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Abstract 

Spatiotemporai processes occur in many areas of earth sciences and engineering. 

However, most of the available theoretical tools and techniques of space-time data 

processing have been designed to operate exclusively in time or in space, and the 

importance of spatiotemporal variability was not fully appreciated until recently. To 

address this problem, a systematic frarnework of spatiotemporai random field ( S i T W )  

models for geosciencdengineenng applications is presented and developed in this thesis. 

The space-time continuity characterization is one of the most important aspects in 

S/TRF modelling, where the space-tirne continuity is displayed with experimental 

spatiotemporal variograms, surnrnarized in terms of space-time continuity hypotheses, and 

modelled using spatiotemporal vanogram functions. Permissible spatiotemporal 

covariance/varioçram modeis are addressed through permissibility critena appropriate to 

spatiotemporal processes. 

The estimation of spatiotemporal processes is developed in terms of spatiotemporal 

kriging techniques. Particular emphasis is given to the singularity analysis of 

spatiotemporal iuiging systems. The impacts of covariance functions, trend forms, and 

data configurations on the singularity of spatiotempord knging systems are discussed. In 

addition, the tensorial invariance of universal spatiotempord kriging systems is 

investigated in terms of the space-time trend. 

The conditional simulation of spatiotemporal processes is proposed with the 

development of the sequential group Gaussian simulation techniques (SGGS), which is 

actually a senes of sequentiai simulation algonthms associated with different group sizes. 

The simulation error is analyzed with different covariance models and simulation gnds. 

The simulated annealing technique honoring expenmental variograms is also proposed, 

providing a way of conditional simulation without the covariance mode1 Btting which is 

prerequisite for most simulation algorithrns. 

The proposed techniques were first applied for modelling of the pressure system in a 
carbonate reservoir, and then applied for modelling of spnngwater contents in the Dyle 

watershed. The results of these case studies as well as the theory suggest that these 

techniques are redistic and feasible. 



Résumé 

Le processus spatio-temporel se présente dans un grand nombre de domaines des 

sciences de la terre et de l'ingénierie. Cependant, la plupart des outils théoriques 

disponibles et des techniques pour traiter les données dans I'espace et le temps ont été 

établis indépendamment dans le temps ou dans I'espace; l'importance de la variabilité 

spatio-temporelle n'était pas appréciée jusqu'à maintenant. En ce qui concerne ce 

problème, un cadre systématique du modèle spatio-temporel aléatoire (S/TRF) pour les 

applications géoscientifiques et de génie est présenté et aussi développé dans cette thèse. 

La caractérisation de la continuité dans I'espace et le temps est l'un des plus importants 

aspects de la modélisation SiTRF, où la continuité dans l'espace et le temps est démontrée 

par le vanogramme spatio-temporel èxpérimental. Elle est résumée en terme d'hypothèse 

de continuité dans l'espace et le temps et, modélisée en utilisant les fonctions du 

variogramme spatio-temporel. Les modèles permissibles de covariance/variogramme 

spatio-temporel sont adressés par des critères de permissibilité appropriés au processus 

spatio-temporel. 

L'estimation du processus spatio-temporel est développée en terme de Kngeage spatio- 

temporel. Le point clé est L'analyse de singularité du système de Kngeage spatio-temporel. 

L'influence de la fonction de covariance, de tendances et de configurations des données 

sur la singularité du système de Kngeage spatio-temporel sont discutés. De plus, 

l'invariance tensorielle du système de Krigeage spatio-temporel universel est analysée en 

termes de tendances dans l'espace et le temps. 

La simulation conditionnelle du processus spatio-temporel est proposée avec le 

développement d'une technique de simulation gaussienne en groupe séquentiel (SGGS), 

qui est actuellement une série de simulations séquentielles associées à des groupes de taille 

différente. L'erreur de simulation a été analysée avec différents modèles de covariance et 

grilles de simulation. La techique de détrempe simulée pour reproduire les variogrammes 

expénentaux est aussi proposée, donnant ainsi une méthode de simulation conditionnelle 

sans simuler le modèle covariance qui est une condition préalable pour la plupart des 

algorithmes de simulation. 



Les techniques proposées ci-dessus ont été appiiquées à la modélisation du système de 
pression dans un réservoir au sein de carbonates, puis, elles sont utilisées pour la 
modélisation du chimisme d'eaux de source dans la région de ligne de partage des eaux de 
la Dyle. Les résultats des études sur ces exemples ainsi que ceux de la théorie suggèrent 
que les techniques présentées sont réalistes et faisables. 



Acknowledgments 

1 would like to express my thanks to al1 those who heiped me to complete this study. In 

particular, 1 wish to express my thanks to my supervisor, Professor R. Dimitrakopoulos 

for his guidance, encouragement and support in every aspect of my life at McGill 

University, without him 1 could not have underiaken this work. 1 wish to thank Professor 

M.L. Bilodeau for his careful correction of my thesis. I also wish to thank other staff 

members in the Department of Mining and Metallurgical Engineering at McGill University 

who made me welcome and had their doors open for discussions. 

1 wish to thank M. Dagbert for his constructive comments and recommendations on 

estimation and conditional simulation techniques, B. Noland for providing pressure data 

and valuable advice on the case study of reservoir pressure modelling, and P. Goovaerts 

for providing the spring data. 

The finantial support for this work was provided by the National Science and 

Engineering Research Council of Canada (OGP0105803), to R. Dirnitrakopoulos. 

Findly, I wish to thank my wife Ping and my little daughter Kathy for their support in 

my endeavors, and my parents for their forever encouragement in rny iife. 



Statement of Originality 

Based on the distinct characteristics of spatiotemporal processes in geoscience 

applications, this research develops a theoreticai frarnework and applicable techniques of 

spatiotemporal stochastic models with regard to three aspects: the space-time continuity 

characterization, the estimation of spatiotemporal processes, and the conditional 

simulation of spatiotemporal processes. The following paragraphs describe the author's 

original contributions to the development of spatiotemporal stochastic models. 

The space-time continuity characterization is established in terms of the space-time 

continuity description, continuity hypotheses, and covanancelvariogram modelling. The 

permissibility critena of space-time covariance models are proposed. Two types of 

permissible covariance functions are introduced for covariance modelling, estimation, and 

conditional simulation of spatiotemporal processes. The properties of these permissible 

covariance functions are also analyzed. 

The estimation of spatiotemporal processes is developed in terms of space-time kriging 

techniques. The singularity analysis of space-time kriging is introduced with regards to 

covariance models, trend models, and data configurations. Many failures of kriging 

computations in practice cm be interpreted using this singularity analysis. In addition, the 

tensorial invariance of universal spatiotemporal kriçing systems is analyzed with space- 

time trend models, and the result indicates several constraints in the selection of trend 

models. 

The conditional simulation techniques of spatiotemporal processes are developed in 

terms of sequential group Gaussian simulation (SGGS) and the simulated annealing 

hononng experimental variograms. M e r  proving that the LU decomposition technique 

(LUD) is equivaient to the sequential Gaussian simulation technique (SGS) in tems of 
simulation results, this research proposes the SGGS technique which is a series of 

sequential simulation algorithrns including SGS and LUD. The optimal SGGS is the 0 5 -  

SGGS whose group size is around half of the neighborhood size v. The simulation error 

caused by ignoring farther information during the SGGS implementation is introduced in 

terms of the screen effect approximation loss and investigated with popular covariance 

models using different simulation grids. The simuiated annealing honoring experimental 

variograms is proposed, providing a way of generating realizations of spatiotemporal 



processes without the covariance or variogram mode1 fitting, which is prerequisite for 
most simulation algorithms. 
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Chapter 1 

Research Goal and Objectives 

1.1 Introduction 

Spatiotemporal processes develop sirnultaneously in space and time. These processes 

occur in many areas of earth sciences and engineering, such as environmental engineenng, 

the mining industry, petroleum reservoir engineenng, geohydrology, renewable energy 

engineenng, and meteorology. 

Environmental engineers monitor the concentrations of atmosphenc pollutants. These 

concentrations and their effects depend on meteorologicaI conditions such as precipitation, 

air turbulence, wind direction and speed, cloud cover, as well as on the sources and the 

locations of the pollutants. These conditions rnay Vary fiom location to location, and ffom 

time to tirne. Groundwater pollutant concentrations also show a strong spatiotemporal 

variation that depends on geological and geographical settings, weather variations, and 

human activities (e.g., Gilbert, 1987; Switzer, 1988). 

In the mining industry, several problems relate to space-time vkability. For example, in 

mining environmental management, environmental contamination, such as acid mine 

drainage, varies in space and time simultaneously. In rock mechanics, certain parameters 

such as the stress in a pillar, as well as rock deformations caused by mineral extraction, 

can change in different locations and in time. In mineral reserve assessrnent and evaluation, 

the dollar equivalence of mining blocks in polymetalic deposits varies depending on their 

spatial locations as well as on market fluctuations. 

In petroleum reservoir engineering, reservoir properties may not only be variant in 

space, as present modelling techniques assume, but also simultaneously variant with 

production time -- particularly when enhanced oil recovery techniques are applied. For 

instance, one of the most important dynamic attributes, the reservoir pressure, varies 

sirnultaneously in space and in time. Some properties of the reservoir fluids may also 

change in the space-time domain, such as the oil, gas, and water viscosity, saturation, 

density, and compressibility. 



In geohydrology, rainfall structures are commonly described as spatiotemporal 

processes -- varying simultaneously with geographical location and time. The head of the 

water table changes not only spatially but also ternporally depending on the variation of 

groundwater recharge rates (e.g., Zawadzki, 1973; Mejia and Rodnguez-Iturbe, 1974; 

Rouhani and Wackemagel, 1990). 

In renewable energy engineering, the occurrence and intensity of wind are functions 

that change with respect to space locations and time instances, and solar irradiation 

changes daily, rnonthiy and yearly, and varies depending on location (e.g., Haslett and 

Raflery, 1989; Loutfi and Khtira, 1992). Similar situations may also be found in the study 

of sea waves and tidal energy. 

In meteorology, weather observations including temperature, pressure, humidity, wind 

velocity, and various special elements are made hourly at numerous stations or even more 

frequently dunng a time of rapid weather changes. These observations are interpreted in 

ternis of weather systems which are fitted ont0 a weather map. The spatiotemporal 

variations of weather parameters are apparent fiom the change and the movement of these 

systems on a sequence of weather maps. 

Perhaps the most helpful information that can be used in the modelling of 

spatiotemporal natural processes is a description of how the space-tirne phenomenon in 

question was generated. In certain situations, the physical or chernical processes that 

generated the data set might be known in sufficient detaii, therefore, a deterministic mode1 

might be adequate. 

Unfortunately, very few geoscientific processes are understood well enou@ to permit 

the application of deterministic models. Even though we do know the physics or chemistry 

of many spatiotemporal processes, the variables of interest in geoscientific data sets are 
typically the end result of a vast number of processes whose cornplex interactions we are 

not yet able to describe quantitatively. For the vast rnajority of geoscientific space-time 

data sets, we are forced to admit that there is a significant amount of uncertainty about 

how the phenomenon behaves in the space-time domain. Stochastic anaiysis of 

spatiotemporal processes recognizes this fundamental uncertainty and gives us tools for 

rnodelling space-time variations in terms of stochastic processes. 



1.2 Stochastic Analysis of Spatiotemporal Processes: Problem Definition 

The development of a method for the stochastic analysis of spatiotemporal processes 
that is able to mode1 spatiotemporal variations systematically is still in the primitive stages. 

In some geoscience/engineering fields, an awareness of the problem of stochastic 

modelling of spatiotemporal variates exists. However, most approaches are simplistic and 

consider space and time separately. 

In geohydrology, rnethods of analysis either create artificial decornposition of the 

hydrologie variates of interest -- one in time and one in space -- and study each separately 

(e.g., Mejia and Rodriguez-Iturbe, 1974), or focus on moving space modelling by 

accounting for invariant velocities (e.g., Zawadzki, 1973). Other methods o f  analysis focus 

on multivariate modelling, in the sense of mutually related spatial variables (e.g., Rouhani 

and Wackemagel, 1990). 

In environmental engineering, the existing stochastic models have been designed to 

handle different problems. They refer to either specific space-time interaction systems in 

which the variates are treated at each spatial location as a separate time series (e.g., 
Gilbert, 1987), or the averaged models which simpli@ the spatiotemporal variation into 

averaged spatial variations (e.g., Switzer, 1 988). 

In renewable energy engineering, the availabie rnodels either independently investigate 

temporal variations at different locations in the study of solar irradiation (e.g., Loutfi and 

Khtira, 1992), or separately estimate spatial variations at different time instances by 

ignoring temporal dependence, as in the study of wind power resources (e.g., Hasiett and 

Rafiery, 1989). In renewable energy engineering, a procedure to descnbe space-time 

interactions does not exist. 

In petroleum reservoir characterization, there is currently no method of spatiotemporal 

stochastic analysis. Most available techniques account exciusively for the spatial variation 

of geological reservoir processes. Aiso, most current practices in data collection do not 

account for tirne. 



The reasons for such clearly inadequate analysis of space-time data may be attributed to 

two facts: (i) most of the available theoretical tools and techniques of space-time data 

processing have been designed to operate exclusively in time or exclusively in space, and 

(ii) the importance of spatiotemporal variability in the study of space-time phenornena was 

not fûlly appreciated until recently. 

1.3 Spatiotemporal Random Field Models: Problem Statement 

In order to perform a systematic analysis of space-time data, we will employ the 

concept of the spatiotemporal random field (S/TRF). Within the framework of the S/TRF 

model: 

a. Space and time form a combined process having simultaneous and interrelated effects 

on the evolution of the physical variate represented. 

b. Suitable hypotheses and operational tools assure that the mathematical concept of a 

SîTW is compatible with the physics of the vanate it describes and, thus, it is 
applicable in practice. 

S / T R F  models have not been developed until recently. A general framework of 

mathematical definitions for S/TRF models was developed by Christakos (1992). 

However, despite this systematic introduction of some basic notations for S l T R F  models, 

several aspects remain to be developed: 

1. Space-Time continuity characterizatiori. Space-Time continuity needs to be described 

in such a way that the space-time simultaneousness can be characterized. After an 
appropriate description of space-time continuity, a systematic investigation of space- 
time continuity in tems of second-order moments needs to be performed, including 

the development of a reasonable hypotheses of space-tirne continuity, suitable 

covariance/variogram models, and permissibility cntena of covariance/variogram 

modeIs. 

2. Spatiotemporal kriging techniques. Spatiotemporal kriging techniques that can handle 

various space-tirne covariance/variogram models and space-time drifts need to be 

developed. Stability analysis of spatiotemporal kriging systems in terms of data 

configuration also needs to be investigated. 



3. Spatiotemporal conditional simulation techniques. 

4. Applications of SERF models in applied geosciences and engineering. 

1.4 Goal and Objectives 

On the strength of the foregoing considerations, the goal of this research project is to 

devefop S / l T W  models for earth science and engineering applications. To achieve this 

goal, the following specific objectives are set: 

The development of the space-time continuity description by means of 

spatiotemporal experimental covariances and variograms, and the hypotheses that 

cm reflect and summanze adequateiy the characteristics of the space-time continuity 

of the data. 

The development of the required second-order models of SflRF that match the 

hypotheses of the space-time continuity. The permissibility and inference of these 

models will be emphasized. 

The development of the spatiotemporal pointhlock ordinary kriging systems and its 

singularity analysis, and the implementation of the corresponding computational 

equivalent . 

The development of the spatiotemporal pointmlock universal kriging systems and its 

singuianty analysis, and the implementation of the corresponding computational 

equivalent . 

The development of conditional spatiotemporal simulation techniques that may 

handle large scale simulations, and the simulation algorithrns that can reproduce 

expenmental covariance/variogram characterktics. 

Demonstrate the applicability of spatioternporal stochastic models in various 

seoscience and engineering applications. 



1.5 Thesis Outline 

Chapter 2 surveys previous work and developments in spatiotemporal stochastic 

analysis applied to the geosciences. Six types of spatiotempord stochastic models are 
sumarized: averaged models, moving trend models, rnultivariate models, simple 

combination models, moving space models, and S/TRF models. 

Chapter 3 provides the space-time continuity characterization in terms of three aspects: 

the space-time continuity description, hypotheses, and space-time covariance/variograrn 

rnodels. The space-time continuity descnption is investigated with spatiotemporal 

experimental covanance/vanograms. The space-time continuity hypotheses are 

summarized with respect to four aspects. The permissibility criteria of space-tirne 

covariance/variogram models are proposed, and two types of permissible covariance 

models are introduced. 

Chapter 4 presents the estimation of spatiotemporal processes in terms of 

spatiotemporal kriging techniques, along with the singulanty analysis of the knging system 

with regard to covariance rnodels, trend models, and data configurations. The 

permissibility of trend models in tems of tensonal invariance is also investigated. 

Chapter 5 descnbes spatiotemporal simulation techniques. M e r  proving that sequential 

Gaussian simulation (SGS) is equivalent to the LU decomposition algorithm (Lm) in the 

sense of simulation results, a new simulation technique, called sequential group Gaussian 

simulation (SGGS), is introduced. The screen-effect error associated with sequential 

simulation algorithms is analyzed, and optimal gnd size under the required error level is 
discussed. In addition, another new simulation technique, called simulated annealing 

honoring experirnental variograms, is proposed. 

A case study of a reservoir pressure system is given in Chapter 6. This case study 

illustrates the spatiotemporal ordinary kriging technique deveioped in Chapter 4, and 

SGGS developed in Chapter 5. The methods of Chapter 3 are applied to charactenze the 

space-time continuity of the reservoir pressure and the fitted covariance mode1 is used in 
spatiotemporal ordinary kriging to estimate the pressure distribution in the space-time 

domain. The sarnpling design is investigated using simulation results generated by SGGS. 



A case study of spatiotemporal modelling of springwater contents is given in Chapter 7. 
It illustrates the spatiotemporal universal knging technique developed in Chapter 4, SGGS 
and the simulated annealing technique hononng experimental variograrns developed in 

Chapter 5. The spring data set of Ca+, CI+, and NO3+ concentrations are decomposed into 

the space-time trend components and residuals using trend-surface analysis. The space- 

time mapping of springwater contents is performed using spatiotemporal universai kriging. 

The monitoring scheme of springwater contents is investigated using the simulation results 

generated by both SGGS and simulated annealing. 

Chapter 8 contains conclusions and recommendations. 

1.6 Basic Definitions 

The following definition of an ordinary S m ,  based on Christaicos' works (1991, 

1992), will be quoted in the following chapters. 

The space-time domain can be defined as the Cartesian product RnxT, with (s, t) E Rnx 

T being space-time coordinates, and X(s, t) being a S/TW from RnxT into [O, ml. 

An ordinary S/TRF (OS/TRF) X(s, t) can be defined as the function on the space-time 

domain R"XT with values in the Hilbert space L,(R, F, P); that is, 

X: RnxT -+ LJR, F, P) 
All OS/TRFs are considered to be continuous in the mean square sense. 

The rnost comrnon type of 0SlTR.F is the second-order OSRRF; that is, the analysis 

will be based on al1 S K R F s  up to second-order statistical moments assumed to be 

continuous and finite. More preciseiy, a second-order OS/TRF X(s, t) will be 

characterized by 

(1) the spatiotemporal mean value 
m(s, t) = E[X(s, t)] = E[X(z)] = J-x~F(x) 

4 

where F(X) denotes the probability function of X(s, t) such that 

F(X) = P[X 5 X(s, t)) = P (X 5 X(z)] 
(2) the spatiotemporal variance 

Var(X(s, t)) = E([X(s, t) - m(s, t)]z)= 1-(X - rn)ZdF(~) 
-QD 



(3) the spatiotemporal covariance function 

C(s, t; s', t') = E ( [X(s, t) - m(s, t)][X(s', t') - rn(s', t')] J 

(4) the spectral density of the spatiotemporal covariance function 
1 e - 1 ( ~ T Y + ~ ' T 8 1 ~ 1 ~ k ' )  

S(7c~o;)c'y*') = (2rr)-(w ixJ& JTJRn C(s,t$,t') ds dt ds' dt' (1.4) 

(5) the spatiotemporal vanogram function 
1 1 

Y(s, t; s', t') = ;;E[X(s, t) - X(s1, t')]' = r- [+'"'(x - x ' ) ? ~ F ( x x ' )  

Very ofien SiTRFs used in applications may be stationary, or are considered locally 

stationary: .An OSîTRF X(s, t) will be called stationary in the wide sense if its mean and 

covariance do not change under a shifi of the parameters; that is, 

m,(s, t) = constant ( 1 -6) 

and 

C,(s, t; s', t') = Cdh, 5) (1-7) 

U,(s, t; s', t') = Ys(h, r) (1.8) 
where h = s - s', and t = t - t'. It is easy to show that the covariance and the vanogram are 

related by 

Cx(h, = CdO. 0) - Y& r) (1.9) 

An OS/TRF X(s, t) will be called space-isotropidtime-stationary, if its covariance 

becomes 
C(h, T) = C(r, 5 )  

and 

Y(h, t) = Y(r, 5 )  

where r = Ihl and h. = ILI. 

An OS/TW X(s, t) that does not satisQ Equation 1.6 or 1.7 will be called a 

nonstationaq RF. Very often a nonstationary RF X(s, t) rnay be assumed to have the 

following form 

X(s, t) = Y(s, t) + m(s. t) (1.10) 

where Y(s, t) is stationa~ with a mean of zero and a covariance function C,(h, t), and 

m(s, t), called the drift or trend of X(s, t), is a fùnction of the coordinates (s, t) E RnxT. 

The expectation of X(s, t) is given by 



E[X(s, 01 = m(s, t) 
and its covariance fùnction is given by 

CAh. 7) = C& r) 
This indicates that the covariance fûnction of X(s, t) is identical to that of the residual Y(s, 

0. 



Chapter 2 

Literature Review 

2.1 Overview 

This chapter reviews previous work and developments in the stochastic analysis of 

spatiotemporal processes in applied geosciences and engineering. The two main objectives 

of past attempts were to make models and estimate spatiotemporal vanates. 

Most applications of the stochastic analysis of spatiotemporal processes in applied 

geosciences and engineering is focused on two areas: geohydrology and environrnental 

engineering. In geohydrology, the main focus is on the space-time modelling of rainfall 

related processes, and most research selects separable rnodels that are rather simplistic and 

easily investigated by available spatial techniques. In environrnental engineering, the 

majority of work focuses on the space-time estimation of pollutant concentrations. To 
accomplish this task, researc hers have employed many techniques including rhe spatial 

estimation technique based on time-averaged spatial covariance models, multivariate 

estimation techniques (cokriging) to interpolate rnissing data, and intuitively developed 

estimation techniques based on joint distance spatiotemporal covariance or variogram 

models, but without permissibility and singularity considerations. 

Stochastic spatiotemporal conditional simulations have not yet been developed. 

Stochastic conditional simulation is a statistical method which, with known data from 
available control locations, assigns simulated values of the charactenstics of interest to a 
grid of points with the desired density. The simulated variable. while reproducing the 

known information at the sample locations, also faitffilly rnirnics the variability between 

sample locations. Stochastic conditional simulation was introduced into geostatistics 

literature by Joumel (1974). and several other developments on spatial conditional 

simulations have been presented recently (e.g., Verly, 1993; Deutsch, 1992; Issaks, 199 1 ; 

Dimitrakopoulos, 1990; Joumel, 1989; Davis, 1987; Mantoglou, 1 987). 

2.2 Current Stochastic Models of Spatiotemporal Processes 

There are a variety of stochastic models used for modelling spatiotemporal processes in 

geoscience and engineering applications. In this section, six types of current models are 
introduced. Despite the fact that these models cm not entirely cover the field of 



spatiotemporal stochastic modelling, they summarize a general trend of spatiotemporal 

stochastic analysis in applied geoscience and engineering. 

Table 2.1 provides a summary of these models, the details of which are discussed in the 

rest of this section. 

2.2.1 Averaged Models 

A typical and simple way of traditional spatiotemporal analysis is that of averaged 

models. Consider the data observed in the space-time domain, at any specific time instance 

tk, the corresponding spatial experimental covariance can be calculated b y 
N(h.td 

1 
C*(h, tk) = - C  si, ti,) - (1 [x(si + h, t J  - (1 J 

N(h.td i=l 

where N(h, tk) denotes the number of data pairs separated by the distance vector h at the 
time instance tk, and ( denotes the mean of available data at t,. Furthermore, if one 

assumes that C*(h, t,) is approximately invariant over tirne, the overall spatial 

experimental covariance can then be achieved by averaging spatial expenmental 

covariances with respect to the tirne series. Thus, the space-time estimation is sirnplified to 

a regular spatial estimation, based on the time-averaged spatial covariance models (e.g., 

Bilonick, 1983; Switzer, 1988). 

In a study of atmospheric acid deposition in the nonheastern part of the United States, 

Egbert and Lettenmaier (1986) introduced a similar consideration. They proposed that a 

RF in the space-time domain can be expressed by 

Z,(x) = W,,W + Y&) + M&) (2.2) 
where W&), Y,,(x) and M,,(x) represent week-to-week variations, year-to-year 

vanations, and a long-term mean, respectively. Consequently the spatiotemporal variations 

become a linear combination of week-averaged spatial vanations, year-averaged spatial 

variations, and long-term-averaged spatial variations, and therefore the covariance mode1 

used in the estimation is composed of these three types of averaged spatial covariances. 

Averaged models are incompatible with the fact that spatiotemporal variates Vary 

simultaneously in time and in space. Furthermore, space-time continuity is not taken into 

consideration. 
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2.2.2 Moving Trend Models 

A moving trend model was proposed by Berkowitz et al. (1992) in the estimation of 

hydrologie data, by representing the groundwater table as 

H(x, y, t) = Mx, y 1 01) + E(X, Y, t) (2.3) 
where E(X, y, t) is white noise, $(x, y lQt) is a trend function of spatial coordinates with the 

time-dependent coefficient vector O,. When this trend function is linear, we have 

b(x Y 1 0,) = h, + x + Pty (2.4) 
the coefficient vector Ot = (It , at , Pt). This approach is actually a 'moving trend analysis' 

in the sense that the coefficients of trend analysis Vary in time. The estimation at every 

specific time is achieved by contemporaneous data only, indicating that there is no relation 

between information in different times. This model does not account for the space-tirne 

continuity . 

2.2.3 Multivariate Models 

In order to interpolate missing strearnflow data in the space-time domain, Solow and 

Gorelick (1986) proposed that the temporal variation in each location in space could be 

regarded as a separate variable, thus n locations provide n variables thar are mutually 

related. From this viewpoint spatiotemporal variations are characterized by multivariate 

fields with n separate 'location variables', each variates in time. Consequently, CO-knging 

was used for the space-time estimation. 

Rouhani and Wackerngel developed this work by accounting for the impact o f  different 

time scales (1990). The cross vano_eram between the irh and jrh location variables is 

expressed as a combination of variograms in different time scales. The variogram at the 

specific time scale is given by an elementary vanogram function, with a coefficient 

determined through principal component analysis. Sirnilar works can also be seen in 

Rouhani et al. (1992). Goovaerts and Sonnet (1992) focus on the situation where the 
sarnpling is denser in space than in time, so that the spatiotemporal variations are 

characterized by 'time instance variables' instead of space location variables. 

The multivariate model can estimate the spatiotemporal variations at observed space 

locations or at observed time instances. It, however, fails to model and estimate the 

spatiotemporai variations in the entire space-time domain. For example, if data is 

measured at four locations in RixT, shown in Figure 2.l(a), or at four time instances, 



shown in (b), then the multivariate models can only represent and estimate spatiotemporal 

variations on lines, Therefore the multivanate models cannot systematically represent 

space-time continuity. 

(a) space-time data measured fiom (b) space-time data measured from 
4 space locations. 4 tirne instances. 

Figure 2.1 Space-time data measured in specific space-tirne dornains (represented by 
shaded areas) in RlxT. The Multivariate mode1 cannot model and estimate the 
variations in the shaded areas except those at 4 space locations in (a) or at 4 time 
instances in (b). 

2.2.4 Simple Corn bination Models 

Mejia and Rodriguez-Iturbe (1974), in the study of rainfall networks, proposed that a 

space-homogeneous/time-stationary RF Z(s, t) could be represented as 

Z(S, t) = Zz, Xi(s)Yi(t) (2.5) 

where Xi(s) are spatial random functions, and Yi(t) are temporal random functions 

independent of Xi(s). The corresponding covariance function is a separable model 

C(h, r) = Cs(h)Ct(r) (2.6) 
where h denotes a distance vector in space, t denotes an intemal in time, and CS(h) and 

Cl@) are spatial and temporal covariances, respectively. Similar discussion can also be 

found in Rodnguez-Iturbe and Eagleson (19871, where the mean of the rainfall intensity 

process was considered to be a function of time and therefore, a space- 

homogeneousltime-nonstationary covariance model was used. 



Bilonick (1985) in a study of sulfate deposition in the Northeastern United States, 

proposed that the sum of a spatial covariance and a temporal covariance could represent 

the spatiotemporal covariance, such that 

C(h. 5 )  = Cdh) +CtW (2.7) 
where C,(h) and C,(s) are spatial and temporal covariances, respectively. This arnounts to 

a decomposition of the spatiotemporal covariance into the surn of independent purely 

spatial and purely temporal components. Ordinary kriging (OK) and universal kriging 

(UK) in R3 were used for estimations in F b T .  Similar work can also be found in Eynon 

and Switzer (1983). Rouhani and Hall (1989) used the same model in spatiotemporal 

universal kriging to estirnate groundwater data. 

Simple combination models reduce spatiotemporal variates to some combination of 

separate and independent spatial variates (where the time variate can be regarded as a one- 
dimensional spatial variate). AI concepts and methods of spatial random fields can be 

directly applied to these separable spatiotemporal variates. Separability implies that there 

is no connection between the correlation structures of the random variation in time and 

space. In addition, when the model of Equation 2.7 is used in knging systems, a singularity 

problem could occur (Dimitrakopoulos and Luo, 1993). The space-time continuity is 

taken into account as a simple combination of spatial and temporal continuities. 

2.2.5 Moving Space Models 

In the study of rainfall data, Zawadski (1973) suggested that by considering the 

veiocity of the stom system U, and Uy, the space-time domain could be transformed into 

'storm space', which is represented by (x-UJ, y-U,.t). The rainfail rate R(x, y, t) can be 

rewritten in so called 'stom coordinates' . 
R(x, y, t) = R(x-Ust, y-Uvt) 

Al1 the statistical characteristics of the rainfall rates can then be studied in the light of 

'storm coordinates'. Both the theory and the techniques of spatial random field are directly 

applicable to this special type of the space-time domain. This consideration was developed 

by Bras and Rodriguez-Iturbe (1976), where a spatiotemporal covariance is written as 
2 in C(X~, Yi, t'; Xj, Yj, t") = C ((yj - yiI2 f [(xj + U$") - (xj + Ust')l 1 

where U, denotes the average storm velocity in direction x. Letting Ax = xj - xi , Ay = yj - 



Waymire et. al (1984) introduced a sirnilar but rather complicated way to deal with the 

rainfdl intensity at ground level. The raididl intensity is regarded as a RF which has the 

fo rm 

X(S, t) = CXl(t-ti )Xz[s-(si + U( Mi)] (2.1 O) 

where XI and X2 are RF and independent, si and ti are coordinates of birth center points in 

a rain band, and U denotes the velocity. The covariance hnction, derived from the 

integration of the joint density of X(s, t), is a non-stationary model. 

Figure 2.2 An exarnple of a movinç 

with a constant velocity c .  
space model, a storm moving along one direction 

The key point of moving space models is that spatiotemporal vanates are transformed 

into spatial variates by means of velocities, and the space-time continuity becomes a 
moving spatial continuity. Moving space models are compatible with unidirectional 

randorn processes with constant velocities, a simple example is illustrated in Figure 2.2. 

Unfortunately, in practice most spatiotemporal processes are neither unidirectional nor 

have constant velocities. This greatly limits the application of moving space models. 

2.2.6 S/TRF Models 

S/TRF models have not been explicitly mentioned until recently. Varmarcke (1983) 

discussed space-homogeneous/tirne-stationary random processes X(s, t) in terms of 

second-order analysis, where s€Rn and teT. The space-time covariance function is, by 
definition, the covariance between two observations at different points (s, t) and (s', t') 

C(s, t; sr, t') = E[(X(s, t) - m(s, t)) (X(sl, t') - m(s', t'))] = C,(h, t) 
where h = s - s', and s = t - t'. Varmarke also discussed the exponential covariance models 
in terms of a 'joint distance structure' 

C(h, r) = exp (-(a21 h l2 + bT)L"} (2.1 1) 

with the corresponding spectral density 

S ( X ,  O )  = S,[l + lk(=/a= + (2.12) 



where S, is a positive constant, and and n denote frequencies with respect to h and r, 
respectively. Finally, he mentioned that a general autoregressive (Markov) spatiotemporal 

covariance model has the following spectral density 

S(k, a) = S,[l + lX12/a2 + m > 1. (2. : 3) 

When m = 3/2 one obtains the exponential model. 

Buxton and Pate (1993), in the estimation of hazardous pollutants in the urban air of 

Atlanta, ernpiricall y proposed a spatiotemporal variogram model with zond anisotropy 

structures, such that 

y(h, r) = y, + ys(h) + y,(r) + y [(a11 hl2 + b = ~ = ) ~ ~ ]  (2.14) 

where y, is a positive constant, y,(h) and y,(~) are variogram models in space and time, 

respectively, and y[(a=lh12 + b'r')]"] is a joint distance model in RnxT. Unfortunately, the 

permissibility of the selected model in the space-time domain was not taken into 

consideration. Similar discussions can also be found in Bilonick (1 987). 

The systematic definition of S/TRF was provided by Christakos (1991, 1992). M e r  

giving the definition of the space-time domain as a Cartesian product RnxT and the 

definition of the space-time distance I(s, t)12 = Is12 + t2, he proposed the basic definitions of 
ordinary and generaiized SKWs, and the fundamental permissibility critena of 

spatiotemporal covariance finctions. Spatiotemporal estimation techniques were 

formulated in terms of Wiener-Kolmogorov estimators, and spatiotemporal simulation 

techniques were mentioned in the light of the tuniinç bands method by rotating RlxT 

simulations into RnxT. 

S / T R F  models provide a distinct Framework for the systematic charactenzation of 

space-tirne continuity. In accordance with S I T R F  theory, space-time phenornena are 

studied by using stochastic processes that Vary simultaneously in space and in time. Under 

adequate hypotheses, S/TW models allow us to represent, predict, and simulate 

spatiotemporal variations in the entire space-time domain. 



Chapter 3 

The Space-Time Continuity Characterization 

3.1 Introduction 

The space-time continuity is a property that characterizes the relation between data at 
different places in the space-time domain. Consider two data points x(s,, ta )  and x(sb, tb). 
Their relation usually depends on the separation (sa - sb, ta - tb). Figure 3.1 shows a 

simple example where thee data points x(sl, tJ, x(sz, t2), and x(s3, t3) are mutually 

separated by (h12, q2), (h13, q3), and (hZ3, T ~ ~ ) .  It is common that the relation between 

x(sl, tl) and x(s2, t2) may be closer than that between x(si, ti) and x(s3, t3) since h12 < h13 
and q2 < q3. 

Figure 3.1 A space-time data set in R2xT. 

In general, the space-time continuity characterization includes: 

(a) The description of the space-time continuity dong with the expenmental covariance or 

variogram to provide the expenmentai basis for the hypotheses of the space-time 

continuity and for fitting of the spatiotemporal covariance/variogram models. 

@) The investigation of the hypotheses made in modelling the space-time continuity that 

could reflect and summarize adequately the characteristics of the experimentai 



covariances or variograms, which provides the foundation of covariance/vanogram 

mode1 fitting. 

(c) The fitting of permissible covariance/variogram models to charactenze the space- 
time continuity of the natural process. 

3.2 Space-Time Continuity Description 

The space-time continuity can be described using various tools. These include data 

postings where each data location is plotted dong with its corresponding data value, 

contour maps of data values, and h-scatterplots that show al1 possible pairs of data values 

whose locations are separated by certain space distances and time intervals in cenaiii 

directions. Also, the space-time continuity can be appropnately described by the 

experimental spatiotemporal covariance or variogram. 

The expenmental spatiotemporal covariance can be expressed as 

and the experimental spatiotemporal variograrn 
N(hr) 

where m* denotes the mean of the data and N*,, denotes the number of sample pairs 

separated by the space distance vector h and time interval s. 

Figure 3.2 shows the parameters involved in the experimental spatiotemporal 

covariance or vanogram calculation. These parameters include the space lag h and its 

tolerance dh, the specific direction v and its directional tolerance dv, the time interval t 

and its tolerance d ~ .  

To take a specific exarnple, the experimental spatiotemporal variogram of the pressure 

data measured in a petroleum reservoir is shown in Figure 3.3. The behavior of the 

expenmentai variogram at the ongin area (Q) shows a good space-time continuity, that is, 
the space-time continuity of a data pair increases as its separation (h, t) decreases. The 

space-time continuity tends to be invariant when the data separation (h, r) is beyond the 



range line, which indicates that two pressure measurements will not be influenced by each 

other when their separation is large enough. Therefore, the range line may be seen as the 

influence zone of the pressure measurements. On the space boundary (s = O), the influence 

zone is around one kilometer, implying that two pressure rneasurements at the sarne time 

will not be influenced to each other if their distance is Iarger than one kilometer. The 

influence zone (range) changes from the space boundary towards the time boundary (h = 

O) dong the range line, with the time interval increasing but the space distance decreasing, 

say, (0.8 km, 6 months), (0.6 km, 9 months), and so on. On the time boundaiy the 

influence zone is over one year. 

Some of the implications of the space-time continuity description in the above exarnple 

are (1) the space-time continuity can be described by the expenmental variogram, in terms 

of space-time separation (h, 5) ;  (2) the behavior of the experimental variograrn around the 

origin area may indicate 

experimental variograrn ai 

continuity . 

the characteristics of the repulanty; (3) the behavior of the 

large separations may imply the hornogeneity of the space-time 

3.3 Space-Time Continuity Hypotheses 

In order to charactenze the space-time continuity of a natural process, it is necessary to 

propose sorne hypotheses for the space-time continuity in accordance with the 

charactenstics of the experimental variogram. The study of space-time continuity 

hypotheses can be imaginatively regarded as the 'bridge' between the expenmental 

variograms and variogram models. It will, on one hand, reflect and summarize the 

characteristics of the experimental covanances/variograms. On the other hand, it provides 

the basis for the selection of covariance or variooram models. In general, space-time 

continuity hypotheses include the following: 

(a) Homogeneity. The homogeneity of the space-time continuity, as we mentioned 
earlier, may correspond to the existence of the range line. However, a detailed 

discussion of homogeneity should be based on moving window techniques. It may be 

possible that the homogeneity only exists in space (or time), indicating a range line 

parallel to the time boundary (or space boundary). The two parameters used to 
describe the main features of the homogeneity are the width of the infiuence zone 

(range) and the height of the plateau outside the range line (sill). 



Figure 3.2 An illustration of the parameters used in the experimental spatiotemporal 
covariance or variogram caiculation. 

ranse line 

Figure 3 -3 Plot of experimental spatiotemporal vanograms of the pressure data measured 
fiom a petroieum reservoir. 



(II) Anisotropy. The space-time continuity is called 'anisotropic' if it is not the same in 
different directional space-time surfaces. For example, a specific spatioternporal 

anisotropic continuity in RZxT is shown in Figure 3.4. These three expenmental 

variograrns show apparent differences with each other. If the differences only lie in 

the range Iines, then it is possible that these differences c m  be reduced by a specific 

linear transformation of the spatial coordinates. An anisotropy that c m  be reduced to 

isotropy by a mere linear transformation of the spatial coordinates is called a 

geometnc anisotropy, otherwise it is cailed a zona1 anisotropy. 

(c) Regularity. The behavior of the expenmental vanogram at the origin area decrees the 
type of spatiotemporal regularity and continuity. The three popular types of 

regularity are parabolic, linear, and nugget effect. Nugget effect corresponds to a 

discontinuity around the origin area of the experimental variogram that may be 

caused by sampling error and short scale continuity. More precisely, the jump from 

the value of O at the origin to the value of the variogram at extremely smali distances 

is called the nugget effect. 

Figure 3.4 A spatiotemporal anisotropic continuity demonstrated by expenmental 
variograns of three directional space-time surfaces (hl, r), (h2, 5),  and (h,, 5).  



(d) Separability. The plot of the experimental variogram at a specific time interval shows 
the variograrn structure at a fixed time interval. Figure 3.5 shows the experimental 

variogram structures at three fixed time intervals: s = O, r = 4, and r = 8. The 

differences between these structures are distinct. If the differences between these 

variogram structures are indistinct, a separability of the space-time continuity may be 

taken into account, that is, the space-time continuity can be represented by the 

product of the spatial continuity and the temporal continuity. 

Figure 3.5 The variograrn structure at three time intervals, associated with Figure 3 -3. 

3.4 Spatiotemporal CovarianceNa riogram Functions 

The study of covariance/variograrn models is the final stage of the space-time 

continuity characterization. It aiso, in most cases, provides the foundation for 
spatiotemporal stochastic estimations and simulations. 

3.4.1 Permissibilit-y Criteria 

Covariance/variogram functions must satisQ certain permissibility criteria to ensure 

nonnegative variances. .4 continuous function C(s, t; s', t') can be the covariance function 

of an OS/TRF X(s, t) if and only if it satisfies the no~eçative-definiteness condition 

for al1 integers N > 1, a11 (si, ti) and (s!, t'j) €RnxT, and al1 nurnbers ai, aj(real or cornplex). 

This entails that the spatiotemporal permissible covariance function is defined by 



where the spectral density S(X, a; l', a') is a positive surnmable function in RnxT. 
Correlatively, a function Y(s, t; s', t') is permitted to be the variogram function of an 
OS/TRF X(s, t) if and oniy if it satisfies the nonpositive-definite condition 

i= I 

By definition, -Y(s, t; s', t') is said to be a 'conditional positive 

A covariance function of a stationary RF is pemissible 
density satisfies the nomegative condition 

definite' fùnction. 

if its corresponding spectral 

for al1 and o. Consequently, a permissibility criterion of a variogram function, y(h,r), is 

that its auxiliary function 

C(h, r) = y"pp - ~ ( h ,  7) (3.7) 
has a spectral density that satisfies Equation 3.6, where the constant yupp denotes the upper 

bound of y(h, r) 
y(h, r) < yupp 

For example, the function y(h, r) = 1 - exp{-(a21h12 + b2s2)l,2) has the auxiliary function 

exp{-(a21hl= + b'r')lc) (here yupp=l), whose spectral density satisfies Equation 3.6, 

therefore, it is a permitted vanogram function. 

A function, C(r, r), is permitted to be a covariance mode1 of a space-isotropidtime- 

stationary W if it can be expressed as follows (Yaglom, 1962; Gandin, i963), 

where J(n-2Y2 is the Bessel function of the first kind of order (n-2)/2, S(A, a) r O on the 

half-plane (A, a), h ~ ( - a ,  m), and o E [O, a). 

It is worth noting that a permitted covariance/variogram function in a higher 

dimensional space-time domain is also permissible in a lower dimensional space-time 

domain, but the opposite is not necessarily tnie. 

Moreover, the following properties are useful for the construction of covariance 
models: 



(1) every combination of positive definite functions with positive coefficients is dso 

positive definite; 

(2) any product of positive definite functions is also positive definite. 

These properties also hold true for conditionai nonpositive definite functions. 

The following criteria are convenient to check the permissibility of a candidate 

spatiotemporal variogram function. 

Altemative criterion 1: If Y(h, r )  is a permissible spatiotemporal variogram function, then 

it should satisfy 

Alternative criterion 2: If Y(h, s) is a permissible spatiotemporal vanograrn model, then 

the function exp[-aY(h, s)] must be positive definite for al1 positive values of a. 

This criterion is a direct expansion fiom Geifand and Vilenkin (1964, pp. 279). 

Consider the following, as an example, in R'XT: 

~ ( h ,  r) = 4-2 
r 

it is a permissible variogram model since exp[-a.\llh12 + rZ ] is positive definite for al1 

positive values of a. 

3.4.2 Two Types o f  Spatiotemporal CovarianceNariogram Models 

3.4.2.1 Separable models 

The covariance function C(h, r )  will be called space-time separable if it has the fom of 

Equation 2.6. This entails that its spectral density is also permissible: 

S ( L  0) = Ss@)St(N 
The separable model corresponds to the separability hypothesis, its variogram function 

given by 

Y(h, r) = Cs(O)Yt(7) + Ys(h)Ct(O) - YXh)Yt@) (3 -9) 

A separable covariance model has the following properties: 



(a) The function C(h, O) is called the space boundary function of the covariance mode1 

C(h, r), which reflects the marginal spatial structure of the spatiotemporal covariance. 

Similady, C(0, r) is called the time boundary function of C(h, r), corresponding to the 

marginal temporal structure of C(h, r). Thus, for a separable covariance model, its 

marginal spatial structure could be different from its marginal temporal structure, as 

shown in Figure 3.6, where the space boundary curve demonstrates an exponential 

structure while the time boundary curve shows a penodic structure. This is because the 

covariance mode1 

C(h, 7) = C,(h)Ct(r) = exp(-0.1 h)cos(O. 17) 
has the foilowing space boundary function 

C(h, O) = Cs(h) = exp(-O. l h) 

and tirne boundary function 

C(0, r) = Ct(r) = cos(0. Ir) 

Figure 3.6 A separable covariance model C(h, r) = esp(-0.1 h)cos(O. 1 t) 

(b) The relation between covariances with different fixed space distances or time intervals 

is proportional; that is, 
C(hi, 71 Cdhi)Ct(t) Cs(hi) 
W j ,  r) -cs(hj)G(r) -Cs(hj) 

= constant V r  2 0. 

where hi and hj are fixed space distances, or 

where Ti and Tj are fixed time intervals. This indicates that the spatial stmcture of the 

spatiotemporai covariance is invariant with respect to time intervals, and aiso that the 

temporal structure of the spatiotemporal covariance is invariant with respect to space 

distances. 



A separable covariance/variogram model is permissible if its spatial component is 

permissible in space and its temporal component is permissible in time: 

s(n,o) = s,()I)s~(~) 2 O 

Separable models correspond to the subcases of SRRF where a S/TRF X(s, t) is 

considered to be a product of a SRF X,(s) and a TRF Xt(t) 

X(s, t) = X,(s)Xt(t) 
where X,(sj is independent of Xt(t). 

3.4.2.2 Joint distance models 

The covariance C(h, s) will be called a joint distance mode1 if it is given by 

C(h, r) = C[(a21h12 + b ' ~ ~ ) ' ~ ]  (3.10) 

where 1hl2 = hTh, and a and b are the coefficients. For exarnple, exp[-(azlh12 + b2r2)lE] 

indicates a joint distance exponential model, while exp[-(a21h12 + b2t2)] indicates a joint 

distance Gaussian model. Consequently, the corresponding variogram function is also a 
joint distance model 

Y(h, r) = C(0, O) - C[(a21h12 + bk2)1"] = Y [(a2lhl2 + b2r2)l"] 

It can be shown that a joint distance model is permissible in RnxT if and only if it is 
permissible in Rn+'. For a joint distance covariance function, C[(a21hl' + b2r2)10], its 

spectral density is given by 

S(X, a) = S@,,  ..., An, CO) = (2x)-<n+lY2l,' ...S," C(r2) exp [-i(lTh + or)]dh, . . .dkdr 

where XTh denotes the inner product I ,h ,  + . . . + h,hn, and r2 = a=(hi + I? +. . .+ hi )+bW If 

one sets h' = ah,, . .., h' = ah,, h' = br, k', = b,/a , ..., ktn = va, and Zn+, = db, then 
1 n rrl 

and 

Consequently, 

S(X, a) = S(h,, ..., a, o) = S(ah',, ..., al.',, bh',,) 

= (2x)in+lY2 ?-la-" b - l f z . . . c  C(t2) exp [-i(LtTh')]dh', ... dhidh',, 

If C(h') is a nomegative definite function in Rn+l, it follows that 

S(Â, a) = S(a)c', bA'*,) 2 O, for al1 k, a. 



A joint distance model corresponds to the following hypothesis. The spatiotemporai 

covariance has a uniform structure in the entire space-tirne domain, such as a spherical 

structure, an exponential structure, etc., which implies that the type of marginal spatial 

structure is the same as that of the marginal temporal structure. This property is s h o w  in 

Figure 3.7, where the covariance model is given by 

C(h, r) = exp[-(0.051h12 + 0.0752)~~]  

which follows the space boundary function 

C(0, r) = exp[-(0.07r2)ln] 

and the time boundary function 

C(h, 0) = exp[-(0.05 1 h l2)ln] 

Time la c 1.. 

Figure 3.7 A joint distance exponential model C(h, r) = exp[-(0.051h12 + 0 . 0 7 r ~ ) ~ ~ ~ ]  

3.4.3 A General Form of Spatiotemporal CovarianceNariogram Models 

Let rT = (h, T)' = (hl, . ..,h3, r)' be the separation vector in RnxT, where h, denotes the 

distance in the jrh coordinate (i = 1, ..., n), A, denotes a Iinear transformation matrix of the 
vector (hi,  ..., h, r)', and the transformed vector r: is given by 

r;' = Ai *(h,, . . ., h,, t)' 

Thus, every subvecior of rT, Say, (h,, ..., hn, T)~,  (h,, ..., h n.,, r): ..., (h,), (r), corresponds to a 
specific transfonned vector r: Furthemore, if C, (r,) is used to define the sum of different 

covariance models in terms of r, , Cl@,) can be used to define the sum of separable model 

and a joint distance model in terms of r, ( where r, = (hl, h2, r)) 
Cl(r,) = Cl(h,, hz, r) = cos(s)exp[-(h: + q)lD] + exp{-[a2(ht + g) + b2r2]} 

A generai fom of a spatiotemporal covariance function can be given by 



The form of Equation 3.1 1 represents a nested structure of the spatioternporal 

covariance C(h, r), with the differences among the components C,(r,), ..., C&) 

reflecting zonal anisotropies in different directional space-time surfaces. For example, a 

where CO is a positive constant, and Cl, C2, ..., C7 are the sums of permissible models in 

( h ,  4, T), (h,, hJ, ..., (T), respectively. To take a specific example, C-j(h,, r) could be 

given by 
Cj(hxy r) = cos(r)exp(-s)exp(-h, ) + Sp h ( -(azhf + b 2 ~ 2 ) l c }  

the second term on the right hand side denoting a joint distance spherical mode1 in terms 

of (hm t). 

In practice some components of the nght hand side of Equation 3 . 1  1 and Equation 3.12 

may be missing, indicating that the zonal anisotropies in some directional space-time 

surfaces may not exist. If, for exarnple, al1 components of Equation 3.12 are missing 

except C2(h,, 4) and C7(5), then Equation 3.12 is reduced to Equation 2.7. 

Al1 of the above discussion holds tnie for a general form of spatiotemporal variogram 

hnction. 

3.4.4 The Strictly Positive Definite Property 

A covariance model C(h, T) is called strictly positive definite if it satisfies 

for ail reai values al, ..., a~ (not ail zero). Similady, a variogram mode1 Y@, 7) is called 

strictly conditional negative definite if it satisfies 

The strictly positive definite property of a covariance model will result in the unique 

solutions of simple kriguig and ordinary kriging systems, as well as the unique solutions of 



LUD simulations and SGS. Therefore, the strictly positive definite property is of practical 

significance in both stochastic estimations and conditional simulations. 

Several aspects of the stnctly positive definite property are: 

(1) A separable covariance model is strictly positive definite in RnxT if both the spatial 
component and the temporal component are stnctly positive definite in Rn and T, 

respectively; 

(2) A joint distance covariance model is stnctly positive definite in RnxT if it is strictly 
positive definite in Rn+1; 

(3) If the spatiotemporal covariance C(h, r) is of a general form as defined by Equation 
3.1 1, then it is strictly positive definite in RnxT if and only if its cornponent in terrns 

of (h,, ..., hn, T) is strictly positive definite in RnxT. For example, if the covariance 

C(h, r) is defined by Equation 3.12 in R2xT, then it is stnctly positive definite if and 

only if Cl (h ,  II, r) is stnctly positive definite. 

h stnctly positive definite covariance entails a strktly conditional negative definite 

variogram, 

Therefore, the above conclusions also hoid true for spatiotemporal variograrns. 



Chapter 4 

Estimation of Spatioternporal Processes 

4.1 Introduction 

The problem of spatiotemporal estimation is to, under specific constraints, find 

estirnates of values at unsampled positions in the space-time domain. This problem may be 

stated as follows. 

Let X(s, t) be a S/TRF, (s, t) E RnxT. We wish to find estimates ;(su, tJ of the actual 

values ?<(su, t,) at unsanipled positions ((s,, tu), u = 1, ..., K}, using a set of available 

measurements {x(s~, ti), i = 1, . . ., N) . 

In practice we use a variety of spatial estimation techniques. Of these, the random field 

estimation methods are generally considered to be the optimum stochastic estimation 

methods, given the minimum mean square error criterion. The underlying concept behind 

optimal stochastic estimation was first introduced by Kolmogorov (1 94 1) and Wiener 

(1949), and was subsequently applied in vanous fields. The main advantage of the so- 
cailed Wiener-Kolmogorov estimators, is that they reproduce the measurements at known 

data locations and also measure the accuracy of the estimates obtained. 

Spatial kriging is a special case of a Wiener-Kolmogorov estimator which provides a 

linear unbiased estimator of the unknown characteristic with minimum estimation variance 

(Matheron, 197 1; David, 1977; Journel and Huijbregts, 1978). Spatiotemporal kriging 

techniques will be presented in this chapter as an extension of these spatial kriging 

techniques. 

A spatiotemporal knging estimate Q(s,, tu) has the following propenies: 

(i) Linearity: 

where ici is the coefficient of the observation x(s~, ti) to be calculated during the estimation 

process. 

(ii) Impahlity: 



This chapter will attempt to develop spatiotemporal kriçing systems in terms of 

spatiotemporal processes, and provide a singulanty anaiysis of spatiotemporal kriging 

systems with regard to covanance models and data configurations. The impact of trend 

models on tensorial invariance and on singularities is also discussed in the case of 
spatiotemporal universal kriging systems. 

4.2 Spatiotemporal Simple Kriging (Sm Si() 

Spatiotemporal simple kriging deals with a space-homogenous/time-stationq RF X(s, 

t), with a known mean. S/T SK considers the following linear estimator 

Its estimation variance is given by 
N 

using the Lagrange multiplier method the SîT SK system becomes 
'I 

and its matnx formula can be given by 

C k = 8  

where C denotes the covanance marnx, h denotes the vector of weights, and 8 denotes 

the vector of covariances on the right hand 

obtained by 

k = C-Io 
and the corresponding S / T  SK variance is 

&(su, t) = C(h""7 

side of Equation 4.5. The weights can be 



4.2.1 Singularity Analysis of S R  SK 

We can easily conclude from Equation 4.6, that S/T SK has a unique solution if and 

ody if the covariance matnx is positive definite, this entails that the covariance function 

rnust be stnctly positive definite (e.g., Berg et al., 1984). 

4.2.1.1 Strictly positive definite requirement 

A spatiotemporal covariance function C(h, s) is called stnctly positive definite if and 

only if for ail real values al, a?, ..., a ~ ,  (which are not al1 zero), 
m rn 

where hij = si - s and rij = ti - tj. The strictly positive definite property of a covariance 

function ensures the absence of singularity problems in the SK process. 

For the purposes of the discussion, the spatiotemporal RF under study is assumed to be 

space-hornogeneousltime-stationary with a joint distance covariance hnction. This 

discussion is therefore, easily adaptable, as other types of covariance functions c m  be 

expressed as a linear combination~production of joint distance covanance functions. 

Refemng to the discussion in Section 3 A.2.2, the positive definite propeny of covariance 

functions in RnxT is equivalent to that of covariance functions in Rni'. 

A covariance fùnction of a homoçeneous RF in Rn+' can be expressed by its spectral 

density S(k) 

Putting Equation 4.9 into Equation 4.8 one gets 

m rn rn rn 



Caiexp(iXTsi) + O almost everywhere. This indicates that a function C(h) is strictly 
i= I 

positive definite if its spectral density S(S) is positive with finite zeros (e.g., Berg et al., 

1984). 

Erampie 4. I The exponential model 

C(h)= e-*, a > O 

has a spectral density in RS 

Thus it is strictly positive definite in R ~ X T .  

Example 4.2 The Gaussian model 
9 * C(h)= 

has a spectral density in R5 
r 

Therefore, it is also strictly positive definite in It3xT'. 

Ocample 4.3 The sphencal mode1 

has a spectral density in R3 
2 

Therefore, it is strictly positive definite in R2xT. However, the spherical mode1 is 

prohibited in Rn if n > 3 (e.g., Christakos, 1984), and therefore, cannot be used in R3xT. 

Instead, the following mode1 is admissible in Rj (Matem, 1960) 

h > a. 

with a spectral density in R5 (Christakos, 1984) 

W) = k-5 (Jy2(A)l2 



where J,, is the Bessel function of Y2t.h order, therefore, this function is stnctly positive 

definite in R3xT. 

The following criteria can be used to determine whether a covariance function is strictly 

positive definite. 

Cnterîon 4.1 A covariance function is not strictly positive definite if its spectral density is 

a Iinear combination of delta fiinctions 

where b, are positive constants and c,are constant vectors, and 

This critenon can be denved directly ffom Equation 4.10, 

Example 4.4 A counterpan example is the cosine function C(h) = cos(h), its spectral 
density in R1 is given by 

1 
S(h) = 4;;[6(7i. + 1)+ 6(h - l)] 

Therefore, the cosine function is not stnctly positive definite. 

This criterion is also usehl in the discussion of zona1 anisotropy stnictures. A 

covariance function in RZxT can be represented by the general form 

C(h,$W%+C , ( h , h , ~ ) + C ~ ( h m h , ) + C 3 ( h ~ ) + C 4 + 5 + 6 + 7  (4- 16) 



where Co is a positive constant, and Ci, C2, ... , C7 are permissible covariance functions in 

R2xT, RZ, RlxT, Rl and T, respectively. The spectral density 
1 

S ( L  L a) = O'J: J-; J;C(h, hy r)exp[-i(h,hx + Ath,  +Wldh.dhydt 

Criterion 4.2 The covariance function represented by Equation 4.16 is a stnctly positive 

definite function in RZxT if and only if Ci(h,, b, r) is strictly positive definite in R2xT. 

As for the separable rnodels, it is obvious rhat the covanance mode1 is strictly positive 

definite in RnxT if and only if both C,(h) and C,(r) are strictly positive definite in Rn and T, 

respectively. 

4.2.1.2 The influence of data configurations 

Singularity problems may arise when the covanance function is not strictly positive 

definite, therefore, covariance functions of this type are undesirable in S/T SK 

applications. 

In some cases, however, a covariance function which is not strictly positive definite is 

the most appropriate representation of the real data. To avoid sin_eulanties in these cases, 

we need to discuss the influence of data configurations. 

Consider the cosine function. The following data configuration in R' consists of three 

observations; at x,, x2 and x3, separated by the distances: lxl -xzl = 2kx (with any positive 

integer k), IxZ-xJI = A, lxl-xgl = 2kn + A. Then C(IxI-x21) = 1, C(Ix2-x31) = COS(A) = a, C(I 

X, -x31) = cos(2kx + A) = a, and the knging matrix 



This matnx is singular because the first two rows are identical. Furthemore, note that 
regardless of the amount of data added to the configuration, the kriging rnatrix remains 
singular. This leads us to Our next criterion. 
Criterion 4.3 For the covariance function cos(h) in RI, the simple kriging system will be 
singular if there are two sarnples among the data that are separated by a distance of 2kx. 

Figure 4.1 A rectangular configuration in P x T .  

Setting a = C 4 x 2  - xII, - ylI), b = C7(lt2 - t,l), c = CZ(O, O), and d = C7(0), the kriging 
matrix is 



Since the sum of rows one and four is the same as the sum of rows two and three, the 

matnx is singular. Furthemore, if one adds another smple at (x,, y,, t,), then we get the 

following 

C(h,s, 515) = C&s - XII, IYS - Y 11) + Cdt5 - til) 
C(ho, 53) = Cs(lxs - l ,  lys - Y i l )  + Cdltr - t:I) 
C(h35, ~35) = Cs(lxs - XII, lys -  YI^) + C7(lts - t11) 

C(h45, 545) = Cs(Ixs - X I I ,  IYS - YI  II + WIt5  - td) 

C(h,,, ~55) = Cs(O, 0) + c m  
and the rnatrix K increases an extra column/row (C(h15, r,,), C(h,, ro), C(h35, t35), C(h45, 

5 4 ,  ~ + d ) ~ .  Since 

C(hl5, rtr) + C(h45, 54) = C ( b ,  53) + C(h35, bs) 
the matrix K remains singular. This dernonstrates that when the model 4.17 is chosen as 
the covariance function, the SK system will be singular as long as there are four samples 

among the data whose configuration is 'rectangular' in R2xT. 

The aforementioned four data observations forming a 'rectangular' pattern represent a 

cornmon case in many types of data sets. For example, this can occur in the case of two 

monitoring stations measunng the concentration of pollutants at the same time instant, or 

occur in the case of measunng the reservoir pressure at two wells taken on the same day, 

etc.. 

Note that G(4, h) and C 7 ( ~ )  are not specified in this discussion, they can be any End 

of covariance functions in Rl and T. For example, C1(hx, b) may be the exponential 

function in R2 and Cft) may be the spherical model in T, and thus stnctly positive definite 

in R2 and T. However, the linear combination of these functions is not strictly positive 
definite in RZxT, as discussed in Section 4.1.2.1. This indicates that the purely zona1 

anisotropy structure has a high risk of singularity in the SK process. 

Analogous results are obtained for the general form in R3xT. Funhermore, the risk of 

singularity increases with the number of dimensions. Indeed since R ~ X T  is only a sub-case 

of R ~ x T ,  any singular case occumng in R ~ X T  will arise in R3xT. 



5.3 Spatiotemporal Ordinary Kriging (SR OK) 

Spatiotemporal ordinary kriging deals with a space-homogenous/time-stationary RF 

X(s, t), with a constant but unknown mean m. Either the covariance or vanogram fùnction 

The S/T OK estimator is given by 

N 

To ensure the unbiased condition, the weiçhts m u t  satis@ C hi=l. The spatiotemporal 
1-1 

ordinary knging system is given by 

f 5, 

The corresponding matrix form is 

where p denotes the vector of weights: PT = (XT, CL), @ denotes the vector on the ri_eht 

hand side of Equation 4.18: OT = (eT, l), K denotes the ordinary hging matrix 

where 1 denotes the vector with elements 1, and C is the covariance matnx mentioned in 

SK. Obviously, the vector of weiehts, P, is obtained from 
p = K-'@ (4 -30) 

The ordinary kriging variance can then be written as 

Note that the above kriging system is S/T point OK dealing with estimation at a 
position rather than a block in the space-time domain. S/T block OK can be derived from 

Equation 4.18 by changing point-to-point covariances C(huj,ruj) to point-to-block 

covariances C(hnuj,~nuj), thereby obtaining 



- 
where A, denotes the gnd block to be estirnated, and C(hAuj,tAuj) is the average value of 
the point-to-point covariances between the sample ~ ( s j ,  tj) and the discrete points within 

the grid block &. 

Equation 4.20 indicates that a SR'  OK system has a unique solution if and only if the 

OK matrix, K, is not singular. Furthemore, it is easy to show that the OK matrix is not 

singular if the covariance rnatrix is positive definite: 
I K I  = I c I o I o -  l T ~ ' 1 I  $ 0  

Therefore, analogous to the SK system, a strictly positive definite covariance function 

ensures the unique solution of the OK system. 

4.4 Spatiotemporal Universal Kriging (SR UK) 

Spatiotemporai universal knging provides an unbiased linear estimator of the space- 

nonhomogeneous/time-nonstationary RF X(s, t), which has the fom of Equation 1.10, 

provided that the form of the drift m(s, t) is given (Matheron, 1973; David, 1977; Journe1 

and Huijbregts, 1978). 

Suppose a space-nonhornogeneous /tirne-nonstationary RF X(s, t), as defined by 

Equation 1.10, has the following form of space-tirne trend m(s, t) 

where r= [[f,(s, t), ..., f,(s, t)] is a vector of known functions, and a = [a ,,..., a,] are 
u h o w n  coefficient S. 

For a set of N data {z(s,, t,), i=l, .. ., N), a UK estimator at unknown location (s,,t,) is 

To be unbiased, the weights must satis@ 



The S/T UK system cm be expressed as follows, 

with vectors kT = [A,, ..., hl, lT = [pl, ..., pJ, cUT = [C(hU~,  T ~ ~ ) ,  ..., C(hONi zUN)], FuT = 

[f,(s,,t,), ..., f,(s,,t,)], and the NxL matrix F = Fi,] = [?(si, t,)]. The corresponding matrix 

form is given by 

KP = O  

where f3 is the vector of weights: PT = (7CT. p3, O is the vector on the nght hand side of 

Equation 4.23: Or = (OT, FuT ), K is the universal hging matrix 

where C, as previousiy mentioned, is the covariance matnx. The vector of weights, P, is 
obtained by 

p = K-10 (4.25) 

The estimation variance is given by 
G&,, t,) = C(hOu, ru,) - C,,% + F : ~  (4.26) 

4.4.1 Linear Independence and Tensorial Invariance of Trend Models 

The trend form, Ir, includes a set of component functions which must satisfy the 
following two requirements (e.g., Matheron, 1971): (i) linear independence of the 
component functions f,(s, t), ..., f,(s, t) is required for the unique solution of the S/T UK 

system, provided that the covariance matnx C is positive definite; and (ii) tensorial 

invariance of the kriging system with regard to changing the ongin/unit of the coordinate 
system, is aiso required to ensure the unique solution. The requirement of tensorial 

invariance is necessary, in practice, due to the fact that the coordinates of neighborhoods 

are usually reset to enhance the stability of the solutions of the kriging system. 

It has been shown that the UK system has a unique solution if and ody if the 
component fùnctions f(s, t) are linearly independent on the set of n data (e.g., Joumel and 

Huijbregts, 1978), that is, if the n following linear relations 



L 

C h,t;(s,, t,) = O, 'd i=l to n, 

This implies that hl = O, V 1 = 1 to L. This linear independence requirement can be further 

subdivided ioto two aspects: (i) the requirement of linear independence for the component 

functions, that is, the following linear relation 

implies that )cl = 0, V 1 = 1 to L. (ii) the second requirement is more cornplicated, as there 

are cases where the configuration of the data alone can make the component functions 

linearly dependent on the set of n data (a detailed discussion of the second requirement 

will be given in Section 4.4.3). 

For most combinations of c~mponent functions, it is fairly easy to demonstrate whether 

or not the first requirement is satisfied. For example, the trend form f = [ l ,  cost, sint, 

cos2t, sin2t] is not linearly independent since we can find a non-zero set of values (1, 0, 0, - 
1, - 1) such that 1 + Oxcost + Oxcost - 1 xcos't- 1 xsin2t = 0. 

However, tensorial invariance is somewhat more difficult to either prove or refute. The 

tensorial invariance indicates the following relations, 

%su,t,) = W1"Jt") 
and 

Q&(s,, tu) = o'&(s',, tt,) 

where stu and t', denote the transformed space-time coordinates afier the origidunit has 
been changed, and L' and cf;, are the kriginç estimator and kriging variance under these 

transfomed coordinates. Even simple trend foms, such as f = [1, t2], may not be 

tensorially invariant. Since the UK process involves the change of the coordinate system's 

ongin in the neighborhood setting, the discussion of permissible trend models in terms of 

tensorial invariance is, in practice, quite significant. 

Three generai types of trend forms are considered in the present work: the traditional 

polynomiai functions, Fourier expressions, and combinations of the two. We will present 

the R'xT case as an exarnple but the same method cm be expanded to include other 

dimensions. 



The polynomial form of S/T trend, using the same notation as Equation 4.22, is given 

by 
f =[ ] ,%y ,  t, ..., &,fi, t q  (4.27) 

where 5 and 6 are orders in space and time, respectively. 

A general Fourier form is given by 

P = [1, sino,x.sino,y.sino,t. sino,x.sino,ycosoct, ..., 

coso,ix.coso,iy.sino,it, cosw,ix.coso,iycoso,it] (4.28) 

where a,, a, and o, are frequencies in x, y, and t, respectively, i denotes the order of the 

Fourier series. 

The third form includes both polynomial and Fourier terms. This mixed type c m  be 

generated from m(s, t)=m(s)m(t), where m(s) is the spatial trend and m(t) a temporal 

trend. For instance, a mixed s/t trend form couid be 

F = [1, sina$, cow,t, xsinqt, xcoso,t, ysino,t, ycosu,t, ...] (4.29) 

Since a trend f o n  with full polynornial tems or full Fourier ternis is linearly 

independent, then, a trend combining full polynomial and full Fourier terms is also linearly 

independent. 

Now we will develop some criteria for tensonal invariance. 

Criterion 4.4 A space-time trend of the form f meets the requirements for tensorial 

invariance if there exists a regular rnatrix P such that 

P= [f,(st, t'), ..., fL(s1. t')] = frP (4.30) 

where s' and t' denote linearly transformed coordinates in space and in time, and F denotes 

the transformed forrn of the space-time trend. 

To prove Cntenon 4.4, it is easy to show that Equation 4.30 amounts to the trend 

matnx under the transformed coordinate system F' = FP, this follows F< = P~F,. The 

kriging system under the transformed coordinate system is therefore given by 

Let p = Pp'. P is regular, therefore, Equation 4.3 1 becomes 
CX' - Fp = C, 

Obviously, the kriging system is invariant with respect to 1' and p, which means that the 

kriging estimator is also invariant. Since F,"p = F;PP-~~' = F ~ ~ ~ ' ,  the knging variance 
becomes 



o&(s,', t,') = C(h"", 5,") - C"It + F,'~CI 

Therefore, the kriging variance is aiso invariant. 

Based on this criterion, it is easy to show that a S/T trend fonn with full polynomial 

terms, f = [ I ,  x, y, t, ..., g, y:, &], is acceptable since there exists an upper tnangular 

matrix P with non-zero diagonal elements such that f = rP. Furthemore, it is easy to 

show that a polynomiai trend form with some higher-order terms rnissing meets the 

critenon for tensoriai invariance. 

For a trend form with full Fourier expression tems, the tems with different orders are 

not related with respect to linear transformation of coordinates, thus, 

[sino,ixi.sinoJy'.sinq,it', . . . , coso jxt.cosa,iy'.co wjt'] = [sino, ix.sino, iy.sino,it, 

..., coso,ix~cosoviycoso,it]P;, V i = 1, 2, ... 

Consequently, it is sufficient to evaluate the trend form of order 1 below: 

f = [sino,xmsinoyy.sino,t, ..., coso,aco~,y.cow,t] = [f,(s, t), .. ., f8(s, t)] 

To show the terms under the transformed coordinate system, one has 
O 

sino, x' = sin-(a,x + b,) = sinop.cosb, + coso,x.sinb, 
a, 

and 

coso, x' = cow,x.cosb, - sino,x.sinb, 
~ x b x  

where b, = 7 . Simiiarly, 

sino, t' = sino,taxb3 + cow,t.sinb,, corn, t' = coso,t.cosb,- sino,t.sinb3 
~ v b v  ~ b i  

with bl = g and b, = y-. One can show that f = rP with 

where 

and 

Since E, D and P are regular, this trend form is acceptable. 



Though trend forms with full polynornial terms and full Fourier terms are acceptable, 

this is not necessady the case with trend forms containing partial terms. The following 

critenon can be used to check for unacceptable trend forms. 

Criterion 4.5 A trend form f = [fl(s, t), .... fL(s. t)] is unacceptable, with respect to the 

tensorial invariance of the iuiging estimator/variance, if there exists a reylar  matrix P and 

a non-zero matnx Q such that 

f = [f,(sl, t'), ..., f,(s', t')] = fT + Qw (4.3 3) 

where wT = [fL+I(~i t). ..., fLlk(s1 t)] denotes a vector of additional terms with k > 0. 

To verify this cntenon, it is enough to show that the unbiased conditions under the 

transformed coordinate system are 

P T T  + WQT)c' = PT, + W,Q 

where the Nxk matnx W = [W,] = [fL,,(s,, t,)] and the vector W, = [fLTI(sU, tu), ..., fL+&, 

tU)lT. Consequently, 
F'X' = Fu + (PT-' FWQ - pT-l W ~ Q ~ X '  ) 

These unbiased conditions are not identical to that of Equation 4.32 since Q * 0, 

indicating that the knging estirnator is no longer invariant. 

Based on this cntenon one may easily determine the acceptabiiity of the trend fom. 

For example, f = 11, t'] is not acceptable, as is shown here, 

f = [ i ,  (gt + b.):] = [i, t2] (O1 :) + [O, 24bJt 

Moreover, it is not difficult to demonstrate that for any polynornial trend form with some 

lower-order tems missing, there always exists a regular P and a non-zero Q such that 

Equation 4.33 holds. 

Citerion 4.6 A polynornial trend form of order X meets the criteria for tensorial 

invariance if and only if all lower-order terms up to (5-1)/(;-1) are present. 

Therefore, the trend form f = [1, x, y, x2, y?, t2, xy, xt, yt] is unacceptable even though 

dl higher-order terms are present, while the trend form F = [l, x, y, t, xy] is acceptable. 

For a S/T trend form with Fourier terms, the following criterion is true due to the fact 

that each term under the transformed coordinate system is a linear combination of al1 

terms under the original coordinate system, 



Criterion 4.7 A Fourier trend form is acceptable with respect to tensorial invariance if and 

ody if al1 terms are present. 

In practice one may also consider a S i T  trend which is the product of a spatial trend 
m(s) and a temporal trend m(t) 

m(s, t) = m(s)m(t) 
Very ofien m(s) has a polynomial fom while m(t) has a Fourier form, indicating that the 

SR trend form can be given by 

f = [sino,t, coso,t, xsino,t, xcoso,t, ysino,t, ycoso,t, ...] 
Taking Criterion 4.6 and 4.7 into account, we c m  demonstrate that this type of SR 

trend fom is acceptable if and only if al1 Iower-order terms are present and higher-order 

tems are in pairs of sine and cosine functions. In other words, P = [sino,t, coso,t, xsino,t, 
xcoso,t, ysino,t, ycoso,t] is acceptable while F = [sinqt, coso,t, xsinm,t, xcoso,t, ysino,t] is 

not acceptable, since ycoso,t is rnissing. 

4.4.2 Practical S/T Trend Models 

The polynomial, Fourier, and mixed space-time forms described previously can 

adequately mode1 space-tirne trends in most practical cases (using lower orders). For 
polynomial trends, the space and time orders 5 and 5 up to 2 are sufficient in most cases. 
In the majonty of cases, a Fourier trend fom of order i set to 1 appears to be suscient. A 

larger order, either in time or in space, may generate a large number of terms which will 

encounter singularity more fiequently in the estimation processes. Nevertheless, one ma); 
select the orders that seem appropriate to the data set to be modeled. 

In practice, one may consider the following SIT trend models (see Table 4.1): 

1. Polynomial t e m s  both in space and in time, including: terms linear both in space and in 
time, linear in space and quadric in time, quadric in space and linear in time, and 

quadric both in space and in time. 

2. Polynomial terms in space and Fourier terms in time, such as: linear terms in space and 

Fourier tems in time, i.e. 

$ = (1, x, y, sint, cost, xsint, xcost, ysint, ycost) 

3. Fourier terms in space and polynomiai terms in time, such as: linear terms in time and 

Fourier tenns in space, i.e. 



Table 4.1 Practical space-tirne trend models. 
r 

temporal component (<) 
1 I I 1 spatial component 1 coutant 1 linear 1 quadric 1 hamonic 1 

linear (5  = 1) 
1 

(3 
constant (c = 0) 

p' 1 hamonic (5 = i) 1 N. A. 
I 7 1 r 

In addition, one may dso consider rnixed tems (polynornial plus Fourier terms) in 

(<= O) 

N. A. 

space or in tirne. Mixed spatial tenns (Iinear + Fourier) with linear temporal tems rnay be 

expressed by 

1* = (1 ,x,y,sinoxx,coço,x,sino,y,cosw,y,t, xt, yt, tsinop, tcosop, tsinoyy,tcoso,y) 

(c= 1) 

c= 1 

4.4.3 Singularity Analysis of S/T UK 

Singularity problems may anse in the solution of the UK system (e.g., Rouhani and 

Myers, 1990). Understanding of the potential sources of these problems can be helpfùi in 

determiring the criteria for selecting kriging neighborhoods, as well as the criteria for 

sampling locationhstancc design. 

(i= 2) 
r= 2 

The unique solution of the knging system (4.23) is determined by the hging  matrix 

(<= i) 

Y= i 

where F is the NxL trend matrix 

The singularity of the kriging matrix K depends on both the matrix C and the matnx F. 
The singularity of the covariance matrix is caused by the covariance function not being 

positive definite. In some cases, when the kriging matnx K is not singuiar, the covariance 



matnx C may be singular due to the impact of the trend matnx F. However, if the 

covariance matnx C is positive definite, then the deteminant of the kriging matrix can be 

represented as 

1K1= ICI 1 O - FTC-' FI =(-l)L ICI 1 FTC-l F 1 
indicating that the singularity of the kriging matnx K depends exclusively on the trend 

matnx F. In other words, in this case the kriging matnx is singular if and only if the trend 

matnx is singular. Here, the discussion will concentrate on the impact of trend models, 

assuming that the covariance matrix is positive definite. 

The trend matnx F will be singular when the number of data points, N, is less than the 

number of trend terms, L, since it is a N x L matnx. For the following discussion we will 

assume N 2 L. To unveil the impact of the space-time data contiguration on the singularity 

of the trend matnx, it is convenient to introduce the following definition of the space-time 

data configuration. 

p-Iocatt*on configuration: Given N available data observations with coordinates (s,, t,), 

..., (s,, t,) in RnxT, including L, samples located at s, in Rn, L2 samples at s2, ..., and Lm 
samples at s, s, t s2 t . ., t s, (when n = 2, for exarnple, s, denotes (x,, y,) and s, = s, if 

and only if x, = x, and y, = y, simultaneously) such that L, + L+...+ L, = N, the data is 

said to fom a p-location configuration in Rn xT. 

Every space-time data set forms a specific p-location configuration. For exarnple, 

measurements of reservoir pressure at five wells form a 5-location configuration, 

measurements of pollutant concentrations at eight locations form a &location 

configuration, etc.. 

It is convenient to recall the following information from linear algebra: a matrix F is 

singular if and only if the set of its colurnns (F,, Ft , ..., FL) is linearly dependent. Aiso, a 

N x L matrix F is singular if it has a basis of k columns {v,, vt, ..., v,) with k < L. 

To fùrther our discussion we will now introduce the matrix A 



where a, = &,*IL, a, is a value and 1, is a vector with L, elements 1, i = 1, ..., p; j = 1, ..., 
k. Now we propose the following result. 

Criterion 4.8 The matrix A represented in Equation 4.32 is singular if p < k. 

Since a basis of the rnatrix A in Equation 4.32 can be constructed by the following p 

c o ~ u ~ n s  VI, v:, . .-, v,: v,' = [IL,: 0: ..., O), v; = [OT, 1,: 0: ..., 0'1, ..., v,' = [O: ..., 0: 
IL;], A is singular when p < k. 

In the next section we will show that every S/T trend matrix has certain colurnns which 

construct the matnx expressed by Equation 4.32. The number of columns is detemtined by 

the trend rnodel chosen in the Sn UK system. 

4.4.3.1 

The 

Singularity Problems in R' xT 

SR trend with quadnc spatial polynomials can be represented by 

where the sum on the nght-hand side denotes the terms related to t. Consider the case 

where samples form a 2-location configuration as shown in Figure 4.2. L, denotes the 

number of sampies located at xi and L, the number of samples at x,,, with L, + L2 = N. 
Then, the first three columns of the trend matrix T are 

F, = u:,, q2JT 
FZ = (xi, xi, . . . y  x!, x:, x:, . . ., XJ = (xI*lil, x2* l:JT 

F3 = (x;, <, ..., x;, <, <y ..., <)' = (*.l:,, >Ci-i:JT 
which form a Nx3 matrix A 

According to Cntenon 4.8 the matrix A is singular, and so is the trend matrix F. 

Analogous to the above discussion, it is not difficult to show that the trend matrk is 

singular if the S/T trend model has 5-order spatial polynomia1s and the samples form a 5- 
location configuration, < = 3,4, .... The following is tme. 



Figure 4.2 A 2-location configuration in RI xT with LI = 4 and = 5 

Cn'ten'on 4.9 Given a S/T UK system in R1xT, if the trend mode1 has c-order spatial 

polynomiais, then the kriging matrix is singular when samples fcm a p-location 

configuration with p < 6. 

More generally, it is easy to show that the kriging matnx is singular when the number 

of purely spatial terrns is lager than p (the nurnber of spatial locations), implying that p s 
2 for Fourier terms of order I .  Similar results can be obtained for mixed trend forms. 

4.4.3.2 A general result in RnxT 

A generai form of a s/t trend m(s, t) can be expressed as follows 

where a denotes the nurnber of purely spatial terms. Assume that the samples form a p- 

location configuration, as previously defined. Then the first p + I columns of the trend 
matrix F are 

FI = (lf,, --.? *lEp)T 

F2= (f,(s,)*q,, * * * Y  f,(s,,)-llJ 



Due to cntenon 4.8 the matrix A is singular if p 5 a. 

C ' M o n  4.10 For a SR UK system in RnxT, its s/t trend c m  be expressed by Equation 

4.33 with a purely spatial terms, and the kriging matnx will be singular when 

samples form a p-location configuration with p 5 a. 

For polynomial trend forms, the goal is to determine a, the number of pureiy spatial 

terms. This is a combinatonal problem with repetitions and the value a is given by (e.g., 

Dimitrakopoulos, 1989) 

a= (n+Q!/(n!c!) - 1 (4.36) 

where n denotes spatial dimensions and 6 is the order of spatial polynomiais. Similady, 

when the spatial tems are Fourier terms with an order of i, then the value a is obtained by 

a = i2" (4.37) 

The above two cases encompass dl mixed trend forms. 

Remark 4.1 It is now possibie to generate guidelines to be applied in specific cases. 

Previous discussions of singuiarity problems in UK system's have concluded the 

following. In RlxT, a = (1+5)!/(1 !c!) - i = 5, which explains Critenon 4.9. In 

addition, a = l xz l=  2 for Fourier terms of order 1. For RZxT, a = (2+5)!/(2!5!) - 1 

and a = 4i. Table 4.2 sumrnanzes the most cornmon cases and provides guidelines 

that should be followed in constmcting neighborhoods while performing S / T  LK, 
and possibly used in monitoring and data collection schemes. 

Remark 4.2 We may also obtain analogous results based on p-instance configuration, that 

is, available data measured at p different tirne instances. Equation 4.33 can be 

rewritten as 



where the first surn on the right-hand side represents purely temporal terms. Then, 

analogous to Critenon 4.10, the kriging matnx is singular when samples fonn a p- 

tirne-instance configuration with p < a. 

Table 4.2 Neighborhood requirements for Sn trend models up to = 2 and i=l. 
1 1 1 I 

1 1 Sm trend 1 p-locations 1 p-locations 

4.5 Summary 

Spatiotemporal 

kriging techniques 

R1xT 

R1xT 

kriging techniques are comrnoniy derived as extensions of spatial 

because SR kriging systems have similar structures. However, the 

covariances for SR systems are obtained from special space-time covariance models. 

order-form 

= 2/2 

ili=ll 1 

SA' SK and OK require strictly positive definite space-time covariance models to avoid 

singularity. The cnteria to determine whether or not a space-time covariance model is 

positive definite is outlined in this chapter. In the case of joint distance models, it has been 

shown that the selection of exponentiai models or Gaussian models ensures the unique 

solution of kriging systems in the space-time domain. However, the selection of sphencal 

models ensures the unique solution only in R'XT and R'XT. An altemate model for 

obtaining a unique solution in R3 x T is given in Equation 4.14. 

Selected space-time trend forms rnust meet two requirements: linear independence and 

tensorial invariance. Criteria developed in this chapter dernonstrate that a polynomial trend 

form of SR order 5/5 meets the tensorial invariance requirement if and only if ail iower- 

(space) 

>2 

>2 

(tirne) 

>2 

>2 



order terms up to 6-1/54 are present. A Fourier trend form of order i is acceptable if and 

ody if al1 terms are present. Mixed trend forms must satisQ similar conditions. 

Finally, a method is denved which can be used to avoid singulanties in the S/T UK 

system caused by the form of the space-time trend rnodel. This formula indicates that in 

RnxT the kriging matnx is singular if samples in the neighborhood have a p-location 

configuration and the trend has a purely spatial trend terms with p 5 a. Similar results are 

denved for data configuration in time. These results contain the potential for further 

development in the interest of establishing guidelines with which to evaluate kriging 

neighborhoods with respect to trend models and sarnpling configurations. 



Chapter 5 

Condi tional Simulation of Spatiotemporal Processes 

5.1 Introduction 

Conditional simulations of spatiotemporal processes provide realizations, x(u), of a 

S/TRF, X(u), which share the same second-order statistics with the original, and 

reproduce the known information at data locations. Due to the distinct properties of the 

space-time domain, not every spatial simulation technique can be directly adapted to 

generate realizations of spatiotemporal processes. The turning band method is a typicai 

example of a method that is difficuit to impiement in the space-time domain. On the other 

hand, conditional simulation of spatiotemporal processes follows the sanie implementation 

procedure as that of spatial conditional simulation in order to generate the required 

second-order moments at simulated nodes and replicate the measured values at their 

locations. This allows conditional simulation techniques, whose implementation involves 

direct computation at simulated nodes, to be applicable to the space-time domain. This 

chapter will focus on the potential use of these techniques for conditional simulation of 

spatiotemporal processes. For convenience, spatiotemporal processes will be expressed by 

X(u) in this chapter rather than X(s, t) as in previous chapters, where u denotes a position 

in the space-time domain. Therefore spatial processes can also be expressed by X(u) since 

spatial processes are special subcases of spatiotemporal processes. Under this expression 

the available conditional simulation techniques of spatial processes can be easily 

introduced and expanded for potential applications to spatiotemporal processes without 

notation modifications. 

Current conditional simulation techniques may be classified into two categones: (i) 

two-sep techniques, where an unconditional simulation step is prerequisite to the 

implementation of the required simulation, and (ii) direct conditional techniques, that 

perforrn conditioning concurrently with simulation. Conditional simulation was initially 

developed as a two-step technique in 1974 (Joumel, 1974), and the domination of two- 

step techniques in conditional simulation applications continued until the introduction of 

LU decomposition simulations in 1987 (Davis, 1987a). 

Two-step techniques: Journel (1974) proposes that the conditional simulation of 

stationary processes can be obtauied using the following formula 



$Au) = x&) + [aW - X&)I 

where q,(u) denotes the required conditional simulation at the location u, x&u) denotes 

the kriged value at u deduced fiom the data, xs(u) is the unconditional simulation at u, and 

xZk(u) is the kriged value ar u deduced from the unconditionaily simulated values. The 

simulation procedure includes two steps. First, an unconditional simulation has to be 

computed at al1 grid and data locations. Then, the required conditional simulation is 

denved based on both the conditioning data and the unconditional simulation results. 

Direct conditional simulation techniques: Since conditional simulations require the 

same results as measured values at data locations, an effective technique of conditional 

simulations should perforrn the conditional simulation without redundant calculations at 

data locations. This consideration led to the development of direct conditional simulation 

techniques which implement conditioning sirnultaneously with simulation, so that extra 

unconditional simulation processes and redundant calculations at data locations are 

unnecessary. Essentially, there are three popular types of direct conditional simulation 

techniques: the LU decomposition aigorithm proposed by Davis (1 987a). the sequential 

simulation approaches, devised by Johnson (1987) and developed by Pllabert (1987) and 

Isaaks (1991), and the simulated anneaiing approaches developed by Farmer (1991) and 

Deutsch (1992). 

Direct techniques are favorable to spatiotemporal conditional simulations due to the 

fact that they perform simulation directly on the simulation nodes, and the only 

prerequisite to the implementation process is the availability of covariance calculations 

between the simulation nodes and data. This requirement can be easiiy satisfied through 

the space-time continuity charactenzation process. 

This chapter will show that al1 three of the above direct conditional simulation 

techniques are appropriate for spatiotemporal simulations. M e r  proving that the LU 

decomposition algonthm is equivalent to the sequential Gaussian simulation (SGS), a fast 

simulation technique, called the sequential group Gaussian simulation (SGGS), will be 

developed. This technique consists of a senes of algorithrns, the first of which is linked to 

sequential Gaussian simulation and the last of which is linked to the LU decomposition 

algorithm. In addition, the simulated annealhg technique which reproduces experimental 

variograns will be developed. This technique allows us to bypass covariance/variogram 

mode1 fitting in conditionai simulations. 



5.1.1 The LU Decomposition Algorithm 

Let the conditioning data set {x'~, i = 1, ..., N) be a realization of a Gaussian RF X(s) 
with a rnean vector m, and let C be the covariance matrix associated with conditioning 

data locations and grid nodes. The LU decornposition algorithm is based on the LU 

tnangular decomposition of the covariance matnx 

C = LU where L' = U 

Now consider the vector 

x = L w + m  

where x = (x',, ..., x',, x,, .... xK)', (xil, ..., x',} and (xl, ..., x,} respectively denote the 

conditioning data and the required conditional simulation, w is a vector of independently 

N(0, 1) distributed random numbers, N(0, 1) denotes the standard normal distribution. 

The expectation of x is given by 

E{x) = E{Lw + m] = m 

and the corresponding covariance matnx 

E((n - m)(x - m)') = E{Lww~L'} = L  ~ (ww'}U = LIU = LU = C 
where I is a unit matrix. Therefore, the vector x is a conditional simulation of X(u). 

Partition C as: 

where CDD is the covariance matrix between data locations, CG, is the covariance matrix 

between grid locations and data locations, and C, is the covariance matrix between gnd 

locations. This entails 

Partition w as: w = (wT, w;)', where wc is a vector of independently standard normally 

distributed random numbers, and w, is the conditioning vector such that 

~ D W D  = x ~ -  m~ (5.3) 
where xD and mD are vectors of the data and means, respectively. The required simulation 

is then obtained by 

= [LGDLDJxD- mo) + m G I  + LmwG 
Note that [LGDGD(x,-rn,)+mJ is the simple kriging vector 

conditioning values. 

(5.4) 
deduced from the 



5.1.1.1 Summary of the LU Decomposition Computations 

The computation of the LU decomposition algorithm includes (1) the computation of 

the lower triangular matrix L from a given covariance m a t h  C, (2) the computation of 
L& fiom the given b,, and (3) the cornputation of Equation 5.4. We are assuming that 

the random numbers and the covariance matrix have been previously computed. 

The pseudocode for the computation of the lower triangular matnx is presented as a 

procedure called LU-DECOMPOSITION(L, n+K) where L denotes a lower triangular matnx 
and n+K denotes the nurnber of columns of L. Note that the covariance matrix is 

symmetric, therefore it is convenient to build only the lower tnangular part of the 

covariance matrix. The input rnatrix L loads the lower tnangular part of the covariance 

matnx. The output is the required lower triangular matrix which is also loaded by L. The 
pseudocode is shown below. 

4 do LG = Llu/lqi 

5 forj =i+l ton+K 
6 do for k = j to n+K 
7 Lkj = Lkj-bLji 

8 return L 

The number of additions in LU-DECOMPOSITION, Ndd(LU, n+K), are calculated from 

Step 7: 

The number of multiplication's, NmuI(LU), are calculated from Step 2, 4, and 7: 
n+ffi+K n+K I 7 

NmI(LU, n+K) = C C (n+K-j+ 1 ) + C (n+K-i) = 6 ( n + ~ ) ~ - ( n + ~ ) ~ + $ n + ~ )  
1=1 ]=l+l 1- 1 

The pseudocode for the inverse of the lower triangular matrix, GD, is presented as a 

procedure called INVERSE s h o w  below. 



~ R S E ( L , , D ,  n) 
1 for i = 1 to n 

2 Lii = 1 .Rii 
3 for k = 1 to i-1 

4 do forj = k to i-1 

5 tmp = tmp + LijLjk 
6 Lü = -tmpxLii 
7 retum GD 

The number of additions required in WRSE can be calculated fiom Step 5: 

Nadd(INVE~s~, n) = CC (i-k) = h3-% 
i = L  k=l 6 6 

the number of multiplication's are calculated from Step 2, 5, and 6 :  

N,,(~NERsE, n) = ÇC (i-k) + C(i- 1) + n = $+$ +$ 
if I 

LI 

1 1 1  k=l 

Finally, the computation of Equation 5.4 consists of two parts: the operations involved 
in the first term, [L,,J&(x,- m,) + m,], and the operations involved in the second term, 

1 I 
L,w,. The first term requires ?K(n2+n) + Kn + (n+K) additions and +(n'in) + Kn 

I 

l 
multiplications, and the second term requires 7K(K+l) additions and multiplications. 

m 

Therefore, the total number of anthmetic operations of the LU decomposition algorith, 
Na(LUD) and NmuI(LUD), are as foliows. 

Here the notation O indicates that for a given function g(n), O(g(n)) represents the set 

of fiinctions such that 

O(g(n)) = (f(n): there exist positive constants ci, Q, and no such that 

O 5 clg(n) < Rn) a qg(n) for dl n 2 no) 



A function Rn) belongs to the set @(g(n)) if there exist positive constants cl and c2 such 

that the function f(n) can be 'sandwiched' between clg(n) and gg(n), for sufficiently large 

n (e.g., Cormen, Leiserson, and Rivest, 1990). 

In addition, the arnount of storage required in the LU decomposition algorithm is 

mainly determined by the size of the lower trianglar matrix L, which is O((n+K)2). 

The advantages of the LU decornposition algorithrn are that it is simple to implement, 

and performs conditioning simultaneously with simulation Aiso it is not lirnited to 

particular forms of covariance functions and automatically handles Msotropies. The main 

drawbacks of this method are the amount of memory required, which increases with the 

square of the number of grid nodes and conditioning data, and the computing time which 
increases with the cube of the number of gnd nodes and conditioning data. In practice, 

storage effectively limits this method to applications in at most two dimensions and with 

not more than several thousand grid nodes, which makes it inapplicable in the space-time 

domain. 

Several attempts have been made to reduce storage limitations and calculations. Alaben 

(1987) introduced a way to reduce memory requirements by using this technique in 

conjunction with a moving neighborhood. The main drawback of this method is that the 

discontinuities between contiguous neighborhoods could alter the covariance stmcture, 

thus introducing additional noise and banding. Davis (1987b) introduced a matrix 

polynomial approximation method as a further development of the LU decomposition 

approach. Although this approach simplified some calculations, it did not reduce memory 

requirements. In 1993, Dietrich suggested an aigorithm that under some specific 
conditions reduced the rnemory requirement from @(m: m$ to 0(2mtm,), where m, 

denotes the number of grid rows, rn? denotes the number of grid columns, and the total 

number of gnd nodes is m,-m2. In that same year Dowd and Sarac used a ring 

decomposition algorithrn which, similar to Dietrich's approach, took advantage of the 

block Toeplitz property of covariance matrices to reduce memory requirements and 

calculations. To date, despite these improvernents, problems concerning the amount of 

required storage and computing time still exist. 



5.1.2 The Sequential Simulation Techniques 

Based on the theorem of sequential simulation introduced by Johnson in 1987, Alabert 

(also in 1987) proposed the sequential indicator simulation (SIS) for categoncal variable 

simulation, and Issaks in 1 99 1, introduced the sequential Gaussian simulation (SGS) for 

continuous variable simulation. In 1992, Verly developed the joint sequential simulation 

(JSS) which expanded the sequential simulation technique From one Gaussian field to 

multiGaussian fields. 

The SIS is implemented through a sequential procedure by means of indicator kriging, 

and generates conditional probabilities of RF X(u) at K locations ui for L thresholds x, 

{Prob(X(ui ) < x, 1 (n)), i from 1 to K; 1 frorn 1 to L ) .  The main advantage of sequential 

indicator simulation is the possibility of controlling L spatial covariances insread of a single 

one, as in other simulation techniques. For details about SIS and its development see 

Nabert (1987) and Journe1 (1989). 

SGS has become the most extensively used algorithm for conditional simulations of 

continuous variables. SGS requires sampling from the following K-variant distribution 

postenor to the data set (n) (Isaaks, 1991): 

F(ul, ..., u,; x,, ..., x, 1 (n)) = P(X(u,) < x,, ..., X(u,) 5 x, 1 (n)) ( 5 . 5 )  
with a density equal to the product of the K single-variate posterior probability density 

hnctions 

f(x(ul), . .., x(uK) I (n)) = :(x(uK) 1 ( n + ~ -  1 )). . .f(x(ul) 1 (n)) (5.6)  
where K denotes the number of grid nodes, n denotes the number of data, and ui denotes 

the locations of gnd nodes. The postenor probability density functions are given by 

i(ui; 1 (n,)) = N(~(X(UJ 1 (n,)), var(x(ui) I (n,))) (5.7) 
where N(m(x(ui) 1 (n,)), var(x(ui) / (n,))) denotes the normal probability density function of 

x(u,) with the mean m(x(ui) 1 (n,)) and the variance var(x(ui) 1 (n,)), posterior to the 

information (n,) ((n,) = (n+i) indicates the data pius simulated values). Therefore the 

simulated value can be obtained by 

x ( ~ i  I (ni)) = E W J  I (nJJ + d-ki (5 -8) 
where the random number ei-N(0,l). The postenor mean and variance can be obtained 

From the following equation, 
E{x(ui) I (n,)) = mi + ~ , ~ ~ ; ~ ( x , - m , )  

and 



var(x(ui) I (n,)) = Cii - ci1c;:cIi 
Equation 5.8 cm be rewritten as follows, 

X(U~ 1 (nd) = in, + c~,c ;~(x , -~ , )  + d m &  

where m, and Cii are the pnor mean and variance of x(ui), m, and CI, denote respectively 

the pnor mean vector and covariance matnx of the information (n,), vector x, denotes the 

values of the information (n,), and the vector Ci, denotes the covariances between x(ui) 

(n,). 

The implementation of SGS proceeds as follows: 

1. define a path that visits each node of the gnd (K); 
2. at each node ui generate the simulated value by Equation 5.11; 

3. add the simulated value into the data set; 

4. proceed to the next node until al1 nodes are simulated. 

5.1.2.1 Summary of the SGS Computations 

The computation of SGS at the ith node dunng the sequentiai process involves the 

following : 

(1) The inverse of the lower triangular rnatrix of the covariance matrix, L;:, requires 

Nadd(LU,n+i- 1)+Nad(IMrE~s~,n+i- 1) additions and N,,,(LU,n+i- I )+Nrnu1(il.NE~s~, 

n+i- 1) multiplications, obtaining 
1 1 1 1 1 

# of additions: 6(n+i- I ) ~  - l?(n+i- 1 )* + l-$n+i- 1) + 6(n+i- 1)3 - @+i- 1) - 

1 7 1 I 1 
# of multiplications: 6(n+i- l)3-(n+i- l)?+j$n+i- l)+@+i- 1)) + ;SIn+i- - 1)* + s n + i -  1) 

(2) since ~ ~ ~ c ~ : ( x ~ r n , )  = (~;:~,Jo;~(x,-rn,)) and c,,c;:c,, = (L;:c,,)'(L;~c,,), the 
computations of t hese two matrix products include the cornputations of (L&) and 

( x ) ) ,  requiring (n+i)(n+i- 1)+2(n+i- 1) additions and (n+i)(n+i- 1) 

multiplications, plus another (n+i- 1) additions and multiplications. The total 

computation at this step requires (n+i- 1)2 + 4(n+i- 1) additions and (n+i-1)2 +2(n+i-1) 

multiplications. 



1 1 
Thus, the total computation at the ith node includes approximately $r~+i-I)~-I(n+i-I)~ 

11 1 1 11 +4T2(n+i- 1) additions and $n+i- l)3+;(n+i- CI 1)~+2$n+i- 1) multiplications. The overall 

computation of SGS cari be approximated as follows: 

1 1 1 1  
-~2(n+K)~(n+K- 1 )*-n2(n- 1 )']+S(n+K- l ) ( n + ~ ) ( ~ ( n + ~ ) -  1 )-n(n- 1 )(Zn- 1 j]+7-K(n+K) 12 

= @((n+K)") 

SGS is much slower than the LU decomposition algorithm. This is because the number 

of computations required by SGS quadruple relative to the number of gnd nodes and 

conditioning data. Nso, the storage requirement increases with the square of the number 

of grid nodes and conditioning data, this makes the SGS algonthm impractical. In practice, 

the following so-cailed 'screen-effect approximation' (SEA) has to be used in the SGS 
irnplementation. 

5.1.2.2 SGS Using the Screen-Eifect Approximation 

Screen-effect approximation: the probability density hnction at a node posterior to al1 
information can be approxirnated by that posterior to the information closest to this node: 

'(x(ui) I (n,)) '(x(ui) I (M,)) (5.12) 
where (M,) denotes the information within a neiçhborhood of ui, (M,) (n,). 

Based on the SEA, the overall conditional density function is approximated by 

The implementation of SGS using the SEA is, in terms of the steps defined beiow, 



1. define a path, 

2. define a neighborhood for the node in question 

3. calculate the mean and variance posterior to the information in this neighborhood 

4. generate a value by Equation 5.14 

5. add the simulated value into the data set 

6. proceed to the next node and repeat the procedure until al1 nodes have been visited. 

5.1.2.3 Surnmary of the SGS Computations Using the SEA 

Define the upper bound of samples in a neighborhood as v ,  and assume that v is 

adopted as the neighborhood size at most nodes. In practice, v=10-50 on most occasions. 

There are two pans to the computation of SGS using the SEA at the ith node: (a) the 

operations for neighborhood searching, and (b) the operations involved in Equation 5.14. 

Assuming that the optimal neighborhood searching algorithm is adopted in R ~ X T  using 

super blocks, then the average number of distance calculations involved in neighborhood 

searching at each node is approxirnately av, and each distance caiculation requires 2 

additions and 3 multiplications, where a is a positive number and usually a<v. The total 

number of additions involved in neighborhood searching is ap proximately X a v ,  and the 

total number of multiplications is approximately 3Kav. 

Analogous to the discussion in Section 5.1.2.1, the computations involved in Equation 
1 1  11  I l  1 1 

5.14 require ~ ( 7 ~ - 7 ~ + 4 7 + 3 )  additions and I C ( 3 - ' + r ; v 2 + 2 ~ + 2 )  multiplications. The - 13 3 - 
overall number of anthmetic operations can then be estimated as follows. 

1 1  11 
Nadd(SGS with SEA) t K ( j v 3 - p 2 + 4 ~ + 3 )  + Xav - 

1 1  = K ( + - y 2  -P ~KCLV) 3 2 

= 0(Kv3) 
1 1  11 

Nmui(SGS with SEA) = K ( 7 v 3 + 7 v 2 + 2 ~ + 2 )  + X a v  - 
1 I 

a K(p+p2 + Xav)  

= O(KV~) 



SGS using the SEA is much faster than the LU decomposition algorithm, since the 

number of arithrnetic operations is greatly reduced fiom @((n+K)') to O(Kv'), in practice 

K is usually over one thousand while v, as has been mentioned, is usually 10-50. 

5.2 Equivalence of the LU Decomposition Algorithm and SGS 

Though the LU decomposition algorithm and SGS were each developed independently 
and each foilow different implernentation processes, this section will dernonstrate their 
equivalence in tems of simulation results. 

Let the lower triangular matrix L = (Lij), Equation 5.1 can be rewritten as 

The required conditional simulation (xi , i = 1 ,. .., K )  can be given by 

xi = &+i ,.w, + ... + L+i,i -Wn+i+mi, i = 1, ..., K. 

If we let vector LiIi = (L,,+i ,, .. ., L+, and wiT = (w,, . . . ,w~+~- , ) ,  the above formula can 

then be rewritten as follows, 

xi = li:wi+mi + k+i ,i .w,+~, i = 1, ..., K. (5.15) 
To denve the first term Li,'wi, consider the covariance matnx associated with 

the value xi plus the information (n,). This matnx is cornposed of the covariance matnx 
CI, associated with the information (n,), the pnor variance Cii, and Ci,, the covariance 
vector between xi and (n,), therefore 

Li;wi can then be obtained as follows, 
Li;wi = Cil L';: wi 



= Cii L','L,~L,,w~ 
= c i1c ; ;~ , ,w i  

Since b I w i  forms the values of the information (n,): Ll1wi = x, - ml, v w i  + mi is but the 

posterior mean, 
Vwi + mi = c&(x, - ml) +mi 

2 
As for the element k+i ,,, h m  Cii = Li&, + LTi "+i and Li,' = C~,C,:L~,, one obtains 

2 L+i ,+i = Cii - LiIZiI = Cii - c ~ ~ c , ~ c ~ ~  
Equation 5.15 can then be rewritten as follows, 

xi = mi + ~ ~ ~ ~ ; ~ ( x , - r n , )  + d-awi 

This is equivalent to Equation 5.1 1. 

In practice SGS using the SEA is highly preferable to the LU decomposition aigorithm 

since the computation is greatly reduced from @((n+K)3) to 0(Kv3).  More importantly, 

the storage required is reduced from O(K2) to O(v2), where v is the upper bound of 

samples in a neighborhood, as has been mentioned previously. This indicates that the 

storage problem which exists in the LU decomposition al_eorithrn does not exist in SGS 

using the SEA. For convenience, SGS using the SEA will be referred to simply as SGS in 

ail further discussion. 

5.3 Sequential Group Gaussian Simulation 

5.3.1 Problem Definition 

The implementation of SGS is entirely based on the computation of the kriging system. 

As Chapter 4 indicates, the spatiotemporal kriging system is quite simiiar to the spatial 

kriging system, the difference being that the covariances are obtained by space-tirne 

covariance models. This implies that SGS is applicable to conditional simulations of 

spatiotemporal processes. 

The implementation of SGS is actually a node-by-node sequential process, implying 

that neighborhood searching and a kriging operation are required at each node. In 
practice, the simulation grid is usually large and dense, which usually leads to overlapping 

of neighborhoods among closest nodes (see Figure 5.1). Therefore, it is rarional to 

consider shanng neighborhood searching and knging operations among closest nodes. 



The sequential group Gaussian simulation (SGGS), proposed in this section, takes 

advantage of neighborhood sharing for closest nodes. halogous to SGS, SGGS is also a 

sequentiai process. However, this sequential process is performed from one group of 

closest nodes to the next group rather than node by node, and simulated values of each 

group are generated simultaneously. 

I) - data location 

@ - nods to be rimulatad 

Figure 5.1 Four neighborhoods of four closest nodes are overlapped. 

5.3.2 Theory 

Cluster the K nodes into k groups such that the nodes in each group are close to each 

other: (KI) = (u ,,..., u,,), ..., (K,) = (u,,, +..., u,). K, + ... + K, = K. Analogous to SGS 

which partitions the posterior probability density into K posterior probability densities for 

K nodes, we can decompose the posterior probability density into k posterior probability 

densities for k groups of K nodes, 

f ~ u , )  ,...l X(UJ 1 (n)) = ~((KJ 1 ( n + ~ - ~ ~ ) ) . * . f ( w , )  1 (n)) (5.16) 
If we denote the neighborhood of the ith group (Y) by (nn,), i, I = 1 to K, then Equation 

5.18 can be approximated with the SEA as follows, 

i(x(ul)l.--l x(uK) 1 (n)) zf(mk) 1 (M~)).--:(F,) 1 (ml)) (5.17) 

The posterior probabiiity density of the ith group, {[(K.,) 1 (mi)], is determined by the 

following posterior mean vector and posterior covariance matrix, 
E((Y) 1 (MI)) = mi + Ci&i(rj-mJ (5.18) 

where vector mi and m, respectively denote the original means of (Y) and of (nn,); vector 
x, denotes the information in the neighborhood, Ci denotes the inverse of the pnor 



covariance matrix of (M,), Cii denotes the covariance matrix of (Y), and vector Ci:=CIi 
denotes the prior covariances between (K.,) and (nn,). Let Cii.I=Lii.,Lii*;, where Li,, is the 

lower trianguiar rnatrix of Ci,.,, then the simulated values of the ith group can be obtained 

where the vector of random numbers ei - N(0, i). 

For convenience, the number of nodes in most groups can be identically designed, that 

is, K, = ... = K, = K and K = kx, the proposed algorithm can then be defined by the K- 

SGGS. Notice that when K = 1 ,  the I-SGGS is but SGS; and when K = K, the K-SGGS is 
exactly equivalent to the LU decomposition algonthm. Therefore, SGGS is a senes of 

sequential Gaussian simulation aigorithms associated with different group sizes which 

progresses fiom SGS to the LU decomposition algorithm. 

5.3.3 Summary of the SGGS Computations 

Recall that the upper bound v is assumed to be the neighborhood size for most groups. 

Corresponding to the discussion of SGS using the SEA, the computations of SGGS for 

each group can be summarized as follows 

the implementation of neighborhood searching discussed in Section 5.1 2 . 3 ,  requires 

(2p-1)av additions and (P+l)av multiplications, where a and P are constants as 

mentioned in Section 5.1.2.3. 
1 I 1 1  I l  

the computation of L;: for a given C,, requires y3-l~'+7 additions and p3-s;v2 - - 
1 1  

+Y multiplications; 12 
the computation of two matrix products, CiiC;;(x,-m,) = (L;~C,,)'(~;:(x~-rn~)) and Cii- 

t 1 
(L&)'(L;; CJ, requires T(V+ 1 )(c+ I )+Kv+K~v+K~+v additions and -(v+ l ) ( ~ +  1 )+ 

I 

KV+K?V multiplications. 
1 1  1 

the cornputation of Li,, from a given Ci,, requires N ~ ~ ~ ( L u , K ) ~ ~ - ~ ~ ~ + I ~  
w 

I 7 
additions and NmUI(LU, K) = p3-~ '+3  multiplications. 

1 
the computation of the matnx product Lii.,ei requires p ( ~ + l )  additions and 

multiplications. 
the addition of (mi + CiiC;:(x,-m,)) and (LiieIei) requires K additions. 



The total number of computations in SGGS can be estimated as follows. 

K 
where - indicates the number of groups. Since 

K 

and 

K K 
one may estimate Nadd(SGGS) and N,,@GGS) by aadd(~+v)~ and G~IK(K+V)~,  where 

K 

1 1 1  1 
the constants a.dd and are between 6 and ;. 6<apdd,c(,ul<F Furthemore, assuming 

that the cost to perform an addition is ha and the cost of an multiplication is &.[, the 
total cost of al1 total anthmetic operations can be estimated as the following, 

K K 
Ntotal(SGGS) =Nadd(SGGS) + Nrnul(S~S) ( a a d d a a & ' % u i k u i v ~ ' ~ ) ~ =  b q K + ~ l 3  K 

Note that when ~ = 1 ,  the computation of SGGS is O(K(~+V)~)=@(KV~). This is 
consistent with the computation of SGS since the 1-SGGS is but SGS. When p K ,  



implying v=n, the computation is @((n+K)'), this is consistent with the computation of the 

LU decomposition algorithm since the K-SGGS is but the LU decûmposition algorithm. 

5.3.4 Optimal SGGS in Terms of Croup Size 

Equation 5.20 indicates that the computing time is determined by the upper bound v 

and the group size K. In practice, it is interesting to discuss the optimal group size K for a 
given upper bound v, with regard to computations. The derivative of Ntw(SGGS) is given 

Formula 5.21 indicates that the computing time decreases when the group size, K. 

increases fiom 1 to 0 .5 ,  then, the computing time increases when K increases afker 0 3 .  

Therefore, the optimal SGGS is the O. SV-SGGS. 

If we substitute K with O.Sv, the arithmetic operations of the 0.5~-SGGS can be 

approximated as follows, 

2K 1 3 1 1  3 1  
NmUI(O. 5 V-S GGS) s + p3 + p3 + 2' -pz] 

It is interesting to compare the 0.5~-SGGS and SGS in terms of arithmetical 

operations. The ratio of additions of these two algonthms is approximated by 

and the ratio of multiplications is approximated by 
41 5 P . 2  L-. 



Figure 5.2 shows these ratios vs. the neighborhood size v .  The ratio of additions is very 
similar to that of multiplications, and both indicate that the larger the neighborhood size 

chosen in the sequential simulation process, the better the 0.5~-SGGS as opposed to SGS. 

The 0.5~-SGGS is rouçhly 2 times faster than SGS if v = 10, and roughly 10 times faster 

than SGS when v reaches 50. 

Note that the SEA causes a smailer error in the 05-SGGS than in SGS. As wiIl be 

mentioned later in Section 5.4, the larger neighborhood size, the smaller the error caused 

by the SEA. In SGS, the neighborhood size is not more that v; while in SGGS, the 

neighborhood size of the first node in a group is v ,  but the size of the second node 

becomes v+l, then v+2, ..., and the last one is V+K- I .  This indicates that the 0.5~-SGGS 

is preferable to SGS not oniy in computing time, but also in precision . 

Figure 5.2 The arithmetic operation ratios between the 

neighborhood size. 
and SGS VS. 



5.3.5 Implementation Process of SGGS 

The implementation of SGGS proceeds as follows: 

1. Define an extemal path that visits each group in the gnd, and an intemal path that visits 

al1 nodes in each group; 

2. Find a neighborhood for the current group to be simulated; 

3. Calculate the posterior mean vector and the postenor covariance matrix of the current 

group by Equation 5.1 8 and 5.19; 

4. Generate the simuiated values of the current group by Equation 5.20; 

5. Add the simulated values of the current group into the data set; 

6. Proceeds to the next group until al1 groups are sirnulated. 

An important characteristic of SGGS is that it uses two paths to visit al1 gnd nodes: an 

intemal path and an extemal path. A sequential path in the sequential simulation 

aigorithms has the great advantage of saving time, since the configuration of simuiated 

values selected in the neighborhood cm be fixed so that no searching time is required, and 

its covariance matrix will be invariant for most nodes. However, a sequential path 

generates anisotropic anifacts, and this leads to a random path solution in SGS, at the cost 

of computing time (e.g., Isaaks, 199 1). 

Fominately, a proper intemal path rnay provide a way to successfully reduce the 

amount of artifacts caused by a sequential external path. One option is the inverse- 

direction path, iilustrated by Figure 5.3. Also, one may choose several random paths for 

the intemal path design to reduce the number of anifacts. For exarnple, we design 10 

unique random paths. Dunng the sequential process the intemal path of each group is 

randody chosen from these 10 paths. The reduction of artifacts is based on both the 

group size and the number of random paths. The larger the group size and the more 

random paths, the greater the reduction of artifacts. 



l 1 I 1 t 1 

extemal palh --- 
Figure 5.3 An inverse-direction combination of an interna1 path and an extemal path. 

5.3.6 The SEA Loss 

The computing time of the 0.5~-SGGS increases quadrically with the neighborhood 

size, indicating that a smaller neighborhood size is always preferred in terms of computing 

tirne. On the other hand, however, a smaller neighborhood size will cause a larger 

precision loss, therefore a larger neighborhood size is favorable in accounting for precision 

requirement. Therefore, a good sequential simulation should balance the precision 

requirement and the computing time. To measure the precision loss caused by the S E 4  
the following definition is useful. 

Definition 5.1 the SEA loss at a node ui can be defined as the mean square difference 

between the simulated value generated by the information in the neighborhood and the 

simulated value generated by al1 information, 

In order to simplify Equation 5.22, we first introduce the following property of 

posterior covariances. 



Piope@ 5.1. The covariance of z(u~) and z(uj) posterior to (k), Cij-k = CW[Z(U~), z(uj) 1 
(k)], equals to zero if (i) one of z(ui), z(uj) has no correlation with the other and with the 

information (k), or (ii) z(ui)c(k) or z(uj)c(k). 

(i) Suppose z(ui) has no correlation with z(uj) and with the information (k), then 

Cij = C, = O 

this leads to 
cg, = cij - Ckc&ckj = 0 - oC&ckj = 0 

is but a raw of the covariance matrix of (k), C,, which entails 

this is a raw with al1 zeros except the ith element being one. Consequently, 

CikC&, = Ci, 

then the post enor covariance 
C,., = Ci, - C,CdCy = O 

Therefore the above property is true. 

The SEA loss cm be fùnher developed as follows, 

where CI,, denotes a vector of postenor covariances. Note that ( ~ , ) c ( n , ) ,  according to 

Property 5.1, CI,, = O. This entails 

EI [ E ( x ( 3  1 (MI) E (x(ui) 1 (Q} 12} = var[x(ui) I (MJ] - va[x(ui) I (fi1)] (5-23 ) 
and 



+(dvar(x(ui> 1 ( n n , ) ) - m 1 2 1  
= var[x(ui) I (MI)]( 1 . ~ - & r ( x ( q )  1 (n,))/var[x(u~ I (M,)] ) (5.24) 

Equation 5.24 indicates that the SEA loss is only determined by two posterior variances 

var[x(ui) 1 (M,)] and var[x(ui) 1 (II,)]. Furthemore the SEA loss has the following 

properties: 

1. The SEA loss is positive: 

P[W I (nn,),(n,)l ' 0 
2. The SEA loss is rnonotonic decreasing with regard to increasing data in the 

neighborhood: 

~ [ ~ ( u i )  1 (nI)1(nI)l = 0 
3 .  The SEA loss is rnonotonic increasing with regard to increasing overall information: 

It might be more meaningfùl to consider the following relative SEA loss: 

straightfonvard: decreasing of the RSEA loss is directly associated with decreasing of the 

difference between two posterior variances, and the RSEA loss reaches zero when these 



posterior variances become identical. An advantage of the RSEA loss is that it is only 

affected by the gnd, the range, and the type of the covariance model, without any effect 

fiom the sill. 

Mer the definition of the RSEA loss, our next concem is to assess it in different grid 

designs using different covariance models. 

5.3.6.1 Assessment of the RSEA loss 

This section concentrates on the assessrnent of the upper bound of the SEA loss for a 

given grid ratio Va (a is the range and 1 is the lag of the grid) and a given covariance 

rnodel. Two popular covariance models are discussed: the spherical model and exponential 

model. The discussion of the Gaussian model will be mentioned at the end of this section, 

as a counterpart example. 

The RSEA loss for a given grid ratio reaches its upper bound when var[x(u,) 1 (nn,)] 

reaches its lower bound and var[x(u,) 1 (nl)] reaches its upper bound simultaneously. The 

lower bound of var[x(ui) 1 (nn,)] is given by 

var[x(u,) 1 (n,)] = var[x(ui) 1 (nJ] = var[x(uJ 1 (a)] 
"1 

and the upper bound of var[x(ui) 1 (n,)] is given by 

rnax var[*(",) 1 (ml)] = #TI+, var[x[ui) 1 (nn,)] = var[x(ui) 1 ( 1 )] 
ml 

where var[x(ui) 1 (a)] denotes the variance posterior to the information on the whole grid 

and var[x(ui) 1 (l)] denotes the variance posterior to the closest datum. One may get 

R[x(ui) I (~,) , (n , ) ]  S 1 .o-&r(x(ui) I (m))/var[x(ui) I ( 1 )] 

var[x(ui) 1 (a)] converges very fast for a çiven grid design, that is, for a given grid ratio, 

var[x(ui) I (m) l r  var[x(ui) I (n,)] 
where (n,) is a neighborhood of considerably small size (n,<50). This can be demonstrated 

by the following configuration design: var[x(ui) / (n,)] is cdculated sequentially by 

considenng the 8 closest data locations around ui (see Figure 5.4(a)), then the 24 closest 

locations (see Figure 5.4@)), then the 48 closest locations (see Figure 5.4(c)), etc.. The 

results of  var[x(ui) 1 (n,)] for both the spherical rnodel and exponential model are shown in 
Figure 5.5 and 5.6, indicating that var[x(u,) 1 (a)]  cm be approxirnated sufficiently by 

considering only 48 closest locations around ui, 

var[x(ui) 1 ( 4 1  = var[x(ui) 1 (48)] 



On the other hand, var[x(u,) 1 (l)] is given by 

var[x(q) 1 ( 1 )] = C(O) - C(h)2/C(O) 

where h denotes the distance of the closest daturn. Figure 5.7 and 5.8 show the lower 

bounds of the RSEA loss of the exponential model and spherical model with the grid ratio 

changing from 0.001 to 0.5, implying (i) the upper bound of the RSEA loss is decreasing 

when the grid ratio is increasing, and (ii) the upper bound is between 0.0 and 0.42. 

5.3.6.2 Optimal size of neighborhood with required RSEA loss 

The RSEA loss of both the exponential model and the spherical model is, in practice, 

much smaller than its upper bound, this makes SGGS appropnate and reliable. To show 

practical variations of the RSEA loss, the data configuration and the neighborhood are 

designed as follows. Randomly pick up  120 nodes from a 2 1 x? 1 grid around the node to 

be sirnulated, these nodes constmct the configuration of the information, thus the 
simulated nodes 1 

simulated node ratio = nodes q. Partition the area into 4 sub-areas, and select 

the ciosest node in each sub-area to constnict a 4-location neighborhood, then calculate 

the RSEA ioss. Next choose the two closest nodes in each sub-area to constmct an 8- 

location neighborhood, again calculate the RSEA loss. As the neighborhood is continually 

extended, the variation of the RSEA loss is apparent. This process can be repeated many 

times to get a reliable evaiuation of the RSEA loss. 

Figure 5.9 shows the results of the RSEA loss for the exponential model with Va =0.01, 

0.05, and 0.1 with 50 repetitions. Based on these results, the optimal size of the 

neighborhood of the exponential model with two RSEA ioss requirements (5% and 1%) is 
shown in Table 5.1. In general the optimal size decreases when the grid ratio increases. 

When the grid ratio larger than O. 1, under the 5% RSEA loss requirement it is enough to 

pick up oniy 1 datum in each sub-area to constmct a 4 point data neighborhood. 

Table 5.1 Optimal size of the neighborhoud for the exponential rnodel. 

grid ratio (Va) 

50.0 1 

> 0.01 & S0.I 

optimal sire 

(the RSEA loss < 5%) 

2x4 

2x4 

optimal size 

(the RSEA loss < 1%) 

5 x 4  

4x4 



The WEA loss does not vary monotonically for the sphencal model, this is 
demonstrated in Figure 5.10, 5.1 1, and 5.12. It is interesting to note that the RSEA loss is 

very small and roughly invariant when the gnd ratio is not more than 0.05, but it increases 

a considerable amount when the grid ratio is between 0.07 and 0.25, then it decreases 

rapidly when the grid ratio is over 0.25. The optimal size of the neighborhood with respect 

to different gnd radios is given in Table 5.2. 

Table 5.2 &tinta1 size of the nei~hborhood for the s~hericai modeI. 

gnd ratio (Va) 

10.07 

Both the exponential and the spherical mode1 demonstrate the presence of the screen 

effect. This effect is suficient that a small neighborhood can fulfill the 5% RSEA loss 

requirement, thereby ensunng the success of the SGGS implementation. 

> 0.07 & 50.17 

Unfortunately, the success of SGGS for the exponential and sphencal models does not 

indicate that it is applicable for any covariance rnodel, and a counterpart example is the 

Gaussian model. Figure 5.13 shows the RSEA loss of the Gaussian model with the grid 

ratio = 0.15, 0.20, and 0.25, indicating that the RSEA loss increases when the grid ratio 

decreases. When the grid ratio is less than 0.25, the RSEA loss is fairly high (>> 5%), this 

infers that SGGS is much less effective for the Gaussian model in most applications. 

optimal size 

(the RSEA loss < 5%) 

2x4 

optimal size 

(the RSEA loss c 1%) 

6x4 

5x4 not avaiiable 
1 



Figure 5.4 Four neighborhoods with regular grid: 8, 24, 48, and 80. 
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Figure 5.5  Convergence of posterior variance of the spherical model, the grid ratio = 0.1. 
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Figure 5.6 Convergence of postenor variance of the exponential model, the grid ratio=O. 1 .  
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Figure 5.7 The upper bound of the RSEA loss of the exponential mode1 with 

diflerent grid ratios and relative closest distances (=distandgrid-ratio). 
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Figure 5.8 Upper bound of the RSEA loss of the spherical mode1 with different grid 

ratios and relative closest distances (=distance/gnd-ratio). 
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Figure 5.9 The RSEA loss of exponential model for grid ratio=0.0 1, 0.05, 0.10. 

120 ' reai' data are randomly distnbuted in a grid of 2 1 ~2 1. 



grid ntio = 0.01 

0.08 

0.07 

( 0.05 
W g O-" 

" I O  20 30 40 50 6û 70 80 

number of data In the neighôorhocxi 

grid ntio = 0.05 

0.07 

number of data in the neighbohood 

0.1 
Sph mode1 

0.09 grid ratio = 0.07 
0.08 , o., - l 

a 0.05 
W g O." 

0.03 

0.02 

0.01 
n 

numkr of data in the neighbwhood 

Figure 5.10 The RSEA loss of sphencal mode1 for grid ratio=0.0 1, 0.05, 0.07. 

120 'reai' data are randomiy distributed in a g i d  of 2 1 x 2  1 .  
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Figure 5 .1  1 The RSEA loss of sphencal mode1 for grid ratio=O. 10, 0.12, 0.15. 

120 'real' data are randody distnbuted in a grid of 2 1 x 2  1. 
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Figure 5.12 The RSEA loss of sphericai mode1 for grid ratio=0.20, 0.25, 0.30. 

120 'real' data are randomly distributed in a gnd of 2 1 x 2  1. 
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Figure 5.13 The RSEA loss of Gaussian mode1 for grid ratio=O. 15, 0.20, 0.25. 

120 'real' data are randomiy distributed in a grid of 2 1 x 2  1. 



5.4 The Simulated Annealing Technique Honoring Experimental 
Variograms 

5.4.1 Ptoblem Definition 

Covariance/variograrn model fitting is an important step for al1 current simulation 

techniques. The fitted covanance/variograrn model is assumed to characterize the 

properties of the second-order moment presented in the expenmental variograms of the 

conditioning data. In practice, covariance/variogram model fitting is a rime-consurning 

process which involves a great nurnber of modifications, such as anisotropy recognition, 

nested structure identification, model type selection, and the adjustment of sills and 

ranges. Moreover, the mode1 candidates must be constrained by the positive definit e 

requirement, regardless of whether this hinders their ability to properly characterize the 

space-tirne continuity . 

Another negative impact of covariance/variograrn mode1 fitting is that, for natural 

processes, the variations of the second-order moment are oflen anificially smoothed. This 

variation reduction of the second-order moment more or less simplifies the nature of 

space-time continuity. Therefore, it is argued that instead of fitting experimentai 

covariances/variograrns with a model, one would consider generating simulations which 

directly reproduce experimental covariances/variograms. The simulated images with 
reproduced experimental covariances/variograms mirnic more faitffilly the nature of 

physical processes than those generated by the algorithms commemorating 

covariance/variogram models. 

Though this idea rnight be attractive, it is impractical for rnost simulation techniques, 

due to the requirement of positive covariance matrices. Fonunately, the deveiopment of 

the simulated annealing method provides a means to implement the experimentai 

covariance/variogram reproduction in simulated images. 

The simulated annealing method generates the required simulations through an 
objective function design. Given an initial image, the anneaiing method swaps values at 

different nodes to rninimize the objective fûnction, instead of regenerating values at nodes 



directed by specific mies, as do most simulation techniques. Therefore, the requirement of 

positive covariance matrices becomes unnecessary. 

5.4.2 Simulated Annealing Techniques 

In the 'annealing' approach to stochastic simulation there is no explicit random function 

rnodel. Rather, the creation of a simulated realization is fonnulated as an optimization 

probiem to be solved with a stochastic relaxation or 'annealing' technique. An objective 

function is needed to implement some practical requirements of the desired simulation, 

which is a measure of the difference between the desired spatial characteristics and those 

of the candidate realization. The essential feature of amealing methods is to iteratively 

perturb the candidate realization and then to use a decision rule to accept or reject the 

perturbation. The decision rule is based on how much the perturbation has brought the 

candidate realization closer to having the desired properties. One possible decision rule is 

based on an analogy with the metallurgical process of amealing, hence the name simulated 

amealing (e.g., Kirkpatnck, et al., 1983; Geman and Geman, 1984). 

Simulated annealing is a prescription for whether or not to accept a given perturbation. 

The acceptance probability distribution is given by 

where Oold denotes the previous value of the objective function, 0, denotes the value of 

the objective function associated with the cuvent perturbation, and the parameter p is 

analogous to the 'temperature' in annealing. The higher the 'temperature', the more likely 

an unfavorable perturbation wiil be accepted. 

The virtues of simulated amealing techniques are as follows: (i) they are model-fiee, 

that is, the impiicit S/TRF model can be Gaussian or non-Gaussian, homogeneous or non- 

homogeneous. Moreover, there is a potential for simulated annealing to generate 

conditional simulations directly based on experimental data without modeis, such as the 

histograrn, the experimental variogram, and so on; (ii) multiple-point statistics, which has 

the potential to generate conditional simulation by accounting for geometrical stnictures 

of spatiotemporal variations, (iii) it could be used to implernent other relevant 

requirements for the simulated realization. 



5.4.3 Experimental Variogram Reproduction 

The expenmental variograms of the conditioning data can be reproduced throuçh the 

proper design of the objective function, which might be defined as the square difference 

between the variograrns of the current image, y*(h, r), and the experimental vanograms of 

the conditioning data, y*@, r), 

Rather than a variogram mode1 which is continuous with any space lags and time 

intervals, the expenmental variograrns of the conditioning data are always discretely 

calculated. To generate ex perimental covariances between any space lags and time 

intervals, a multivanate interpolation is needed. Suppose an expenmental vanograrn is 

denoted as yo(h, 8, s), where h is the space absolute distance with h,<h<h,, 8 is the 

direction in space with B,<8<B2, and z is the time interval with T,<T<T?. Then the required 

interpolation is given by 

+ )(e-e 1 )(r-t,P(h2. 82, q + @-hl )(9-e2)(y )Y*@> 9, , TJ 

- (h-hi)(e-02)(r-r?)~*(h~, 8 1, 7,) + (h-h2)(e-el)(~-~,)~*(h~, r2) 
- (h-ht)(es , ) ( r -q~ ' (h , ,  O,, .r, - (h-h2)(9-QJ0-q )y0(h1, O,,  T ~ )  

+ (h-ht)(e-e,)(7-5,)~~(hl, 01, 1,)I (5.28) 
where ye(hi, Bi, ri), i = 1 to 2, are known expenmental variograms of the conditioning data. 

5.4.4 The Implementation Procedure 

The implementation procedure of the required simulation can be represented as 

follows. First, an initial simulation is generated by assigning each node a value at random 

fkom the desired distribution. This initial simulation is sequentially modified by swapping 

the values in pairs of nodes not involving a conditioning datum. A swap is accepted if the 

objective function is lowered. Not a11 swaps which raise the objective function are 

rejected; the success of the method depends on a slow cooling of the simulation controlled 

by a 'temperature' function which decreases with time. The higher the 'temperature', the 

greater the probability that an unfavorable swap will be accepted. The simulation is 

completed when the simulation is 'fiozen', in other words, when funher swaps do not 

lower the objective function or when a specified minimum objective function is reached. 



The following parameters detemine the comput ing time of this method: 

p,: the initial 'temperature'. Usually p, is designed to be high. The default p, is 1 .O. 

h: the reduction factor, O < h < 1. It is used to lower the temperature whenever enough 

perturbations have been accepted or too many perturbations have been tried. 

K,,,,: the maximum number of attempted perturbations at any one temperature. The 

temperature is multiplied by h whenever &, is reached (on the order of 100 times the 

number of nodes). 

Ka,: the acceptance target . After K,, perturbations are accepted, the temperature is 

multiplied by 7c (on the order of 10 times the number of nodes). 

S: the stop number. When Y, is reached S times the process is stopped (set at 2 or 3). 

N,,: the number of experimental variograms involved in each objective fùnction updating. 

N,, detemines the number of experimental variograrns (related to space lags and 

directions, and time intervals) that are to be reproduced. In practice, N,, indicates the 

neighborhood size associated with each swap: al1 variograms between one swapped 

value and other values in its neighborhood will be updated. 

Usuaily no screen effect approximations exist in the simulated amealing process, 

therefore, N,, is crucial for the required experimental variograrn reproduction and for the 

cornputing time as well. In practice, the grid lag is smaller than the unit lag of the 

experimental variogram calculation, therefore N,, might be relatively large in 

spatiotemporal simulations. For exampie, if the gnd lag is half of the unit lag of the 

experimental variograms, to reproduce experimental covariances for 5 lags in R2xT, there 

must be around (2x expenmental variogram updating required in each objective 
1 

function updating; if the grid lag is 5 of the unit laç, then each objective hnction updating 

requires around ( 2 x 5 ~ 5 ) ~  = 125000 experimental variograrn updating. 

When a swap is considered, the vanograms of the current image are updated rather 

than recalculated. Suppose two values x, and x, are potentially swapped, as an example. 

For another value x,, there are three conditions for variograrn updating, show in Figure 

5.14: (a) no variograns involving x, will be updated since x, is far away from both and 
xj; @) only the variogram between 5 and x, needs to be updated since x, is far from 3, 
and (c) two variograms need to be updated: one between 5 and xk and another between xi 
and xk. 



Figure 5.14 Three conditions in the swap between xi and x,: (a) vanogram updating does 

not involve x, since it is far away from both and xj; (b) only the variogram between 

x, and x, needs to be updated since x, is far fFom xi, and (c) two variogram need to be 
updated: one between xj and x, and another between xi and xk. 



The updating in condition (b) is given by 

where (hjk, ejk, tjk) denotes the space-time difference associated with 5, xk, characterized 
by the spatial absolute distance h,,, the spatial orientation O,,, and the time interval tjt. 

For condition (c), in addition to Equation 5.3 1, the updating is as follows, 
t 

5.4.3 An Improvement o f  Implementation 

Though the above updating make the implementation faster than recalculation, the 

computing time is still huçe due to the great arnount of variogram updating involved in 

updating each objective function. More effects are needed to speed up the simulation 

process. The following irnplementation is one way to do so. 

In practice, the pair of two swapped values, % and x,, are close to each other. Suppose 

there are p variograms involving xi and q variograms involving 3 to be updated. Denote 
these variograms by (y,,, ..., y,,) and by (y,,, ..., y,,). When x, and xj are not close to the 

edges of the simulation grid, as show in Figure 5.15(a), then p = q, that is, for each 

variogram involving xi, y,, there exists a vanogram involving xj, y,,., whose space-time 

difference is the sarne as that of y,: (h,, 8,, lik) = (hjl<', Ojk., T~~). If xi and xj are close to 

the edges of the simulation grid as shown in Figure 5.1 S(b), for most variograms involving 

x,, there still exists corresponding variograms involving x, such that their space-tirne 

differences are identical. 

Now, let the space-tirne difference between x, and x, be identical to that between xj and 

x,., which is represented by (h, 8, r). Then instead of two variogram updating in the 

current implementation, y, and yj,, one may consider the following simplified formula, 
1 

In fact, this implementation saves more than half of updating time. 



Figure 5.15 The swap between xi and x,. For one vanogram updating between xi and xk, 

there usuaily exists another vanogram updating x, and xp, such that their space-time 

differences are identical. (a) xi and xj are not close to the edges of the gnd, and (b) xi 

and x, are close to the edges. The dot line implies the neighborhood of the swap. 

5.5 Summary 

Both SGGS and the simulated anneding technique c m  be applied to generate 

realizations of spatiotemporal processes. An advantage of these techniques for 

spatiotemporal conditional simulations is that their implementation does not explicitly 

involve the joint space-tirne measure which is ofien a topic of argument. 

SGGS is a senes of sequential Gaussian simuiation algorithrns including the current 

SGS and LU decomposition algorithm. Among them, the best is the 0.5~-SGGS, where v 

indicates the neighborhood size. For instance, the 0.5~-SGGS with v being 50 is roughly 

1 O times faster to cdculate than the current SGS. 



The SGGS error caused by the SEA can be characterized by the SEA loss defined as 

the mean square difference between the simulated value postenor to the information in the 

neighborhood and the simulated value postenor to a11 information. The SEA loss is fully 

determined by the posterior variances, rnonotonic increasing with the whole information 

and rnonotonic decreasing with the information in the neighborhood. The result shows that 

both the exponential model and the sphericai model can match the 5% RSEA loss 

requirement for any grid design with a considerably small neighborhood. However, a 

Gaussian model has a fairly high SEA loss in most applications. 

It is worth noting that the SGGS technique can be easily expanded to the Gaussian 

joint simulation with the same strategy. However, a detailed discussion of this expansion is 

beyond the scope of this thesis. 

Also, the SEA loss is a very usehl tool for sequential joint simulation techniques to 

evaluate the error generated by ignonng funher information. Also indicated in this 

discussion are the potential problems associated with sequential simulation techniques if 

the covariance mode1 is neither an exponential model nor a spherical model. A good 

strategy is to evaluate its SEA loss and estirnate the optimal size with an acceptable loss 
before implementing the simulation. 

The simulated annealing technique honoring experirnental variograms provides a way 

of generating realizations of spatiotemporai processes without the covariance/variogram 

model fitting, which is prerequisite for other simulation algorithrns. This saves a great 

amount of computations in rnodel identification and avoids possibly compiicated 

derivarion of positive definite property of model candidates. Furthemore, the sirnulated 

images hononng expenmental covariances/variograms mimic more faithfully the nature of 

physical processes than that generated by the simulation algonthms hononng 

covariance/variograrn models. 

The computing time of the simulated annealing algorithm honoring expenmental 

variogram reproduction is crucial to generate satisfactory realizations of spatiotemporai 

processes. In practice the current irnplementation can ody reproduce a small part of 

experimentai variograms of conditioning data due to the huge number of computations 

associated with experimental variogram reproduction. Further improvements of computing 

tirne needs to be made to obtain ideal images. 



Chapter 6 

Space-Time Modelling of the Pressure System in a 

Carbonate Resewoir 

6.1 Introduction 

Reservoir pressure is a key parameter in predicting reservoir performance, guiding 

reservoir management decisions and developing operating strategies. Dunng the 
production life of a reservoir, pressure is monitored at various wells and the results are 

used to address reservoir management problems. For instance, reservoir performances are 

checked against flow simulation predictions, changes in patterns of pressure gradients are 
evaluated, and pressure build-ups or drops are examined. Injection and production 

operations may then be adjusted to improve production performance. Optimization of the 

pressure monitoring process is an essential element of reservoir management. 

A pressure monitoring scheme should address the question of which wells and how 

ofken they should be sarnpled to adequately monitor both local and global pressure 

changes. The development of such a scheme should account for distinct physical, 

engineering and economic characteristics. The distribution of resewoir pressure is a joint 

funaion of spatial geological heterogeneity and temporal production characteristics. 
Economic considerations of the monitoring scheme relate to the lack of production in a 
shut-in well for the period of pressure transient testing. 

In addition, one of the most important goals of reservoir management is to predict 
future production rates. Over the years, engineers have developed several methods to 

achieve this goal. These methods, ranging fiom simple decline curve analysis techniques to 

sophisticated multidimensional and multiflow resewoir simulators, involve a process of 

parameter modifications to let the calculated production rates match the real rates. This 
process is referred to as history matching (e.g., Dake, 1978; Aziz, 1979). The resewoir 
pressure history match is requisite to history matching, which includes the match of local 

average pressures as well as the match of pressure distribution in the reservoir at different 

times. An adequate space-time mapping of the reservoir pressure dunng a past penod, 

therefore, provides a basis for history matching. The space-time mapping of the reservoir 

pressure will contnbute to an understanding of the evolution of the reservoir pressure, 



reveal the potential gradients that are controlling fluid movement in the reservoir, and 
allow the inference of a pressure distribution in parts of the reservoir or parts of the 

production period where or when there are no data. 

In this chapter, a case study is presented which is based on the shut-in pressure 

measurements of a carbonate reservoir. The space-time continuity of the reservoir 

pressure is investigated using spatiotemporal experimental variograms. The space-time 

mapping of the pressure is estimated using SR block OK. The pressure monitoring 

scheme is analyzed based on multiple conditional simulations of the reservoir pressure in 

order to estimate local changes of the reservoir pressure adequately. 

6.2 Statistics of Pressure Measurements 

A total of 644 pressure rneasurements were collected from 145 wells in the carbonate 

reservoir, 576 of them from 116 production wells and the others from 29 injection wells. 

The wells are irregularly located in the study area , as shown in Figure 6.1, and pressure 

data were irregularly collected from 1986 up to 1993. 

Figure 6.1 The well locations in the study area. 

The histogram of pressure measurements of production wells, illustrated in Figure 6.2, 

approximately shows a normal distribution shape. However, the histogram of pressure 

measurements of injection wells, illustrated in Figure 6.3, shows a somewhat negatively 



skewed distribution. Thus, it rnay be reasonable to consider that the pressure data of 
production wells and injection wells corne fiom different populations. The pressure data of 
injection wells were then excluded from the original data set and the investigation was 
concentrated on the pressure system of production wells. 
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Figure 6. 2 Histogram of the pressure data fiorn production weils. 

pressure dam 

Figure 6.3 Kistogram of the pressure data from injection wells. 



6.3 spatiotemporal Continuity Characterization of the Resewoir Pressure 

The spatiotemporal continuity of the pressure data was investigated using 

spatiotemporal experimental variograms computed in the N-S, NE 45", E-W, and SE 45" 

directions, with a space lag of 0.2(km) and a time interval of l(rnonth). The directional 

tolerance, space-lag tolerance, and time-interval tolerance are respective1 y 4 5" O. 1 (km), 

and O.S(month). These variograrns are show in Figure 6.4, 6.5, 6.6, and 6.7. The 

charactenstics of the experirnental variograms are: 
(1) the behaviors at the origin show a good continuity, indicating that no nugget effect 

existed for the spatiotemporal continuity; 

(2) the spatial anisotropy, involving different ranges in the four directions, is apparent. 

More preciseiy, the range is around 0.66 km in the E-W direction, around 0.52 km in 

the NE 45" direction, around 0.33 km in the N-S direction, and around 0.52 km in the 

SE 45" direction. These four space ranges, denoted by ai, a2, a,, and Q, form an 

elliptical-shaped directional graph, which is shown in Figure 6.8. Note that sills in four 

directions are al1 around 8.105, implying the presence of geometric anisotropy in the 

data set. 

Based on these charactenstics, the space-tirne continuity of the reservoir pressure was 

assumed that the pressure data show a homogeneous spatiotemporal continuity with 

distinct geometric anisotropy, which could be modeled by a joint distance variogram 

function. The geometric anisotropy demonstrates that the long axis of the ellipse is dong 

the E-W direction, with a ratio of 2.0. The fitted spatiotemporal vanogram model is given 

and the reduced space distance hl is given by 

where h, denotes the distance in the E-W direction while h, denotes the distance in the N- 

S direction. This model indicates a spatial range of O. I l  x3 km in the N-S direction and a 

spatial range of 0 . 2 2 ~ 3  km in the E-W direction. Also, Equation 6.1 indicates a time range 
of 183x3 days, or 1.5 years. Figure 6.9 shows the fitted model, which is comparable with 

the experimental variograrns in the E-W direction shown in Figure 6.4. 



Figure 6.4 Spatiotemporal experimental variogram of pressure data in the E-W direction, 
the unit of space lag is kilometer and the unit of time interval is month. 

Figure 6.5 Spatiotemporal experimental variogram of pressure data in the NE 45" 

direction, the unit of space lag is kilometer and the unit of time interval is 

month. 



Figure 6.6 Spatiotemporal experimental variogram of pressure data in the N-S direction, 
the unit of space lag is kilometer and the unit of time interval is month. 

Figure 6.7 Spatiotemporal experimental variogram of pressure data in the SW 45' 

direction, the unit of space lag is kilometer and the unit of time interval is 
month. 



Figure 6.8 The ellipticd-shaped directional graph. al,  a?, a3, and denote four space 
ranges in the N-S direction, NE 45" direction, E-W direction, and SE 45" 

direction, respectively. 

Figure 6.9 The spatiotemporal variogram model of the reservoir pressure. The space 
distance here is the reduced distance h l  given in Equation 6.2. This model is 
comparable with the experimental variograms in the E-W direction show in 
Figure 6.4. 



6.4 Space-Time Mapping o f  the Reservoir Pressure 

The space-time mapping of the reservoir pressure, in this context, was computed using 

S/T block OK, developed in Section 4.3, with the spatiotemporal variogram mode1 given 

by Equation 6.1. 

The space-time mapping of the reservoir pressure was computed in an area of 16 km2 
during 1989-1992. The total number of space-time gndblocks to be estimated is 2 0 x 2 0 ~  

16=6400, each gridbiock has a site of 0.2(km)x0.2(km)x3(month). The block discretion is 

4 x 4 ~ 3 .  The quadrant search was applied for the neighborhood determination at each 

space-tirne gndblock to be estirnated, each quadrant has not more than 8 data. Note that 

the quadrant search implies the quadrant spatial partition of the neighborhood, and the 

neighborhood partition in time was not considered in order to ensure enough data for 

kriging operations. The space-time mapping from the first quarter of 1989 up to the fourth 

quarter of 1992 are show from Figure 6.10 up to 6.17. 

The result of spatiotemporal mapping of reservoir pressure shows the following 

properties: 

(1) In the maps of 1989, high pressure zones (> 60) are around the northeast, and a few 

are around the southwestern corner. The low pressure zones (c 50) spreads from 

southeast to northwest, where the production wells are located in. 

( 2 )  The gradient of the pressure tends to decrease with time passing. This can be seen 

from the maps of 1989 and 1990, where both the high pressure zones and the low 

pressure zones are gradually reducinç From the first quarter of 1989 up to the last 

quarter of 1990, since then these zones are only scattered in the center. From 1991 

to 1992, the high pressure zones and low pressure zones tend to disappear, ieading 

to significant reduction of pressure gradients in most areas. 



Pressure Mapping Dunng the First Quarter of 1989 

Pressure Mapping During the Second Quarter of 1989 

Figure 6.10 Space-Time mapping of reservoir pressure in (a) the first quarter of 1989, and (b) the 

second quarter of 1989. 



Pressure Mapping Duting the Third Quarter of 1989 

(a) 

Pressure Mapping During the Fourth Quarter of 1989 

Figure 6.1 1 Space-The rnapping of reservoir pressure in (a) the third quaner of 1989, and (b) the 

fourth quarter of 198% 



Pressure Mapping During the First Quarter of 1990 

Pressure Mapping During the Second Quarter of 1990 

Figure 6.12 Space-Tirne mapping of reservoir pressure in (a) the first quarter of 1990, and (b) the 

second quarter of 1990. 



Pressure Mapping During the Third Quarter of 1990 

Pressure Mapping During the Fourth Quarter of 1990 

Figure 6.13 Space-Time mapping of reservoir pressure in (a) the third quluter of 1990, and (b) the 

fourth quarter of 1 9 90. 



Pressure Mapping During the First Quarter of 1991 

Pressure Mapping During the Second Quarter of 1991 

Figure 6.14 Space-The mapping of reservoir pressure in (a) the first quarter of 199 1, and (b) the 

second quarter of 199 1. 



Pressure Mapping During the Third Quarter of 1991 

(a) 

Pressure Mapping During the Fourth Quarter of 1991 

Figure 6.15 Space-Time mapping of reservoir pressure in (a) the third quarter of 199 1, and (b) the 

fourth quarter of 199 1. 



Pressure Mapping During the First Quarter of 1992 

Pressure Mapping During the Second Quarter of 1992 

Figure 6.16 Space-Tirne mapping of reservoir pressure in (a) the fira quarter of 1992, and (b) the 

second quarter of 1992. 



Pressure Mapping During the Third Quarter of 1992 

Pressure Mapping During the Fourth Quarter of 1992 

Figure 6.17 Space-Tirne rnapping of reservoir pressure in (a) the h r d  quarter of 1992, and (b) the 

fourth quarter of 1992. 



6.5 Conditional Simulations of the Reservoir Pressure 

The conditional simulations of the reservoir pressure for the year of 1990 were 

generated by using the SGGS technique developed in Section 5.3. The simulation grid was 

designed to have 200x200x12=480000 nodes, with a space-time spacing of O.OZ(krn)x 

O.OZ(km)xl(month). The selection of such space-time spacing is based on the 

spatioternporal correlation stmcture and the requirement of sampling scheme discussed 

after this section. The quadrant search was applied for the neighborhood determination of 

each node to be simulated, and each quadrant has an upper bounds of 8 data, implying that 

the neighborhood size v=4x8=32 data. The group size of SGGS was designed to be 4 x  

4=16, which indicates that the 0.5~-SGGS was adopted to Save computing time. 

The 576 conditioning data are mentioned in Section 6.1, with the histogram s h o w  in 

Figure 6.2 and the joint-distance variogram mode1 expressed by Equation 6.1. In view of 

the histogram of the conditioning data, it was decided to use a single population Gaussian 

S/TRF mode1 for the conditional simulations of the reservoir pressure, with the 

spatioternporal covariance model corresponding to the variopam modei given by 

Equation 6.1. 

Histograrns of two conditional simulations of the reservoir pressure are shown in 

Figure 6.18. In cornparison with Figure 6.2, it is apparent that the normal distribution 

shape and statistics of the pressure data are reproduced in conditional simulations by 

SGGS. Their corresponding expenmental vanograms are shown in Figure 6.19 and 6.20, 

which indicates that the characteristics of the space-time continuity of the pressure data 

were also reproduced in the conditional simulations. Note that these experirnental 

vanograms are fairly smooth due to that hundreds of thousands pairs are involved in each 

experimental variogram calculation, which leads to a strong smooth effect. 

Figure 6.21, 6.22, 6.23, and 6.24 show two conditional simulations of the reservoir 

pressure during 1990, each have 4 time slices (January, April, July, and October). The 

anisotropy feature of the reservoir pressure was also reproduced in the conditional 

simulations of the reservoir pressure, showing that the continuity of the conditional 

simulation in the E-W direction was longer than that in the N-S direction. 



1 Mean: 5144.3 

6000 10400 14800 
pressure simulation 

1 Mean: 5152.8 

pressure simulation 

Figure 6.18 Histograms of two conditional simulations of the reservoir pressure 
generated by SGGS. 



Figure 6.19 Expenmental variograms of one conditional simulation of the reservoir 

pressure generated by SGGS. (a) variograms in the E-W direction, @) 

variograms in the N-S direction. 



Figure 6.20 Experimental variograms of one conditionai simulation of the reservoir 

pressure generated by SGGS. (a) variograms in the E-W direction, (b) 

variograms in the N-S direction. 



Pressure simulation at Jan. 90 

Pressure simulation at April 90 

Figure 6.21 Conditionai simulations of the reservoir pressure using SGGS at two 

time slices: Ianuary 1 990 and April 1990. 



Pressure simulation at July 90 

Pressure simulation at Oct. 90 

Figure 6.22 Conditional simulations of the reservoir pressure using SGGS at two 

time slices: July 1990 and October 1990. 



Pressure simulation at Jan. 9 

Pressure simulation at April90 

Figure 6.23 Conditionai simulations of the reservoir pressure using SGGS at two 

time slices: January 1990 and Apd 1990. 



Pressure simulation at July 90 

Pressure simulation at Oct. 90 

Figure 6.24 Conditional simulations of the resewoir pressure using SGGS at two 

time slices: July 1990 and October 1990. 



6.6 Pressure Monitoring Scheme 

The goal of pressure monitoring scheme is to constmct an appropriate monitoring gnd 
which may estimate local pressure changes in a given period of time adequately for 
reservoir management and history matching. Therefore, the investigation of monitoring 

scheme requires space-time sampling design accounting for local averages of pressure to 

rninirnize the error level of monitoring in tenns of local changes. 

In the geostatistical literature, this investigation can be traditionally camed out using 

average local kriging variance as the sampling critenon (e.g., Barnes. 1988). The local 
kriging variance indicates the estimation error associated with the neighbxhood 

configuration, hence, the sampling design asking for rninimization of average local kriging 

variance might provide a soiution for monitoring scheme. However, this sampling 

investigation has a drawback that the local variation of interest is disregarded. In practice 

the estimation error is caused by both the configuration of samples in the neighborhood 
and values of samples. As an example, Figure 6.25 shows two neighborhoods used to 

estimate the blocks indicated by squares. Their configurations are the same, but the Local 

variations are diferent: the local variation in (a) is smaller than that in (b). The estimation 
error in (a) is hopefully smaller than that in (b). The difference of estimation errors 

between these neighborhoods indicates the difference of estimation error caused by the 

local variations which cannot be indicated by local kriging variance. 

Figure 6.23 Two neighborhoods used to estimate the blocks indicated by the squares. Their 

configurations are the sarne, but the local variations are diEerent: the variation in (a) is 

smailer than that in (b). 

Fortunately, the sampling design conceming both the local configuration and variation 

of samples was introduced by using conditional simulations (e-g., Englund and Heravi, 

1993). Conditional simulation rnimics both the correlation structure and local variations of 



interest. Based on conditional simulation results, the sampling design regarding local 

variations can be camed out using a cnterion accounting for local estimation errors. The 

crucial point of sarnpling investigation using conditional simulation is that it not only 

accounts for local estimation error caused by both local configuration and local variation 

of sarnples, but also is capable of showing the uncertainty associated with locai estimation 

errors. 

In practice there are three types of sampling scheme (e.g., Bras and Rodnçuez, 1985): 

(i) systematic sampling scheme where the sampling is performed with a regular grid, (ii) 

stratified-random sampling scheme where samples are picked up randomly in gridblocks, 
but these gridbiocks are reguiarly distributed, and (iii) simple-random sarnpling scheme 

where the sampling is performed randornly in the entire area. Stratified-random sampling 

scheme is most widely used in geoscience applications, which will be adopted in the study 

of sampling scheme in this chapter and in Chapter 7. Stratified-randorn sampling scheme is 

defined by the sampling spacing. Once the sarnpling spacing is determined, the size of 

gridblock is fixed, and the sampling is performed by randomly choosing one sample site in 

each gridblock. 

In this section, the investigation of pressure monitoring scheme is camed out based on 

spatiotemporal conditional simulations of the reservoir pressure. The spatiotemporal 

conditional simulations of the reservoir pressure are generated by using SGGS. The 

sarnpling cnterion regarding local changes of pressure is defined in terms of average local 

estimation error. The uncenainty associated with average local estimation error of a given 

sampling grid is also investigated based on multiple conditional simulations of the 

reservoir pressure. 

6.6.1 Implementation Steps 

The sampling investigation of the reservoir pressure was implemented as follows: 

1. define a sampling cntenon accounting for local estimation errors. This critenon can be 

defined in terms of average local estimation error. The average local estimation error 

(ALEE) can be defined as follows, 



where xi denotes the 'true' pressure of a gndblock defined as the average pressure of 

the gndblock, xi* denotes the estimated pressure of the gridblock, ne denotes the 

number of gridblocks to be estimated, and C(0,O) is the variance of the simulation 

model. Generaily 8rnE E [O, 11. 

define a simulation grid and a division of the space-time domain. The number of 
simulated nodes must be much larger than the number of space-time gndblocks. 

generate a realization of the reservoir pressure on the simulation gnd. 

define a sampling grid. 

calculate 'tnie' pressures of gridblocks. 

sample pressures fiom simulated pressures with the given sampling grid, use these 

sarnples to estimate pressures of gridblocks. 

compute the average local estimation error given by Equation 6.3. 

repeat Step 4-7 to obtain average local estimation errors of different sampling grids. 

repeat S tep 3 -8 to obtain uncertainties associated with average local estimation errors 

of different sampling grids. 

6.6.2 Computations and Results 

The sampling investigation of the reservoir pressure was performed for the year of 

1990. The reservoir during 1990 was divided into 1 O80 space-time gridblocks, each has a 

size of 0.32(km)x0.32(km)x3(month). The 'true' pressure of a gndblock is defined as the 

average pressure of 16x 16x3 pressure values in this gridblock. 

The sampling grid was initially set with a space-time spacing of 0.7(krn)xO.Z(km)x 

3(rnonth), the average local estimation error given by Equation 6.3 was calculated. Then 

the spatial spacing was increased 0.04 km each time, until it reached 0.68 km. the spatial 

spacings beyond 0.68 km were not considered since they are out of the range of the 

correlation structure. M e r  the spatial spacing reaches 0.68 km, it was reset to 0.2 km, 

and the time spacing was increased one month each time. This process keeps ninning until 

the spatial spacing reached 0.68 km and the time spacing reached five months 

simultaneously, the average local estimation errors associated with different sampling 

spacings were obtained. This procedure was repeated 40 times to demonstrate the 

uncenainty of average local estimation errors associated with different sampling spacings. 

Figure 6.26 shows average local estimation errors vs. spatial spacing for three time 

spacings: 3 months, 4 months, and 5 months. The thick lines indicate the means of average 



local estimation errors. The differences of these three thick lines are fairly small. The mean 

of average local estimation errors tends to be minimum when the spatial spacing is around 

0.32 km. M e r  0.32 km the mean of average local estimation error is increased almost 

linearly with the spatial spacing. 

To verifL these observations, conditional simulations dunng 199 1 were generated, and 

similar sarnpling scheme was perfonned with different sampling gnds. Figure 6.27 shows 

the result of average local estimation errors vs. spatial spacing. In cornpanson with Figure 

6.26, their difference is considerably srnall, which implies that the impact of time spacing 

on the average local estimation error is fairly small. and the optimal spatial spacing is 

around 0.32 km. 
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Figure 6.26 Average local estimation emor vs. spatial spacing for three time spacing for 

1990: 2 months, 3 months, and 4 months. The thick line indicates the means. 
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Figure 6.27 Average local estimation error vs. spatial spacing for three time spacing for 

1991: 2 months, 3 months, and 4 months. The thick line indicates the means. 



6.7 Summary 

This chapter presents the space-time modelling of resewoir pressure systems in a 
carbonate reservoir. The reservoir pressure was viewed as a spatiotemporal process, and 

its variation was charactenzed, estimated and simulated with the means of S/TRF 
proposed in previous chapters. 

The space-time rnodelling of the reservoir pressure system was concentrated on the 

pressure data in production wells, since the pressure data in injection wells are likely to be 

different from that in production wells in terms of population distributions. The 

distribution of the reservoir pressure was assumed to be normal based on its histogram, 

and the space-time continuity was supposed to be stationary with a geometnc anisotropy 

structure. A joint-distance exponent hnction was adopted as the spatiotemporal 

variogram model. 

The space-time mapping of the reservoir pressure from the first quarter of 1989 up to 

the last quarter of 1992 was performed by using S/T block OK techniques. The results 

show that the gradient of the reservoir pressure tends to decrease with time passing, and 

higMow pressure bands likely spread fiom nonh to south, which is consistent with the 

space-time continuity charactenstics of the reservoir pressure mentioned previously. 

The monitoring scheme of the reservoir pressure system was analyzed based on 

spatiotemporal conditional simulations of the reservoir pressure. The goal of the 

monitoring scheme is to monitor locai changes of the reservoir pressure adequately, 

therefore, average local estimation error is adopted to evaluate different sarnpling grids. 

The conditional simulations of the reservoir pressure was generated by using SGGS. 

Average local estimation errors and associated uncertainties of different sampling grids 

were computed based on multiple conditionai simulations of the reservoir pressure. The 

result shows that (i) the impact of time spacing on the average local estimation error is not 

significant, and (ii) the optimal spatial spacing is approximately 0.32 km. 



Chapter 7 

Space-Time Modelling of Springwater Contents 

7.1 Introduction 

The deterioration of groundwater quality is an increasingly critical situation throughout 

the world. This concern has given rise to regulations that require extensive groundwater 

monitoring to detect, at the earliest possible time, the release of contarninants From naturai 

sources, resource extraction and other man-made sources. Groundwater contamination 

can be monitored by analyzing well and spring water for a series of dissolved ion species. 

Groundwater quality data sets can then be used to mode1 changes in the composition of 

groundwater and outline potentiai zones of contamination. Groundwater contents Vary in 

space and in time simultaneously depending on such factors as the geological 

environrnents of acquifers, human activities, and climate conditions. The spatiotemporal 

variability of groundwater contents can therefore be modelled based on the framework of 
S/T RF. 

This study will attempt to utilize the techniques of spatiotemporal processes developed 

in previous chapters to mode1 spatiotemporal vanability of groundwater contents, based 

on the springwater data fkom a Belgian study. The study area is the Dyle watershed, 

located in the Dyle River basin, 30 km southeast of Brussels (Belgium). This area is made 

up of a Paleozoic basement overlaid unconformably by a thick horizontal layer (30-50 m 
thick) of Tertiary sand of Bruxellian age (Legrand, 1968). The Bruxellian sand layer forms 
the main pari of the acquifer. The main Bruxellian acquifer behaves like an unconfined 

porosity aquifer recharged by rainwater over its whoie surface and drained by valleys. 

From 1974 to 1983, spring waters were repeatedly analyzed upstream in the Dyle River 

basin. In 1975, Goovaens, Sonnet and Navarre (1993) used factorial kriging analysis to 

analyze a data set of 11 ions. Principal component analysis was performed to determine 

three principal component groups. The first goup  was alkaline, containing Ca, Sr, and 

EC, and was likely influenced by the geological charactenstics of the acquifer. The second 
group seemed to contain propenies influenced by the geology and/or human activities. Ir 

contained Mg, Cl, and Soc The third group contained Na, NO,, and K, which are highiy 
influenced by human activities. The experimental variograms of the three groups show two 



scaies of spatial variation: the first one is modelled with a range of 1 km and the second 

one is modelled with a range of 9 km. The cokriged maps of the three groups were 

computed to demonstrate the spatial variability of these groups. 

In the present study, the data of three ions (Ca, Cl, and NO3) fiom 68 spnngs for six 

years (1975, 1979, 1980, 198 1, 1982, 1983) were used to show the space-time variability 

of springwater contents. Each spring was sarnpled once every year, indicating that a total 

of 408 data are available for each ion. The locations of spnngs are shown in Figure 7.1. 

The characteristics of space-time continuity of spnngwater contents were investigated by 

spatiotemporal expenmental variograrns. The space-time mapping of springwater contents 

was performed for four years (fiom 1979 to 1982) to show the space-time vkability of 

spnngwater contents. Finally, the 5,ampling design was analyzed based on coiiditional 

simulations of springwater contents. 

400 

Figure 7.1 Locations of 68 springs. 



7.2 Statistics and Space-Time Continuity of Spring Data 

The histograms of Ca, Cl, and NO, concentrations are illustrated in Figures 7.2, 7.3, 

and 7.4. The CI and NO, histograms each show a roughIy normal distribution shape, while 

the Ca histograrn demonstrates a two-peaked shape. Their four space-directional 

experimental variograrns and space-omnidirectional experimental variograms are shown in 

Figures 7.5, 7.6, and 7.8. The experimental variograms of Ca concentrations show a 

presence of space-anisotropy structure: the range in the E-W direction is longer than that 

in the N-S direction. In generai, experimental variograms of Ca, Cl, and NO, 

concentrations show fairly large fluctuations. The space-anisotropy structure and the large 

fluctuations of the expenmental variograms may be caused by the presence of space-time 

trends due to zona1 variations of geological environments and periodical alternations of 

climate and human activities. The presence of space-time trends was identified and the 

types of trend rnodels were recognized in sections below. 
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Figure 7.2 The histograrn of Ca concentrations. 
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Figure 7.3 The histogrm of CI concentrations. 
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Figure 7.4 The histogram of NO3 concentrations. 
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Figure 7.5 Experimental variograms of Ca concentrations. (a) vanogram in the E-W 

direction, (b) variograrns in the NE 45 direction, (c) variograms in the N-S 

direction, (d) variograrns in the NW 45 direction, and (e) ornnidirectional 

variograrns . 



Figure 7.6 Experimental variograrns of C1 concentrations. (a) variograms in the E-W 

direction, (b) variograrns in the NE 45 direction, (c) variograms in the N-S 
direction, (d) variograms in the NW 45 direction, and (e) omnidirectional 
vaiograrns . 
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Figure 7.7 Experimental variograms of NO3 concentrations. (a) variograms in the E-W 
direction, (b) variograms in the NE 45 direction, (c) variogram in the N-S 
direction, (ci) variograms in the NW 45 direction, and (e) omnidirectional 
variograms . 



7.3 Recognition o f  a Space-Time Trend 

The presence of the space-time trend was investigated using trend-surface analysis with 

16 trend models and 4 criteria in four subareas. Trend-surface analysis is one of the most 

powerful tools used for trend recognition (e.g., Davis, 1973; Agterberg, 1974). Once the 

space-time trend was recognized, the residuais of spnngwater contents could be 

computed, and the correlation structures of these residuals could be obtained (e.g., 

Matheron, 1971; David, 1977). The partition of four subareas was based on the 

distribution of higMow value bands in the srudy area. The 16 trend models were 
constructed by different combinations of spatial components (indicated by 5 )  and temporal 

cornponents (indicated by ;), see Table 4.1. Average absolute error, average square error, 

average error, and coefficient of determination were calculated for each trend model. 

Coefficient of determination is one of the most important measures of the adequacy of 

regressiodtrend models (e.g., Gunst and Mason, 1980), which is defined as follows, 

A 

where Zi (i=lto N) denote values of the interest, Zi (i=l to N) denote values of the trend 

function, and 2 denotes the average. &[O, 11. Generally an appropriate trend model is 

associated with a large value of coefficient of determination. 

The determination of harmonic trends involves choosing spatial and temporal penods. 

The spatial and temporal penods were selected by trial and error with r e p d  to coefficient 

of determination. The results showed that the spatial penods of Ca, Cl, and NO3 

concentrations are respectively around 4.0, 4.2, and 4.0 kilometers, and the temporal 

penod of Ca, CI, and NO3 concentrations are ail around 3 years. 

The average results of trend-surface analysis for Ca, CI, and NO3 concentrations in four 

subareas are shown in Tables 7.1, 7.2, and 7.3. The trend model that was linear plus 

harmonic in space (<=l+i) and linear in time (<=l) obtained large values of coeficient of 

determination for al1 of these ion concentrations. Therefore, this type of trend model is 

chosen and its adequacy is further investigated based on the residuals. 



7.4 Statistics and Space-Tirne Continuity of Ion Residuals 

The following definition of the residual of a S/TRF X(s, t) can be obtained fiom 

Equation 1.10, 
A A 

~ ( s ,  t) = ~ ( s ,  t) - &(s, t) = [m(s, t) - m(s, t ) ~  + ~ ( s ,  t) 

A A 

where m(s, t) indicates the chosen trend model. The residual Y(s, t) is actually an estimate 

of Y(s, t) assumed to be stationary with a mean of zero. Therefore, if the chosen trend 
A 

model, m(s, t), is an appropriate estimate of the trend, m(s, t), then the difference, [m(s, t) 

- k(s, t)], should be sufficiently small, indicating that the residual CO, t) should also be 

stationary with a mean of zero. In addition, there should no distinct anisotropy in 

correiaticjn structures of the residuals (e.g., Neuman and Jacobson, 1984). 

Figures 7.8, 7.9, and 7.10 show the histograms of Ca, Cl, and XO, residuals. They al1 

approximately show normal distributions with a mean of zero. In cornpanson with Figure 

7.2, the two-peaked shape presented in the histogram of Ca concentrations disappeared in 

the histogram of Ca residuals. The four directional (E-W, NE 45, N-S. and NW 45) and 

omnidirectional expenmental variograms of Ca, Cl, and NO, residuals were calculated 

with a space lag of 0.2 kilometer and a time interval of 1 .O year. The directional tolerance, 

space-lag tolerance, and time-interval tolerance were respectively set to be 45" O, 1 

kilometer, and 0.5 year. These experimentai variograrns are illustrated in Figures 7.1 1, 

7.12, and 7.13. These pictures show fairly stable structures of the space-time continuity. 

Al1 of these residuals show space-isotropic stmctures in their experimental variograms. 

These improved illustrations of the space-time continuity and distribution of residuals 

imply the adequacy of trend models given in Table 7.4, 7.5, and 7.6. 

The space-omnidirectional experimental vanograms of Ca residuals were fitted by the 

following joint-distance spherical mode1 (shown in Figure 7.12(t)): 

where sph(*) stands for a standard sphencal function with a range of 1. 

The space-omnidirectiond experimental variograms of Cl residuals were aiso fitted by a 
joint-distance spherical model (shown in Figure 7.13(f)): 



The space-omnidirectional experimental variograrns of NO3 residuals were fitted by a 

separable exponential model (shown in Figure 7.13(f)): 

Table 7.1 The average results of trend-surface analysis for Ca concentrations. 

1 mode1 1 absolute error 1 square error 1 error 1 determination 1 

Spatial period = 4.0 and temporal period = 3.0 

average average trend coefficient of average 



Table 7.2 The average results of trend-surface andysis for Cl concentrations. 
Spatial penod = 4.2 and temporal period = 3.0 

trend 

mode1 
. 

average 

absolute error 

average 

square error 

average 

error 

coefficient of 
determinat ion 



Table 7 -3 The average result s of trend-surface analysis for NO3 concentrations. 
Spatial period = 4.0 and temporal period = 3.0 

trend 1 average average average coefficient of 
determination 

127.397 .O000003 5 .O23 1 

mode1 1 absolÿte error 
1 



Table 7.4 The coefficients of trend models for Ca concentrations. Spatial period = 4.0. 

Terrns Coefficients 

1 Subarea l 

cosxs my 

cosxcosy 17.94947 

- - 

Subarea 2 l Su barea 3 



Table 7.5 The coefficients of trend models for CI concentrarions. Spatial period = 4.2. 

Coefficients 

Subarea 1 

cosssiny 

cosscosy 

1 

Subarea 2 

- 1 .go274 

7.66 108 

Subarea 3 Subarea 4 

-15.38993 

1 1 .93763 

- 17.77876 

4.6986 1 

-20.8 1482 

-3 .O720 1 



Table 7.6 The coefficients of trend models for NO3 concentrations. Spatial penod = 4.0. 

Coefficients 

Su barea 4 Subarea 1 Subarea 3 Su barea 2 

cosssiny 



Sample: 408 
Mean: 0.00 
S.D.: 16.06 

Figure 7.8 The histogram of Ca residuals. 

Sample: 408 
Mean: 4.000 
S.D: 9.206 

Figure 7.9 The histogram of Cl residuals. 

Sample: 408 
Meal: -0.000 
S.D.: 6.697 

Figure 7.10 The histogram of NO3 residuals. 



Ce residual simivariograrns in 45 dcgrcc 

Ca residul simivnnograrns in 90 degrcc Ca residuol sirnivoriogmms in 135 degree 

Figure 7.11 Experimental variograms of Ca residuals. (a) vanograms in the E-W 

direction? @) variograms in the NE 45 direction, (c) variograms in the N-S 

direction, (d) variograms in the NW 45 direction, (e) omnidirectional 
variograms, and (f) the fitted variogram model. 



CI residual simivwiogmms in 90 degree 

(b) 

Cl rcsidud simivariograrns in 135 degree 

CI rcsiduril ovcnll simivnnogms CI mivanogram model 

Figure 7.12 Experimental variograms of Cl residuals. (a) variograms in the E-W 

direction, (b) variograms in the NE 15 direction, (cl vaiograms in the N-S 
direction, (d) variograms in the NW 45 direction, (e) omnidirectional 

variograms, and ( f )  the fitted variogram model. 
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Fimire Cc 7.13 Expenmental vanograms of NO3 residuals. (a) variograrns in the E-W 

direction, (b) vanograms in the NE 45 direction, (c) variograms in the N-S 
direction, (d) variograrns in the NW 45 direction, (e) omnidirectional 
variograrns, and ( f )  the fitted variogram model. 



7.5 Space-Tirne Mapping of Springwater Contents 

7.5.1 Difïerent Trend Models in Su bareas 

A question may anse for UK system when diferent trend models are specified in 

subareas. Figure 7.14 shows that the location to be estimated has a neighborhood 

including data points from other subareas. Assume that the trend is represented by 

different coefficients in subareas, 
L 

m(s, t) = c a,, f;(s, t), (s, t) E Subiireai 
J-1 

as a result, the unbiased condition of the UK system is chançed into the following, 

C [ai, fi(s,, 1,) - C hi aii Usi, ti)] = O 
l= l i=  1 

Note that this condition becomes the common unbiased condition when ali=ai, , i=l to N. 

0 - data point 

O - location to be estimated 

- subarea 
)fl - trend model 

Figure 7.14 A neighborhood configuration. The data points in the neighborhood corne 

from different subareas, and the trend function at the location to be estirnated 

is different from that of some data points. 

In practice, however, this problem can be solved simply by constraining neighborhood 

in the same subarea. More often, most boundaïes used to split the area into subareas are 

man-made for convenience. It is reasonable to assume that in any smali neighborhood the 

trend model is invariant, so that the common UK technique can be used without 

modifications. This assumption is applied in the following sections. 



7.5.2 Mapping Results 

The space-time mapping of Ca, Cl, and NO, concentrations was performed by S/T 

block UK technique developed in Section 4.4, using the following knging plan. 

Biock discretion = 4 x 4 ~ 3 .  

Search radius = 5 Myear. 
Octant search (8 data per octant). 

O Useofthe trend form(:=l+i/&=l). 

O Use of the variogram function defined by Equation 6.1. 

Figure 7.15 shows the space-time mapping of Ca concentrations from 1980 to 1982. 

The north-south central area of low values corresponds to the valley of the Dyle River, the 

high values are mostly observed in the northeast part and the southwest corner of the 

maps. 

Figure 7.16 shows the space-tirne mapping of Cl concentrations from 1980 to 1982. 

High values are mostly observed in the east-central part of the maps. With a close look at 

the south part of maps, the high-value band tends to expand with passing time. 

Figure 7.17 demonstrates the space-time mapping of NO3 concentrations from 1980 to 

1982. High values are mostly observed in the south of the maps. The high-value band in 

the central part tends to expand with passing time. 

The result of Ca mapping is compatible with the cokriging result of the first group from 

Goovaerts' work, while the CI mapping and NO3 mapping are fairly consistent with that of 

the second and third group, respectively. This is reasonable since the first group contains 

Ca, the second group contains CI, and the third group contains NO3, 



Ca mapping of 1980 

Ca mapping of 1981 

Ca mapping of 1982 

Figure 7.15 Space-Time mapping of Ca concentrations fiom 1980 to 1982. 



Cl mapping of 1980 

1 O 20 
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CI mapping of 1981 

Cl mapping of 1982 

Figure 7.16 Space-Time mapping of CI concentrations fiom 1980 to 1982. 
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NO3 rnapping of 1980 

NO3 mapping of 1981 

NO3 mapping of 1982 

Figure 7.1 7 Space-Time mapping of NO3 concentrations from 1980 



7.6 Conditional Simulations o f  Ca Residuals 

Conditional simulations of Ca residuals were generated by using both SGGS and the 

simulated amealing technique honoring experimental variograms. The simulation grid was 

designed to have 100x 100x5=50000 nodes, with a spacing of 0.2(krn)x0.2(km)x l(year). 

A total of408 conditioning data were used for the conditional simulation of Ca residuals. 

7.6.1 Conditional Simulations of Ca Residuals Using SGGS 

Conditional simulations of Ca residuals were first generated by using SGGS. The 

quadrant search was applied for the neighborhood determination, each quadrant having 8 

data, which gives a neighborhood size of v=4x8=32 data. The group size of SGGS was 

designed to be 4 x 4 4  6, therefore the O. SV-SGGS was adopted. 

Figure 7.18 shows histograms of two conditional simulations of Ca residuals. The 

corresponding variograms are shown in Figure 7.19. The sampie variograms of two 

conditionai simulations are fairly smooth since hundreds of thousands of pairs were 

involved in each variogram calculation and that resulted in smooth effect. As a result, the 

difference between the variograms of these simulations is indistinct. In companson with 

the histogram and vanograrn mode1 of Ca residuals shown in Figure 7.8 and 7.11, these 

conditionai simulations reproduced the first and second-order moments of Ca residuals. 

Figure 7.20 and 7.21 show the two simulations of Ca residuals usinç SGGS. Each 

simulation has three time slices (1980, 198 1, 1982). Note that a sequential extemal path 

dong the E-W direction with an inverse-direction interna1 path was adopted in the 

implementation, and the results show that there are no distinct anifacts in the E-W 

direction (x axis). 

Figure 7.22 and 7.23 show the two simulations of Ca concentrations corresponding to 

residuals shown in Figure 7.20 and 7.21. Each simulation has three time slices (1980, 

1981, 1982). Though there are some local changes between these wo simulations, the 

regional bands of high and low values honor the same structure of Ca mapping shown in 

Figure 7.15 because of the trend. 



Sample: 50000 
Mean: -0.135 
S.D.: 15.914 

Sample: 50000 
Mean: -0.098 
S.D.: 16.240 

Figure 7.18 Histogrms of two conditional simulations of Ca residuais generated by 

SGGS. 



Figure 7.19 Omnidirectional variograms of two conditional simulations of Ca residuals 
generated by S G G S  . 



Simulation of Ca residual at 1980 

Simulation of Ca residual at 1981 

Simulation of Ca residual at 1982 

Figure 7.20 A conditional simulation of Ca residuals at three time slices (1980, 1981, 1982) 

generated by using SGGS. 



Simulation of Ca residual at 1980 
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Simulation of Ca residual at 1 

Simulation of Ca residual at 1982 

Figure 7.2 1 A conditional simulation of Ca residuais at three time slices ( 1980, 198 1 ,  1982) 

generaied by using SGGS. 



Ca simulation at 1980 

Ca simulation at 1981 

Ca simulation at 1982 

Figure 7.22 A conditional simulation of Ca concentrations at three time slices ( 1980, 198 1, 1982). 



Ca simulation at 1980 

Ca simulation at 1981 

Ca simulation at 1982 

Figure 7.23 A conditional simulation of Ca concentrations at three time slices (1980, 198 1, 1982). 



7.6.2 Conditional Simulations of Ca Residuals Using Sirnulated Annealing 

The conditional simulations were also generated using simulated annealing to examine 

the impact of expenmental variogram reproduction of Ca residuals. The space- 

ormidirectional experimental variograrns were used to construct the objective function. 

The implementation parameters of the simulated annealing algorithm were set as 

follows: 

PO: the initial 'temperature' was set to 1 .O. 

1: the reduction factor was set to O. 1. 

: the maximum nurnber of attempted perturbations was set to 600,000. 

K t :  the acceptance target was set to 60,000. 

S : the stop number was set to 3.  

A 0 :  the low objective function indicating convergence was set to 0.02. 

N,: the number of nodes in neighborhood, to be taken into account in the objective 
hnction updating of each swap, was set to 600. 

The parameter NmV determines the nurnber of experimental vanograrns to be 

reproduced through irnplementation. Since the simulation lag is usually smaller than that 

involved in experimental variogram calculation (in the case study the simulation lag is 0.2 

km while the space lag involved in expenmental variogram calculation is 0.6 km), a large 

N,, is needed for the reproduction of whole expenmental vanograms. For instance, to 

reproduce a total of 130 expenmental va r iopm values of Ca residuals, N,,, has to be set 

to at least (0.6~25/0.2)'~5 = 28125, which will claim colossal arnount of computing time. 

Consequently, a N,, of 600 implies that only a small portion of expenmental variograrns 

of Ca residuals can be reproduced. Fortunately, this portion inciudes the experimental 

variograrns associated with nearest nodes which are most signifiant in experimental 

variogram reproduction. 

Figure 7.24 shows the histograrns of two conditional simulations of Ca residuds. They 

are quite close to the histogram of Ca residuals s h o w  in Figure 7.8. Figure 7.25(a) shows 

the portion of experimental variograrns of Ca residuals required to be reproduced in the 

simulations (y*(h, r) with M ( h )  and tabear)), (b) and (c) show the portions of the 



corresponding expenmental variograms of the two conditional simulations. The similarity 

of these pictures indicates that these conditional simulations reproduced adequately the 

structure of expenmental variograms. 

Figure 7.26 and 7.27 show the two conditionai simulations of Ca residuals by using the 

simulated annealing, and the corresponding simulations of Ca concentrations are shown in 

Figure 7.28 and 7.29. Sirnilarly to the results by using the SGGS shown in Figure 7.22 and 

7.23, the regional distribution of higMow value bands remains unchanged due to the 

impact of the trend. 



Sample: 50000 

I Mean: 4.040 
S.D.: 16.028 

375 ; 
Sample: 50000 

I Mean: -0.033 
I 
I !l S.D.: 16.063 

Figure 7.24 Histograms of two conditional simulations of Ca residuals generated by the 
simulated annealing. 



Figure 7.25 Space-Ornnidirectionai vanograms of Ca residuais are shown in (a), and 
space-omnidirectionai variogram of two conditional simulations of Ca 

residuais are shown in (b) and (c). 



Simulation of Ca residual at 1980 

Simulation of Ca residual at 1981 

Simulation of Ca residual at 1982 

Figure 7.26 A conditional simulation of Ca residuals at three time slices (1980, 198 1, 1982) 

generated by using the simulate. annealing. 



Simulation of Ca residual at 1980 

Simulation of Ca residual at 1981 

Simulation of Ca residual at 1982 

Figure 7.27 A conditional simulation of Ca residuds at three time slices (1980, 198 1, 1982) 

generated by usin8 the simulateci anneaiing. 



Ca simulation at 1980 

Ca simulation at 1981 

Ca simulation at 1982 

Figure 7.28 A conditional simulation of Ca concentrations at three t h e  slices (1980, 198 1: 1982). 



Ca simulation at 1980 

Ca simulation at 1981 

Ca simulation at 1982 

Figure 7.29 A conditional simulation of Ca concentrations at tbree tirne slices (1980, 198 1, 1982). 



7 . 7  Monitoring Scheme of Ca Concentrations 

This section will concentrate on the groundwater monitoring scheme with reference to 

Ca concentrations, in order to show the impact of the sampling grid on average local 

estimation errors and associated uncertainties. The sampling cnterion and control 

parameters are mentioned in Section 6.5.1, and the implementation procedure is similar to 

that discussed in Section 6.5.2. Since Ca concentrations are considered to be 

nonstationary, and are assumed to have the space-time trends given in Tables 7.4, their 

conditional simulations are generated by combining the space-time trend with realizations 

of residuals. The conditional simulations of Ca residuals were generated first by using the 

SGGS, and then by using the simulated annealing algorithm honoring experimental 

variograms. The size of the space-time gndblock to be estimated is chosen to be I .O(km)x 

l.O(km)xI(year). The selection of gridblock size is based on the average spacing of 

springwater data as well as the correlation structure of Ca concentrations. Consequently a 

total of 20~20x5=2000 gndblocks were estirnated. 

The sampling gnd was initially set with a spacing of 0.6(km)xO.6(km)x 1 (year), then the 

spacing was expanded to O.B(krn)x0.8(km)x 1 (year), 1 (km)x 1 ( h ) x  1 (year), and so on. By 

continuing this process of expanding the spatial spacing ultimately to 3 .O km, a variation 

curve of average local estimation error vs. spatial spacing was obtained. This procedure 

was repeated 40 times, in order to demonstrate the uncertainty associated with average 

local estimation errors. 

7.7.1 Sampling Results 

Based on the simuiations of Ca concentrations using the SGGS, the variation of 

average local estimation error was calculated, which is shown in Figure 7.30. The average 

local estimation error is flat when the spatial spacing is from 0.6 km to 1.0 km, and then it 

increases quickly when the spacing is from 1.0 km to 1.4 km. The estimation error keeps 

flat again when the spacing is from 1.4 km to 2.6 km, finally it increases quickly after 2.6 

km. 

The sampling investigation was dso performed with the simulations using the simulated 

annealing, and the average local estimation error vs. spatial spacing is shown in Figure 

7.3 1. In cornparison with Figure 7.30, they are highly similar to each other. These results 

suggest that the optimal spatial spacing is approxirnately 1.0 km. Note that the average 



estimation error is fairly high (20%-50%) compared with the result shown in Figure 6.28 

(<20%), this is tme because Ca concentrations are treated to be nonstationary while the 

reservoir pressure is treated to be stationary. In general the local estimation enor of a 
nonstationary process is larger than that of a stationary process. 



spatial spacing (km) 

Figure 7.30 Average 1-1 estimation error vs. spatial spacing. The thick line indicates the 

means. The conditional simulations of Ca residuals were generated by the SGGS. 

spatial spacing (km) 

Figure 7.3 1 Average local estimation errors vs. spatial spacing. The conditional 
simulations of Ca residuals were generated by the simulated annealing. 



7.8 Summary 

In the present study, the space-time rnodelling of springwater contents was performed 

using the data fiom a study of spring water in the Dyle watershed. Under the framework 

of S m  modelling, space-time continuity charactenzations, space-time estimations, 

space-time conditional simulations, and space-time monitoring scheme of spnngwater 

contents were accomplished. Due to the nonstationary properties of spring contaminants, 

the proposed methodology is a decomposition~combination process: first, decompose 

spring contaminants into trend components and residual components by trend-surface 

analysis; then, study residual components with space-time continuity characterization tools 

to obtain space-time variogram models and required conditional simulations of residuals; 

finally, use trend models and vanogram models to estimate variations of spnngwater 

contents, and combine trend components with residual simulations to construct 

simulations of springwater contents for sampling investigation. 

The space-time trend of springwater contents was recognized by using trend-surface 

analysis, leading to residuals with isotropie stnxtures of space-time continuity. The space- 

time mapping of spnngwater contents was performed by using S/T block UK, and the 

results were compatible with previous work in this area. 

The conditional simulation of Ca concentrations were generated by combining the trend 

with the simulation of Ca residuals. Because of the presence of a trend, the randomness of 

simulations of Ca concentrations is greatly lowered compared with that of Ca residuais, 

which can be seen in Figure 7.22 and 7.23, or in Figure 7.28 and 7.29. The main property 

of simulations of Ca concentrations is the combination of the randomness owned in 

simulations of Ca residuals and the determination owned in the trend. The monitoring 

scheme was investigated using conditional simulations of Ca concentrations, and the result 

suggests that the optimal spatial spacing is approximately one kilometer. 

The simulated annealing algorithm hono ring experimental variograms provides a means 

to generate conditional simulations that incorporate the natural properties of 

spatiotemporal processes. Furthemore, it suggests the possibility that the continuity 

characterization aep may no longer be prerequisite for conditional simulations. However, 

the case study shows that the long running time of the implementation process greatly 



constrains its capacity for large-sale spatiotemporal simulations. For example, if one 
wants to obtain a denser simulation, which shortens the simulation spacing fiom 0.2 km to 
0.1 km in the case study, then the maximum number of attempted perturbations and the 

acceptance target have to increase four times, and the nurnber of experimental variograrns 
involved in each objective function updating also has to increase four times to ensure the 

reproduction of the sarne required variograms. This implies that the mnning tirne will 

increase by 16 times. Therefore, future research associated with this algorithm should 

focus on the reduction of running time, in order to make it applicable for large-scde 

spatiotemporal simulations. 



Chapter 8 

Conclusions and Recommendations 

This chapter summarizes the project results and outlines how the initial objectives have 

been reached. Recomrnendations for further work are finally highlighted. 

8.1 Conclusions 

According to the specific objectives addressed in Chapter 1, the systematic analysis of 

spatiotemporal processes was studied with regard to three aspects: the space-time 

continuity characterization, the space-time estimation, and the space-time simulation. For 

the space-time characterization, spatiotemporal expenmental variograms were displayed 

with recognition of different space and time measures to show the nature of space-time 

continuity of spatiotemporal processes. Features of the space-time continuity were 

surnrnarized in terms of both traditional hypotheses such as homogeneity, anisotropy, and 

regularity, and speciai hypotheses for space-time continuity such as separability. The 

permissibility criteria of space-time covariance models were proposed and two popular 

types of covariance models were discussed: separable models and joint-distance models. A 

general form of spatiotemporal covariance functions was also addressed. 

The estimation of spatiotemporal processes was developed in terms of space-time 

kriging techniques. The singularity analysis of simple/ordinary space-time knging 

techniques was carried out showing that any strictly positive definite covariance mode1 

ensures a unique solution to simpldordinary space-time kriging systems. The cntena of 

strictly positive definite functions were consequently proposed. The singularity analysis of 

universal space-time kriging techniques was ernphasized in the form of space-time trends 

and data configuration. Finally, the tensorial invariance of universal spatioternporal kriging 

systems was investigated in terms of the space-time trend. 

The conditional simulation techniques of spatiotempord processes were developed in 

terrns of SGGS and the simulated annealing honoring experimentai variograms. The 

SGGS is actudly a senes of sequential simulation algonthms associated with difEerent 

group sizes, including SGS and LUD. The optimal aigorithm is the 0.5~-SGGS whose 

group size is around half of the neighborhood size v, and its running time is practically 2-7 

times faster than the current SGS depending on the neighborhood size. The simulation 



error caused by ignonng fmher information during the SGGS process was characterized 

by the SEA loss and investigated with popular covariance rnodels using different 

simulation grids. The optimal neighborhood sizes with acceptable SEA loss were 

provided. The simulated annealing algorithm with expenmental vanogram reproduction 

was proposed, with an emphasis on the interpolation of expenmental variograms and the 

improvement of the implementation process as well. Ihis provides a way of generating 

reaiizations of spatiotemporal processes without covariance/variogram mode1 fitting, 

which is prerequisite for other simulation algonthms. 

The techniques of S/TRF modelling were used first for modelling the pressure system 

in a carbonate reservoir. The quantification of continuity patterns in terms of 

spatiotemporal variograrns was used to subsequently estimate and conditionally simulate 

the reservoir pressure. Finally, groundwater monitoring in terms of spatiotemporal 

processes was investigated using spnngwater data in the Dyle watershed. The space-time 

trends of three contaminants were recognized through trend-surface analysis. The 

estimation of spnng contaminants was performed using the space-time block UK. The 

sampling gnd of groundwater monitoring was investigated in terms of Ca concentrations. 

The results of these case studies as well as the theory suçgest that the techniques of 

S1TR.F modelling are realistic and feasible. 

8.2 Recomrnendations 

The following issues remain open to hrther research and enhancement: 

1. Space-Time covariance/variogram models are cruciai for S/TRF modelling. Futher 

research could be directed to investigate various types of permissible space-time 

covariance models in addition to joint-distance rnodels and separable models. 

2. Spatiotemporal estimation techniques are extensiveiy used in geoscience applications. 

It would be interesting to consider the development of other estimation techniques 

such as spatiotemporal indicator kriging and RF--k methods. As for spatiotemporal 

IRF-k, the permissible models would be deliberately investigated. 

3.  The SGGS greatly irnproves Gaussian simulations in tems of ruMing time. The 

strategy of the SGGS could also apply to multivariate Gaussian simulations without 



huge modifications. The SEA ioss of multivariate simulations could be discussed in a 

similar marner. 

4. The simulated annealing technique with experimental variogram reproduction has the 

great benefit of generating simulations with more naturai propenies of space-time 

continuity. However, its computing time greatly constrains its capacity for large-scale 

spatiotemporai conditional simulations. The fùrther research should focus on the 

improvement of implementation in terms of mnning time. 

5. Sarnpling investigation of spring contaminants focused on the evaluation of average 

local estimation error and associated uncertainty using different sampling grids. The 

economic impact on sampling investigation was not taken into account due to the 

lack of information. In eni~romental engineering, it is more interesting to estimate 

optimal sampling with regard to sampling and remediation costs. Further research 

could constmct econornic objective hnctions and evaluate their uncertainties as a 

fùnction of different sampling grids. 
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