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Abstract

The Empirical Orthogonal Function (EOF) analysis technique has proven to be one
of the most powerful methods to analyze data in meteorology and many other fields.
However, this method is statistical only and has no physical basis. Brunet (1994)
has introduced Held's { 1985) concept of conservation of wave activity and orthogonal
functions into the EOF analysis and called it the “Empirical Normal Mode™ (ENM)
analysis technique. This new method uses both statistical concepts from the classical
EOF analysis method and a dynamical constraint from the generalized Eliassen-Palm
theorem to ensure that the functions that we obtained are orthogonal to each other
and are the solutions of linearized dynamical equations.

In this thesis, we use the ENM analysis to analyze data from both a (2D) shallow
water model integration and from 3-D atmospheric observations. with an emphasis
on stratospheric sudden warming events.

For the shallow water model case, the results of the ENM analysis are evaluated
by testing against the theoretical (numerical) normal mode solutions provided by
Longuet-Higgins (1968). [t is shown that the ENM analysis can recover the spatial
structures and the frequencies of the normal modes with a great degree of accuracy
if the temporal record is sufficiently long. The average errors in the periods for
2000 and 100 day time series are found to be 1% and 4.6%. respectively. From the
eigenvalues (percentage of the total variance) and sharp frequency peaks associated

with normal modes, the ENM analysis shows that the model generates only a few



modes with monochromatic frequencies. The method can be used to test a new or
modified shallow water model integration or to study other Hough modes generated
by different kinds of forcings.

Having shown the value of the ENM technique in a barotropic context, we ad-
vance further by performing an ENM analysis on an 11 year atmospheric data set. In
this study, we focus on stratospheric warming events. The winter (DJF) data set is
partitioned into warming and non-warming periods in order to characterize the flow
differences between the regimes. The stratospheric quasi-potential vorticity or wave
activity structure in the warming period is found to be much stronger. as expected.
than in the non-warming periods. The ENM analysis clearly shows the tropospheric
difference between the two periods. e.g.. a higher wave activity in the main tropo-
spheric structure as well as in the tropospheric polar regions in the warming periods.
The analysis also reveals that there is a higher level of stratospheric wave activity
during the warming periods in the second normal mode of zonal wave number 1 but
the tropospheric structures of the quasi-potential vorticity are the same as during
non-warming periods. This suggests that there is/are (a) mechanism(s) associated
with the stratospheric warming other than the upward wave propagation. All the
common features of the stratospheric warming event are captured by the first two
normal modes of zonal wave numbers | and 2, such as wave-mean flow interaction
leading to the deceleration of the zonal mean wind, the polar vortex being displaced
by the northward movement of the Aleutian High. as well as wave amplitude enhance-

ment /reduction during the growing/decaying stages.
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Résumé

La méthode d'analyse des fonctions orthogonales empiriques (EOF) est une des plus
puissantes pour l'analyse de données en météorologie et en beaucoup d’autres do-
maines. Cependant, cette méthode n'est que de nature statistique et n'a pas de base
physique. Brunet (1994) a introduit le concept de Held (1985) de la conservation de
I'activité ondulatoire et des fonctions orthogonales dans I'analyse EOF et I'a nommeée
la méthode des modes normaux empiriques (ENM). Cette nouvelle méthade emploic
des concepts statistiques de 'analyse EOF et une contrainte dynamique provenant
du théoreme généralisé de Eliassen-Palm pour s’assurer que les fonctions soient or-
thogonales et qu'elles soient les solutions d'équations dynamiques linéaires.

Dans cette these. nous utilisons la méthode ENM pour analyser des données
provenant d’un modele barotrope (équations de Saint-Venant) et des observa-
tions météorologiques en trois dimensions, en mettant l'accent sur des épisodes de
réchauffement stratosphériques subits.

Les résultats de l'analyse ENM pour les données du modele sont comparés avec
les solutions des modes normaux théoriques (numériques) de Longuet-Higgins (1963).
Nous démontrons que l'analyse ENM peut capturer les structures spatiales et les
fréquences des modes normaux avec une grande précision si la série temporelle est suff-
isamment longue. Les erreurs moyennes des périodes d’oscillation sont de 1% et 4.6%
pour des dennées disponibles sur 2000 jours et 100 jours, respectivement. L analyse

ENM montre que le modéle produit seulement quelques modes avec des fréquences



monochromatiques. La méthode peut étre utilisée pour tester d’autres intégrations
modifiées du modele des équations de Saint-Venant ou pour étudier d’autres modes
Hough produits par différents forgages.

Apres avoir démontré |'importance de la méthode ENM dans un contexte
barotrope, nous continuons avec une analyse ENM de données atmosphériques cou-
vrant 11 ans. Dans cette étude nous nous concentrons sur les événements de
réchauffement stratosphérique. Les données d’hiver (DJF) sont séparées entre des
périodes de réchauffement et des périodes sans réchauffement pour pouvoir car-
actériser les différences entre la dynamique des deux régimes d’écoulement. Le tour-
billon quasi-potentiel stratosphérique ou la structure de I'activité ondulatoire pendant
les périodes de réchauffement est, comme prévue, beaucoup plus forte que pendant les
périodes sans réchauffement. L’analyse ENM démontre clairement les différences tro-
posphériques entre les deux périodes. c.g.. une plus grande activité ondulatoire dans
la structure troposphérique principale aussi bien que dans les régions troposphériques
polaires pendant les périodes de réchauffement. L’analyse montre aussi une forte
activité ondulatoire stratosphérique pendant les périodes de réchauffement pour le
deuxiéme mode normal du nombre d’onde zonal | mais les structures troposphériques
du tourbiilon quasi-potentiel ne diffirent pas. Cela implique qu'il ¥ a au moins un
autre mécanisme pour expliquer le réchauffement stratosphérique autre que la prop-
agation verticale d’ondes. Toutes les caractéristiques communes aux réchauffements
stratosphériques sont reproduites par les deux premiers modes des nombres donde |
et 2. Par exemple. la décélération du vent zonal moyen produite par l'interaction entre
les ondes et I'écoulement moyen, le déplacement du vortex polaire a cause du mou-
vermnent vers le nord de ’anticyclone aléoutien. et aussi 'augmentation/la réduction

des amplitudes des ondes pendant les phases de croissance/décroissance.
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Statement of Originality

The original results contained in this thesis are as follows:

[) For the first time we have used the Empirical Normal Mode Analysis technique
to recover the Hough functions and their associated frequencies from the data gen-
erated by a Shallow Water Model intergation (linearized version with a basic state
at rest). The results showed that both the normal modes (ENMs) and their asso-
ciated frequencies arc in good agreement with theoretical (numerical) results from
Longuet-Higgins (1968) in all aspects.

2) Neither the Empirical Orthogonal Function (EQF) nor Empirical Normal Mode
(ENM) analysis has been used before to analyze the structure of the real atmosphere
for the stratospheric sudden warming events. We use the ENM analysis to investigate
the structural difference between the non-warming and warming periods:

3) By comparing the empirical modal structurres of the quasi-potential vorticity
and thus the wave activity during the warming events and with those for the rest of
the data, we have found that the wave activity in the stratosphere during the warming
events is much stronger than that of the non-warming periods, especially for the zonal
wave number 1:

1) If the “cause” of the stratospheric warming is the propagation of the wave
activity from below then this would be reflected in tropospheric structure differences
between the warming events and the rest of the data set. These structure differences

appeared in the first (most important) empirical modes for both zonal wave numbers

Xix



| and 2 from the ENM analysis in tke high latitude region.

5) The phase diagram of the empirical normal mode of the warming periods have
never been studied before. By partitioning the warming periods into the growing and
decaying stages, we investigated the phase space of each empirical model structure.
The results showed that during the growing stage. the modal amplitudes of wave
number 1 were increasing with eastward phase speeds. In contrast, the modal ampli-
tudes were reduced during the decaying stage with an eastward phase speed found in
ENM! and a more complex phase propagation in ENM2;

6) During the growing stage of the warming events, the northward motion of the
Aleutian High pushing the polar vortex off the pole along the Greenwich meridian is
clearly seen in the first two empirical modes of the zonal wave number 1. This polar
vortex is restored when the zonal mean temperature returns to the normal winter
condition. The evolution of the zonal wave number 1 has a preferred phase (along
0-180° longitude line) and time (usually at the begining of the warming) while the

occurrence of wave number 2 does not.



Chapter 1

Introduction

In the past two decades. a considerable amount of work has been done to under-
stand the dynamics and chemistry of the stratosphere. Observational and theoretical
research has been quite successful. especially for the stratospheric chemistry. The
stratosphere, an atmospheric layer that extends from about 10 to 50 km above the
ground. contains the ozone layer which absorbs most of the harmful solar ultra-violet
radiation before it reaches the ground. This absorption is associated with photo-
chemical processes in the ozone layer. Ozone depletion has been a topic of scientific
and public interest for more than a decade. Much of the research in this field dealt
with chemical interactions and photo-dissociation that are quite well known. The
result of solar ultra-violet absorption by the ozone laver is a warming of the strato-
sphere, leading to a vertical temperature inversion. Without this ozone layer. there
would be no stratosphere. The existence of the ozone layer is important not only for
the general circulation in the stratosphere but also for the protection of the biosphere.
Although ozone is formed mainly in the tropics at an altitude of about 25 km. high
ozone concentrations (in term of mixing ratio) are found in the low stratopheric polar

region, so that there must exist a dynamical mechanism to transport ozone out of the
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source region. To properly understand the stratosphere one needs to combine chem-
istry, dynamics and their interactions. In this thesis we concentrate on the dynamics
of the stratosphere by analyzing observational data using a relatively new statistical
method.

The main scientific goal of this research is to use the relative new statistical method
of Empirical Normal Mode analysis to study stratospheric warming events in three
dimensions, an approach which has never been used before. It will be of interest to
see how the new analysis technique helps characterize the dynamics of stratospheric
warmings.

We briefly review the basic dynamics in this chapter to explain the climatological
observations in the stratosphere. The Eliassen and Palm (EP) flux is also introduced
in section 1.2 as a diagnostic tool to explain the wave-zonal mean flow interaction.
One of the most striking phenomena observed in the stratosphere is the sudden polar
warming event. It has been known from climatological data that in the middle strato-
sphere the zonal wind in winter is generally westerly (from west) and the temperature
decreases from the middle latitudes towards the winter pole. Every few years this
normal pattern is abruptly changed in midwinter. The polar stratospheric tempera-
ture increases rapidly, leading to the reversal of the latitudinal temperature gradient,
and the westerly zonal wind is replaced by an easterly (from east) one. We describe
the possible mechanism which causes this phenomenon in section 1.3. In the last
section we discuss a new statistical method to analyze data. [t is different from other
statistical methods in that it uses dynamical equations as a constraint to construct
a statistical variable. This new Empirical Normal Mode Analysis method is argued
to be a better technique than the ordinary Empirical Orthogonal Function Analysis
on the basis of an analysis done on the output of a global barotropic non-divergent

model.



1.1 Overview of the Stratospheric Dynamics

The atmosphere is conventionally divided into layers based on its vertical temperature
profile. The tropasphere is defined to be the region from the ground to the tropopause:;
in this layer the temperature normally decreases with height. The thickness of the
troposphere is about 15 km at the equator and 9 km at the poles. Even though the
layer is relatively thin in comparison with the others. the troposphere contains about
80% of the mass of the atmosphere and almost all its water vapour. The weather
disturbances are found in this laver. Above the troposphere is the stratophere, in
which the temperature increases with height to the stratopause (about 50 km from
the Earth’s surface or at the | hPa pressure level). Although this layer has less mass
than the troposphere. the stratosphere can affect the tropospheric dynamics due to
the strength and position of the strong jet (polar night jet).

Boville (1981) has used the NCAR (National Center for Atmospheric Research)
Community Climate Model to show that the position and strength of the stationary
planetary waves and the level of transient eddy activity in the troposphere are affected
by the polar night jet. located in the stratosphere. If in a model the polar night jet
is too strong, then more planetary waves are trapped in the troposphere due to the
change of the refractive properties of the mean flow. A model without a stratosphere
may permit vertically propagating waves to be reflected at the top of the model.
Some models, e.g.. the Canadian Middle Atmosphere Model (Shepherd ef al. 1996).
use a “sponge layer” (an artificial absorbing laver) at the top of the model to avoid
wave reflection into the lower domain.

The observed Northern Hemisphere climatology from 11 winters (DJF) (Dec. 1.
1979 to Feb. 28, 1990) of the zonal mean temperature and wind from 700 hPa
to 1 hPa are shown in Figures 1.1 and 1.2, respectively. Figure 1.1 illustrates the

basic temperature structure which has a minimum at the equatorial tropopause. The



temperature decreases with height in the troposphere and generally increases with
height in the stratosphere. A fairly uniform temperature decrease from the Southern
Hemisphere (summer hemisphere) to the Northern Hemisphere (winter hemisphere)
is observed in the upper stratosphere. The zonal mean wind diagram (Fig. 2) shows
a winter hemisphere westerly jet located at about 13 degrees of latitude in the upper
stratosphere and the lower mesosphere, called the polar night jet. Similarly, there is

an easterly jet in the summer hemisphere.
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Figure 1.1: Observed climatological zonal temperature from 11 Northern Hemi-
sphere winters (DJF) (Dec. 1. 1979 to Feb. 28, 1990). Contour interval is 10°C.

Figures 1.3a and 1.3b show the average polar stereographic charts of geopotential
height of 11 northern winters and southern summers (DJF) at 10 hPa. respectively.
Similarly, Figures 1.3c and 1.3d illustrate the southern winters and northern sum-
mers (JJA). From the four Figures 1.3a-d, we observe that only the Northern winter

Hemisphere (1.3a) polar vortex is distorted, whereas the others are fairly zonally
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Figure 1.2: Observed climatological zonal wind from 11 Northern Hemisphere win-
ters (DJF) (Dec. 1, 1979 to Feb. 28. 1990). Contour interval is 5 ms™".

symmetric. This suggests that the existence of the stationary planetary waves in the
Northern winter Hemisphere is produced by upward propagating waves forced from
the troposphere by the orography and land-sea thermal contrast.

Apart from the existence of free traveling planetary waves, most planetary waves
in the middle atmosphere appear to propagate upward {rom the forcing regions in the
troposphere. Charney and Drazin (1961) were the first to discuss in detail the vertical
propagation of planetary waves. They used a linearized. midlatitude J3-plane. quasi-
geostrophic (QG) model [the model restricted to large scale, low frequency motions:
see Andrews ef. al. (1987) section 3.2.3 for more details| to investigate conditions
under which vertical wave propagation is possible. They found that QG waves can

propagate vertically when
0<i—c<i.=3k+ 02+ fPl4H*NY)! (1.1)

where & is the background zonal mean wind, ¢ is the wave phase speed, 3 is the



Figure 1.3: Observed climatological (1980-1990) polar stereographic charts of 10
hPa geopotential height for: (a) Northern Hemisphere winters (DJF), (b) Southern
Hemisphere summer (DJF), (¢) Southern Hemisphere winters {JJA) and (d) North-
ern Hemisphere summer {JJA). The contour interval is 30 dam. Latitude circles are
shown at 20° intervals, with the outermost circle at 20°. Figure continued)



Figure 1.3: continued
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derivative of the Coriolis parameter with respect to y (= a(¢ — 0,) evaluated at
latitude ¢ = ¢o=45°. f, is the midlatitude value of the Coriolis parameter, a is radius
of the Earth, H is the scale height (= 7 km), N? is the square of the buoyancy
frequency and &,!{ are respectively the zonal and meridional wave numbers. Here
i and N are assumed to be constants. For a stationary wave (c=0 relative to the
ground), the criterion states that only ultra-long waves (that is. two dimensional
wave number A2 = k? + [? sufficiently small to make @. > ) in the presence of a
westerly mean flow (& > 0) can propagate upward. All other waves are trapped in
the troposphere. Also in an easterly background flow (¢ < 0) no vertical propagation
is possible. Even though the real atmospheric zonal mean flow varies with height and
latitude, the Charney and Drazin criterion agrees broadly with the observation that
the stratospheric waves are predominately composed of Fourier components of zonal
wave numbers 1, 2 and 3 in the winter westerlies and tend to be absent in the summer
easterlies. In the case of traveling waves, equation (1.1) also shows us that Rosshy
waves with an eastward phase speed (¢ > 0) more easily satisfy the propagation
criterion than waves with a westward phase speed (¢ < 0).

The vertically propagating stationary planctary waves in the winter Northern
Hemisphere were first quantitatively investigated in detail by Matsuno (1970). He
used a linearized quasi-geostrophic model on a sphere with the perturbation merid-
ional wind modified to include an ageostrophic term which was called the “isallobaric”
wind. The ageostrophic term is included to ensure energetic consistency. Similarly to
the Charney-Drazin criterion. Matsuno introduced a refractive index which is analo-
gous to the refractive index in the theory of acoustics or optics. n?.

n2 _ q_@_ k2 _ f2
7 et a?cos?o 4N2H?

where

i ' 2
§o = 2(2cos ¢ — [Ml - (p°f &,)
o .

acos ¢



is the latitudinal potential vorticity gradient, & is zonal wave number and p, is the
background atmospheric density. Notice that the log-pressure, z, is used as the ver-

tical coordinate which is defined as

s=—~Hln (f-) (1.3)

where p and p, are pressure and the reference pressure, usually taken at 1000 hPa.
respectively. We will use the vertical log-pressure coordinate throughout this the-
sis.  Waves can only propagate in the regions where the refractive index is large
and positive. and are prohibited where n? is negative. From equation (1.2) we sce
that longer waves (smaller k) are more favourable for propagation than shorter ones.
Matsuno concentrated on the hypothesis that the stationary planetary waves in the
stratosphere of the Northern Hemisphere winter are forced from below. Based on this
hypothesis he imposed the 500 hPa observed geopotential height as the lower bound-
ary condition in his numerical model. A realistic zonal mean wind fields varying with
latitude and height was used for the basic state. The results from Matsuno's model
were in good agreement with observations. especially in the simulation of the upward
propagation of wave number 1, though the wave number 2 amplitude decayed more
rapidly with height than in the observations. Once again the Charney-Drazin crite-
rion was qualitatively confirmed. Later, Lin (1982) used more sophisticated models
to study the vertical propagation of planetary waves to the stratosphere from below.
He pointed out that the upward propagation of ultra-long waves is sensitive to the

zonal mean wind structure and the latitudinal position of the polar night jet.

1.2 The Elhiassen-Palm Flux

In this section we introduce the Eliassen-Palm (EP) flux and its divergence as a

diagnostic tool to study the stratospheric dynamics and the interaction between the
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planetary-scale Rossby waves and the zonal mean flow, an interaction that plays an
important role in stratospheric sudden warming events. For simplicity, we discuss the
EP flux using a midlatitude 3-plane formulation. The EP flux for a more complex
model such as one with 3D primitive equations in spherical geometry will be discussed
in the next chapter. The EP flux vector is defined in equation (1.10), having the eddy
momentum flux (uv’) in the north-south direction and meridional eddy heat fAlux (67"
in the vertical direction.

The usefulness of the EP flux and its divergence was well-appreciated when An-
drews and Mclntyre (1976) introduced the concept of the residual mean meridional
circulation and the transformed Eulerian-mean (TEM) equations. The motivation be-
hind this transformation is that there is a strong cancelation between the meridional
eddy heat flux convergence and the adiabatic cooling in the zonal mean thermody-
namic equation (see Holton 1992 section 10.2.2). The residual meridional circulation

is the circulation due to the diabatic processes. and is defined as

_ a { por'0
L L -1 .
v ¢ = p _:( ™ ) (L)
_ ) (7T
0t =0+ b% (‘0) (1.5)

where 0, is the basic state potential temperature that always increases with height.
and p, is the basic state density. The vertical velocity component. w*. defined here is
just the difference in contribution between the adiabatic term and the meridional eddy
heat flux divergence. With the above definition of residual circulation (27, w@*), the
zonal mean momentum. thermodynamic. mass continuity and thermal wind balance

equations are transformed to
a‘_fofF:p;lV- F (1.6)

0, + w,. =C (1.7)
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u—'y-{-p:‘(po-l;:): =0 (1.8)
fot: + H™'Rexp (-%) 0,=0 (1.9)

where Q is the diabatic heating rate. The EP flux vector in this quasi-geostrophic
3-plane formulation is

P = (~po0'tds pofot’@8s:) (1.10)

and its divergence is

V- F

~(pel )y + (po foT0 /b5 ). (1.11)

where the subscripts y and : denote differentiation with respect to the meridional
and vertical directions.

Under the Transformed Eulerian Mean (TEM) formulation. equation (1.6) clearly
shows that the eddy heat and the momentum fluxes act together as an EP flux diver-
gence to change the zonal mean flow. This property of the EP flux divergence is used
as a diagnostic tool to study the wave-mean flow interaction. For a steady. linear
and conservative system the EP flux divergence vanishes V. F =0 (Edmond ¢/, «al.
1980). Later, Eliassen and Palin’s work was extended to include frictional and dia-
batic effects in spherical geometry by Boyd (1976) and non-steady disturbances (i.e..
transient waves) by Andrews and Mclntyre (1976, 1978). The generalized Eliasscn-

Palm theorem has the form

da—'f-+V-F=D+O(a3) (1.12)
where A. D and F are quadratic functions of disturbance quantities. The quantity A
is called the wave-activity density and its time differentiation represents the transient
effect. D contains frictional and diabatic terms and O(a®) represents non-linear terms.

a being a measure of the disturbance amplitude. Notice that the above generalized EP

theorem is not restricted to the QG model. However, under the QG approximation,



the EP flux F is defined by equation (1.10) and the wave activity density A has the

form L
1 qrz

= ~po— 1.13

3P 7 (1.13)

where the disturbance QG potential vorticity ¢’ and the latitudinal gradient g, of its

mean zonal counterpart are defined as:

’ ’ ’ Q 00,

g s-ugy+vg,+£—(%——) (1L.14)
° oa -

quJ—(TT;)w-}-‘{—(gg——y-) (1.15)

where u, and v, are the geostrophic wind components. Thus under the generalized
Eliassen-Palm theorem, the physical properties of the flow can be clearly seen. For
example, for the steady (dA/dt = @), linear (O(a*) = 0) and conservative (D = 0)
disturbances, the EP flux divergence vanishes (V. F = 0). Therefore under the stated
conditions, the total eddy force on the mean flow disappears in the TEM formulation.
By contrast, under the same conditions, the ordinary Eulerian-mean momentum and
thermodynamics equations are
e — folr = —(W)y

_ e (1.16)
0, + 0,0 = Q — (v'0"),.

The eddy forcing terms ((v'w’), and (v0'),) are generally non-zero. [n gencral one
cannot easily anticipate how the zonal-mean flow and temperature will respond to
these eddy forcing terms.

Some properties of the EP flux and its divergence which can be used as diagnostic
tools to study the stratosphere are summarized as follows:

(1) The EP flux vector represents the wave activity flow from one latitude and

height to another (equation (1.12)).
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(2) In the TEM formulation, the eddy heat and eddy momentum fluxes are com-
bined together as a single term, EP flux divergence, which is used to study the
wave-mean flow interaction (equation (1.6)).

(3) For steady,. linear and conservative disturbances, the EP flux is non-divergent
(equation (1.12)) and therefore there is no change in zonal mean flow and temperature
(equations (1.6) and (1.7)).

(4) Under linear and conservative conditions (but not steady). the FP flux di-
vergence can be used to study the temporal variation of the wave activity (equation

(1.12) and the temporal variation of the mean zonal wind equation (1.6)).

1.3 The Stratospheric Sudden Warming

As shown in Figures 1.1 and 1.2, the middle and upper stratosphere temperature
decreases poleward. except at the tropical tropopause. and westerly zonal winds are
generally found in the winter hemisphere. Every few years in the northern winter. the
meridional gradient of the zonal mean temperature and occasionally the wind direc-
tion are reversed. This event is called a stratospheric sudden warming. Stratospheric
sudden warmings are classified in two groups: minor and major warmings. In a mi-
nor warming the poleward gradient of the 10 hPa zonal mean temperature reverves
so that temperature increases poleward, but the flow remains westerly. In a major
warming the reversal of hoth temperature and zonal mean wind (to easterly) near
the polar region takes place. In some years the polar temperature has dramatically
risen by as much as 40-60 degrees Kelvin within a weck at the 10 mb level. Following
a change in temperature leading to a poleward increase in zonal mean temperature
(minor warming), on occasion the zonal mean wind reverses and becomes casterly
{major warming).

The Northern Hemisphere winter 84/85 stratospheric major warming is exhibited
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Figure 1.4: Observed winter 84/85 (DJF) major warming at 10 hPa (a) zonal mean

temperature at 80° and (b) zonal mean temperature difference between 80° and 50°
(solid) and zonal mean wind at 65° (dashed).
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in Figure 1.4. Figure 1.4a shows the zonal mean temperature near the pole (at
80°N) in the middle stratosphere (10 hPa). The temperature rises more than 40
degrees Kelvin in 4 days. The warming episode peaks around Jan. 1. Figure l.4b
illustrates the zonal temperature difference (AT') between latitudes of 80°N and 50°N
(solid curve). The normal negative temperature difference in winter is replaced by a
positive one during the warming period. The zonal mean zonal wind at latitude of
65°N (dashed curve) becomes easterly (negative wind speed) and resurnes to westerly
after the ensuing cooling episode.

During sudden warming years the normal cyclonic polar vortex is elongated and
pushed off the pole and sometimes splits. Stratospheric sudden warmings are ob-
served in the Northern Hemisphere. but not in the Southern Hemisphere. [t is be-
lieved that because of the large amplitude of the zonal mean wind in the Southern
Hemisphere winter (large latitudinal gradient of geopotential height. Figure 1.3(c)).
a much stronger forcing is required to reverse the wind direction. More importantly.
the tropospheric forcing due to the vertical ultra-long wave propagation is relatively
weaker in the Southern Hernisphere than in the Northern Hemisphere because of the
lack of topographically forced waves,

Matsuno (1971) was the first to demonstrate numerically that stratospheric sud-
den warmings can be induced by the upward propagation of planetary { Rossby) waves
from the troposphere and their interaction with the zonal mean flow in the strato-
sphere. According to the Charney and Drazin (1961) non-acceleration theorem, if
the perturbations are steady, linear and conservative then the waves induce no mean
flow change (a, = 0). However the zonal mean wind is observed to decelerate during
the sudden warming period, which implies that some of the theorem’s conditions are
violated during this event. Within the sudden warming time scale (less than a week),
the energy conservation condition is approximately satisfied because the radiative and

frictional dissipations are relatively small. Thus. for a linear system. the theorem's
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only condition which is clearly violated is that of the steady waves. To see how tran-
sient (non-steady) waves can induce the change in the zonal mean wind (the transient
waves—-mean flow interaction), for simplicity, we consider a barotropic model (height

independent variables) for which the zonal mean potential vorticity tendency takes

the form L
9 _ o7V )
a5 = - 1.1
at dy (1.17)
where the potential vorticity flux is given by
__ | dq?
e e v 1.18
0= T o (1.18)
and
7= fo+ 3y — Ty (1.19)

¢’ and g, are as defined in equations (1.14) and (1.15) without the last terms (vertical

derivative terms). Substituting (1.18) and (1.19) into {1.17) we obtain

Ty o220 (1.20)
7] 2, ot

Therefore, for a growing wave (¢ increasing with time) equation (1.20) shows that
there will be a decrease in zonal mean wind with time provided g, is positive (as
observed in the stratosphere). Even though we use a simple barotropic model to
discuss how transient waves alter the zonal mean flow here. the same conclusion can
be found in Holton (1992) for a more sophisticated model.

To illustrate how a transient waves-mean flow interaction can give rise to the
stratospheric sudden warming, we cousider an idealized system whose Eliassen-Palm
(EP) flux is positive (constant) below some z, level and zero above that (see Figure
1.5a). This configuration can be caused by a wave being “turned on” and propagating
upward at some time t=0. At some time t=t,. the leading edge of the wave packet
has reached up to level z,. Above z, the flux vanishes (no wave there) and below

2, the flux is (nearly) constant because the wave is “steady”. At z, there is a jump
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Figure 1.5: Schematic description of the interaction with the zonal-mean flow of
a transient vertically propagating planetary-wave during the stratospheric warming,
{a) Height profiles of EP flux (dashed). EP flux divergence V +F (heavy line) and
zonal mean wind acceleration (thin line); z, is the level reached by the leading edge
of the wave packet. (b) Meridional-height diagram showing the region where EP flux
is convergent (hatched). contours of induced zonal (negative) acceleration (thin lines)
and the induced residual circulation (v*, w®) (arrows). Regions of warming (W) and
cooling (C) associated with w™ are also shown [From Andrews ef. al. 1987].

in the flux, i.e. at the leading edge of the wave. According to equation (1.6) the
deceleration of zonal mean wind must follow in the region of EP flux convergence. A
part of this EP flux convergence will be balanced by the Coriolis term of the residual
mean meridional circulation (fov") which implies increasing v=. Since the residual
meridional wind. v*, increases in the region of EP flux convergence it will induce a
vertical circulation required by continuity (Figure 1.5b). Referring to equation (1.7).

the downward motion associated with negative w* below and north of the convergence
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region will warm the polar region (86/3t > 0 for w* < 0). As the winter westerly
zonal mean flow decelerates, a critical line (where T — ¢=0) may be formed. with
% — ¢ < 0 above, which prevents waves from propagating upward (equation (1.1)).
This process causes the region of EP flux convergence to move downward. With the
right initial conditions, e.g., large wave amplitude. a zonal mean wind distribution
that is favourable for upward and poleward wave propagation. a stratospheric sudden

warming can result.

1.4 The Statistical Analysis

In the analysis of Stratospheric warming events it is naturally of interest to use
statisticcal tools that yield the maximum information. We will use the Empirical
Normal Mode (ENM) analysis, which as we will sce. is an extension of the Empirical
Orthogonal Function (EOF) analysis technique. The ENM technique is attractive in
that it is constructed from the set of dynamical equations so that it has a physical as
well as statistical basis. data is the Empirical Normal Mode (ENM) analysis. This
method is not only a pure

Empirical Orthogonal Function analysis has proven to be one of the most powerful
statistical techniques to analyze long-time meteorological records over a large domain.
This technique is used to find an orthogonal complete set of spatial functions to
represent the dataset. This set of orthogonal functions is constructed based on the
dataset itself through the calculus of variation while other conventional orthogonal
functions, e.g., Fourier series, Legendre polynomial, etc. have a fixed basis. The
choice of fixed basis functions is usually dependent on the geometry of the domain
over which data are to be analyzed. In contrast, the EOF analysis automatically
adapts the functions to the domain of interest and the structures of functions depend

on the data. By construction, EQFs represent the most variance with the least
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number of functions (patterns). The EOFs, F,. of the dataset are the solutions of

the eigenvalue problem

CFn = /\nFu (lll}

where C is the covariance matrix whose elements ¢;; =< f; f, > are two-location (¢ and
J) covariances of variable f and the angle brackets denote an ensemble average or time
mean, and A, is the eigenvalue corresponding to eigenfunction F,. Each eigenvector
has a time series (or coefficients) that modulates it. For a non-degenerated case,
each eigenvalue associated with a different eigenvector gives the percentage of total
variance explained by the particular eigenvector. Eigenvalues are usually arranged
in a descending order to show the degree of importance of each eigenvector. lor
example. if we analyze a one-vear data set of surface temperature fields. we may
obtain an eigenvalue Ay = 0.3 (50%). a pattern [} and a time series of F,. This
means that I, represents 50% of the total variance and the plot of the time series
would be expected to represent the annual cycle. The spatial function F; should have
a large scale structure in the middle and high latitudes where the temperature has a
large temporal variance in comparison to the tropical regions.

The EOF analysis is of course not limited to analyzing metcorological data. [t
has widely been used in many other fields. especially in computer science. The most
basic application of EOF analysis in computer science is to compress data for stor-
age. Another well-known application of EOF analysis in computer science is in face
recognition. The approach is to use human pictures to construct eigen-pictures. From
these eigen-pictures, an algorithm can easily and quickly identify whether a person is a
member of an ensemble (of persons) in the database. [see Sirovich and Everson(1992)
for more technical details about the face recognition)

Kutzbach (1967) used this technique to analyze sea-level pressure, surface temper-

ature and precipitation at 23 points in North America for 25 Januaries. Legler (1983)



applied Hardy and Walton’s (1978) technique, by considering the horizontal vector
wind field (u,v) as complex numbers, e.g., u=u+iv, to analyze the tropical Pacific
winds from 1961 to 1978. Kutzbach has given a precise description of this analysis
technique and physical interpretation of the results.

Even though EOF analysis is a powerful tool to analyze data in terms of orthogonal
functions, this technique is, however, statistical only and has no physical basis. To
illustrate this we use a simple linearized non-divergent barotropic model on a .J-plane.

The conservation of absolute vorticity can be written as

J d
— U+ =0, (1.22
[df o()x} 6 / ( )
where uq(y) is basic state zonal wind. ' and v’ are the perturhation (relative) vorticity

and meridional wind, respectively, v is the latitudinal gradient of the basic state

absolute vorticity (PV gradient) and is defined as

02 a
"= a:'! . (1.23)

The non-divergent winds and relative vorticity are defined as

vy v
A —_ — — ——— .2.
(u,v) ( ?)y“(’h’) (1.24)
and
dv  Jdu .
"“'———-sz“, 25
5 dr dy ¢ (1.25)
where 1 is the streamfunction. We assume that ¢’ and ¢’ have the form
[C'(2eg ) (2 g )] = 30 3 [Cenly)s win(y)] €470 e (1.26)
k=0 n=1

so that ¢’ and ¢ are 2x periodic in r. For a particular zonal wave number £ (dropping

subscript & hereafter), substituting (1.26) into (1.22) we have

(e = €n)Cn + yun = 0. (1.27)



If we write another equation like (1.27) with subscript m, then multiply the m-

equation by (, and the n-equation by (,, and subtract, this yields

(C" — Cm )Cm(n + 7(Cnd'm - Cmd'n) =0 (128)
or
Cm Cn a d Uy é)u‘m .
n = Cp)—— = 5 | Vm—g —Un . .29
(n = m) Y dy (u ay "oy (129
Integrating the above equation over a channel with boundary condition
ynly)=0 at y=0.1L (1.30)
the right-hand side of equation (1.29) vanishes, so that we have
L -
(c,,-c,,,)f Smn gy =0 (1.31)
0 i
or
L
(en — Cm)/ Nmimdy =0, (1.32)
0

where n,(y) = (a(y)/ /7 is the wavefunction. The wavefunctions are orthogonal to

each other, that is.
L
/ ’]mr}ndy =0 if m ;é n. {(1.33)
0

We can show from ([.22) that

d (n?\ 9 —
— (L) = ). (1.34)
at \ 2 dy
where the overbar denotes a zonal average. From (1.34) we can see that the square
of the wavefunction is conserved over the channel providing v = 0 at y = 0. L. The

conserved quantity P is called the pseudomomentum (or wave activity in the above

model) and is defined as

1¢7 =



(3]
(8]

Thus if we perform an EOF analysis on the relative vorticity. (. the eigenvectors
{¢ivt =1, N} are orthogonal to each other, e.g., [ (n(ndy = b,nn. According to (1.31)
the normal modes, (,,, are, in general, not orthogonal to each other if m # n unless
¥ is a constant. In other words, the orthogonal eigenvectors (EOFs) of the relative
vorticity are not solutions of the dynamical equation (1.22).

Held (1985) has pointed out this non-orthogonality. Thus the total eddy enstrophy
{¢.¢} = [¢(dy and eddy energy {v".(} cannot be expressed as the sum of contribu-
tions of normal modes. This implies that the energy or entrophy of a normal mode is
not constant in time. Held has also shown the relationship between the conservation
law and modes: if a quantity (squared wave amplitude) is conserved then the normal
modes are orthogonal to each other. In the above model, modes of the wavefunction.
n. are orthogonal to each other. but not those of the relative vorticity (.

Brunet (1994) has used the relationship between the conservative property of
wave activity and the orthogonality to bring the concept of a conservative norm
(time tnvariance of the trace of the covariant matrix in EOI analysis) into the EOF
analysis technique. For a linear and conservative system, with the right choice of
a variable, the EOFs are just the normal modes of the dynamical equation. In the
above example, the variable is = (/,/7. not ¢. The choice of variable can be found

with the help of the generalized Eliassen-Palm theorem

DA ,
L4V F=0 (1.36)

The area integrated wave activity. A, is conserved if there is no EP flux divergence
when integrated over the domain. In other words. either the normal flux vanishes
on the domain boundary or. less strictly, the fluxes into the domain is equal to the
fluxes out of the domain. The method of EOF analysis with a conserved norm was

introduced and called by Brunet Empirical Normal Mode Analysis.



Chapter 2

Statistical Diagnosis

In this chapter we first discuss the Empirical Orthogonal Function (EOF) analysis
technique as a statistical method to analyze data. From the conservative property of
the wave activity and the orthogonality of EOFs we introduce the Empirical Normal
Mode Analysis technique for the Shallow Water Model and for the primitive equations

in the sections 2.2 and 2.3.

2.1 Empirical Orthogonal Function Analysis

In this section we review the EOF analysis technique which has been discussed in
a number of articles. In meteorology. the EOF analysis results can have strong de-
pendence on the geometry of the analysis domain. The selected data points should
be chosen in such a way that they represent equal areas in the domain (Kutzbach
1967). Since we use the spherical geometry throughout this thesis. the EOF analysis
is derived to work with each zonal Fourier component separately. We also consider
the effect of the sample size on the eigenvectors (EOFs) associated with small eigen-
values. This was discussed in detail by North et al. (1982). This review provides

a background to understand the Empirical Normal Mode analysis in the subsequent
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chapters.

Empirical orthogonal function (EOF) analysis, also known as principal compo-
nents analysis (PCA), has been shown to be a most powerful statistical technique
to analyze meteorological data. It is used to separate large spatial and temporal
records into patterns (eigenvectors) and their corresponding time series (coefficients).
The EOF analysis matrix formulation can be expressed in the form of an eigenvalue

problem as

CX, = \AX, (2.1)

where C is the covariance matrix whose elements. ¢;; =< T;T, >. are the correlations
of the variable T at two locations ¢ and j and the angle brackets denote an ensemble
average (time mean). Each of the patterns (EOFs) which represents the spatial
structure of the data set is associated with an eigenvalue (partial variance) that
explains the degree of importance of the corresponding eigenvector. The time series
of the amplitude of a specific eigenvector is used to see the temporal variability of
that pattern. The spatial functions or eigenvectors have certain advantages over
conventional orthogonal functions such as Fourier series, Legendre polynomial etc..
For example, the construction of the eigenvectors is based on observed data through
the calculus of variation while other conventional functions have fixed bases. The

eigenvalues are arranged in descending order

A 22220, 20 R
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By construction they represent the most variance with the least number of patterns.

The application of EOF analysis to meteorological variables has usually been done
in two-dimensions in such a way that every grid point (station) represent an equal
area (Kutzbach 1967, Buell 1978). We are here interested in analyzing data for each
zonal Fourier component separately. It so happens that our EQFs are functions of

latitude for the shallow water model and are functions of latitude and height for the



primitive equations. For simplicity we discuss the two-dimensional case (longitudinal
Fourier analysis and latitudinal EOF analysis), although the same argument can be
easily generalized for the three-dimensional case.

Consider a zonal Fourier coefficient variable, 5(o.t). which is a function of latitude
and time only. Let us assume that the observed data. n(o.t), can be written as the

product of temporal and spatial functions and a remainder as:

n(o.t) = A(t)F(o) + r(o.t) (2.3)

where ¢ is latitude, r(o.t) is the remaining (error) term and A(¢) and F{o) are
functions to be determined such that A(t)F (o) represents the maximum variance of
n(¢,t). Here we try to find A(f) and F(o) in such a way that the variance of r is
minimum. [n other words, A(¢t) and F'(@) are varied until the least possible value of
// r? cos ddadt can be found.

For every latitude. 0. we require P(¢) = /r2d! to be minimum and for each time.

!, we minimize Q(t) = /r’cosodo. These lead to

JP |
oF == /[’7(@~‘) — A(OF(o)] A(t)dt (2.0)
and
% =0= /[’I(O.Z) — A(t)F(0)] F(o)cos(o)de. (2.5)

The function F(®) is normalized such that:

/cmos(oé)d@ =1 (2.6)

From (2.5) we see that A(t) is just the projection of n on F(¢) (with normalization

condition (2.6)). Letting

(8
~1
S—

L 2 - K
:I:/A(t)dt-.,\ (2.



be a positive number representing the variance, where Tis the time period. (2.4) and

(2.5) become:

1
) _ — - .). 3
F(9) T/n(o.t)A(t)dt (2.8)
and
A(t) =/l’](d).!.)F(eD}r~n.~a(m)drp, (2.9)

Substituting A(¢) from equation (2.9) into equation (2.8) we find the integral equation

MF(o) = /n(zp, U n(o'. ) F(9)cos( )do’]dz

/ [T‘/’?(Qt)f}(o'.t)dt] F(0')cos(0')do’ (2.10)
- /G(o ') F(0')cos(0')do'.

where

Glo.0') /I]mt)uo t)dt

is the symmetric covariance function of the field between the two points o and o'. The
above EOF theory is discussed in the context of continuous space and time. However,
in practice n(®. t) is measured in discrete space (grid points) and time (with a constant

time interval). We can express the covariance function. G(o. ¢'). in matrix form as:

l

G(oi.0)) = n(oi te)n(o;. te). (2.11)

M'ﬁ

=
where T is the number of observations. Since our data are available on a Gaussian
grid (see Washington and Parkinson (1986). Appendix B). the spatial integral in
(2.10) can be exactly replaced by a summation as follows [see also Buell 1971, 19738
for more discussion of approximating the integral in (2.10) by a finite-dimensional

matrix equation|:

M
F(:) = Y. G(¢:. 8,)F(0,)w(8,), (2.12)
J=1



LA
-1

where M is the number of Gaussian latitude points and w(¢;) is the Gaussian weight-
ing factor. One can refer to Washington and Parkinson (1986} appendix B for the
calculation of the Gaussian weighting factor. Equation (2.12) is not in the form of
the standard eigenvalue problem, e.g., [A]X=AX. However, we can transform it into

the standard form by multiplying (2.12) by /w(e;) and rearranging as:

F(o:)\/w(e;) = ZF @, )/ w( [G(cn ;) w(wf)w(@,)]

J=1

or
A(0:) = Y Gloi0,)F(0;). (2.13)

where

G(‘Dh@j) = G(ol @j)\} ur(@«)w(%) and (Ot) = F(o,) l)

Now (2.13). but not (2.12). is a standard eigenvalue problem and can be readily solved
for A and F(&#) by standard techniques. Each eigenvalue. A,. is associated with an
eigenfunction (EOF) F.(0). The larger the value of A,. the larger the explained
variance. The time series associated with each eigenvector can be calculated from
(2.9) or

M

Zr) o, )F.(0;)w(e,) = Z [r;(o,.l) w(oj)] F.(o,). (2.14)

)=t =

Since the covariance matrix, C, in (2.1) is a real and symmetric matrix (Her-
mitian), the eigenvalues. \;, are real and the eigenvectors are orthogonal to each
other. To show this we multiply equation (2.1) by a row vector Xj and write another

equation by replacing ¢ by j. which yields
xfex, = axXIx, 215
X, V= AN N (2.13)

and

xiex; = 4xix,. (2.16)



Taking the adjoint of this equation, we have

xfctx, = xlex, = xxix,

—_
o
—
-1

—

where the asterisk denotes the complex conjugate while the dagger represents the
complex conjugate transpose of a matrix. The first equality comes from the fact that

C is Hermitian. Subtracting equation (2.17) from equation (2.13). we obtain

At
(A - XXX, = 0.

A
(S
—
v A
=

First if we let : = j in (2.18) then a nontrivial solution requires the cigenvalue A, to

be real (\; = A?). Second. for i # j and A; # A7, we find
O - axix, = (2.19)

or

XtX, =0 (2.20)

J
so that the eigenvectors of distinct eigenvalues are orthogonal. In the case of de-
generacy (A, = A,). the eigenvectors X; and X, are not automatically orthogonal:
however. they can be made orthogonal by using a well-known method called Gram-
Schmidt orthogonalization (see Arfken 1985 section 9.3). We also note that not only
are the eigenvectors mutually orthogonal but so are their associated time series. A, (¢)
(Kutzbach 1967).

In the above discussion of EOF theory all the eigenvectors are used to represent
data without any concern about degenerate multiplets or sampling errors in con-
structing the covariance matrix. In practice, however. only the first few eigenvectors
are used to approximate the physical field. If one’s interest is in the structure of the
data set itself then the aspect of most concern is the degeneracy of EOFs. In that
case, two or more eigenvectors have the same eigenvalue and any linear combination

of these eigenvectors is also a solution. Hence the structure of the data set is not



unique. Kutzbach has used 25 Januaries of sea-level pressure, surface temperature
and precipitation to construct the combination EOFs in which all three variables are
used to construct a covariance matrix. He noticed that if only 15 of these 25 Januar-
ies were used, the first three eigenvectors were similar to the previous ones (although
the first two reversed in order of importance); the eigenvectors which were associated
with smaller eigenvalues had changed significantly. North ef al. (1982} studied this
change in EOFs by perturbing the covariance matrix. In this work. a small sym-
metric perturhation matrix (sampling errors) was added to the covariance matrix to
estimate the shifts in eigenvectors and eigenvalues. According to the results. North

et al. suggested the the following estimate for sampling errors:

[2
i\ = A/~ 2.2
oA = A v (2.21)

where .V is the sample size and \ is the cigenvalue. If the difference between two
neighbouring eigenvalues, A\, is less than the sampling error, 8\, then the eigenvector
is considered as “effectively degencrate”™. This EOF will be changed significantly if the
sample size is reduced as in Kutzbach's case. Since sampling errors exist in practice,
only EOFs which have differences in the spectrum of eigenvalues thal are greater
than the sampling error are considered to be independent (i.c.. do not mix with the

neighbouring EOFs).

2.2 ENM Analysis for the Shallow Water Model

Longuet-Higgins (1968) has solved the Laplace tidal equations. also called the lin-
earized shallow-water model equations on a sphere for a basic state at rest. i.e. for
Uo = Uy = (, = 0. The solutions to this problem, which are functions of the latitude
and longitude are called the Hough functions. Each of the Hough modes has a fre-

quency associated with it. The shallow water model is one of the most used numerical
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model in both atmosphere and ocean research due to its simplicity. In this section we
present the ENM formalism for the shallow water model. The formulae will be later
used to analyze the model output and the results will be tested against the analytical
solutions provided by Longuet-Higgins.

As mentioned earlier, the ENM analysis method is a technique that finds orthog-
onal functions of a dynamical variable based on the generalized EP theorem. To find
such a variable, we begin with the horizontal momentum and continuity equations on

a sphere linearized about a basic state at rest:

du g Oh
oy TV =E= a5 ) 39
at J acos @ JA (2.22)
dv g Oh
En = 2.
ot = "ae (2.23)
and
= LT [P )| =0 294
at " acoso | IA + a@(t cos Q)| = (2.24)

where f = 20¥sin @ is the Coriolis parameter, Q is the Earth's rotation rate. H is the
constant basic state depth of the fluid. g is the acceleration of gravity, a is the Earth'’s
radius, u.v are the perturbation eastward and northward components of velocity
respectively, h is the perturbation height above the equilibrium level. ) is longitude
and ¢ is latitude. In the above equations we have assumed that the perturbation
height is much less than the mean depth, i.e.. & <H. The conservation of potential

vorticity can be written as (Gill 1932 sections 1.2 and 11.3)

Dq
‘I)—t' =
where
D @& u d vad
52=57+ac05057\-+5% (2.26)
and the potential vorticity is

+. 1 - !’ ”~
q:—é—ﬁzﬁ(f'i-ﬂ—{_—j;h)“}'O(qz) (2.2()
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with ( being the perturbation relative vorticity and O(¢") denotes non-linear terms.

Substituting (2.27) into (2.25) and keeping only linear terms we have

aq

- )= 2.2\‘
ot + goyv = 0. ( )

where the potential vorticity (PV) gradient is

1 a(f 2Qcos o
= = 2.29
qoy a ()Q ( ) (ll"{ ( )
and the perturbation potential vorticity is
; f

"= . — =h 2.30
=g (L i ) (2.30)

Multiplying (2.28) by H?¢’ and dividing by ¢o,. the resulting equation is then zonally

d (H*q —
) = N
e ( 5 Q'Oy) + Hvqg’ = 0. (2.31)

If we multiply (2.22) by h and (2.21) by u, then add the resulting equations, we get

7, H d (u? d g d (h*
— —_— ] - —_— —_— '):')
Jt uk)+ acos o [()\ ( ) * u()o(l COSO)} Jek acos o dA ( 2 ) - (3482)

Taking the zonal mean of the above equation and using the longitudinal periodicity

averaged to obtain

we have
() — H d _
- —( v cos — fvh = 2.3
( h) + (LCOS(?IIBO(LCObO) foh =0, (2.33)
where the overbar denotes a zonal mean. Since
1 dv J
L _ 1 fogv 0o >
¢ acos o [3)& aé(ucos o)] ' (2.34)
we can write the second term in (2.31) as
H%vq’ = HoC — frh = — il u—a—(u cos o) — frh (2.33)
acosd Jo ' o

Substituting (2.35) into (2.31) and subtracting (2.33) we obtain

01T gl o B[ rcasor+o
| 2 qo e acos @ ud¢1cos¢o)

aa¢(-u cos )] . (2.36)




The right-hand side of (2.36) can be transformed into a flux divergence form by

multiplying by cos¢ which becomes

a H2g? — H o .
— |cos @ el I uh)| = - — (T cos® ¢). (2.37)
ot 2 oy acos @ do
. . . r/2
Integrating the above equation from latitude of —x/2 to 7/2, i.e. f {®)cos odo,
-2

the right-hand side of (2.37) vanishes, so that we have

9 (/2 27
7(-)- [coso (E—ﬂ— - uh)] cos odo = 0. (2.33)
ot -rf2

< oy
Therefore for the shallow-water model. the pseudomomentum density. P, is con-
served over the domain, where

< Goy

2 n
P =cos o (f_{)_q_ - uh) . (2.39)

In order to show the relation between the orthogonality of the wave vector and
the wave activity (pseudomomentum), we consider the dynamical equations of the

shallow-water model in matrix form (see Held 1933)
LX = cPX. (2.10)

where L and P are self-adjoint matrices. The matrix P and the wave vector X are

defined as

0 coso 0 u
P=] coso 0 0 and X=1| 4 |. (2.41)
_ H? cos
0 0 ——-‘aqw q'

For the meridional mode n, the (2.40) can be written as
LX, = ¢,PX, (2.42)

where

Xa(A 0.t) = 3 Xyn(8)ekA—exnt) (2.43)
k
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and k is the zonal wave number. From now on we fix our attention on a particular
k, so we drop the index k. Since the system is conservative (no energy source or
sink), neutral modes are expected, i.e. the phase speeds, c,, are real. The modal
orthogonality can be shown by multiplying (2.42) by X,Tn and taking the adjoint of

the resulting equation to obtain
XILtX,. = c.XIPTX,.. (2.44)

Because L and P are self-adjoint matrices, we can write (2.441) as

XILX\ = e XIPX,n. (2.13)
Replacing the index n by m in {2.42). multiplying by Xi vields
XILX,, = cn XIPX,n. (2.16)

Subtracting (2.46) from (2.43) we obtain the orthogonality condition between modes
m and n as

(o = €m) <x,tpx,,,> = 0. (2.47)
where the angle brackets denote the latitudinal integration. From (2.47) we see that
if the eigenvalues of two different modes are not equal (¢, # ¢, ) then the two modes

are orthogonal, with the orthogonality condition being defined by
<xipxm> =0 il n#m (2.43)

From the orthogonality in condition (2.48) and the conservation of the pseudomo-
mentum in (2.39), we construct the angular pseudomomentum matrix for each wave

number k (Brunet 1994) as

o) —

M(o.0') = - {x(a.t)\f(es’.t)}P. (2.19)

where the curly brackets denote a time mean and \(o.¢) is the coefficient of ¢!, i.c.

(@, t) =3 Xa(o)e o, (2.50)
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Notice that {x(qb, t)\t(qb'. t)} is just the wave vector covariance matrix. [f we substi-
tute (2.50) into (2.49) and use the fact that
1 T ™ "
— —~tR(Cn—Cm “ = 6"”1‘ -_)'.'1
T /0 e d (2.51)
where T is period and 8,,, is the Kronecker delta then (2.49) hecames
no_ b , .
M(0.0') = 5 3 Xn(@)X](o)P. (2.52)

If we rewrite, without loss of generality, (2.18) as:

1
5 (XIPXa) = M (2.53)
then X, is the eigenvector of M with eigenvalue. A, because.
! U l ’ il
(Mlo.0)Xa(6), = T Xul0) (XL(0)IPXal0')
m - o’
= A Xa(o) (2.54)

where the subscript ¢’ outside the angle brackets denote the dummy variable of in-

tegration. Notice that the pseudomomentum matrix, M. defined in (2.49) has a con-

served norm (trace of the matrix) which is the pseudomomentum defined in (2.39).
We can write the shallow water model in a zonally-averaged conservation form of

the generalized EP theorem in (1.36) where the gradient in polar coordinate is

1 Jdcoso
V= 2.55
acoso Jo (2.53)
the wave activity density, A. is
Hy —
A=cosé (;3— - uh) (2.56)
< Qoy

and the EP flux. F = F(®) is

F® = H cos ¢um. (2.57)



35

2.3 ENM Analysis Based on the Primitive Equa-
tions

The shallow water (one-layer) model used in the previous section is a convenient
framework to study the barotropic (or extended) modes of oscillation in the atmo-
sphere and oceans. To apply the model to the analysis of internal modes of oscillation
with that framework one would have to assign the depth of the fluid to correspond
to the equivalent depths of the internal modes. one mode at a time. As the equiv-
alent depths of the various internal modes are not known a priori. the choice of the
equivalent depths is arbitrary.

To analyze atmospheric oscillations it is much preperable to use the framework
of a baroclinic (3-D) model. In this section. we use the wave activity conservation
for the 3D primitive equations shown in Appendix A, which is similar to Andrews’
(1987) work. to derive the ENM framework based on the conserved norm of the wave
vector (wave activity). The technique will be used to analyze stratospheric data and
selected datasets for warming events.

Similar to the previous section. we can construct the pseudomomentum matrix,
M, for a particular zonal wave number which is based on the conservation of wave

activity, A, in equation (A.35) as

l
M(o.z: 0. 2) = 5 {\(o. :. l)\f(a’.:'.t)} P (2.58)
where the curly brackets denote a time average. \(o. z.t) is the zonal Fourier coefhi-

cient of the wave vector. e.g.. X(\. 0.2.1) = \(0. z.t)e** [see also (2.50)). the wave

vector X and the matrix P are defined as
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I’ 5— 0 0
X=1]¢ and P=apcoso| 0 38{ (E‘,‘): —5‘: . (2.59)
', 0 -4+ 0
By solving the eigenvalue problem
MX, = \.X, (2.60)

we obtain the ENM, X,, and eigenvalue, A, [see also (2.31)]. Once again. the trace
of the pseudomomentum matrix, M, defined in (2.58) is the conserved wave activity.

Notice that the reference basic states for the shallow water model (section 2.2) and
the primitive equations are at rest and zonally symmetric. respectively. The choice of
the basic state is otherwise not subject to any constraint. We require that the basic
state be zonally symmetric to allow for a separation of the sine and cosine dependence
in longitude. Zonally-varying basic states generally do not allow perturbations that
can be expressed as a single zonal harmonic. but rather allow the propagation of
modes that need to be expressed as a sum ol zonal harmonics. a complication that

we want to avoid in this study.



Chapter 3

Application of ENM Analysis to
the Shallow Water Model

In this chapter the ENM analysis technique is used to analyze the output of a shallow
water model integration. We have chosen the shallow water model in this study
because the exact solutions to the problem are known so that comparisons of the
exact meridional structures (Hough modes) and their frequencies to those of the
ENM analysis results can be made. We want to see how well the ENM analysis can
recover the known properties of the Hough modes (solutions of the linearized shallow
water model equations) by applying this method to the output of a shallow water
model integration.

We will discuss the model equations in section 3.1. Section 3.2 shows how the
model output is generated. The methodology of the ENM analysis is found in section

3.3. The results of the ENM analysis are discussed in section 3.4,
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3.1 Shallow-Water Model Equations

The non-linear shallow water model used in this study has the following momentum

and mass continuity equations:

L Ly, 15, , . . .
u, + 1cos b [iu + EL T!}([I'rh'rum)]'\ —vqg=X, (3.1)
] - - 1 m ug = 3.2
. acos ¢ L2 2 9 o q
and
! h
h‘ = [(H + h)u].\ + [(H + h)i']¢ =47 (;'})
acos Q@ T,

where the absolute vorticity. ¢, is defined in (2.27), X.Y and Z are components of
the friction force per unit of mass, ¢ is the acceleration of gravity, h,, is the mountain
height, u = us + u' and v = v, + ¢’ are horizontal velocity components in the eastward
(A) and northward () directions, respectively. and 7. is a damping time relaxation
constant. Notice that H is the mean depth of the fluid layer in the 2-dimensional case
(shallow water model) and the equivalent depth in the case of 3-dimensional primitive
equations.

The model equations described here are similar to (2.22)-(2.24) in section 2.2 if
the model is kept in the linear regime. By this we mean that the perturbation height
(k) is much smaller than the mean depth (H) in which case the non-linear terms e.g..

u”, v etc. are much smaller than linear terms e.g.. fu'. fv' etc. and are negligible.

3.2 Model data

In order to generate data for the ENM analysis we use a hemispherical shallow water
spectral model with a T42 truncation. The model has been initialized with a basic

state at rest. To keep the model in the linear regime we excite the flow by a small
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amplitude Gaussian-like mountain which has a half width of 2000 km. The mountain

height, Any, in (3.1)-(3.3) has the form

-5 B

-

- t.)? - 0,)? A=A )?
h,,.(A,as,t):hoexp[ ‘(_‘___)]em[_l(‘” el TRZAT gy

where h, is the mountain height amplitude. ¢.. 0., A, are constants that provide the
time and space scales of the height disturbance forcing, t.. 0., A, are positions in time
and space of the mountain centre.

We perform two experiments with mean depths of 0.88 km and 8.8 km. which cor-
respond to the dimensionless parameter, € = 100 and 10, respectively [as in Longuet-
Higgins (1968)], where ¢ is defined as

10%a?
gh

¢ =

(3.5)

The maximum amplitude of the mountain, h,. is set to 1% ol the mean depth, the
latitudinal centre of the mountain is fixed at 45°N and the time constant. {., is one
day. The relaxation time, r,, in equation (3.3) is equal to four weeks. Since the
model has friction and relaxation terms. the wave amplitude will tend to decrease
with time, so we use the growth-decay Gaussian-like mountain to randomly (in time.
t., and longitude, \.) excite the model every 25 days on average. The main reason
for choosing the above mean depths is that the calculated frequency (or phase speed)
corresponding to each normal mode (ENM) can be exactly compared to Longuet-
Higgins' Table 5. Each experiment has been integrated for 2000 days with a daily

output of u,v and h. This model is the same as that used in Brunet and Vautard

(1995).
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3.3 Methodology

We now describe how to calculate the ENMs and their associated phase speeds for
each wavenumber. We use the madel output u.v and h to calculate the potential
vorticity, ¢’, according to (2.27). The wave vector, X. which contains 3 fields (u. h.¢’)
is formed using (2.11). The wave vector is then zonally Fourier transtormed into sine
and cosine components. For each sine and cosine component of a particular wave

number. k, we separately construct the pseudomomentum matrix, M¥ .. as shown in

(2.49) or

. l . )
M;.(0.0') = 5 {\t‘c(cp. t)\fﬁ".(m'.t)} P (3.6)
where
XK\ 0.0) = \5(6.t)sin kA + \*(o.t) cos kA (3.7)

and the matrix, P is defined in (2.41). Notice that in constructing the pseudomomen-
tum we have used the Gaussian weighting factor which was discussed in the paragraph
following (2.11). For each pseudomomentum matrix. we solve the eigenvalue prob-
lem using (2.54) to obtain eigenvectors or ENMs. X, (¢), and eigenvalues, A,. Each
eigenvalue, \,, associated with eigenvector. X,(0). explains a portion of the variance
in the dataset.

There is another conserved quantity (wave activity) called the pseudoenergy. To
show this conservation we multiply (2.22) by Hu. (2.23) by Hv, (2.24) by gh and add

the resultant equations to obtain

gH

acos @

3 l 2 9 l 2] C) d
- = 1 —_ I = - — —— . . :.C
T [QH(u + v )+2gz 8A(uh)+a@(cosouh) (3.3)

We can write the above equation into the generalized EP theorem as in (1.36) with

the new definition of the pseudoenergy, A, as
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A= éH(u2 +v3) + :l)-gh2 (3.9)

and the new flux, F=(F), F{®) is

F = gH(uh, rh). (3.10)

With the above new definitions of A and F, we have the new matrix Q and wave

vector Y as (see also (2.-11)]

H 0 0 u
Q=10 H 0 and Y=| » |. (3.11)
0 0 ¢ h

Following the same procedure as in section 2.2 we construct the pseudoenergy

matrix. E. as

l K
E(¢.0') = 5 Yn(2)Y)(#')Q. (3.12)

We then solve the eigenvalue problem. EY, =)\, Y .. to find the eigenvectors, Y,.
The main purpose of the introduction of the pseudoenergy concept is to be able

to use the modal pseudoenergy and pscudomomentum together in order to calculate

the phase speed (or frequency). For each mode. the phase speed is computed from

the ratio of modal pseudoenergy and pseudomomentum (sce Held 1985 and Brunet

1994) as
(viQv.)
<xIPxn>

where the angle brackets denote spatial integration. This phase speed calculation is

Ch =

(3.13)

called the “theoretical” method. An alternative way to calculate the phase speed is

to use time power spectrum analysis to analyze the time series associated with each



ENM. Similar to EOFs, ENMs are orthogonal to each other and form a complete set.

We can expand the zonal Fourier coefficient of the wave vector, y(o,t) as

vot) =) aa(t)Xa(o). (3.14)

By using the orthogonality condition in (2.48) we obtain the time coefficient. a.(f).

by projecting data onto that particular ENM such as [see also Brunet 1994}

(xtoPr(0.0))
(xl21PX,(0))

The time series, a,(t), is then transformed into frequency space. The relation between

an(t) = (3.15)

frequency and phase speed of a wave number, k. is
e =2 (3.16)

For more details about power spectrum analysis one can refer to Press ¢! al. (1986).

Chapter 12.

3.4 The Results of the ENM Analysis

In this section we present the results of the ENM analysis on the shallow water model
data set mentioned in the previous section. The results of the numerical solutions
to the Laplace tidal equations presented by Longuet-Higgins (1968) (hereafter LH)
are represented in terms of spherical harmonics and known as the normal modes or
Hough modes of the tidal equations.

First we present the results of the numerical eigenvalue analysis of the linearized
shallow water model equations for a basic state at rest performed by LH. Part of the
results are utilized for comparison with the our ENM analyses. Figures 3.1 and 3.2

show the non-dimensional eigenfrequencies (w/29) vs. the dimensionless parameter
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-1
3

y=€37 = \/;I'—I/‘Zaﬂ of zonal wave numbers | and 2, respectively. There are two
groups of eigenfrequencies in each figure. The higher frequency (upper) group is
associated with gravity waves while the lower frequency (lower) group is associated
with Rossby or planetary waves. These figures are used to find the frequency. «.
corresponding to a specific mean depth. In our case, the mean depths are 0.88 and
8.8 km which correspond to ¥ = 1/10 and 4 = 1/V/10 = 0.316. respectively. Figures
3.3 and 3.4 show the exact eigenfunctions or north-south (latitudinal) structures of
the perturbation height for different values of mean depth or ¢. These figures use
colatitude (90° minus latitude) as a coordinate. The equator is at the bottom of the
graph (90° of colatitude) and the north pole is at the top (0° of colatitude).

Second we present the results from the ENM analysis of our 2000-day integration
data sets with two different mean depths of 0.38 and 3.8 km. Since we perform the
ENM analysis on each sine and cosine zonal Fourier coefficients separately. the north-
south structures (eigenfunctions) of perturbation height of the sinc wave (dashed line)
and the cosine wave (solid line) are shown separately in Figs. 3.5-3.12. Figure 3.5a
shows the first normal mode (ENMI) of the perturbation height for wave number
| with mean depth of 0.88 kin from the ENM analysis. The structure is similar to
that of Fig. 3.3a above LH with parameter ¢ = 10°. Both figures have a broad
peak centred around 43°, a smaller one in the vicinity of 13° and a zero near 21° of
latitude. When the ENM1 and the exact solution (LH) are compared. it is found that
both approach the north pole and the equator in the same way. Similarly, Fig. 3.5b
represents the second normal mode (ENM2) structure which is also like the ¢ = 10?
curve of Fig. 3.3b (LH). Both curves have a broad peak in the neighbourhood of 25°
of latitude and approach the pole and the equator in the same manner.

The time series associated with the each ENM that is calculated from (3.13) was
analyzed using the Maximum Entropy Method (Press et al.. section 11.7) to find

the frequency or the phase speed of the structure. Figure 3.6a represents the power
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spectrum of the ENM! in Fig. 3.5a. The figure shows the main power is spread from
the periods of 20 to 50 days and peaks around the period of 32.8 days. We find the
LH non-dimensional frequency in Fig. 3.1 of the structure (n’-s=3, which denotes
number of zeros or nodes between the South pole to North pole) with v=1/10 is -
0.0153 which corresponds to a period of 32.6 days. Similarly, the period of ENM?2 for
wave number | can be found from the power spectrum curve in Fig. 3.6b. This figure
has a narrow peak centred at a period of 14.9 days. The corresponding period found
in Fig. 3.1 (LH) for the structure (n'-s=1) is 15.1 days. The broad power spectrum
of ENML in Fig. 3.6a could come from the interference between the traveling wave of
period 32.6 days and the mountain “wave” which centres at 15° and has an average
period of 25 days. This broad spectrum is not found on other structures which have
periods significantly different from the mountain forcing period.

The first two eigenfunctions for wave number 2 with the same above mentioned
mean depths are presented in Fig. 3.Ta and b. The ENMI curve in Fig. 3.7a is
analogous to the curve labeled ¢ = 10? in Fig. 3.1a (LH). The large peak appears
at approximately 42.5° of latitude in both curves. the smaller peak is found in the
vicinity of 12.5° of latitude and the zero is located around 21° of latitude. The shapes
of these curves are observed to be identical when they approach to the north pole and
the equator. The period of the above ENM1 is found from a sharp spike in Fig. 3.8a
to be 17.5 days. The same period is retrieved from the LH Fig. 1.2. The peak of the
ENM2 mode in Fig. 3.7b is located at the same latitude (around 25°) as that of the
LH € = 10% curve in Fig. 3.3b. However. as the ENM2 curve approaches the pole it
tends to zero faster than the LH curve. The period of this ENM is found from the
sharp spike in Fig. 3.8b to be 8.3 days, in good agreement with the 8.4 day period in
Fig. 3.2 (LH).

We now discuss the results of the ENM analysis on the 2000-day integration data

set for the mean depth of 8.8 km or ¢ = 10 or ¥ = 1/V/10 = 0.316. Figure 3.9a



displays the ENM1 of wave number 1. This curve has a broad maximum around
64°, one smaller amplitude peak in the vicinity of 20° and a zero in the proximity
of 32° of latitude. The same features are found in curve ¢ = 10 of Fig. 3.3a (LH).
The two curves act in the same fashion when they approach the north pole and the
equator. The ENM2 in Fig. 3.9b has only one peak at around 15° of latitude and
monotonically approaches to the north pole. These features are also discovered in
Fig. 3.3b (LH). Sharp spikes in the power spectra are exhibited in Figs. 3.10a and
b with periods of 12.6 and 5.2 days for ENM1 and ENM2, respectively. The periods
retrieved from curves (n’-s=3) and (n'-s=1) in Fig. 3.1 (LH). which correspond to
the ENM1 and ENM2. are 12.6 and 5.3 days. Similarly. the structures of ENMI1 and
ENM2 for wave number 2 are shown in Figs. 3.1la and b. The ENMI structure in
Fig. 3.1!a is similar to the LH ¢ = 10 curve in Fig. 3.4a. These two curves have a
large peak near 53° of latitude, a small amplitude peak near 20° and a zero at 30°
of latitude. Further, they behave exactly the same when approaching the north pole
and the equator. Unlike the ENM2 of wave number | with mean depth of 0.88 km in
Fig. 3.7b which differs from LH's curve when approaching the north pole, the ENM?2
of wave number 2 with mean depth of 8.8 km in Fig. 3.11b resembles the curve ¢ = 10
in Fig. 3.4b (LH). However. this ENM2 does not match well the LH structure in the
equatorial region. The periods of the ENMI and ENM2 in Figs. 3.12a and b are
found to be 8.6 and 3.8 days which are identical to LH's periods in Fig. 3.2.

The eigenvalues corresponding to the ENMs and their sampling errors which were
discussed at the end of section 2.1 are shown in Fig. 3.13. For the case with a
mean depth of 0.88 km, the variances explained by the ENM1 and ENM2 for wave
number 1 are found to be 53% and 36% of the total variance. For wave number 2,
the eigenvalues (in percentage of the total variance of that wave number) for ENMI
and ENM2 are 74% and 14%. respectively. In the case of the 8.8 km mean depth, the
eigenvalues of ENM1 and ENM2 for wave number | are 58% and 33%. respectively.
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Similarly, the wave number 2 eigenvalues for ENM1 and ENM2 are 96% and 3%. In
all cases, the first two ENMs of each zonal wave number can explain more than 88%
of the total variance. This means that the model has generated only a few important
normal modes at zonal wave numbers 1 and 2 in the data set. For wave number
2, the explained variance is concentrated at the ENM! for both mean depths. The
sampling errors (vertical bars) found in this figure are much less than the separations
between eigenvalues for each wave number so that the ENMs are considered to be
independent.

From the definition of the wave vector in (2.41), when performing the ENM anal-
ysis on the data set. we also obtain the meridional structures for zonal wind. u. These
zonal wind structures were also examined (but not shown in the thesis) and compared
to the LH eigenfunctions. The agreement between the exact solutions and ENMs for
zonal wind are as good as in the perturbation height case which are shown in this
section.

We also performed an ENM analysis on 100-day data sets (subsets of the above
discussed 2000-day data sets) to test the sensitivity of the ENM analysis technique to
the length of the record. In the case with a mean depth of 0.88 km, the structures of
100-day (not shown) and 2000-day data sets are comparable. However. in the case of
the 8.8 km mean depth. the structures are different. e.g.. the small peak [see also Fig.
3.9a] near the equator for the structure of ENM1 from the 100-day data set for wave
number 1 is larger than in the 2000-day data set and the zero is shifted northward
by as much as 10 degrees of latitude.

The phase speeds of normal modes were also calculated from the ratio of the modal
pseudoenergy to pseudomomentum as shown in (3.13). The period is then calculated
with (3.16). Periods calculated by this technique agree well with the power spectrum
analysis as seen in Table 3.1 and 3.2. The Tables give the time periods which are

averaged from the periods of the sine and cosine components for the mean depths
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of 0.88 km and 8.8 km, respectively. The column labeled “LH” contains periods
from Longuet-Higgins (1968). The column marked “Structure” denotes the periods
associated with each ENM calculated from the ratio of the modal pseudoenergy to
pseudomomentum as in (3.13). The “Power Spectrum” column gives periods from
the power spectrum peaks calculated from time series analysis. The “Eigenvalue %"~
column exhibits the percentage of the total variance for the specific wave number.
The values of 2000 d and 100 d represent the length of the time series. The average
errors of 2000 and 100 days time series for the mean depth of 0.88 km (Table 1) are
0.58% and 3.72%. respectively. For the 8.8 km case (Table 2). these average errors
are 1.46% (2000 days) and 5.4% (100 days).

The above discussion of the ENM analysis on linearized shallow water model data
sets leads us to the following observations:

(a) The ENM analysis technique is capable of capturing both structures and time
periods. especially with long temporal records {2000 days in our cases) with a high
degree of accuracy.

(b) The model generates data which contain monochromatic frequency normal
modes. This is supported by sharp spikes in the power spectra in most cases except
for the ENMI1 of wave number | with mean depth of 0.88 km. which is believed to be
interfered by the mountain “wave”.

(e) As might have been expected the quality of the ENM analysis results degrades
as the record length is shortened. The results have shown that the average error of

the 100 day time series period is about 4 times as much as for the 2000 days time

series.



Figure 3.1: The eigenfrequencies of wave number | [from Longuet-Higgins).
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Figure 3.2: The cigenfrequencies of wave number 2 [from Longuet-Higgins].
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Figure 3.3: The eigenfunctions of height (a) n-s=3 and (b) n-s=1 of wave number
| [from Longuet-Higgins].



Figure 3.4: The eigenfunctions of height (a) n-s=3 and (b) n-s=1 of wave number
2 [from Longuet-Higgins].
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Figure 3.5: (a) The first ENM and (b) the second ENM of wave number | height
with mean depth H=0.88 km (e = 100) for 2000-day integration. Cosine is solid and
sine is dashed.
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solid and sine is dashed.
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Table 3.1: Periods (days) and eigenvalues for mean depth of 0.88 km obtained by
Longuet-Higgins (LH), from equations (3.13) and (3.16) [*Structure” column] and
from the power spectrum.

k| Mode | LH Structure Power Spectrum | Eigenvalue %
2000 d. | 100 d. [ 2000 d. | 100 d. | 2000 d. | 100 d.

I | ENM1 | 32.6 | 32,5 30.1 J2.3 3T 53 80

ENM2 | 15.1 | 15.1 15.8 1.9 14.2 36 15

2 ) ENML | 17.5 ] 17.5 17.4 17.5 18.1 74 )

ENM2 | 3.4 8.3 3. 8.3 8.3 4 18

Table 3.2: As in Table 3.1 but for a mean depth of 8.8 km

k| Mode | LH Structure Power Spectrum | Eigenvalue %
2000 d. | 100 d. { 2000 d. { 100 d. | 2000 d. | 100 d.

1 | ENMI | 12,6 | 12.6 1.3 12.6 118 58 57

ENM2| 53| 5.2 5.9 5.2 5.3 33 32

2| ENM1| 86| 8.6 8.4 3.6 8.4 96 80

ENM2 | 38| 3.5 34 3.3 3.3 3 138




Chapter 4

Application of ENM Analysis to
Atmospheric Data

In the previous chapter. the ENM analysis technique has shown a high degree of
accuracy in recovering the Hough modes and their associated frequencies from the
linearized 2D shallow water model data sets. With this in mind, we advance further
in this chapter and perform an ENM analysis of 3D atmospheric data. The purpose
of this study is to use the ENM analysis technique to decompose the atmospheric
data into empirical modes. These modes are then used to find common features. in
the statistical sense, among stratospheric sudden warming events.

Section 4.1 describes the observational data used in this analysis. From this data
set we illustrate, in Section .2, some common features in a number of stratospheric
warming events which are later used for a comparison with the results of the ENM
analysis. Section 4.3 presents the methodology of 3D ENM analysis. The results of

the ENM analysis are discussed in Section 4.1.
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4.1 Data

The data used for this analysis are daily operational National Center for Environ-
mental Prediction (NCEP) geopotential height fields. The data are available on 15
pressure levels: 700, 500, 400, 300. 250, 200. 150, 100, 70. 50. 30. 10. 5. 2 and 1
hPa and were archived by Dr. William J. Randel at the National Center tor Atmo-
spheric Research (NCAR) from two different sources. The tropospheric data from
the 700 to the 100 hPa pressure levels were obtained from NCEP analyses while the
stratospheric data from the 70 to the | hPa levels were separately archived at the
Climate Analysis Center (CAC), Washington, D.C. The stratospheric data were first
converted from the satellite-retrieved mean layer temperatures between pressure [ev-

els to the geopotential thicknesses, AZ. by using the hydrostatic equation in finite

AZ, = E!n ( Pi ) [r(!)‘) +
g Pist .

where R is the gas constant. The thicknesses were then used to compute the strato-

difference form

) (4.1)

T(PiH)}

spheric geopotential heights, starting from the NCEP 100 hPa geopotential heights.
This daily global data set has been received from NCAR in the format of Fourier
analyses truncated at zonal wave number 12 at each of the 40 Gaussian latitudes
sampled at 1200 UTC. Finger et al. (1993) have reported that the NCEP analysis
data at the 3 hPa level and above need to be adjusted due to the inconsistencies
within the satellite TIROS Operational Vertical Sounder (TOVS) derived tempera-
ture database. The problem is due to the differences in the behaviour of the various
satellite instruments providing the operational data. In addition. other contributions
to the problem are related to changes in NCEP data analysis procedures. As sug-

gested by Finger et al. the adjustment has been done by using the change in thickness

§AZ; = EIn( pi ) [”(’")f)‘m”"“)]. (4.2)
g Bi+1

equation:
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This adjustment is done based on {2 rocketsonde station records (in situ measure-
ments). The temperature biases. 6T, between NCEP analyses and rocketsonde data
are different at each pressure level and have changed over time. The linear-regression
of the form a + bl is used to fit data before and on October 16, 1980 where a is the
adjustment at the equator, b is slope of the line and [ is the absolute value of the
latitude. Data after the above mentioned date are adjusted globally (no latitudinal
variation). In this study. the adjusted geopotential heights according to Table 2 of
Finger et al. (1993) of 15 pressure levels (from 700 to | hPa) and 11 winters ( Dec. 1.
1979 to Feb. 28, 1990) are used. The winter season is taken to be from the beginning
of December to the end of the following February.

[n order to perform the ENM analysis of the real atmosphere using the 3D primi-
tive equations (see also Section 2.3), we need 3 fields. namely. the horizontal velocity
components (u.v) and temperature. The temperature field is quite simple to calcu-
late from the geopotential height by using the hydrostatic equation. However the
calculation of the horizontal winds from the geopotential height data alone is some-
what more complicated. Randel (1987} has used three different methods to evaluate
the horizontal winds from the geopotential height: 1) the geostrophic winds. 2) the
linearized momentum equations about a zonal mean flow (the linear winds) and 3) the
full steady-state momentum equations less the vertical advection term (the balance
winds). The lowest order horizontal winds approximation from the geopotential is

the geostrophic balance. i.e.,

Vg = ;—k x Vb (l;)

where ® = gZ is the geopotential, V, is geostrophic winds and k is vertical unit

vector. The higher order nonlinear wind-height balance. i.e..
1
v? [4» + 5(w~)2] = V- [(f + V20)V] (4.4)

is also considered. The relation between the streamfunction, ¢, and the non-divergent
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wind is given by (1.24). The above equation can be solved for the wind from the geopo-
tential by an iteration method starting from the geostrophic wind. The convergence of
the solution to the equation often fails in the northern winter stratosphere where the
amplitudes of planetary waves are usually large [see Randel 1987 for a more detailed
discussion of the nonlinear balance winds]. The linear winds in the second method
above are calculated from the horizontal momentum equations linearized about the

zonal mean without the time tendency and vertical advection terms. that is,

T o = | o’ (1.5)
acosodr 'Y T Tacos @ O\ N
and
T 1 9’
- 1.6
aco'-‘.c)d\ + 1 a Ao (1.6)

where overbars denote a zonal mean, primes describe the deviations from the zonal

mean and

l
acos @ do

h=[-

—( cos 0)

2
fr=f+ —tano.
a
The coupled equations (4.5) and (-.6) are easily solved for cach zonal wave number
of u' and ¢v'.

In the balance winds (last method), again. the time tendency and vertical ad-
vection terms are neglected from the horizontal momentum equations to make the
iterative scheme two-dimensional. Following is the calculation of the winds by the
balance winds method. The horizontal momentum equations less the time tendency

and the vertical advection terms can be expressed in spherical coordinates as:

v————l———-— 0¢+!Qﬁ+v—d—z ) L7)
= Yasinocoso | 93 T |Yan T Ugglucese (1

S S L I-CR O 1.8)
= " 2asing 190 T |T9s T ose ¢8A -

and
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The geostrophic winds are first calculated by neglecting the nonlinear terms (inside
the square brackets). Each iteration is evaluated by using the previous step winds.
The convergence of the balance winds is measured by the ratio of the relative wind

change between each iteration and the previous step wind. e.g..
\ YR A,
@) = yeio) + (o) (4.9)

where the relative zonal mean RMS difference for « component is

" d\[tn( M 0) = a1 (A )] :
& dM [ttn-1 (N, 0)]2 .

€u(9) =

All three derived winds from the geopotential alone were calculated in Randel
(1987) using a General Circulation Model (GCM) output and the results compared
to the “true” GCM winds. The comparisons have shown that the balance winds
[equations (4.7)-(4.8)] are superior to the other two in the tests of zonal mean wind
(%) as well as the poleward momentum (u'v’) and heat (v'T") fluxes.

Based on these results, we adopt the balance winds method to calculate winds for
our analysis. If the solution fails to converge. e.g.. €(@) in (4.9) approaches to a small
value (< 0.1) then the geostrophic wind is substituted for that particular location
(not all points along the latitude circle). Practically. when the wind fails to converge
at a certain point. its value becomes unreasonably high (order of thousands of metres
per second or higher). Generally only three iterations are required to give a good
result in comparison to model winds (Randel 1987). Because all the derivatives in
(4.7) and (4.8) are done spectrally, new variables & = ucos ¢ and ¢ = ¢ cos ¢ are used

so that the new variables are zero at the poles.
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4.2 Observations of Stratospheric Sudden Warm-
ings

In Section 1.3 we discussed the upward propagation of the planetary (Rossby) waves
from the troposphere to the stratosphere and their interaction with the preexisting
stratospheric circulation that might lead to a sudden stratospheric warming. This
dynamical mechanism was first proposed by Matsuno {1971). We also showed in Fig.
1.4 the temperature gradient and zonal mean wind reversal at 80° of latitude and the
10 hPa pressure level during the 1984/85 major warming event. This type of figure
will be used to identify the warming events {major and minor warmings are defined
in Section 1.3]. In addition to that type of diagram. we also show in Fig. 1.1 the
meridional-height zonal mean wind (for Northern Hemisphere only} to provide some
idea of the evolution of the wind before and during the warming. Figure -l.la shows
the zonal mean wind on Dec. 24. 19834 (4 days before the warming onset).  The
wind structure is quite similar to the climatological one shown in Fig. 1.2 where the
polar night jet is centred at around 45°N in the lower mesosphere. The jet in the
troposphere which is located near (35°N. 200 hPa). is also similar in both figures.
On the onset day (Dec. 28). the centre of the polar night jet shifted northward and
downward to approximately 68°N and 1.5 hPa while the tropospheric jet strengthened
somewhat as shown in Fig. 4.1b. Figure 4.1c exhibits the zonal mean wind when
the zonal temperature at 80°N and 10 hPa reached its highest value in Fig. 1.1
(Jan. 1, 1985). The normal westerly wind in the polar region is now replaced by an
easterly one, and again the tropospheric jet is almost still the same (in magnitude
and position).

The average of nine (out of 11 vears) observed pre-warmings (onsets) of the zonal
mean wind is shown in Fig. 4.2. In comparison to Fig. 1.2 (the winter climatological

zonal wind), the structure of the onset and winter climatological tropospheric jets are
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Figure 4.1: Observed zonal mean wind (ms™'). derived from the geopotential height
alone for the 1984/85 stratospheric major warming (a) December 24, 1984 (onset).
(b) December 28, 1984 (middle) and (¢) January 1. 1985 (peak) (Figure continued.)
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Figure 4.1: (continued)

similar. However the downward and poleward shifting from (45°N. 0.1 hPa) to (68°N.
2.5 hPa) of the onset stratospheric jet is observed in Fig. +.2. The climatological
southward tilt with height of the polar night jet is also replaced by a slightly northward
tilt in the onset figure. If the zonal mean wind acts as a wave 7gL71id’e 7(5(7'(.‘ discussion
in Matsuno, 1970 and Dickinson, 1968) then the onset zonal mean flow structure is
more favourable to the direct upward propagation of waves to the polar region than
the climatological one which guides the waves toward to the low latitudes. Butchart
et al. (1982) used a fully nonlinear model to simulate the 1978/1979 winter major
warming by starting with the onset zonal mean structure of February 16, 1979 and
forced the model by the observed geopotential height at 100 hPa. They concluded
that it is important to use the onset flow structure as the initial zonal mean wind

instead of the climatological one to make the warming more likely to occur. They also
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Figure 4.2: Average of 9 pre-warmings (onsets) zonal mean wind from 1930-1990
data set (both minor and major warmings are included).

found that the wave number 2 forcing should have an eastward phase speed and that
the wave-wave interactions were not important for the development of the warming.
The Butchard ef al. case study warming agree quite well with the average of nine
warmings (both major and minor) shown in Fig. 1.2.

The feature-rich stratospheric warmings are ohserved not only in the zonally aver-
age pictures (latitude-height diagrams) of the wind structure as described above but
also in the wave structures. The normal cyclonic winter polar vortex in the middle
stratosphere (10 hPa level) is pushed off the pole and sometimes a splitting of the
main vortex (corresponding to the involvement of wave number 2) can be seen. We
show in Fig. 4.3 the winter climatological QG potential vorticity. Comparing this
chart to the winter climatological geopotential height in Fig. 1.3 we sce that they
have rather similar patterns except of course that the maximum in one field corre-

sponds to a minimum in the other. The reason we show the observed QG potential



Figure 4.3: Polar stereographic map of 11-winter climatological quasi-geostrophic
potential vorticity (QGPV) at 10 hPa (approximately 30 km) (contour interval of
1x10~% s~1): inner circle 80°N.

vorticity instead of the better-known geopotential height is that the QG potential
vorticity, which can be approximated {from [I in equation (A.13) {one component of
the wave vector), is available from the ENM analysis for interpretation. Figures 1.4
and 4.6 show the observed QG potential vorticity (QGPV herealter) at 10 hPa during
the 1980/81 and 1984/85 major warming events, respectively. Figure 1.4a exhibits
the elongation of the normal cyclonic polar vortex (see Fig. 1.3) at the onset (Jan.
20, 1981) of the warming.  This elongated polar vortex is then pushed off the pole
(Jan. 25, 1981) and the local low value of QGPV appears around (160°W, 65°N) in
Fig. 4.4b. At this time, the zonal mean temperature at (30°N. 10 hPa) reaches its

maximum value in Fig 4.5. The temperature decreases a few degrees two days later
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Figure 4.4: Polar stereographic maps of quasi-geostrophic potential vorticity
(QGPV) at 10 hPa (approximately 30 km) (contour interval of 2x10~° s~!) for 1980/81
warming (a) January 20, 1981 (onset), (b) January 25, 1981 (first zonal temperature
peak), (c¢) January 31, 1981 (second peak) and (d) February 5, 1981 (last peak).
Outer circle, 20°N; inner circle 80°N. ( Figure continues)
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Figure 4.4: (continued)
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Figure 4.5: Observed winter 1980/81 (DJF) major warming at 10 hPa (a) zonal
mean temperature at 80°N and (b) zonal mean temperature difference between 80°N
and 30°N (solid) and zonal mean zonal wind at 63°N (dashed).



Figure 4.8: Polar stereographic maps of quasi-geostrophic potential vorticity
(QGPV) at 10 hPa (approximately 30 km) (contour interval of 2x107° s™!) for 1984/85
warming (a) December 28, 1981 (onset), (b) December 30, 1984 (middle) and (c)

January 1, 1985 (zonal temperature peak). Outer circle, 20°N; inner circle 80°N.
(Figure continues)
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Figure 4.6: (continued)

and then reaches a new higher maximum value in Jan. 31. 81. The QGPV chart
of this second maximum is shown on Fig. 4.dc which exhibits further equatorward
movement of the polar vortex. The first two temperature maxima correspond to a
minor warming in which the zonal mean westerly wind is not yet reversed. The major
warming occurs on Feb. 5, 1981 when the wind reverses and the temperature reaches
its highest value. Figure -.4d shows further southward movement of the polar vortex.
In this warming year. only zonal wave number | is involved in an important way and
no vortex splitting occurs. In contrast, the 1984/35 major warming takes a different
form. with only wave number 2 being involved from the beginning to the end. with

no significant development of wave number 1. Figure 4.6a shows the development
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of two local low QGPYV centres along the 20°W-160°E longitude line and the main
vortex is squeezed and starts to break into two separated centres from the beginning
of the warming (Dec. 28, 1984). While the zonal mean temperature rises at 10 hPa
(see Fig. 1.4a), the polar vortex splits into two high centres on Dec. 30. 1981 (clearly
seen in Fig. 4.6b). When the temperature reaches its maximum value on Jan. 1.
1985, the polar vortex (QGPYV high) at the pole is replaced by a QGPV low and the
vortex is completely separated into two high QGPV centres (Fig. 1.6¢). These two

typical warming scenarios in the stratosphere are often seen on synoptic maps.

4.3 Methodology

Similarly as in Section 3.3, we describe in this section the calculation of the ENMs
for each zonal wave number using the primitive equations and its QG approxima-
tion. Based on the theory developed in Section 2.3, the wave vector for 3D primitive
equations in (2.59) consists of 3 components. namely. the modified Ertel potential
vorticity in log-pressure coordinate, [I, the potential temperature, 8. and the vertical
wind shear, u.. From the available data discussed in Section 4.1, we have derived the
horizontal wind (u. ) with the balance equation and the temperature from geopoten-
tial height via the hydrostatic approximation. The potential temperature is computed
from temperature with the relation 8 = T(p/p,)~*. From the horizontal wind and
potential temperature ficlds we use (A.5) to calculate the Ertel potential vorticity,
P. The wave vector. X, is formed based on (2.59). The wave vector is then zonally
Fourier transformed into sine and cosine components for each wave number. For cach
sine and cosine component we separately construct the pseudo-momentum matrices
according to (2.58). Notice that since we do not want to include the standing wave
structure as one of the empirical modes. the time mean, of the wave vector is re-

moved first, i.e., before the ENM analysis. The eigenvalue problem associated with
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these pseudo-momentum matrices (see (2.60)) is readily solved for the modal struc-
tures, X,(#, ), and their assaciated eigenvalues. The time series of each structure is

calculated by projecting the observed wave vector onto each normal mode, e.g..

<xi( ',,-)wa.:.z)>
an(t) =
(xtio.51PXuio,2))

(+4.10)

where the angle brackets denote the meridional and vertical integration.

In this study we partition the 11-winter data set (993 days) into two parts, namely.
the “warming events” (269 days) and the rest of the data set (724 days). A "warming
event” (or “warming period”) is one during which the mean zonal temperature gra-
dient between 50 and 80°N becomes positive at 10 hPa. More precisely. a warming
event begins when Tsqy starts to rise, its peak is reached when AT = Tygny —Tson > 0
reaches a maximum and the event ends when AT returns to a negative value. Note
that as defined above, a “warming cvent” or “warming period” includes in fact a
cooling phase during which AT is decreasing. EOFs will be computed separately for
“warming events” and for the rest of the winter data sets. The dates of the events
are given in Table -.1.

Since the data set has been partitioned in the above mentioned manner. using the
power spectrumn analysis method to find the frequencies of empirical modes (ENMs)
is not applicable due to the gaps in the time series. In addition, the dynamics of the
real atmosphere is generally not linear and the flow is not purely free (some forcing
may be involved) so that the time series of amplitudes is quite noisy. To overcome the
above problems, we use the kernel estimation technique to smooth out noise in the
sine and cosine phase space diagram of each ENM. The kernel estimation technique
can be used to interpolate data. «,, al irregularly-spaced points, identified by the

subscript ¢, to regularly-spaced points, by computing a weighted average of the data



Table 4.1: The dates of the warming events during winters 1979/80-1989/90.

Warming Periods

Beginning | Max. temp. | Ending | Number of days
20-01-81 05-02-81 28-02-81 40
19-01-82 27-01-82 30-01-32 12
08-02-82 13-02-82 16-02-82 9
24-02-82 27-02-82 28-02-382 3
23-01-83 29-01-33 31-01-33 9
03-02-83 03-06-33 11-02-33 9
20-02-33 26-02-33 28-02-33 9
27-12-33 31-12-83 01-01-34 6
03-02-34 07-02-84 08-02-84 6
15-02-381 23-02-34 29-02-38.4 15
23-12-84 01-01-85 13-01-85 17
13-01-86 20-01-36 24-01-86 T
14-02-86 18-02-36 19-02-36 6
02-01-87 23-01-37 10-02-87 10
01-12-87 10-12-87 16-12-87 16
21-01-89 29-01-39 31-01-39 11
03-02-89 12-02-89 23-02-39 26
03-02-90 10-02-90 28-02-90 26
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where f(a, @ is the value of a at a=(ay;, ;. a; ;). @ ., @) ; being the coordinates of the
domain. In our case they are the coefficients of the cos(kX) and sin(k\) of the mode
n and wave number k. h determines the size of the region over which the weighted
average is done, .Vis the number of data points used in the weighted average. We note
that when a is set equal to one. f yields an estimation of the probability density of the
data points. For the optimal choice of the smoothing parameter, k. (which minimizes
the root-mean-integrated-square error between the data set and the estimation) one
can refer to the Appendix of Brunet (1994). Based on this probability density we

estimate the tendency from

f(a.a)
f(l,a)
where & = (a(f + At) — a(t — At))/2A¢ (At=24 hours) is the rate of change of the

a= (+12)

position. If we write a in a polar coordinate system, e.g.. & = 4,7 + @g0. then a,
represents the amplitude growth of the ENM while @4 exhibits the rotation or phase
speed.

[n a frictionless adiabatic atmosphere the Ertel potential vorticity is a conserved
quantity following the total flow. If the Ertel potential vorticity is derived in isentropic
(constant potential temperature) coordinates and in the absence of diabatic heating
(dB/dt = 0) there is then no “vertical™ velocity so that particles will be confined to
the isentropic surface. Similar to the isentropic Ertel potential vorticity. the QGPV
is conserved following the geostrophic wind if the flow is frictionless and adiabatic.
In other words, the QGPV is conserved on isobaric surfaces. We have used the log-
pressure as the vertical coordinate so that it is natural to use the QGPV to discuss
our results in the next section.

Since the QGPV is conserved on isobaric surfaces, it is natural to use this quantity
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to discuss results from the analysis. However, one component of the empirical modal
structure from the ENM analysis technique is the modified Ertel potential vorticity.
not the QGPV. Therefore we here describe how the QGPV can be approximated from
the modified Ertel potential vorticity, I1. We first relate the QGPV gradient in (1.15)
to the J defined in (A.14). Charney and Stern (1962) have shown the relationship
between the derivative of the Ertel potential vorticity in isentropic coordinates and

the QGPYV in log-pressure coordinate to be:

1 [0q _p (OP _
Z (%) r=const - (103 (am)ézcon:t . (‘1;)

where. as before, z is proportional to the logarithm of pressure. Taking the zonal

average of the above equation we obtain (to leading order)

L (9 _p (9P
; (aé):=mnsl - ab_: (am)azmnu . (+.14)

From the usual formula of derivative transformation in different vertical coordinates
we relate the derivative of the zonal mean potential in isentropic and log-pressure

coordinates as

oP oP N ]
(_—d-g)- - (d_‘p) :=const - [:0: 00. (llj)

f=const

Substituting (4.15) into (.14) and using (A.11) we obtain the relation between the

QGPV gradient and J as

— g5 )
g, = 5-5 . (4.16)

Furthermore, the zonal mean Ertel potential vorticity (A.7) and its perturbation (A.8)

can be approximated in the quasi-geotrophic formulation as

ey 000'.'
P= I (4.17)
p
and
00: ! ! Y
P'= —(vj, — uy,) + fo0. (4.13)

p
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where 0, = 8,(=) is the horizontally averaged (background) vertical potential temper-

ature profile. By using the perturbation QGPV in (1.14) and (4.18) we obtain

g’:nlzqa (4.19)

The last two terms {A; and A3z) of the wave activity in (A.34) were calculated and

shown to be negligible in comparison to Ay, so that the equivalent wave activity under
the QG approximation (mid-latitude (o, = 453°) 3-plane) is

i a2

apA|coso = §apcos @°E;' (4.20)

In the last part of this section we are going to discuss the wave-zonal flow inter-

action in terms of an ENM analysis. In Section 1.2 we have shown the relationship

between the zonal mean wind tendency and the EP flux divergence (equation 1.6) in

the 3-plane QG approximation. In spherical geometry. this equation becomes

l
ﬁz—fF=WV-F (4.21)
where the EP flux, F. is
F = (F® F&) = (= pacos oot/ pa cos o fv'6[0,.). (4.22)

The right-hand side of (1.21) represents the forcing of the eddies (waves) on the zonal
mean flow. During a warming period. the plots of the EP flux and its divergence at
various times are used as a diagnostic tool to see the flow of the wave activity (see
Andrews et al. 1987 Section 6.2.3 for a more detailed discussion of the EP flux and its
divergence during the 1978/79 winter warming). From the ENM analysis we obtain
wave vector structures (ENMs) which cannot be used directly to form the EP flux
vector; the latter requires the empirical modes of u’, v’ and & as shown in (4.22).
However, we can use the results of the ENM analysis to calculate the wave activity
for each empirical mode and from its time derivative obtain the EP flux divergence

(from the generalized Eliassen-Palm theorem, equation (1.12)).
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We will use (4.19) and (4.20) along with the time tendency of the wave activity

to discuss the results of the ENM analysis in the next section.

4.4 The Results of the 3D Primitive Equations
ENM Analysis

In this Section we illustrate the QG approximation of the results of the ENM analysis
based on the 3D primitive equations applied to the |1-winter data set mentioned in
Section 4.1. The main purpose of this study is to use the ENM formulation to analyze
data during stratospheric warming events in a statistical sense. It is well-known that
the disturbances in the stratosphere consist predominantly of ultra-long waves (zonal
wave numbers | and 2) due to the upward propagating waves from the troposphere
(see Section 1.1). From the data set we verify this by computing the variance of the
zonal wave number 3 relative to the total variance in the middle stratosphere (10
hPa pressure level). The result shows that the ratio is less than 2%. Based on this
calculation we only discuss the ENM analysis results for zonal wave numbers | and
2.

We first present the latitude-height graphs of the first two QGPV empirical modes
(the most important) of wave numbers 1 and 2 for both warming events and the rest
of the data sets. Note that the parity in these diagrams is not important. From
these diagrams we can deduce the relative importance between the two periods of the
wave activity, which is proportional to the square of the QGPV (equation {4.20)).
The ENMs are multiplied by the mean absolute value of their time series to make
the comparison meaningful. Figures 4.7a aud b show the ENMI of the cosine of
wave number | for the warming and non-warming periods, respectively. The sine

Fourier components, which were also analyzed, gave similar results and are therefore
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not discussed here. There are two large structures in each figure, one located in the
middle troposphere (around 400 hPa level and 60°N of latitude) and the other in
the middle stratosphere (around 10 hPa and 60°N of latitude). The tropospheric
structure during the warming events is more latitudinally focused (extending from
45°N to 75°N) than for the rest of the data set (extending from 45°N to the north
pole). There is also a smaller structure in the high latitude region in the figure for
the warming events which it is absent in the mode for the rest of the data. In the
extratropical region, there is more wave activity in the non-warming periods than
in the warming ones. The amplitude of the tropospheric main structure in Fig 4.7a
is slightly greater than the one in Fig 1.7b (innermost contours of 36 and 28 units.
respectively). We also observe in the extra-tropics at levels 1 and 2 hPa that there
is a non negligible QGPV in Fig. 1.7a but not in Fig. 4.7b. This is certainly linked
to the large tongue of wave activity associated to the wave breaking in warming
events. The amplitude of the stratospheric structure during the warming events is
significantly (3 times) larger than during the non-warming periods which shows much
more wave activity in the stratosphere during warming events than during normal
winter conditions. The variance of the cosine ENMI of wave number | is 30% of
the total variance (of the wave number 1 cosine) for the warming and 24% for the
non-warming periods. respectively. Figures 1.8a.b and +4.9a,b show the second
empirical modal structures (ENM2) of the cosine and sine Fourier components of
wave number 1. respectively. The structures in the troposphere of both Fig. 1.8a and
b are much the same in both magnitude and location. However in the stratosphere.
the cosine figure for the warming events (Fig. 4.8a) exhibits much more wave activity
(centred at (65°N, 10 hPa)) than for the non-warming periods. The cosine ENM?2
modes explain 19% and 20% of the variance in the warming and non-warming periods.
respectively. We have noticed that the large stratospheric amplitudes of both ENMI

and ENM2 cosine wave number | for the warming period are located underneath the
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Figure 4.9: Second empirical mode (ENM2) of the quasi-geostrophic potential vor-
ticity of wave number 1 Fourier sine component for (a) warming periods and (b)
non-warming periods. Coutour interval 2x10-¢ s~!.
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non-warming periods. Coutour interval 2x107% s~!.
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(pre-warming) polar night jet (see Fig. 4.2). The second empirical mode of the sine
wave number 1 in Figs. 1.9a (warming) and 4.9b (non-warming) are quite different
from the cosine wave structures (Figs. 4.8a and b). The high latitude tropospheric
structure in Fig. 4.9a centred at (70°N, 400 hPa) is much larger than its counterpart in
the non-warming periods at (82°N, 400 hPa) in Fig. 1.9b. The magnitude (10 units)
and location (60°N, 3 hPa) of the centre of the upper stratospheric structures are the
same in both figures. There is also a structure (14 units) in the lower stratosphere
centred at around (75°N, 70 hPa) in the warming figure while it is absent in the
non-warming diagram. The percent variance explained by the ENM?2 sine wave for
the warming and non-warming periods are 22% and 17%. respectively.

Figures 4.10a and b display the first empirical modes of the QGPV for the cosine
component of zonal wave number 2 in the warming and non-warming periods. As for
the wave number | case. the sine Fourter components of the wave number 2 (ENM1)
were also analyzed and the results found to be analogous to the cosine component., so
we do not include them here. In the troposphere. Fig. 1.10a shows three extrema in
the extratropical. middle and high latitude regions. The middle latitude one centred
at (52°N. 100 hPa) has the highest amplitude while the other two are much smaller.
There are only two extrema in Fig. 4.10b with the main structure centred further
North (60°N, 400 hPa) and wider than the main extremum in Fig -1.10a. Both of
these main structures are comparable in magnitude. The stratospheric structure
during the warming events is again more intense than in the non-warming periods
(but not by as much as for zonal wave number 1). The percent variance explained
by the ENMI for warming and non-warming periods are 34% and 32%. respectively.
Figure 4.11a and b display the second empirical modal structure (ENM?2) of the zonal
wave number 2 cosine Fourier component for the warming and non-warming periods.
respectively. The extratropical and middle latitude tropospheric structures for the

warming and non-warming periods are similar in location, but the amplitude of the



high latitude structure centred around (68°N, 400 hPa) for the warming period is
almost twice as large as the one in the non-warming period (innermost contours of
38 units in comparison to 20 units). There is no stratospheric structure in the non-
warming picture (Fig. -1.11b), but a small structure is found at high latitudes in
the lower stratosphere in Fig. 4.1la. For wave number 2, ENM2 explains 21% and
22% of the total variance for the warming and non-warming periods. respectively.
We also present the results of the second empirical mode of the wave number 2 sine
Fourier component for the warming and non-warming periods in Figs. 1.12a aund
b, respectively. The tropospheric structures are similar in both figures except that
the main middle latitude structure in Fig. 4.12b is more intense than in Fig. 1.12a
(innermost contour of 24 and 18 units. respectively). Unlike the wave number 2
cosine Fourier component, the sine wave has a few small amplitude structures in the
stratosphere. These stratopheric structures have similar magnitudes and locations for
both warming and non-warming periods. Figures 1.12a and b explain. respectively,
18% and 20% of the total variances for each period. In the comparison between wave
number 1 and 2 for both warming and non-warming periods. we observe that the
centres of the stratospheric structures are lower in altitude for wave number 2 than
for wave number 1. This is consistent with the Charney-Drazin result (Section 1.1)
that wave number | can penetrate higher into the stratophere than wave number 2. [{
wave activity in the troposphere “causes” the sudden stratospheric warming events.
then based on the ENM analysis we have found that there is more wave activity in the
tropospheric polar region, especially in the first ENM, during the warming periods
than in the normal winter years. Of course the position of the polar night jet in the
stratosphere also plays an important role in directing the upward propagating waves
to the polar regions of the middle and upper stratosphere.

As mentioned earlier in the stratospheric sudden warming Section 1.3. the zonal

mean temperature near the pole in the middle stratosphere rises spectacularly and
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the normal westerly zonal mean wind tends to decelerate, sometimes to the point of
becoming easterly during the warming event. For example, Figure |.4b shows that
the temperature gradient starts to rise on Dec. 28, 1984 and reaches a peak on Jan.
1, 1985, at which time the zonal mean wind reaches its minimum value. According o
the zonal mean wind tendency equation (-.21). the eddy forcing term on the right-
hand side, (V- F/ap cos @), should act as a negative force in order to reduce the zonal
mean wind during the growing stage. Here the growing stage is defined as the period
between the time when the temperature starts to rise and the time when it reaches
its peak. In the above 1984/85 warming cvent the growing stage is the period from
Dec. 28, 1984 to Jan. L. 1985 inclusively. Apart from the residual circulation fr*
this forcing term represents the zonal mean wind acceleration. The eddy forcing term
is indirectly calculated from the results of the ENM analysis by using the generalized

Eliassen-Palm thearem.

1 C.F = I dJdA

— — = (4.23)
apcos o apcos o Jt
Since the wave activity. A. is decomposed into empirical modes (from the ENM
analysis), we check the convergence of the sum of the empirical mode contributions
to the forcing by computing the ratio
< (V' Fyyu) >
N 2
z::l < (V‘ Fi)‘ >

€F = (4.24)

where .V is the number of modes and the angle brackets denote the domain integration.
Figures 4.13a and b show contours of the time average of the forcing term for wave
numbers | and 2, respectively. for the growing stage. Four empirical modes are needed
in Fig. 4.13a to make ex <0.1 while only three modes are nceded in Fig. 1.13bh.
During the growing stage of the warming, the wave number | eddy forcing in Fig.
4.13a exhibits a large negative force (innermost contour of -4.5 ms~'day~") in the high

latitude regions of the upper and middle stratosphere. The centre of this negative force
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hand side of (4.21)) during the growing stage of the warming for (a) wave number 1
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is just below the pre-warming (Fig. +.2) zonal mean wind maximum and obviously will
reduce the normal westerly zonal wind. There are also two smaller negative forces
in the high latitude regions in the middle troposphere and lower stratosphere and
an unimportant positive force in the upper troposphere polar region. Figure -1.13b
indicates that the eddy forcing for wave number 2 is much weaker than for wave
number 1. There is a positive force centred around 60°N in the upper stratosphere
and lower mesosphere (the layer above the stratosphere) with an innermost contour

of | ms~tday~!

, a negative force in the vicinity of (65°N, 30 hPa) of 0.6mns~'day~"
and a few relative weak centres in the troposphere.

We next discuss the phase diagram showing the time series of the cosine and sine
Fourier components of the QGPV (also the time series of the wave vector). In this type
of diagram, the horizontal and vertical axes represent the amplitudes of the cosine and
the sine waves, respectively. In other words, the radius (the distance from the origin)
represents approximately the zonal wave amplitude. By using the density estimation
function in (1.11). we can find the probability density (with «; = 1) and the estimated
time tendency for each empirical mode. Notice that the axes are normalized {rom -1
to | and the integrated probability density over the area is unity. The tendency is
represented in a polar coordinate system so that it has two (vector) components. The
radial component exhibits the growth of the mode and the angular component shows
the rotation or phase speed where a counterclockwise rotation represents an castward
wave propagation. Scales of tendency vectors are shown in each figure. The upper
left corner scaling arrow represents the QGPV growth in unit of s=' per day while
the lower left corner arrow exhibits the phase speed in unit of degree of longitude per
day.

Figure 4.14a is the composite diagram of the probability density (contour lines)

and the tendency (vectors) of the ENMI for the growing stage of the warming periods.

i.e.. for phase during which AT = Tson—T'sow is increasing. This phase space diagram



96

can be interpreted as follows: if the point chosen is in the first quadrant then the
principal components of both the sine and cosine are positive and these values are
averaged over the growing period. In the same quadrant, if the point chosen is close
to the origin (small amplitude wave) then the wave propagates eastward without
changing its amplitude. However, for the larger wave (further from the origin). the
wave's amplitude increases while it propagates eastward. The solid contours give the
probability density, which shows how often the wave is found at that point in the
diagram. The amplitude of the wave is given by the distance to the origin. The
amplitude in this type of diagram is normalized to have a maximum value of /2
since each coordinate ranges from -1 to +1. For the absolute value of the wave
amplitude, one needs to construct a diagram such as Fig. 1.14b. We observe that
the maximum density is shifted to the left from the origin which indicates that when
the zonal temperature is rising. the first empirical mode of the wave number 1 has
a preferred phase, e.g.. the high/low value of geopotential height/QGPV usually
appears along the date line at 10 hPa during the warming periods (the Aleutian
High). An eastward phase speed (counterclockwise) is clearly seen in this figure.
The outward radial components of the tendency are found in the first and second
quadrants to indicate the amplification of the ENMI amplitude during the growing
stage of the warming in these areas. In the first half of the third quadrant, the radial
components point outward when the amplitude is large (further from the origin) and
inward when its amplitude is smaller. In the second half of the third quadrant and
the fourth quadrant, the radial components of the tendency vector is directed inward
implying an amplitude decay. Overall we observe that during the warming periods
near the North Pole at 10 hPa, the amplitude of the first empirical maode is not always
amplifying. This might come from the fact that in some warming vears (of the nine
warming years) the involvement of the wave number | is much less important than

that of wave number 2, e.g., winter 1984/85. The amplitude of the less important
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wave may not always synchonize with the temperature during the growing stage. [t
is interesting to note that in the first quadrant where the amplitude of the empirical
mode grows at the greatest value, the fastest phase speed is also found there.

Using the centre of the probability density (the most probable) position in Fig.
4.14a as the mean position of the phase, along with the first empirical modal struc-
tures, e.g., using Fig. 4.7a for the cosine Fourier component for ENM1 and the other
structure for the sine component (not shown), we construct the QGPV for the grow-
ing stage of the warming at the 10 hPa pressure level in Fig. 4.14b. Recall that
the winter climatological QGPV in Fig. 4.3 has a high centre off the pole along the
Greenwich meridian. If we superpose Fig. 1.14b on the winter climatological figure.
we observe the higher value of QGPV on the right-half and the lower value on the
left-half. This composite picture implies that during the growing phase of the warm-
ing, the polar vortex is {urther displaced from the pole along the Greenwich meridian
due to the poleward movement of the Aleutian High (low value of the QGPV).

In contrast to the growing stage, the decaying stage is defined as the period where
the 10 hPa zonal temperature gradient from 50°N to 80°N goes from a maximum value
to zero. These two stages makes up the warming data set. Similar to the growing stage
we construct the phase space diagram for the decaying stage for the first empirical
mode (ENM1) of wave number 1. Notice that these two stages have the same modal
structures but different time series. Figure 1.15a shows the probability density and
the tendency vectors as in Fig. 1.11a. We first note that during the cooling stage
ENMI has no preferred phase. i.e.. the centre of the probability density contour is
located almost at the origin of the graph. The radial component of the tendency points
towards the origin almost everywhere in the diagram indicating that the amplitude
of the ENMI decreases with time. We see that the higher wave amplitudes (further
from the origin) have a strong damping, especially in the first quadrant and the

area extending from second half of the second quadrant to the first half of the third



12 MR L T J LI M LA L '+
!
o | S @ ]

o P o e = - o + J B
a8 T Y oo J -

N 8 d\/

- L T S o e e <
06 p~ \/ -
]

- 4
02 b= -4

o -+
eo h i

! t 4

r
02 J ! -

F v 4 4
04 v ¥ -

y N
wf i

9 - . B
a8 - . -

(]

o - -
10 p= -

- —- -
1.7 SIS UEU S SUN DU ST GHU SR SR S S

12 -10 -0B 04 -04 -02 00 02X o04 D06 08 3 12

Figure 4.14: First empirical mode (ENM1) of wave number 1 for the growing stage
(a) contours of the probability density and tendency vectors (upper left: growth scale
vector of 3x107® s=! day~!, lower left: rotational scale vector of 10° longitude day~")
and (b) the constructed quasi-geostrophic potential vorticity at the 10 hPa pressure
level (contour interval 5x107¢ s~!).
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Figure 4.15: First empirical mode (ENM1) of wave number 1 for the decaying stage
(a) contours of the probability density and tendency vectors (upper left: growth scale
vector of 3x107¢ s~! day~!, lower left: rotational scale vector of 10° longitude day~")

and (b) the constructed quasi-geostrophic potential vorticity at the 10 hPa pressure
level (contour interval 5x107¢ s~1).



100

quadrant. This damping seems to increase linearly in the radial direction which could
be consistent with a fixed damping rate like we would expect to have for a radiative
cooling (Andrews et al. 1987 Section 2.5). Eastward propagation (counterclockwise)
is found in this mode from the angular component. Similar to the growing mode of
ENM], the decay in the cooling stage has a positive correlation with the phase speed.
We also constructed the 10 hPa QGPV which is shown in Fig. 1.15b. Even though
the phase from this diagram is not meaningful (the structure can be rotated around
the North Pole without loss of generality), it does exhibit that the mean amplitude
of the decaying stage is smaller than for the growing stage (innermost contours of
20 vs. 35 units). The contours of the ENMI probability density arc more highly
concentrated in Fig. {.14a than in Fig. 4.15a (innermost contour values of 0.6 vs.
0.3} which implies that the horizontal (time) mean structure for the growing stage is
more meaningful than in the decaying one.

Similar to the ENM1 growing stage in Fig. 1.14a. Figure 1.16a exhibits the prob-
ability density and the tendency for the empirical modal structures (ENM2) of wave
number 1. We see that the centre of the probability density is not far from the ori-
gin so that the preferred phase is not as clear as in Fig. 1.l1a. The outward radial
components everywhere in Fig. 1.16a of the tendency vector obviously demonstrate
an amplitude growth of the mode. The counterclockwise rotation of the angular
component represents an eastward wave propagation except for a small arca of slow
westward propagation in the second and fourth quadrants. Figure 4.16b displays the
constructed horizontal QGPV at 10 hPa based on its most probable phase position
for the second growing mode. Similar to the first empirical mode in Fig. 4.14b. we
found negative contours of the QGPV on the left half and positive value on the right
half in this figure. Again, if we superpose this second modal structure on the top of
the climatological QGPV and the first growing mode (Fig. 1.14b) then the composite

picture would have lesser QGPV on the left half and greater on the right half. [n
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other words, the polar vortex (the high centre of the QGPV) tends to shift to the
right along the Greenwich meridian. Thus, during the growing stage of the warming,
in the statistical sense, the polar vortex is pushed oft its normal position along the
Greenwich meridian. This is consistent with the observed northward movement of
the Aleutian High during warming periods. Since the innermost contours of the the
probability density of both ENM1 and ENM?2 during the warming phase are relatively
high (0.6), the mean phase positions (or horizontal QGPV structures) are meaningful.

The tendency and probability density for the decay stage of the second empirical
mode of wave number | are shown in Fig. 1.17a. Both radial and angular compo-
nents of the tendency vectors are quite complicated in this empirical mode. We first
note a relatively large inward radial components in the third quadrant indicating an
amplitude reduction of the ENM2 with time. The eastward phase speeds are maostly
found in the same area. In the second quadrant. the growth is negligible and the
westward wave propagation is detected in most arca. The eastward phase speeds are
considerable when the amplitude is small in the first half of the fourth quadrant.
The constructed horizontal QGPV in Fig. 1.17b shows a much larger amplitude than
for the decaying ENM1 (this amplitude is comparable to the growing modes). The
decaying ENM2 QGPV structure has negative contour lines on the right half of the
figure and positive on the left half. This decay ENM2 figure has an opposite sign of
the growing modes ENM!I and ENM2 which implies a restoring of the polar vortex
along the Greenwich meridian or a pushing of the Aleutian High southward back to
its normal position. In contrast with the ENMI mode during the decay phase, this
ENM2 mode has a remarkable high probability density value (innermost contour line
of 0.9) which makes the constructed horizontal QGPV noteworthy.

We now discuss the results of the ENM analysis for wave number 2. The difference
between phase space diagrams of wave numbers | and 2 is that in the phase space

diagram of wave number 1, the positive x-axis represents the longitudes of 0° and 360°.



104

I 1 LA SR B LS B L S T
L
to b -
9 4
Odr-
L
o4 ¢
04
5
02 p=
oo
02[
04 b
08 p=-
o8 -
L
1O p=
TN PR U WU WU S Y PR BEETU SO U B U Y
12 -to o8 -068 -4 -02 00 Q2 a4 [¢4] 08 Y t2

Figure 4.18: First empirical mode (ENM1) of wave number 2 for the growing stage
(a) contours of the probability density and tendency vectors (upper left: growth scale
vector of 3x107¢ s~! day~'. lower left: rotational scale vector of 10° longitude day~")

and (b) the constructed quasi-geostrophic potential vorticity at the 10 hPa pressure
level (contour interval 5x107° s™1).
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Figure 4.19: First empirical mode (ENM1) of wave number 2 for the decaying stage
(a) contours of the probability density and tendency vectors (upper left: growth scale
vector of 3x107% s~! day~!. lower left: rotational scale vector of 10° longitude day~"')
and (b) the constructed quasi-geostrophic potential vorticity at the 10 hPa pressure
level (contour interval 5x107¢ s~1).



106

while in the wave number 2 figure, this horizontal axis shows the longitudes of 0° and
180°. More generally, the positive x-axis represents the longitudes of 0° and 360° /4
where k is the zonal wave number. Figure 4.18a exhibits the probability density and
the tendency of the first empirical mode (ENM1) for the growing stage of the warming
events. The centre of probability contours is shifted into the third quadrant. hetween
the longitude of 90° (or 270°) and 135° (or 315°). from the origin. Relatively large
outward radial components in the second half of the first quadrant and the second
half of the second quadrant, where the amplitude is larger. but the probability low.
are clearly seen in this figure. A less intense decay (inward radial components) is
also found in other areas in Fig 1.18a. An eastward phase speed of order of 10
degrees longitude per day or higher is observed in the first two quadrants where the
amplitude is small and in the large amplitude second half of the first quadrant. A
slower westward rotation is detected in other areas except the high amplitude first
half of the fourth quadrant where the westward phase speed of order of 10 degrees
per day. Figure 1.18b shows the constructed horizontal QGPV structure based on
the centre of the probability density in Fig. 4.18a. We notice that the amplitude of
the empirical mode is about one-half of that for the wave number 1 growing modes.

The probability density and the tendency vectors for the cooling stage of the first
empirical mode of wave number 2 are shown in Fig. 1.19a. The amplitude reduction
is clearly exhibited in the second quadrant due to large inward radial components of
the tendency vectors, especially for the largest amplitudes. A few noticeable outward
vector components are found in the large amplitude second half of the first quadrant.
Radial vector components in other areas of the figure are small and negligible. A rel-
atively fast eastward wave propagation is found in the first half of the third quadrant.
There are also some moderate eastward phase speeds in the large amplitude second
half of the first quadrant. Some negligible westward phase speeds also appear in this

figure. The constructed horizontal QGPYV is shown in Fig. 4.19b. Its amplitude is
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slightly less than that of the growing mode (Fig. 4.18b).

As seen in Fig. 4.11a, the second empirical mode of zonal wave number 2 has no
significant amplitude in the middle stratosphere and so we do not discuss in detail
this mode here. However, we present the constructed horizontal QGPV of the ENM2
for the growing and decaying stages in Figs. 1.20a and b, respectively. in order
to discuss the phase tilt in these diagrams. Based on a barotropic model with a
constant wind shear (U/ = Sy. where U is the zonal mean wind, S is a constant and
y is the northward distance), Farrell (1987) has shown that disturbances grow (by
extracting energy from the zonal flow) if their lines of constant phase slope opposite
to that of the shear. Figure 1.20a clearly exhibits a westward phase tilt (against the
wind shear) during the growing stage of the warming. The empirical mode amplifies
during this period, according to Farrell. by extracting energy from the zonal flow. In
constrast to the growing stage. the decaying stage horizontal QGPV shown in Fig.
+.20b has an opposite (eastward) phase tilt. This means that the disturbance gives
back its energy to the zonal flow and its amplitude will be reduced. The phase tilts
in Figs. 4.20a and b are resulted from the different structures at 10 hPa (sce also
Figs. 1.11a (cosine structure) and 1.12a (sine structure)) and the phase (of the most
probable position) difference between the growing and decaying modes. As mentioned
above, the amplitude of the zonal wave number 2 ENM2 is much smaller than that
of the ENMI of the wave number 2 or of the other two empirical modal structures of
zonal wave number 1, so that the phase tilt discussion makes its role somewhat less
important in comparison to the other. Since the second empirical mode has a higher
amplitude in the lower stratosphere {see Fig. l.l1la). we have also constructed the
horizontal QGPV at this level (70 hPa, not shown) instead of 10 hPa and the result

showed no phase tilt at this level.



Figure 4.20: The constructed quasi-geostrophic potential vorticity at the 10 hPa
pressure level (contour interval 3x10~" s~!) of second empirical mode (ENM2) of
wave number 2 for the (a) growing stage and (b) decaying stage.



Chapter 5

Summary and Conclusions

In this thesis we have used the Empirical Normal Mode Analysis technique to analyze
data from a Shallow Water Model as well as 3-dimensional atmospheric data. with a
focus on stratospheric sudden warming events.

The Empirical Normal Mode Analysis is an extension of the Empirical Orthogonal
Function Analysis. This method uses both a statistical technique from the Empir-
ical Orthogonal Function Analysis and a dynamical constraint from the generalized
Eliassen-Palm theorem to ensure that modes (from the analysis) are orthogonal to
each other and are the solutions of dynamical lincarized equations.

We have calculated the normal modes (ENMs) and their associated frequencies
from the data generated by a Shallow Water Model (linearized version with a hasic
state at rest). The results were tested against the theorctical (numerical) solutions
provided by Longuet-Higgins and showed that the ENM analysis technique can cap-
ture the spatial structures and their frequencies with a great degree of accuracy.
especially in long temporal records. The average errors (in periods) for the 2000 and
100 day time series are found to be 1% and 4.6%. respectively. The error grows. as
expected, when the time series is shortened since the number of oscillations in the

period is smaller. The meridional normal mode structures of the perturbation height
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and also zonal wind (not shown in the thesis) calculated from the ENM analysis are
in good agreement with theoretical results from Longuet-Higgins in all aspects. e.g..
location of the peaks, the zero line intersection(s) as well as the way they approach
the pole and the equator.

[t has been known from observations that the stratospheric polar vortex (from the
climatological data) in the Southern Hemisphere during winter (JJA) is fairly zonallyv
symmetric while the Northern Hemisphere winter (DJF) the vortex is distorted and
off the pole [see Fig. 1.3a-d]. This suggests that some wave activity propagates
upward from the troposphere into the stratosphere due to the ocean-continent thermal
contrast and orography (more high mountains in the Northern Hemisphere than in the
southern one). Stratospheric sudden warming events are spectacular events during
some winters in the Northern Hemisphere. During the warming period the zonal
mean temperature in the middle stratosphere near the pole rises dramatically and
produces a meridional temperature gradient reversal. Following the abrupt change
in temperature, the normal westerly zonal wind decelerates and sometimes reverses
and becomes easterly. Not only do the zonal mean temperature and wind change
but so do the wave disturbances (mainly zonal wave numbers | and 2). (‘ommon
features observed in the middle stratosphere (10 hPa) are the Aleutian High /high
value of geopotential height near 180°W) moving northward. pushing the polar vortex
off the pole along the Greenwich meridian (strengthening of wave number 1) and the
development of wave number 2 splitting the polar vortex into two separate parts.
[t is also noticed that the evolution of zonal wave number 1 has a preferred phase
(approximately along the 0-180° longitude line) and time (usually at the beginning
of the warming) while the occurrence of wave number 2 does not. Another important
observed feature that might lead to the stratosphere warming is the position of the

polar night jet at the beginning of the warming. The averaged onset polar night jet



Lt

in Fig. 4.2 is quite different from the 11 year climatological data in Fig. 1.2. The pre-
warming polar night jet moves northward and downward to around (68°N.2.5 hPa)
from its climatological location in the vicinity of (45°N,0.1 hPa). This position of
the polar night jet is believed to guide the (winter) normal upward propagation wave
activity to the polar region instead of propagating toward the equator. The “cause”
of the polar night jet anormaly is still not quite well understood.

The Empirical Normal Mode analysis was used to characterize the stratospheric
warming events. [irst, we partitioned the winter data set into two parts. namely, the
warming events and the rest of the data set. The purpose of this study was to identify
the difference in the structures of the quasi-potential vorticity and thus the wave
activity by comparing the modes during the warming events with those for the rest of
the data. As expected. the wave activity in the stratosphere during warming events
is much stronger than that of the non-warming periods, especially for wave number
l (both ENMI and ENM2) [see Figs. 1.7 and 1.8]. For wave number 2, however.,
only the first normal mode clearly exhibits (though the difference is not as large as in
wave number 1) this feature [Fig. 1.10]. If the “cause™ of the stratospheric warming
is the propagation of wave activity {rom below. then the tropospheric structure of
quasi-potential vorticity might be a precursor for warming cvents. We first notice
that the main tropospheric structure for the ENML wave number | (around 60°N)
for warming events is about 28.6% (36 vs. 28 units) larger than same structure in
the non-warming periods. There is also a smaller structure in high latitudes in the
warming events while this structure is absent in the non-warming data set. For the
second normal mode of wave number 1, the tropospheric structures are the same (in
magnitude and position) in both periods. This suggests that this mode does not play
a significant role in a upward propagation of wave energy.

The tropospheric main structures (around 50-60°N) for wave number 2 (ENM1)

are the same in magnitude for both warming and non-warming periods, but the



positions and shapes are different [Fig. 4.10]. Again, a small structure in the high
latitude troposphere appears during warming events but not in the non-warming
periods. By comparing structures hetween the warming and non-warming periods.
we observed that the large stratospheric wave activity during the warming events
might be related to the upward propagation of wave activity from the troposphere
which appears in the first normal mode (the most important). This would be reflected
in their differences in tropospheric structures.

We also investigated the forcing term [equation (4.21)] which is responsible for the
zonal mean wind deceleration during the growing stage of the warming events from
empirical modes and found that the negative forcing is mainly contributed by wave
number | and is located near the pre-warming polar night jet as seen in Fig. 1.13a.
The much smaller forcing contribution from zonal wave number 2 is not surprising
since wave number 2 does not penetrate high into the stratosphere.

We have used the kernel density estimation method to calculate the probability
density of normal modes and their tendencies which were displayed in phase space
diagrams. The results show that during the growing stage. the modal amplitudes
of wave number | are growing with eastward phase speeds. In contrast. the modal
amplitudes are reduced during the decaying stage with an eastward phase speed
found in ENMI and a more complex phase propagation in ENM2. Neither wave
number | nor 2 was found to have a meridional phase tilt in the stratospheric high
wave activity regions. This implies that the disturbance development during the
stratospheric warming periods is not due to barotropic instability. By combining the
phase and structure of each empirical mode we constructed 10 hPa maps of the quasi-
geopotential vorticity. These charts clearly exhibit the polar vortex pushed off along
the Greenwich meridian by the northward movement of the Aleutian High during the
growing stage of the warming events. This polar vortex is restored when the zonal

mean temperature returns to normal winter conditions.
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The ENM analysis, as expected. recovered the Hough modes and their {requencies
from the data set generated by the shallow water model because the method itself was
derived from the linearized dynamical equations [Section 2.2] and the data set was
generated by the same set of equations. The technique accomplished the task remark-
ably well. In the real 3D atmosphere, the dynamics are not linear. especially during
warming events. but the (linearized) ENM analysis method derived in Section 2.3
yielded informative results. The method captured the major features of stratospheric

warming events with very few empirical modes.



Appendix A

The proof of 3D primitive
equations wave activity

conservation

We begin with the perturbation zonal wind and thermodynamic equations linearized
) {

about the zonal time mean basic state on a sphere for an inviscid. adiabatic system

as
(bl
D' -’ + 10" + —2— =0 (A1)
Acos o
and _
0 _
D+ 20 + 0.0’ =0 (A.2)
a
where
J u 0 _
D = 8_t+acosom' (A-3)

the basic state absolute vorticity, 7. is

(dcos o),

=J- acos¢

(A4)
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® is the geopotential height, 8 is the potential temperature, w is the vertical wind
component. The overbar and prime denote the basic state (zonal and time mean)
and deviation from the basic state of the variable. The subscript (A, o,z.t) denote
the derivative with respect to longitude, latitude, height and time respectively. The

Ertel's potential vorticity P is defined as

pP =0, |f— (L5 0 ] o e | Gous (A.3)
acos @ acoso| acoso a
where the density profile, p(z). is
pt2) = pyexp (- ) (A.6)

with p, being the refcrence density which is usually taken at 1000 hPa, H (=7 km) is
the scale height and = is the log-pressure height and is defined in (1.3). The equation
(A.6) shows that the atmospheric density decreases by a factor ¢ every 7 kim. We can

separate (A.3) into the basic state (zeroth order) and the perturbation (first order)

as follows:
_ 0,7.
oP = 0.7 + 2= (A7)
a
and
0. .0, O,u
pP' = ——[~(u'cos o)y + v\] +Ti0'z+£t—"—~g+ o’ (A.3)
acos ¢ a a

For a conservative system (no source or sink) Ertel’s potential vorticity is conserved

following the material flow (Andrews et al. 1987 section 3.1). that is,
DP/Dt =0 (A.9)

where D/Dt is the material derivative. The linearized form of the above equation can

be written as

P —
D,P' + -2 +P.u' =0. (A.10)
a
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Eliminating w’ in (A.2) and (A.10) by operating [f.x (A.10) - P,x (A.2)] we obtain
D[8.P' ~ P.#') + (7.P, — P.B,— = 0. (A.11)

The above equation can be rearranged as

DI + giv'z() (A.12)
where .
MN"=pP - =0 ALL3
7 (A.13)
and L
- LaPO) | = -
== = 2[P,D. - P.3,].
. adlo.z) a[P¢ < = Pl (A1)
Multiplying (A.12) by [I' and taking zonal average. after rearranging we get
L9 (pmm) 4 Lo 5
55(111 )+a—:1 T = 0. (A.15)

Notice that overbars above the quadratic perturbation terms, e.g.. 2. 7. ete.. de-
note zonal means which are time dependent while overbars above single variables. ¢.g..
0. 7. etc., denote zonal and time means which are independent of time. Substituting
the definition of I’ in (A.13) into the last term of (A.15) we have

: %% (%’rl"’z) - 5”:u' (P' - &0'). (A.16)
Taking zonal mean of the operation #'x(A.2) and multiplying the result by

p(T./p):0 " yields

Ld |p (u.)\ = p%(m — 0 (1 — ;
=L ZE) |+ £ ) o L (L) wr=o A
23‘[53([’): ]+5j“ > :L +0: p :uﬂ 0 (A.17)

The hydrostatic equation is

¢ = —exp(—nz/H)E (A.13)



where R is the gas constant and x=2/7 is the ratio of the gas constant and the specific
heat at a constant pressure. To eliminate the geopotential term in the zonal wind

equation (A.1) we take [9/0z(A.1) — (acos ¢)~'d/3N (A.18)] and obtain

i, R

Dy, + - - UL + et + W, — v\ = . ALY
(e, acoso 7.0 =0l + e’ + o, + Hacosal) (AL1Y)
By using the mass continuity equation
1 r,
(v + (v cos @) + =(pu’), =0 (A.20)
acos o p
to eliminate the term w’ in (A.19) we obtain
u. n n u.
D.u’ - - -(¢'cos 0), — (2) pv' — z(p'v'): + (“—) p’
acos o p). P p/.
R 1
— sxp(—nz/H)0\, = 0. (A.21
Hacoso p(=rz/ { )
Notice that the identities
T[::LL" _ “.-_- ‘(L" - (‘_l_:_) pu‘ (\2_))
p ).
and
7.+l = (—I) pv' + pt' N (A.23)
p
have been used in the derivation of (A.21). Operatmg

-0': [0 x (A.21) + v’ x (A.2)] and using the periodic condition in longitude we obtain

— . 0'(v' cos 9), T\ P—m L (05
(uf0'), + ——-——()50 6()0(;}()

acos ¢ p

uQi' —
)

.-~ S 5 . L
(i:—;-) pl'wt + a—.o.{u’:v’ + vluw’ =0 (A.24)

+

e

Adding (A.16) to (A.17) and subtracting (A.24) we obtain
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, _ , 0, p[ 5 . 0s (T = (M) | =
—[A+ A2+ As] = 5" (pP auz)+§2[—P:+a(p):+0:( : v'0

0/ o). —_ — ' w! ! .._)'
+ —=0'(pv'). + 5 p— u u (A.25)
where
4 — l/) 14 — L p (U 2 - ! . 26
Al = :_2.:)_:[[ . ‘-12 = 5-0_:-3- (’;):0' . _-‘3 = —y—;l.i(l. (.’\._)())

We now convert the right hand side (RHS) of (A.25) into a flux form. Substituting

the definition of P’ in (A.8) into the first term on the RHS of (A.25) we obtain

L 0 L .
.070' (pP’ - (—fu’:) = 7 [-—v’(u'cos Q) + 00, + ujv'O’,9 . (A.27)
The coefficient of t/@ in (A.25) can be written as
— 8, (.. ~ (7 70.. u.0,.
El-Poe2(=) +0.(2) | ==L ———"'ffj‘. (A.28)
0. “\PJ. Pl 0. al’,
If we use the identity
l U.cos 0 i cos @ 55:: 6:50: .
= = = —_-—— 5 Iy ..)
cos O [( al, ),D + ( 0. )} 0 ab (A.29)

in (A.28) we have

— 0, (u. - (7 . cos 7] cos
L [_pz 42 (“_) +7, (2) ] - l‘ , (“' cos o) + ("wa) . (A.30)
0: a P - p - COos @ (10: > 0: .

Substituting (A.27) and (A.30) into (A.25) and multiplying the result by (apcos o).

after simplification, we obtain

—apcos o[A + Ay + Ag]y = —pv’(u cos ), — ap cos oulw!

CO’;é (“zcg’s ‘Z’Fo") + (———“”C;S""W).(A.:m
: ¢

-
b4 -
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Multiplying the mass continuity equation (A.20) by u’ and taking zonal average and

then multiplying the result by —apcos ¢ yields

—pu'(v' cos 0), ~ acos ou'(pw’). = 0. (A.32)

Adding (A.32) to (A.31) and simplifying we have

?),TU' '—W) m+acos¢0[ (E’-T —_)] (A.33)

A=apcosod(A; + Ay + Az). (A3

-A, =

—
In)
o]
7
~
AS
N
|
? 3

caos @

where

Equation (A.33) is the inviscid. linearized form of the generalized Eliassen-Palm the-

L p e 2

and the EP flux latitudinal and vertical components are:

orem (1.36) where

1
A =apcoso [-;

—H *b

My ——
F@ = apcoso (_—'v’ﬂ’ - u’v’) .

0.
F' = upcoso (5,—’_0— Tw_’) : (A.36)
The divergence of the EP flux is
V.F= — 9 (r(¢>coso)+——(1?‘ h. (A.37)
acos ¢ do

[ntegrating (A.33) over the domain, the wave activity A is conserved providing the
vertical EP flux, F(%), vanishes on the upper and lower boundaries or. less strictly.

there is cancelation of the vertical EP flux on the upper and lower boundary.
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