gender	Source	Type III SS	df	Mean So	quare	F		Sia.
female	Intercept	9992713.204	1	999271	3.204	702.387	7	.000
	Error	156494.673	11	14226.7	788			
male	Intercept	21409880.190	1	214098	80.190	1023.13	38	.000
	Error	460365.378	22	20925.6	599			-

Descript	<u>tive Statis</u>	stics								
	GENDER		Mean		Std. Dev	viation	N			
SBPR1	FEMALE		116.00	63	20.4617	7	11			
	MALE		120.34	38	17.679	5	23			
	Total		118.94	05	18.4253	3	34			
SBPS1	FEMALE		143.48	26	17.754	1	11			
	MALE		127.81	47	18.946	5	23			
	Total		132.88	38	19.753	1	34			
Tests of	f Within-S	Subjects	Effects							
Source			Type III	<u>s</u> s	df	Mean S	quare	F	Sig.	
COND			4544.0	11	1	4544.0	11	24.820	.000	
COND .	 GENDEF 	3	1489.04	40	1	1489.0	40	8.133	.008	
Error(CC	OND)		5858.6	18	32	183.08	2			
Tests of	f Within-S	Subjects	Contrast	s						
Source			COND	Type III	SS	df	Mean So	quare	F	Sig.
COND			2 vs. 1	4544.0	11	1	4544.0	11	24.820	.000
COND .	GENDEF	3	2 vs. 1	1489.04	40	1	1489.04	40	8.133	.008
Error(CC	DND)		2 vs. 1	5858.6	18	32	183.082	2		
Tests of	f Betweer	-Subject	ts_Effect	s						
Source		Type III	SS	df	Mean So	quare	F		Sig.	
Intercep	ot	958817	.592	1	958817	.592	1887.66	64	.000	
GENDER	۲	477.640)	1	477.640	2	.940		.339	
Error		16254.0	039	32	507.939	9				

<u>Ch. 3.</u> <u>ANOVA Table for Systolic Blood Pressure with 1-between (gender) and 1-within subjects factor</u> (condition: supine [1] vs. standing [2]).

<u>Ch. 3.</u> <u>ANOVA Table for Systolic Blood Pressure with 1-within subjects factor (condition: supine [1] vs.</u> standing [2]) in Men & Women Separately.

Tests of	f Within-Subjects	Effects						
Measure	e: MEASURE_1							
gender	Source	Type III SS	df	Mean So	quare	F	Sig.	
female	COND	4152.228	1	4152.22	28	19.520	.001	
	Error(COND)	2127.168	10	212.717	7			
male	COND	641.875	1	641.875	5	3.784	.065	
	Error(COND)	3731.450	22	169.61	1			
Within-S	Subjects Contrast	S						
Measure	e: MEASURE 1	_						
gender	Source	COND Type III	SS	df	Mean S	iquare	F	Sig.
female	COND	2 vs. 1 8304.4	56	1	8304.4	56	19.520	.001
	Error(COND)	2 vs. 1 4254.3	36	10	425.43	4		
male	COND	2 vs. 1 1283.74	49	1	1283.7	49	3.784	.065
	Error(COND)	2 vs. 1 7462.9	01	22	339.22	3		
Tests of	f Between-Subjec	ts Effects						
Measure	e: MEASURE_1							
Transfo	rmed Variable: Av	verage						
gender	Source	Type III SS	df	Mean So	quare	F		Sig.
female	Intercept	185169.858	1	185169	.858	710.59	1	.000
	Error	2605.857	10	260.586	5			
male	Intercept	354100.248	1	354100	.248	1410.93	72	.000
	Error	5521.162	22	250.962	2			

APPENDIX D ANOVA TABLES Chapter 4 <u>Ch. 4.</u> <u>ANOVA Table: Fractal Power with 1- between (gender) and 2-within-subjects factors (Time [preoperatively vs. postoperatively] and Posture [supine vs. standing])</u>.

Descrip	tive Statistics										
	GENDER	Mean		Std. De	eviation	Ν					
FPR1	FEMALE	361.34	08	414.89	28	10					
	MALE	571.09	12	447.12	209	21					
	Total	503.42	98	441.42	19	31					
FPS1	FEMALE	265.45	04	186.24	69	10					
	MALE	480.92	89	411.89	53	21					
	Total	411.41	97	366.05	46	31					
FPR2	FEMALE	36.872	7	35.344	0	10					
	MALE	65.147	1	68.349	14	21					
	Total	56.026	3	60.578	1	31					
FPS2	FEMALE	69.746	8	98.606	5	10					
	MALE	77.773	5	155.95	25	21					
	Total	75.184	2	138.36	78	31					
Tests of	Within-Subjects	Effects									
Measure	e: MEASURE_1										
Source	_		SS		df	Mean S	Square	F	Sig.		
TIME			345960	8.426	1	34596	08.426	33.653	.000		
TIME *	GENDER		256174	.294	1	256174	4.294	2.492	.125		
Error(TIN	ME)		298125	8.867	29	102802	2.030				
POSTUP	RE		33455.9	960	1	33455.	960	.715	.405		
POSTUP	RE * GENDER		357.027	7	1	357.02	7	.008	.931		
Error(PO	STURE)		135622	5.029	29	46766.	380				
TIME *	POSTURE		90802.8	801	1	90802.	801	1.765	.194		
TIME *	POSTURE • GEN	DER	1142.70	05	1	1142.7	05	.022	.883		
Error(TIN	ME*POSTURE)		149200	7.319	29	51448.	528				
<u>Tests of</u>	Within-Subjects	Contrast	<u>:s</u>								
Measure	: MEASURE_1										
Source		TIME	POSTUP	RE	SS		df	Mean S	quare	F	Sig.
TIME		2 vs. 1			345960	8.426	1	345960	8.426	33.653	.000
TIME •	GENDER	2 vs. 1			256174	.294	1	256174	.294	2.492	.125
Error(TIN	ЛE)	2 vs. 1			298125	8.867	29	102802	2.030		
POSTUR	IE .		2 vs. 1		33455.9	960	1	33455.	960	.715	.405
POSTUR	E * GENDER		2 vs. 1		357.02	7	1	357.02	7	.008	.931
Error(PO	STURE)		2 vs. 1		135622	5.029	29	46766.	380		
TIME*PO	OSTURE	2 vs. 1	2 vs. 1		90802.8	301	1	90802.	801	1.765	.194
T*P G		2 vs. 1	2 vs. 1		1142.70)5	1	1142.7	05	.022	.883
Error(T*	P)	2 vs. 1	2 vs. 1		149200	7.319	29	51448.	528		
<u>Tests of</u>	Between-Subjec	ts Effects	5								
Measure	: MEASURE_1										
Transfor	med Variable: Av	/erage									
Source	Type III	Sum of \$	Squares	df	Mean So	quare	F	Sig.			
Intercept	t 629752	5.928		1	629752	5.928	44.521	.000			
GENDER	360742	.622		1	360742	.622	2.550	.121			
Error	410202	9.585		29	141449	.296					

ANOVA Table: Ch. 4. ANOVA Table: Fractal Power with 2-within-subjects factors (Time [preoperatively vs. postoperatively] and Posture [supine vs. standing]).

Tests c	of Within-	Subjects	Effects									
Measur	e: MEAS	URE 1										
GENDE	R	Source			SS		df	Mean S	Square	F	Sig.	
FEMAL	E	TIME			67644	6.624	1	67644	6.624	15.595	.003	
		Error(T)	ME)		39038	7.295	9	43376	.366			
		POSTUR	RE		9927.6	64	1	9927.6	64	.149	.709	
		Error(PC	STURE)		600398	8.289	9	66710	.921			
		TIME*P	OSTURE		41450.	.733	1	41450	.733	.704	.423	
		Error(T*	'P)		53005	9.826	9	58895	.536			
MALE		TIME			433892	25.307	1	43389	25.307	33.494	.000	
		Error(TII	ME)		25908	71.572	20	12954	3.579			
		POSTUR	RE		31562.	.035	1	31562	.035	.835	.372	
		Error(PC	STURE)		75582	6.741	20	37791	.337			
		TIME •	POSTUP	RΕ	55468.	.994	1	55468	.994	1.153	.296	
		Error(T*	'P)		96194	7.493	20	48097	.375			
T	£ \A/lah in	Cubinan	C									
Moneur	O MEAS		Contras	<u>(S</u>								
CENDE	D. WIEAS		TIME	DOSTU		<u> </u>		44	Maan C		E	0:-
CENDE		TIME		FU3101	n <u>c</u>	33	6 634	1		equare		Sig.
FEWIAL			2 VS. 1			20029	0.024	1	42276	266	15.595	.003
			2 vs. 1	2 1		39030	7.290	9	43370.	500	140	700
	Front P($2 v_{5.1}$		9927.0	0 200	0	9927.0	04	.149	.709
			2 1 1	$2 v_{0.1}$		41450	0.209	9	41450	321 700	704	400
	Error(T)	PI	2 vs. 1	2 VS. 1		5200E	./ 33 G 926	1 0	5000E	733 636	.704	.423
MALE	TIME	• 1	$2 v_{3}$. 1	2 vs. i		133003	3.020 25 207	3	122201	550 25 207	33 404	000
	Error(Th	ME	$2 v_3$. 1			25008	23.307	20	1205/2	25.507	55.454	.000
	POSTI	RF	2 v3. 1	2 ve 1		21562	035	1	31562	035	835	272
	Frror(PC	STUBEL		$2 v_3.1$		75592	6 741	20	37701	337	.055	.572
	TIME*P	OSTURE	2 ve 1	$2 v_{3}$. 1		55468	994	1	55468	997 997	1 153	296
	Error(T*	'P)	2 vs. 1	2 vs. 1		96194	7.493	20	48097.	375	1.155	.250
_												
Tests o	f Betwee	n-Subjec	ts Effect	<u>s</u>								
Measur	e: MEAS	URE_1										
Transfo	rmed Va	riable: Av	rage						_			
GENDE	R	Source		SS		df	Mean S	quare	F	Sig.		
FEMAL	E	Intercep	t	134472	8.159	1	134472	28.159	27.548	.001		
		Error		439321	.833	9	48813.	537				
MALE		Intercep	t	749638	37.118	1	749638	37.118	40.934	.000		
		Error		366270)7.752	20	18313	5.388				

Descrip	tive Statisti	<u>cs</u>									
	GENDER	Mean		Std. De	eviation	N					
HFR1	FEMALE	35.63	7044	35.027	276	10					
	MALE	220.3	42099	429.81	6520	21					
	Total	160.7	59823	362.26	61190	31					
HFS1	FEMALE	9.136	959	8.2081	35	10					
	MALE	47.74	5859	58.669	235	21					
	Total	35.29	1375	51.493	8001	31					
HFR2	FEMALE	16.29	2345	44.495	514	10					
	MALE	3.485	907	4.7745	02	21					
	Total	7.617	016	25.420	186	31					
HFS2	FEMALE	11.45	0287	30.523	913	10	,				
	MALE	11.75	5070	49.797	473	21					
	Total	11.65	6753	43.962	779	31					
Tests o	f Within-Sul	ojects Effects	<u>5</u>								
Measur	e: MEASUR	F_1		~~					_		
Source				SS		df	Mean S	Square	F	Sig.	
TIME				123348	8.454	1	12334	8.454	3.343	.078	
TIME *	GENDER			94176.	536	1	94176.	.536	2.553	.121	
Error(1)	ME)			106989	93.685	29	36892.	.886			
POSTU	RE * GENDE	-R		29950.	391	1	29950.	.391	1.021	.321	
Error(PC	STURE)			85031	1.507	29	29321.	.086			
TIME *	POSTURE			69462.	140	1	69462.	.140	2.487	.126	
TIME *	POSTURE .	GENDER		42926.	.352	1	42926.	.352	1.537	.225	
Error(TI	ME*POSTU	RE)		81001:	3.673	29	27931.	.506			
Tests of	f Within-Sul	pjects Contra	<u>sts</u>								
Measure	e: MEASUR	E_1									
Source		TIME	POSTU	RE	SS		df	Mean S	quare	F	Sig.
TIME		2 vs.	1		123348	8.454	1	123348	3.454	3.343	.078
TIME •	GENDER	2 vs.	1		94176.	.536	1	94176.	536	2.553	.121
Error(TI	ME)	2 vs.	1		106989	93.685	29	36892.	886		
POSTUR	RE		2 vs. 1		64839.	945	1	64839.	945	2.211	.148
POSTU	RE * GENDE	R	2 vs. 1		29950.	.391	1	29950.	391	1.021	.321
Error(PC	STURE)		2 vs. 1		85031	1.507	29	29321.	086		
TIME*P	OSTURE	2 vs.	1 2 vs. 1		69462.	140	1	69462.	140	2.487	.126
T*P*G		2 vs.	1 2 vs. 1		42926.	352	1	42926.	352	1.537	.225
Error(Tli	ME*POSTU	RE) 2 vs.	1 2 vs. 1		810013	3.673	29	27931.	506		
Tests of	f Between-S	ubjects Effe	<u>ets</u>								
Measure	e: MEASUR	E_1									
Transfo	rmed Variab	le: Average									
Source	Ту	pe III Sum o	f Squares	df	Mean S	iquare	F	Sig.			
Intercep	ot 2*	4447.376		1	214447	7.376	5.546	.026			
GENDE	२ ७१	5264.382		1	75264.	382	1.946	.174			
Error	11	21371.805		29	38667.	993					

<u>Ch. 4.</u> <u>ANOVA Table: High Frequency Power Power with 2-within-subjects factors (Time [preoperatively vs. postoperatively] and Posture [supine vs. standing]].</u>

Tests o	of Within-	Subjects	Effects									
GENDE	D				66		45	Moon	Sauara	c	Sie	
FEMAL	-0 F	TIME			725 16	:0	1	725 1	square		Siy.	
LIVIAL		Error/TI			0122.10	03 07	0	002 6	09 56	.803	.393	
		DOCTU			2455.5	207	1	302.03	00	2 1 7 2	175	
		FUSIUE Error/DC			2400.0	25	1	2400.0	0∠0 1E1	2.173	.175	
			DOCTURE!	זר		.338	9	1170.		1 225	270	
					7007 1	10	·	070 5/	0/5	1.335	.278	
MALE			IVIE PUS	IURE)	7907.1		9	8/8.5		<u> </u>	0.04	
MALE					335640		1	33564	0.879	6.322	.021	
		Error			106170	69.778	20	53088	.489	0 075		
		POSTO			141/6	/./88	1	141/6	/./88	3.375	.081	
		Error(PC	DSTURE)		840140	0.149	20	42007	.007			
		IIME *	POSTUR	{E	171739	9.544	1	17173	9.544	4.282	.052	
		Error(11	ME*POS	TURE)	80210	6.557	20	40105	.328			
.	6 M (C.1.)	.	•									
lests c		Subjects	Contras	ts								
Measur	re: MEAS	URE_I	T 18 45	DOOTU	-r					~	-	<u> </u>
GENDE	R Source		TIME	POSID	RE	SS		dt	Mean	Square	+	Sig.
FEMAL			2 vs. 1			/25.16	i9	1	/25.16	59	.803	.393
	Error(III		2 vs. 1	•		8123.9	107	9	902.6	56		
	POSTUR	RE		2 vs. 1		2455.8	325	1	2455.8	325	2.173	.175
	Error(PC	STURE)		2 vs. 1		10171	.358	9	1130.	151		
	TIME*P	OSTURE	2 vs. 1	2 vs. 1		1172.6	575	1	1172.6	575	1.335	.278
	Error(1*	P)	2 vs. 1	2 vs. 1		7907.1	16	9	878.56	58		
MALE	IIME		2 vs. 1			33564	0.879	1	33564	0.879	6.322	.021
	Error(11	ME)	2 vs. 1	. .		10617	69.778	20	53088	.489		
	POSTUR			2 vs. 1		14176	7.788	1	14176	7.788	3.375	.081
	Error(PC	STURE)	_	2 vs. 1		840140	0.149	20	42007	.007		
	TIME*P	OSTURE	2 vs. 1	2 vs. 1		17173	9.544	1	17173	9.544	4.282	.052
	Error(T*	P)	2 vs. 1	2 vs. 1		80210	6.557	20	40105	.328		
Tests o	f Betwee	n-Subiec	ts Effect	s								
Measur	e: MEASI	JRE 1		-								
Transfo	ormed Var	iable: Av	verage									
GENDE	R	Source	Type III	Sum of	Souares	df	Mean S	louare	F	Sia.		
FEMAL	E	Intercep	t	13146.	656	1	13146.	656	10.156	5.011		
		Error	-	11650	212	9	1294 4	68				
MALE		Intercen	t	421445	.248	1	42144	5.248	7.596	.012		
		Error		110972	1.593	20	55486.	080				

<u>Ch. 4.</u> <u>ANOVA Table: Low Frequency Power with 1- between (gender) and 2-within-subjects factors (Time [preoperatively vs. postoperatively] and Posture [supine vs. standing]].</u>

Descrip	tive Stati	<u>istics</u>									
	GENDE	R	Mean		Std. De	viation	N				
LFR1	FEMALE	Ē	97.565	275	77.023	338	10				
	Tatal		122 25	2818	122.00	4209	21				
LES1	FEMALE	=	69 341	433/ 197	52 310	4200	10				
2.01	MALE	-	268.75	4504	347 78	5574	21				
	Total		204.42	7608	300.72	7104	31				
LFR2	FEMALE	-	10.596	054	13.484	098	10				
	MALE		15.778	451	17.312	803	21				
	Total		14.106	710	16.137	934	31				
LFS2	FEMALE	Ē	17.469	479	18.423	069	10				
	MALE		18.025	850	33.497	589	21				
	Total		17.846	375	29.153	932	31				
Tests o	f Within-	Subjects	Effects								
Measur	e: MEAS	URE 1	2110010								
Source		-		SS		df	Mean S	quare	F	Sig.	
TIME				439502	2.491	1	439502	.491	20.158	.000	
TIME *	GENDER			90953.	398	1	90953.	398	4.172	.050	
Error(TI	ME)			632283	3.055	29	21802.	864			
POSTU	RE			22015.	287	1	22015.	287	.751	.393	
POSTU	RE * GEN	IDER		41593.	816	1	41593.	816	1.420	.243	
Error(PC	DSTURE)	_		849559	9.336	29	29295.	150			
TIME *	POSTUR	E		15534.	250	1	15534.	250	.533	.471	
	POSTUR		DER	46649.	913	1	46649.	913	1.601	.216	
Error(III	ME-PUS	IURE)		844973	3.120	29	29137.0	004			
Tests of	f Within-S	Subjects	Contrast	S							
Measure	e: MEASI	JRE 1									
Source		TIME	POSTUP	RE	SS		df	Mean So	quare	F	Sig.
		TIME	2 vs. 1		439502	.491	1	439502	.491	20.158	.000
TIME *	GENDER	2 vs. 1			90953.3	398	1	90953.3	398	4.172	.050
Error(TII	ME)	2 vs. 1			632283	.055	29	21802.8	364		
POSTUR	RE		2 vs. 1		22015.2	287	1	22015.2	287	.751	.393
POSTUR	RE * GEN	IDER	2 vs. 1		41593.8	816	1	41593.8	316	1.420	.243
Error(PC	STURE)		2 vs. 1		849559	.336	29	29295.1	150		
TIME*P	OSTURE	2 vs. 1	2 vs. 1		15534.2	250	1	15534.2	250	.533	.471
I TPTG		2 vs. 1	2 vs. 1		46649.9	913	1	46649.9	913	1.601	.216
Error(1*	P)	2 vs. 1	2 vs. 1		844973	.120	29	29137.0	004		
Tests of	<u>f Betwee</u> i	n-Subject	ts Effects	5							
Measure	e: MEASU	JRE_1		-							
Transfo	rmed Var	iable: Av	erage								
Source		Type III	Sum of S	Squares	df	Mean S	quare	F	Sig.		
Intercep	ot	678943	.361		1	678943	.361	29.677	.000		
GENDE	٦	100185	.709		1	100185	.709	4.379	.045		
Error		663445	.584		29	22877.4	434				

Ch. 4.	ANOVA Table: I	ow Frequency Power	with 2-within-subjects	factors (Time (r	preoperatively vs.
		Striftedacher Forter	The state of the subjects	Tableto T. IIIo II	
postope	ratively] and Pos	<u>ure (supine vs. standi</u>	ng]).		

Tests of	Within-S	Subjects	Effects								
Measure	: MEASU	JRE_1									
GENDER	1	Source		SS	df	Mean S	quare	F	Sig.		
FEMALE		TIME		48191.967	1	48191.	967	11.627	.008		
		Error(TIN	ME)	37305.087	9	4145.0	10				
		POSTUP	RE	1139.633	1	1139.6	33	1.636	.233		
		Error(PO	STURE)	6268.292	9	696.47	7				
		TIME*P	OSTURE	3079.599	1	3079.5	99	2.958	.120		
		Error(T*	P)	9368.828	9	1040.9	B1				
MALE		TIME		721003.496	1	721003	.496	24.236	.000		
		Error(TIN	ME)	594977.967	20	29748.8	898				
		POSTUP	RE	96200.879	1	96200.8	879	2.282	.147		
		Error(PO	STURE)	843291.044	20	42164.	552				
		TIME*P	OSTURE	89918.294	1	89918.2	294	2.152	.158		
		Error(T*	P)	835604.292	20	41780.2	215				
Tests of	Within-S	Subjects	Contrast	<u>s</u>							
Measure	: MEASL	JRE_1									
GENDER	ł	Source	TIME	POSTURE	SS		df	MS		F	Sig.
FEMALE	TIME		2 vs. 1		48191.9	967	1	48191.9	967	11.627	.008
	Error(TIN	ME)	2 vs. 1		37305.0	387	9	4145.01	10		
	POSTUR	RE .		2 vs. 1	1139.63	33	1	1139.63	33	1.636	.233
	Error(PO	STURE)		2 vs. 1	6268.29	92	9	696.477	7		
	TIME*P	OSTURE	2 vs. 1	2 vs. 1	3079.59	99	1	3079.59	99	2.958	.120
	Error(T*	P)	2 vs. 1	2 vs. 1	9368.8	28	9	1040.98	31		
MALE	TIME		2 vs. 1		721003	.496	1	721003	.496	24.236	.000
	Error(TIN	NE)	2 vs. 1		594977	.967	20	29748.8	398		
	POSTUR	ε		2 vs. 1	96200.8	879	1	96200.8	379	2.282	.147
	Error(PO	STURE)		2 vs. 1	843291	.044	20	42164.5	552		
	TIME * PO	OSTURE	2 vs. 1	2 vs. 1	89918.2	294	1	89918.2	294	2.152	.158
	Error(T*	P)	2 vs. 1	2 vs. 1	835604	.292	20	41780.2	215		
	_	.									
lests of	Betweer	n-Subject	ts Effects	5							
ivieasure	MEASL										
Iranstor	med var	iable: Av	erage					_	-		
GENDER		Source		SS	df	Mean So	quare	F	Sig.		
FEMALE		Intercep	t	95035.139	1	95035.1	139	28.731	.000		
		Error		29769.322	9	3307.70)2				
MALE		Intercep	t	1008076.267	1	100807	6.267	31.817	.000		
		Error		633676.261	20	31683.8	313				

<u>Ch. 4: ANOVA Table: Parasympathetic Indicator with 1- between (gender) and 2-within-subjects factors</u> (Time [preoperatively vs. postoperatively] and Posture [supine vs. standing]).

Descrip	tive Stati	stics									
	GENDE	7	Mean	_	Std. De	viation	N				
PNSR1	FEMALE	Ξ	.10776	0	.10990	5	10				
	MALE		.19663	3	.20586	3	21				
	lotal	-	.16/96	4	.18346	/	31				
PNSS1	FEMALE	=	2.5099	0E-02	2.3284	8E-02	10				
	MALE		5.8865	2E-02	6.4886	3E-02	21				
-	lotal	•	4./9/2	9E-02	5.6806	1E-02	31				
PNSR2	FEMALE	5	.15529	8	.16884	4	10				
	MALE		4.0924	8E-02	4.4561	9E-02	21				
DUGGO	lotal	-	7.7819	4E-02	.11327		31				
PN552	FEMALE	2	4.3975	0E-02	5.2288	3E-02	10				
	MALE		2.0925	2E-02	3.2089	5E-02	21				
	iotal		2.8360	6E-02	4.0332	TE-02	31				
Tests of	f Within-	Subjects	Effects								
Measure	e: MEAS	JRE_1									
Source				SS		df	Mean S	quare	F	Sig.	
TIME				2.742E	-02	1	2.742E	-02	1.799	.190	
TIME *	GENDER			.115		1	.115		7.518	.010	
Error(TI	ME)			.442		29	1.524E	-02			
POSTUR	RE			.210		1	.210		20.331	.000	
POSTU	RE * GEN	IDER		2.221E	-03	1	2.221E	-03	.216	.646	
Error(PC	STURE)			.299		29	1.031E	-02			
TIME *	POSTUR	E		1.345E	-02	1	1.345E	-02	1.400	.246	
TIME *	POSTUR	E * GEN	DER	3.631E	-02	1	3.631E	-02	3.782	.062	
Error(TI	ME*POS	TURE)		.278		29	9.603E	-03			
Tests of	f Within-	Subjects	Contrast	s							
Measure	e: MEASI	JRE 1		_							
Source		TIME	POSTUR	RE	SS		df	Mean S	quare	F	Sig.
TIME		2 vs. 1			2.742E-	02	1	2.742E-	.02	1.799	.190
TIME *	GENDER	2 vs. 1			.115		1	.115		7.518	.010
Error(TI	ME)	2 vs. 1			.442		29	1.524E-	02		
POSTUP	RE		2 vs. 1		.210		1	.210		20.331	.000
POSTUR	RE * GEN	IDER	2 vs. 1		2.221E-	03	1	2.221E-	03	.216	.646
Error(PC	STURE)		2 vs. 1		.299		29	1.031E-	02		
TIME*P	OSTURE	2 vs. 1	2 vs. 1		1.345E-	02	1	1.345E-	02	1.400	.246
T*P*G		2 vs. 1	2 vs. 1		3.631E-	02	1	3.631E-	02	3.782	.062
Error(T*	P)	2 vs. 1	2 vs. 1		.278		29	9.603E-	03		
Tests of	Betwee	n-Subiec	ts Effect	s							
Measure	: MEASU	JRE 1		-							
Transfo	rmed Var	iable: Av	verage								
Source		Type III	Sum of S	Squares	df	Mean S	quare	F	Sig.		
Intercep	t	.714		•	1	.714	•	56.347	.000		
GENDER	۲	3.701E-	04		1	3.701E	-04	.029	.866		
Error		.368			29	1.268E	-02				

<u>Tests o</u>	f Within-Subjects	Effects									
Measur	e: MEASURE_1										
GENDE	R Source			SS		df	Mean S	Square	F	Sig.	
FEMALI	E TIME			1.103E	-02	1	1.103E	-02	.805	.393	
	Error(TIME)			.123		9	1.370E	-02			
	POSTURE			9.407E	-02	1	9.407E	-02	9.458	.013	
	Error(POSTURE)			8.952E	-02	9	9.946E	-03			
	TIME * POSTUR	RE		2.054E	-03	1	2.054E	-03	.224	.647	
	Error(TIME*POS	TURE)		8.255E	-02	9	9.172E	-03			
MALE	TIME			.197		1	.197		12.360	.002	
	Error(TIME)			.319		20	1.593E	-02			
	POSTURE			.131		1	.131		12.483	.002	
	Error(POSTURE)			.209		20	1.047E	-02			
	TIME * POSTUR	RE		7.281E	-02	1	7.281E	-02	7.433	.013	
	Error(TIME*POS	TURE)		.196		20	9.797E	-03			
Tests of	f Within-Subjects	Contras	ts								
Measure	e: MEASURE 1										
GENDE	R Source	TIME	POSTUR	E	SS		df	Mean Se	ouare	F	Sia
FEMALE	ETIME	2 vs. 1		-	1.103E	-02	1	1.103E-	02	.805	.393
	Error(TIME)	2 vs. 1			.123	••	9	1.370E-	02		
	POSTURE		2 vs. 1		9.407E	-02	1	9.407E-	02	9.458	.013
	Error(POSTURE)		2 vs. 1		8.952E	-02	9	9.946E-	03		
	TIME*POSTURE	2 vs. 1	2 vs. 1		2.054E	-03	1	2.054E-	03	.224	.647
	Error(T*P)	2 vs. 1	2 vs. 1		8.255E	-02	9	9.172E-	03		
MALE	TIME	2 vs. 1			.197	-	1	.197		12.360	.002
	Error(TIME)	2 vs. 1			.319		20	1.593E-	02		
	POSTURE		2 vs. 1		.131		1	.131		12.483	.002
	Error(POSTURE)		2 vs. 1		.209		20	1.047E-	02		
	TIME*POSTURE	2 vs. 1	2 vs. 1		7.281E	-02	1	7.281E-	02	7.433	.013
	Error(T*P)	2 vs. 1	2 vs. 1		.196		20	9.797E-	03		
Tests of	Between-Subjec	ts Effect	s								
Measure	E: MEASURE 1		-								
Transfor	med Variable: Av	verage									
GENDEF	Source	Type III	Sum of S	iquares	df	MS		F	Sia		
FEMALE	Intercen	t i i j po ini	276	4999.00	1	276		24 961	001		
	Error	•	9.944F-0	12	ġ	1 105F-	02	27.001			
MALE	Intercen	t.	529		1	529	~~	39 423	000		
	Error	-	.268		20	1.341F-	02	00.120			
	2					1.0+16	~ ~				

<u>Ch. 4.</u> <u>ANOVA Table: Parsympathetic Indicator with 2-within-subjects factors (Time [preoperatively vs. postoperatively] and Posture [supine vs. standing])</u>.

<u>Ch. 4.</u> <u>ANOVA Table: SDNN with 1- between (gender) and 2-within-subjects factors (Time [preoperatively vs. postoperatively] and Posture [supine vs. standing])</u>.

Descriptive Stati	istics									
	GENDER	Mean		Std. De	viation	Ν				
RRISDR1	FEMALE	30.193	0	14.270	4	10				
	MALE	42.243	9	18.259	5	21				
	Total	38.356	5	17.780	9	31				
RRISDS1	FEMALE	28.374	3	9 1877		10				
	MALE	41 658	3 3	17 170	5	21				
	Total	37 373	1	16 177	2	21				
BRISDR2	FEMALE	15 850	5	12 245	0 A	10				
		15 202	0	7 0402	· • •	21				
		15.252	2	7.0493		21				
PPICDC2		10.472	2	8.8422	~	31				
nnisusz		10.094	0	11.443	2	10				
		21.5/8	9	33.051	8	21				
	Iotal	20.067	8	28.270	2	31				
Tests of Within-	Subjects Effects									
Measure: MEASI	IRF 1									
Source		22		df	Maan S		c	Sie		
TIME		0000 7	12	1		quare		Sig.		
TIME + CENIDED		761 70	42 0	1	0300./	4Z 2	30.812	.000		
Front TIME		701.79	2 50	1	701.79	2	3.120	.088		
		1081.2	52	29	244.18	4		- 4 -		
POSTURE + CEN		41.104			41.104		.138	./13		
PUSTURE GEN	IDER	71.027	.	1	/1.027	_	.239	.629		
Error(POSTURE)	_	8629.7	95	29	297.57	9				
TIME * POSTUR	Ε	160.50	6	1	160.50	6	.746	.395		
TIME * POSTUR	E * GENDER	27.229		1	27.229		.126	.725		
Error(TIME*POS	TURE)	6242.5	95	29	215.26	2				
T . () ()										
lests of Within-S	Subjects Contrasts	<u>s</u>								
Measure: MEASU		_		_						
Source	TIME POSTUR	E		SS		df	Mean So	quare	F	Sig.
TIME	2 vs. 1			8988.7	42	1	8988.74	12	36.812	.000
TIME * GENDER	2 vs. 1			761.79	2	1	761.792	2	3.120	.088
Error(TIME)	2 vs. 1			7081.2	52	29	244.181			
POSTURE	2 vs. 1			41.104		1	41.104		.138	.713
POSTURE * GEN	DER 2 vs. 1			71.027		1	71.027		.239	.629
Error(POSTURE)	2 vs. 1			8629.7	95	29	297.579)		
TIME*POSTURE	2 vs. 1 2 vs. 1			160.50	6	1	160.506	5	.746	.395
T*P*G	2 vs. 1 2 vs. 1			27.229		1	27.229		.126	.725
Error(T*P)	2 vs. 1 2 vs. 1			6242.5	95	29	215.262	2		
								-		
Tests of Between	n-Subjects Effects									
Measure: MEASU	JRE_1									
Transformed Vari	iable: Average									
Source	Type III Sum of S	quares	df	Mean So	quare	F		Sig.		
Intercept	76176.219		1	76176.2	219	114.02	2	.000		
GENDER	1469.908		1	1469.90	28	2.200		.149		
Error	19374.460		29	668.08	5					

•

Tests of	Within-S	Subjects	Effects									
Measure	e: MEASI	JRE_1										
GENDEF	2	Source			SS		df	Mean S	quare	F	Sig.	
FEMALE		TIME			1666.9	77	1	1666.9	77	20.243	.001	
		Error(TII	ME)		741.13	1	9	82.348				
		POSTUF	₹E		1.501		1	1.501		.008	.930	
		Error(PO	STURE)		1674.7	59	9	186.08	4			
		TIME *	POSTUP	RE	20.488		1	20.488		.182	.680	
		Error(TI	ME*POS	TURE)	1012.7	16	9	112.52	4			
MALE		TIME			11612.	675	1	11612.	675	36.632	.000	
		Error(TIN	VIE)		6340.1	21	20	317.00	6			
		POSTUP	ŧE		170.65	1	1	170.65	1	.491	.492	
		Error(PO	STURE)		6955.0	36	20	347.75	2			
		TIME *	POSTUF	RE	247.96	5	1	247.96	5	.948	.342	
		Error(TIN	VIE*POS	TURE)	5229.8	79	20	261.49	4			
T	Malata C		0	_								
Menania			Contras	<u>ts</u>								
		JRE_I			~~	~~					_	
GENDER	Source			POSTO	1E	55		df	Mean So	luare	F	Sig.
FEIVIALE		45	2 VS. 1			1666.9	//	1	1666.97	1	20.243	.001
	Error(IIIN		2 vs. 1	~ ~		741.13	1	9	82.348			
	PUSIUR Carear(DO			2 vs. 1		1.501		1	1.501		.008	.930
	Error(PU	SIURE)	• •	2 vs. 1		16/4./	59	9	186.084	•		
		JSIURE	2 VS. 1	2 VS. 1		20.488		1	20.488		.182	.680
5 4 A L T		Ρ)	2 VS. 1	Z VS. I		1012.7	16	9	112.524	• •		
WALE		45	2 VS. 1			11612.0	6/5	1	11612.6	5/5	36.632	.000
	Error(IIIN	/IE)	2 vs. 1			6340.1	21	20	317.006	5		
	PUSIUR			2 vs. 1		170.65	1	1	170.651		.491	.492
	Error(PU	SIURE)		2 vs. 1		6955.0	36	20	347.752	-		
	TIME PO	JSTURE	2 vs. 1	2 vs. 1		247.96	5	1	247.965		.948	.342
	Error(1 *	۲}	2 vs. 1	2 vs. 1		5229.8	79	20	261.494	-		
Tests of	Betweer	n-Subiect	s Effect	s								
Measure	: MEASL	JRE 1		=								
Transfor	med Vari	iable: Av	erage									
GENDER		Source	Type III	Sum of S	Squares	df	Mean So	nuare	F		Sia	
FEMALE		Interceo	t	20844	328	1	20844 8	328	110.878		.000	
		Error		1691.9	76	9	187 997	7				
MALE		Intercen	t	76577	357	1	76577	357	86.614		000	
-		Error	-	17682.4	484	20	884.124	1				
					-							

<u>Ch. 4.</u> <u>ANOVA Table: High Frequency Power with 2-within-subjects factors (Time [preoperatively vs. postoperatively] and Posture [supine vs. standing]}</u>.

<u>Ch. 4.</u> <u>ANOVA Table: Sympathetic (SNS) Indicator with 1- between (gender) and 2-within-subjects factors</u> [Time [preoperatively vs. postoperatively] and Posture [supine vs. standing]}.

Decesie											
Descrip	tive Stati	ISTICS									
01001	GENDE	H -	Mean	~~	Std. De	viation	N				
SN2KI	FEMAL	-	4.4/84	90	3.4729	30	10				
	MALE		7.0913	05	21.048	582	20				
011004	lotal	-	6.2203	6/	17.192	496	30				
SNSS1	FEMALE		18.401	919	18.198	052	10				
	MALE		53.306	933	145.55	7837	20				
	Total		41.671	928	119.43	2208	30				
SNSR2	FEMALE	8	15.012	658	25.899	087	10				
	MALE		8.1574	98	9.2087	43	20				
	Total		10.442	551	16.568	947	30				
SNSS2	FEMALE	1	15.019	655	17.292	657	10				
	MALE		31.667	783	43.757	904	20				
	Total		26.118	407	37.563	458	30				
Tests of	f Within-	Subjects	Effecte								
Measure	e: MEAS	URE 1	LITECIS								
Source				SS		df	Mean S	quare	F	Sia.	
TIME				300 20	8	1	300.20	8	060	809	
TIME *	GENDER			1281 1	13	1	1281 1	13	254	618	
Error(TI	ME)			141008	917	28	5036.0	33			
POSTU	RF			11663	972	1	11663	972	4 350	046	
POSTUR	RE * GEN	IDEB		5188 5	60	1	5188 5	60	1 935	175	
Fror(PC	STURE)			75073	196	28	2681 1	86	1.000		
TIME *	POSTUR	F		2235 2	57	1	2235 2	57	620	438	
TIME +	POSTUR	E * GENI	DER	128 74	2	1	128 74	2	036	851	
Error(TI	ME*POS	TURE)	ben	100882	.409	28	3602.9	43	.000	.001	
Tests of	f Within-	Subjects	Contras	s							
Measure	e: MEAS	JRE_1			~~					_	<u>.</u>
Source		TIME	POSTU	RE	SS	_	df	Mean S	quare	+	Sig.
TIME		2 vs. 1			300.20	8	1	300.20	5	.060	.809
	GENDER	2 vs. 1			1281.1	13	1	1281.1	13	.254	.618
Error(11		2 vs. 1			141008	.917	28	5036.0	33		
POSTUR	RE		2 vs. 1		11663.9	972	1	11663.	972	4.350	.046
POSTUR	RE * GEN	IDER	2 vs. 1		5188.5	60	1	5188.5	50	1.935	.175
Error(PC	STURE)		2 vs. 1		75073.	196	28	2681.18	36		
TIME*P	OSTURE	2 vs. 1	2 vs. 1		2235.2	57	1	2235.2	57	.620	.438
I*P*G		2 vs. 1	2 vs. 1		128.74	2	1	128.74	2	.036	.851
Error(T*	P)	2 vs. 1	2 vs. 1		100882	.409	28	3602.94	43		
Tests of	Betwee	n-Subiect	ts Effect	s							
Measure	: MEASI	JRE 1		-							
Transfo	rmed Var	iable: Av	erage								
Source	Type III	Sum of S	Sauares	df	Mean Se	ouare	F	Sia.			
Intercen	t it	39084	514	1	39084	514	7.609	.010			
GENDER	3	3730.5	19	1	3730.5	19	.726	.401			
Error		143816	.695	28	5136.3	11					
					-						

<u>Ch. 4.</u> <u>ANOVA Table: Sympathetic (SNS) Indicator with 2-within-subjects factors (Time [preoperatively vs. postoperatively] and Posture [supine vs. standing])</u>.

Tests of	f Within-Subjects	Effects								
Measure	: MEASURE 1	Lincota								
GENDER	R Source		SS	df	Mean So	ouare	F	Sia.		
FEMALE	E TIME		127.874	1	127.874	4	.316	.588		
	Error(TIME)		3639.041	9	404.338	3				
	POSTURE		485.142	1	485.142	2	1.722	.222		
	Error(POSTURE)		2534.933	9	281.659	9				
	TIME*POSTURE		484.168	1	484.168	3	1.288	.286		
	Error(T*P)		3384.152	9	376.017	7				
MALE	TIME		2116.233	1	2116.23	33	.293	.595		
	Error(TIME)		137369.876	19	7229.99	93				
	POSTURE		24308.514	1	24308.5	514	6.367	.021		
	Error(POSTURE)		72538.263	19	3817.80)3				
	TIME * POSTUR	ε	2577.663	1	2577.66	53	.502	.487		
	Error(TIME*POS	TURE)	97498.257	19	5131.48	37				
-		A								
lests of	Within-Subjects	Contras	<u>ts</u>							
IVIeasure	EASURE_I	T18 47	DOOTUOS	~~					_	-
GENDER	Source		POSTURE	55		dt	Mean S	quare	F	Sig.
FEMALE		2 vs. 1		127.87	4	1	127.87	4	.316	.588
		2 VS. I	^	3639.0	41	9	404.33	8		
	FUSIORE		2 vs. 1	485.14	2	1	485.14	2	1.722	.222
	Error(POSTURE)	<u> </u>	2 vs. 1	2534.9	33	9	281.65	9		
	TIME POSTURE	2 vs. 1	2 vs. 1	484.16	8	1	484.16	8	1.288	.286
	Error(1 P)	2 vs. 1	2 vs. 1	3384.1	52	9	376.01	7		
MALE		2 vs. 1		2116.2	33	1	2116.2	33	.293	.595
	Error(IIME)	2 vs. 1	• •	137369	0.876	19	7229.9	93		
	POSTURE		2 vs. 1	24308.	514	1	24308.	514	6.367	.021
	Error(POSIURE)		2 vs. 1	72538.	263	19	3817.8	03		
	TIME POSTURE	2 vs. 1	2 vs. 1	2577.6	63	1	2577.6	63	.502	.487
	Error(1*P)	2 vs. 1	2 vs. 1	97498.	257	19	5131.48	37		
Tests of	Between-Subject	ts Effect	S							
Measure	: MEASURE 1		_							
Transfor	med Variable: Av	erage								
GENDER	Source	Type III	Sum of Squares	df	Mean Sq	uare	F	Sig.		
FEMALE	Intercep	t	6999.390	1	6999.39	0	27.884	.001		
	Error		2259.135	9	251.015					
MALE	Intercep	t	50223.769	1	50223.7	69	6.741	.018		
	Error		141557.560	19	7450.39	8				

<u>Ch. 4.</u> <u>ANOVA Table: Total Harmonic Power with 1- between (gender) and 2-within-subjects factors (Time [preoperatively vs. postoperatively] and Posture [supine vs. standing]).</u>

Descript	tive Stati	stics									
<u>-</u>	GENDEF	3	Mean		Std. Dev	viation	N				
THPR1	FEMALE		133.74	68	87.566	7	10				
	MALE	-	358.61	66	453.06	07	21				
	Total		286.07	80	388.02	22	31				
THPS1	FEMALE		78.821	2	55 364	1	10				
	MALE	-	323 78	03	374 25	1 <u>1</u>	21				
	Total		244 76	12	328 30	79	21				
THPR2	FEMALE		28 625	1	18 139	, J s	10				
1111 112	MAIE	-	25 357	י ג	25 011	7	21				
	Total		20.007	0 0	23.011	, `	21				
тырса	FEMALE	-	20.411	0 0	53.5170	5	10				
1052			100 74	0 75	402 40	/ フク	10				
	Tetel		100.74	/ J 0	402.40	10	21				
	Iotai		80.342	8	331.60	19	31				
Tests of	Within-S	Subjects	Effects								
Measure	: MEASL	JRE_1									
Source			SS		df	Mean S	quare	F	Sig.		
TIME			836351	.790	1	836351	.790	11.342	.002		
TIME *	GENDER		284465	5.569	1	284465	5.569	3.858	.059		
Error(TI	ME)		213843	32.212	29	73739.	042				
POSTUP	RE		51.314		1	51.314		.000	.982		
POSTUP	RE * GEN	IDER	12704.	190	1	12704.	190	.124	.728		
Error(PO	STURE)		297672	6.595	29	102645	.745				
TIME *	POSTUR	E	51285.	285	1	51285.	285	.682	.416		
T*P*G		•	3651.2	275	1	3651.2	75	.049	.827		
Error(TI	ME*POST	TURE)	218145	6.510	29	75222.	638				
Tests of	Within-9	Subjects	Contract								
Measure	MEAS	IRF 1	CUIIIIASI	<u>.</u> 5							
Source			POSTUR	RE	22		df	Mean Sc	niaro	F	Sig
TIME		2 ve 1			836351	790	1	836351		11 342	
TIME*G	ENDER	$2 v_{3}$. 1			284465	569	1	284465	569	3 858	059
Error/TIN		$2 v_{0.1}$			213843	2 212	20	73730 (142	5.000	.055
POSTUR	2F	2 03. /	2 ve 1		51 314	2.212	1	51 314		982	
POSTUR		FR	$2 v_{3.1}$		12704 1		1	12704 1	9000	124	728
Frror/PO	STURE	- L .11	$2 v_{3}$ 1		207672	6 5 9 5	20	102645	745	.124	.720
TIME + D		2 1 1	2 V3. 1		51225 1	0.555	23	51204J	./4J	692	416
T+D+C	SSTORE	2 vs. 1	2 1 2 1 2 1		2651 27	200 7E	1 1	01200.2		.002	.410
Front T+	DI	2 1 2 1	2 15. 1		210145	6 E 10	20	75222	20	.049	.027
Enor		2 vs. 1	2 vs. i		210140	0.570	29	/5222.6	030		
<u>Tests of</u>	Betweer	n-Subject	s Effect	<u>s</u>							
Measure	: MEASL	JRE_1									
Transfor	med Var	iable: Av	erage								
Source	Type III	Sum of S	Squares	df	Mean So	quare	F	Sig.			
Intercep	t	200173	7.376	1	200173	7.376	19.274	.000			
GENDEF	ł	475388	.153	1	475388	.153	4.577	.041			
Error		301186	4.670	29	103857	.402					

<u>Ch. 4.</u> <u>ANOVA Table: Total Harmonic Power with 2-within-subjects factors (Time [preoperatively vs. postoperatively] and Posture [supine vs. standing]</u>).

Tests or Measure	f Within-Subj	ects Effects								
GENDER		- ' // CP	22	df	Moon S	auara	E	Sia		
EEMALS			53610 010	1	52610	40are ∧10	11 107	000 000		
FLIVIAL	Error(TINAE)		13619.019	0	10019.	42	11.107	.009		
			43440.082	3	4027.3	42 21	2 0 0 0	110		
	PUSIURE	(DE)	5303.331	1	5303.3	31 F7	2.962	.119		
			16112.314	9	1/90.2	57	0 750			
	TIME POS	URE	10173.982	1	10173.	982	2.755	.131		
	Error(IIME*	POSTURE)	33228.697	9	3692.0	//				
MALE			1624666.969	1	162466	6.969	15.510	.001		
	Error(TIME)		2094986.131	20	104749	3.307				
	POSTURE		8634.037	1	8634.0	37	.058	.812		
	Error(POSTL)RE)	2960614.282	20	148030).714				
	TIME * POS	TURE	63786.306	1	63786.	306	.594	.450		
	Error(TIME*	POSTURE)	2148227.813	20	107411	.391				
Tests of	f Within-Subj	ects Contrast	<u>ts</u>							
Measure	e: MEASURE	_1								
GENDER	R Source	TIME	POSTURE	SS		df	Mean S	quare	F	Sig.
FEMALE	ΕΤΙΜΕ	2 vs. 1		53619.	019	1	53619.	019	11.107	.009
	Error(TIME)	2 vs. 1		43446.	082	9	4827.3	42		
	POSTURE		2 vs. 1	5303.3	31	1	5303.3	31	2.962	.119
	Error(POSTL	JRE)	2 vs. 1	16112.	314	9	1790.2	57		
	TIME*POST	URE 2 vs. 1	2 vs. 1	10173.	982	1	10173.	982	2.756	.131
	Error(T*P)	2 vs. 1	2 vs. 1	33228.	697	9	3692.0	77		
MALE	TIME	2 vs. 1		162466	6.969	1	162466	6.969	15.510	.001
	Error(TIME)	2 vs. 1		209498	6.131	20	104749	.307		
	POSTURE		2 vs. 1	8634.0	37	1	8634.0	37	.058	.812
	Error(POSTL	IRE)	2 vs. 1	296061	4.282	20	148030	.714		
	TIME*POST	URE 2 vs. 1	2 vs. 1	63786.	306	1	63786.	306	.594	.450
	Error(T*P E)	2 vs. 1	2 vs. 1	214822	7.813	20	107411	.391		
Tacts of	Bonwoon Su	highta Effant								
Manaura	MEASURE	1	<u>s</u>							
Transfor	mod Variable									
CENIDER		e. Average	Sum of Savaraa	<i></i>	Moon S		с	Sie		
CENALE	1 500 1 1-1-1	псе туре ш	Sum of Squares	1		quare	Г 20.126	Sig.		
FEIVIALE		acept	194104.023	·	6442.0	023	30.135	.000		
	Erro)r	5/985.895	9	0442.8	//		000		
WALE	Inte	rcept	3431/98.862	1	3431/9	0.862	23.236	.000		
	Erro	r	2953878.775	20	147693	.939				

Descrip	tive Statistic	<u>s</u>									
	GENDER	Mean		Std. De	viation	N					
TPR1	FEMALE	495.08	76	434.08	29	10					
	MALE	943.42	95	770.37	23	21					
	Total	798.80	31	705.38	42	31					
TPS1	FEMALE	344.27	16	203.55	82	10					
	MALE	821.95	14	628.48	86	21					
	Total	667.86	11	572.08	99	31					
TPR2	FEMALE	65.497	8	79.339	6	10					
	MALE	90.504	9	86.786	3 3	21					
	Total	82 438	1	83 969	5	31					
TPS2	FEMALE	107 23	96	156 46	32	10					
	MALE	178 41	28	556.88	94	21					
	Total	155.45	37	463.93	81	31					
Tests of	f Mithin-Subi	acts Effacts									
Measure	e: MEASURE	1									
Source		-` Type III	Sum of	Squares	df	Mean S	Souare	F	Sia		
TIME		792400	6 069	0400.00	1	792400	76 069	. 36 447	000		
TIME *	GENDER	116623	9 965		1	11662	39 965	5 364	028		
Error/TI	ME)	630492	8 878		20	21741	1 2/1	5.504	.020		
POSTUR	RF	34459	411		1	34459	A11	179	675		
POSTUR		9654 6	96		1	9654 6	96	050	824		
Frror/PC	STURE)	557360	0 795		, 29	10210	2 1 2 1	.030	.024		
TIME *	POSTURE	273607	731		1	27360	7 731	1 456	237		
T+P+G	1 OOTONE	479 59	./JI		1	470 50	/./JI	002	.237		
Error(T*	'P)	544969	9.434		29	187920	D.670	.003	.900		
Tests of	Within-Subj	ects Contrast	<u>s</u>								
Source	E. MEASURE		DOCTU	- -	<u> </u>		.14			~	<u> </u>
TIME			PUSIU	10	33			Iviean 5	quare		Sig.
	GENIDER	2 VS. 1			116600	0.009	1	110000	0.009	30.447	.000
THVIC Cases/TH	GENDER	2 VS. 1			110023	9.965	1	116623	9.965	5.364	.028
		2 VS. 1	a		030492	8.8/8	29	21/411	.341	170	075
POSTUR	15 25 + 05ND50		2 VS. 1		34459.4	411	1	34459.4	411	.179	.675
PUSIUF		i	2 VS. 1		9654.6	90	1	9654.63	30	.050	.824
	DOCTURE)	0 - 1	2 VS. 1		55/360	0.795	29	192193	.131	1 450	00 7
	PUSTURE	2 vs. 1	2 vs. 1		2/360/	./31	1	2/360/	./31	1.456	.237
T PG		2 VS. 1	2 VS. 1		4/9.590)	1	4/9.590)	.003	.960
Error(III	METPOSTURI	E) 2 VS. 1	2 vs. 1		544969	9.434	29	187920	.670		
Tests of	Between-Su	bjects Effects	<u>s</u>								
Measure	e: MEASURE_	1									
Transfor	rmed Variable	: Average									
Source	Тур	e III Sum of S	Squares	df	Mean Se	quare	F	Sig.			
Intercep	t 157	17016.882		1	157170	16.882	40.915	.000			
GENDEF	176	9583.538		1	176958	3.538	4.607	.040			
Error	111	40105.994		29	384141	.586					

<u>Ch. 4.</u> <u>ANOVA Table: Total Power with 2-within-subjects factors (Time [preoperatively vs. postoperatively]</u> and Posture [supine vs. standing]].

Tests of	Within-S	Subjects	Effects								
GENDER		Source		22	df	Mann S	auara	E	Cia.		
FEMALE	:	TIME		1110961 454	1	111004		10020	002		
	-	Error(TI		528252 475	0 0	59604	710	10.920	.002		
		POSTIE		20232.473	3	20034.	014	420	500		
		ErrorIPC		23743.014 621040 204	0	23743.	467	.430	.528		
		TIMETO		021940.204	3	09104.	40/	1 504	054		
		Error/T+		92090.312		92090.	312	1.504	.251		
54A1 E			Γ)	554607.723	9	01023.		40 705			
WALE				11/30802.299	20	11/568	62.299	40.705	.000		
		Error(III		5776676.403	20	288833	3.820	~~ /			
		PUSIUF		5916.538	1	5916.5	38	.024	.879		
			OOTURE	4951660.591	20	24/583	5.030		.		
			USIURE	230173.092	1	230173	5.092	.940	.344		
		Error(1	'P}	4895091.711	20	244754	.586				
T			~	_							
Lests of			Contrast	<u>s</u>							
CENDER		IRE_I		DOCTUDE	~~					_	.
GENDER	Source			POSTURE	55		dt	Mean So	quare	F	Sig.
FEIVIALE		45	2 VS. 1		111096	1.454	1	111096	1.454	18.928	.002
	Error	1E) E	2 vs. 1	•	528252	.475	9	58694.7	719		
	PUSTUR			2 vs. 1	29/43.	014	1	29743.0	014	.430	.528
	Error(PO	STURE)	•	2 vs. 1	621940	.204	9	69104.4	167		
	TIME*PC	DSTURE	2 vs. 1	2 vs. 1	92696.	312	1	92696.3	312	1.504	.251
	Error(1*)	-)	2 vs. 1	2 vs. 1	554607	.723	9	61623.0	080		
MALE	TIME		2 vs. 1		117568	62.299	1	117568	62.299	40.705	.000
	Error(TIN	1E)	2 vs. 1		577667	6.403	20	288833	.820		
	POSTUR	E		2 vs. 1	5916.5	38	1	5916.53	38	.024	.879
	Error(PO	STURE)		2 vs. 1	495166	0.591	20	247583	.030		
	TIME*PC	STURE	2 vs. 1	2 vs. 1	230173	.092	1	230173	.092	.940	.344
	Error(T*F	2)	2 vs. 1	2 vs. 1	489509	1.711	20	244754	.586		
	_										
lests of	Between	-Subject	s Effects	2							
Measure	: MEASU	RE_1									
Iransfor	med Vari	able: Av	erage								
GENDER		Source	⊺ype III	Sum of Squares	df	Mean So	quare	F	Sig.		
FEMALE		Intercept	t	2560849.022	1	256084	9.022	35.958	.000		
		Error		640954.317	9	71217.	146				
MALE		Intercept	t	21726447.706	1	217264	47.706	41.387	.000		
		Error		10499151.677	20	524957	.584				

ANOVA Table: SBR Slope with 1- between (gender) and 2-within-subjects factors (Time [preoperatively vs. postoperatively] and Posture [supine vs. standing]).

Descrip	<u>otive Statistic</u>	<u>25</u>									
	GENDER	Mean	SD	N							
SLR1	FEMALE	5.6943	2.9351	10							
	MALE	9.8753	5.2828	20							
	Total	8.4816	4.9976	30							
SLS1	FEMALE	3.8016	2.1055	10							
	MALE	5.1150	2.6436	20							
	Total	4.6772	2.5202	30							
SLR2	FEMALE	3.8004	3.9181	10							
	MALE	2.5377	1.5915	20							
	Total	2.9586	2.6058	30							
SLS2	FEMALE	3.5813	3.0714	10							
	MALE	1.7525	1.4555	20							
	Total	2.3621	2.2549	30							
Tests o	of Within-Sub	<u>jects Effects</u>									
Measu	re: MEASURI	E_1									
Source			SS		df	Mean	Square	F	Sig.		
TIME			273.674	4	1	273.6	74	23.488	.000		
TIME *	GENDER		122.860	C	1	122.8	60	10.544	.003		
Error(T	(ME)		326.244	4	28	11.65	2				
POSTU	IRE		97.728		1	97.72	8	16.883	.000		
POSTU	IRE * GENDE	R	19.649		1	19.64	9	3.394	.076		
Error(P	OSTURE)		162.078	8	28	5.789					
TIME *	POSTURE		53.179		1	53.179	9	12.901	.001		
TIME *	POSTURE *	GENDER	8.828		1	8.828		2.142	.154		
Error(T	IME*POSTU	RE)	115.41	6	28	4.122					
Tests c	of Within-Sub	ojects Contrast	<u>s</u>								
Measu	re: MEASURE	E_1									
Source		TIME	POSTUR	RE	SS		df	Mean S	quare	F	Sig.
TIME		2 vs. 1			273.6	74	1	273.67	4	23.488	.000
TIME *	GENDER	2 vs. 1			122.8	60	1	122.86	0	10.544	.003
Error(T	IME)	2 vs. 1			326.2	44	28	11.652			
POSTU	RE		2 vs. 1		97.72	8	ĩ	97.728		16.883	.000
POSTU	RE * GENDE	R	2 vs. 1		19.64	9	1	19.649		3.394	.076
Error(P	OSTURE)		2 vs. 1		162.0	78	28	5.789			
TIME*F	POSTURE	2 vs. 1	2 vs. 1		53.17	9	1	53.179		12.901	.001
T*P*G		2 vs. 1	2 vs. 1		8.828		1	8.828		2.142	.154
Error(T	IME*POSTU	RE) 2 vs. 1	2 vs. 1		115.4	16	28	4.122			
Tests c	of Between-S	ubjects Effects	5								
Measur	re: MEASURE	<u>1</u>									
Transfo	ormed Variab	le: Average	_			_					
Source	Ту	pe III Sum of S	Squares	df	Mean	Square	F		Sig.		
Interce	pt 21	79.012		1	2179.	012	124.98	33	.000		
GENDE	:K 9.	623		1	9.623		.552		.464		
Error	48	38.166		28	17.43	5					

<u>Ch. 4.</u> <u>ANOVA Table: SBR Slope with 2-within-subjects factors (Time [preoperatively vs. postoperatively]</u> and Posture [supine vs. standing]) in Men & women Separately.

Descriptive Sta	tistics			
GENDER		Mean	SD	Ν
FEMALE	SLR1	5.6943	2.9351	10
	SLS1	3.8016	2.1055	10
	SLR2	3.8004	3.9181	10
	SLS2	3.5813	3.0714	10
MALE	SLR1	9.8753	5.2828	20
	SLS1	5.1150	2.6436	20
	SLR2	2.5377	1.5915	20
	SLS2	1.7525	1.4555	20

Tests of Within-Subjects Effects

GENDER	Source	SS	df	MS	F	Sig.
FEMALE	TIME	11.175	1	11.2	1.025	.338
	Error(TIME)	98.124	9	10.9		
	POSTURE	11.151	1	11.2	1.849	.207
	Error(POSTURE)	54.290	9	6.0		
	TIME* POSTURE	7.002	1	7.0	1.551	.245
	Error(TIME*POSTURE)	40.645	9	4.5		
MALE	TIME	572.451	1	572.5	47.679	.000
	Error(TIME)	228.121	19	12.0		
	POSTURE	153.764	1	153.8	27.104	.000
	Error(POSTURE)	107.788	19	5.7		
	TIME* POSTURE	79.006	1	79.0	20.076	.000
	Error(TIME*POSTURE)	74.771	19	3.9		

Tests of Within-Subjects Contrasts

GENDER	Source	TIME	POSTURE	SS	df	MS	F	Sia.
FEMALE	TIME	2 vs. 1		11.18	1	11.18	1.025	.338
	Error(TIME)	2 vs. 1		98.12	9	10.90		
	POSTURE		2 vs. 1	11.15	1	11.15	1.849	.207
	Error(POSTURE)		2 vs. 1	54.29	9	6.03		
	TIME **POSTURE	2 vs. 1	2 vs. 1	7.00	1	7.00	1.551	.245
	Error(TIME * POSTURE)	2 vs. 1	2 vs. 1	40.65	9	4.52		
MALE	TIME	2 vs. 1		572.45	1	572.45	47.679	.000
	Error(TIME)	2 vs. 1		228.12	19	12.01		
	POSTURE		2 vs. 1	153.76	1	153.76	27.104	.000
	Error(POSTURE)		2 vs. 1	107.79	19	5.67		
	TIME * POSTURE	2 vs. 1	2 vs. 1	79.01	1	79.01	20.076	.000
	Error(TIME*POSTURE)	2 vs. 1	2 vs. 1	74.771	19	3.935		

Tests of Between-Subjects Effects

GENDER	Source	SS	df	Mean Square	F	Sig.
FEMALE	Intercept	712.133	1	712.133	43.469	.000
	Error	147.442	9	16.382		
MALE	Intercept	1858.688	1	1858.688	103.647	.000
	Error	340.725	19	17.933		

<u>Ch. 4.</u> <u>ANOVA Table: **R-R Interval** with 1-between and 2-within-subjects factors (Time [preoperatively vs. postoperatively] and Posture [supine vs. standing]).</u>

Descrip	tive Statist	tics										
	GENDER		Mean		Std. De	eviation	Ν					
RRIR1	FEMALE		995.79	13	145.78	319	10					
	MALE		1038.8	484	126.69	994	21					
	Totai		1024.9	590	132.27	730	31					
RRIS1	FEMALE		851.92	92	128.37	14	10					
	MALE		919.57	79	161.61	88	21					
	Total		897.75	58	152.94	804	31					
RRIR2	FEMALE		672.81	34	104.59	85	10					
	MALE		719.31	64	90.668	86	21					
	Total		704.31	54	96.182	6	31					
RRIS2	FEMALE		641.29	72	107.30	93	10					
	MALE		630.76	44	110.16	69	21					
	Total		634.16	21	107.56	576	31					
Tests of	<u>f Within-Su</u>	bjects 8	ffects									
Measure	e: MEASUF	₹E_1										
Source		-		SS		df	Mean S	Square	F	Sig.		
TIME				220849	2.324	1	22084	92.324	93.455	.000		
TIME *	GENDER			9459.10	62	1	9459.1	62	.400	.532		
Error(TII	ME)			685319	.149	29	23631.	.695				
POSTUR	RE			248685	.341	1	24868	5.341	74.896	.000		
POSTUR	RE * GEND	ER		1782.60	51	1	1782.6	61	.537	.470		
Error(PC	STURE)			96291.	512	29	3320.3	97				
TIME *	POSTURE			34662.	566	1	34662.	566	15.947	.000		
TIME *	POSTURE	* GEND	ER	11284.1	191	1	11284.	191	5.191	.030		
Error(TI	ME*POSTU	JRE)		63034.5	573	29	2173.6	06				
Tests of	<u>f Within-Su</u>	bjects C	ontrast	s								
Measure	e: MEASUF	IE_1										
Source		-	ГІМЕ	POSTUF	RE	SS		df	Mean So	uare	F	Sig.
TIME			2 vs. 1			220849	2.324	1	220849	2.324	93.455	.000
TIME 🍨	GENDER	2	2 vs. 1			9459.10	52	1	9459.16	52	.400	.532
Error(TIN	ME)	2	2 vs. 1			685319	.149	29	23631.6	595		
POSTUP	RE			2 vs. 1		248685	.341	1	248685	.341	74.896	.000
POSTUP	RE * GEND	ER		2 vs. 1		1782.60	51	1	1782.66	51	.537	.470
Error(PO	STURE)			2 vs. 1		96291.9	512	29	3320.39)7		
TIME *	POSTURE	2	2 vs. 1	2 vs. 1		34662.9	566	1	34662.5	666	15.947	.000
T⁺P⁺G		2	2 vs. 1	2 vs. 1		11284.1	191	1	11284.1	91	5.191	.030
Error(TIN	ME*POSTU	RE) 2	2 vs. 1	2 vs. 1		63034.9	573	29	2173.60)6		
<u>Tests of</u>	Between-S	Subjects	Effect	<u>s</u>								
Measure	e: MEASUR	E_1										
Transfor	rmed Varial	ole: Ave	rage									
Source	T	ype III S	um of S	Squares	df	Mean So	quare	F		Sig.		
Intercep	t 70	090087	1.616		1	709008	71.616	2169.6	81	.000		
GENDER	K 3	6434.69	95		1	36434.6	595	1.115		.300		
Error	9.	47662.6	526		29	32678.0)22					

<u>Ch. 4.</u> <u>ANOVA Table: **R-R Interval** with 2-within-subjects factors (Time [preoperatively vs. postoperatively] and Posture [supine vs. standing]) in Men & Women Separately.</u>

Descript	tive Statis	tics									
GENDE	7	Mean		Std. Deviation	N						
FEMALE	ERRIR1	995.79	13	145.7819	10						
	RRIS1	851.929	92	128.3714	10						
	RRIR2	672.81:	34	104.5985	10						
	RRIS2	641.29	72	107.3093	10						
MALE	RHIRT	1038.84	484	126.6994	21						
	RRIST	919.57	79	161.6188	21						
	RRIR2	/19.316	54	90.6686	21						
	RRISZ	630.764	44	110.1669	21						
Tests of	f Within-S	ubjects	<u>Effects</u>								
CENDER	E: MEASU	IKE_I		Turne III CC		Maan C		-	C:-		
GENDER	TIME			T11040 011	1			7 27 706	Sig.		
FEIVIALD		45)		160506 070	0	10024	100	37.790	.000		
				109500.970	9	10034.	100	10 022	002		
	FUSIUR Error/POI			70093.071	0	10093.0	5/i 75	19.022	.002		
	TIME + DC			21554 024	3	2155/	70	12 616	005		
	Error/T*E			20957 299	۰ ۵	2217 /	JZ4 76	13.010	.005		
ΜΔΙΕ	TIME	1		1942942 302	1	194794	2 302	75 335	000		
	Error(T)M	15)		515812 179	20	25790 1	509	/3.355	.000		
	POSTUR	F		226748 274	1	226748	274	75 695	000		
	Error(PO)	STURE)		59911.041	20	2995.5	52	, 0.000			
	TIME*PC	STURE		4954.023	1	4954.0	23	2.349	.141		
	Error(T*F	>) 		42177.285	20	2108.8	64				
Tooto of	E VA/i+bia C	which the	C	_							
Manur	NAEASU		Contrast	<u>.s</u>							
GENIDER	Source		TIME	POSTUPE	Tupe III	cc	df	Mana S.		c	Cia
FEMALE			2 ve 1	FUSIONE	7118/19	33 811	1	7110/0	911	27 706	5ig.
	Error/TIM	15)	2 vs. 1		169506	970	۱ ۵	12934	108	37.730	.000
	POSTUR	F	2 v3. 1	2 vs 1	76893	271	1	76893 9	871	19 022	002
	Error(PO)	STURE		2 vs. 1	36380	171	à	4042 2	75	10.022	.002
	TIME*PC	STURE	2 vs. 1	2 vs. 1	31554.0	124	1	31554 (724	13 616	005
	Error(T*F	>) >)	2 vs. 1	2 vs. 1	20857.	288	9	2317.4	76		
MALE	TIME	•	2 vs. 1		194294	2.302	1	194294	2.302	75.335	.000
	Error(TIN	1E)	2 vs. 1		515812	.179	20	25790.0	609		
	POSTUR	E		2 vs. 1	226748	.274	1	226748	.274	75.695	.000
	Error(PO	STURE)		2 vs. 1	59911.0	041	20	2995.5	52		
	TIME*PC	STURE	2 vs. 1	2 vs. 1	4954.0	23	1	4954.0	23	2.349	.141
	Error(T*F	> }	2 vs. 1	2 vs. 1	42177.	285	20	2108.8	64		
Tests of	f Between	-Subject	ts Effect	s							
Measure	e: MEASU	RE 1		-							
Transfo	rmed Vari	able: Av	rage								
GENDE	7	Source	-	Type III SS	df	Mean Se	quare	F		Sig.	
FEMALE	E	Intercep	t	24992940.632	1	249929	40.632	714.209	Э	.000	
		Error		314944.757	9	34993.8	362				
MALE		Intercep	t	57467649.456	1	574676	49.456	1816.53	33	.000	
		Error		632717.869	20	31635.8	393				

Descript	tive Statisti	<u>cs</u>									
	GENDER	Mean		Std. De	viation	N					
SBPR1	FEMALE	117.3	785	21.028	2	10					
	MALE	120.2	947	18.614	3	20					
	Total	119.3	226	19.136	3	30					
SBPS1	FEMALE	144.0	799	18.597	6	10					
	MALE	129.1	548	18.962	0	20					
	Total	134.1	298	19.852	4	30					
SBPR2	FEMALE	95.770	58	19.675	0	10					
	MALE	114.10	093	29.189	7	20					
00000	lotal	107.99	384	27.488	/	30					
SBPS2	FEMALE	118.6	334	26.864	9	10					
	MALE	123.04	149	18.056	/	20					
	lotal	121.5	/44	21.025	5	30					
Tests of	Within-Su	bjects Effects									
Measure	: MEASUR	E_1									
Source				SS		df	Mean S	iquare	F	Sig.	
TIME				5869.4	38	1	5869.4	38	9.476	.005	
TIME *	GENDER			2012.9	29	1	2012.9	29	3.250	.082	
Error(TIN	rror(TIME)			17343.	899	28	619.42	5			
POSTURE				7560.8	68	1	7560.8	68	16.421	.000	
POSTURE * GENDER				1681.4	06	1	1681.4	06	3.652	.066	
Error(PO	Error(POSTURE)			12892.	641	28	460.45	1			
TIME *	POSTURE			23.679		1	23.679		.087	.770	
	POSTURE	GENDER		25.615		1	25.615	-	.094	.761	
Error(11	ME*POSTU	RE)		7601.9	97	28	271.50	0			
Tests of	Within-Su	bjects Contras	sts								
Measure	: MEASUR	E_1									
Source		TIME	POSTU	RE	SS		df	Mean S	quare	F	Sig.
TIME		2 vs. 1			5869.4	38	1	5869.43	38	9.476	.005
TIME *	GENDER	2 vs. 1			2012.9	29	1	2012.93	29	3.250	.082
Error(TIN	AE)	2 vs. 1			17343.	899	28	619.42	5		
POSTUR	RE		2 vs. 1		7560.8	68	1	7560.8	58	16.421	.000
POSTUR	RE * GENDI	R	2 vs. 1		1681.4	06	1	1681.40	06	3.652	.066
Error(PO	STURE)		2 vs. 1		12892.	641	28	460.45	1		
TIME • I	POSTURE	2 vs . 1	2 vs. 1		23.679		1	23.679		.087	.770
T*P*G		2 vs. 1	2 vs. 1		25.615		1	25.615		.094	.761
Error(TIN	∕IE*POSTU	RE) 2 vs. 1	2 vs. 1		7601.9	97	28	271.500	C		
Tests of	Between-S	Subjects Effec	ts								
Measure	: MEASUR	E_1									
Transfor	med Variat	ole: Average									
Source	T	/pe III Sum of	Squares	df	Mean S	quare	F		Sig.		
Intercep	t 1!	543921.226		1	154392	21.226	2875.8	56	.000		
GENDER	1 1	92.067		1	192.06	7	.358		.555		
Error	1!	5031.977		28	536.85	6					

•

<u>Ch. 4.</u>	ANOVA	Table: S	Systolic I	Blood Pressure wi	ith 2-with	nin-subje	cts facto	ors (Time	(preope	ratively vs	<u>5.</u>
postope	eratively]	and Post	ture [sup	ine vs. standing]) in Men	& wome	n Separa	<u>ately.</u>			
Descrip	tive Stati	stics									
GENDE	R	Mean		Std Deviation	N						
FEMAL	SBPR1	117.37	85	21 0282	10						
	SBPS1	144.07	99	18 5976	10						
	SBPR2	95 776	8	19.6750	10						
	SBPS2	118 63	34	26 8649	10						
MALE	SEPR1	120.20	л т лт	19 6142	20						
MALL	SEDC 1	120.23	~+7 / Q	19 0620	20						
	CODDA	114 10	40	10.9020	20						
	SBPS2	123 04	93 49	29.1897	20						
	00:02	120.04		10.0307	20						
Tests of	f Within-	Subjects	Effects								
Measure	e: MEAS	JRE_1									
GENDE	R Source			Type III SS	df	Mean S	iquare	F	Sig.		
FEMALE	E TIME			5533.833	1	5533.8	33	7.736	.021		
	Error(TII	ME)		6438.117	9	715.34	-6				
	POSTUR	RE		6139.988	1	6139.9	88	14.469	.004		
	Error(PC	STURE)		3819.172	9	424.35	2				
	TIME *	POSTUR	E	36.956	1	36.956		.127	.729		
	Error(TI	ME*POS	TURE)	2612.842	9	290.31	6				
MALE	TIME			755.884	1	755.88	4	1.317	.265		
	Error(TI	ME)		10905.782	19	573.98	9				
	POSTUP	RE		1583 435	1	1583.4	35	3 316	084		
	Frror(PC	STURE)		9073 470	19	477 55	1	0.010			
	TIME P	OSTURE		2 8505-02	1	2 850E	-02	000	992		
	Error(T*	P)		4989.154	19	262.58	7	.000	.552		
Tests of	f Within-S	Subjects	Contrast	s							
Measure	e: MEASI	JRE_1									
GENDEF	R Source		TIME	POSTURE	Type III	SS	df	Mean S	quare	F	Sig.
FEMALE	TIME		2 vs. 1		5533.8	33	1	5533.8	33	7.736	.021
	Error(TIN	ME)	2 vs. 1		6438.1	17	9	715.34	6		
	POSTUP	RE		2 vs. 1	6139.9	88	1	6139.9	88	14.469	.004
	Error(PO	STURE)		2 vs. 1	3819.1	72	9	424.35	2		
	TIME*P	OSTURE	2 vs 1	2 vs 1	36 956		1	36 956	-	127	.729
	Frror(T*	P1	2 vs 1	2 vs 1	2612.8	42	à	290 31	6		
MALE	TIME	•••	2 vs 1	2 13	755 88	4	1	755.88	4	1 3 1 7	265
	Error/Til		$2 v_{3.1}$		10005	- 797	10	E72 00	- 0	1.517	.200
	POSTUR		2 03. 1	2 1	1602 4	70Z 25	19	1502 4	3 25	2 2 1 6	084
	Frank BO			2 VS. 1	1503.4	30	10	1303.4	1	3.310	.004
			2	2 VS. 1	9073.4	/0	19	477.35	00	000	002
	Error/T#		2 VS. 1	2 VS. 1	2.850E-		10	2.8505-	·UZ	.000	.992
	ENOIT	F)	2 VS. 1	2 VS. 1	4989.1	04	19	202.38	/		
Tests of	Betweer	n-Subject	ts Effect	<u>s</u>							
Measure	: MEASU	JRE_1									
Transfor	med Var	iable: Av	rage								
GENDEF	3	Source		Type III SS	df	Mean S	quare	F		Sig.	
FEMALE		Intercep	t	566127.311	1	566127	7.311	1212.5	98	.000	
		Error		4201.844	9	466.87	2				
MALE		Intercep	t	1183915.318	1	118391	5.318	2077.0	19	.000	
		Error		10830.132	19	570.00	7				

<u>Ch. 4</u>	ANOVA Table	e for Fractal	Power with	1-between	(gender)	and 2-y	within s	ubjects	factors	(time
[preoper	atively vs. po:	stoperatively	and condit	ion (supine	vs. stand	ding]) in	subjec	<u>ts > 5</u> 5	years.	

Descri	<u>otive Stat</u>	<u>istics</u>		
	gender	Mean	Std. Deviation	Ν
FPR1	female	235.9329	279.1015	7
	male	667.0772	478.0084	10
	Total	489.5472	453.4055	17
FPS1	female	275.6938	182.1521	7
	male	601.4883	517.9976	10
	Total	467.3376	436.6796	17
FPR2	female	34.1889	38.5908	7
	male	51.3628	65.6132	10
	Total	44.2912	55.2810	17
FPS2	female	69.5539	118.3945	7
	male	106.8183	226.9570	10
	Total	91.4741	185.9783	17

Tests of Within-Subjects Effects Measure: MEASURE_1

Source	Type III SS	df	Mean Square	F	Siq.
TIME	2372936.919	1	2372936.919	20.694	.000
TIME * GENDER	508021.898	1	508021.898	4.430	.053
Error(TIME)	1720027.683	15	114668.512		
COND	4348.244	1	4348.244	.110	.745
COND * GENDER	7482.951	1	7482.951	.189	.670
Error(COND)	593218.791	15	39547.919		
TIME * COND	14007.101	1	14007.101	.270	.611
TIME*COND*GENDER	16198.075	1	16198.075	.312	.585
Error(TIME*COND)	778846.828	15	51923.122		

Tests of Within-Subjects Contrasts Measure: MEASURE_1

Source	TIME	COND	Type III SS	df	Mean Square	F	Sig.
TIME	2 vs. 1		2372936.919	1	2372936.919	20.694	.000
TIME * GENDER	2 vs. 1		508021.898	1	508021.898	4.430	.053
Error(TIME)	2 vs. 1		1720027.683	15	114668.512		
COND		2 vs. 1	4348.244	1	4348.244	.110	.745
COND *GENDER		2 vs. 1	7482.951	1	7482.951	.189	.670
Error(COND)		2 vs. 1	593218.791	15	39547.919		
TIME * COND	2 vs. 1	2 vs. 1	56028.406	1	56028.406	.270	.611
TIME*COND*GENDER	2 vs. 1	2 vs. 1	64792.298	1	64792.298	.312	.585
Error(TIME*COND)	2 vs. 1	2 vs. 1	3115387.311	15	207692.487		

Tests of Between-Subjects Effects Measure: MEASURE 1

Sig.
.000
.069

postop	eratively]	and con	dition (su	upine vs.	standing) separa	ately in n	nen & wo	omen >	55 years.		
Descrip	tive Stati	istics										
GENDE	R		Mean		Std. De	viation	N					
FEMAL	E	FPR1	235.93	29	279.10	15	7					
		FPS1	275.69	38	182.15	21	7					
		FPR2	34,188	9	38,590	8	7					
		FPS2	69.553	9	118.39	45	7					
MALE		FPR1	667.07	72	478.00	84	10					
		FPS1	601 48	83	517.99	76	10					
		FPR2	51.362	8	65.613	2	10					
		FPS2	106.81	83	226.95	70	10					
Tests o	of Within-	Subiects	Effects									
Measur	e: MEAS	URE 1										
GENDE	R	Source			Type III	SS	df	Mean S	quare	F	Sia	
FEMAL	F	TIME			291146	5 237	1	291146	\$ 237	10 967	016	
	-	Error(T)	MEI		159291	119	6	26548	520	10.007	.010	
		COND			9876 8	13	1	0876 8	12	212	640	
		FrrorIC	נחאר		244760	059	6	10703	343	.272	.040	
		TIME .	COND		33 816		1	33 816	545	001	976	
		Error(T)	ME+CON	וחו	201334	1 250	6	33555	708	.001	.570	
MALE		TIME		,	308238	12 929	1	308238	22 020	17 775	002	
		Error(Ti			156073	86 564	à	172/15	5 174	17.775	.002	
		COND			256 71	8 8	1	256 71	Q	007	937	
		Frror(C)	וחאר		348458	2722	à	200.71	0 627	.007	.557	
		TIME +	COND		36629	405	1	36620	405	571	469	
		Error(T)	ME*CON	וחו	577512	-00 9 578	9	64168	40J 064	.571	.403	
				,			0	01100.	004			
<u>Tests o</u>	f Within-	Subjects	Contrast	ts								
Measur	e: MEAS	JRE 1										
GENDE	R Source	_		TIME	COND	Type III	SS	df	Mean S	quare	F	Siq.
FEMAL	Ε ΤΙΜΕ			2 vs. 1		291146	5.237	1	291146	.237	10.967	.016
	Error(TI	ME)		2 vs. 1		159291	1.119	6	26548.	520		
	COND				2 vs. 1	9876.8	13	1	9876.8	13	.242	.640
	Error(CC	ND)			2 vs. 1	244760	0.059	6	40793.	343		
	TIME *	COND		2 vs. 1	2 vs. 1	135.26	5	1	135.26	5	.001	.976
	Error(T*	C)		2 vs. 1	2 vs. 1	805336	5.999	6	134222	.833		
MALE	TIME			2 vs. 1		308238	33.939	1	308238	3.939	17.775	.002
	Error(Til	ME)		2 vs. 1		156073	36.564	9	173415	.174		
	COND				2 vs. 1	256.71	8	1	256.71	B	.007	.937
	Error(CC	ND)			2 vs. 1	348458	3.732	9	38717.	- 637		
	TIME *	COND		2 vs. 1	2 vs. 1	146517	7.620	1	146517	620	.571	.469
	Error(T*	C)		2 vs. 1	2 vs. 1	231005	50.313	9	256672	.257		
Tests o	f Retwoo	o-Subiec	te Effect	-								
Measur	e MEASI	IRF 1		3								
Transfo	rmed Var	iable: Av	erane									
GENDE	R	Source	Glage	Type III	22	df	Mean S	quare	F	Sig		
FEMAL	F	Intercen	+	165670	33	1	16567	140die 2 2 2 2 2	25 000	31y. 002		
	-	Free		205072		і 6	6/01 E	01	25.800	.002		
ΜΔΙΕ		Intercer	+	127225	3 647	1	12220	52 647	10 417	003		
		Fror	r.	621726	15/04/	і 0	60091	JJ.04/	10.417	.002		
				021/30	1.1.04	3	05061.	190				

Ch. 4 ANOVA Table for Fractal Power with 2-within subjects factors (time [preoperatively vs.

<u>Ch. 4</u> <u>ANOVA Table for High Frequency Power with 1-between (gender) and 2-within subjects factors (time [preoperatively vs. postoperatively] and condition [supine vs. standing]) in subjects > 55 years.</u>

Descrip	tive Stati	istics		
	gender	Mean	Std. Deviation	Ν
HFR1	female	27.951860	19.170964	7
	male	245.112025	575.305456	10
	Total	155.693134	445.475496	17
HFS1	female	9.640303	8.067701	7
	male	64.493172	69.667701	10
•	Total	41.906696	59.404416	17
HFR2	female	22.728076	52.991699	7
	male	2.137573	3.427334	10
	Total	10.616015	34.187164	17
HFS2	female	15.551847	36.494740	7
	male	23.883859	72.085670	10
	Total	20.453031	58.653723	17

Tests of Within-Subjects Effects

Me	asur	e: N	1EA	SUP	RE	1

Source	Type III SS	df	Mean Square	F	Sig.
TIME	82383.978	1	82383.978	1.460	.246
TIME * GENDER	83187.073	1	83187.073	1.474	.243
Error(TIME)	846519.201	15	56434.613		
COND	34988.408	1	34988.408	.747	.401
COND * GENDER	18314.779	1	18314.779	.391	.541
Error(COND)	702521.769	15	46834.785		
TIME * COND	46923.110	1	46923.110	1.060	.319
TIME*COND*GENDER	37644.395	1	37644.395	.851	.371
Error(TIME*COND)	663814.702	15	44254.313		

Tests of Within-Subjects Contrasts Measure: MEASURE 1

MCG3GIC. MEADONE 1							
Source	TIME	COND	Type III SS	df	Mean Square	F	Sig.
TIME	2 vs. 1		82383.978	1	82383.978	1.460	.246
TIME * GENDER	2 vs. 1		83187.073	1	83187.073	1.474	.243
Error(TIME)	2 vs. 1		846519.201	15	56434.613		
COND		2 vs. 1	34988.408	1	34988.408	.747	.401
COND * GENDER		2 vs. 1	18314.779	1	18314.779	.391	.541
Error(COND)		2 vs. 1	702521.769	15	46834.785		
TIME * COND	2 vs. 1	2 vs. 1	187692.440	1	187692.440	1.060	.319
TIME*COND*GENDER	2 vs. 1	2 vs. 1	150577.578	1	150577.578	.851	.371
Error(TIME*COND)	2 vs. 1	2 vs. 1	2655258.806	15	177017.254		

Tests of Between-Subjects Effects

ASURE 1				
Variable: Average				
Type III SS	df	Mean Square	F	Sig.
43577.880	1	43577.880	2.958	.106
17364.226	1	17364.226	1.179	.295
220980.587	15	14732.039		
	ASURE_1 Variable: Average Type III SS 43577.880 17364.226 220980.587	ASURE_1 Variable: Average Type III SS df 43577.880 1 17364.226 1 220980.587 15	ASURE_1 Variable: Average Type III SS df Mean Square 43577.880 1 43577.880 17364.226 1 17364.226 220980.587 15 14732.039	ASURE_1 Variable: Average Type III SS df Mean Square F 43577.880 1 43577.880 2.958 17364.226 1 17364.226 1.179 220980.587 15 14732.039

<u>Ch. 4</u> postope	ANOVA erativelvl	Table for and con	o <mark>r High F</mark> dition (su	requency	<u>y Power</u>	with 2-w	rithin sub ately in n	jects fac	tors (tim	e (preope 55 vears	eratively vs.
				<u>p</u>	otanang	<u>11/ 00p</u>	<u></u>	<u></u>		<u></u>	-
<u>Descrip</u>	tive Stati	stics									
gender		Mean		Std. De	viation	N					
female	HFR1	27.951	860	19.170	964	7					
	HFS1	9.6403	03	8.0677	01	7					
	HFR2 22.728076			52,991699		7					
	HFS2	15.551	847	36.494	740	7					
male	HFR1	245.11	2025	575.30	5456	10					
	HFS1	64.493	172	69.667	701	10					
	HFR2	2 1375	73	3 4 2 7 3	34	10					
	HFS2	23.883	859	72.085	670	10					
Tests of	f Within-S	Subjects	Effects								
Measure	e: MEASU	JRE_1	LIICOLD								
gender	Source			Type III	SS	df	Mean S	iquare	F	Sig.	
female	TIME			.828		1	.828		.001	.972	
	Error(TIME)			3751.3	46	6	625.22	4			
	COND			1136.8	48	1	1136.8	48	.781	.411	
	Error(COND)			8738.402		6	1456.4	00			
	TIME . COND			216.992		1	216.99	2	.222	.654	
	Error(TIN	AE*CON	ID)	5871.085		6	978.51	4			
male	TIME			201049	J.379	1	201049	201049.379		.177	
	Error(TIN	AE)		842767.855		9	93640.	873			
	COND	COND			63101.231		63101.	231	.819	.389	
	Error(CO	ND)		693783.367		9	77087.041 102379.124 73104.846				
	TIME * 0	COND		102379.124		1			1.400	.267	
	Error(TIN	AE*CON	ID)	657943.617		9					
Tests of	f Within-S	Subjects	Contrast	'S							
Measure	: MEASU	IBF 1		<u></u>							
gender	Source	- · ·	TIME	COND	Type III	55	df	Mean S	quare	F	Sia
female	TIME		2 ve 1	COND	878	55	1	020	quare	001	019.
. on all	Error(TIN	4E)	$2 v_3 \cdot 1$		3751 3		6	625 22	٨	.001	.372
	COND	101	2 43. 1	2 vc 1	1126.8	40 40	1	1126.8	τ 19	781	411
	ErroriCO			2 vs. 1	0720 4	+0 00	- -	1456 4	40 00	.701	.411
			2 1 1	$2 v_3$. (0730.4	02	1	067.06	00 0	222	654
	Error/T#($2 v_{5.1}$	2 vs. 1	2 VS. 1 807.90		6 2014		9 5 <i>6</i>	.222	.034
maio		-1	$2 v_{3}$. 1	2 vs. 1	201040	330	1	3914.056		2 1 4 7	177
male		45	2 VS. 1		201048	1.379	0	201045	0.3/9	2.147	.177
	COND	16)	2 VS. 1	0.1	842/0/	.855	9	93640.	8/3		
	COND			2 VS. 1	63101.	231	1	63101.	231	.819	.389
	Error(CO	ND}	•	2 vs. 1	693783	1.367	9	77087.	041		
	TIME * C	COND	2 vs. 1	2 vs. 1	409516	5.495	1	409516	5.495	1.400	.267
	Error([*(2)	2 vs. 1	2 vs. 1	263177	4.468	9	292419	.385		
Tests of	Between	-Subjec	ts Effects	<u>s</u>							
Measure	: MEASU	RE_1									
Transfor	med Vari	able: Av	erage								
gender	Source		Type III	SS	df	Mean S	quare	F	Sig.		
temale	Intercept		2518.50	D1	1	2518.50	01	6.661	.042		
	Error		2268.69	92	6	378.11	5				
male	Intercept		70403.2	271	1	70403.3	271	2.897	.123		
	Error 218711		896 9		24301.3	322	22				

<u>Ch. 4</u> <u>ANOVA Table for Low Frequency Power with 1-between (gender) and 2-within subjects factors (time [preoperatively vs. postoperatively] and condition [supine vs. standing]) in subjects > 55 years.</u>

Descrip	tive Stati	istics									
	gender	Mean		Std. De	viation	N					
LERI	temale	102.95	2223	87.591	694 5064	/					
	Total	108.32	3232	102.09	201	10					
I EQ 1	fomalo	70.22	920/ 200	93.000	301	7					
LP31	male	266 10	203 7739	116 20	414 6447	10					
	Total	188.96	0001	350 02	6354	17					
LER2	female	5 5810	73	6 6045	43	7					
	male	8 9952	92	13 022	197	10					
	Total	7.5894	37	10.022	902	17					
LFS2	female	20.556	483	21.698	580	7					
	male	20.422	778	45.122	208	10					
	Total	20.477	833	36.356	883	17					
Tests of	f \M/i+bin_	Subjects	Effects								
Measur			LITECIS								
Source		0112_1	Type III	SS	df	Mean S	quare	F	Sia		
TIME			268381	186	1	268381	186	9.986	006		
TIME *	GENDER		33140	202	1	33140	202	1.233	284		
Error(TI	ME)		403154	.355	15	26876.	957				
COND			23164.	355	1	23164.355		.633	.439		
COND	GENDE	R	36544.	567	1	36544.567		.998	.334		
Error(CC	OND)		549276	5.549	15	36618.	437				
TIME •	COND		9726.2	37	1	9726.237		.263	.616		
TIME*C	OND*GE	INDER	39348.	981 1		39348.981		1.062	.319		
Error(TI	ME*CON	D)	555775	.410	15	37051.	694				
Tests of	f Within-	Subjects	Contrast	s							
Measure	e: MEAS	URE 1		-							
Source		-	TIME	COND	Type III	SS	df	Mean S	quare	F	Sig.
TIME			2 vs. 1		268381	.186	1	268381	.186	9.986	.006
TIME *	GENDER		2 vs. 1		33140.	202	1	33140.	202	1.233	.284
Error(TI	ME)		2 vs. 1		403154	.355	15	26876.	957		
COND				2 vs. 1	23164.	355	1	23164.	355	.633	.439
COND	GENDE	R		2 vs. 1	36544.	567	1	36544.	567	.998	.334
Error(CC	DND)			2 vs. 1	549276	549	15	36618.	437		
TIME *	COND	_	2 vs. 1	2 vs. 1	38904.	948	1	38904.948		.263	.616
TIME*C	OND * GE	INDER	2 vs. 1	2 vs. 1	157395	.926	1	157395	5.926	1.062	.319
Error(Til	ME*CON	D)	2 vs. 1	2 vs. 1	222310	1.639	15	148206	5.776		
Tests of	<u>f Betwee</u>	n-Subjec	ts Effect	<u>5</u>							
Measure	e: MEAS	URE_1									
Transfo	rmed Vai	riable: Av	verage								
Source		Type III	SS	df	Mean S	quare	F	Sig.			
Intercep	ot	99473.	563	1	99473.	563	12.659	.003			
GENDE	२	8902.04	47	1	8902.0	47	1.133	.304			

7857.870

Error

117868.054

15

postope	eratively] and	con	dition [si	<u>upine vs.</u>	standing]) separa	ately in n	nen & wo	omen >	<u>55 years</u>	<u>.</u>
Descrip	tive Statistics	:									
gender	Mea	an		Std De	viation	N					
female	LER1 112	9 95	2223	87 591	694	7					
icinaic	1601 70	79 772200			414	7					
		010	203 72	6 6045	414	7					
	LFR2 0.0		13	0.0045	43	<u>'</u>					
	LF52 20.	550	483	21.698	580	/					
male	LFR1 108	3.32	3232	102.69	5964	10					
	LFS1 266	5.10	7738	446.39	6447	10					
	LFR2 8.9	952	92	13.022	197	10					
	LFS2 20.4	422	778	45.122	208	10					
Tests of	f Within-Subje	ects	Effects								
Measure	e: MEASURE	1									
gender	Source	•		Type III	SS	df	Mean S	Guare	F	Sia.	
female	TIME			47983.	853	1	47983	853	8 754	.025	
	Error(TIME)			32886	659	6	5481 1	10	00.		
	COND			645 36	2	1	645 36	2	781	A11	
	Error(COND)			1040.00	2 0.4	- -	040.00	6	.701	.411	
	TIME * CON	0		4300.2	34 76	1	4220.71	75	0 107	1 2 7	
					/5 27	1	4228.2	./5	3.137	.127	
	TIME	JUN	נטו	8080.8	27	6	1347.8	05			
male				29/584	1.753	1	29/584	297584.753		.025	
Error(TIME)				370267	7.696	9	41140.	855			
	COND			71581.	746	1	71581.	746	1.184	.305	
	Error(COND)			544316	5.254	9	60479.	584			
	TIME * CON	D		53550.943		1	53550.943		.880	.373	
	Error(TIME*0	CON	D)	547688	3.582	9	60854.	287			
Tests of	f Within-Subie	ects	Contrast	ts							
Measure	MEASURE	1									
gender	Source	•	TIME	COND	Type III	22	Чt	Mean S	auara	F	Sia
female	TIME		2 ve 1	COND	17092	22	1	17092	quale DES	, 9 754	0.25
remaie	Error(TIME)		$2 v_3$. 1		22006	200	i G	F/000.	10	0.754	.025
			2 15. 1	2 1	32880.0	009	•	5461.1	10	701	4 1 1
				Z VS. 1	045.30	2		045.30	2	.781	.411
	Error(COND)	~	~ ~	2 VS. 1	4960.2	94	6	826.71	5		
	TIME CON	D	2 vs. 1	2 vs. 1	16913.	102	1	16913.	102	3.137	.127
	Error(1+C)		2 vs. 1	2 vs. 1	32347.:	310	6	5391.2	18		
male	TIME		2 vs. 1		297584	.753	1	297584	.753	7.233	.025
	Error(TIME)		2 vs. 1		370267	.696	9	41140.	855		
	COND			2 vs. 1	71581.3	746	1	71581.	746	1.184	.305
	Error(COND)			2 vs. 1	544316	.254	9	60479.	584		
	TIME . CON	D	2 vs. 1	2 vs. 1	214203	.773	1	214203	.773	.880	.373
	Error(T*C)		2 vs. 1	2 vs. 1	219075	4.329	9	243417	.148		
Tests of	Between-Sul	biec	ts Effect	s							
Measure	: MEASURE	1		-							
Transfor	med Variable	: Av	erage								
gender	Source		Type III	22	df	Moon S.		F	Sia		
femala	Intercent		20765	623	1	20765	200	10 507	004		
. cinale	Error		20700. 6207 A	40	і С	1064 54	523 50	19.007	.004		
male			101022	+0	1	1004.50		0 220	010		
male	Пістері		1111401		1	101933	.//9	0.229	.019		
	Error		111481	.006	Э	12386.	//8				

<u>Ch. 4</u> <u>ANOVA Table for Low Frequency Power with 2-within subjects factors (time [preoperatively vs. postoperatively] and condition [supine vs. standing]) separately in men & women > 55 years.</u>
<u>Ch. 4</u> ANOVA Table for Parasympathetic (PNS) Indicator with 1-between (gender) and 2-within subjects factors (time [preoperatively vs. postoperatively] and condition [supine vs. standing]) in subjects > 55 years.

tive Stati	stics		
gender	Mean	Std. Deviation	Ν
female	.116867	.128714	7
male	.138062	.205330	10
Total	.129335	.173331	17
female	2.71700E-02	2.73871E-02	7
male	8.85440E-02	7.87568E-02	10
Total	6.32724E-02	6.88450E-02	17
female	.199919	.181553	7
male	3.60410E-02	2.91254E-02	10
Total	.103520	.140532	17
female	5.32914E-02	6.10036E-02	7
male	3.44830E-02	4.24129E-02	10
Total	4.22276E-02	4.99843E-02	17
	tive Stati gender female Total female male Total female Total female Total female Total female Total	tive Statistics gender Mean female .116867 male .138062 Total .129335 female 2.71700E-02 male 8.85440E-02 Total 6.32724E-02 female .199919 male 3.60410E-02 Total .103520 female 5.32914E-02 male 3.44830E-02 Total 4.22276E-02	tive StatisticsgenderMeanStd. Deviationfemale.116867.128714male.138062.205330Total.129335.173331female2.71700E-022.73871E-02male8.85440E-027.87568E-02Total6.32724E-026.88450E-02female.199919.181553male3.60410E-022.91254E-02Total.103520.140532female5.32914E-026.10036E-02male3.44830E-024.24129E-02Total4.22276E-024.99843E-02

Tests of Within-Subjects Effects Measure: MEASURE 1

modulare. mereoute_t					
Source	Type III SS	df	Mean Square	F	Sig.
TIME	2.265E-03	1	2.265E-03	.119	.735
TIME * GENDER	7.243E-02	1	7.243E-02	3.804	.070
Error(TIME)	.286	15	1.904E-02		
COND	8.503E-02	1	8.503E-02	8.927	.009
COND * GENDER	3.533E-02	1	3.533E-02	3.709	.073
Error(COND)	.143	15	9.525E-03		
TIME * COND	8.283E-05	1	8.283E-05	.009	.924
TIME*COND*GENDER	1.133E-02	1	1.133E-02	1.295	.273
Error(TIME * COND)	.131	15	8.748E-03		

Tests of Within-Subjects Contrasts Measure: MEASURE 1

Measure. MLASURE_I							
Source	TIME	COND	Type III SS	df	Mean Square	F	Sig.
TIME	2 vs. 1		2.265E-03	1	2.265E-03	.11 9	.735
TIME * GENDER	2 vs. 1		7.243E-02	1	7.243E-02	3.804	.070
Error(TIME)	2 vs. 1		.286	15	1.904E-02		
COND		2 vs. 1	8.503E-02	1	8.503E-02	8.927	.009
COND • GENDER		2 vs. 1	3.533E-02	1	3.533E-02	3.709	.073
Error(COND)		2 vs. 1	.143	15	9.525E-03		
TIME * COND	2 vs. 1	2 vs. 1	3.313E-04	1	3.313E-04	.009	.924
TIME*COND*GENDER	2 vs. 1	2 vs. 1	4.530E-02	1	4.530E-02	1.295	.273
Error(TIME*COND)	2 vs. 1	2 vs. 1	.525	15	3.499E-02		

ASURE_1				
Variable: Average				
Type III SS	df	Mean Square	F	Sig.
.124	1	.124	33.326	.000
2.580E-03	1	2.580E-03	.693	.418
5.585E-02	15	3.723E-03		
	ASURE_1 Variable: Average Type III SS .124 2.580E-03 5.585E-02	ASURE_1 Variable: Average Type III SS df .124 1 2.580E-03 1 5.585E-02 15	ASURE_1 Variable: Average Type III SS df Mean Square .124 1 .124 2.580E-03 1 2.580E-03 5.585E-02 15 3.723E-03	ASURE_1 Variable: Average Type III SS df Mean Square F .124 1 .124 33.326 2.580E-03 1 2.580E-03 .693 5.585E-02 15 3.723E-03

postope	ratively) and col	Idition [si	upine vs.	standing	<u>i) ser</u>	parately in r	nen & wo	omen >	55 years	<u>.</u>
Descrip	tive Statistics									
gender	Mean		Std. De	eviation	Ν					
female	PNSR1 .1168	57	.12871	4	7					
	PNSS1 2.7170	D0E-02	2.7387	1E-02	7					
	PNSR2 .1999	19	.18155	53	7					
	PNSS2 5.329	14E-02	6.1003	6E-02	7					
male	PNSR1 .1380	52	.20533	80	10					
	PNSS1 8.8544	10E-02	7.8756	68E-02	10					
	PNSR2 3.604	10E-02	2.9125	4E-02	10					
	PNSS2 3.4483	30E-02	4.2412	9E-02	10					
Tests of	f Within-Subjects	s Effects								
Measure	e: MEASURE_1							_		
gender	Source		Type III	SS	df	Mean S	iquare	F	Sig.	
female	TIME		2.086E	-02	1	2.0865	-02	1.174	.320	
	Error(TIME)		.107		6	1.776E	-02			
	COND		9.774E	-02	1	9.774E	-02	7.851	.031	
	Error(COND)		7.469E	-02	6	1.245E	-02			
	TIME * COND		5.672E	-03	1	5.6728	-03	.455	.525	
	Error(TIME*CO	ND)	7.486E	-02	6	1.2485	-02			
male			6.090E	-02	1	6.090E	-02	3.062	.114	
	Error(TIME)		.1/9	00	9	1.9895	-02	001	270	
	COND		0.522E	-03	1	6.522E	-03	.861	.378	
			0.018E	-02	9		-03	010	202	
			5.75UE	-03		5.7505	-03	.918	.303	
	Error(HIVE "COI	ND)	5.637E	-02	9	6.263E	-03			
Tests of	Within-Subjects	Contras	ts							
Measure	E: MEASURE 1									
gender	Source	TIME	COND	Type III	SS	đf	Mean S	quare	F	Siq.
female	TIME	2 vs. 1		2.086E	-02	1	2.086E	-02	1.174	.320
	Error(TIME)	2 vs. 1		.107		6	1.776E	-02		
	COND		2 vs. 1	9.774E	-02	1	9.774E	-02	7.851	.031
	Error(COND)		2 vs. 1	7.469E	-02	6	1.245E	-02		
	TIME * COND	2 vs. 1	2 vs. 1	2.269E	-02	1	2.269E	-02	.455	.525
	Error(T*C)	2 vs. 1	2 vs. 1	.299		6	4.991E	-02		
male	TIME	2 vs. 1		6.090E	-02	1	6.090E	02	3.062	.114
	Error(TIME)	2 vs. 1		.179		9	1.989E	-02		
	COND		2 vs. 1	6.522E	-03	1	6.522E	-03	.861	.378
	Error(COND)		2 vs. 1	6.818E	-02	9	7.575E	03		
	TIME * COND	2 vs. 1	2 vs. 1	2.300E	-02	1	2.300E	02	.918	.363
	Error(T*C)	2 vs. 1	2 vs. 1	.225		9	2.505E	02		
Tests of	Between-Subject	<u>ets Effect</u>	<u>s</u>							
Measure	: MEASURE_1									
Transfor	med Variable: A	verage								
gender	Source	Type III	SS	df	Mear	n Square	F	Sig.		
female	Intercept	6.904E	02	1	6.90	4E-02	24.407	.003		
	Error	1.697E	-02	6	2.82	9E-03				
male	Intercept	5.518E	02	1	5.51	8E-02	12.773	.006		
	Error	3.888E-	02	9	4.32	0E-03				

<u>Ch. 4</u> ANOVA Table for **PNS** Indicator with 2-within subjects factors (time [preoperatively vs. postoperatively] and condition [supine vs. standing]) separately in men & women > 55 years.

<u>Ch. 4</u> <u>ANOVA Table for SDNN with 1-between (gender) and 2-within subjects factors (time [preoperatively vs. postoperatively] and condition [supine vs. standing]) in subjects > 55 years.</u>

Descriptive Sta	tistics									
	GENDE	R	Mean		Std. De	eviation	N			
SDNNR1	FEMAL	E	27.423	3	11.665	54	7			
	MALE		43.349	0	22.327	71	10			
	Total		36.791	4	19.917	76	17			
SDNNS1	FEMAL	E	28.245	0	6.2249	Э	7			
	MALE		44.041	1	20.315	52	10			
	Total		37.536	8	17.632	22	17			
SDNNR2	FEMAL	E	17.221	1	14.551	11	7			
	MALE		13.533	4	6.3410	כווי	10			
	Total		15.051	8	10.272	22	17			
SDNNS2	FEMAL	E	14.509	0	12.485	51	7			
	MALE		28.196	0	49.021	18	10			
	Total		22.560	2	38.189	94	17			
Tooto of Within	Cubicate	5 44								
Tests of Within		Effects								
Seure: WEAS	SURE_I	T	<u> </u>	-14			-	C		
JUNCE			22		iviean a	Square	F	Sig.		
	-	4986.4	93		4986.4	+93	14.12/	.002		
	4	485.74	8	1	485.74	18	1.376	.259		
Error(IIME)		5294.6	89	15	352.97	/9		500		
COND A OFNIC		186.61	7	1	186.61	17	.402	.536		
COND GENDI	=R	306.14	0	1	306.14	10	.659	.430		
Error(COND)		6970.3	79	15	464.69	92				
TIME * COND		112.13	2	1	112.13	32	.322	.579		
TIME*COND*G	ENDER	315.41	1	1	315.41	11	.905	.356		
Error(TIME*CO	ND)	5225.4	54	15	348.36	64				
Tests of Within	-Subiects	Contras	ts							
Measure: MEAS	SURE 1									
Source	-	TIME	COND	Type II	I SS	df	Mean S	ouare	F	Siq.
TIME		2 vs. 1		4986.4	193	1	4986.4	93	14.127	.002
TIME • GENDE	٦	2 vs. 1		485.74	18	1	485.74	8	1.376	.259
Error(TIME)	•	2 vs. 1		5294 F	89	15	352.97	9		
COND			2 vs 1	186 61	7	1	186.61	7	402	536
COND . GENDE	R		2 v = 1	306.14	., .n	1	306 14	, 0	659	430
Error(COND)			$2 v_{0}$	6970 3	179	4.5	464 69	2	.000	
TIME + COND		2 ve 1	2 vs. 1	448 52	20	1	448 52	2 0	377	579
TIME*COND*G	ENIDER	$2 v_3. 1$	2 vs. 1	1261 6	20	1	1261 6	15	905	356
Error(TIME*CO		2 vs. v	2 vs. 1	20001	916	15	1201.0	40 64	.305	.550
		2 vs. i	2 vs. i	20901	.010	15	1393.4	54		
Tests of Betwee	en-Subjec	ts Effect	s							
Measure: MEAS	SURE_1									
Transformed Va	ariable: A	verage								
Source	Type III	SS	df	Mean S	Square	F	Sig.			
Intercept	12064.	706	1	12064	.706	45.370	.000			

447.961

265.919

1.685 .214

1 15

447.961

3988.778

GENDER

Error

<u>Ch. 4</u> <u>ANOVA Table for SDNN with 2-within subjects factors (time [preoperatively vs. postoperatively] and condition [supine vs. standing]) separately in men & women > 55 years.</u>

Descrip	tive Statistics			
gender		Mean	Std. Deviation	Ν
female	SDNNR1	27.4233	11.6654	7
	SDNNS1	28.2450	6.2249	7
	SDNNR2	17.2211	14.5511	7
	SDNNS2	14.5090	12.4851	7
male	SDNNR1	43.3490	22.3271	10
	SDNNS1	44.0411	20.3152	10
	SDNNR2	13.5334	6.3410	10
	SDNNS2	28.1960	49.0218	10

Tests of Within-Subjects Effects Measure: MEASURE 1

Incasur	e. WIEASONE_I					
gender	Source	Type III SS	df	Mean Square	F	Sig.
female	TIME	1002.818	1	1002.818	14.249	.009
	Error(TIME)	422.257	6	70.376		
	COND	6.254	1	6.254	.039	.849
	Error(COND)	953.259	6	158.877		
	TIME * COND	21.852	1	21.852	.255	.631
	Error(TIME*COND)	513.490	6	85.582		
male	TIME	5212.267	1	5212.267	9.628	.013
	Error(TIME)	4872.433	9	541.381		
	COND	589.413	1	589.413	.882	.372
	Error(COND)	6017.120	9	668.569		
	TIME * COND	487.942	1	487.942	.932	.360
	Error(TIME*COND)	4711.964	9	523.552		

Tests of Within-Subjects Contrasts Measure: MEASURE 1

gender	Source	TIME	COND	Type III SS	df	Mean Square	F	Sig.
female	TIME	2 vs. 1		1002.818	1	1002.818	14.249	.009
	Error(TIME)	2 vs. 1		422.257	6	70.376		
	COND		2 vs. 1	6.254	1	6.254	.039	.849
	Error(COND)		2 vs. 1	953.259	6	158.877		
	TIME*COND	2 vs. 1	2 vs. 1	87.409	1	87.409	.255	.631
	Error(T*C)	2 vs. 1	2 vs. 1	2053.960	6	342.327		
male	TIME	2 vs. 1		5212.267	1	5212.267	9.628	.013
	Error(TIME)	2 vs. 1		4872.433	9	541.381		
COND			2 vs. 1	589.413	1	589.413	.882	.372
	Error(COND)		2 vs. 1	6017.120	9	668.569		
TIME •	COND	2 vs. 1	2 vs. 1	1951.769	1	1951.769	.932	.360
	Error(T • C)	2 vs. 1	2 vs. 1	18847.856	9	2094.206		

Ν	leasure:	MEASURE 1
		_

gender	Source	Type III SS	df	Mean Square	F	Sig.
female	Intercept	3341.836	1	3341.836	58.729	.000
	Error	341.414	6	56.902		
male	Intercept	10419.901	1	10419.901	25.711	.001
	Error	3647.364	9	405.263		

<u>Ch. 4</u> <u>ANOVA Table for Sympathetic (SNS) Indicator with 1-between (gender) and 2-within subjects factors</u> (time [preoperatively vs. postoperatively] and condition [supine vs. standing]) in subjects > 55 years.

> Sig. .877

> .618

.009

.354

.886

.993

.000

Descrip	tivo Stati	ation										
gender Mean Std. Deviation N												
SNSR1	female	5 4663	20	3 700412		7						
SNORT	male	2 700182		2 121126		, 10						
	Total	2.7001	80 2	3 5473	20	17						
SNSS1	female	10 202	479	20 974	<u>aa</u> n	7						
5.4551	mala	0 6202	77 77	20.374	620	10						
	Total	12 6/0	33 961	22.437	/10	17						
SNISP2	famalo	2 6077	004 13	7 1102	410 01	7						
SNONZ	male	1 0077	40 57	5 9610	01	10	•					
	Total	4.002332		6 2211	24	17						
SNICC2	fomalo	19 474400		10 840234		7						
314332	male	12 701/27		17 954	234 710	10						
	Total	15 121	437	10 200	670	17						
	Total	15.151	404	10.309	0/9	17						
Tacte of	E Mithia	Subjecte	Effecte									
Moneur			Enects									
Source	S. WEAS		Tune III	ee	d f	Moon Square	c					
TIME			c 265	33	1		Г 025					
	GENIDED		0.305		1	0.303	.025					
Error/TH			2054 04	20	15	256 000	.259					
			1066 0/	12	10	200.990	0.064					
COND	CENDER	"	100.34	+3	1	1900.943	9.004					
Error(CC		٦	190.190)))	1 =	196.195	.913					
			3200.10	22	10	217.012	021					
	COND		4.113		i i	4.115	.021					

2918.965

Tests of Within-Subjects Contrasts Measure: MEASURE 1

Error(TIME*COND)

TIME*COND*GENDER 1.493E-02

Source	TIME	COND	Type III SS	df	Mean Square	F	Sig.
TIME	2 vs. 1		6.365	1	6.365	.025	.877
TIME * GENDER	2 vs. 1		66.575	1	66.575	.259	.618
Error(TIME)	2 vs. 1		3854.963	15	256.998		
COND		2 vs. 1	1966.943	1	1966.943	9.064	.009
COND * GENDER		2 vs. 1	198.195	1	198.195	.913	.354
Error(COND)		2 vs. 1	3255.182	15	217.012		
TIME * COND	2 vs. 1	2 vs. 1	16.461	1	16.461	.021	.886
TIME*COND*GENDER	2 vs. 1	2 vs. 1	5.972E-02	1	5.972E-02	.000	.993
Error(TIME*COND)	2 vs. 1	2 vs. 1	11675.858	15	778.391		

1.493E-02

194.598

1

15

Measure: ME	ASURE_1			
Transformed	Variable: Average			
Source	Type III SS	df	Mean Square	F Sig.
Intercept	1520.510	1	1520.510	28.836 .000
GENDER	74.538	1	74.538	1.414 .253
Error	790.955	15	52.730	

postope	ratively] and cor	ndition (su	ipine vs.	standing]) separa	<u>itely in π</u>	<u>en & wo</u>	men_>	55 years	<u>.</u>
Descript	tive Statistics									
gender	Mean		Std. De	viation	N					
female	SNSR1 5.4663	320	3.7004	12	7					
	SNSS1 19.393	3479	20.974	994	7					
	SNSR2 3.6077	43	7 1 1 9 3	7 119301						
	SNSS2 18 474	1409	19 840	10 940224						
male	SNSD1 2 7001	192	2 1 2 1 1	204	10					
maie	SNSS1 0 620222		3.1211	20	10					
	SNS51 9.0293	333	22.457	630	10					
	SNSR2 4.8023	352	5.8619	04	10					
	SNSS2 12.791	437	17.854	710	10					
Tests of	Within-Subjects	Effects								
weasure	SivieASURE_1		T	~~	12			~	0.	
gender	Source		iype III	55	dt	Mean S	quare	+	Sig.	
female	TIME		13.502		1	13.502		.036	.856	
	Error(TIME)		2259.5	18	6	376.58	6			
	COND		1450.8	98	1	1450.8	98	12.914	.011	
	Error(COND)		674.09	9	6	112.35	0			
	TIME • COND		1.545		1	1.545		.007	.938	
	Error(TIME*COM	(D)	1424.9	49	6	237.49	2			
male	TIME		69 281		1	69 281		391	547	
			1595 1	46	۰ ۵	177 27	2		.047	
			1030.4	40	1	556 20	~	1 040	107	
			556.56	4		000.30	4	1.940	.197	
	Error(COND)		2581.0	83	9	286.78	/			
	TIME * COND		2.809		1	2.809		.017	.899	
	Error(TIME*CON	4D)	1494.0	15	9	166.00	2			
Tests of	Within-Subjects	Contrast	s							
Measure	: MEASURE 1		_							
aender	Source	TIME	COND	Type III	SS	df	Mean So	nuare	F	Sia
female	TIME	2 vs 1	•••••	13 502		1	13 502	100.0	036	856
remaie	Error(TIME)	2 vs. 1		2250 5	10	6	276 596	-	.000	.000
		2 93. 1	2 1	1450.9	10	1	1450.90	2	12 014	011
			2 vs. 1	1450.8	90	1	1450.85	30	12.914	.011
	Error(COND)		2 vs. I	674.09	9	6	112.350)		
	TIME *COND	2 vs. 1	2 vs. 1	6.179		1	6.179		.007	.938
	Error(T*C)	2 vs. 1	2 vs. 1	5699.79	97	6	949.966	5		
male	TIME	2 vs. 1		69.281		1	69.281		.391	.547
	Error(TIME)	2 vs. 1		1595.44	46	9	177.272	2		
	COND		2 vs. 1	556.384	4	1	556.384	ŧ.	1.940	.197
	Error(COND)		2 vs. 1	2581.0	83	9	286.787	7		
	TIME * COND	2 vs. 1	2 vs. 1	11.235		1	11.235		017	899
	Fror(T+C)	2 vs. 1	2 v = 1	5976 0	81	۰ ۵	664 003	7	.0.7	.000
		2 VS. 1	2 VS. 1	3370.00	51	3	004.007			
Tests of	Between-Subject	ts Effect	<u>s</u>							
ivieasure	: WEASURE_1									
Transfor	med Variable: A	verage								
gender	Source	Type III	SS	df	Mean Se	quare	F	Sig.		
female	Intercept	964.052	2	1	964.05	2	22.481	.003		
	Error	257.303	3	6	42.884					
male	Intercept	559.628	3	1	559.62	8	9.438	.013		
naic	Error	533.65	2	9	59,295			-		
			-	-						

<u>Ch. 4</u> ANOVA Table for **SNS Indicator** with 2-within subjects factors (time [preoperatively vs. postoperatively] and condition [support vs. standing]) separately in men & women > 55 years

<u>Ch. 4</u> <u>ANOVA Table for **Total Harmonic Power** with 1-between (gender) and 2-within subjects factors (time [preoperatively vs. postoperatively] and condition [supine vs. standing]) in subjects > 55 years.</u>

Descript	tive Stati	stics									
	gender	Mean		Std. Dev	viation	N					
THPR1	female	141.66	11	94.273	В	7					
	male	356.463	32	612.55	90	10					
	Total	268.01	53	475.68	17	17					
THPS1	female	88.8373		63.940	6	7					
	male	345.49	74	471.62	98	10					
	Total	239.813	38	378.95	33	17					
THPR2	female	30.527	5	58.218	C	7					
	male	16.911	7	16.891	7	10					
	Totai	22.5182	2	38.460	5	17					
THPS2	female	45.4610	C	72.3114	4	7					
	male	192.610	05	584.334	40	10					
	Total	132.019	96	446.76	26	17					
Tests of	Within-	Subjects	Effects								
Measure	e: MEASI	JRE_1									
Source			Type III	SS	df	Mean So	quare	F	Sig.		
TIME			430851	.946	1	430851	.946	4.045	.063		
TIME *	GENDER		117554	.315	1	117554	.315	1.104	.310		
Error(TIN	ME)		159788	3.073	15	106525	.538				
COND		_	16562.	246	1	16562.2	246	.093	.764		
COND *	GENDE	R	42263.756		1	42263.756		.238	.633		
Error(CC	ND)		2660789.701		15	177385.980					
TIME *	COND		66634.3	376	1	66634.3	376	.520	.482		
TIME*C	OND*GE	NDER	14554.	785	1	14554.7	785	.114	.741		
Error(TIN	ME*CON	D)	192202	4.511	15	128134	.967				
Tests of	Within-	Subjects	Contrast	S							
Measure	: MEASU	JRE 1		-							
Source		-	TIME	COND	Type III	SS	df	Mean S	quare	F	Sig.
TIME			2 vs. 1		430851	.946	1	430851	.946	4.045	.063
TIME *	GENDER		2 vs. 1		117554	.315	1	117554	.315	1.104	.310
Error(TIN	VIE)		2 vs. 1		159788	3.073	15	106525	.538		
COND				2 vs. 1	16562.2	246	1	16562.	246	.093	.764
COND *	GENDER	3		2 vs. 1	42263.7	756	1	42263.	756	.238	.633
Error(CO	ND)			2 vs. 1	266078	9.701	15	177385	.980		
TIME *	COND		2 vs. 1	2 vs. 1	266537	.506	1	266537	.506	.520	.482
TIME*C	OND*GE	NDER	2 vs. 1	2 vs. 1	58219.1	140	1	58219.	140	.114	.741
Error(TIN	ME*CON	D)	2 vs. 1	2 vs. 1	768809	8.043	15	512539	.870		

Tests of Between-Subjects Effects

ASURE_1				
Variable: Average				
Type III SS	df	Mean Square	F	Sig.
381770.314	1	381770.314	9.531	.008
94196.307	1	94196.307	2.352	.146
600855.234	15	40057.016		
	ASURE_1 Variable: Average Type III SS 381770.314 94196.307 600855.234	ASURE_1 Variable: Average Type III SS df 381770.314 1 94196.307 1 600855.234 15	ASURE_1 Variable: Average Type III SS df Mean Square 381770.314 1 381770.314 94196.307 1 94196.307 600855.234 15 40057.016	ASURE_1 Variable: Average Type III SS df Mean Square F 381770.314 1 381770.314 9.531 94196.307 1 94196.307 2.352 600855.234 15 40057.016

postope	eratively) and cor	ndition [si	upine_vs.	<u>standing</u>) separ	ately in i	<u>men & w</u>	omen >	55 year	<u>'S.</u>
Descrip	tive Statistics									
GENDE	R Mean		Std. De	eviation	N					
FEMALI	E THPR1 141.66	511	94.273	38	7					
	THPS1 88.837	73	63.940)6	7					
	THPR2 30.527	75	58.218	30	7					
	THPS2 45.461	0	72.311	4	7					
MALE	THPR1 356.46	532	612.55	590	10					
	THPS1 345.49	974	471.62	298	10					
	THPR2 16.911	7	16.891	7	10					
	THPS2 192.61	05	584.33	840	10					
Tests of	f Within-Subjects	<u>Effects</u>								
Measure	e: MEASURE 1									
GENDER	R Source		Type III	ISS	df	Mean S	Square	F	Sig.	
FEMALE	E TIME		41778.	.267	1	41778	.267	6.553	.043	
	Error(TIME)		38253.	920	6	6375.0	553			
	COND		2512.4	42	1	2512.4	142	1.220	.312	
	Error(COND)		12356.	059	6	2059.3	343			
	TIME * COND		8034.3	54	1	8034.3	354	1.549	.260	
	Error(TIME*CON	ND)	31116.	.046	6	5186.0	008			
MALE	TIME		606238	3.649	1	60623	8.649	3.498	.094	
	Error(TIME)		155962	29.153	9	17329	2.128			
	COND		67842.	370	1	67842	.370	.231	.643	
	Error(COND)		264843	33.642	9	29427	0.405			
	TIME * COND		87109.	190	1	87109	.190	.415	.536	
	Error(TIME*CON	ND)	189090	08.464	9	21010	0.940			
Tests of	Within-Subjects	Contrast	<u>:s</u>							
Measure	e: MEASURE_1									
GENDEF	R Source	TIME	COND	Type III	SS	df	Mean S	Square	F	Sig.
FEMALE	E TIME	2 vs. 1		41778.	267	1	41778	.267	6.553	.043
	Error(TIME)	2 vs. 1		38253.	920	6	6375.6	53		
	COND		2 vs. 1	2512.4	42	1	2512.4	42	1.220	.312
	Error(COND)		2 vs. 1	12356.	059	6	2059.3	43		
	TIME • COND	2 vs. 1	2 vs. 1	32137.	417	1	32137.	.417	1.549	.260
	Error(T*C)	2 vs. 1	2 vs. 1	124464	185	6	20744.	.031		
MALE	TIME	2 vs. 1		606238	3.649	1	60623	8.649	3.498	.094
	Error(TIME)	2 vs. 1		155962	9.153	9	17329	2.128		
	COND		2 vs. 1	67842.	370	1	67842.	.370	.231	.643
	Error(COND)		2 vs. 1	264843	3.642	9	294270	0.405		
	TIME * COND	2 vs. 1	2 vs. 1	348436	5.759	1	34843	6.759	.415	.536
	Error(T*C)	2 vs. 1	2 vs. 1	756363	3.858	9	840403	3.762		
Tests of	Between-Subject	ts Effects	<u>s</u>							
Measure	EXEASURE_1									
Transfor	med Variable: Av	verage								
GENDEF	Source	Type III	SS	df	Mean S	Square	F	Sig.		
FEMALE	Intercept	41096.2	242	1	41096.	.242	20.617	.004		
	Error	11959.8	326	6	1993.3	104				
MALE	Intercept	519250	.550	1	519250	0.550	7.936	.020		
	Error	588895	.408	9	65432.	.823				

<u>Ch. 4</u> <u>ANOVA Table for Total Harmonic Power with 2-within subjects factors (time [preoperatively vs. postoperatively] and condition [supine vs. standing]} separately in men & women > 55 years.</u>

<u>Ch. 4</u> <u>ANOVA Table for Total Power with 1-between (gender) and 2-within subjects factors (time [preoperatively vs. postoperatively] and condition [supine vs. standing]) in subjects > 55 years.</u>

Descri	ptive Stat	istics		
	gender	Mean	Std. Deviation	Ν
TPR1	female	377.5941	304.3913	7
	male	1052.3560	984.8788	10
	Total	774.5128	835.1864	17
TPS1	female	364.5310	197.6446	7
	male	983.1942	747.8621	10
	Total	728.4506	654.0291	17
TPR2	female	64.7164	93.9521	7
	male	68.2745	76.0158	10
	Total	66.8094	81.0168	17
TPS2	female	115.0149	189.7485	7
	male	299.2015	809.9677	10
	Total	223.3600	625.5071	17

Tests of Within-Subjects Effects Measure: MEASURE 1

Source	Type III SS	df	Mean Square	F	Sig.
TIME	5121310.268	1	5121310.268	18.730	.001
TIME • GENDER	1258485.881	1	1258485.881	4.603	.049
Error(TIME)	4101402.088	15	273426.806		
COND	40766.040	1	40766.040	.146	.708
COND * GENDER	15963.781	1	15963.781	.057	.814
Error(COND)	4193040.193	15	279536.013		
TIME . COND	135981.235	1	135981.235	.463	.507
TIME*COND*GENDER	57687.992	1	57687.992	.196	.664
Error(TIME*COND)	4407676.827	15	293845.122		

Tests of Within-Subjects Contrasts Measure: MEASURE 1

Source	TIME	COND	Type III SS	df	Mean Square	F	Sig.
TIME	2 vs. 1		5121310.268	1	5121310.268	18.730	.001
TIME * GENDER	2 vs. 1		1258485.881	1	1258485.881	4.603	.049
Error(TIME)	2 vs. 1		4101402.088	15	273426.806		
COND		2 vs. 1	40766.040	1	40766.040	.146	.708
COND * GENDER		2 vs. 1	15963.781	1	15963.781	.057	.814
Error(COND)		2 vs. 1	4193040.193	15	279536.013		
TIME * COND	2 vs. 1	2 vs. 1	543924.939	1	543924.939	.463	.507
TIME*COND*GENDER	2 vs. 1	2 vs. 1	230751.967	1	230751.967	.196	.664
Error(TIME*COND)	2 vs. 1	2 vs. 1	17630707.308	15	1175380.487		

n Square F	Sig.
996.884 21.134	.000
597.346 4.194	.058
519.422	
	n Square F 1996.884 21.134 197.346 4.194 519.422

<u>Ch. 4</u> <u>ANOVA Table for Total Power with 2-within subjects factors (time [preoperatively vs. postoperatively]</u> and condition [supine vs. standing]) separately in men & women > 55 years.

Descript	tive Stati	stics									
GENDEF	R Mean	Std. De	viation	N							
FEMALE	TPR1	377.59	41	304.39	13	7					
	TPS1	364.53	10	197.64	46	7					
	TPR2	64.716	4	93.952	1	7					
	TPS2	115.01	49	189.74	85	7					
MALE	TPR1	1052.3	560	984.87	88	10					
	TPS1	983.19	42	747.86	21	10					
	TPR2	68.274	5	76.015	8	10					
	TPS2	299.20	15	809.96	77	10	-				
Tests of	Within-9	Subjects	Effects								
Measure	: MEASI	JRE_1									
GENDEF	R Source			Type III	SS	df	Mean S	quare	F	Sig.	
FEMALE	TIME			553501	.794	1	553501	.794	11.634	.014	
	Error(TI	VIE)		285459	.798	6	47576.0	633			
	COND			2426.3	40	1	2426.34	40	.063	.810	
	Error(CC	ND)		229392	2.708	6	38232.	118			
	TIME *	COND		7025.6	92	1	7025.6	92	.191	.677	
	Error(TIN	ME*CON	ID}	220132	2.250	6	36688.	708			
MALE	TIME			695617	8.475	1	695617	8.475	16.406	.003	
	Error(TI	ME)		381594	2.290	9	423993	.588			
	COND			65420.	011	1	65420.0	D11	.149	.709	
	Error(CC	DND)		396364	7.485	9	440405	.276			
	TIME •	COND		225133	3.073	1	225133	.073	.484	.504	
Error(TIME*COND)			ID)	418754	4.577	9	465282	.731			
Tests of	Within-S	Subjects	Contrast	s							
Measure	: MEASU	JRE_1									
GENDEF	R Source		TIME	COND	Type III	SS	df	Mean So	quare	F	Sig.
FEMALE	TIME		2 vs. 1		553501	.794	1	553501	.794	11.634	.014
	Error(Til	ME)	2 vs. 1		285459	.798	6	47576.6	533		
	COND			2 vs. 1	2426.34	40	1	2426.34	40	.063	.810
	Error(CC	ND)		2 vs. 1	229392	.708	6	38232.1	118		
TIME •	COND		2 vs. 1	2 vs. 1	28102.7	767	1	28102.7	767	.191	.677
	Error(T*	C)	2 vs. 1	2 vs. 1	880529	.002	6	146754	.834		
MALE	TIME		2 vs. 1		695617	8.475	1	695617	8.475	16.406	.003
	Error(TIN	ME)	2 vs. 1		381594	2.290	9	423993	.588		
COND				2 vs. 1	65420.0	211	1	65420.0	011	.149	.709
	Error(CC	ND)		2 vs. 1	396364	7.485	9	440405	.276		
TIME •	COND		2 vs. 1	2 vs. 1	900532	.291	1	900532	.291	.484	.504
	Error(T*	C)	2 vs. 1	2 vs. 1	167501	78.307	9	186113	0.923		
Tests of	Betwee	n-Subjec	ts Effect	<u>s</u>							
Measure	e: MEASI	JRE_1									
Transfo	rmed Var	iable: Av	/erage								
GENDEF	7	Source		Type III	SS	df	Mean S	quare	F	Sig.	
FEMALE	:	Intercep	ot	371795	5.955	1	371795	.955	27.514	.002	
		Error		81077.	190	6	13512.	865			
MALE		Intercep	ot	360908	34.486	1	360908	4.486	16.759	.003	
		Error		193821	4.141	9	215357	.127			

CH 4. ANOVA Table for SBR Slope with 1-between (gender) and 2-within factors (time [preoperatively vs. postoperatively] and condition [supine vs. standing] in subjects > 55 years.

Descrip	tive Stati	stics									
	gender	Mean	SD	Ν		gender	Mean		SD	N	
SLR1	female	6.0162	3.0779	8		male	10.219	3	5.8305	10	
SLS1	female	3.2812	1.9653	8		male	5.6580		2.5073	10	
SLR2	female	4.2139	4.3267	8		male	2.5962		1.8232	10	
SLS2	female	3.2706	3.0301	8		male	2.1171		1.7832	10	
Tests of	f Within-	Subjects	Effects								
Measure	e: MEAS	URE_1									
Source		-	Type III	SS	df	Mean S	quare	F	Sig.		
TIME			187.11	3	1	187.11	3	12.749	.003		
TIME *	GENDER		97.159		1	97.159		6.620	.020		
Error(TII	ME)		234.83	3	16	14.677					
COND			84.463		1	84.463		17.282	.001		
COND .	GENDE	R	2.062		1	2.062		.422	.525		
Error(CC	DND)		78.198		16	4.887					
TIME *	COND		38.338		1	38.338		8.346	.011		
TIME*C	OND*GE	INDER	5.830		1	5.830		1.269	.277		
Error(TII	ME*CON	D)	73.494		16	4.593					
Tests of	Within-	Subjects	Contrast	s							
Measure	e: MEASI	JRE_1									
Source			TIME	COND	Type III	SS	df	Mean S	quare	F	Sig.
TIME			2 vs. 1		187.11	3	1	187.113	3	12.749	.003
TIME*G	ENDER		2 vs. 1		97.159		1	97.159		6.620	.020
Error(TI	ME)		2 vs. 1		234.83	3	16	14.677			
COND				2 vs. 1	84.463		1	84.463		17.282	.001
COND*	GENDER			2 vs. 1	2.062		1	2.062		.422	.525
Error(CC	DND)			2 vs. 1	78.198		16	4.887			
TIME*C	OND		2 vs. 1	2 vs. 1	153.354	4	1	153.354	4	8.346	.011
TIME*C	OND*GE	NDER	2 vs. 1	2 vs. 1	23.319		1	23.319		1.269	.277
Error(TI	ME*CON	D)	2 vs. 1	2 vs. 1	293.97	6	16	18.373			
Tests of	Betwee	n-Subject	ts Effect	<u>s</u>							
Source		Type III	SS	df	Mean Se	quare	F	Sig.			
Intercep	t	387 97	1	1	387.97	1	76 824	000			

387.971 4.030 76.824 .000 .798 .385 387.971 4.030 5.050 GENDER 1

5.050

16

80.802

Error

Descriptive Statistics									
gender		Mean	SD	N					
female	SLR1	6.0162	3.0779	8					
	SLS1	3.2812	1.9653	8					
	SLR2	4.2139	4.3267	8					
	SLS2	3.2706	3.0301	8					
male	SLR1	10.2193	5.8305	10					
	SLS1	5.6580	2.5073	10					
	SLR2	2.5962	1.8232	10					
	SLS2	2.1171	1.7832	10					

Tests of Within-Subjects Effects

Measur	e: MEASURE_1					
gender	Source	Type III SS	df	Mean Square	F	Sig.
female	TIME	6.574	6.574 1		.474	.513
	Error(TIME)	97.147	97.147 7			
	COND	27.060	1	27.060	7.049	.033
	Error(COND)	26.873	7	3.839		
	TIME * COND	6.421	1	6.421	1.409	.274
	Error(TIME*COND)	31.901	7	4.557		
male	TIME	311.589	1	311.589	20.367	.001
	Error(TIME)	137.686	9	15.298		
	COND	63.516	1	63.516	11.138	.009
	Error(COND)	51.325	9	5.703		
	TIME * COND	41.663	1	41.663	9.015	.015
	Error(TIME*COND)	41.593	9	4.621		

Tests of Within-Subjects Contrasts Measure: MEASURE 1

Source	TIME	COND	Type III SS	df	Mean Square	F	Sig.
TIME	2 vs. 1		6.574	1	6.574	.474	.513
Error(TIME)	2 vs. 1		97.147	7	13.878		
COND		2 vs. 1	27.060	1	27.060	7.049	.033
Error(COND)		2 vs. 1	26.873	7	3.839		
TIME . COND	2 vs. 1	2 vs. 1	25.683	1	25.683	1.409	.274
Error(TIME*COND)	2 vs. 1	2 vs. 1	127.604	7	18.229		
TIME	2 vs. 1		311.589	1	311.589	20.367	.001
Error(TIME)	2 vs. 1		137.686	9	15.298		
COND		2 vs. 1	63.516	1	63.516	11.138	.009
Error(COND)		2 vs. 1	51.325	9	5.703		
TIME * COND	2 vs. 1	2 vs. 1	166.653	1	166.653	9.015	.015
Error(TIME*COND)	2 vs. 1	2 vs. 1	166.371	9	18.486		
	Source TIME Error(TIME) COND Error(COND) TIME * COND Error(TIME*COND) TIME Error(TIME) COND Error(COND) TIME * COND Error(COND) TIME * COND Error(TIME*COND)	Source TIME TiME 2 vs. 1 Error(TIME) 2 vs. 1 COND Error(COND) TIME * COND 2 vs. 1 Error(TIME*COND) 2 vs. 1 TIME 2 vs. 1 Error(TIME*COND) 2 vs. 1 Error(TIME) 2 vs. 1 Error(TIME) 2 vs. 1 Error(COND) TIME * COND Error(TIME*COND) 2 vs. 1 Error(TIME*COND) 2 vs. 1	Source TIME COND TiME 2 vs. 1 2 vs. 1 Error(TIME) 2 vs. 1 2 vs. 1 COND 2 vs. 1 2 vs. 1 Error(COND) 2 vs. 1 2 vs. 1 TIME * COND 2 vs. 1 2 vs. 1 Error(TIME*COND) 2 vs. 1 2 vs. 1 TIME 2 vs. 1 2 vs. 1 Error(TIME) 2 vs. 1 2 vs. 1 COND 2 vs. 1 2 vs. 1 Error(COND) 2 vs. 1 2 vs. 1 TIME * COND 2 vs. 1 2 vs. 1 Error(COND) 2 vs. 1 2 vs. 1 TIME * COND 2 vs. 1 2 vs. 1 Error(TIME*COND) 2 vs. 1 2 vs. 1	Source TIME COND Type III SS TIME 2 vs. 1 6.574 Error(TIME) 2 vs. 1 97.147 COND 2 vs. 1 27.060 Error(COND) 2 vs. 1 26.873 TIME * COND 2 vs. 1 25.683 Error(TIME*COND) 2 vs. 1 20.6873 TIME 2 vs. 1 20.6873 Error(TIME*COND) 2 vs. 1 20.683 Error(TIME*COND) 2 vs. 1 20.683 Error(TIME) 2 vs. 1 311.589 Error(TIME) 2 vs. 1 137.686 COND 2 vs. 1 63.516 Error(COND) 2 vs. 1 51.325 TIME * COND 2 vs. 1 2 vs. 1 Error(TIME*COND) 2 vs. 1 166.653 Error(TIME*COND) 2 vs. 1 2 vs. 1 166.371	Source TIME COND Type III SS df TIME 2 vs. 1 6.574 1 Error(TIME) 2 vs. 1 97.147 7 COND 2 vs. 1 27.060 1 Error(COND) 2 vs. 1 26.873 7 TIME * COND 2 vs. 1 25.683 1 Error(TIME*COND) 2 vs. 1 25.683 1 Error(TIME*COND) 2 vs. 1 217.604 7 TIME 2 vs. 1 2 vs. 1 127.604 7 TIME 2 vs. 1 311.589 1 Error(TIME) 2 vs. 1 137.686 9 COND 2 vs. 1 63.516 1 Error(COND) 2 vs. 1 51.325 9 TIME * COND 2 vs. 1 2 vs. 1 166.653 1 Error(TIME*COND) 2 vs. 1 2 vs. 1 166.653 1	Source TIME COND Type III SS df Mean Square TIME 2 vs. 1 6.574 1 6.574 Error(TIME) 2 vs. 1 97.147 7 13.878 COND 2 vs. 1 27.060 1 27.060 Error(COND) 2 vs. 1 26.873 7 3.839 TIME * COND 2 vs. 1 25.683 1 25.683 Error(TIME*COND) 2 vs. 1 2 vs. 1 127.0604 7 18.229 TIME 2 vs. 1 2 vs. 1 311.589 1 311.589 Error(TIME*COND) 2 vs. 1 137.686 9 15.298 COND 2 vs. 1 63.516 1 63.516 Error(COND) 2 vs. 1 51.325 9 5.703 TIME * COND 2 vs. 1 2 vs. 1 166.653 1 166.653 Error(TIME*COND) 2 vs. 1 2 vs. 1 166.653 1 18.486	Source TIME COND Type III SS df Mean Square F TIME 2 vs. 1 6.574 1 6.574 474 Error(TIME) 2 vs. 1 97.147 7 13.878 COND 2 vs. 1 27.060 1 27.060 7.049 Error(COND) 2 vs. 1 26.873 7 3.839 1.409 Error(TIME*COND) 2 vs. 1 2 vs. 1 25.683 1.409 Error(TIME*COND) 2 vs. 1 2 vs. 1 11.589 1 311.589 TIME 2 vs. 1 311.589 1 311.589 20.367 Error(TIME) 2 vs. 1 137.686 9 15.298 COND 2 vs. 1 63.516 1 63.516 11.138 Error(COND) 2 vs. 1 51.325 9 5.703 TIME * COND 2 vs. 1 166.653 1 166.653 9.015 Error(TIME*COND) 2 vs. 1 2 vs. 1 166.371 9 18.486

Tests of Between-Subjects Effects

Measure: MEASURE_1

Transformed	Variable:	Average
-------------	-----------	---------

Source	Type III SS	df	Mean Square	F	Sig.
Intercept	140.815	1	140.815	29.702	.001
Error	33.186	7	4.741		
Intercept	264.982	1	264.982	50.085	.000
Error	47.616	9	5.291		
	Source Intercept Error Intercept Error	Source Type III SS Intercept 140.815 Error 33.186 Intercept 264.982 Error 47.616	Source Type III SS df Intercept 140.815 1 Error 33.186 7 Intercept 264.982 1 Error 47.616 9	Source Type III SS df Mean Square Intercept 140.815 1 140.815 Error 33.186 7 4.741 Intercept 264.982 1 264.982 Error 47.616 9 5.291	Source Type III SS df Mean Square F Intercept 140.815 1 140.815 29.702 Error 33.186 7 4.741 Intercept 264.982 1 264.982 50.085 Error 47.616 9 5.291

[preope	ratively v	s. posto	peratively	/] and co	ndition [supine v	s. standi	ng) in su	bjects >	55 year	<u>s.</u>	
Descrip	tive Stati	stics										
	gender	Mean		SD		N	gender	Mean		SD		N
SBPR1	female	117.83	43	23.818	1	8	maie	128.07	36	20.121	4	10
SBPS1	female	140.57	89	19.266	4	8	male	137.79	42	19.727	8	10
SBPR2	female	92.437	4	20.579	4	8	male	116.01	59	36.728	1	10
SBPS2	female	113.96	15	28.239	0	8	male	120.61	75	18.523	0	10
Tests of	f Within-	Subjects	Effects									
Measure	e: MEAS	URE_1										
Source		_	Type III	SS	df	Mean S	Square	F	Sig.			
TIME			7334.8	26	1	7334.8	26	9.683	.007			
TIME *	GENDER		576.58	0	1	576.58	10	.761	.396			
Error(TII	ME)		12120.	120	16	757.50)7					
COND			3814.3	33	1	3814.3	33	5.696	.030			
COND '	GENDE	R	996.44	0	1	996.44	0	1.488	.240			
Error(CC	DND)		10715.3	328	16	669.70	8					
TIME *	COND		44.655		1	44.655	i	.104	.751			
TIME*C	OND*GE	NDER	16.887		1	16.887	,	.039	.845			
Error(TI	ME*CON	D)	6864.0	53	16	429.00	3					
Tests of	f Within-	Subjects	Contrast	s								
Measure	e: MEAS	URE_1										
Source			TIME	COND	Type III	SS	df	Mean S	quare	F	Sig.	
TIME			2 vs. 1		7334.8	26	1	7334.8	26	9.683	.007	
TIME •	GENDER		2 vs. 1		576.58	0	1	576.58	0	.761	.396	
Error(TII	ME)		2 vs. 1		12120.	120	16	757.50	7			
COND				2 vs. 1	3814.3	33	1	3814.3	33	5.696	.030	
COND .	GENDE	R		2 vs. 1	996.440	0	1	996.44	0	1.488	.240	
Error(CC	DND)			2 vs. 1	10715.3	328	16	669.70	8			
TIME *	COND		2 vs. 1	2 vs. 1	178.61	9	1	178.61	9	.104	.751	
TIME*C	OND*GE	ENDER	2 vs. 1	2 vs. 1	67.548		1	67.548		.039	.845	
Error(TI	ME*CON	D)	2 vs. 1	2 vs. 1	27456.2	213	16	1716.0	13			
Tests of	<u>Betwee</u>	n-Subjec	ts Effect	<u>s</u>			_					
Source		Type III	SS	df	Mean Se	quare	F		Sig.			
Intercep	it	259915	.230	1	259915	.230	2134.9	18	.000.			
GENDEF	7	394.57	7	1	394.57	7	3.241		.091			
Error		1947.9	18	16	121.74	5						

CH 4. ANOVA Table for Systolic Blood Pressure with 1-between (gender) and 2-within factors (time [preoperatively vs. postoperatively] and condition (surine vs. standing) in subjects > 55 years

<u>CH 4. ANOVA Table for Systolic Blood Pressure with 2-within factors (time [preoperatively vs. postoperatively]</u> and condition [supine vs. standing] separately in men & women > 55 years.

Descrip	<u>tive Stat</u>	istics		
gender		Mean	Std. Deviation	N
female	SBPR1	117.8343	23.8181	8
	SBPS1	140.5789	19.2664	8
	SBPR2	92.4374	20.5794	8
	SBPS2	113.9615	28.2390	8
male	SBPR1	128.0736	20.1214	10
	SBPS1	137.7942	19.7278	10
	SBPR2	116.0159	36.7281	10
	SBPS2	120.6175	18.5230	10

Tests of Within-Subjects Effects

ivieasure	E. WEASURE_I					
gender	Source	Type III SS	df	Mean Square	F	Sig.
female	TIME	5410.964	1	1 5410.964		.042
	Error(TIME)	6176.883	7	882.412		
	COND	3919.444	1	3919.444	7.961	.026
	Error(COND)	3446.167	7	492.310		
	TIME * COND	2.979	1	2.979 .008	.930	
	Error(TIME*COND)	2516.333	7	359.476		
male	TIME	2136.625	1	2136.625	3.236	.106
	Error(TIME)	5943.237	9	660.360		
	COND	512.814	1	512.814	.635	.446
	Error(COND)	7269.161	9	807.685		
	TIME * COND	65.510	1	65.510 .136	.721	
	Error(TIME*COND)	4347.720	9	483.080		

Tests of Within-Subjects Contrasts Measure: MEASURE 1

ivicasui	e. WILASURE_I							
gender	Source	TIME	COND	Type III SS	df	Mean Square	F	Sig.
female	TIME	2 vs. 1		5410.964	1	5410.964	6.132	.042
	Error(TIME)	2 vs. 1		6176.883	7	882.412		
	COND		2 vs. 1	3919.444	1	3919.444	7.961	.026
	Error(COND)		2 vs. 1	3446.167	7	492.310		
	TIME * COND	2 vs. 1	2 vs. 1	11.917	1	11.917	.008	.930
	Error(TIME*COND)	2 vs. 1	2 vs. 1	10065.333	7	1437.905		
male	TIME	2 vs. 1		2136.625	1	2136.625	3.236	.106
	Error(TIME)	2 vs. 1		5943.237	9	660.360		
	COND		2 vs. 1	512.814	1	512.814	.635	.446
	Error(COND)		2 vs. 1	7269.161	9	807.685		
	TIME * COND	2 vs. 1	2 vs. 1	262.042	1	262.042	.136	.721
	Error(TIME*COND)	2 vs. 1	2 vs. 1	17390.880	9	1932.320		

Tests of Between-Subjects Effects Measure: MEASURE 1

E MEASURE	1				
med Variable	: Average				
Source	Type III SS	df	Mean Square	F	Sig.
Intercept	108025.098	1	108025.098	1016.105	.000
Error	744.190	7	106.313		
Intercept	157817.160	1	157817.160	1179.964	.000
Error	1203.727	9	133.747		
	MEASURE_ med Variable Source Intercept Error Intercept Error	med Variable: Average Source Type III SS Intercept 108025.098 Error 744.190 Intercept 157817.160 Error 1203.727	EMEASURE_1 med Variable: Average Source Type III SS df Intercept 108025.098 1 Error 744.190 7 Intercept 157817.160 1 Error 1203.727 9	I: MEASURE_1 med Variable: Average Source Type III SS df Mean Square Intercept 108025.098 1 108025.098 Error 744.190 7 106.313 Intercept 157817.160 1 157817.160 Error 1203.727 9 133.747	Imed Variable: Average Source Type III SS df Mean Square F Intercept 108025.098 1 108025.098 1016.105 Error 744.190 7 106.313 Intercept 157817.160 1 157817.160 1179.964 Error 1203.727 9 133.747

<u>CH 4. ANOVA Table for **R-R Interval** with 1-between (gender) and 2-within factors (time [preoperatively vs. postoperatively] and condition [supine vs. standing] in subjects > 55 years.</u>

Descript	<u>tive Stati</u>	stics								
	gender	Mean		Std. D	eviation	N				
RRIR1	female	942.36	65	120.8	218	7				
	male	1084.3	451	128.8	202	10				
	Total	1025.8	833	141.40	087	17				
RRIS1	female	842.85	63	137.73	277	7				
	male	989.97	15	165.78	331	10				
	Total	929.394	47	167.7	587	17				
RRIR2	female	680.79	79	122.4	177	7				
	male	748.26	25	89.704	12	10				
	Total	720.48	30	106.38	336	17				
RRIS2	female	655.80	57	119.68	344	7				
	male	678.613	36	114.16	355	10				
	Total	669.222	25	113.30	004	17				
Tests of	Within-	Subjects	Effects							
Measure	: MEASI	JRE 1								
Source		-	Type III	SS	df	Mean Square	F	Sig.		
TIME			123667	8.402	1	1236678.402	46.103	.000		
TIME *	GENDER		40692.9	966	1	40692.966	1.517	.237		
Error(TIN	ME)		402366	.917	15	26824.461				
COND			85694.4	103	1	85694.403	36.800	.000		
COND *	GENDE	7	1607.85	51	1	1607.851	.690	.419		
Error(CC	ND)		34929.6	695	15	2328.646				
TIME 🍝	COND		10138.9	83	1	10138.983	9.536	.007		
TIME*C	OND*GE	NDER	2552.39	91	1	2552.391	2.400	.142		
Error(TIN	ME*CON	D)	15949.1	46	15	1063.276				
Tests of	Tests of Within-Subjects Contrasts									
Measure	: MEASI	JRE 1								

Source	TIME	COND	Type III SS	df	Mean Square	F	Sig.
TIME	2 vs. 1		1236678.402	1	1236678.402	46.103	.000
TIME * GENDER	2 vs. 1		40692.966	1	40692.966	1.517	.237
Error(TIME)	2 vs. 1		402366.917	15	26824.461		
COND		2 vs. 1	85694.403	1	85694.403	36.800	.000
COND * GENDER		2 vs. 1	1607.851	1	1607.851	.690	.419
Error(COND)		2 vs. 1	34929.695	15	2328.646		
TIME * COND	2 vs. 1	2 vs. 1	40555.931	1	40555.931	9.536	.007
TIME*COND*GENDER	2 vs. 1	2 vs. 1	10209.564	1	10209.564	2.400	.142
Error(TIME*COND)	2 vs. 1	2 vs. 1	63796.583	15	4253.106		

Source	Type III SS	df	Mean Square	F	Sig.
Intercept	11288631.228	1	11288631.228	1326.900	.000
GENDER	37037.746	1	37037.746	4.354	.054
Error	127612.838	15	8507.523		

<u>CH 4. ANOVA Table for **R-R Interval** with 2-within factors (time [preoperatively vs. postoperatively] and condition [supine vs. standing] separately in men & women > 55 years.</u>

<u>Descrip</u>	tive Stat	istics									
gender		Mean	Std. De	eviation	N						
female	RRIR1	942.3665	120.82	218	7						
	RRIS1	842.8563	137.72	277	7						
	RRIR2	680.7979	122.41	77	7						
	RRIS2	655.8067	119.68	344	7						
male	RRIR1	1084.3451	128.82	202	10						
	RRIS1	989.9715	165.78	331	10						
	RRIR2	748.2625	89.704	2	10						
	RRIS2	678.6136	114.16	655	10						
<u>Tests o</u> Measur	<u>f Within-</u> e: MEAS	<u>Subjects Effects</u> URE 1	l								
gender	Source		Type II	ISS	df	Mean S	Square	F	Sig		
female	TIME		35220	2.022	1	35220	2.022	17,105	006		
	Error(TI	ME)	12354	3.260	6	20590	.543		.000		
	COND		27126	.042	1	27126	.042	38.879	.001		
	Error(CC	DND)	4186.1	72	6	697.69	95				
	TIME *	COND	9717.8	74	1	9717.8	374	8.805	.025		
	Error(TII	ME*COND)	6622.4	35	6	1103.7	739				
male	TIME		104794	48.058	1	10479	48.058	33.826	.000		
	Error(Til	ME)	27882:	3.657	9	30980	.406				
	COND		67258.	391	1	67258	.391	19.690	.002		
	Error(CC	DND)	30743.	523	9	3415.9	947				
	TIME *	COND	1528.2	.77	1	1528.2	277	1.475	.256		
	Error(TII	ME*COND)	9326.7	10	9	1036.3	801				
Tests of	f Within-S	Subiects Contras	sts								
Measure	: MEAS	JRE 1									
gender	Source		TIME	COND	Type III	SS	df	Mean S	nuare	F	Sia
female	TIME		2 vs. 1	00110	352202	.022	1	352202	.022	17 105	.006
	Error(TIN	ME)	2 vs. 1		123543	.260	6	20590.	543	17.100	
	COND			2 vs. 1	27126.0	042	1	27126.0)42	38.879	.001
	Error(CC	ND)		2 vs. 1	4186.1	72	6	697.695	5	00.070	
	TIME *	COND	2 vs. 1	2 vs. 1	38871.4	496	1	38871.4	- 196	8.805	.025
	Error(TIN	ME*COND)	2 vs. 1	2 vs. 1	26489.7	742	6	4414.99	57		
male	TIME		2 1		104704	0.050	-	104704	0.050	22.020	000
maie		AE)	2 VS. 1		104/94	6.058	•	104794	8.058	33.826	.000
		41 L I	2 vs. 1	2 1	210023	.03/	9	30980.4		10 600	000
	Error(CC			2 VS. 1	20742	591 577	1 0	2415 0/	391 7	19.690	.002
	TIME *	COND	2 vc 1	$2 v_{5.1}$	6112 1/	123	9 1	6112 10	+7	1 475	256
	Error(TIN	ME*COND)	2 vs. 1	2 vs. 1	37306.8	341	9	4145.20)5	1.475	.200
-		• • • • • • •									
lests of	Betweer	1-Subjects Effec	<u>ts</u>								
Transfor	med Ver										
nender	Source	Tune II	221	df	Maan Ca		_		C:-		
female	Intercen	t 42637	90 191	1	A26270		Г 401 061	0	aig.		
icitiale	Frror	EC727	976	6	4203/9	220	421.20	0	.000		
male	Intercen	t 76614	69 210	1	766146	9 2 1 0	1030 0	24	000		
	Error	66884	.862	9	7431.65	51	1000.0	67	.000		

APPENDIX E ANOVA TABLES Chapter 5 <u>Ch 5:</u> <u>ANOVA Table:</u> <u>Fractal Power with 1-between (gender) and 2-within factors (time [Day 5, 6 weeks, 12 weeks postoperatively] & condition (supine vs. standing]).</u>

Descrip	tive Stat	tistics								
	GENDE	R	Mean	Std. De	viation	N				
FPR2	FEMAL	E	49.8127	40.531	9	6				
	MALE		60.8355	72.154	.4	16				
	Total		57.8293	64.305	2	22				
FPS2	FEMAL	F	43 8001	47.544	.0	6				
	MALE	-	83 4593	179 64	.01	16				
	Total		72 6432	154 64	61	22				
EPB3	FEMAL	F	344 5437	494 50	97	6				
		· -	1064 5222	2629 1	052	16				
	Total		969 1645	2020.1	202	22				
EDC3	CENAL	_	105 6044	102 60	231	22 6				
1100		L	176 0410	222.00	07	16				
	Total		192 0216	222.00	42	10				
	EENAAL	c	102.0310	207.90	17 17	22				
CE N4		C	204.3001	133.71	17	10				
	Tatal		303.2993	3/1.20	90	10				
EDC4	TOTAL	~	319.9375	328.97	0	22				
FF34		E	152.4488	87.052	9	6				
	Tinte		1/4.49/8	113.87	45	16				
	lotal		168.4844	105.67	//	22				
Tooto of	14/:+=:-	Subiasa								
Seuree	vvitinii-	Subjects	Turne III CC	- 1	M		~	0:-		
Time					Niean S	quare	r 	Sig.		
			2018908.102	2	130940	34.051	.//	.469		
Eccor(T)	IDER		517093.247	2	25854	5.623	.152	.859		
	_		67943092.035	40	10985	77.301		440		
			1155658.195	1	11556	08.195	.683	.418		
	IDER		521689.034	1	521689	9.034	.308	.585		
Error(C)			33850811.859	20	169254	10.593				
		_	1315394.087	2	65769	7.043	.384	.684		
1 * C *	GENDE	R	711396.908	2	355698	3.454	.208	.813		
Error(1*	C}		68551191.538	40	17137	79.788				
Tests of	Within-	Subjects	Contracts							
Source		Time	Condition	Type III	22	дf	Mean 9	Guaro	F	Sig
Time		2 vs 1	Condition	259966	\$2 071	1	25006	62 071	1 044	310
		2 vo. 1		470370	2.071	1	47027	a a 20	12 003	.002
T + GEN		2 v s . 1		4/03/3	2 696	1	47037	9.920	195	671
		2 vs.1		10520	607	1	10520	2.000	500	1071
		3 VS. 1		407070	100/	20	24000	52 000	.505	.404
		2 VS. 1		49/9/0	012	20	24090	001		
Conditio	-	5 VS. I	2 1	729100		20	30400		600	410
			2 vs. 1	247702	0.797	1	770430	5./9/	.003	.410
	IUCR		2 VS. 1	347792	2.690	1	34779.	2.690	.308	.985
		1 1	2 VS. 1	2200/2		20	11283	00.395	470	407
		2 VS. 1	2 VS. 1	483964	1.525	1	483964	41.525	.4/8	.497
T*C*CE	NDCD	3 VS. 1	2 VS. 1	288815	9.594	1	28881	9.594	2.178	.150
	INDER	2 VS.1	2 VS. 1	256893	50.710	1	25689	30./10	.254	.620
	~	3 VS. I	2 VS. 1	119637	.424	1	11963	/.424	.902	.353
Error(1		2 VS. I	2 vs. 1	202568	\$751.39	20	101284	437.570		
		3 VS. I	∠ VS. I	20015/	6.338	20	1325/	5.917		
Tests of	Betwee	n-Subiec	ts Effects							
Source		Type III	SS df	Mean S	quare	F	Sig			
Intercen	t	102931	0.848 1	102931	0.848	3.835	.064			
GENDEF	3	105522	2.918 1	105522	2.918	.393	.538			
Error		536862	27.688 20	268431	.384					

<u>Ch 5:</u> <u>ANOVA Table for Fractal Power with 2-within factors (time [Day 5, 6 weeks, 12 weeks postoperatively] & condition [supine vs. standing]).</u>

Tests o	f Within-Subjec	ts_Effects				
Measur	e: MEASURE 1					
GENDE	R Source	Type III SS	df	Mean Square	F	Sig.
FEMALE Time		302270.504	2	151135.252	3.157	.087
	Error(T)	478749.034	10	47874.903		
	Condition	42770.056	1	42770.056	1.202	.323
	Error(C)	177918.513	5	35583.703		
	т•с	31954.687	2	15977.343	.388	.688
	Error(T*C)	411675.670	10	41167.567		
MALE	Т	4943391.130	2	2471695.565	1.099	.346
	Error(T)	67464343.001	30	2248811.433		
	С	2961083.106	1	2961083.106	1.319	.269
	Error(C)	33672893.346	15	2244859.556		
	т • с	3630570.992	2	1815285.496	.799	.459
	Error(T*C)	68139515.868	30	2271317.196		

Tests of Within-Subjects Contrasts

Measure: MEASURE 1

GENDE	R Source	Time	Cond	Type III SS	df	Mean Square	F	Sig.
FEMALI	E Time	2 vs. 1		299090.576	1	299090.576	4.586	.085
		3 vs. 1		103865.542	1	103865.542	18.694	.008
	Error(T)	2 vs. 1		326114.844	5	65222.969		
		3 vs. 1		27780.590	5	5556.118		
	С		2 vs. 1	28513.370	1	28513.370	1.202	.323
	Error(C)		2 vs. 1	118612.342	5	23722.468		
	т + с	2 vs. 1	2 vs. 1	122568.232	1	122568.232	.516	.505
		3 vs. 1	2 vs. 1	12610.425	1	12610.425	.720	.435
	Error(T*C)	2 vs. 1	2 vs. 1	1188436.908	5	237687.382		
		3 vs. 1	2 vs. 1	87607.748	5	17521.550		
MALE	Т	2 vs. 1		4815121.518	1	4815121.518	1.460	.246
		3 vs. 1		619376.002	1	619376.002	13.247	.002
	Error(T)	2 vs. 1		49470962.874	15	3298064.192		
		3 vs. 1		701319.422	15	46754.628		
	С		2 vs. 1	1974055.404	1	1974055.404	1.319	.269
	Error(C)		2 vs. 1	22448595.564	15	1496573.038		
	Т * С	2 vs. 1	2 vs. 1	13255544.823	1	13255544.823	.987	.336
		3 vs. 1	2 vs. 1	715210.067	1	715210.067	4.184	.059
	Error(T*C)	2 vs. 1	2 vs. 1	201380314.48	15	13425354.299		
		3 vs. 1	2 vs. 1	2563970.590	15	170931.373		

IRE_1					
able: Average					
Source	Type III SS	df	Mean Square	F	Sig.
Intercept	163520.254	1	163520.254	10.482	.023
Error	78004.169	5	15600.834		
Intercept	1644474.559	1	1644474.559	4.662	.047
Error	5290623.519	15	352708.235		
	IRE_1 able: Average Source Intercept Error Intercept Error	IRE_1 able: Average Source Type III SS Intercept 163520.254 Error 78004.169 Intercept 1644474.559 Error 5290623.519	IRE_1 able: Average Source Type III SS df Intercept 163520.254 1 Error 78004.169 5 Intercept 1644474.559 1 Error 5290623.519 15	IRE_1 able: Average Source Type III SS df Mean Square Intercept 163520.254 1 163520.254 Error 78004.169 5 15600.834 Intercept 1644474.559 1 1644474.559 Error 5290623.519 15 352708.235	IRE_1 able: Average Source Type III SS df Mean Square F Intercept 163520.254 1 163520.254 10.482 Error 78004.169 5 15600.834 Intercept 1644474.559 1 1644474.559 4.662 Error 5290623.519 15 352708.235

Descrip	otive Stati	istics						
	GENDE	R Mean		Std. Deviation	N			
HFR2	FEMAL	E 25.47	76370	57.529397	6			
	MALE	2.183	3538	3.002161	16			
	Total	8.536	5129	30.119500	22			
HFS2	FEMAL	E 2.245	5635	3.083537	6			
	MALE	15.42	23583	56.985112	16			
	Total	11.82	29597	48.557706	22			
HFR3	FEMALE	E 47.52	25515	54.905240	6			
	MALE	17.12	25015	21.332624	16			
	Total	25.41	6060	35.140514	22			
HFS3	FEMALE	E 21.69	8318	34.253757	6			
	MALE	59.90	9022	215.831093	16			
	Total	49.48	37921	184.000992	22			
HFR4	FEMALE	42.28	9355	62.063771	6			
	MALE	56.26	57133	104.692001	16			
	Total	52.45	5012	93.736801	22			
HES4	FEMALE	= 12.81	7773	13 782949	6			
	MALE	17.64	3642	25.837536	16			
	Total	16.32	7496	22 954558	22			
				22.00.000				
<u>Tests</u> c	of Within-	Subjects Effect	<u>s</u>					
Source		Type III SS	df	Mean Square	F	Sig.		
Time		12718.283	2	6359.142	.821	.447		
T * GE	NDER	929.779	2	464.889	.060	.942		
Error(T)	309700.430	40	7742.511				
Cond		2717.636	1	2717.636	.310	.584		
C * GE	NDER	6692.785	1	6692.785	.764	.393		
Error(C	;}	175305.653	20	8765.283				
T * C		8244.444	2	4122.222	.538	.588		
T* C *	GENDER	6662.937	2	3331.469	.435	.650		
Error(T	*C)	306447.632	40	7661.191				
Tests c	of Within-	Subjects Contra	ists				_	
Source		Time Cond		Type III SS	df	Mean Square	F	Sig.
Т		2 vs. 1		11112.667	1	11112.667	1.086	.310
		3 vs. 1		7640.522	1	7640.522	2.523	.128
T * GE	NDER	2 vs. 1		350.51 9	1	350.519	.034	.855
		3 vs. 1		912.307	1	912.307	.301	.589
Error(T)	2 vs. 1		204577.490	20	10228.874		
		3 vs. 1		60574.712	20	3028.736		
С		2 vs.	1	1811.757	1	1811.757	.310	.584
C * GE	NDER	2 vs.	1	4461.857	1	4461.857	.764	.393
Error(C	}	2 vs.	1	116870.435	20	5843.522		
т•с		2 vs. 1 2 vs.	1	3168.732	1	3168.732	.078	.783
		3 vs. 1 2 vs.	1	14732.157	1	14732.157	.996	.330
T*C*G	ENDER	2 vs. 1 2 vs.	1	4507.666	1	4507.666	.111	.742
		3 vs. 1 2 vs.	1	9082.603	1	9082.603	.614	.442
Error(T	*C)	2 vs. 1 2 vs.	1	810772.449	20	40538.622		
		3 vs. 1 2 vs.	1	295730.042	20	14786.502		
_		. –						
Tests c	t Betwee	n-Subjects Effe	<u>cts</u>	M 0	F	Ci-		
Source	-•	rype III 55		Mean Square		SIG.		
Interce	pt o	12459.091	I -	12459.091	/.002	.012		
GENDE	n	32.330	1	32.996 .020	.888			
CLLQL		32321.2/9	20	1626.064				

<u>Ch. 5:</u> <u>ANOVA Table for **High Frequency Power** with 2-within factors (time [Day 5, 6 weeks, 12 weeks postoperatively] & condition [supine vs. standing]).</u>

Tests c	of Within-Subje	cts Effects					
GENDE	R Source	Type III SS	df	Mean Square	F	Sig.	
FEMAL	.E Time	2671.628	2	1335.814	.605	.565	
	Error(T)	22067.988	10	2206.799			
	Cond	6166.884	1	6166.884	7.018	.045	
	Error(C)	4393.497	5	878.699			
	т • с	58.971	2	29.486	.023	.977	
	Error(T*C)	12629.056	10	1262.906			
MALE	т	17897.105	2	8948.553	.933	.404	
	Error(T)	287632.443	30	9587.748			
	С	807.412	1	807.412	.071	.794	
	Error(C)	170912.156	15	11394.144			
	т•с	27172.941	2	13586.470	1.387	.265	
	Error(T*C)	293818.576	30	9793.953			

Tests of Within-Subjects Contrasts

GENDE	R Source	Time	Cond	Type III SS	df	Mean Square	F	Sig.
FEMALE	FEMALE T	2 vs. 1		2583.603	1	2583.603	.820	.407
		3 vs. 1		1124.917	1	1124.917	.421	.545
	Error(T)	2 vs. 1		15758.026	5	3151.605		
		3 vs. 1		13364.200	5	2672.840		
	С		2 vs. 1	4111.256	1	4111.256	7.018	.045
	Error(C)		2 vs. 1	2928.998	5	585.800		
	T * C	2 vs. 1	2 vs. 1	40.450	1	40.450	.009	.928
		3 vs. 1	2 vs. 1	233.689	1	233.689	.033	.862
	Error(T*C)	2 vs. 1	2 vs. 1	22415.003	5	4483.001		
		3 vs. 1	2 vs. 1	34977.666	5	6995.533		
MALE	T .	2 vs. 1		14126.233	1	14126.233	1.122	.306
		3 vs. 1		12680.406	1	12680.406	4.029	.063
	Error(T)	2 vs. 1		188819.463	15	12587.964		
		3 vs. 1		47210.512	15	3147.367		
	С		2 vs. 1	538.275	1	538.275	.071	.794
	Error(C)		2 vs. 1	113941.437	15	7596.096		
	T * C	2 vs. 1	2 vs. 1	13965.531	1	13965.531	.266	.614
		3 vs. 1	2 vs. 1	43037.222	1	43037.222	2.476	.136
	Error(T*C)	2 vs. 1	2 vs. 1	788357.446	15	52557.163		
		3 vs. 1	2 vs. 1	260752.376	15	17383.492		

GENDER	Source	Type III SS	df	Mean Square	F	Sig.
FEMALE	Intercept	3853.351	1	3853.351	6.197	.055
	Error	3109.015	5	621.803		
MALE	Intercept	12626.557	1	12626.557	6.439	.023
	Error	29412.264	15	1960.818		

<u>Ch. 5:</u> <u>ANOVA Table for Low Frequency Power with 1-between (gender) and 2-within factors (time [Day 5, 6 weeks, 12 weeks postoperatively] & condition (supine vs. standing]).</u>

<u>Descrip</u>	<u>ptive Stat</u>	tistics							
	GENDE	R	Mean		Std. Deviation	N			
LFR2	FEMAL	E	10.182	468	8.978690	6			
	MALE		13.382	568	15.648590	16			
	Total		12.509	814	14.008410	22			
LFS2	FEMAL	E	18.756	i387	21.071410	6			
	MALE		18.335	097	36.514080	16			
	Total		18.449	994	32.528352	22			
LFR3	FEMAL	E	155.30	3508	227.222302	6			
	MALE		88.261	633	103.295490	16			
	Total		106.54	5781	144.389042	22			
LFS3	FEMAL	E	18.754	570	24.717427	6			
	MALE		35.105	318	41.547475	16			
	Total		30.646	023	37.868350	22			
LFR4	FEMAL	E	77.517	853	67.684820	6			
	MALE		223.06	3076	565.384490	16			
	Total		183.36	8924	483.550224	22			
LFS4	FEMAL	E	43.722	030	42.078522	6			
	MALE		66.899	514	81.446444	16			
	Total		60.578	382	72.604599	22			
_									
Tests o	f Within-	Subjects I	Effects						
Source		Type III 9	SS	df	Mean Square	F	Sig.		
T		139554.	.254	2	69777.127	1.604	.214		
T * GEI	NDER	57119.1	57	2	28559.579	.656	.524		
Error(T)	I	174046	2.859	40	43511.571				
C		97496.1	27	1	97496.127	2.162	.157		
C • GEI	NDER	1319.60	9	1	1319.609	.029	.866		
Error(C)		901949.	502	20	45097.475				
I * C		60152.4	89	2	30076.245	.645	.530		
I+C+G	ENDER	46552.3	35	2	23276.167	.499	.611		
Error(1	-C)	186524	/.908	40	46631.198				
Tests o	f \A/ithin	Subjects (~~*~~~						
Source	· vviuiiii-	Time	Cond	s	Tune III CC		Mann Course	F	C :-
T		2 vc 1	Conu		1 ype m 55	1	Ritean Square	10 212	5ig.
I		2 VS. 1			124052 509	1	124052 509	10.312	147
T * GEN		3 vs. 1			2110 046	1	2110 046	2.271	.147
	NULI	2 vs. 1			20040 775	1	20040 775	.520	.477
Error(T)		3 vs. 1			119600 921	20	50040.775	.505	.404
		2 V3. 1 3 Ve 1			1180664 751	20	59022 228		
C		5 43. 1	2 ve 1		64997 418	1	64997 418	2 162	157
C * GE	NDER		2 v 3. 1 2 v c 1		879 739	1	870 720	029	866
Error(C)	NUCH		2 vs. 1		673.733	20	20064 092	.029	.800
T + C		2 ve 1	$2 v_{2} v_{3} = 1$		180231 814	1	190221 914	9 / 16	009
		2 vs. 1	2 vs. 1 2 ve 1		180682 839	1	180682 839	719	406
T*C*G		2 vs 1	2 vo. 1		33039 004	1	33039 004	1 543	229
		2 V3. 1 . 3 Ve 1	2 vs. : 2 vc. 1		61530 307	1	61520 207	245	.223
Error(T*	2	2 vs. 1	$2 v_3 \cdot v_1$		429314 996	20	21415 749	.24J	.020
CHOIL	01	3 vs 1	2 vs. 1 2 vs. 1		5024128 771	20	251206 439		
		- +J. I .	- •3. 1		5027120.//1	20	201200.400		
Tests_of	<u>f Betwee</u>	n-Subjects	s Effect	s					
Source		Type III S	SS	df	Mean Square	F	Sig.		
Intercep	ot	71733.0	80	1	71733.080	9.651	.006		
GENDE	۲	1769.10	9	1	1769.109	.238	.631		
Error		148656.	404	20	7432.820				

•

<u>Ch. 5:</u> <u>ANOVA Table for Low Frequency Power with 2-within factors (time [Day 5, 6 weeks, 12 weeks postoperatively] & condition [supine vs. standing]].</u>

<u>Tests o</u>	of Within-S	Subjects Effect	<u>s</u>								
Measur	e: MEASU	JRE 1									
GENDE	R Source	- Туре	III SS	df	Mean S	Souare	F	Siq.			
FEMAL	ΕT	3236	8.831	2	16184	415	2.072	.177			
	Error(T)	7810	8.753	10	7810.8	375					
	С	2616	9.806	1	26169	806	2 793	156			
	Error(C)	4685	5.855	5	9371 1	71	2.700				
	T * C	3341	4 041	2	16707	021	2 032	182			
	Frror(T*	CI 8221	6 160	10	8221 6	16	2.002	.102			
MALE	T	2742	51 038	2	13712	5 510	2 4 7 5	101			
	Front T)	1662	354 106	30	55/11	204	2.475				
	C	1113	76 035	1	11127	CO4	1 95/	193			
	Error(C)	8550	93 647	16	57006	2.035	1.334	.105			
		1065	21 401	2	57000.	700	006	410			
	Freed T+	C) 1703	21.401	20	53200.	202	.090	.419			
	Enor(() (765	031.747	30	59434.	392					
Tanta a											
Tests o		DE 1	ists								
CENDER					-	~~	.14		•	-	<u>.</u>
GENDE		lime	Cond		iype III	55		Mean :	square	F	Sig.
FEIVIAL	Elime	2 vs.	1		31589.	383	1	31589	.383	2.299	.190
	F (T)	3 VS.	1		12//9.	220	1	12//9	.220	13.009	.015
	Error(1)	2 vs.			68697.	/14	5	13739	.543		
		3 vs.	1		4911.8	41	5	982.36	58		
	Cond		2 vs. 1		17446.	537	1	17446	.537	2.793	.156
	Error(C)	-	2 vs. 1		31237.	237	5	6247.4	47		
	T + C	2 vs.	1 2 vs. 1		126363	3.861	1	12636	3.861	2.857	.152
		3 vs.	1 2 vs. 1		10771.	170	1	10771	.170	1.091	.344
	Error(T*(C) 2 vs.	1 2 vs. 1		221154	1.228	5	44230	.846		
		3 vs.	1 2 vs. 1		49367.	219	5	9873.4	44		
MALE	т	2 vs.	1		33598.	367	1	33598	.367	10.097	.006
		3 vs.	1		266761	.764	1	26676	1.764	3.403	.085
	Error(T)	2 vs.	1		49912.	106	15	3327.4	74		
		3 vs.	1		117575	52.910	15	78383.	.527		
	С		2 vs. 1		74250.	690	1	74250	.690	1.954	.183
	Error(C)		2 vs. 1		570062	2.431	15	38004.	162		
	т • с	2 vs.	1 2 vs. 1		54026.	204	1	54026.	204	3.912	.067
		3 vs.	1 2 vs. 1		415334	.315	1	415334	4.315	1.252	.281
	Error(T*0	C) 2 vs.	1 2 vs. 1		207160).758	15	13810.	717		
		3 vs.	1 2 vs. 1		497476	51.552	15	331650	0.770		
Tests of	f Between	-Subjects Effe	cts								
Measure	e: MEASU	RE 1									
Transfor	rmed Varia	able: Average									
GENDEF	٦ ٢	Source	Type III	SS	df	Mean Se	quare	F	Sia.		
FEMALE		Intercept	17521.5	586	1	17521	586	5.946	.059		
		Error	14734.3	358	5	2946.8	72				
MALE		intercept	88029.7	785	1	88029.	785	9.860	.007		

133922.045 15

8928.136

Error

Descript	tive Stati	istics							
<u>00001.p</u>	GENDE	R	Mean		Std Deviation	N			
PNSR2	FEMAL	E	.14501	7	197582	6			
	MALE	-	2 9844	4F-02	2 23046F-02	16			
	Total		6 1 2 5 5	0F-02	111385	22			
PNSS2	FEMAL	-	3 4 2 5 3	3E-02	1 796305-02	6			
111002	MALE	-	3 4001	95-02	5 27122E 02	16			
	Total		2 4070		J.J/122E-02	10			
DNCD2	EEMALO	=	11600		4.02337E-02	22			
INDITO		-	5 0725	6E 02	0.42321E-02	10			
	Total		7 5247	75 02	0.97030E-02	10			
DNICC2		z	5 2620	75-02	7.17031E-02	22			
110000		-	6 0021	25 02	119467	10			
	Total		0.3331	05.02	102605	10			
		=	0.5215	05-02	. 103005 E 2206EE 02	22			
FNON4		-	9.0223		3.22005E-02	0			
	Total		0.2/30		7.152765-02	10			
DNCCA	EENAALO	-	0.0400 E 4140		0.300402-02	22			
FN334		-	0.4140		4.79553E-02	5			
			0.5725		8.30060E-02	10			
	iotai		0.256/	3E-02	7.41407E-02	22			
Toote of	14/i+hin (Subjecte	Cffaata						
Source		Tune III	enects	 د	Mana Causa	-	<u>o</u> -		
Time		A EETE	02	2		г ОТО	Sig.		
T + GEN		1 4595	03	2	7 2005 02	.372	.092		
Frroc(T)	IUEN	245	02	2	7.290E-03	1.190	.315		
Cond		2 5175	0.2	40	2 5175 02	4 5 7 0	045		
		2 2465	02	1	3.317E-UZ	4.570	.045		
	IDEN	3.3400-	02	20	3.3456-02	4.346	.050		
		2 6575	02	20	1.0905-03	222	710		
T+C+CE		0.007E-	03	2	1.0296-03	.333	./19		
Fror/T+		0.00UE-	03	2	4.423E-03	.806	.454		
		.220		40	5.4532-03				
Tests of	Within-9	Subjects	Contrast	te					
Source	••••	Time	Cond		Type III SS	df	Mean Square	_	Sia
T		2 vs 1	00110		3 442E-03	1	3 4425 03	267	Siy.
,		3 vs 1			3 394F-03	1	3 3945 03	.307	.552
T * GEN	DEB	2 vs 1			6 214E-03	1	6 2145 02	.000	.440
	U LIN	3 vs 1			1 4075-02	1	1 4075 02	2 4 9 7	120
Frror(T)		$2 v_{s} 1$			188	20	9 3905 03	2.407	.130
,		3 vs 1			113	20	5.659E-03		
С		0 10	2 vs 1		2 345E-02	1	2 345E-02	4 570	045
C • GEN	IDER		2 vs 1		2.040E-02	1	2.3436-02	4.376	.045
Frror(C)			$2 v_{3.1}$		103	20	5 1215 02	4.340	.050
T * C		2 vs 1	$2 v_{3}$ 1		1 201E-02	1	1 201E 02	490	406
		3 vs 1	2 v = 1		9.8265-03	1	0.0265.02	.400	.430
T*C*GE	NDER	2 vs 1	$2 v_{3.1}$		7 116E-03	1	7 116E 02	.430 105	.517
		3 vs 1	$2 v_{3.1}$		3 5285-02	1	3 5285 02	.200	.000
Error(T*)	\sim	2 vs 1	$2 v_0 \cdot 1$		500	20	2 5015 02	1.501	.220
2.1.01(1	0,	2 vs. 1	2 vs. 1		452	20	2.3016-02		
		J V3. I	<u>د ۲۵</u> . ۱		.702	20	2.2012-02		
Tests of	Between	n-Subject	s Effect	s					
Source		Type III	SS	≞ df	Mean Square	F	Sig		
Intercent	t	8.579F-0	02	1	8.579E-02	67.763	000		
GENDER		2.996F-0	03	1	2.996E-03	2.367	140		
Error		2.532E-	02	20	1.266E-03				

Tests o	f Within-	Subjects Effect	ts							
Measur	e: MEAS	URE 1								
GENDE	R Source	Туре	III SS	df	Mean S	Square	F	Sig.		
FEMAL	E Time	1.29	9E-03	2	6.494E	-04	.048	.954		
	Error(T)	.137		10	1.366E	-02				
	Cond	4.71	7E-02	1	4.717E	-02	10.347	.024		
	Error(C)	2.27	9E-02	5	4.559E	-03				
	т•с	7.36	8E-03	2	3.684E	-03	.519	.610		
	Error(T*	°C) 7.10	3E-02	10	7.103E	-03				
MALE	Т	3.16	2E-02	2	1.581E	-02	4.377	.021		
	Error(T)	.108		30	3.612E	-03				
	С	1.97	4E-05	1	1.974E	-05	.002	.963		
	Error(C)	.131		15	8.742F	-03				
	T + C	3.28	2F-03	2	1.641F	-03	.331	.721		
	ErroriT	°C) .149		30	4.957E	-03				
		-,								
Tests of	f Within-	Subjects Contr	asts							
Measure	e: MEAS	URE 1	<u></u>							
GENDE	R Source	Time	Cond		Type []]	SS	df	Mean Square	F	Sia
FEMAL	E Time	2 vs.	1		1.397F	-04	1	1.397E-04	.006	.940
		3 vs.	1		1 253E	-03	1	1 253E-03	067	806
	Frror(T)	2 vs	1		110		5	2 201E-02		.000
	,	2 vs. 3 vs	1		9 380F	-02	5	1 876E-02		
	Cond	0.00	2 ve 1		3 1455	-02	1	3 145E-02	10 347	024
	Error(C)		2 vs. 1		1 520F	-02	5	3 039E-03	10.047	.024
	T * C	2 vs	1 2 v = 1		1 2935	-02	1	1 293E-02	319	597
		2 vs. 3 vs	$1 2 v_{3}$. 1		2.831E	-02	1	2 831E-02	681	447
	Error(T*	C) 2 vs	1 2 vs. 1 1 2 ve 1		203	02	5	4.0526-02	.001	
	21101(1	3 ve	$1 2 v_3.1$ 1 2 ve 1		208		5	4 1595-02		
MALE	т	2 vs.	1 2 v3. 1		1 733F	-02	1	1 733E-02	3 353	087
	•	2 vs. 3 ve	1		2 8685	-02	1	2 8686-02	22 210	.007
	Error(T)	2 vs.	1		7 7535	-02	15	5 1695-02	22.210	.000
	Enorth	2 v3.	1		1 0275	02	15	1 2015 02		
	C	5 VS.	2		1 2165	02	10	1.23165.05	002	062
	Error(C)		2 vs. 1		0 7495	-03 02	ו 1 ג	E 929E 02	.002	.903
		2	1 2 vs. 1		0./42C	-02	10	5.0202-03	020	066
		2 vs.	1 2 vs. 1		7 2125	-04	1	5.6335-04	.029	.000
	Error/T#	3 vs.	1 2 vs. 1		7.212E	-03	1	7.212E-03	.443	.516
	Error(1 *	C) 2 VS.	1 2 vs. 1		.298		15	1.9848-02		
		3 vs.	1 2 vs. 1		.244		15	1.628E-02		
Tosta of	FRotuco	n Subinata Effa	ata							
Measure	- MEACI	IRE 1								
Tranefo	rmad Va	riable: Average								
GENIDER		Source	Type	C C	df	Mann Fr		E 6:0		
EEMALE		latercont		02	1			1 31y.		
	-	Error	4.1345	-02	י ב	4.1345-		40.423 .001		
		EIIOI	4.29UE	-03	5	0.3/9E-	04			

1

15

5.200E-02

1.402E-03

37.084 .000

MALE

Intercept

Error

5.200E-02

2.103E-02

Descriptive Stat	tistics						
	GENDER	Mean	St	d. Dev	viation	Ν	
RRISDR2	FEMALE	20.357	75 14	1.2606	5	6	
	MALE	14.129	98 6.	4852		16	
	Total	15.828	33 9.	3017		22	
RRISDS2	FEMALE	12.392	<u>.</u> 6.	3731		6	
	MALE	22.780	9 38	3.7256	5	16	
	Total	19.947	6 33	3.2159)	22	
RRISDR3	FEMALE	31.170	1 26	5.8470)	6	
	MALE	39.049	9 53	3.1931		16	
	Total	36.900	8 46	5.9637	,	22	
RRISDS3	FEMALE	24.846	57 12	9687	۰.	6	
	MALE	26.061	3 12	2231		16	
	Total	25 730	0 12	1272	1	22	
BRISDR4	FEMALE	20.700	12	5 1822	•	6	
10000	MALE	23.013	6 15	7650	•	16	
	Total	22 210	-0 15 NG 16	2604		22	
PRICOCA	EENAALE	22.013	ю та м е	1165	•	22	
nni5034		20.000	14 U.	COE 1		16	
		20.417	3 9.0	0951		10	
	Total	27.078	9.0	0030		22	
Tanks of Mishin	Cultana Efferia						
	-Subjects Effects	<i>.</i>	M		-	C '-	
Source	Type III 55		Mean Squa	ire		Sig.	
	3488.738	2	1744.369		2.353	.108	
I * GENDER	34.987	2	17.493		.024	.977	
Error(1)	29658.954	40	/41.4/4				
С	675.064	1	675.064		1.142	.298	
C • GENDER	83.844	1	83.844		.142	.710	
Error(C)	11820.216	20	591.011				
т * С	445.559	2	222.779		.425	.656	
T*C*GENDER	616.849	2	308.425		.589	.560	
Error(T*C)	20952.147	40	523.804				
Tests of Within-	Subjects Contras	ts					
Source	Time Cond		Type III SS	(df	Mean Square	F
Т	2 vs. 1		2889.713		1	2889.713	2.832
	3 vs. 1		2311.107		1	2311.107	6.284
T • GENDER	2 vs. 1		26.550		1	26.550	.026
	3 vs. 1		25.927		1	25.927	.070
Error(T)	2 vs. 1		20410.568	3 :	20	1020.528	
	3 vs. 1		7355.459		20	367.773	
С	2 vs. 1		450.042		1	450.042	1.142
C * GENDER	2 vs. 1		55.896		1	55.896	.142
Error(C)	2 vs. 1		7880.144	2	20	394.007	
Т * С	2 vs. 1 2 vs. 1		1745.078		1	1745.078	.622
	3 vs. 1 2 vs. 1		684.663		1	684.663	.604
T* C*GENDER	2 vs. 1 2 vs. 1		2365.251		1	2365.251	.843
	3 vs. 1 2 vs. 1		1093.596		1	1093.596	.966
Error(T*C)	2 vs. 1 2 vs. 1		56094.168	. :	20	2804.708	
· - •	3 vs. 1 2 vs. 1		22653.402		20	1132.670	
			_	_			
<u>Tests of Betwee</u>	en-Subjects Effect	<u>s</u>					
Source	Type III SS	df	Mean Squa	re F	F	Sig.	
Intercept	11385.159	1	11385.159) -	77.979	.000	
GENDER	60.231	1	60.231		413	.528	
Error	2920.075	20	146.004				

Sig. .108 .021 .873 .793

.298 .710

.439 .446 .369 .338 <u>Ch. 5:</u> <u>ANOVA Table for SDNN with 2-within factors (time [Day 5, 6 weeks, 12 weeks postoperatively] & condition [supine vs. standing]).</u>

Tests of Measure	Within-Subjects	Effects				
GENDER	Source	Type III SS	df	Mean Square	F	Siq.
FEMALE Time		971.978	2	485.989	2.343	.146
	Error(T)	2074.086	10	207.409		
	Cond	424.436	1	424.436	6.648	.050
	Error(C)	319.219	5	63.844		
	Т * С	5.426	2	2.713	.019	.981
	Error(T*C)	1432.363	10	143.236		
MALE	Т	3868.221	2	1934.110	2.103	.140
	Error(T)	27584.868	30	919.496		
	С	259.501	1	259.501	.338	.569
	Error(C)	11500.998	15	766.733		
	Т * С	1933.277	2	966.639	1.486	.243
	Error(T*C)	19519.784	30	650.659		

Tests of Within-Subjects Contrasts

Measure: MEASURE_1

-

GENDE	R Source	Time	Cond	Type III SS	df	Mean Square	F	Sig.
FEMAL	.E Time	2 vs. 1		812.038	1	812.038	2.726	.160
		3 vs. 1		635.066	1	635.066	7.788	.038
	Error(T)	2 vs. 1		1489.283	5	297.857		
		3 vs. 1		407.718	5	81.544		
	С		2 vs. 1	282.958	1	282.958	6.648	.050
	Error(C)		2 vs. 1	212.813	5	42.563		
	т • С	2 vs. 1	2 vs. 1	16.175	1	16.175	.020	.894
		3 vs. 1	2 vs. 1	16.383	1	16.383	.030	.869
	Error(T*C)	2 vs. 1	2 vs. 1	4114.005	5	822.801		
		3 vs. 1	2 vs. 1	2718.097	5	543.619		
MALE	т	2 vs. 1		3181.047	1	3181.047	2.522	.133
		3 vs. 1		2591.051	1	2591.051	5.594	.032
	Error(T)	2 vs. 1		18921.285	15	1261.419		
		3 vs. 1		6947.741	15	463.183		
	С		2 vs. 1	173.001	1	173.001	.338	.569
	Error(C)		2 vs. 1	7667.332	15	511.155		
	т + с	2 vs. 1	2 vs. 1	7492.470	1	7492.470	2.162	.162
		3 vs. 1	2 vs. 1	3216.454	1	3216.454	2.420	.141
	Error(T*C)	2 vs. 1	2 vs. 1	51980.163	15	3465.344		
		3 vs. 1	2 vs. 1	19935.305	15	1329.020		

URE 1					
riable: Average					
Source	Type III SS	df	Mean Square	F	Sig.
Intercept	3365.038	1	3365.038	31.761	.002
Error	529.745	5	105.949		
Intercept	12009.780	1	12009.780	75.365	.000
Error	2390.330	15	159.355		
	URE_1 riable: Average Source Intercept Error Intercept Error	URE_1 riable: Average Source Type III SS Intercept 3365.038 Error 529.745 Intercept 12009.780 Error 2390.330	URE_1 riable: Average Source Type III SS df Intercept 3365.038 1 Error 529.745 5 Intercept 12009.780 1 Error 2390.330 15	URE_1 riable: Average Source Type III SS df Mean Square Intercept 3365.038 1 3365.038 Error 529.745 5 105.949 Intercept 12009.780 1 12009.780 Error 2390.330 15 159.355	URE_1 riable: Average Source Type III SS df Mean Square F Intercept 3365.038 1 3365.038 31.761 Error 529.745 5 105.949 Intercept 12009.780 1 12009.780 75.365 Error 2390.330 15 159.355

<u>Ch. 5:</u> <u>ANOVA Table for SNS Indicator with 1-between (gender) and 2-within factors (time [Day 5, 6 weeks, 12 weeks postoperatively] & condition (supine vs. standing)).</u>

Descrip	tive Stati	stics										
	GENDE	7	Mean)		Std. De	viation	N				
SNSR2	FEMALE		12.88	87	318	20.756	584	6				
	MALE		9.16	33	45	9.9128	79	16				
_	Total		10.1	78	974	13.253	340	22				
SNSS2	FEMALE		14.09	94	723	15.697	129	6				
	MALE		33.6	24	729	48.319	256	16				
	Total	_	28.29	98	364	42.492	374	22				
SNSR3	FEMALE		3.42	11	48	5.5812	83	6				
	MALE		19.1	59	583	35.315	653	16				
	Total	-	14.80	67	283	30.817	859	22				
SNSS3	FEMALE	=	7.61	31	67	13.580	284	6				
	MALE		13.8	97	909	17.954	642	16				
CNCD4	lotal	-	12.18	35.	252	16.803	824	22				
5N5R4	FEMALE	2	3.18	33. 70	27	2.7497	40	6				
	MALE		1.58	22	14	14.516	4//	16				
CNCC4	COLA	-	0.38	20	18	12.503	040	22				
314354			9.594	+ 4 = 1	18	11.138	024 112	5				
	Tatal		11.04	+5	010	22.270	113	16				
	TOLAI		11.0	12	903	19.640	010	22				
Tests of	Within-	Subjects	Effect	s								
Source			Туре	ĪH	SS	df	Mean S	quare	F	Sig.		
Time			1551	.8	92	2	775.94	6	1.950	.156		
T * GEN	IDER		233.2	20	4	2	116.60	2	.293	.748		
Error(T)			1591	3.:	283	40	397.83	2				
Posture			946.6	520	0	1	946.62	Q.	2.275	.147		
P * GEN	IDER		112.6	68	C	1	112.68	0	.271	.609		
Error(P)			8321	.9	90	20	416.09	9				
ТТР			780.6	54	6	2	390.32	3	.626	.540		
Т * Р *	GENDER	ł	1266	.2	98	2	633.14	9	1.016	.371		
Error(T*	P)		2493	7.	950	40	623.44	9				
Tests of	F M/ithin.	Subjects	Contr		· c							
Source			Time	<u>a 5 (</u>	Postura	Tune III	22	44	Moon S	auaro	E	Sia
T			2 ve	1	i usture	1/38 0	55 77	1	1/20 0		1 217	219. 222
•			2 vs.	1		2949 1	77 58	1	2949 1	58	2 955	.203
T + GEN	IDEB		2 vs.	1		84 198	50	1	2343.1	50	2.333	792
			3 vs.	1		152 350	0	1	152 35	0	153	700
Error(T)			2 vs	1		23624	800	20	1181 2	40		
			3 vs.	1		19963.	742	20	998 18	7		
Р					2 vs. 1	315.54	0	1	315.54	0	2.275	.147
P * GEN	DER				2 vs. 1	37.560	-	1	37.560	Ŭ	.271	.609
Error(P)					2 vs. 1	2773.9	97	20	138.70	0		
T * P			2 vs.	1	2 vs. 1	1559.2	95	1	1559.2	95	.796	.383
			3 vs.	1	2 vs. 1	439.64	4	1	439.64	4	.417	.526
Т • Р •	GENDER	L	2 vs.	1	2 vs. 1	2334.8	05	1	2334.8	05	1.191	.288
			3 vs.	1	2 vs. 1	1320.5	60	1	1320.5	60	1.253	.276
Error(T*	P)		2 vs.	1	2 vs. 1	39196.	572	20	1959.8	29		
·	•		3 vs.	1	2 vs. 1	21079.	500	20	1053.9	75		
_			_									
Tests of	Betwee	n-Subjec	ts Effe	ect	<u>s</u>			_	<u>.</u>			
Source		Type III	33		0T 1	Mean S	quare	F	Sig.			
CONDER	νι ¬	3223.3	30		1	3229.3	90 F	11.801	.003			
GENUEL	٦	+90.90	ບ		1	430.30	J	1.121	.302			

Error

8862.657

20

443.133

Ch. 5: ANOVA Table for **SNS Indicator** with 2-within factors (time [Day 5, 6 weeks, 12 weeks postoperatively] & condition [supine vs. standing]).

Tests o	f Within-Subje	cts Effects				
Measur	e: MEASURE	1				
GENDE	R Source	Type III SS	df	Mean Square	F	Sig.
FEMALE T		458.962	458.962 2		1.042	.388
	Error(T)	2202.238	10	220.224		
	Р	139.599	1	139.599	.983	.367
	Error(P)	709.960	5	141.992		
	T * P	40.914	2	20.457	.116	.891
	Error(T*P)	1757.106	10	175.711		
MALE	т	2048.777	2	1024.389	2.241	.124
	Error(T)	13711.045	30	457.035		
	Р	1569.785	1	1569.785	3.093	.099
	Error(P)	7612.030	15	507.469		
	Т*Р	3643.626	2	1821.813	2.358	.112
	Error(T*P)	23180.844	30	772.695		

Tests of Within-Subjects Contrasts

Measure: MEASURE_1

GENDE	R Source	Time	Posture	Type III SS	df	Mean Square	F	Sig.
FEMALI	E Time	2 vs. 1		762.512	1	762.512	1.138	.335
		3 vs. 1		605.312	1	605.312	1.326	.302
	Error(T)	2 vs. 1		3351.217	5	670.243		
		3 vs. 1		2282.381	5	456.476		
	Posture		2 vs. 1	46.533	1	46.533	.983	.367
	Error(P)		2 vs. 1	236.653	5	47.331		
	Т * Р	2 vs. 1	2 vs. 1	26.813	1	26.813	.078	.791
		3 vs. 1	2 vs. 1	81.226	1	81.226	.158	.707
	Error(T*P)	2 vs. 1	2 vs. 1	1713.974	5	342.795		
		3 vs. 1	2 vs. 1	2565.751	5	513.150		
MALE	Т	2 vs. 1		757.474	1	757.474	.560	.466
		3 vs. 1		4071.933	1	4071.933	3.454	.083
	Error(T)	2 vs. 1		20273.583	15	1351.572		
		3 vs. 1		17681.362	15	1178.757		
	Р		2 vs. 1	523.262	1	523.262	3.093	.099
	Error(P)		2 vs. 1	2537.343	15	169.156		
	Т + Р	2 vs. 1	2 vs. 1	7067.681	1	7067.681	2.828	.113
		3 vs. 1	2 vs. 1	3010.440	1	3010.440	2.439	.139
	Error(T*P)	2 vs. 1	2 vs. 1	37482.598	15	2498.840		
		3 vs. 1	2 vs. 1	18513.749	15	1234.250		

Tests of Between-Subjects Effects

.

Measure: MEASU	JRE_1					
Transformed Var	iable: Average					
GENDER	Source	Type III SS	df	Mean Square	F	Sig.
FEMALE	Intercept	860.173	1	860.173	28.489	.003
	Error	150.966	5	30.193		
MALE	Intercept	8204.429	1	8204.429	14.127	.002
	Error	8711.691	15	580.779		

Sig. .164 .238 .421 .882

.324 .705

.266 .282 .892 .475

<u>Ch. 5:</u> <u>ANOVA Table for Total Harmonic Power with 1-between (gender) and 2-within factors (time [Day 5, 6 weeks, 12 weeks postoperatively] & condition [supine vs. standing]).</u>

Descrip	tive Stat	istics							
•	GENDE	R	Mean		Std. De	eviation	N		
THPR2	FEMAL	E	38.328	39	60.997	70	6		
	MALE		22.984	46	24.585	57	16		
	Total		27.169	94	36.966	58	22		
THPS2	FEMAL	E	21.156	52	22.505	53	6		
	MALE		126.57	715	461.25	547	16		
	Total		97.821	9	392.93	353	22		
THPR3	FEMALI	E	234.15	557	256.59) 20	6		
	MALE		116.66	624	128.16	545	16		
	Total		148.70	060	174.00)44	22		
THPS3	FEMALI	Ê	61.259	10	61.094	12	6		
	MALE		97.818	37	215.22	218	16		
	Total		87.847	'9	185.07	/42	22		
THPR4	FEMAL	Ξ	164.54	83	207.92	270	6		
	MALE		299.07	'04	716.81	30	16		
	Total		262.38	325	617.30)77	22		
THPS4	FEMALE	Ē	83.428	8	57.149)1	6		
	MALE		92.325	5	91.976	52	16		
	Total		89.899)1	82.684	1	22		
Tests of	Within-	Subjects	Effects						
Source		Type III	SS	df	Mean S	Square	F	Sig.	
Time		212700).444	2	106350	0.222	1.062	.355	
T • GEN	IDER	59943.	667	2	29971.	.834	.299	.743	
Error(T)		400627	77.359	40	10015	6.934			
Cond		112435	5.470	1	11243	5.470	1.023	.324	
C • GEN	NDER	16186.	793	1	16186.	793	.147	.705	
Error(C)		219782	29.412	20	10989	1.471			
T * C		164868	3.582	2	82434.	291	.815	.450	
T*C*GE	NDER	101842	2.962	2	50921.	481	.504	.608	
Error(T*	C}	404425	6.984	40	101106	5.425			
Tests of	Mithin (Subjects	Contros	**					
Source	<u></u>	Time	Cond	Type III	22	af.	Moon C		c
T		2 ve 1	Conu	007/1 (55	1			Г 2 00 1
•		2 vs. 1		202020	1202	1	202020	307	1 4 90
T * GEN		2 v = 1		31001 (1.303 NNE	1	21001	006	675
		2 vs. 1		3104 70	13	1	2104 7	000	.075
Frror(T)		2 vs 1		944563	281	20	47228	164	.025
2		3 vs. 1		273001	3 631	20	136500	104	
С		0 000 0	2 vs. 1	74956	980	1	74956	980	1 023
C * GEN	IDER		$2 v_{5} 1$	10791	196	1	10791	196	147
Error(C)			2 vs. 1	146521	9.608	20	73260	980	
T * C		2 vs. 1	2 vs. 1	337614	.455	1	337614	455	1 311
		3 vs. 1	2 vs. 1	611277	.780	1	611277	780	1 2 2 5
T* C*G	ENDER	2 vs. 1	2 vs. 1	4836.9	19	1	4836.9	19	019
		3 vs. 1	2 vs. 1	264896	.927	1	264896	.927	531
Error(T*	C)	2 vs. 1	2 vs. 1	515222	2.175	20	257611	.109	
		3 vs. 1	2 vs. 1	998281	1.270	20	499140	.563	
_							-		
Tests of	Betwee	<u>n-Subjec</u>	ts Effect	<u>s</u>					
Source		Type III	SS	df	Mean S	quare	F	Sig.	
Intercept	t	223637	.158	1	223637	7.158	11.523	.003	
GENDER		2821.0	1/	1	2821.0	17	.145	.707	
Error		388196	.826	20	19407.	841			

						<u>Ch. 5:</u>	ANOV	A Table	for Total	Harmoni	c Power with 2-
<u>within</u>	factors (1	time (Day	<u>/ 5, 6 we</u>	eks, 12	weeks po	ostopera	tively] &	conditio	n (supine	e vs. stan	ding]).
Tests o	of Within	Subjects	Effects								
Measu	re: MEAS	URE 1									
GENDE	R	Source		Type III	SS	df	Mean S	quare	F	Sia.	
FEMAL	.E	т		93442.	310	2	46721.	155	2.514	.130	
		Error(T)	ł	185860).167	10	18586.	017			
		С		73543.	411	1	73543.	411	4.890	.078	
		Error(C)		75201.	559	5	15040.	312			
		т + с		36762.	246	2	18381.	123	1.654	.240	
		Error(T*	*C}	111148	3.363	10	11114.	836			
MALE		T		250668	3.046	2	125334	.023	.984	.385	
		Error(T)		382041	7.193	30	127347	2.240			
		C		39691.	719	1	39691:	719	.280	.604	
		Error(C)		212262	7.853	15	141508	3.524			
				390938	1.507	2	195469	.254	1.491	.241	
		Error()	-()	393310	8.621	30	131103	.621			
Tests o	f Within-	Subjects	Contrac	**							
Measur	e: MEAS	URF 1	Contras	<u>15</u>							
GENDE	R Source	0	т	С	Type III	22	df	Mean S	auaro	E C	S :-
FEMAL	ΕT		2 vs. 1	•	83494.1	136	1	83494	136	4 5 1 7	087
			3 vs. 1		53293.8	344	1	53293	844	3 4 2 5	123
	Error(T)		2 vs. 1		92415.3	307	5	18483.	061	0.120	
			3 vs. 1		77794.3	345	5	15558.	869		
	С			2 vs. 1	49028.9	941	1	49028.	941	4.890	.078
	Error(C)			2 vs. 1	50134.3	373	5	10026.	875		
	т + с		2 vs. 1	2 vs. 1	145499	.922	1	145499	9.922	4.042	.101
	_		3 vs. 1	2 vs. 1	24535.1	88	1	24535.	188	.634	.462
	Error(T*	C)	2 vs. 1	2 vs. 1	179991	.596	5	35998.	319		
	~		3 vs. 1	2 vs. 1	193528	.368	5	38705.	674		
MALE	I		2 vs. 1		16860.9	978	1	16860.	978	.297	.594
			3 vs. 1		233945	.740	1	233945	5.740	1.323	.268
	Error(1)		2 vs. 1		852147	.974	15	56809.	865		
	c		3 vs. 1	2	265221	9.286	15	176814	.619		
	Error(C)			2 VS. 1	26461.1	46	1	26461.	146	.280	.604
			2 40 1	2 VS. 1	141508	5.235	15	94339.0	016	704	
			2 VS. 1	2 VS. 1	154000	./20	1	23982/	./25	.724	.408
	Frror(T*	CI	$2 v_{5.1}$	2 VS. 1	104009	3.131	16	154089	3.131	2.361	.145
	Enorti	0,	3 vs 1	2 vs. 1 2 ve 1	978978	J.579 2 901	15	331402	.039		
			0 03. 1	2 V3. 1	3703202	2.301	15	032010	.860		
Tests of	f Betwee	n-Subiect	ts Effects	s							
Measure	e: MEASI	JRE 1									
Transfo	rmed Var	iable: Av	erage								
GENDER	۲	Source	-	Type III	SS	df	Mean So	uare	F	Sia.	
FEMALE	Ē	Intercep	t	60576.7	'80	1	60576.7	80	7.926	.037	
		Error		38213.9	21	5	7642.78	4			
MALE		Intercep	t	253635	.240	1	253635.	.240	10.872	.005	

Error

349942.905

15

23329.527

Descript	ive Stati	stics							
	GENDEF	ł	Mean		Std. De	viation	N		
TPR2	FEMALE		88.141	6	95.787	7	6		
	MALE		83.820	2	92.186	8	16		
	Total		84.998	8	90.877	7	22		
TPS2	FEMALE		64.956	4	59.001	4	6		
	MALE		209.88	88	639.30	40	16		
TODO	FERALE		170.30 E70.60	18	545.09	55	22		
IFNJ			1177 2	94 1 20	729.74	/Z 100	16		
	Total		1013 9	129 820	3156 2	100	22		
TPS3	FEMALE		256.86	34	238 52	53-	6		
	MALE		274.76	06	428.66	77	16		
	Total		269.87	95	380.61	41	22		
TPR4	FEMALE		368.85	44	311.28	52	6		
	MALE		652.09	21	995.92	44	16		
	Total		574.84	54	864.99	49	22		
TPS4	FEMALE		235.87	76	117.60	91	6		
	MALE		266.82	33	182.48	84	16		
	Total		258.38	35	165.16	49	22		
Tests of	Within-S	Subjects	Effects						
Source		Type III	SS	df	Mean S	quare	F	Sig.	
	0.50	3/3192	4.389	2	186596	2.194	.942	.398	
I GEN	IDER	252984	825 000 000	2	126492	.412	.064	.938	
Error(1)		1055033	03.030	40	198158	2.5/6	1 011	227	
C + GEN		220015	5.371	1	190023	9.371	176	.327	
Error(C)	IDEN	386870	121 004	20	103/30	100	.170	.000	
		192413	21.334	20	962066	237	487	618	
T*C*GE	NDER	583088	2.474	2	291544	. 1 2 3	148	863	
Error(T*	C)	790357	33.655	40	197589	3.341	.140	.000	
Tests of	Within-S	Subjects	Contrast	s					
Source	-	Т	С	Type III	SS	df	Mean S	quare	۴
Т		2 vs. 1		369631	0.380	1	369631	0.380	1.359
		3 vs. 1		126500	1.921	1	126500	1.921	4.711
T * GEN	IDER	2 vs. 1		246965	.886	1	246965	.886	.091
		3 vs. 1		32866.2	240	1	32866.	240	.122
Error(T)		2 vs. 1		543984	20.650	20	271992	1.033	
~		3 vs. 1	a	53/064	1.109	20	268532	.055	
			2 VS. 1	130349	2.914	1	130349	12.914	1.011
Error(C)	IDEN		2 vs. 1	220010	.100 47 006	20	120010		.170
		2 vs 1	$2 v_3.1$	768604	2 104	1	768604	2 104	708
		3 vs 1	$2 v_{3}$. 1	168349	5 899	1	168349	5 899	1 665
T*C*GE	NDFR	2 vs 1	2 vs. 1	232455	4 604	1	232455	4 604	214
		3 vs. 1	2 vs. 1	703588	.574	1	703588	574	696
Error(T*	C)	2 vs. 1	2 vs. 1	217120	534.6	20	108560	26.734	
	-	3 vs. 1	2 vs. 1	202208	04.58	20	101104	0.229	
								-	
Tests of	Betweer	n-Subjec	ts Effect	<u>s</u>					
Source		⊤ype III	SS	df	Mean S	quare	F	Sig.	
Intercep	t	219763	4.474	1	219763	4.474	7.337	.014	
GENDER	ł	139088	.522	1	139088	.522	.464	.503	
Error		599065	5.747	20	299532	.787			

Sig. .257 .042 .766 .730

.327 .680

.410 .212 .649 .414 <u>Ch.5:</u> <u>ANOVA Table Total Power with 2-within factors (time [Day 5, 6 weeks, 12 weeks postoperatively] & condition [supine vs. standing]).</u>

Tests o	f Within-Subjects	Effects						
Measur	e: MEASURE_1							
GENDE	R Source	Type III SS	df	Mean Square	F	Sig.		
FEMAL	ЕT	723014.310	2	361507.155	3.329	.078		
	Error(T)	1085873.823	10	108587.382				
	С	228482.188	1	228482.188	2.836	.153		
	Error(C)	402871.403	5	80574.281				
	т•С	136914.265	2	68457.133	.836	.461		
	Error(T*C)	818588.013	10	81858.801				
MALE	Т	5377628.731	2	2688814.366	1.032	.369		
	Error(T)	78177429.208	30	2605914.307				
	С	3598497.470	1	3598497.470	1.410	.254		
	Error(C)	38285050.591	15	2552336.706				
	Т⁺С	4231466.614	2	2115733.307	.811	.454		
	Error(T*C)	78217145.643	30	2607238.188				
Tests o	f Within-Subjects	Contrasts						
Measure	e: MEASURE 1							
GENDER	R Source	Time Cond		Type III SS	df	Mean Square	F	Sig.
FEMAL	ΞT	2 vs. 1		698637.305	1	698637.305	4.589	.085
		3 vs. 1		305959.839	1	305959.839	11.696	.019
	Error(T)	2 vs. 1		761154.169	5	152230.834		
		3 vs. 1		130795.068	5	26159.014		
	С	2 vs. 1		152321.459	1	152321.459	2.836	.153
	Error(C)	2 vs. 1		268580.935	5	53716.187		
	Т * С	2 vs. 1 2 vs. 1		535153.671	1	535153.671	1.302	.306
		3 vs. 1 2 vs. 1		72325.109	1	72325.109	.766	.421
	Error(T*C)	2 vs. 1 2 vs. 1		2055813.185	5	411162.637		
		3 vs. 1 2 vs. 1		471807.199	5	94361.440		
MALE	Т	2 vs. 1		5366307.007	1	5366307.007	1.501	.239
		3 vs. 1		1563532.058	1	1563532.058	4.476	.052
	Error(T)	2 vs. 1		53637266.481	15	3575817.765		
		3 vs. 1		5239846.042	15	349323.069		
	С	2 vs. 1		2398998.313	1	2398998.313	1.410	.254
	Error(C)	2 vs. 1		25523367.060	15	1701557.804		
	T ° C	2 vs. 1 2 vs. 1		16925684.176	1	16925684.176	1.181	.294
		3 vs. 1 2 vs. 1		4183454.577	1	4183454.577	3.177	.095
	Error(T*C)	2 vs. 1 2 vs. 1		215064721.51	15	14337648.100		
		3 vs. 1 2 vs. 1		19748997.385	15	1316599.826		
Tests of	f_Between-Subiec	ts Effects						

Measure: MEAS	JRE_1					
Transformed Var	iable: Average					
GENDER	Source	Type III SS	df	Mean Square	F	Sig.
FEMALE	Intercept	423150.098	1	423150.098	10.101	.025
	Error	209454.559	5	41890.912		
MALE	Intercept	3155591.897	1	3155591.897	8.188	.012
	Error	5781201.188	15	385413.413		

<u>Ch. 5: ANOVA Table: SBR Slope with 1-between (gender) and 2-within factors (time [Day 5, 6 weeks, 12 weeks postoperatively] & condition (supine vs. standing)).</u>

Descrip	tive Statistics								
	GENDER	Mean	SD	Ν					
SLR2	FEMALE	3.6923	3.2867	6					
	MALE	2.5941	1.6988	15					
	Total	2.9079	2.2314	21					
SLS2	FEMALE	2.4823	2.0999	6					
	MALE	1.9330	1.6395	15					
	Total	2.0899	1.7460	21					
SLR3	FEMALE	4.6432	2.7873	6					
	MALE	4.4879	2.1598	15					
	Total	4.5323	2.2832	21					
SLS3	FEMALE	3.4767	1.5809	6					
	MALE	2.3115	.8929	15					
	Total	2.6444	1.2140	21					
SLR4	FEMALE	4.7543	2.6858	6					
	MALE	6.0946	3.2124	15					
	Total	5.7116	3.0679	21					
SLS4	FEMALE	3.3963	1.9840	6					
	MALE	2.8614	.8840	15					
	Total	3.0142	1.2619	21					
Tests of	Tooto of Within Cubinets Effects								
10313 0	- withing appects	<u>s chects</u>							

Source	Type III SS	df	Mean Square	F	Sig.
Т	45.425	2	22.712	6.622	.003
T * GENDER	7.602	2	3.801	1.108	.341
Error(T)	130.335	38	3.430		
Р	68.673	1	68.673	21.323	.000
P • GENDER	3.899	1	3.899	1.211	.285
Error(P)	61.190	19	3.221		
Т*Р	7.945	2	3.973	1.610	.213
T*P*GENDER6	.468	2	3.234	1.311	.282
Error(T*P)	93.771	38	2.468		

Tests of Within-Subjects Contrasts

Source	Time	Posture	Type III SS	df	MS	F	Sig.
T	2 vs. 1		38.119	1	38.119	3.935	.062
	3 vs. 1		87.904	1	87.904	12.114	.003
T * GENDER	2 vs. 1		.229	1	.229	.024	.879
	3 vs. 1		12.893	1	12.893	1.777	.198
Error(T)	2 vs. 1		184.074	19	9.688		
	3 vs. 1		137.873	19	7.256		
Р		2 vs. 1	22.891	1	22.891	21.323	.000
P • GENDER		2 vs. 1	1.300	1	1.300	1.211	.285
Error(P)		2 vs. 1	20.397	19	1.074		
Т*Р	2 vs. 1	2 vs. 1	4.642	1	4.642	2.030	.170
	3 vs. 1	2 vs. 1	15.855	1	15.855	2.188	.156
T*P*GENDER	2 vs. 1	2 vs. 1	5.207	1	5.207	2.277	.148
	3 vs. 1	2 vs. 1	12.593	1	12.593	1.738	.203
Error(T*P)	2 vs. 1	2 vs. 1	43.445	19	2.287		
	3 vs. 1	2 vs. 1	137.701	19	7.247		

Source	Type III SS	df	Mean Square	F	Sig.
Intercept	434.676	1	434.676	119.248	.000
GENDER	1.113	1	1.113	.305	.587
Error	69.258	19	3.645		

Tests o	f Within-S	<u>Subjects</u>	Effect	5								
Measur	e: MEASL	JRE_1										
GENDE	R	Source			Type III	SS	df	MS		۶	Sig.	
FEMAL	E	т			7.690		2	3.845		.551	.593	
		Error(T)			69.775		10	6.977				
		P			13.946		1	13.946		3.668	.114	
		Error(P)			19.009		5	3.802				
		Т * Р			6.048E-02		2	3.024E	-02	.015	.985	
		Error(T*	•P)		20.257		10	2.026				
MALE	MALE T				73.572		2	36.786		17.008	.000	
		Error(T)			60.560		28	2.163				
		P			92.134		1	92.134		30.580	.000	
		Error(P)			42.181		14	3.013				
		T * P			25.073		2	12.536		4.775	.016	
		Error(T*P)		73.514		28	2.626					
Tests o	<u>f Within-S</u>	ubjects	Contra	ist	s							
Measur	e: MEASU	IRE_1										
GENDE	R Source		Т		Ρ	Type III	SS	df	Mean Se	quare	F	Sig.
FEMAL	ΞT		2 vs.	1		11.353		1	11.353		.484	.518
			3 vs.	1		11.713		1	11.713		.670	.450
	Error(T)		2 vs.	1		117.364	1	5	23.473			
			3 vs.	1		87.358		5	17.472			
	P				2 vs. 1	4.649		1	4.649		3.668	.114
	Error(P)				2 vs. 1	6.336		5	1.267			
	Т*Р		2 vs.	1	2 vs. 1	5.689E-	03	1	5.689E-	03	.003	.960
			3 vs.	1	2 vs. 1	6.570E-	02	1	6.570E-	02	.011	.922
	Error(T*F	>) .	2 vs.	1	2 vs. 1	10.101		5	2.020			
			3 vs.	1	2 vs. 1	30.705		5	6.141			
MALE	Т		2 vs.	1		38.726		1	38.726		8.127	.013
			3 vs.	1		147.111	l	1	147.111	l	40.771	.000
	Error(T)		2 vs.	1		66.710		14	4.765			
			3 vs.	1		50.515		14	3.608			
	Р				2 vs. 1	30.711		1	30.711		30.580	.000
	Error(P)				2 vs. 1	14.060		14	1.004			
	Т † Р		2 vs.	1	2 vs. 1	17.221		1	17.221		7.231	.018
			3 vs.	1	2 vs. 1	49.620		1	49.620		6.493	.023
	Error(T*F	²)	2 vs.	1	2 vs. 1	33.344		14	2.382			
			3 vs.	1	2 vs. 1	106.996	5	14	7.643			
-		.										
lests of	Between	-Subjec	ts Effe	ct	<u>s</u>							
Measure	: MEASU	RE_1										
Iransfo	rmed Vari	able: Av	erage									

0					
Source	Type III SS	df	Mean Square	F	Sig.
Intercept	167.926	1	167.926	33.989	.002
Error	24.703	5	4.941		
Intercept	342.816	1	342.816	107.720	.000
Error	44.555	14	3.182		
	Source Intercept Error Intercept Error	SourceType III SSIntercept167.926Error24.703Intercept342.816Error44.555	Source Type III SS df Intercept 167.926 1 Error 24.703 5 Intercept 342.816 1 Error 44.555 14	SourceType III SSdfMean SquareIntercept167.9261167.926Error24.70354.941Intercept342.8161342.816Error44.555143.182	SourceType III SSdfMean SquareFIntercept167.9261167.92633.989Error24.70354.941Intercept342.8161342.816107.720Error44.555143.182

Ch. 5: ANOVA Table for **R-R Interval** with 1-between (gender) and 2-within factors (time [Day 5, 6 weeks, 12 weeks postoperatively] & condition [supine vs. standing]).

Descrip	tive Stati	istics								
	GENDE	R	Mean		Std. De	viation	Ν			
RRIR2	FEMAL	E	718.28	45	113.92	32	6			
	MALE		707.06	71	92.078	0	16			
	Total		710.12	64	95.771	8	22			
RRIS2	FEMAL	=	690.40	40	113 46	18	6			
	MALE	-	627 56	57	115 56	26	16			
	Total		644 70	34	115.86	51	22			
BRIR3	FEMALE	=	756 41	54 60	110.00	70	6			
	MALE	-	780.20	80	112 24	21	16			
	Total		700.23	47	112.34	10	22			
PPICS		=	702 14	4/ 25	100.00	22	22 C			
nniss		-	702.14	20	140.99	22	10			
	Tetel		720.40	/3	143.27	/3				
DDIDA	CENANCE	-	715.40	90	132.51	91	22			
nnin 4		2	010.32	8/ cr	85.412	10	5			
	MALE		881.99	55	121.24	10	16			
DDICA	Total	-	862.45	00	115.34	19	22			
RRI54	FEMALE	-	/38./4	89	65.536	1	6			
	MALE		/69./2	15	104.00	21	16			
	iotal		/61.2/	44	94.593	8	22			
Tests of		Subjects	Effecto							
Source	A A I CITATION		CO	44	Maan C		c	C:-		
T		220542	255	2	114071	uare cro	Г 14 072	Sig.		
T + GEN		220040	.300	2	17500	462	14.973	.000		
	IDEN	205271	224 595	2	1/090.	40Z	2.306	.113		
C		110401	.525	40	110401	88	01 700	000		
C + CEN		119491 6066 E1	.294	1	119491	.294	21.702	.000		
	NDER	110110	040	1	0900.5	11	1.205	.274		
		7024 46	.242	20	5505.9	12		~~~		
		7824.10	00	2	3912.0	53	1.117	.337		
	NDER	2527.90		2	1263.9	50	.361	.699		
Error(1		140093	.508	40	3502.3	38				
Tests of	Within-S	Subjects	Contrast	s						
Source		Time	Cond	Type III	SS	df	Mean Se	auare	F	Sia.
Т		2 vs. 1		50898.6	502	1	50898.0	502	6.118	.022
		3 vs. 1		228307	.485	1	228307	.485	29.580	.000
T * GEN	IDER	2 vs. 1		14745.8	312	1	14745.8	312	1.773	.198
		3 vs. 1		34059.4	172	1	34059.4	172	4.413	.049
Error(T)		2 vs. 1		166384	.170	20	8319.20)9		
		3 vs. 1		154367	.124	20	7718.3	56		
С			2 vs. 1	79660.8	363	1	79660.8	363	21.702	.000
C * GEN	IDER		2 vs. 1	4644.34	11	1	4644.34	41	1.265	.274
Error(C)			2 vs. 1	73412.1	161	20	3670.60)8		, ,
T * C		2 vs. 1	2 v s 1	197 178	2	1	197 178	2	012	914
		3 vs. 1	2 vs. 1	25518.2	- 72	1	25518 2	, , , , , , ,	1 769	199
T*C*GE	NDFR	2 vs. 1	2 vs 1	9259.04	17	1	9259 04	., <u>.</u> 17	567	460
		3 vs. 1	2 vs 1	520 993	2	1	520 993	2	036	851
Error(T*	C)	2 vs. 1	2 vs 1	326361	554	20	16318 (,)78	.000	.001
	-1	3 vs. 1	2 vs. 1	288562	.239	20	14428.1	12		
_	_									
Tests of	Betweer	<u>1-Subject</u>	s Effects	5			_			
Source		Type III S	SS	df	Mean So	quare	F		Sig.	
Intercep	t	9608634	4.681	1	960863	4.681	1183.87	'3	.000	
GENDER		607.430	1	1	607.430	כ	.075	.787		
Error		162325.	485	20	8116.27	74				
Ch. 5: ANOVA Table R-R Interval with 2-within factors (time [Day 5, 6 weeks, 12 weeks postoperatively] & condition [supine vs. standing]).

Tests o	of Within-Subject	s Effects								
Measur	re: MEASURE_1									
GENDE	R Source	Type II	I SS	df	Mean	Square	F	Sig.		
FEMAL	ΕT	30389	.826	2	15194	1.913	2.949	.098		
	Error(T)	51517	.646	10	5151.	765				
	С	23634	.126	1	23634	1.126	17.537	.009		
	Error(C)	6738.1	98	5	1347.	640				
	Т + С	2905.7	724	2	1452.	862	2.564	.126		
	Error(T*C)	5666.1	82	10	566.6	18				
MALE	Т	40247	6.977	2	20123	38.489	23.791	.000		
	Error(T)	25375	3.878	30	8458.	463				
	С	16881	4.974	1	16881	4.974	24.494	.000		
	Error(C)	10338	0.043	15	6892.	003				
	т•с	11230	.081	2	5615.	041	1.253	.300		
	Error(T*C)	13442	7.326	30	4480.	911				
Tests o	f Within-Subjects	s Contras	ts							
Measur	e: MEASURE 1		<u></u>							
GENDE	R Source	т	С	Type III	SS	df	Mean Sc	ware	F	Sig
FEMAL	ET	2 vs. 1	-	3730.5	12	1	3730.51	122.0	1.997	217
		3 vs. 1		29563.	644	1	29563.6	544	4.975	.076
	Error(T)	2 vs. 1		9338.9	93	5	1867.79	9		
		3 vs. 1		29709.	708	5	5941.94	12		
	С		2 vs. 1	15756.0	084	1	15756.0)84	17.537	.009
	Error(C)		2 vs. 1	4492.1	32	5	898.426	5		
	Т⁺С	2 vs. 1	2 vs. 1	4179.5	12	1	4179.51	2	1.836	.233
		3 vs. 1	2 vs. 1	11457.	767	1	11457.7	67	5.275	.070
	Error(T*C)	2 vs. 1	2 vs. 1	11380.8	857	5	2276.17	1		
		3 vs. 1	2 vs. 1	10860.	926	5	2172.18	35		
MALE	т	2 vs. 1		110400	.060	1	110400	.060	10,545	.005
		3 vs. 1		402169	.702	1	402169	702	48.393	.000
	Error(T)	2 vs. 1		157045	.178	15	10469.6	579		
		3 vs. 1		124657	.415	15	8310.49	4		
	С		2 vs. 1	112543	.316	1	112543	316	24,494	.000
	Error(C)		2 vs. 1	68920.0	029	15	4594.66	9		
	T * C	2 vs. 1	2 vs. 1	6191.04	48	1	6191 04	.8	295	595
		3 vs. 1	2 vs. 1	17184.6	508	1	17184.6	08	.928	.351
	Error(T*C)	2 vs. 1	2 vs. 1	314980	.697	15	20998.7	13		
	. ,	3 vs. 1	2 vs. 1	277701	.313	15	18513.4	21		
								-		

Measure: ME	ASURE_1					
Transformed	Variable: Average	Э				
GENDER	Source	Type III SS	df	Mean Square	F	Sig.
FEMALE	Intercept	3250653.718	1	3250653.718	382.943	.000
	Error	42443.055	5	8488.611		
MALE	Intercept	8948533.955	1	8948533.955	1119.664	.000
	Error	119882.430	15	7992.162		

<u>Ch. 5: ANOVA Table for Systolic Blood Pressure with 1-between (gender) and 2-within factors (time [Day 5, 6 weeks, 12 weeks postoperatively] & condition (supine vs. standing]).</u>

Descrip	<u>tive Stati</u>	<u>stics</u>								
	GENDER	7	Mean		Std. De	viation	N			
SBPR2	FEMALE		98.897	5	22.834	-6	6			
	MALE		107.59	11	19.522	2	15			
	Total	_	105.10	72	20.330	95	21			
SBPS2	FEMALE		124.94	60	29.779	4	6			
	MALE		121.27	26	16.101	5	15			
	Total		122.32	21	20.151	3	21			
SBPR3	FEMALE		116.55	18	38.850	17	6			
	MALE		110.67	67	16.289	3	15			
	Total	_	112.35	53	23.884	.7	21			
SBPS3	FEMALE		147.06	65	36.057	6	6 ·			
	MALE		120.89	01	11.441	4	15			
	Total	_	128.36	91	23.738	2	21			
SBPR4	FEMALE		133.06	40	24.689	9	6			
	MALE		119.77	85	16.238	3	15			
	Total		123.57	44	19.359	7	21			
SBPS4	FEMALE		152.31	17	30.967	3	6			
	MALE		126.35	57	13.822	3	15			
	Total		133.77	17	22.756	3	21			
Tests of	f Mithin-9	Subjects	Efforte							
Source	<u>vvicini-</u>	Type III	<u>SS</u>	df	Mean S	quare	E	Sia		
T		6666 96	51	2	3333 4	81	, 6 976	003		
T + GEN	IDER	2417 93	20	2	1208 0	60	2 5 3 0	.003		
Frror(T)		18157 3	261	28	1200.3	3	2.550	.035		
P		8068 63	21	1	8068 6	21	<u> </u>	000		
P + GEN		1468 29	24	1	1/68 2	84	5 15/	.000		
Error(P)		5412.89	35	10	284 88	0+ 0	J.1J4	.035		
T + P		297 468	20	2	148 73	5 A	554	579		
 T*P*GF		86 625		2	43 312	-	161	852		
Error(T*	P)	10207.9	924	38	268.63	0	.101	.052		
	•					-				
Tests of	Within-S	Subjects	Contrast	<u>.s</u>						
Source		Т	Ρ	Type III	SS	df	Mean S	quare	F	Sig.
т		2 vs. 1		3866.53	36	1	3866.5	36	4.787	.041
		3 vs. 1		13306.8	377	1	13306.8	877	14.402	.001
T • GEN	IDER	2 vs. 1		2944.94	41	1	2944.9	41	3.646	.071
		3 vs. 1		4198.04	42	1	4198.04	42	4.543	.046
Error(T)		2 vs. 1		15346.7	770	19	807.72	5		
-		3 vs. 1		17555.7	799	19	923.98	9		
Ρ			2 vs. 1	2689.54	10	1	2689.5	40	28.322	.000
P * GEN	IDER		2 vs. 1	489.428	3	1	489.42	8	5.154	.035
Error(P)		_	2 vs. 1	1804.29	95	19	94.963			
т•Р		2 vs. 1	2 vs. 1	2.134		1	2.134		.002	.962
		3 vs. 1	2 vs. 1	414.329	9	1	414.32	9	.855	.367
T*P*GE	NDER	2 vs. 1	2 vs. 1	134.900	2	1	134.90	2	.149	.704
		3 vs. 1	2 vs. 1	.197		1	.197		.000	.984
Error(T*	P)	2 vs. 1	2 vs. 1	17232.1	120	19	906.954	4		
		3 vs. 1	2 vs. 1	9206.62	22	19	484.55	9		
Tests of	Betweer	n-Subject	s Effect	s						
Source		Type III	SS	- df	Mean S	quare	F		Sia	
Intercen	t	521102	.658	1	521102	2.658	1852.6	58	.000	
GENDEF	{	1045.73	31	1	1045.7	31	3.718		.069	
Error		5344.18	36	19	281.27	3				
					-					

<u>Tests o</u> Measur	f Within-9	Subjects	Effects								
GENDE	R	Source		Type ill	22	df	Mean S	auaro	F	Sia	
FFMAL	F	T		5841 6	26	2	2020 0	12	2 609	122	
	-	Frror(T)		11201	070	10	1120.0	07	2.008	.123	
		P		5747 2	82	1	5747 2	07 02	14 040	012	
		· Error/P		2046 7	02	5	J/4/.2	1	14.040	.015	
		T • D		102 1/	2	5	403.34	• 1	124	077	
		Frror(T*	• P)	7221 2	J A 1	10	70210		.134	.077	
MALE		T	• 7	1201.2	75	2	647 22	+ 0	2 605	001	
		Frror(T)		6056 1	7J 01	20	240 42	0 E	2.805	.092	
		D		2221 2	31 77	20	240.43	ט דר	0.655	000	
		Frror(P)		23266 1	// 82	ו 1 ג	2321.3	// つ	9.000	.008	
				120 20	02 A	2	240.44	2	900	422	
		Frror(T		2076 6	+ 02	∠ 20	34.03Z	^	.090	.422	
			F1	2970.0	53	20	100.31	0			
Tests of	f Within-S	Subjects	Contras	<u>ts</u>							
Measure	e: MEASL	JRE_1									
GENDER	R Source		Ť	Р	Type III	SS	df	Mean So	quare	F	Sig.
FEMALE	ΞT		2 vs. 1		4746.1	12	1	4746.11	2	1.916	.225
			3 vs. 1		11358.	623	1	11358.6	523	8.427	.034
	Error(T)		2 vs. 1		12387.	644	5	2477.52	29		
			3 vs. 1		6739.8	01	5	1347.96	50		
	Ρ			2 vs. 1	1915.7	61	1	1915.76	51	14.040	.013
	Error(P)			2 vs. 1	682.23	5	5	136.447	,		
	Т * Р		2 vs. 1	2 vs. 1	59.840		1	59.840		.023	.886
			3 vs. 1	2 vs. 1	138.75	4	1	138.754	ł	.140	.723
	Error(T*I	P)	2 vs. 1	2 vs. 1	13234.3	810	5	2646.96	52		
			3 vs. 1	2 vs. 1	4946.3	68	5	989.274	ł		
MALE	Т		2 vs. 1		54.805		1	54.805		.259	.619
			3 vs. 1		2237.0	52	1	2237.05	2	2.896	.111
	Error(T)		2 vs. 1		2959.12	26	14	211.366	5		
			3 vs. 1		10815.9	997	14	772.571			
	Р			2 vs. 1	773.792	2	1	773.792		9.655	.008
	Error(P)			2 vs. 1	1122.00	51	14	80.147			
	Т + Р		2 vs. 1	2 vs. 1	90.210		1	90.210		.316	.583
			3 vs. 1	2 vs. 1	378.53	7	1	378.537		1.244	.283
	Error(T*F	>)	2 vs. 1	2 vs. 1	3997.30	09	14	285.522			
			3 vs. 1	2 vs. 1	4260.2	54	14	304.304			
					_			+ .			

Tests of Between-Subjects Effects Measure: MEASURE_1

Transformed	Variable: Average	e				
GENDER	Source	Type III SS	df	Mean Square	F	Sig.
FEMALE	Intercept	199092.600	1	199092.600	353.310	.000
	Error	2817.531	5	563.506		
MALE	Intercept	416028.180	1	416028.180	2305.180	.000
	Error	2526.655	14	180.475		

APPENDIX F ANOVA TABLES Chapter 6

Ch 6: ANOVA Table: Fractal Power with 1-between (gender) and 2-within factors (time [6 weeks vs. 12
weeks postoperatively] & condition [supine vs. exercise]).

Descrip	tive Stat	tistics									
	GENDE	R	Mean		Std. De	viation	N				
FPR3	FEMAL	E	272.21	88	334.18	36	6				
	MALE		137.28	60	79.585	i1	13				
	Total		179.89	64	198.48	63	19				
FPE3	FEMAL	E	41.268	6	38.026	8	6				
	MALE		87.081	7	70.634	7	13				
	Total		72.614	4	64.857	8	19				
FPR4	FEMAL	E	204.30	61	133.71	17	6				
	MALE		280.53	91	244.28	12	13				
	Total		256.46	55	214.64	.84	19				
FPE4	FEMAL	E	71.511	1	33.928	1	6				
	MALE	-	101.66	10	86.057	3	13				
	Total		92.140	0	73 921	õ	19				
				-		•					
Tests o	f Within-	Subjects	Effects								
Source			Sum of	Squares	df	Mean S	auare	F	Sia.		
TIME			14818.	922	1	14818.	922	.863	.366		
TIME *	GENDEF	2	39227.	090	1	39227.	090	2.284	.149		
Error(TI	ME)		291952	2.142	17	17173.	655				
COND			360693	3.215	1	360693	3.215	20.302	.000		
COND '	• GENDE	R	18611.	280	1	18611.	280	1.048	.320		
Error(CC	OND)		302026	5.263	17	17766.	251				
TIME *	COND		955.89	1	1	955.89	1	038	847		
TIME +	COND *	GENDEF	8 52805	459	1	52805	459	2 1 2 3	163		
Error(TI	ME*CON	ID)	422881	.595	17	24875.	388				
Tests of	<u>f Within-</u>	Subjects	Contras	ts							
Source		TIME (T	·)	COND (C)	Sum of	Squares	df	Mean Square	F	Sia.
TIME		T4 vs. 1	ГЗ		-	14818.	922	1	14818.922	.863	366
T * GEN	NDER	T4 vs. 1	3			39227.	090	1	39227.090	2.284	.149
Error(TII	ME)	T4 vs. 1	3			291952	.142	17	17173.655		
COND				Ex vs. S	Su	360693	.215	1	360693.215	20.302	000
C 🏾 GEN	NDER			Ex vs. S	Su	18611.	280	1	18611.280	1 048	320
Error(CC	DND)			Ex vs. S	iu	302026	.263	17	17766.251		.020
т • с		T4 vs. 1	-3	Ex vs. S	iu	3823.5	56	1	3823.566	038	847
T * C *	G	T4 vs. 1	-3	Ex vs. S	- Su	211221	.837	1	211221.837	2 1 2 3	163
Error(T*	C)	T4 vs. 1	-3	Ex vs. S	iu	169152	6.380	17	99501.552	2.120	
								, -			
<u>Tests of</u>	Betwee	n-Subject	ts Effect	s							
Source		Sum of	Squares	df	Mean Se	quare	F	Sig.			
Intercep	t	366936	.294	1	366936	.294	42.671	.000			
GENDEF	3	76.465		1	76.465		.009	.926			
Error		146184	.912	17	8599.1	12					
GENDEF Error	3	76.465 146184	.912	1 17	76.465 8599.1	12	.009	.926			

Ch. 6: ANOVA Table Fractal Power with 2-within factors (time [6 weeks vs. 12 weeks postoperatively] & condition [supine vs. exercise])

Tests of Measure	Within-	Subjects Effects								
GENDEE	2	Source	Sum of Squares	df	Mean S	auare	F	Sia		
FFMALE			2128 567	1	2128 5	67	่กรจ	31g. 777		
	•	Error(TIME)	119190 433	5	23838	187	.000			
		COND (C)	198465 901	1	198465	901	5 848	060		
			160697.055	5	22027	501	J.040	.000		
		T + C	14451 699	1	1// 51	800	642	450		
		Frror(T + C)	112204 602	י ה	22460	220	.045	.433		
MALE			90960 957	1	22400.	357	6 6 2 4	025		
			172761 700	10	14206	207	5.024	.035		
		COND	170555 009	12	170555	000	15 465	002		
		Error(COND)	122220 200	1 7	110000	102	15.405	.002		
			132330.300 E2010 12E	12	52010	192	2 0 7 0	175		
		Error/T + C)	33610.125	1	25010.	120	2.079	.175		
			310370.993	12	20001.4	+10				
Tests of	Within-9	Subjects Contract	c							
Measure	MEAS	JRF 1	2							
GENDER	Source			Sum of	Sauaras	Чf	MS		F	Sia
FFMALE	TIME	T4 vs T3		2128 5/	57	1	2128 56	57	่กรจ	777
	Frror(T)	T4 vs. T3		110100	433	5	23232 ()/)87	.005	.,,,
	COND		Ex ve Su	109/65	001	1	100/65	001	5 9/9	060
	Error(C)		Ex vs. Su	160697	965	5	22027 6	.901 :01	J.040	.000
	T + C	TANE TO	Ex vs. Su	57906	.955 705	1	53337.0	705 1	642	450
	Error/T+	(14 V3. 15 (1	EX VS. 30	57800.	/35	•	57800.7	95	.045	.455
			EV VE SU	449218	407	5	80843 6	291		
		14 93. 13	LX V3. 00	443210	.407	5	05045.0	101		
MALE	TIME	T4 vs. T3		80960 9	957	1	80960 9	157	5 624	035
	Error(T)	T4 vs. T3		172761	709	12	14396.8	209	0.02 .	.000
	COND		Ex vs. Su	170555	998	1	170555	998	15 465	002
	Error(C)		Ex vs. Su	132338	308	12	11028 1	92	10.700	.002
	T * C	T4 vs T3	Ex vs. Su	215240	499	1	215240	199	2 079	175
	Frror(T '	• C)	LX V3. 00	210240	.400	•	213240	.400	2.070	7 5
	2.1.0.()	T4 vs. T3	Ex vs. Su	124230	7.973	12	103525	.664		

Tests of Between-Subjects Effects Measure: MEASURE_1 Transformed Variable: Average

	5				
Source	Sum of Squares	df	Mean Square	F S	Sig.
Intercept	130229.957	1	130229.957	10.033 .	025
Error	64897.612	5	12979.522		
Intercept	298938.627	1	298938.627	44.131 .0	000
Error	81287.300	12	6773.942		
	Source Intercept Error Intercept Error	Source Sum of Squares Intercept 130229.957 Error 64897.612 Intercept 298938.627 Error 81287.300	Source Sum of Squares df Intercept 130229.957 1 Error 64897.612 5 Intercept 298938.627 1 Error 81287.300 12	SourceSum of Squares dfMean SquareIntercept130229.9571130229.957Error64897.612512979.522Intercept298938.6271298938.627Error81287.300126773.942	Source Sum of Squares Mean Square F S Intercept 130229.957 1 130229.957 10.033 I Error 64897.612 5 12979.522 I Intercept 298938.627 44.131 I Error 81287.300 12 6773.942 6773.942 1 1

<u>Ch. 6:</u> <u>ANOVA Table: High Frequency Power with 1-between (gender) and 2-within factors (time [6 weeks vs. 12 weeks postoperatively] & condition [supine vs. exercise]).</u>

tive Statistics			
GENDER	Mean Std. Dev	viation N	
FEMALE	44.685412	50.202652	6
MALE	16.831676	23.480489	13
Total	25.627593	35.278668	19
FEMALE	8.030902	10.624763	6
MALE	4.509197	6.142266	13
Total	5.621314	7.703074	19
FEMALE	42.289355	62.063771	6
MALE	32.161514	31.681698	13
Total	35.359779	41.982409	19
FEMALE	10.386673	12.957043	6
MALE	20.299141	21.743525	13
Total	17.168888	19.601823	19
	tive Statistics GENDER FEMALE MALE Total FEMALE MALE Total FEMALE MALE Total FEMALE MALE MALE Total FEMALE MALE Total	tive StatisticsGENDERMeanStd. DevFEMALE44.685412MALE16.831676Total25.627593FEMALE8.030902MALE4.509197Total5.621314FEMALE42.289355MALE32.161514Total35.359779FEMALE10.386673MALE20.299141Total17.168888	tive StatisticsGENDERMeanStd. DeviationNFEMALE44.68541250.202652MALE16.83167623.480489Total25.62759335.278668FEMALE8.03090210.624763MALE4.5091976.142266Total5.6213147.703074FEMALE42.28935562.063771MALE32.16151431.681698Total35.35977941.982409FEMALE10.38667312.957043MALE20.29914121.743525Total17.16888819.601823

Tests of Within-Subjects Effects Measure: MEASURE 1

Source	Sum of Squares	df	Mean Square	F	Sig.
TIME	991.354	1	991.354	3.213	.091
TIME * GENDER	996.501	1	996.501	3.230	.090
Error(TIME)	5245.162	17	308.539		
COND	8827.431	1	8827.431	10.479	.005
COND • GENDER	2020.718	1	2020.718	2.399	.140
Error(COND)	14320.422	17	842.378		
TIME * COND	27.879	1	27.879	.078	.783
T * C * G	18.904	1	18.904	.053	.821
Error(TIME*COND)	6066.013	17	356.824		

Tests of Within-Subjects Contrasts Measure: MEASURE 1

		0010	a (a			-	<u>.</u>
Source	IME	COND	Sum of Squares	dt	Mean Square	F	Sig.
TIME	T4 vs T3		991.354	1	991.354	3.213	.091
T * G	T4 vs T3		996.501	1	996.501	3.230	.090
Error(T)	T4 vs T3		5245.162	17	308.539		
COND		Ex vs. Su	8827.431	1	8827.431	10.479	.005
C • G		Ex vs. Su	2020.718	1	2020.718	2.399	.140
Error(C)		Ex vs. Su	14320.422	17	842.378		
т•с	T4 vs T3	Ex vs. Su	111.516	1	111.516	.078	.783
T * C * G	T4 vs T3	Ex vs. Su	75.614	1	75.614	.053	.821
Error(T*C)	T4 vs T3	Ex vs. Su	24264.051	17	1427.297		
	•						

JRE_1				
iable: Average				
Sum of Squares	df	Mean Square	F	Sig.
8238.864	1	8238.864	17.281	.001
256.061	1	256.061	.537	.474
8105.051	17	476.768		
	JRE_1 iable: Average Sum of Squares 8238.864 256.061 8105.051	JRE_1 iable: Average Sum of Squares df 8238.864 1 256.061 1 8105.051 17	JRE_1 iable: Average Sum of Squares df Mean Square 8238.864 1 8238.864 256.061 1 256.061 8105.051 17 476.768	JRE_1 iable: Average Sum of Squares df Mean Square F 8238.864 1 8238.864 17.281 256.061 1 256.061 .537 8105.051 17 476.768

Descrip	tive Stat	istics										
FEMAL	к E	HFR3	44.685	412	50 202	eviation P652	N 6					
	_	HFE3	8.0309	02	10.624	763	õ					
		HFR4	42.289	355	62.063	8771	6					
		HFE4	10.386	673	12.957	/043	6					
MALE		HFR3	16.831	6/6 97)489)66	13					
		HFR4	32,161	514	31.681	698	13					
		HFE4	20.299	141	21.743	525	13					
Tests o	f Within-	Subjects	Effects									
Measur	e: MEAS	URE 1										
GENDE	R	Source			Sum of	Squares	df	Mean S	quare	F	Sig.	
FEMALI	Ξ	TIME			2.434E	-03	1	2.434E	-03	.000	.998	
		Error(TI	ME)		2405.4	-26	5	481.08	5	0.004	400	
		Fror(C)	וסאכ		11402	33 821	1 5	2280 5	33 64	3.091	.139	
		TIME *	COND		33.870		1	33.870	0-	.050	.832	
		Error(TI	ME*CON	ID)	3378.4	10	5	675.68	2			
MALE		TIME			3147.4	33	1	3147.4	33	13.300	.003	
		Error(TI	ME)		2839.7	36	12	236.64	5			
			וחאר		1900.9	48	1	1900.9	48 2	7.819	.016	
		TIME *	COND		.688	01	12	.688	3	.003	957	
		Error(TI	ME*CON	ID)	2687.6	03	12	223.96	7			
Tests of	f Within-	Subiects	Contrast	ts								
Measure	: MEASI	JRE_1										
GENDEF	R Source	TIME (T)	COND	(C)	Sum of	Squares	df	Mean So	quare	F	Sig.
FEMALE		T4 vs. 1	13			2.434E	03	1	2.434E-	03	.000	.998
	Error(1)	14 vs. 1	3	Evine	c	2405.4	26	5	481.085	5	0.001	100
	Error(C)			EX VS. Fx VS	au Su	11402	33 R21	ו ה	2280 56	33 34	3.091	.139
	T * C	T4 vs. T	-3	Ex vs.	Su	135.47	9	1	135.479)	.050	.832
	Error(T	• C)										
		T4 vs. T	3	Ex vs.	Su	13513.	639	5	2702.72	28		
MALE		T4 vs. T	3			3147.4	33	1	3147.43	33	13.300	.003
		14 VS. I	3	Exile	c.,	2839.7	36	12	236.645) O	7 9 1 0	016
	Error(C)			Ex vs.	Su	2917 6	+0)1	12	243 133	+0	7.019	.010
	T • C	T4 vs. T	.3	Ex vs.	Su	2.752		1	2.752		.003	.957
	Error(T	• C)										
		T4 vs. T	3	Ex vs. 3	Su	10750.4	112	12	895.868	8		
Tests of	Between	n-Subject	ts Effect	5								
Transfor	med Var	iable: Av	erage									
GENDEF		Source	0.190	Sum of	Squares	df	Mean Sc	uare	F	Sia.		
FEMALE		Intercep	t	4165.3	30	1	4165.33	80	5.181	.072		
		Error		4019.5	71	5	803.914	Ļ				
MALE		Intercep	î	4425.4	16	1	4425.41	6	12.998	.004		
		Error		4085.4	8U	12	340.457	T				

<u>Ch. 6:</u> <u>ANOVA Source Table: High Frequency Power with 2-within factors (time [6 weeks vs. 12 weeks postoperatively] & condition [supine vs. exercise]).</u>

<u>Ch. 6:</u> <u>ANOVA Source Table: Low Frequency Power with 1-between (gender) and 2-within factors (time [6 weeks vs. 12 weeks postoperatively] & condition [supine vs. exercise]).</u>

Descrip	otive Statistics			
	GENDER	Mean	Std. Deviation	N
LFR3	FEMALE	148.753810	216.948798	6
	MALE	74.890447	92.621325	13
	Total	98.215719	141.554054	19
LFE3	FEMALE	18.567485	30.675756	6
	MALE	24.088451	23.345093	13
	Total	22.344988	25.133050	19
LFR4	FEMALE	77.517853	67.684820	6
	MALE	89.928577	106.677741	13
	Total	86.009401	94.310415	19
LFE4	FEMALE	8.420087	6.201648	6
	MALE	47.498652	52.365934	13
	Total	35.158053	46.766490	19

Tests of Within-Subjects Effects Measure: MEASURE 1

Source	Sum of Squares	df	Mean Square	F	Sig.
TIME (T)	1891.927	1	1891.927	.424	.524
T • GENDER (G)	14737.518	1	14737.518	3.305	.087
Error(T)	75816.164	17	4459.774		
COND (C)	87817.344	1	87817.344	10.965	.004
C * G	11543.038	1	11543.038	1.441	.246
Error(C)	136146.968	17	8008.645		
T * C	4951.747	1	4951.747	.850	.369
T * C * G	2852.160	1	2852.160	.490	.494
Error(T*C)	99018.199	17	5824.600		

Tests of Within-Subjects Contrasts Measure: MEASURE 1

Measure: MEA	ASURE_I						
Source	TIME (T)	COND (C)	Sum of Squares	s df	Mean Square	F	Sig.
TIME	T4 vs. T3		1891.927	1	1891.927	.424	.524
T • G	T4 vs. T3		14737.518	1	14737.518	3.305	.087
Error(T)	T4 vs. T3		75816.164	17	4459.774		
COND		Ex vs. Su	87817.344	1	87817.344	10.965	.004
C * G		Ex vs. Su	11543.038	1	11543.038	1.441	.246
Error(C)		Ex vs. Su	136146.968	17	8008.645		
т * С	T4 vs. T3	Ex vs. Su	19806.988	1	19806.988	.850	.369
T * C * G	T4 vs. T3	Ex vs. Su	11408.641	1	11408.641	.490	.494
Error(T*C)	T4 vs. T3	Ex vs. Su	396072.797	17	23298.400		

SURE_1				
ariable: Average				
Sum of Squares	df	Mean Square	F	Sig.
61520.490	1	61520.490	18.101	.001
72.875	1	72.875	.021	.885
57777.119	17	3398.654		
	SURE_1 ariable: Average Sum of Squares 61520.490 72.875 57777.119	SURE_1 ariable: Average Sum of Squares df 61520.490 1 72.875 1 57777.119 17	SURE_1 ariable: Average Sum of Squares df Mean Square 61520.490 1 61520.490 72.875 1 72.875 57777.119 17 3398.654	SURE_1 ariable: Average Sum of Squares df Mean Square F 61520.490 1 61520.490 18.101 72.875 1 72.875 .021 57777.119 17 3398.654

<u>Ch. 6:</u> <u>ANOVA Source Table:</u> Low Frequency Power with 2-within factors (time [6 weeks vs. 12 weeks postoperatively] & condition [supine vs. exercise]).

Tests of	Within-	Subjects Effects									
Measure	: MEAS	URE 1									
GENDER		Source		Sum of	Squares	df	Mean Se	quare	F	Sig.	
FEMALE		TIME (T)		9934.87	76	1	9934.8	76	.946	.375	
		Error(T)		52496.0	079	5	10499.2	216			
		COND (C)		59571.2	224	1	59571.	224	4.124	.098	
		Error(C)		72221.1	106	5	14444	221			
		T + C		5597.7	18	1	5597.7	18	805	.411	
		Error(T*C)		34787.7	746	5	6957.5	19			
MALE		TIME		4804.39	91	1	4804.39	a 1	2 4 7 2	142	
		Error(T)		23320.0	085	12	1943 34	10			
		COND		28249.6	521	1	28249 6	521	5 303	040	
		Frror(C)		63925.8	362	12	5327 1	55	0.000		
		T * C		227 798	3	1	227 798	3	043	840	
		Error(T*C)		64230 4	154	12	5352 5	28	.0+0	.010	
				01200		12	0002.0				
T											
Lests of	VVIThin-S	Subjects Contrast	S								
CENDER	: MEASL		0010		~~					-	<u>.</u>
GENUER	Source		COND		55		dt	Mean Se	quare	+	Sig.
FEMALE		14 vs. 13			9934.8	/6	1	9934.8	76	.946	.375
		14 vs. 13	~	-	52496.0)/9	5	10499.2	216		
	COND		Ex vs.	Su	59571.2	224	1	59571.	224	4.124	.098
	Error(C)		Ex vs.	Su	72221.1	106	5	14444.2	221		
	T * C	T4 vs. T3	Ex vs.	Su	22390.8	372	1	22390.8	372	.805	.411
	Error(T*	C)									
		T4 vs. T3	Ex vs.	Su	139150	.983	5	27830.	197		
MALE	TIME	T4 vs. T3			4804.39	€1	1	4804.3	91	2.472	.142
	Error(T)	T4 vs. T3			23320.0	085	12	1943.34	10		
	COND		Ex vs.	Su	28249.6	621	1	28249.6	521	5.303	.040
	Error(C)		Ex vs.	Su	63925.8	362	12	5327.15	55		
	т + с	T4 vs. T3	Ex vs.	Su	911.19		1	911.19		.043	.840
	Error(T •	C)									
		T4 vs. T3	Ex vs.	Su	256921	.814	12	21410.1	151		
Tests of	Betweer	n-Subjects Effects	5								
Measure	MEAS	JRE 1	-								
Transform	med Var	iable: Average									
GENDER		Source	Sum of	Squares	df	Mean Sc	uare	F	Sia		
FEMALE		Intercept	24052	.590	1	24052 5	590	4.642	.084		
		Error	25908	115	5	5181 62	23				
MALF		Intercent	45408	884	1	45408 8	184	17 099	001		
		Frror	31869	004	12	2655 75	50-	17.030	.001		
			51005		12	2000.70					

<u>Ch. 6:</u> <u>ANOVA Source Table: Parasympathetic Indicator with 1-between (gender) and 2-within factors (time [6 weeks vs. 12 weeks postoperatively] & condition [supine vs. exercise]).</u>

Descrip	tive Statistics			
	GENDER	Mean	Std. Deviation	Ν
PNSR3	FEMALE	.116980	6.42321E-02	6
	MALE	6.66492E-02	7.54240E-02	13
	Total	8.25432E-02	7.42718E-02	19
PNSE3	FEMALE	8.58133E-02	8.98876E-02	6
	MALE	3.72262E-02	4.86898E-02	13
	Total	5.25695E-02	6.60549E-02	19
PNSR4	FEMALE	9.62250E-02	5.22065E-02	6
	MALE	8.56723E-02	7.88962E-02	13
	Total	8.90047E-02	7.02298E-02	19
PNSE4	FEMALE	9.97117E-02	8.26927E-02	6
	MALE	.114738	.106369	13
	Total	.109993	9.74362E-02	19

Tests of Within-Subjects Effects Measure: MEASURE 1

Source	Sum of Squares	df	Mean Square	F	Sig.
TIME (T)	8.254E-03	1	8.254E-03	3.813	.068
TIME * GENDER (G)	1.097E-02	1	1.097E-02	5.068	.038
Error(TIME)	3.680E-02	17	2.165E-03		
COND (C)	8.068E-04	1	8.068E-04	.244	.628
COND • GENDER	7.662E-04	1	7.662E-04	.232	.636
Error(COND)	5.621E-02	17	3.306E-03		
TIME * COND	8.904E-03	1	8.904E-03	1.550	.230
T * C * G	5.831E-04	1	5.831E-04	.101	.754
Error(TIME*COND)	9.766E-02	17	5.745E-03		

Tests of Within-Subjects Contrasts Measure: MEASURE 1

MEdaule, MLA							
Source	TIME	COND	Sum of Squares	df	Mean Square	F	Sig.
TIME	T4 vs. T3		8.254E-03	1	8.254E-03	3.813	.068
TIME * G	T4 vs. T3		1.097E-02	1	1.097E-02	5.068	.038
Error(TIME)	T4 vs. T3		3.680E-02	17	2.165E-03		
COND		Ex vs. Su	8.068E-04	1	8.068E-04	.244	.628
COND * G		Ex vs. Su	7.662E-04	1	7.662E-04	.232	.636
Error(COND)		Ex vs. Su	5.621E-02	17	3.306E-03		
TIME * COND	T4 vs. T3	Ex vs. Su	3.561E-02	1	3.561E-02	1.550	.230
T * C * G	T4 vs. T3	Ex vs. Su	2.332E-03	1	2.332E-03	.101	.754
Error(T*C)	T4 vs. T3	Ex vs. Su	.391	17	2.298E-02		

Measure:	MEASURE 1	

Transformed	Variable: Average				
Source	Sum of Squares	df	Mean Square	F	Sig.
Intercept	.127	1	.127	38.265	.000
GENDER	2.289E-03	1	2.289E-03	.691	.417
Error	5.634E-02	17	3.314E-03		

<u>Ch. 6:</u> <u>ANOVA Source Table: Parasympathetic Indicator with 2-within factors (time [6 weeks vs. 12 weeks postoperatively] & condition [supine vs. exercise]).</u>

Tests of	<u>f Within-</u>	Subject	s Effects									
Measure	e: MEAS	URE 1										
GENDER	7	Sourc	е		Sum of	Squares	df	Mean S	quare	F	Sig.	
FEMALE		TIME			7.052E	05	1	7.052E	-05	.047	.837	
		Error(T	')		7.511E	-03	5	1.502E	-03			
		COND			1.149E	-03	1	1.149E	-03	.276	.622	
		Error(C	:)		2.085E	-02	5	4.169E	-03			
		т•с			1.801E-	.03	1	1.801E	-03	.932	.379	
		Error(T	*C)		9.665E-	-03	5	1.933E	-03			
MALE		TIME			3.029E-	02	1	3.029E	-02	12.408	.004	
		Error(T)		2.929E-	02	12	2.441E	-03			
		COND			4.158E-	07	1	4.158E	07	.000	.991	
		Error(C	;)		3.536E-	02	12	2.947E	-03			
		т * с			1.112E-	02	1	1.112E	02	1.516	.242	
		Error(T	*C)		8.800E-	02	12	7.333E	03			
Tests of Measure	Within-	Subjects	s Contrast	<u>:s</u>								
GENDEF	R Source	TIME		COND		SS		df	MS		F	Sig
FEMALE	TIME	T4 vs.	т3	0010		7.052F-	05	1	7 052F-	05	047	837
	Error(T)	T4 vs	T3			7.511F-	03	5	1 502E-	03	.0+7	.007
	COND			Ex vs	Su	1.149F-	03	1	1 149F-	03	276	622
	Error(C)			Ex vs.	Su	2.085E-	02	5	4 169F-	03		.022
	T * C	T4 vs.	тз	Ex vs.	Su	7.205E-	03	1	7.205E-0	03	.932	.379
		T4 vs.	тз	Ex vs.	Su	3.866E-	02	5	7.732E-0	03		
MALE	TIME	T4 vs.	тз			3.029E-	02	1	3.029E-0	02	12.408	.004
	Error(T)	T4 vs.	Т3			2.929E-	02	12	2.441E-0	03		
	COND			Ex vs.	Su	4.158E-	07	1	4.158E-0	57	.000	.991
	Error(C)			Ex vs.	Su	3.536E-	02	12	2.947E-0	03		
	T * C Error(T*	T4 vs. C)	тз	Ex vs.	Su	4.447E-	02	1	4.447E-0	02	1.516	.242
		T4 vs.	тз	Ex vs.	Su	.352		12	2.933E-0	02		

Tests of Between-Subjects Effects Measure: MEASURE_1

Transformed Variable: Average

GENDER	Source	Sum of Squares	df	Mean Square	F	Sia.
FEMALE	Intercept	5.962E-02	1	5.962E-02	16.836	.009
	Error	1.771E-02	5	3.541E-03		
MALE	Intercept	7.523E-02	1	7.523E-02	23.368	.000
	Error	3.863E-02	12	3.219E-03		

<u>Ch. 6:</u> <u>ANOVA Source Table: SDNN with 1-between (gender) and 2-within factors (time [6 weeks vs. 12 weeks postoperatively] & condition [supine vs. exercise]).</u>

tatistics			
GENDER	Mean	Std. Deviation	N
FEMALE	31.1701	26.8470	6
MALE	26.4978	10.6895	14
Total	27.8995	16.5131	20
FEMALE	13.1310	5.9704	6
MALE	19.1333	9.2546	14
Total	17.3326	8.7147	20
FEMALE	29.8194	15.1822	6
MALE	31.9157	10.8056	14
Total	31.2868	11.8962	20
FEMALE	18.6244	6.7255	6
MALE	19.9471	5.2915	14
Total	19.5503	5.6079	20
	tatistics GENDER FEMALE MALE Total FEMALE MALE Total FEMALE MALE Total FEMALE MALE MALE MALE Total	tatistics GENDER Mean FEMALE 31.1701 MALE 26.4978 Total 27.8995 FEMALE 13.1310 MALE 19.1333 Total 17.3326 FEMALE 29.8194 MALE 31.9157 Total 31.2868 FEMALE 18.6244 MALE 19.9471 Total 19.5503	tatisticsGENDERMeanStd. DeviationFEMALE31.170126.8470MALE26.497810.6895Total27.899516.5131FEMALE13.13105.9704MALE19.13339.2546Total17.33268.7147FEMALE29.819415.1822MALE31.915710.8056Total31.286811.8962FEMALE18.62446.7255MALE19.94715.2915Total19.55035.6079

Tests of Within-Subjects Effects Measure: MEASURE 1

Source	Sum of Squares	df	Mean Square	F	Sig.
TIME	113.009	1	113.009	1.230	.282
T • GENDER	4.583	1	4.583	.050	.826
Error(T)	1653.574	18	91.865		
COND	2476.729	1	2476.729	24.714	.000
C * GENDER	102.931	1	102.931	1.027	.324
Error(C)	1803.909	18	100.217		
Т * С	5.268	1	5.268	.064	.803
T * C * G	137.615	1	137.615	1.666	.213
Error(T*C)	1486.427	18	82.579		

Tests of Within-Subjects Contrasts Measure: MEASURE 1

weasure: MEA	SURE_I						
Source	TIME	COND	SS	df	Mean Square	F	Sig.
TIME	T4 vs. T3		113.009	1	113.009	1.230	.282
T * GENDER	T4 vs. T3		4.583	1	4.583	.050	.826
Error(T)	T4 vs. T3		1653.574	18	91.865		
COND		Ex vs. Su	2476.729	1	2476.729	24.714	.000
C • GENDER		Ex vs. Su	102.931	1	102.931	1.027	.324
Error(C)		Ex vs. Su	1803.909	18	100.217		
т * С	T4 vs. T3	Ex vs. Su	21.073	1	21.073	.064	.803
T * C * G	T4 vs. T3	Ex vs. Su	550.459	1	550.459	1.666	.213
Error(T*C)	T4 vs. T3	Ex vs. Su	5945.709	18	330.317		

Tests of Between-Subjects Effects

Measure: MEASURE_1

Transformed Variable: Average										
Source	Sum of Squares	df	Mean Square	F	Sig.					
Intercept	9500.086	1	9500.086	145.608	.000					
GENDER	5.920	1	5.920	.091	.767					
Error	1174.393	18	65.244							

Tests of Wit	hin-Subjects Effects					
Measure: ME	ASURE 1					
GENDER	Source	SS	df	MS	F	Sig.
FEMALE	TIME	25.742	1	25.742	.163	.703
	Error(T)	788.035	5	157.607		
	COND	1281.956	1	1281.956	5.179	.072
	Error(C)	1237.730	5	247.546		
	т•с	70.262	1	70.262	.483	.518
	Error(T*C)	727.951	5	145.590		
MALE	TIME	135.921	1	135.921	2.041	.177
	Error(T)	865.539	13	66.580		
	COND	1308.203	1	1308.203	30.038	.000
	Error(C)	566.179	13	43.552		
	т • с	74.193	1	74.193	1.272	.280
	Error(T*C)	758.476	13	58.344		

Tests of Within-Subjects Contrasts

ivieasure: ivier	430hc_1						
GENDER Sour	ce TIME	COND	SS	df	Mean Square	F	Sig.
FEMALE TIME	5 T4 vs. T3		25.742	1	25.742	.163	.703
Error	(T) T4 vs. T3		788.035	5	157.607		
С		Ex vs. Su	1281.956	1	1281.956	5.179	.072
Error	(C)	Ex vs. Su	1237.730	5	247.546		
т•с	C T4 vs. T3	Ex vs. Su	281.049	1	281.049	.483	.518
Error	(T*C)						
	T4 vs. T3	Ex vs. Su	2911.806	5	582.361		
MALE T	T4 vs. T3		135.921	1	135.921	2.041	.177
Error	(T) T4 vs. T3		865.539	13	66.580		
С		Ex vs. Su	1308.203	1	1308.203	30.038	.000
Error	(C)	Ex vs. Su	566.179	13	43.552		
т•с	C T4 vs. T3	Ex vs. Su	296.773	1	296.773	1.272	.280
Error	(T*C)						
	T4 vs. T3	Ex vs. Su	3033.903	13	233.377		

Measure: MEAS	JRE_1					
Transformed Var	iable: Average					
GENDER	Source	Sum of Squares	df	Mean Square	F	Sig.
FEMALE	Intercept	3225.607	1	3225.607	26.802	.004
	Error	601.742	5	120.348		
MALE	Intercept	8316.927	1	8316.927	188.806	.000
	Error	572.651	13	44.050		

<u>Ch. 6:</u> <u>ANOVA Source Table: Sympathetic Indicator with 1-between (gender) and 2-within factors (time [6 weeks vs. 12 weeks postoperatively] & condition [supine vs. exercise]}.</u>

Descript	tive Statistics			
	GENDER	Mean	Std. Deviation	N
SNSR3	FEMALE	3.421148	5.581283	6
	MALE	22.080972	38.810743	13
	Total	16.188396	33.049161	19
SNSE3	FEMALE	2.886630	1.865741	6
	MALE	24.886411	45.618088	13
	Total	17.939112	38.712926	19
SNSR4	FEMALE	3.183327	2.749740	6
	MALE	8.676228	15.986648	13
	Total	6.941628	13.392668	19
SNSE4	FEMALE	2.711873	3.368003	6
	MALE	6.864675	8.247617	13
	Total	5.553264	7.241063	19

Tests of Within-Subjects Effects Measure: MEASURE_1

Source	Sum of Squares	df	Mean Square	F	Sig.
TIME (T)	1040.403	1	1040.403	1.750	.203
TIME * GENDER (G)	987.174	1	987.174	1.661	.215
Error(TIME)	10105.358	17	594.433		
COND (C)	1.499E-04	1	1.499E-04	.000	1.000
COND * GENDER	4.105	1	4.105	.007	.934
Error(COND)	10015.119	17	589.125		
TIME * COND	21.284	1	21.284	.090	.768
TIME * COND * GENDER	22.479	1	22.479	.095	.762
Error(TIME*COND)	4038.685	17	237.570		

Tests of Within-Subjects Contrasts Measure: MEASURE 1

mousure. mcAd							
Source	TIME	COND	Sum of Squares	df	Mean Square	F	Sig.
TIME	T4 vs. T3		1040.403	1	1040.403	1.750	.203
TIME * GENDE	R T4 vs. T3		987.174	1	987.174	1.661	.215
Error(TIME)	T4 vs. T3		10105.358	17	594.433		
COND		Ex vs. Su	1.499E-04	1	1.499E-04	.000	1.000
COND * GENDI	ER	Ex vs. Su	4.105	1	4.105	.007	.934
Error(COND)		Ex vs. Su	10015.119	17	589.125		
TIME * COND	T4 vs. T3	Ex vs. Su	85.136	1	85.136	.090	.768
T * C * G	T4 vs. T3	Ex vs. Su	89.917	1	89.917	.095	.762
Error(T*C)	T4 vs. T3	Ex vs. Su	16154.740	17	950.279		

URE_1				
riable: Average				
Sum of Squares	df	Mean Square	F	Sig.
1432.165	1	1432.165	4.227	.055
649.305	1	649.305	1.916	.184
5759.769	17	338.810		
	URE_1 riable: Average Sum of Squares 1432.165 649.305 5759.769	URE_1 riable: Average Sum of Squares df 1432.165 1 649.305 1 5759.769 17	URE_1 riable: Average Sum of Squares df Mean Square 1432.165 1 1432.165 649.305 1 649.305 5759.769 17 338.810	URE_1 riable: Average Sum of Squares df Mean Square F 1432.165 1 1432.165 4.227 649.305 1 649.305 1.916 5759.769 17 338.810

<u>Ch. 6:</u> <u>ANOVA Source Table: Sympathetic Indicator with 2-within factors (time [6 weeks vs. 12 weeks postoperatively] & condition [supine vs. exercise]).</u>

<u>resis c</u>	<u> vvitrini-</u>	Subjects Effects									
Measur	e: MEAS	URE_1									
GENDE	R	Source		SS		df	Mean S	iquare	F	Sia.	
FEMAL	E	TIME		.255		1	.255	•	.034	.861	
		Error(TIME)		37.438		5	7.488				
		COND		1.518		1	1.518		.068	.805	
		Error(COND)		112.25	0	5	22.450				
		TIME * COND		5.966E	-03	1	5.966E	-03	.002	.965	
		Error(TIME*CON	ND)	13.812		5	2.762				
MALE		TIME		3209.7	77	1	3209.7	77	3.826	.074	
		Error(TIME)		10067.	920	12	838.99	3			
		COND		3.210		1	3.210		.004	.951	
		Error(COND)		9902.8	69	12	825.23	9			
		TIME * COND		69.279		1	69.279		.207	.658	
		Error(TIME*CON	1D)	4024.8	73	12	335.40	6			
Tests o	f Within-	Subjects Contras	ts								
Measur	e: MEAS	URE 1									
GENDE	R Source	TIME	COND		SS		df	Mean So	uare	F	Sia
FEMALI	E TIME	T4 vs. T3			.255		1	.255	100.0	034	861
	Error(T)	T4 vs. T3			37.438		5	7.488			.001
	COND		Ex vs. S	iu	1.518		1	1.518		068	805
	Error(C)		Ex vs. S	iu	112.25	C	5	22.450			
	т•с	T4 vs. T3	Ex vs. S	u	2.386E-	02	1	2.386E-	02	.002	.965
	Error(T*	°C)									
		T4 vs. T3	Ex vs. S	u	55.247		5	11.049			
MALE	TIME	T4 vs. T3			3209.7	77	1	3209.77	77	3.826	.074
	Error(T)	T4 vs. T3			10067.9	920	12	838.993	3		
	COND		Ex vs. S	u	3.210		1	3.210		.004	.951
	Error(C)		Ex vs. S	u	9902.80	59	12	825.239)		
	т * с	T4 vs. T3	Ex vs. S	u	277.116	3	1	277.116	5	.207	.658
	Error(T*	C)									
		T4 vs. T3	Ex vs. S	u	16099.4	194	12	1341.62	24		

Tests of Between-Subjects Effects

Measure: ME	ASURE					
Transformed	Variable: Average					
GENDER	Source	Sum of Squares	df	Mean Square	F	Sia.
FEMALE	Intercept	55.842	1	55.842	10.720	.022
	Error	26.045	5	5.209		
MALE	intercept	3174.670	1	3174.670	6.644	.024
	Error	5733.724	12	477.810		

Tests of Within-Subjects Effects

<u>Ch. 6:</u> <u>ANOVA Source Table: Total Harmonic Power with 1-between (gender) and 2-within factors (time [6 weeks vs. 12 weeks postoperatively] & condition [supine vs. exercise]).</u>

Descript	tive Statistics			
	GENDER	Mean	Std. Deviation	Ν
THPR3	FEMALE	222.2617	238.4248	6
	MALE	96.0485	106.4246	13
	Total	135.9053	164.2394	19
THPE3	FEMALE	34.0674	41.4570	6
	MALE	32.7024	27.6792	13
	Total	33.1334	31.4419	19
THPR4	FEMALE	164.5483	207.9270	6
	MALE	124.3986	98.4729	13
	Total	137.0774	137.2647	19
THPE4	FEMALE	28.0768	21.9806	6
	MALE	73.2865	68.9008	13
	Total	59.0097	61.3616	19

Tests of Within-Subjects Effects Measure: MEASURE 1

Sum of Squares	df	Mean Square	F	Sig.
28.074	1	28.074	.005	.947
18055.870	1	18055.870	2.939	.105
104425.623	17	6142.684		
197904.386	1	197904.386	15.544	.001
45350.068	1	45350.068	3.562	.076
216436.179	17	12731.540		
4198.121	1	4198.121	.493	.492
1600.401	1	1600.401	.188	.670
144657.625	17	8509.272		
	Sum of Squares 28.074 18055.870 104425.623 197904.386 45350.068 216436.179 4198.121 1600.401 144657.625	Sum of Squaresdf28.074118055.8701104425.62317197904.386145350.0681216436.179174198.12111600.4011144657.62517	Sum of SquaresdfMean Square28.074128.07418055.870118055.870104425.623176142.684197904.3861197904.38645350.068145350.068216436.1791712731.5404198.12114198.1211600.40111600.401144657.625178509.272	Sum of SquaresdfMean SquareF28.074128.074.00518055.870118055.8702.939104425.623176142.684197904.3861197904.38615.54445350.068145350.0683.562216436.1791712731.5404198.12114198.121.4931600.40111600.401.188144657.625178509.272

Tests of Within-Subjects Contrasts Measure: MEASURE 1

MICUSUIC. MIL							
Source	TIME(T)	COND (C)	SS	df	MS	F	Sig.
TIME	T4 vs. T3		28.074	1	28.074	.005	.947
T • G	T4 vs. T3		18055.870	1	18055.870	2.939	.105
Error(T)	T4 vs. T3		104425.623	17	6142.684		
COND		Ex vs. Su	197904.386	1	197904.386	15.544	.001
C * G		Ex vs. Su	45350.068	1	45350.068	3.562	.076
Error(C)		Ex vs. Su	216436.179	17	12731.540		
т * С	T4 vs. T3	Ex vs. Su	16792.483	1	16792.483	.493	.492
T * C * G	T4 vs. T3	Ex vs. Su	6401.604	1	6401.604	.188	.670
Error(T*C)	T4 vs. T3	Ex vs. Su	578630.501	17	34037.088		

Tests of Between-Subjects Effects

Measure: MEASURE_1

Transformed	Variable:	Average
~	~	· ~ _

Source	Sum of Squares	df	Mean Square	F	Sig.
intercept	154262.944	1	154262.944	28.792	.000
GENDER	3851.446	1	3851.446	.719	.408
Error	91082.161	17	5357.774		

<u>Ch. 6:</u> <u>ANOVA Source Table: Total Harmonic Power with 2-within factors (time [6 weeks vs. 12 weeks postoperatively] & condition [supine vs. exercise]).</u>

Tests of	f Within-	Subjects	Effects									
Measure	e: MEAS	URE_1						_		_		
GENDEF	4	Source			Sum of	Squares	df	Mean S	quare	F	Sig.	
FEMALE		TIME			6087.3	09	1	6087.3	09	.363	.573	
		Error(T)			83844.	475	5	16768.	895			
		COND			158111	1.850	1	158111	.850	5.067	.074	
		Error(C)			156020	0.948	5	31204.	190			
		Т * С			4012.8	74	1	4012.8	74	.282	.618	
		Error(T*	•C)		71101.	548	5	14220.	310			
MALE		TIME			15443.	742	1	15443.	742	9.005	.011	
		Error(T)			20581.	148	12	1715.0	96			
		COND			42577.	210	1	42577.	210	8.457	.013	
		Error(C)			60415.	231	12	5034.6	03			
		T + C			486.43	1	1	486.43	1	.079	.783	
		Error(T*	°C)		73556.	077	12	6129.6	73			
Measure GENDER FEMALE	Error(T) COND Error(C) T * C Error(T*	Subjects URE_1 TIME T4 vs. 1 T4 vs. 1 C) T4 vs. 1 T4 vs. 1	r3 r3 r3	Ex vs. Ex vs. Ex vs. Ex vs. Ex vs.	Su Su Su Su	SS 6087.30 83844.4 158111 156020 16051.4 284406	09 175 .850 .948 198 .194	df 1 5 1 5 1 5	Mean Sc 6087.30 16768.8 158111 31204.7 16051.4 56881.2	quare 29 395 .850 190 198 239	F .363 5.067 .282	Sig. .573 .074 .618
WALE		14 VS. 1	13			15443.7	42	1	1715 00	42	9.005	.011
	Error(1)	14 V\$.	13	-	~	20581.1	48	12	1/15.08		0 457	010
	COND			Ex vs.	Su	42577.2	210	1	425//.2	210	8.457	.013
	Error(C)			Ex vs.	Su	60415.2	231	12	5034.60)3		
	I * C Error(T*	⊺4 vs. 1 C}	5	Ex vs.	Su	1945.72	26	1	1945.72	26	.079	.783
	- · • •	T4 vs. 1	ГЗ	Ex vs.	Su	294224	.308	12	24518.6	692		

Measure: ME	ASURE_1					
Transformed	Variable: Average					
GENDER	Source	Sum of Squares	df	Mean Square	F	Sig.
FEMALE	Intercept	75584.987	1	75584.987	7.542	.040
	Error	50110.555	5	10022.111		
MALE	Intercept	86580.312	1	86580.312	25.358	.000
	Error	40971.606	12	3414.301		

261

Descrip	tive Statistics			
	GENDER	Mean	Std. Deviation	N
TPR3	FEMALE	480.9373	535.6944	6
	MALE	233.3345	140.2775	13
	Total	311.5248	326.8246	19
TPE3	FEMALE	75.3360	74.2432	6
	MALE	119.7843	91.5199	13
	Total	105.7480	86.9807	19
TPR4	FEMALE	368.8544	311.2852	6
	MALE	404.9377	262.6934	13
	Total	393.5430	270.5890	19
TPE4	FEMALE	99.5879	50.0154	6
	MALE	176.6583	100.3936	13
	Total	152.3203	93.6420	19

Tests of Within-Subjects Effects Measure: MEASURE 1

meddale. merdoone_1					
Source	Sum of Squares	df	Mean Square	F	Sig.
TIME	20301.920	1	20301.920	.705	.413
TIME • GENDER	102683.714	1	102683.714	3.563	.076
Error(TIME)	489896.548	17	28817.444		
COND	1060875.241	1	1060875.241	23.555	.000
COND * GENDER	113833.255	1	113833.255	2.527	.130
Error(COND)	765655.860	17	45038.580		
TIME * COND	479.083	1	479.083	.018	.896
T * C * G	64691.930	1	64691.930	2.394	.140
Error(TIME*COND)	459441.988	17	27025.999		

Tests of Within-Subjects Contrasts Measure: MEASURE 1

wedsure. we	ASURE_I						
Source	TIME	COND	Sum of Squares	df	Mean Square	F	Sig.
TIME	T4 vs. T3		20301.920	1	20301.920	.705	.413
T * G	T4 vs. T3		102683.714	1	102683.714	3.563	.076
Error(T)	T4 vs. T3		489896.548	17	28817.444		
COND		Ex vs. Su	1060875.241	1	1060875.241	23.555	.000
C * G		Ex vs. Su	113833.255	1	113833.255	2.527	.130
Error(C)		Ex vs. Su	765655.860	17	45038.580		
T * C	T4 vs. T3	Ex vs. Su	1916.333	1	1916.333	.018	.896
T * C * G	T4 vs. T3	Ex vs. Su	258767.721	1	258767.721	2.394	.140
Error(T*C)	T4 vs. T3	Ex vs. Su	1837767.952	17	108103.997		

Measure: ME	ASURE 1				
Transformed	Variable: Average				
Source	Sum of Squares	df	Mean Square	F	Sig.
Intercept	985100.801	1	985100.801	43.780	.000
GENDER	2078.325	1	2078.325	.092	.765
Error	382523.175	17	22501.363		

<u>Ch. 6:</u> <u>ANOVA Source Table: Total Power with 2-within factors {time [6 weeks vs. 12 weeks postoperatively] & condition [supine vs. exercise]}.</u>

Tests of	f Within-	Subjects Effects									
CENIDER	D IVIEAS			Sum of	C		Maan C		-	C:-	
CENTAL	n. 5	JOUICE		11571	Squares	1	11571	quare	176	Sig.	
FEIVIAL	-			227050	400		65571	408	.170	.692	
				52/000	602	5	692160	607	6 042	057	
				566204	000	і Б	112050	093	0.043	.057	
				1700234	765	1	27000	765	521	502	
		Error(TIME*COM	un)	267356	140	5	53471	700 7 7 9	.JZ (.505	
ΜΔΙΕ		TIME		169655	868	1	169655	220	12 564	004	
		Error(TIME)		162038	212	12	13503	184	12.004	.004	
		COND		379754	. 117	1	379754	117	22 744	000	
				200361	851	12	16696	821	22./ 77	.000	
		TIME * COND		42779	114	1	42779	114	2 672	128	
		Error(TIME*CO	וחו	192085	848	12	16007	154	2.072	20	
		2	,	.02000		• =					
Tests of	f Within-	Subjects Contras	ts								
Measure	e: MEASI	JRE 1	_								
GENDER	R Source	TIME	COND		SS		df	Mean So	quare	F	Sig.
FEMALE	E TIME	T4 vs. T3			11571.4	408	1	11571.4	108	.176	.692
	Error(T)	T4 vs. T3			327858	.336	5	65571.6	567		
	COND		Ex vs. S	Su	683169	.693	1	683169	.693	6.043	.057
	Error(C)		Ex vs. S	Su	565294	.009	5	113058	.802		
	т + с	T4 vs. T3	Ex vs. S	Su	111523	.061	1	111523	.061	.521	.503
	Error(T*	C)									
		T4 vs. T3	Ex vs. S	Su	106942	4.559	5	213884	.912		
MALE	TIME	T4 vs. T3			169655	.868	1	169655	.868	12.564	.004
	Error(T)	T4 vs. T3			162038	.212	12	13503.1	184		
	COND		Ex vs. S	ริน	379754	.117	1	379754	.117	22.744	.000
	Error(C)		Ex vs. S	Su	200361	.851	12	16696.8	321		
	т + с	T4 vs. T3	Ex vs. S	Su	171116	.454	1	171116	.454	2.672	.128
	Error(T*	C)									
		T4 vs. T3	Ex vs. S	Su	768343	.393	12	64028.6	616		
Tests of Measure	f Betwee e: MEASI	n-Subjects Effect JRE_1	s								
Transfo	rmed Var	iable: Average									

GENDER	Source	Sum of Squares	df	Mean Square	F	Sig.
FEMALE	Intercept	393765.734	1	393765.734	9.858	.026
	Error	199723.548	5	39944.710		
MALE	Intercept	709874.525	1	709874.525	46.600	.000
	Error	182799.626	12.	15233.302		

Ch 6: ANOVA Source Table: SBR Slope with 1-between (gender) and 2-within factors (time [6 weeks vs. 12 weeks postoperatively] & condition [supine vs. exercise]).

Descript	tive Stat	istics								
	GENDE	R	Mean	SD	N					
SLR3	FEMAL	E	4.6432	2.7873	6					
	MALE		4.5320	2.3739	12					
	Total		4.5690	2.4361	18					
SLE3	FEMAL	E	2.3850	1.0850	6					
	MALE	-	4 2617	4 6485	12					
	Total		3 6361	3 8032	18					
SI R4	FEMALI	=	4 7543	2 6959	6					
OL114	MALE		5 7527	2.0000	12					
	Total		5./ 52/	2.4140	10					
SIEA	CENANI	-	0.4133	2.4/53	10					
SLC4	PEIVIALI	E	2.0020	.0448	0					
	MALE		3.0521	1./361	12					
	lotal		3.2856	1.5635	18					
Tests of	f Within-	Subiects	Effects							
Measure	. MEAS	URF 1								
Source		0112_1		cc	44	MC	E C	Sia		
TIME IT	1			202	1	702	้าาง	51y.		
T + CEN				./92	1	./92	.224	.043		
	NDER			.110		.110	.031	.802		
Error(1)	~			56.638	16	3.540				
				46.65/	1	46.65/	18.446	.001		
C * GEN	NDER			4.363	1	4.363	1.725	.208		
Error(C)				40.470	16	2.529				
T * C				3.146	1	3.146	.837	.374		
т • с •	GENDEF	7		3.561	1	3.561	.948	.345		
Error(T*	C)			60.108	16	3.757				
Tests of	Within-	Subjects	Contrast	s						
Measure	: MEAS	URE 1		-						
Source		TIME (T)	COND (CI	SS	df	MS	F	Sia.
TIME		T4 vs. T	3	00110 (~ /	792	1	792	224	.643
T * GEN	IDER	T4 vs. T	-3			110	1	110	031	862
Frror(Til		T4 vs. T	-2			56 629	16	3 540	.001	
COND	*****	14 03. 1	5		·	46 657	1	16 657	19 446	001
COND +	CENIDE	D		EX VS. 3	u 	40.007	1	40.007	1 7 2 5	2001
ErrorICC		n		EX VS. S	u	4.303	10	4.303	1.725	.208
	JND)	T 4	••	EX VS. 5	u	40.470	16	2.529	007	074
		14 vs. 1	3	Ex vs. S	u	12.582	1	12.582	.837	.374
	GENDER	14 vs. 1	3	Ex vs. S	u	14.244	1	14.244	.948	.345
Error(T*	C)	T4 vs. T	3	Ex vs. S	u	240.43	16	15.027		
Tests of	Betwee	n-Subject	ts Effects	5						
Measure	MEAS	URF 1		=						
Transfor	med Var	riable: ∆v	erade							
Source		10010. AV	Type III	Sum of 9	Souares	df	Mean Se	nuare	F	Sig
Intercen	t		264 600		Judies	1	264 600	100.0	52 252	000
GENIDEE	2		2 721	,		1	204.00		727	402
GENDER	1		01 000			10	5.731		./3/	.403

81.023

16

5.064

Error

Ch. 6: ANOVA Source Table: SBR Slope with 2-within factors (time [6 weeks vs. 12 weeks postoperatively] & condition [supine vs. exercise]).

Tests of	of Within-	Subjects	Effects								
GENDE	R	Source			SS		df	Mean S	quare	F	Sig.
FEMAL	E	TIME (T	-)		.117		1	.117		.077	.792
		Error(T)			7.567		5	1.513			
		COND (C)		29.83	3	1	29.833		9.249	.029
		Error(C)			16.12	9	5	3.226			
		Т * С			4.829	E-03	1	4.829E	-03	.007	.936
		Error(T*	°C)		3.359		5	.672			
MALE		TIME			1.120		1	1.120		.251	.626
		Error(T)			49.07	1	11	4.461			
		COND			16.86	3	1	16.863		7.620	.019
		Error(C)			24.34	2	11	2.213			
		т * С			10.05	0	1	10.050		1.948	.190
		Error(T*	C)		56.74	9	11	5.159			
Tasts o	of Within-	Subjects	Contras	* e							
Measur	A MEAS	LIRE 1	Contras	15							
GENDE	R Source	0112_1	TIME (r)	COND	(\mathbf{C})	55	df	MS	F	Sia
FEMAL	E TIME (1	E)		- / T3	00110	(0)	117	1	117	.077	792
	Error(T)	• •	TA ve	10 T3			7 567	5	1 513		
		CL	14 V3.	15	Fr vs	Su	29.833	1	29.833	9 249	.029
	Error(C)				Ex vs.	Su	16 129	5	3 2 2 6	0.2.0	
	T * C		T4 ve	та	Ex vs.	Su	01932	1	01932	007	936
	Error(T*	°C)	T4 vs.	та	Ex vs.	Su	13 437	5	2 687		
MALE	TIME	01	T4 vs.	T3	LA 13.	00	1 120	1	1 1 2 0	251	626
	Frror(T)		T4 vs.	T3			49 071	11	4 461		
	COND		14 03.	10	Fx vs	Su	16.863	1	16.863	7.620	.019
	Error(C)				Ex vs	Su	24 342	11	2 213		
	T * C		T4 ve	T3	Ex vo.	Su	40 200	1	40 200	1 948	190
	Error(T*	C)	T4 vs.	T3	Ex vs.	Su	226.995	5 11	20.636	1.010	
_											
i ests o	<u>ef Betwee</u>	n-Subject	ts Effect	<u>s</u>					-	<u>.</u>	
GENDE	R -	Source		SS		df	Mean So	quare		Sig.	
FEMAL	E	Intercep	t	77.062		1	/7.062		26.891	.004	
		Error		14.329	_	5	2.866			~~~	
MALE		Intercep	t	248.386	5	1	248.386	Ď	40.967	.000	
		Error		66.695		11	6.063				

<u>Ch. 6: ANOVA Source Table: **R-R Interval** with 1-between (gender) and 2-within factors (time [6 weeks vs. 12 weeks postoperatively] & condition [supine vs. exercise]).</u>

Descrip	tive Statistics			
	GENDER	Mean	Std. Deviation	Ν
RRIR3	FEMALE	756.4160	119.9770	6
	MALE	805.2727	106.8878	13
	Total	789.8443	110.2703	19
RRIE3	FEMALE	628.2448	81.4382	6
	MALE	679.7091	96.0073	13
	Total	663.4572	92.6891	19
RRIR4	FEMALE	810.3287	85.4121	6
	MALE	904.0948	124.1292	13
	Total	874.4844	119.5981	19
RRIE4	FEMALE	670.3298	44.9162	6
	MALE	762.5089	96.8067	13
	Total	733.3997	93.5201	19

Tests of Within-Subjects Effects Measure: MEASURE 1

Source	Sum of Squares	df	Mean Square	F	Sig.
TIME (T)	79100.803	1	79100.803	18.415	.000
TIME * GENDER (G)	7524.414	1	7524.414	1.752	.203
Error(TIME)	73020.926	17	4295.349		
COND	294108.388	1	294108.388	154.050	.000
COND * GENDER	1.069	1	1.069	.001	.981
Error(COND)	32455.920	17	1909.172		
TIME • COND	796.042	1	796.042	.712	.410
TIME * COND * GENDER	18.056	1	18.056 .016	.900	
Error(TIME*COND)	18995.426	17	1117.378		

Tests of Within-Subjects Contrasts Measure: MEASURE 1

INICASUIC. INILA							
Source	TIME(T)	COND (C)	Sum of Squares	df	Mean Square	F	Sig.
TIME	T4 vs. T3		79100.803	1	79100.803	18.415	.000
T⁺G	T4 vs. T3		7524.414	1	7524.414	1.752	.203
Error(T)	T4 vs. T3		73020.926	17	4295.349		
COND		Ex vs. Su	294108.388	1	294108.388	154.05	.000
C * G		Ex vs. Su	1.069	1	1.069 .001	.981	
Error(C)		Ex vs. Su	32455.920	17	1909.172		
т • С	T4 vs. T3	Ex vs. Su	3184.169	1	3184.169	.712	.410
T * C * G	T4 vs. T3	Ex vs. Su	72.225	1	72.225	.016	.900
Error(T*C)	T4 vs. T3	Ex vs. Su	75981.706	17	4469.512		

Measure: MEASUI	RE_1				
Transformed Varia	able: Average				
Source	Sum of Squares	df	Mean Square	F	Sig.
intercept	9288964.268	1	9288964.268	1103.726	.000
GENDER	21026.220	1	21026.220	2.498	.132
Error	143072.141	17	8416.008		

Tests o	<u>f Within-</u>	Subjects Effects									
GENDE	R	Source		Sum of	Squares	df	Mean Se	quare	F		Sig.
FEMAL	E	TIME (T)		13823.3	340	1	13823.3	340	3.637		.115
		Error(TIME)		19005.	989	5	3801.1	98			
		COND		107872	.811	1	107872	.811	41.022		.001
		Error(COND)		13148.	151	5	2629.6	30			
		TIME • COND		209.84	7	1	209.84	7	.281		.619
		Error(TIME*CO	ND)	3730.2	02	5	746.040	0			
MALE		TIME		107206	5.023	1	107206	.023	23.817		.000
		Error(TIME)		54014.9	937	12	4501.24	45			
		COND		231948	.884	1	231948	.884	144.15	9	.000
		Error(COND)		19307.	769	12	1608.98	B1			
		TIME * COND		834.32	D	1	834.320	0	.656		.434
		Error(TIME*CO	ND)	15265.2	224	12	1272.10	02			
-											
lests of	t Within-S	Subjects Contras	ts • • • • • •	. .						_	
GENDE	R Source		COND (C)	SS		df	MS		F	Sig.
PEMAL		14 vs. 13			13823.	340	1	13823.3	340	3.637	.115
	Error(T)	14 vs. T3			19005.	989	5	3801.19	18		
	COND		Ex vs. S	Su	107872	.811	1	107872	.811	41.022	.001
	Error(C)		Ex vs. S	Su	13148.	151	5	2629.63	30		
	T * C	T4 vs. T3	Ex vs. S	Su	839.38	9	1	839.389)	.281	.619
	Error(T*	C)									
		T4 vs. T3	Ex vs. S	Su	14920.	809	5	2984.16	52		
MALE	TIME	T4 vs. T3			107206	5.023	1	107206	.023	23.817	.000
	Error(T)	T4 vs. T3			54014.9	937	12	4501.24	5		
	COND		Ex vs. S	Su	231948	.884	1	231948	.884	144.159	9 .000
	Error(C)		Ex vs. S	նս	19307.	769	12	1608.98	31		
	т + С	T4 vs. T3	Ex vs. S	Su	3337.28	B1	1	3337.28	31	.656	.434
	Error(T*	C)									
		T4 vs. T3	Ex vs. S	Su	61060.8	397	12	5088.40	8		
Tests of	f Retwee	n-Subjects Effect	te								
Measure	MEASI	IRF 1	<u>(3</u>								
Transfor	rmed Var	iable: Average									
GENIDER		Source	Sum of	Sauaros	df	Moon Se		E		Sia	
FEMALE	` =	Intercent	207977		1	207077		F F21 692		000	
	-	Error	20062	0.4441	5	5700 51	0.44 I 20	531.082	•	.000	
		Intercent	20903.	0.004	1	0/30.04	0 004	040 600		000	
WALE		nitercept	114110	0.904	10	0500.01	0.904	848.003	}	.000	
		Error	114119	0.030	12	9909.91	19				

<u>Ch. 6: ANOVA Source Table:</u> Systolic Blood Pressure with 1-between (gender) and 2-within factors (time [6 weeks vs. 12 weeks postoperatively] & condition [supine vs. exercise]).

Descrip	tive Statistics			
	GENDER	Mean	Std. Deviation	Ν
SBPR3	FEMALE	116.5518	38.8507	6
	MALE	108.7994	16.1590	12
	Total	111.3836	25.0406	18
SBPE3	FEMALE	166.5953	51.5254	6
	MALE	151.9456	15.7826	12
	Total	156.8288	31.5042	18
SBPR4	FEMALE	133.0640	24.6899	6
	MALE	119.1774	18.0511	12
	Total	123.8063	20.8687	18
SBPE4	FEMALE	172.1908	21.2714	6
	MALE	152.8733	24.4101	12
	Total	159.3124	24.6259	18

<u>Tests of Within-Subjects Effects</u> Measure: MEASURE 1

Source	Sum of Squares	df	Mean Square	F	Sig.
TIME (T)	1116.451	1	1116.451	1.671	.215
TIME • GENDER (G)	116.683	1	116.683	.175	.682
Error(TIME)	10692.054	16	668.253		
COND (C)	27560.095	1	27560.095	87.832	.000
COND * GENDER	151.988	1	151.988	.484	.496
Error(COND)	5020.499	16	313.781		
TIME * COND	414.815	1	414.815	1.219	.286
T * C * G	2.150	1	2.150	.006	.938
Error(T *C)	5445.648	16	340.353		

Tests of Within-Subjects Contrasts Measure: MEASURE 1

weasure. with	ASURE_I						
Source	TIME	COND	Sum of Squares	df	Mean Square	F	Sig.
TIME	T4 vs. T3		1116.451	1	1116.451	1.671	.215
T * G	T4 vs. T3		116.683	1	116.683	.175	.682
Error(T)	T4 vs. T3		10692.054	16	668.253		
COND		Ex vs. Su	27560.095	1	27560.095	87.832	.000
C * G		Ex vs. Su	151.988	1	151.988	.484	.496
Error(C)		Ex vs. Su	5020.499	16	313.781		
т•с	T4 vs. T3	Ex vs. Su	1659.259	1	1659.259	1.219	.286
T * C * G	T4 vs. T3	Ex vs. Su	8.601	1	8.601	.006	.938
Error(T*C)	T4 vs. T3	Ex vs. Su	21782.591	16	1361.412		

Tests of Between-Subjects Effects

Measure: MEASURE_1

Transformed Variable: Average

Source	Sum of Squares	df	Mean Square	F	Sig.
Intercept	314271.052	1	314271.052	970.525	.000
GENDER	773.016	1	773.016	2.387	.142
Error	5181.049	16	323.816		

Tests of	<u>of Within-</u>	Subjects Effects									
GENDE	R	Source		Sum of	Squares	df	Mean S	iquare	F		Sig.
FEMALE		TIME		733.12	3	1	733.12	3	.546		.493
		Error(TIME)		6713.596 5		1342.719					
		COND		11927.	023	1	11927.	023	16.279		.010
		Error(COND)		3663.2	24	5	732.64	5			
		TIME * COND		178.76	0	1	178.76	0	.182		.687
		Error(TIME*CON	ND)	4910.8	82	5	982.17	6			
MALE		TIME		383.45	4	1	383.45	4	1.060		.325
		Error(TIME)		3978.4	59	11	361.67	8			
		COND		17714.	079	1	17714.	079	143.563	3	.000
		Error(COND)		1357.2	75	11	123.38	9			
		TIME * COND		267.92	6	1	267.92	6	5.511		.039
		Error(TIME*CON	1D)	534.76	6	11	48.615				
Tests o	f Within-	Subjects Contras	ts								
GENDE	R Source	TIME (T)	COND (C)	SS		df	MS	F	Sig.	
FEMAL	E TIME	T4 vs T3			733.123	3	1	733.123	3	.546	.493
	Error(T)	T4 vs T3			6713.59	96	5	1342.7	19		
	COND		Ex vs. S	նս	11927.0)23	1	11927.0	023	16.279	.010
	Error(C)		Ex vs. S	Su	3663.22	24	5	732.64	5		
	т • с	T4 vs T3	Ex vs. S	Su	715.042	2	1	715.043	2	.182	.687
	Error(T*	C)									
		T4 vs T3	Ex vs. S	iu 🛛	19643.9	528	5	3928.70	06		
MALE	TIME	T4 vs T3			383.454	L .	1	383.454	1	1.060	.325
	Error(T)	T4 vs T3			3978.49	59	11	361.678	3		
	COND		Ex vs. S	iu	17714.()79	1	17714.0)79	143.563	3.000
	Error (C)		Ex vs. S	u	1357.27	75	11	123.389	9		
	т∙с	T4 vs T3	Ex vs. S	iu	1071.70)6	1	1071.70	06	5.511	.039
	Error(T*	C)									
		T4 vs T3	Ex vs. S	u	2139.06	33	11	194.460)		
Tests o	f Betweel	n-Subjects Effect	<u>s</u>								
Measur	e: MEASl	JRE_1									
Transfo	rmed Var	iable: Average									

GENDER	Source	Sum of Squares	df	Mean Square	F	Sig.
FEMALE	Intercept	129831.343	1	129831.343	239.457	.000
	Error	2710.948	5	542.190		
MALE	Intercept	212903.417	1	212903.417	948.114	.000
	Error	2470.102	11	224.555		