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Abstract

Spatiotemporal processes occur in many areas of earth sciences and engineering.
However, most of the available theoretical tools and techniques of space-time data
processing have been designed to operate exclusively in time or in space, and the
importance of spatiotemporal variability was not fully appreciated until recently. To
address this problem, a systematic framework of spatiotemporal random field (S/TRF)
models for geoscience/engineering applications is presented and developed in this thesis.

The space-time continuity characterization is one of the most important aspects in
S/TRF modelling, where the space-time continuity is displayed with experimental
spatiotemporal variograms, summarized in terms of space-time continuity hypotheses, and
modelled using spatiotemporal variogram functions. Permissible spatiotemporal
covariance/variogram models are addressed through permissibility criteria appropriate to
spatiotemporal processes.

The estimation of spatiotemporal processes is developed in terms of spatiotemporal
kriging techniques. Particular emphasis is given to the singularity analysis of
spatiotemporal kriging systems. The impacts of covariance functions, trend forms, and
data configurations on the singularity of spatiotemporal kriging systems are discussed. In
addition, the tensorial invariance of universal spatiotemporal kriging systems is
investigated in terms of the space-time trend.

The conditional simulation of spatiotemporal processes is proposed with the
development of the sequential group Gaussian simulation techniques (SGGS), which is
actually a series of sequential simulation algorithms associated with different group sizes.
The simulation error is analyzed with different covariance models and simulation grids.
The simulated annealing technique honoring experimental variograms is also proposed,
providing a way of conditional simulation without the covariance model fitting which is
prerequisite for most simulation algorithms.

The proposed techniques were first applied for modelling of the pressure system in a
carbonate reservoir, and then applied for modelling of springwater contents in the Dyle
watershed. The results of these case studies as well as the theory suggest that these
techniques are realistic and feasible.



Résumé

Le processus spatio-temporel se présente dans un grand nombre de domaines des
sciences de la terre et de I'ingénierie. Cependant, la plupart des outils théoriques
disponibles et des techniques pour traiter les données dans I’espace et le temps ont été
établis indépendamment dans le temps ou dans I’espace; I'importance de la variabilité
spatio-temporelle n’était pas appréciée jusqu’a maintenant. En ce qui concerme ce
probléme, un cadre systématique du modéle spatio-temporel aléatoire (S/TRF) pour les
applications géoscientifiques et de génie est présenté et aussi développé dans cette theése.

La caractérisation de la continuité dans I’espace et le temps est I’'un des plus importants
aspects de la modélisation S/TRF, ou la continuité dans I’espace et le temps est démontree
par le variogramme spatio-temporel expérimental. Elle est résumée en terme d’hypothese
de continuité dans [’espace et le temps et, modélisée en utilisant les fonctions du
variogramme spatio-temporel. Les modéles permissibles de covariance/variogramme
spatio-temporel sont adressés par des critéres de permissibilité appropriés au processus

spatio-temporel.

L’estimation du processus spatio-temporel est développée en terme de Krigeage spatio-
temporel. Le point clé est I’analyse de singularité du systéme de Krigeage spatio-temporel.
L’influence de la fonction de covariance, de tendances et de configurations des donnees
sur la singularité du systéme de Krigeage spatio-temporel sont discutés. De pius,
I'invariance tensorielle du systéme de Krigeage spatio-temporel universel est analysée en

termes de tendances dans |’espace et le temps.

La simulation conditionnelle du processus spatio-temporel est proposée avec le
développement d'une technique de simulation gaussienne en groupe séquentiel (SGGS),
qui est actuellement une série de simulations séquentielles associées a des groupes de taille
différente. L'erreur de simulation a été analysée avec différents modéles de covariance et
grilles de simulation. La techique de détrempe simulée pour reproduire les variogrammes
expérientaux est aussi proposée, donnant ainsi une méthode de simulation conditionnelle
sans simuler le modele covariance qui est une condition préalable pour la plupart des
algorithmes de simulation.



Les techniques proposées ci-dessus ont été appliquées a la modélisation du systéme de
pression dans un réservoir au sein de carbonates, puis, elles sont utilisées pour la
modélisation du chimisme d'eaux de source dans la région de ligne de partage des eaux de
la Dyle. Les résultats des études sur ces exemples ainsi que ceux de la théorie suggerent

que les techniques présentées sont réalistes et faisables.



Acknowledgments

I would like to express my thanks to all those who helped me to complete this study. In
particular, I wish to express my thanks to my supervisor, Professor R. Dimitrakopoulos
for his guidance, encouragement and support in every aspect of my life at McGill
University, without him I could not have undertaken this work. I wish to thank Professor
M.L. Bilodeau for his careful correction of my thesis. I also wish to thank other staff
members in the Department of Mining and Metallurgical Engineering at McGill University
who made me welcome and had their doors open for discussions.

[ wish to thank M. Dagbert for his constructive comments and recommendations on
estimation and conditional simulation techniques, B. Noland for providing pressure data
and valuable advice on the case study of reservoir pressure modelling, and P. Goovaerts

for providing the spring data.

The financial support for this work was provided by the National Science and
Engineering Research Council of Canada (OGP0105803), to R. Dimitrakopoulos.

Finally, [ wish to thank my wife Ping and my little daughter Kathy for their support in
my endeavors, and my parents for their forever encouragement in my life.

v



Statement of Originality

Based on the distinct characteristics of spatiotemporal processes in geoscience
applications, this research develops a theoretical framework and applicable techniques of
spatiotemporal stochastic models with regard to three aspects: the space-time continuity
characterization, the estimation of spatiotemporal processes, and the conditional
simulation of spatiotemporal processes. The following paragraphs describe the author’s
original contributions to the development of spatiotemporal stochastic models.

The space-time continuity characterization is established in terms of the space-time
continuity description, continuity hypotheses, and covariance/variogram modelling. The
permissibility criteria of space-time covariance models are proposed. Two types of
permissible covariance functions are introduced for covariance modelling, estimation, and
conditional simulation of spatiotemporal processes. The properties of these permissible

covariance functions are also analyzed.

The estimation of spatiotemporal processes is developed in terms of space-time kriging
techniques. The singularity analysis of space-time kriging is introduced with regards to
covariance models, trend models, and data configurations. Many failures of krging
computations in practice can be interpreted using this singularity analysis. In addition, the
tensorial invariance of universal spatiotemporal kriging systems is analyzed with space-
time trend models, and the result indicates several constraints in the selection of trend

models.

The conditional simulation techniques of spatiotemporal processes are developed in
terms of sequential group Gaussian simulation (SGGS) and the simulated annealing
honoring experimental variograms. After proving that the LU decomposition technique
(LUD) is equivalent to the sequential Gaussian simulation technique (SGS) in terms of
simulation results, this research proposes the SGGS technique which is a series of
sequential simulation algorithms including SGS and LUD. The optimal SGGS is the 0.5v-
SGGS whose group size is around half of the neighborhood size v. The simulation error
caused by ignoring farther information during the SGGS implementation is introduced in
terms of the screen effect approximation loss and investigated with popular covariance
models using different simulation grids. The simulated annealing honoring experimental
variograms is proposed, providing a way of generating realizations of spatiotemporal



‘ processes without the covariance or variogram model fitting, which is prerequisite for
most simulation algorithms.
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Chapter 1

Research Goal and Objectives

1.1 Introduction

Spatiotemporal processes develop simultaneously in space and time. These processes
occur in many areas of earth sciences and engineering, such as environmental engineering,
the mining industry, petroleum reservoir engineering, geohydrology, renewable energy
engineering, and meteorology.

Environmental engineers monitor the concentrations of atmospheric pollutants. These
concentrations and their effects depend on meteorological conditions such as precipitation,
air turbulence, wind direction and speed, cloud cover, as well as on the sources and the
locations of the pollutants. These conditions may vary from location to location, and from
time to time. Groundwater pollutant concentrations also show a strong spatiotemporal
variation that depends on geological and geographical settings, weather variations, and
human activities (e.g., Gilbert, 1987; Switzer, 1988).

In the mining industry, several problems relate to space-time variability. For example, in
mining environmental management, environmental contamination, such as acid mine
drainage, varies in space and time simultaneously. In rock mechanics, certain parameters
such as the stress in a pillar, as well as rock deformations caused by mineral extraction,
can change in different locations and in time. In mineral reserve assessment and evaluation,
the dollar equivalence of mining blocks in polymetalic deposits varies depending on their
spatial locations as well as on market fluctuations.

In petroleum reservoir engineering, reservoir properties may not only be variant in
space, as present modelling techniques assume, but also simultaneously variant with
production time -- particularly when enhanced oil recovery techniques are applied. For
instance, one of the most important dynamic attributes, the reservoir pressure, varies
simultaneously in space and in time. Some properties of the reservoir fluids may aiso
change in the space-time domain, such as the oil, gas, and water viscosity, saturation,

density, and compressibility.



In geohydrology, rainfall structures are commonly described as spatiotemporal
processes -- varying simultaneously with geographical location and time. The head of the
water table changes not only spatially but also temporally depending on the variation of
groundwater recharge rates (e.g., Zawadzki, 1973; Mejia and Rodriguez-Iturbe, 1974;
Rouhani and Wackernagel, 1990).

In renewable energy engineering, the occurrence and intensity of wind are functions
that change with respect to space locations and time instances, and solar irradiation
changes daily, monthiy and yearly, and vanies depending on location (e.g., Haslett and
Raftery, 1989; Loutfi and Khtira, 1992). Similar situations may also be found in the study
of sea waves and tidal energy.

In meteorology, weather observations including temperature, pressure, humidity, wind
velocity, and various special elements are made hourly at numerous stations or even more
frequently during a time of rapid weather changes. These observations are interpreted in
terms of weather systems which are fitted onto a weather map. The spatiotemporal
variations of weather parameters are apparent from the change and the movement of these

systems on a sequence of weather maps.

Perhaps the most helpful information that can be used in the modelling of
spatiotemporal natural processes is a description of how the space-time phenomenon in
question was generated. In certain situations, the physical or chemical processes that
generated the data set might be known in sufficient detail, therefore, a deterministic model

might be adequate.

Unfortunately, very few geoscientific processes are understood well enough to permit
the application of deterministic models. Even though we do know the physics or chemistry
of many spatiotemporal processes, the vaniables of interest in geoscientific data sets are
typically the end result of a vast number of processes whose complex interactions we are
not yet able to describe quantitatively. For the vast majority of geoscientific space-time
data sets, we are forced to admit that there is a significant amount of uncertainty about
how the phenomenon behaves in the space-time domain. Stochastic analysis of
spatiotemporal processes recognizes this fundamental uncertainty and gives us tools for
modelling space-time variations in terms of stochastic processes.
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1.2 Stochastic Analysis of Spatiotemporal Processes: Problem Definition

The development of a method for the stochastic analysis of spatiotemporal processes
that is able to model spatiotemporal vanations systematically is still in the pnimitive stages.
In some geoscience/engineering fields, an awareness of the problem of stochastic
modelling of spatiotemporal vanates exists. However, most approaches are simplistic and

consider space and time separately.

In geohydrology, methods of analysis either create artificial decomposition of the
hydrologic variates of interest -- one in time and one in space -- and study each separately
(e.g., Mejia and Rodriguez-lturbe, 1974), or focus on moving space modelling by
accounting for invariant velocities (e.g., Zawadzki, 1973). Other methods of analysis focus
on muitivariate modelling, in the sense of mutually related spatial variables (e.g., Rouhani
and Wackernagel, 1990).

In environmental engineering, the existing stochastic models have been designed to
handle different problems. They refer to either specific space-time interaction systems in
which the variates are treated at each spatial location as a separate time series (e.g.,
Gilbert, 1987), or the averaged models which simplify the spatiotemporal variation into
averaged spatial variations (e.g., Switzer, 1988).

In renewable energy engineering, the available models either independently investigate
temporal variations at different locations in the study of solar irradiation (e.g., Loutfi and
Khtira, 1992), or separately estimate spatial variations at different time instances by
ignoring temporal dependence, as in the study of wind power resources (e.g., Haslett and
Raftery, 1989). In renewable energy engineering, a procedure to describe space-time

interactions does not exist.

In petroleum reservoir characterization, there is currently no method of spatiotemporal
stochastic analysis. Most available techniques account exciusively for the spatial variation
of geological reservoir processes. Also, most current practices in data collection do not

account for time.



The reasons for such clearly inadequate analysis of space-time data may be attributed to
two facts: (i) most of the available theoretical tools and techniques of space-time data
processing have been designed to operate exclusively in time or exclusively in space, and
(i) the importance of spatiotemporal variability in the study of space-time phenomena was
not fully appreciated until recently.

1.3 Spatiotemporal Random Field Models: Problem Statement

In order to perform a systematic analysis of space-time data, we will employ the
concept of the spatiotemporal random field (S/TRF). Within the framework of the S/TRF
model:

a. Space and time form a combined process having simultaneous and interrelated effects
on the evolution of the physical variate represented.

b.  Suitable hypotheses and operational tools assure that the mathematical concept of a
S/TRF is compatible with the physics of the vanate it describes and, thus, it is
applicable 1n practice.

S/TRF models have not been developed until recently. A general framework of
mathematical definitions for S/TRF models was developed by Christakos (1992).
However, despite this systematic introduction of some basic notations for S/TRF models,
several aspects remain to be developed:

1. Space-Time continuity characterization. Space-Time continuity needs to be described
in such a way that the space-time simultaneousness can be characterized. After an
appropriate description of space-time continuity, a systematic investigation of space-
time continuity in terms of second-order moments needs to be performed, including
the development of a reasonable hypotheses of space-time continuity, suitable
covariance/variogram models, and permissibility criteria of covariance/variogram
models.

2. Spatiotemporal kriging techniques. Spatiotemporal kriging techniques that can handle
various space-time covariance/variogram models and space-time drifts need to be
developed. Stability analysis of spatiotemporal kriging systems in terms of data
configuration also needs to be investigated.



3. Spatiotemporal conditional simulation techniques.

4. Applications of S/TRF models in applied geosciences and engineering.

1.4 Goal and Objectives

On the strength of the foregoing considerations, the goal of this research project is to

develop S/TRF models for earth science and engineering applications. To achieve this

goal, the following specific objectives are set:

(88

The development of the space-time continuity description by means of
spatiotemporal experimental covariances and variograms, and the hypotheses that
can reflect and summarize adequately the characteristics of the space-time continuity
of the data.

The development of the required second-order models of S/TRF that match the
hypotheses of the space-time continuity. The permissibility and inference of these
models will be emphasized.

The development of the spatiotemporal point/block ordinary kriging systems and its
singularity analysis, and the implementation of the corresponding computational

equivalent.

The development of the spatiotemporal point/block universal kriging systems and its
singularity analysis, and the implementation of the corresponding computational

equivalent.

The development of conditional spatiotemporal simulation techniques that may
handle large scale simulations, and the simulation algorithms that can reproduce
experimental covariance/variogram characteristics.

Demonstrate the applicability of spatiotemporal stochastic models in various
geoscience and engineering applications.



1.5 Thesis Outline

Chapter 2 surveys previous work and developments in spatiotemporal stochastic
analysis applied to the geosciences. Six types of spatiotemporal stochastic models are
summarized: averaged models, moving trend models, multivariate models, simple
combination models, moving space models, and S/TRF models.

Chapter 3 provides the space-time continuity characterization in terms of three aspects:
the space-time continuity description, hypotheses, and space-time covariance/variogram
models. The space-time continuity description is investigated with spatiotemporal
experimental covariance/variograms. The space-time continuity hypotheses are
summarized with respect to four aspects. The permissibility criteria of space-time
covariance/variogram models are proposed, and two types of permissible covanance

models are introduced.

Chapter 4 presents the estimation of spatiotemporal processes in terms of
spatiotemporal kriging techniques, along with the singularity analysis of the kriging system
with regard to covariance models, trend models, and data configurations. The
permissibility of trend models in terms of tensorial invariance is also investigated.

Chapter 5 describes spatiotemporal simulation techniques. After proving that sequential
Gaussian simulation (SGS) is equivalent to the LU decomposition algorithm (LUD) in the
sense of simulation results, a new simulation technique, called sequential group Gaussian
simulation (SGGS), is introduced. The screen-effect error associated with sequential
simulation algorithms is analyzed, and optimal grid size under the required error level is
discussed. In addition, another new simulation technique, called simulated annealing
honoring experimental variograms, is proposed.

A case study of a reservoir pressure system is given in Chapter 6. This case study
illustrates the spatiotemporal ordinary kriging technique developed in Chapter 4, and
SGGS developed in Chapter 5. The methods of Chapter 3 are applied to characterize the
space-time continuity of the reservoir pressure and the fitted covariance mode! is used in
spatiotemporal ordinary kriging to estimate the pressure distribution in the space-time
domain. The sampling design is investigated using simulation results generated by SGGS.



A case study of spatiotemporal modelling of springwater contents is given in Chapter 7.
It illustrates the spatiotemporal universal kriging technique developed in Chapter 4, SGGS
and the simulated annealing technique honoring experimental variograms developed in
Chapter 5. The spring data set of Ca*, CI*, and NO3* concentrations are decomposed into
the space-time trend components and residuals using trend-surface analysis. The space-
time mapping of springwater contents is performed using spatiotemporal universal kriging.
The monitoring scheme of springwater contents is investigated using the simulation results
generated by both SGGS and simulated annealing.

Chapter 8 contains conclusions and recommendations.

1.6 Basic Definitions

The following definition of an ordinary S/TRF, based on Christakos' works (1991,
1992), will be quoted in the following chapters.

The space-time domain can be defined as the Cartesian product R"xT, with (s, t} € R"x
T being space-time coordinates, and X(s, t) being a S/TRF from R"xT into [0, =<].

An ordinary S/TRF (OS/TRF) X(s, t) can be defined as the function on the space-time
domain R"xT with values in the Hilbert space L,(Q, F, P); that is,
X:RixT - L,(Q, F, P)
All OS/TRFs are considered to be continuous in the mean square sense.

The most common type of OS/TRF is the second-order OS/TRF; that is, the analysis
will be based on all S/TRFs up to second-order statistical moments assumed to be
continuous and finite. More precisely, a second-order OS/TRF X(s, t) will be
characterized by
(1) the spatiotemporal mean value

m(s, t) = E[X(s, t)] =E[X(z)] = f :XdF(X) (1.1)

where F(X) denotes the probability function of X(s, t) such that
F(X) =P[X < X(s, t)} = P{X < X(2)]
(2) the spatiotemporal variance
Var{X(s, t)} = E{[X(s, t) - m(s, )]*}= f:(x - m)y2dF(X) (1.2)



(3) the spatiotemporal covariance function
C(s, t; s, t) = E{[X(s, t) - m(s, t)][X(s", t") - m(s', t')]}

= f’“’ f"(x -m)(X' - m)dF(X X (1.3)
(4) the spectral density of the spatiotemporal covariance function
A = .__1__._ -l(lrvl'fl"ﬁnlﬁoi') ol ! ' [}
S(A 0\, 0") (2n)<mllﬂfrfa“f1fa"e C(s,t;s',t") ds dt ds' dt (1.4)
(5) the spatiotemporal variogram function

¥(s, t; 8, 1) = %E[X(s, t) - X(s, t)]? = % [0 - KPR (1.5)

Very often S/TRFs used in applications may be stationary, or are considered locally
stationary: An OS/TRF X(s, t) will be called stationary in the wide sense if its mean and
covariance do not change under a shift of the parameters; that is,

my(s, t) = constant (1.6)

and
Cu(s, t; 8, t)Y=Cyh, 1) (1.7)
Yu(s, t; 8, t')=Yy(h, 1) (1.8)

where h=s-s', and t =t - t'. It is easy to show that the covariance and the variogram are
related by
Cy(h, 1) = C\0, 0) - yx(h, 1) (1.9)

An OS/TRF X(s, t) will be called space-isotropic/time-stationary, if its covariance
becomes
C(h, 1)=C(r, 1)
and
Y(h, 1) =Y(r, 7)
where r = |h| and A = |A|.

An OS/TRF X(s, t) that does not satisfy Equation 1.6 or 1.7 will be called a
nonstationary RF. Very often a nonstationary RF X(s, t) may be assumed to have the
following form

X(s, ) =Y(s, t) + m(s, t) (1.10)
where Y(s, t) is stationary with a mean of zero and a covariance function C,(h, t), and
m(s, t), called the drift or trend of X(s, t), is a function of the coordinates (s, t) € R®xT.
The expectation of X(s, t) is given by



. E[X(s, t)] = m(s, t)
and its covariance function is given by
C.(h, t)=Cy(h, 1)
This indicates that the covariance function of X(s, t) is identical to that of the residual Y{s,

t).



Chapter 2

Literature Review

2.1 Overview

This chapter reviews previous work and developments in the stochastic analysis of
spatiotemporal processes in applied geosciences and engineering. The two main objectives
of past attempts were to make models and estimate spatiotemporal vanates.

Most applications of the stochastic analysis of spatiotemporal processes in applied
geosciences and engineering is focused on two areas: geohydrology and environmental
engineering. In geohydrology, the main focus is on the space-time modelling of rainfall
related processes, and most research selects separable models that are rather simplistic and
easily investigated by available spatial techniques. In environmental engineering, the
majority of work focuses on the space-time estimation of pollutant concentrations. To
accomplish this task, researchers have employed many techniques including the spatial
estimation technique based on time-averaged spatial covariance models, muitivariate
estimation techniques (cokriging) to interpolate missing data, and intuitively developed
estimation techniques based on joint distance spatiotemporal covariance or variogram
models, but without permissibility and singularity considerations.

Stochastic spatiotemporal conditional simulations have not yet been developed.
Stochastic conditional simulation is a statistical method which, with known data from
available control locations, assigns simulated values of the characteristics of interest to a
grid of points with the desired density. The simulated variable, while reproducing the
known information at the sample locations, also faithfully mimics the vanability between
sample locations. Stochastic conditional simulation was introduced into geostatistics
literature by Journel (1974), and several other developments on spatial conditional
simulations have been presented recently (e.g., Verly, 1993; Deutsch, 1992; Issaks, 1991,
Dimitrakopoulos, 1990; Journel, 1989; Davis, 1987, Mantogiou, 1987).

2.2 Current Stochastic Models of Spatiotemporal Processes

There are a variety of stochastic models used for modelling spatiotemporal processes in
geoscience and engineering applications. In this section, six types of current models are
introduced. Despite the fact that these models can not entirely cover the field of
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spatiotemporal stochastic modelling, they summarize a general trend of spatiotemporal
stochastic analysis in applied geoscience and engineering.

Table 2.1 provides a summary of these models, the details of which are discussed in the

rest of this section.
2.2.1 Averaged Models

A typical and simple way of traditional spatiotemporal analysis is that of averaged
models. Consider the data observed in the space-time domain, at any specific time instance

t,, the corresponding spatial experimental covariance can be calculated by
Nihtp

CHh, 1) = g:l—w 2 ((xsi ) - m] (s + 80 - ) @.1)

where Nih, 1) denotes the number of data pairs separated by the distance vector h at the
time instance t,, and m: denotes the mean of available data at t,. Furthermore, if one
assumes that C*(h, t,) is approximately invariant over time, the overall spatial
experimental covariance can then be achieved by averaging spatial experimental
covariances with respect to the time series. Thus, the space-time estimation is simplified to
a regular spatial estimation, based on the time-averaged spatial covariance models (e.g.,
Bilonick, 1983; Switzer, 1988).

In a study of atmospheric acid deposition in the northeastern part of the United States,
Egbert and Lettenmaier (1986) introduced a similar consideration. They proposed that a
RF in the space-time domain can be expressed by

Zy(x) = Wy (x) + Ya(x) +Mg(x) (2.2)
where Wg(x), Yq(x) and Mg(x) represent week-to-week variations, year-to-year
variations, and a long-term mean, respectively. Consequently the spatiotemporal variations
become a linear combination of week-averaged spatial variations, year-averaged spatial
variations, and long-term-averaged spatial variaticns, and therefore the covariance model
used in the estimation is composed of these three types of averaged spatial covariances.

Averaged models are incompatible with the fact that spatiotemporal variates vary

simultaneously in time and in space. Furthermore, space-time continuity is not taken into
consideration.
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Table 2.1 Current Stochastic Models of Spatiotemporal Processes
Model Characteristics Space-time References
continuity
no account for temporal Bilonick (1983), Egbert
Averaged variability. unaccounted and Lettenmaier (1986),
Switzer (1988).
separately models spatial
Moving trend variations in time series. unaccounted Berkowitz et al. (1992).
Solow and Gorelick
interpolates missing data (1986), Rouhani and
Multivariate by cokriging, based on partially Wackerngel (1990),
the interactions between accounted Rouhani et al. (1997),
location variables. Goovaerts and Sonnet
(1992).
Spatiotemporal Mejia and Rodriguez-
variations are simplified Iturbe (1974), Eynon and
Simple combination | into a product or a sum simplified Switzer (1983), Bilonick
of spatial variations and (1985), Rodnguez-Iturbe
temporal variations. and Eagleson (1987),
Rouhani and Hall (1989).
is only suitable for
Moving space unidirectional variations limited Zawadzki (1973),

with a constant velocity.

Waymire et al. (1984).

S/TRF

systematically studies
spatiotemporal variations
in the entire space-time
domain.

fully accounted

Varmarcke (1983),
Bilonick (1987),
Christakos (1991, 1992),
Buxton and Pate (1993).
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2.2.2 Moving Trend Models

A moving trend model was proposed by Berkowitz et al. (1992) in the estimation of
hydrologic data, by representing the groundwater table as
H(x, y, t) = 0(x, y [ @) +e(x, y, t) (23)
where g(x, y, t) is white noise, d(x, y |@,) is a trend function of spatial coordinates with the
time-dependent coefficient vector ©,. When this trend function is linear, we have
b, y| Q) =A+ o x+ By (2.4)
the coefficient vector @t = (A¢, o, By). This approach is actually a 'moving trend analysis'
in the sense that the coefficients of trend analysis vary in time. The estimation at every
specific time is achieved by contemporaneous data only, indicating that there is no relation
between information in different times. This model does not account for the space-time

continuity.
2.2.3 Multivariate Models

In order to interpolate missing streamflow data in the space-time domain, Solow and
Gorelick (1986) proposed that the temporal variation in each location in space could be
regarded as a separate variable, thus n locations provide n variables that are mutually
related. From this viewpoint spatiotemporal variations are characterized by multivariate
fields with n separate 'location variables', each variates in time. Consequently, co-kriging

was used for the space-time estimation.

Rouhani and Wackerngel developed this work by accounting for the impact of different
time scales (1990). The cross variogram between the irh and jr# location variables is
expressed as a combination of variograms in different time scales. The variogram at the
specific time scale is given by an elementary variogram function, with a coefficient
determined through principal component analysis. Similar works can also be seen in
Rouhani et al. (1992). Goovaerts and Sonnet (1992) focus on the situation where the
sampling is denser in space than in time, so that the spatiotemporal variations are
characterized by 'time instance variables' instead of space location variables.

The multivariate model can estimate the spatiotemporal variations at observed space
locations or at observed time instances. It, however, fails to model and estimate the
spatiotemporal variations in the entire space-time domain. For example, if data is
measured at four locations in R!xT, shown in Figure 2.1(a), or at four time instances,
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. shown in (b), then the muitivariate models can only represent and estimate spatiotemporal
variations on lines, Therefore the multivariate models cannot systematically represent

space-time continuity.
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(a) space-time data measured from (b) space-time data measured from
4 space locations. 4 time instances.

Figure 2.1 Space-time data measured in specific space-time domains (represented by
shaded areas) in R'xT. The Multivariate model cannot model and estimate the
variations in the shaded areas except those at 4 space locations in (a) or at 4 time

. instances in (b).

2.2.4 Simple Combination Models

Mejia and Rodriguez-Iturbe (1974), in the study of rainfall networks, proposed that a

space-homogeneous/time-stationary RF Z(s, t) could be represented as

Z(s,t) = ZN, Xi(s)Yi(t) 2.5)
where Xj(s) are spatial random functions, and Yj(t) are temporal random functions
independent of X;(s). The corresponding covariance function is a separable model

C(h, 1) = C5(h)C(7) (2.6)
where h denotes a distance vector in space, t denotes an internal in time, and Cg(h) and
Cy(t) are spatial and temporal covariances, respectively. Similar discussion can also be
found in Rodriguez-Iturbe and Eagleson (1987), where the mean of the rainfall intensity
process was considered to be a function of time and therefore, a space-
homogeneous/time-nonstationary covariance model was used.
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Bilonick (1985) in a study of sulfate deposition in the Northeastern United States,
proposed that the sum of a spatial covariance and a temporal covariance could represent
the spatiotemporal covariance, such that

C(h, t) = C4(h) +Cy(7) (2.7)
where C,(h) and C,(t) are spatial and temporal covariances, respectively. This amounts to
a decomposition of the spatiotemporal covariance into the sum of independent purely
spatial and purely temporal components. Ordinary kriging (OK) and universal kriging
(UK) in R3 were used for estimations in R*xT. Similar work can also be found in Eynon
and Switzer (1983). Rouhani and Hall (1989) used the same model in spatiotemporal
universal kriging to estimate groundwater data.

Simple combination models reduce spatiotemporal variates to some combination of
separate and independent spatial variates (where the time variate can be regarded as a one-
dimensional spatial variate). All concepts and methods of spatial random fields can be
directly applied to these separable spatiotemporal variates. Separability implies that there
is no connection between the correlation structures of the random variation in time and
space. In addition, when the model of Equation 2.7 is used in kriging systems, a singularity
problem could occur (Dimitrakopoulos and Luo, 1993). The space-time continuity is
taken into account as a simple combination of spatial and temporal continuities.

2.2.5 Moving Space Models

In the study of rainfall data, Zawadski (1973) suggested that by considering the
velocity of the storm system U, and U,, the space-time domain could be transformed into
'storm space’, which is represented by (x-U,t, y-Uyt). The rainfall rate R(x, y, t) can be
rewritten in so called 'storm coordinates’ ,

R(x, y, 1) = R(x-Uyt, y-Uyt) (2.8)
All the statistical characteristics of the rainfall rates can then be studied in the light of
'storm coordinates'. Both the theory and the techniques of spatial random field are directly
applicable to this special type of the space-time domain. This consideration was developed
by Bras and Rodriguez-Iturbe (1976), where a spatiotemporal covariance is written as
COxi, ¥io 15 % ¥ 1) = C {05 - ¥i)? + [0 + U") - (x5 + Ut)2}12

where U, denotes the average storm velocity in direction x. Letting Ax = Xj - Xj, Ay =yj -
Vi, and At =t"- t', we obtain

C(x;, yi, 15 x5, ¥j, ") = C(Ax, Ay, At) = C{[Ay? + (Ax + U,At)?]12} (2.9)
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Waymire et. al (1984) introduced a similar but rather complicated way to deal with the
rainfall intensity at ground level. The rainfall intensity is regarded as a RF which has the
form

X(s, t) = ZX(t-; )Xa[s-(s; + U( t-t,)] (2.10)
where X, and X, are RF and independent, s; and t; are coordinates of birth center points in
a rain band, and U denotes the velocity. The covariance function, derived from the
integration of the joint density of X(s, t), is a non-stationary model.

\ ) — )

N

Figure 2.2 An example of a moving space model, a storm moving along one direction
with a constant velocity c.

The key point of moving space models is that spatiotemporal variates are transformed
into spatial variates by means of velocities, and the space-time continuity becomes a
moving spatial continuity. Moving space models are compatible with unidirectional
random processes with constant velocities, a simple example is illustrated in Figure 2.2.
Unfortunately, in practice most spatiotemporal processes are neither unidirectional nor
have constant velocities. This greatly limits the application of moving space models.

2.2.6 S/TRF Models

S/TRF models have not been explicitly mentioned until recently. Varmarcke (1983)
discussed space-homogeneous/time-stationary random processes X(s, t) in terms of
second-order analysis, where seR" and teT. The space-time covariance function is, by
definition, the covariance between two observations at different points (s, t) and (s', t")

C(s, t; s, t) = E[(X(s, t) - m(s, t)) (X(s', t) - m(s', t"))] = C,(h, 7)
where h =5 - ', and T =t - t'. Varmarke also discussed the exponential covariance models
in terms of a 'joint distance structure’

C(h, 7) = exp{-(aih|? + b21?)1?} (2.11)
with the corresponding spectral density
S(A, @) = §y[1 + |Al/a? + @¥/b?]3? (2.12)
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where S is a positive constant, and A and » denote frequencies with respect to h and T,
respectively. Finally, he mentioned that a general autoregressive (Markov) spatiotemporal
covariance model has the following spectral density

S(A, ©) = Sy[1 + [A[/a2 + 0¥/b]™, m> 1. (2.13)
When m = 3/2 one obtains the exponential model.

Buxton and Pate (1993), in the estimation of hazardous pollutants in the urban air of
Atlanta, empirically proposed a spatiotemporal variogram model with zonal anisotropy
structures, such that

y(h, ) = v, + v,(h) + 7(1) + y[(@*h{* + bt7)'7] (2.14)
where vy, is a positive constant, y,(h) and y(t) are variogram models in space and time,
respectively, and y[(a%h[* + b2t2)!?] is a joint distance model in R"xT. Unfortunately, the
permissibility of the selected model in the space-time domain was not taken into
consideration. Similar discussions can also be found in Bilonick (1987).

The systematic definition of S/TRF was provided by Christakos (1991, 1992). After
giving the definition of the space-time domain as a Cartesian product R®xT and the
definition of the space-time distance |(s, t)|2 = |s|>+ t, he proposed the basic definitions of
ordinary and generalized S/TRFs, and the fundamental permissibility criteria of
spatiotemporal covariance functions. Spatiotemporal estimation techniques were
formulated in terms of Wiener-Kolmogorov estimators, and spatiotemporal simulation
techniques were mentioned in the light of the turning bands method by rotating RIxT

simulations into R"xT.

S/TRF models provide a distinct framework for the systematic characterization of
space-time continuity. In accordance with S/TRF theory, space-time phenomena are
studied by using stochastic processes that vary simultaneously in space and in time. Under
adequate hypotheses, S/TRF models allow us to represent, predict, and simulate
spatiotemporal varations in the entire space-time domain.
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Chapter 3

The Space-Time Continuity Characterization

3.1 Introduction

The space-time continuity is a property that characterizes the relation between data at
different places in the space-time domain. Consider two data points X(sa, ta) and x(sp, tb).
Their relation usually depends on the separation (s; - Sb, ta - to). Figure 3.1 shows a
simple example where three data points x(s;, t;), X(s3, t2), and x(s3, t3) are mutually
separated by (hya, t12), (B3, 713), and (hgs, T3). It is common that the relation between
x(s;, t;) and x(ss, t;) may be closer than that between x(s, t;) and x(s3, t3) since ;2 < hy;

and 75 < 1;3.

Figure 3.1 A space-time data set in R?xT.

In general, the space-time continuity characterization includes:

(a) The description of the space-time continuity along with the experimental covariance or
variogram to provide the experimental basis for the hypotheses of the space-time
continuity and for fitting of the spatiotemporal covariance/variogram models.

(b) The investigation of the hypotheses made in modelling the space-time continuity that

could reflect and summarize adequately the characteristics of the experimental
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covariances or variograms, which provides the foundation of covariance/variogram
model fitting.

(c) The fitting of permissible covariance/variogram models to characterize the space-
time continuity of the natural process.

3.2 Space-Time Continuity Description

The space-time continuity can be described using various tools. These include data
postings where each data location is plotted along with its corresponding data value,
contour maps of data values, and h-scatterplots that show all possible pairs of data values
whose locations are separated by certain space distances and time intervals in certain
directions. Also, the space-time continuity can be appropriately described by the

experimental spatiotemporal covariance or variogram.

The experimental spatiotemporal covariance can be expressed as

Neh.<)
1
C*(h, t) =7 & {[x(s; ;) - m*][x(s; + b, t; + T) - m*]} (3.1
Na) i=1
and the experimental spatiotemporal variogram
Nehs)
Y*(h, 1) = L {[x(s; ) - (s + h, t; + D)2} (3.2)

2Nma) i1

where m* denotes the mean of the data and N, ., denotes the number of sample pairs
separated by the space distance vector h and time interval t.

Figure 3.2 shows the parameters involved in the experimental spatiotemporal
covariance or variogram calculation. These parameters include the space lag h and its
tolerance dh, the specific direction v and its directional tolerance dv, the time interval t
and its tolerance dt.

To take a specific example, the experimental spatiotemporal variogram of the pressure
data measured in a petroleum reservoir is shown in Figure 3.3. The behavior of the
experimental variogram at the ongin area (Q) shows a good space-time continuity, that is,
the space-time continuity of a data pair increases as its separation (h, 1) decreases. The
space-time continuity tends to be invariant when the data separation (h, t) is beyond the
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range line, which indicates that two pressure measurements will not be influenced by each
other when their separation is large enough. Therefore, the range line may be seen as the
influence zone of the pressure measurements. On the space boundary (t = 0), the influence
zone is around one kilometer, implying that two pressure measurements at the same time
will not be influenced to each other if their distance is larger than one kilometer. The
influence zone (range) changes from the space boundary towards the time boundary (h =
0) along the range line, with the time interval increasing but the space distance decreasing,
say, (0.8 km, 6 months), (0.6 km, 9 months), and so on. On the time boundary the

influence zone is over one year.

Some of the implications of the space-time continuity description in the above example
are (1) the space-time continuity can be described by the experimental variogram, in terms
of space-time separation (h, t); (2) the behavior of the experimental variogram around the
origin area may indicate the charactenistics of the regulanty; (3) the behavior of the
experimental variogram at large separations may imply the homogeneity of the space-time

continuity.

3.3 Space-Time Continuity Hypotheses

In order to characterize the space-time continuity of a natural process, it is necessary to
propose some hypotheses for the space-time continuity in accordance with the
characteristics of the experimental variogram. The study of space-time continuity
hypotheses can be imaginatively regarded as the ‘'bridge’ between the experimental
variograms and variogram models. It will, on one hand, reflect and summarize the
characteristics of the experimental covariances/variograms. On the other hand, it provides
the basis for the selection of covariance or variogram models. In general, space-time
continuity hypotheses include the following:

(2) Homogeneity. The homogeneity of the space-time continuity, as we mentioned
earlier, may correspond to the existence of the range line. However, a detailed
discussion of homogeneity should be based on moving window techniques. It may be
possible that the homogeneity only exists in space (or time), indicating a range line
parallel to the time boundary (or space boundary). The two parameters used to
describe the main features of the homogeneity are the width of the influence zone
(range) and the height of the plateau outside the range line (sill).
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Figure 3.2 An illustration of the parameters used in the experimental spatiotemporal
covariance or variogram calculation.

range line

Figure 3.3 Plot of expenmental spatiotemporal variograms of the pressure data measured
from a petroleum reservoir.
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. (b) Anisotropy. The space-time continuity is called 'anisotropic' if it is not the same in
different directional space-time surfaces. For example, a specific spatiotemporal
anisotropic continuity in R?xT is shown in Figure 3.4. These three experimental
variograms show apparent differences with each other. If the differences only lie in
the range lines, then it is possible that these differences can be reduced by a specific
linear transformation of the spatial coordinates. An anisotropy that can be reduced to
isotropy by a mere linear transformation of the spatial coordinates is called a
geometric anisotropy, otherwise it is called a zonal anisotropy.

(c) Regularity. The behavior of the experimental variogram at the origin area decrees the
type of spatiotemporal regularity and continuity. The three popular types of
regularity are parabolic, linear, and nugget effect. Nugget effect corresponds to a
discontinuity around the origin area of the experimental variogram that may be
caused by sampling error and short scale continuity. More precisely, the jump from
the value of O at the origin to the value of the variogram at extremely small distances
is called the nugget effect.

The experinental variogram in ( by, §) T O ,//,(_',/
Sy,

e experimental variogram in ( hz, )

Figure 3.4 A spatiotemporal anisotropic continuity demonstrated by experimental
variograms of three directional space-time surfaces (h,, 1), (h,, 1), and (h;, 1).
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(d) Separability. The plot of the experimental variogram at a specific time interval shows
the variogram structure at a fixed time interval. Figure 3.5 shows the experimental
variogram structures at three fixed time intervals: t = 0, T = 4, and © = 8. The
differences between these structures are distinct. If the differences between these
variogram structures are indistinct, a separability of the space-time continuity may be
taken into account, that is, the space-time continuity can be represented by the
product of the spatial continuity and the temporal continuity.

— T=0

Figure 3.5 The variogram structure at three time intervals, associated with Figure 3.3.

3.4 Spatiotemporal Covariance/Variogram Functions

The study of covariance/variogram models is the final stage of the space-time
continuity characterization. It also, in most cases, provides the foundation for
spatiotemporal stochastic estimations and simulations.

3.4.1 Permissibility Criteria

Covariance/variogram functions must satisfy certain permissibility criteria to ensure
nonnegative variances. A continuous function C(s, t; §', t') can be the covariance function
of an OS/TRF X(s, t) if and only if it satisfies the nonnegative-definiteness condition

N N

21 Zl ajajC(s;, ti; 8, 1) 2 0 (3.3)
&

for all integers N 2 1, all (s;, t;) and (s}, t'}) eR"xT, and all numbers a;, aj(real or complex).
This entails that the spatiotemporal permissible covariance function is defined by

Cs, 68, )= [ (o o fr€ IS (A 01 @)dAdodA do (3.4)
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where the spectral density S(A, ®; A, ®') is a positive summable function in R'xT.
Correlatively, a function Y(s, t; §', t') is permitted to be the variogram function of an
OS/TRF X(s, t) if and only if it satisfies the nonpositive-definite condition

N N N

ZZa; Z.jY(Si, ti; 84, t'j) <0 V Zlai =0 (3.9
1 =

1=1)=

By definition, -Y(s, t; §', t') is said to be a 'conditional positive definite' function.

A covariance function of a stationary RF is permissible if its corresponding spectral

density satisfies the nonnegative condition

1 r
S(A,0) = T (oo 1 iMb+oY)eh 1)dhdt 2 0 (3.6)

for all A and w. Consequently, a permissibility criterion of a variogram function, y(h,t), is
that its auxiliary function

C(h, 1) =y - y(h, 1) (3.7)
has a spectral density that satisfies Equation 3.6, where the constant y*PP denotes the upper

bound of y(h, 1)

v(h, T) <yoe
For example, the function y(h, t) = 1 - exp{-(a’h[* + b®t*)'7} has the auxiliary function
exp{-(a?h]? + bt?)2} (here y'r=1), whose spectral density satisfies Equation 3.6,

therefore, it is a permitted variogram function.

A function, C(r, t), is permitted to be a covariance model of a space-isotropic/time-
stationary RF if it can be expressed as follows (Yaglom, 1962; Gandin, 1963),

Cr, )= [~ f:'%exp[imt] ArIS(A, ©)dodA (3.8)

where Ji; 5y is the Bessel function of the first kind of order (n-2)/2, S(A, ©) 2 0 on the
half-plane (A, ©), Ae(-0, ©), and v €[0, ).

It is worth noting that a permitted covarance/variogram function in a higher
dimensional space-time domain is also permissible in a lower dimensional space-time

domain, but the opposite is not necessarily true.

Moreover, the following properties are useful for the construction of covariance

models:
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(1) every combination of positive definite functions with positive coefficients is also

positive definite;
(2) any prcduct of positive definite functions is also positive definite.
These properties also hold true for conditional nonpositive definite functions.

The following criteria are convenient to check the permissibility of a candidate

spatiotemporal variogram function.

Alternative criterion 1: If Y(h, t) is a permissible spatiotemporal variogram function, then
it should satisfy

) h,
hm#:%= when |h| > « and t - «.

Alternative criterion 2: If Y(h, 1) is a permissible spatiotemporal variogram model, then
the function exp[-aY(h, t)] must be positive definite for all positive values of a.

This criterion is a direct expansion from Geifand and Vilenkin (1964, pp. 279).
Consider the following, as an example, in R°xT:

Y(h, t) =\/|h? + 72
it is a permissible variogram model since exp{-a\/|h[2 + 2 ] is positive definite for all
positive values of a.

3.4.2 Two Types of Spatiotemporal Covariance/Variogram Models
3.4.2.1 Separable models

The covariance function C(h, t) will be called space-time separable if it has the form of
Equation 2.6. This entails that its spectral density is also permissible:
S(A, ©) = Ss(A)Sy(@)
The separable model corresponds to the separability hypothesis, its variogram function
given by
Y(h, T) = C5(0)Y(1) + Ys(h)Ce(0) - Ys(h)Ye(T) (3.9)

A separable covariance model has the following properties:
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(a) The function C(h, 0) is called the space boundary function of the covariance model
C(h, 1), which reflects the marginal spatial structure of the spatiotemporal covariance.
Similarly, C(0, 1) is called the time boundary function of C(h, 1), corresponding to the
marginal temporal structure of C(h, t). Thus, for a separable covariance model, its
marginal spatial structure could be different from its marginal temporal structure, as
shown in Figure 3.6, where the space boundary curve demonstrates an exponential
structure while the time boundary curve shows a periodic structure. This is because the
covariance model
C(h, 1) = Cs(h)Cy(t) = exp(-0.1h)cos(0.17)

has the following space boundary function

C(h, 0) = C4(h) = exp(-0.1h)
and time boundary function

C(0, ©) = Cy(1) =cos(0.11)

0,0

Figure 3.6 A separable covariance model C(h, t) = exp(-0.1h)cos(0.17)

(b) The relation between covariances with different fixed space distances or time intervals
is proportional; that is,
Clhj, 1) _Cy(hj)Cy(t) _Cy(hj)
C(h;, ) Cs(h)Ci(x) ~Cs(hy)
where h; and h; are fixed space distances, or
Cth, 7)) Cy(h)Cy(tp) Cy()
C(h, 7)) Cs(h)Ci(tj) Cil(xy)

where t; and tj are fixed time intervals. This indicates that the spatial structure of the

= constant V1 =>0.

=constant Vh=>0.

spatiotemporal covariance is invariant with respect to time intervals, and also that the
temporal structure of the spatiotemporal covariance is invariant with respect to space
distances.
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A separable covariance/variogram model is permissible if its spatial component is
permissible in space and its temporal component is permissible in time:
S(A,0) = Ss(A)Sw) 20

Separable models correspond to the subcases of S/TRF where a S/TRF X(s, t) is
considered to be a product of a SRF X(s) and a TRF Xy(t)
X(s, t) = Xs(s)Xu(t)
where X(s) is independent of Xy(t).

3.4.2.2 Joint distance models

The covariance C(h, t) will be called a joint distance model if it is given by
C(h, 1) = C[(a2hi? + b212)}72] (3.10)
where |hi2 = h"h, and a and b are the coefficients. For example, exp[-(aZlh?2 + b2t2)!/2]
indicates a joint distance exponential model, while exp[-(a2lhi2 + b212)] indicates a joint
distance Gaussian model. Consequently, the corresponding variogram function is also a
joint distance model
Y(h, 7) = C(0, 0) - C[(a2h2 + b272)!2] = Y[(a2lh2 + b2t2)1/2]

It can be shown that a joint distance model is permissible in R*xT if and only if it is
permissible in R**!. For a joint distance covariance function, C[(a?hl> + b2t2)12], its
spectral density is given by
SR, @)=SA, .., A, @)= (271:){“"1)’-’-J‘_*;;°'...J‘*O:IC C(r?) exp [-i(A™h + ©1)]dh,...dh dt
where A'h denotes the inner product Ah,+ ... + A h, and r2 = a(h] + h+...+ h] )+b2t2 If
one sets h'1 =ah, .., h;= ah, h;‘I =bt, A, =A/a, .., A =A/a and X', = @/b, then

rZ=h7+h+ .. +h? +h7 =1
and
ATh'= Ak + L+ AR A B =Ah + . +Ah tet=Ah+ort
Consequently,
S(A, @) =S(A,, ..., A, ) =8(A',, ..., aA’, bA' )
= @ry®r 2 2lgn bl (727 C(2) exp (A h)IdN.dbdh,,

If C(h') is a nonnegative definite function in R™! it follows that
S(A, @) =S(aA',bA’_) 20, forall A, o.
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A joint distance model corresponds to the following hypothesis. The spatiotemporal
covariance has a uniform structure in the entire space-time domain, such as a sphercal
structure, an exponential structure, etc., which implies that the type of marginal spatial
structure is the same as that of the marginal temporal structure. This property is shown in
Figure 3.7, where the covariance model is given by

C(h, 1) = exp[-(0.05Ihi2 + 0.0712)!12]
which follows the space boundary function
C(0, 1) = exp[-(0.0712)172]
and the time boundary function
C(h, 0) = exp[-(0.05h[2)1/2]

(0, 0)

Figure 3.7 A joint distance exponential model C(h, 1) = exp[-(0.05lhi2 + 0.0712)112]

3.4.3 A General Form of Spatiotemporal Covariance/Variogram Models

Let r" = (h, 1)" = (h,, ... h,, )" be the separation vector in R'xT, where h, denotes the
distance in the jr4 coordinate (j = 1, ..., n), A, denotes a linear transformation matrix of the
vector (h,, ...,h,, 1), and the transformed vector r; is given by

r,=A-(h, . .h, )
Thus, every subvector of r', say, (h,, ...,h,, T)', (hy, ...,h., T, ....(Hy), (1), corresponds to a
specific transformed vector r] Furthermore, if C,(r,) is used to define the sum of different
covariance models in terms of r,, C,(r,) can be used to define the sum of separable model
and a joint distance model in terms of r, ( where r, = (h,, h,, 1))
Cy(ry) = Ci(hy, hy, 1) = cos(t)exp{-(h + h3)12] + exp{-[a®(h} + h}) + b2e2]}

A general form of a spatiotemporal covariance function can be given by
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K
C(h, 1) = XC(r) (3.11)

The form of Equation 3.11 represents a nested structure of the spatiotemporal
covariance C(h, 1), with the differences among the components C(r)), ..., Cg(rg)
reflecting zonal anisotropies in different directional space-time surfaces. For example, a
general form of a spatiotemporal covariance function in R2xT can be represented as
Clh by, 1)=Co+Ci(hhy, T+ Calhiu by Ca(hy, D+ Calh, T+ Cs(h)+Colb, )4 Co(7)  (3.12)
where Cq is a positive constant, and C;, Cs, ..., C7 are the sums of permissible models in
(h,, hy, ), (h, hy), ..., (1), respectively. To take a specific example, C;(h,, t) could be
given by

C;(h,, T) = cos(t)exp(-t)exp(-hy) + Sph{-(a?h: + b2t2)112}
the second term on the right hand side denoting a joint distance spherical model in terms
of (h,, 1).

In practice some components of the right hand side of Equation 3.11 and Equation 3.12
may be missing, indicating that the zonal anisotropies in some directional space-time
surfaces may not exist. [f, for example, all components of Equation 3.12 are missing
except Cy(h,, h,) and C(t), then Equation 3.12 is reduced to Equation 2.7.

All of the above discussion holds true for a general form of spatiotemporal variogram

function.
3.4.4 The Strictly Positive Definite Property

A covariance model C(h, 1) is called strictly positive definite if it satisfies

N N

PIPIK:H aiC(hj;, 73j) > 0 (3.13)

=1 =1

for all real values ay, ..., ay (not all zero). Similarly, a variogram model Y(h, t) is called
strictly conditional negative definite if it satisfies

N

ajajY(hjj, 1j) <0, V ;ai =0. (3.14)

™M =
1 =

J

The strictly positive definite property of a covariance model will result in the unique
solutions of simple kriging and ordinary kriging systems, as well as the unique solutions of



LUD simulations and SGS. Therefore, the strictly positive definite property is of practical
significance in both stochastic estimations and conditional simulations.

Several aspects of the strictly positive definite property are:

(1) A separable covariance model is strictly positive definite in R®xT if both the spatial
component and the temporal component are strictly positive definite in R? and T,
respectively;

(2) A joint distance covariance model is strictly positive definite in R™*xT if it is strictly
positive definite in R+,

(3) If the spatiotemporal covariance C(h, t) is of a general form as defined by Equation
3.11, then it is strictly positive definite in R®xT if and only if its component in terms
of (hy, ..., h,, T) is strictly positive definite in R"xT. For example, if the covariance
C(h, t) is defined by Equation 3.12 in R2xT, then it is strictly positive definite if and
only if C,(h,, hy, t) is strictly positive definite.

A strictly positive definite covariance entails a strictly conditional negative definite
variogram,

N N N N N N N
=1

=1 =1 1=} =] 1= )=l

Therefore, the above conclusions also hold true for spatiotemporal variograms.
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Chapter 4

Estimation of Spatiotemporal Processes

4.1 Introduction

The problem of spatiotemporal estimation is to, under specific constraints, find
estimates of values at unsampled positions in the space-time domain. This problem may be

stated as follows.

Let X(s, t) be a S/TRF, (s, t) € R°xT. We wish to find estimates Q(su, t,) of the actual
values x(s,,, t,) at unsampled positions {(s,, t,), vV = I, ..., K}, using a set of available

measurements {x(s;, tj), i=1, .., N}.

In practice we use a variety of spatial estimation techniques. Of these, the random field
estimation methods are generally considered to be the optimum stochastic estimation
methods, given the minimum mean square error critenion. The underlying concept behind
optimal stochastic estimation was first introduced by Kolmogorov (1941) and Wiener
(1949), and was subsequently applied in various fields. The main advantage of the so-
called Wiener-Kolmogorov estimators, is that they reproduce the measurements at known
data locations and also measure the accuracy of the estimates obtained.

Spatial kriging is a special case of a Wiener-Kolmogorov estimator which provides a
linear unbiased estimator of the unknown characteristic with minimum estimation variance
(Matheron, 1971; David, 1977; Journel and Huijbregts, 1978). Spatiotemporal kriging
techniques will be presented in this chapter as an extension of these spatial kriging
techniques.

A spatiotemporal kriging estimate R(s,,, t,) has the following properties:
(1) Lineanty:

N
&(sys ty) = Z Ai x(si, ti) 4.1)

where A, is the coefficient of the observation x(s;, t;) to be calculated during the estimation
process.
(it) Impartiality:

31



E[Q(Su, t\.)) - X(Su, tu)] =0 (42)
(iii) Minimum estimation variance:
oo= min{E[R(s, to) - X(sy, t)]2} (4.3)

This chapter will attempt to develop spatiotemporal kriging systems in terms of
spatiotemporal processes, and provide a singulanty analysis of spatiotemporal kriging
systems with regard to covariance models and data configurations. The impact of trend
models on tensorial invariance and on singularities is also discussed in the case of

spatiotemporal universal kriging systems.

4.2 Spatiotemporal Simple Kriging (S/T SK)

Spatiotemporal simple kriging deals with a space-homogenous/time-stationary RF X(s,
t), with a known mean. S/T SK considers the following linear estimator

N
i(sua t\)) =m+ Z )\'l [X(Si, tl) - m] (44)
1=1
[ts estimation variance is given by

E[R(5,, ) - X(5 1) = C(0.0) - 25 AClhy;, 7,) + T SAAC(hi; )

1=1 =1

using the Lagrange multiplier method the S/T SK system becomes
N
3 AiC(hy;, i) =C(hyj, 1), j=1toN (4.5)
1=|

and its matrix formula can be given by
CrL=6
where C denotes the covariance matrix, A denotes the vector of weights, and 6 denotes
the vector of covariances on the right hand side of Equation 4.5. The weights can be
obtained by
A=Clo (4.6)
and the corresponding S/T SK variance is
N
k(8w t) = Clhoy, Twy) - TAClhyi, Tui) (4.7)

12}
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4.2.1 Singularity Analysis of S/T SK

We can easily conclude from Equation 4.6, that S/T SK has a unique solution if and
only if the covariance matrix is positive definite, this entails that the covariance function
must be strictly positive definite (e.g., Berg et al., 1984).

4.2.1.1 Strictly positive definite requirement

A spatiotemporal covariance function C(h, 1) is called strictly positive definite if and
only if for all real values ay, aj, ..., an, (which are not all zero),

T T a3 C(hj;, 1j) >0 (4.8)

where hj; = s; - s; and 1 = t; - tj. The strictly positive definite property of a covariance
function ensures the absence of singularity problems in the SK process.

For the purposes of the discussion, the spatiotemporal RF under study is assumed to be
space-homogeneous/time-stationary with a joint distance covariance function. This
discussion is therefore, easily adaptable, as other types of covariance functions can be
expressed as a linear combination/production of joint distance covariance functions.
Referring to the discussion in Section 3.4.2.2, the positive definite property of covanance
functions in RPxT is equivalent to that of covariance functions in R**1,

A covariance function of a homogeneous RF in Rt*! can be expressed by its spectral
density S(A)

C(h) = fer exp(ATR)S(A)dA (4.9)

Putting Equation 4.9 into Equation 4.8 one gets

Y Yaia Clhj) = 3 Y a3 J‘ Rn.[exp(il.Tsi)exp(il‘?j)S(k)dl

1=l =] 1=l =1

= J’er (i ajexp(iATs;))*S(A)dAL > 0 (4.10)
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Zaiexp(i)}si) # 0 almost everywhere. This indicates that a function C(h) is strictly
1=

positive definite if its spectral density S(A) is positive with finite zeros (e.g., Berg et al.,
1984).

Example 4.1 The exponential model
Ch)=eh, a>0 (4.11)
has a spectral density in R’

S(A) = 1

4miari(a? + A2)?
Thus it is strictly positive definite in R3xT.

(3A*+23%-a*+1)>0

Example 4.2 The Gaussian model
C(h)= e’ (4.12)
has a spectral density in R3
S(\) = 8:5 (A2 + dad)e e’ > 0

Therefore, it is also strictly positive definite in R3xT.
Example 4.3 The spherical model
3h B

Chy=1 " 2a" 283
0 h>a.

h<a, (4.13)

has a spectral density in R3
3
S(A) = PYRYa A2 + A2cosA - 4AsinA - 4cosh + 4) > 0

Therefore, it is strictly positive definite in R2xT. However, the spherical model is
prohibited in R" if n > 3 (e.g., Christakos, 1984), and therefore, cannot be used in R3xT.
Instead, the following model is admissible in R3 (Matern, 1960)

[ sh sw 3k

Chy=1 "8a 4a 8a =8 (4.14)
0 h>a.
with a spectral density in R (Christakos, 1984)
S(A) = A3 (J5,(M))?
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where J,, is the Bessel function of 5/2th order, therefore, this function is strictly positive
definite in R3xT.

The following criteria can be used to determine whether a covariance function is strictly
positive definite.
Criterion 4.1 A covariance function is not strictly positive definite if its spectral density is

a linear combination of delta functions

K
SA) =3 bd(A -c) (4.15)
k=1
where b, are positive constants and c, are constant vectors, and
BR A=c,
S(A -¢)= { 0 otherwise.

This criterion can be derived directly from Equation 4.10,

1 m
2 f2f ;(; a;exp(iATs;))*S(A)dA

(27{)“’ Z b“f.m f_:(_z ajexp(iATs;)) d(A - ¢,)dA

1
- L B, 3 wexples))

1=1 )=l

Then

m m

aj a; C(hj) =0 when ajexp(ic,’sj)) =0, k=1, .., K.
2 3 g 2 .

=1 =1

Example 4.4 A counterpart example is the cosine function C(h) = cos(h), its spectral
density in R! is given by

1
S(\) =3 {8(h + 1)+ 8(h - 1)]
Therefore, the cosine function is not strictly positive definite.
This criterion is also useful in the discussion of zonal anisotropy structures. A

covariance function in R2xT can be represented by the general form
C(hyhy, 1)=Co+Cy(hy, by, T)+Ca(hy ) +C3(hy, 1) +Ca(hy, )+Cs(hJ+Co(h)+Co(r)  (4.16)
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where Cg is a positive constant, and Cy, Cy, ... , C7 are permissible covariance functions in
R2xT, R?, RIxT, R! and T, respectively. The spectral density

S(A,, Ay ©) = (2;), = f= [2Clhe by Dexpl-i(hibe + Ao, +or)]dh,dhyde
= S8(A)0(A)0(w) + Si(A), Ay @) + SRy, A)d(@) + Sy(A,, @)B(A)
+ Sy(A, ©)3(A7) + Sy(A)8(A,)S(@) + Se(A)6(A)B(@) + S+(@)S(A1)S(A)

where S, is a positive constant, and S, ..., S, are spectral densities of C,, ... , C,,

respectively. Since there is no constraint for functions C,, C,, ..., C,, the following is true.

Criterion 4.2 The covariance function represented by Equation 4.16 is a strictly positive
definite function in R2xT if and only if Cy(h,, h,, T) is strictly positive definite in R2xT.

As for the separable mcdels, it is obvious that the covariance model is strictly positive
definite in R'xT if and only if both C,(h) and C,(1) are strictly positive definite in R" and T,
respectively.

4.2.1.2 The influence of data configurations

Singularity problems may arise when the covariance function is not strictly positive
definite, therefore, covariance functions of this type are undesirable in S/T SK
applications.

In some cases, however, a covariance function which is not strictly positive definite is
the most appropriate representation of the real data. To avoid singularities in these cases,
we need to discuss the influence of data configurations.

Consider the cosine function. The following data configuration in R' consists of three
observations; at x, X, and xs3, separated by the distances: |x;-x,| = 2kr (with any positive
integer k), [X,-X;3] = A, [x;-x3| = 2kn + A. Then C(|x,-Xy]} = 1, C(|x,-x3]) = cos(A) = a, (]
X{-X3]) = cos(2km + A) = a, and the kriging matrix

1 1 a
K=|1 1 a
a a 1
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This matrix is singular because the first two rows are identical. Furthermore, note that
regardless of the amount of data added to the configuration, the kriging matrix remains
singular. This leads us to our next criterion.

Criterion 4.3 For the covariance function cos(h) in R', the simple kriging system will be
singular if there are two samples among the data that are separated by a distance of 2kn.

Interesting results are also obtained from the zonal anisotropy structure of Equation
4.16. Consider the case in which Equation 4.16 reduces to the following purely zonal
anisotropy structure

C(h, T) = Cy(h,, b)) + Cy(7) 4.17)
Given four samples at the four corners of a 'rectangle': (x,, yi, t1), (X1, Y1, t2), (X3, ¥2, t0),
(X2, Y5, t2), as shown in Figure 4.1, the covariance terms are
C(hyy, ) = C(hz, T22) = Chy;, T33) = Clhy, 1a0) = G40, 0) + C4(0)
C(h,,, 12) = C(0, 0) + Coltz- 1)
C(hy;, t13) = Co(|x2- %1, [y2- 1il) +C4(0)
Clhys, 1) = Ca(Ixa- x4, ly2-wiD) + CyJt2- tif)
C(has, tas) = Co(Ixa2- X1, [y2- 1) + Cy(jta- tu)
Clhay, 120) = Co(Ix2- Xy, lys-yil) +C40)
C(hs, 13) = C(0, 0) + Co{[t2- ti])

v

-

Figure 4.1 A rectangular configuration in R2xT.

Setting a = Cy(|x2 - Xy, ly2- vil), b = Cy(Jt2 - t]), ¢ = C4(0, 0), and d = C,0), the kriging
matrix is

ctd btc at+d atb
b+c ctd a+b a+d
a+d atb ct+d btc
+b atd b+c c+

K=



Since the sum of rows one and four is the same as the sum of rows two and three, the
matrix is singular. Furthermore, if one adds another sample at (x;, ys, ts), then we get the
following

C(hys, Tis) = Cs(Ixs- xil, lys- yil) + Co(Jts- t.f)

C(hys, T2s) = Cs(Ixs- X1, lys- yil) + Coljts- t2))

C(hss, T35) = Cs(Ixs= xil, lys- i) + Clfts- tii)

C(hys, Tas) = Cs(Ixs- xi, lys- i)+ Coljts - ta))

C(hss, t55) = C5(0, 0) +CA0)
and the matrix K increases an extra column/row (C(hys, T;5), C(has, Tas), C(hys, Tss), Clhys,
14s), c+d)". Since

C(hys, Tys) + Clhys, t45) = Clhas, To5) + Clhss, T3)

the matrix K remains singular. This demonstrates that when the model 4.17 is chosen as
the covariance function, the SK system will be singular as long as there are four samples

among the data whose configuration is 'rectangular’ in R2xT.

The aforementioned four data observations forming a 'rectangular’ pattern represent a
common case in many types of data sets. For example, this can occur in the case of two
monitoring stations measuring the concentration of pollutants at the same time instant, or
occur in the case of measuring the reservoir pressure at two wells taken on the same day,

etc..

Note that C4(h,, h,) and C7(t) are not specified in this discussion, they can be any kind
of covariance functions in R? and T. For example, Ci(h,, h,) may be the exponential
function in R? and C+(t) may be the spherical model in T, and thus strictly positive definite
in R? and T. However, the linear combination of these functions is not strictly positive
definite in R2xT, as discussed in Section 4.1.2.1. This indicates that the purely zonal
anisotropy structure has a high risk of singularity in the SK process.

Analogous results are obtained for the general form in R3xT. Furthermore, the risk of

singularity increases with the number of dimensions. Indeed since R?xT is only a sub-case
of R3xT, any singular case occurring in R2xT will arise in R3xT.
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4.3 Spatiotemporal Ordinary Kriging (S/T OK)

Spatiotemporal ordinary kriging deals with a space-homogenous/time-stationary RF
X(s, t), with a constant but unknown mean m. Either the covariance or variogram function
of X(s, t) is known.

The S/T OK estimator is given by
N
R(sp, tp) = 3 Ai x(si, i)
1=1

N
To ensure the unbiased condition, the weights must satisfy $° A;=1. The spatiotemporal

1=1

ordinary kriging system is given by
;

N
¥ MC(hij, Tj) - U= C(hy, 1), J=1toN

1=1

9 (4.18)

N
Zki=l

\ 1=1

The corresponding matrix form is

KB=0
where B denotes the vector of weights: 7 = (A", ), © denotes the vector on the right
hand side of Equation 4.18: @™ = (8", 1), K denotes the ordinary kriging matrix

K= G:T :]) (4.19)
where 1 denotes the vector with elements 1, and C is the covanance matrix mentioned in
SK. Obviously, the vector of weights, B, is obtained from

B=K'® (4.20)
The ordinary kriging vaniance can then be written as

N
xS t,) = C(0,0) + - ZhO(hoi, ) 4.21)

Note that the above kriging system is S/T point OK dealing with estimation at a
position rather than a block in the space-time domain. S/T block OK can be derived from
Equation 4.18 by changing point-to-point covariances C(h;,t,;) to point-to-block
covariances E(h Avj»TAyj)» thereby obtaining
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(
N S~

Z AiC(hjj, Tj) - U= C(hayj,Tay); j=1toN
1=

N

Y Ai=1
\ =1
where A,, denotes the grid block to be estimated, and C(ha,;,Ta,;) is the average value of
the point-to-point covariances between the sample z(s;, tj) and the discrete points within

the gnd block A,,.

Equation 4.20 indicates that a S/T OK system has a unique solution if and only if the
OK matrix, K, is not singular. Furthermore, it is easy to show that the OK matrix is not
singular if the covariance matrix is positive definite:

k| =[cl.o-1C'1] =20
Therefore, analogous to the SK system, a strictly positive definite covariance function

ensures the unique solution of the OK system.

4.4 Spatiotemporal Universal Kriging (S/T UK)

Spatiotemporal universal kriging provides an unbiased linear estimator of the space-
nonhomogeneous/time-nonstationary RF X(s, t), which has the form of Equation 1.10,
provided that the form of the drift m(s, t) is given (Matheron, 1973; David, 1977, Journel
and Huijbregts, 1978).

Suppose a space-nonhomogeneous /time-nonstationary RF X(s, t), as defined by
Equation 1.10, has the following form of space-time trend m(s, t)
L
m(s, t) = 3 o fi(s, 1) = (4.22)
™=

where = [fi(s, t), ..., fi(s, t)] is a vector of known functions, and a = [a,...,a;] are
unknown coefficients.

For a set of N data {z(s, t), i=1, ..., N}, a UK estimator at unknown location (s,,t,)) is

N
R(su.ty) = 3 i x(si, ti)
1=]

To be unbiased, the weights must satisfy
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N

Z xl f;(si! tl) = f,.j(sl)a tU)! j = 1 to L

1=1

The S/T UK system can be expressed as follows,

[Cl-Fu=CD 4.23)

FA =F,

with vectors AT = [A,, ..., Ag], 17 = [Hy, -y K, C‘,T = [Clhyy, T01), ..y Clhyy, T,0)], FJT=
[fi(susty)s oo fL(Su,ty)], and the NxL matrix F = [F,] = [f(s;, t,)]. The corresponding matrix
form is given by

KB =0
where B is the vector of weights: B’ = (AT, u"), © is the vector on the right hand side of
Equation 4.23: @7 = (6", F,7), K is the universal kriging matrix

K= G;; FOJ (4.24)

where C, as previously mentioned, is the covariance matrix. The vector of weights, B, is

obtained by
B=K'© (4.25)

The estimation variance is given by
G380 to) = Clhyy, Top) - €A + Fu' (4.26)

4.4.1 Linear Independence and Tensorial Invariance of Trend Models

The trend form, 7, includes a set of component functions which must satisfy the
following two requirements (e.g., Matheron, 1971): (i) linear independence of the
component functions fi(s, t), ..., fi(s, t) is required for the unique solution of the S/T UK
system, provided that the covariance matrix C is positive definite; and (ii) tensorial
invariance of the kriging system with regard to changing the origin/unit of the coordinate
system, is also required to ensure the unique solution. The requirement of tensonal
invariance is necessary, in practice, due to the fact that the coordinates of neighborhoods
are usually reset to enhance the stability of the solutions of the kriging system.

It has been shown that the UK system has a unique solution if and only if the

component functions fi(s, t) are linearly independent on the set of n data (e.g., Journel and
Huijbregts, 1978), that is, if the n following linear relations
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L
lefr(si, t)=0, Vi=lton,
=1

This implies that A, =0, V 1 = 1 to L. This linear independence requirement can be further
subdivided into two aspects: (i) the requirement of linear independence for the component

functions, that is, the following linear relation
L
Z)"lfl(ss t) =0
=1

implies that A, =0, V 1 = 1 to L. (ii) the second requirement is more complicated, as there
are cases where the configuration of the data alone can make the component functions
linearly dependent on the set of n data (a detailed discussion of the second requirement

will be given in Section 4.4.3).

For most combinations of component functions, it is fairly easy to demonstrate whether
or not the first requirement is satisfied. For example, the trend form ff= [1, cost, sint,
cos’t, sin’t] is not linearly independent since we can find a non-zero set of values (1, 0, 0, -
1, -1) such that 1 + Oxcost + Oxcost -1xcost-1xsin’t = 0.

However, tensonal invariance is somewhat more difficult to either prove or refute. The

tensorial invariance indicates the following relations,
R(sut,) =R'(',,t')
and
Sx(Sus o) = 058 1)

where s', and t', denote the transformed space-time coordinates after the origin/unit has
been changed, and & and o'’ are the kriging estimator and kriging variance under these
transformed coordinates. Even simple trend forms, such as f* = [1, t?], may not be
tensorially invariant. Since the UK process involves the change of the coordinate system’s
origin in the neighborhood setting, the discussion of permissible trend models in terms of

tensorial invariance is, in practice, quite significant.

Three general types of trend forms are considered in the present work: the traditional
polynomial functions, Fourier expressions, and combinations of the two. We will present
the R*xT case as an example but the same method can be expanded to include other
dimensions.
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The polynomial form of S/T trend, using the same notation as Equation 4.22, is given
by
F=[1,x 9yt .. x5 y5t] (4.27)
where £ and ¢ are orders in space and time, respectively.

A general Fourier form is given by
F={1, sino X-Sin®,y.sin@t, SN X-SINA,Y-COSAL, ...,
COSW, IX-COSW,1y-SIN® it, COSW,IX:COSM,iy-COS®,it] (4.28)
where @,, ®, and o, are frequencies in X, y, and t, respectively, i denotes the order of the

Fourier series.

The third form includes both polynomial and Fourier terms. This mixed type can be
generated from m(s, t)=m(s)m(t), where m(s) is the spatial trend and m(t) a temporal
trend. For instance, a mixed s/t trend form couid be

fF =1, singt, cosat, xsin@t, XCoswt, ysinat, ycosayt, ...] (4.29)

Since a trend form with full polynomial terms or full Fourier terms is linearly
independent, then, a trend combining full polynomial and full Fourier terms is also linearly
independent.

Now we will develop some criteria for tensorial invariance.

Criterion 4.4 A space-time trend of the form 7 meets the requirements for tensorial
invariance if there exists a regular matrix P such that

= [fi(s\ t), ..., fi(s'. )] =P (4.30)
where §' and t' denote linearly transformed coordinates in space and in time, and " denotes

the transformed form of the space-time trend.

To prove Criterion 4.4, it is easy to show that Equation 4.30 amounts to the trend
matrix under the transformed coordinate system F' = FP, this follows F,” = P'F,. The
kriging system under the transformed coordinate system is therefore given by

CA' -FPu'=C, A
[ PFA = PF, (431)
Let u =Py’ P is regular, therefore, Equation 4.31 becomes
CA-Fu=C
{ e (4.32)
v

Obviously, the kriging system is invariant with respect to A' and u, which means that the

kriging estimator is also invariant. Since F,"p = FUTPP'lu.' = F,'u', the kriging variance
becomes



62.(sy" to) = Clhyy, Tuo) - COA' + F, 0

Therefore, the kriging variance is also invariant.

Based on this criterion, it is easy to show that a S/T trend form with full polynomial
terms, f* = [1, x, . t, ..., X5, ¥5, t5], is acceptable since there exists an upper triangular
matrix P with non-zero diagonal elements such that 7 = f'P. Furthermore, it is easy to
show that a polynomial trend form with some higher-order terms missing meets the

criterion for tensorial invariance.

For a trend form with full Fourier expression terms, the terms with different orders are
not related with respect to linear transformation of coordinates, thus,
[sinw ix'sinw,dy'sine,it', ..., cosw ix'.cosw,iy".cosw,it'] = [sin®, ix.sinw, iy.sina,it,
...,COSQ,iX.COsM,ly-coswit]P;, Vi=1 2, .
Consequently, it is sufficient to evaluate the trend form of order | below:
{7 = [sine X-$in®,y.sinwt, ...,cO80, X.cos0,y-cosat] = [fi(s, t), ..., fs(s, t)]
To show the terms under the transformed coordinate system, one has

. . @ . .
sinw, x' = sm;:‘(a,x + b, ) = sinw x.cosb, + cos® X.sinb,

and
COSQ,, X' = COS®,X-COsb, - SIN® X.sinb,

'xbx . .
where b, = OT. Similarly,

sinw, y' = sin@,y-cosb.+ cosw,y.sinb,, cosw,y' = cosw,y.cosb; - sinw,y.sinb,
sin,t' = sine,t.cosb; + cosw,t.sinb;, cosW,t' = COS©t.cOSb;- sinw,t.sinb;
) @by Wb .
with b, = -i" and b; = f. One can show that 7 = 'P with
B (cosbl ‘D -sinb, -D)
sinb,*D cosb,‘D
where
D= (cosb:-E -sinb;-Ej
sinb."E cosb,°E
and
E= (cosb3 -sinb;
sinb; cosb
Since E, D and P are regular, this trend form is acceptable.
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Though trend forms with full polynomial terms and full Fourier terms are acceptable,
this is not necessarily the case with trend forms containing partial terms. The following
criterion can be used to check for unacceptable trend forms.

Criterion 4.5 A trend form {7 = [fi(s, t), ..., fi(s, t)] is unacceptable, with respect to the
tensorial invariance of the kriging estimator/variance, if there exists a regular matrix P and
a non-zero matrix Q such that

f7=[fi(s' 1), .., fi(s, t)] =P+ Qw (4.33)
where w™ = [f..,(s, 1), ..., fi.k(s, t)] denotes a vector of additional terms with k > 0.

To verify this criterion, it is enough to show that the unbiased conditions under the

transformed coordinate system are
PTFA'+ WIQ'A'=PF, + W,Q
where the Nxk matrix W = [W,;] = [f..,(s,, t)] and the vector W, = [fi..(s,, t,), .-, fLei(Sy,
t,)]". Consequently,
FA' =F,+(P"FWQ-P"'WQL')

These unbiased conditions are not identical to that of Equation 4.32 since Q = 0,
indicating that the kriging estimator is no longer invariant.

Based on this criterion one may easily determine the acceptability of the trend form.
For example, f = [1, t}] is not acceptable, as is shown here,

b?
F=11 e+ b1 = (1L 6] (g )+ [0, 2000

Moreover, it is not difficult to demonstrate that for any polynomial trend form with some
lower-order terms missing, there always exists a regular P and a non-zero Q such that
Equation 4.33 holds.

Criterion 4.6 A polynomial trend form of order z/ meets the criteria for tensorial
invariance if and only if all lower-order terms up to (2-1)/(-1) are present.

Therefore, the trend form " = [1, x, y, X3, y2, 3, xy, xt, yt] is unacceptable even though
all higher-order terms are present, while the trend form f =1, x, y, t, xy] is acceptable.

For a S/T trend form with Fourier terms, the following criterion is true due to the fact

that each term under the transformed coordinate system is a linear combination of all
terms under the original coordinate system,
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fi(s',t) =a fi(s,t)+..+a;fi(s,t), V 1=1to8.

Criterion 4.7 A Fourier trend form is acceptable with respect to tensonal invariance if and

only if all terms are present.

In practice one may also consider a S/T trend which is the product of a spatial trend
m(s) and a temporal trend m(t)
m(s, t) = m(s)m(t)
Very often m(s) has a polynomial form while m(t) has a Founer form, indicating that the
S/T trend form can be given by
7 = [sint, cosw,t, Xsin®,t, XCOSQ,t, ysinw,t, ycosayt, ...]

Taking Criterion 4.6 and 4.7 into account, we can demonstrate that this type of S/T
trend form is acceptable if and only if all lower-order terms are present and higher-order
terms are in pairs of sine and cosine functions. In other words, f* = [sinwt, coswt, Xsin®t,
XCcos@,t, ysinat, ycoswt] is acceptable while f* = [sina,t, cosa,t, xsino,t, xcoswt, ysino,t] is
not acceptable, since ycosw,t ts missing.

4.4.2 Practical S/T Trend Models

The polynomial, Fourier, and mixed space-time forms described previously can
adequately model space-time trends in most practical cases (using lower orders). For
polynomial trends, the space and time orders £ and  up to 2 are sufficient in most cases.
In the majority of cases, a Fourier trend form of order i set to 1 appears to be sufficient. A
larger order, either in time or in space, may generate a large number of terms which will
encounter singularity more frequently in the estimation processes. Nevertheless, one may
select the orders that seem appropriate to the data set to be modeled.

In practice, one may consider the following S/T trend models (see Table 4.1):

1. Polynomial terms both in space and in time, including: terms linear both in space and in
time, linear in space and quadric in time, quadric in space and linear in time, and
quadric both in space and in time.

8]

Polynomial terms in space and Fourier terms in time, such as: linear terms in space and
Fourier terms in time, i.e.

f* = (1, x, y, sint, cost, xsint, xcost, ysint, ycost)
3. Fourier terms in space and polynomial terms in time, such as: linear terms in time and
Fourter terms in space, i.e.
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' = (1, sino x, coso X, sin,y, COsQ,y, 1, tSING.X, tCOSQ X, tSinw,y, tcosw,y)

Table 4.1 Practical space-time trend models.

temporal component ()

spatial component constant linear quadric harmonic
) (c=0) (=Y g=2) E=1
constant (£ = 0) N.A c=1 L= =1
linear (¢ = 1) £=1 E=1/C= g=1/C=2 E=1/C=i
quadric (£ =2) E=2 E=2/C= g=2/L=2 N.A
harmonic (& = i) E=1 =i L= N.A. t=iC=1
linear+harmonic (& = 1+i) 2= 141 E=l+/C=1 N.A E=1+1/C=1

In addition, one may also consider mixed terms (polynomial plus Fourier terms) in
space or in time. Mixed spatial terms (linear + Fourier) with linear temporal terms may be
expressed by

" = (1,x,y,sin®,X,c0s0,X,sinw,y,cosn,y,t, Xt, yt, tsin X, tCOs® X, tSina,y,tcosw,y)

4.4.3 Singularity Analysis of S/T UK

Singularity problems may arise in the solution of the UK system (e.g., Rouhani and
Myers, 1990). Understanding of the potential sources of these problems can be helpful in
determining the criteria for selecting kriging neighborhoods, as well as the criteria for
sampling location/instance design.

The unique solution of the kriging system (4.23) is determined by the kriging matrix

,_ [(C F
K= (F* o)
where F is the NxL trend matrx

fi(s), t)) fu(sy, t)) ... fi(sy, t)
fi(s2, t2) fiu(s2, ta) ... fi(Sa, 1)

(S, ty) Ba(sw, t) .. fi(sw, ty
The singularity of the kriging matrix K depends on both the matrix C and the matrix F.
The singularity of the covariance matrix is caused by the covariance function not being
positive definite. In some cases, when the kriging matrix K is not singular, the covariance
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matrix C may be singular due to the impact of the trend matrix F. However, if the
covariance matrix C is positive definite, then the determinant of the kriging matnx can be
represented as
K] =|C[|0- F'C'F| =(-1){C| | FC"'F |

indicating that the singularity of the kriging matrix K depends exclusively on the trend
matrix F. In other words, in this case the kriging matrix is singular if and only if the trend
matrix is singular. Here, the discussion will concentrate on the impact of trend models,
assuming that the covariance matrix is positive definite.

The trend matrix F will be singular when the number of data points, N, is less than the
number of trend terms, L, since it is a N x L matrix. For the following discussion we will
assume N 2= L. To unveil the impact of the space-time data configuration on the singularity
of the trend matrix, it is convenient to introduce the following definition of the space-time

data configuration.

p-location configuration: Given N available data observations with coordinates (s, t,),
....(Sx, tn) in R T, including L, samples located at s, in R?, L. samples at s,, ..., and L,
samples at s,, s, =s.= ... =5, (when n =2, for example, s, denotes (x,, y,) and s, =s; if
and only if x, = x; and y, =y, simultaneously) such that L, + L,+..+ L, = N, the data is
said to form a p-location configuration in R? xT.

Every space-time data set forms a specific p-location configuration. For example,
measurements of reservoir pressure at five wells form a S5-location configuration,
measurements of pollutant concentrations at eight locations form a 8-location

configuration, etc..

It is convenient to recall the following information from linear algebra: a matrix F is
singular if and only if the set of its columns {F,, F., ..., F_} is linearly dependent. Also, a
N x L matrix F is singular if it has a basis of k columns {v,, v,, ..., v} withk <L.

To further our discussion we will now introduce the matrix A

a” ees Ay
A= ... (4.34)

apl LLI1) apk
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where a; = a;'1,, a, is a value and 1, is a vector with L, elements 1,i=1, .., p;j=1, ..,
k. Now we propose the following result.

Criterion 4.8 The matrix A represented in Equation 4.32 is singular if p <k.

Since a basis of the matrix A in Equation 4.32 can be constructed by the following p

columns v, vy, .., vo v, =1, 0°, ., 0], va =[07, 1., 0", .., 07), ., v, =[07, ., 0,

1.,'], A is singular when p <k.

In the next section we will show that every S/T trend matrix has certain columns which
construct the matrix expressed by Equation 4.32. The number of columns is determined by
the trend model chosen in the S/T UK system.

4.4.3.1 Singularity Problems in R' xT

The S/T trend with quadric spatial polynomials can be represented by
L
m(x, t) = a; + a,x + 3,x? + Taf(x, t)
=3

where the sum on the right-hand side denotes the terms related to t. Consider the case

where samples form a 2-location configuration as shown in Figure 4.2. L, denotes the

number of samples located at x, and L,, the number of samples at x.,, with L, + L. = N.
Then, the first three columns of the trend matrix T are

Fl = (1{1: 1‘{2)1‘
F: = (xl’ xl’ ttte x!v x'l) D G xZ)T = (xl'lzh xl.l.{:)T

Fy = (6, o X5 6 6y ) = (L, LY

A:[lu xl'lu xj'lu
I, xl, el

which form a Nx3 matrix A

According to Criterion 4.8 the matrix A is singular, and so is the trend matrix F.
Analogous to the above discussion, it is not difficult to show that the trend matrix is

singular if the S/T trend model has &-order spatial polynomials and the samples form a &-
location configuration, £ = 3, 4, ... The following is true.
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Figure 4.2 A 2-location configuration in R'xT withL, =4 and L, = 5.

Criterion 4.9 Given a S/T UK system in R!xT, if the trend model has g-order spatial
polynomials, then the kriging matrix is singular when samples fcrm a p-location

configuration with p <&.

More generally, it is easy to show that the kriging matrix is singular when the number
of purely spatial terms is larger than p (the number of spatial locations), implying that p <
2 for Fourier terms of order 1. Similar results can be obtained for mixed trend forms.

4.4.3.2 A general result in R"xT
A general form of a s/t trend m(s, t) can be expressed as follows

m(s, t) = a, + Z af(s)+ 2 aff(s,t) (4.35)

j2a~1

where a denotes the number of purely spatial terms. Assume that the samples form a p-
location configuration, as previously defined. Then the first p + 1 columns of the trend
matrix F are

Fo=(1, .. 15)

F.= (fi(s:)1,, ..., i(s,) 10"

Fpi = (f(s)° 1], ..., £(8p)'10)"
which form a Nx(p+1) matrix A
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1, fisi)y1, ... f(s1)1y,
lLl ﬂ(s:)'le . fp(SQ)'le

A=

I, fi(sp) 1ip v £i(8) 10,
Due to criterion 4.8 the matrix A is singular if p < a.

Criterion 4.10 For a S/T UK system in R™xT, its s/t trend can be expressed by Equation
4.33 with a purely spatial terms, and the kriging matrix will be singular when
samples form a p-location configuration with p < a.

For polynomual trend forms, the goal is to determine o, the number of purely spatial
terms. This is a combinatorial problem with repetitions and the value « is given by (e.g.,
Dimitrakopoulos, 1989)

a= (nt&)!/(nlE!) - 1 (4.36)
where n denotes spatial dimensions and & is the order of spatial polynomials. Similarly,
when the spatial terms are Fourier terms with an order of i, then the value a is obtained by

a=i2" (4.37)
The above two cases encompass all mixed trend forms.

Remark 4.1 It is now possible to generate guidelines to be applied in specific cases.
Previous discussions of singularity problems in UK system’s have concluded the
following. In RIxT, a = (1+E)!/(11E!) - 1 = &, which explains Criterion 4.9. In
addition, a. = 1x2'= 2 for Fourier terms of order 1. For R2xT, o = (2+)!I/(2!€}) - 1
and a = 4i. Table 4.2 summarizes the most common cases and provides guidelines
that should be followed in constructing neighborhoods while performing S/T UK,
and possibly used in monitoring and data collection schemes.

Remark 4.2 We may also obtain analogous results based on p-instance configuration, that
1s, available data measured at p different time instances. Equation 4.33 can be
rewritten as

L

m(s, t) =a,+ ¥ af(t) + X, afs, 1)

J‘l ]acx-o-]
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where the first sum on the right-hand side represents purely temporal terms. Then,
analogous to Criterion 4.10, the kriging matrix is singular when samples form a p-
time-instance configuration with p < a.

Table 4.2 Neighborhood requirements for S/T trend models up to £/C =2 and i=1.

S/T trend p-locations p-locations

order-form (space) (time)
RIxT EIC = 2/2 >2 >2
RIxT vi=1/1 >2 >2
RixT i =2/1 >2 >2
RIxT =11 >2 >2
R2xT /e =2/2 >3 >2
R2xT vi=1/1 >4 >2
R2xT gi=2/1 >3 >2
R2xT vo=1/2 >4 >2

4.5 Summary

Spatiotemporal kriging techniques are commonly derived as extensions of spatial
kriging techniques because S/T kriging systems have similar structures. However, the
covariances for S/T systems are obtained from special space-time covariance models.

S/T SK and OK require strictly positive definite space-time covariance models to avoid
singularity. The criteria to determine whether or not a space-time covariance model is
positive definite is outlined in this chapter. In the case of joint distance models, it has been
shown that the selection of exponential models or Gaussian models ensures the unique
solution of kriging systems in the space-time domain. However, the selection of spherical
models ensures the unique solution only in R!xT and R2xT. An alternate model for
obtaining a unique solution in R3 x T is given in Equation 4.14.

Selected space-time trend forms must meet two requirements: linear independence and

tensorial invariance. Criteria developed in this chapter demonstrate that a polynomial trend
form of S/T order &/C meets the tensorial invariance requirement if and only if all lower-
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order terms up to £-1/Z-1 are present. A Fourier trend form of order i is acceptable if and
only if all terms are present. Mixed trend forms must satisfy similar conditions.

Finally, a method is derived which can be used to avoid singularities in the S/T UK
system caused by the form of the space-time trend model. This formula indicates that in
R2xT the kriging matrix is singular if samples in the neighborhood have a p-location
configuration and the trend has o purely spatial trend terms with p < a. Similar results are
derived for data configuration in time. These results contain the potential for further
development in the interest of establishing guidelines with which to evaluate kriging
neighborhoods with respect to trend models and sampling configurations.



Chapter §

Conditional Simulation of Spatiotemporal Processes

S.1 Introduction

Conditional simulations of spatiotemporal processes provide realizations, x(u), of a
S/TRF, X(u), which share the same second-order statistics with the original, and
reproduce the known information at data locations. Due to the distinct properties of the
space-time domain, not every spatial simulation technique can be directly adapted to
generate realizations of spatiotemporal processes. The turning band method is a typical
example of a method that is difficult to implement in the space-time domain. On the other
hand, conditional simulation of spatiotemporal processes follows the same implementation
procedure as that of spatial conditional simulation in order to generate the required
second-order moments at simulated nodes and replicate the measured values at their
locations. This allows conditional simulation techniques, whose implementation involves
direct computation at simulated nodes, to be applicable to the space-time domain. This
chapter will focus on the potential use of these techniques for conditional simulation of
spatiotemporal processes. For convenience, spatiotemporal processes will be expressed by
X(u) in this chapter rather than X(s, t) as in previous chapters, where u denotes a position
in the space-time domain. Therefore spatial processes can also be expressed by X(u) since
spatial processes are special subcases of spatiotemporal processes. Under this expression
the available conditional simulation techniques of spatial processes can be easily
introduced and expanded for potential applications to spatiotemporal processes without
notation modifications.

Current conditional simulation techniques may be classified into two categories: (i)
two-step techniques, where an unconditional simulation step is prerequisite to the
implementation of the required simulation, and (ii) direct conditional techniques, that
perform conditioning concurrently with simulation. Conditional simulation was initially
developed as a two-step technique in 1974 (Journel, 1974), and the domination of two-
step techniques in conditional simulation applications continued until the introduction of
LU decomposition simulations in 1987 (Davis, 1987a).

Two-step techniques: Journel (1974) proposes that the conditional simulation of
stationary processes can be obtained using the following formula
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Xes() = X () + [x(u) - X3 (u)]
where x.(u) denotes the required conditional simulation at the location u, x;k(u) denotes

the kriged value at u deduced from the data, x,(u) is the unconditional simulation at u, and
x;k(u) is the kriged value a1 u deduced from the unconditionally simulated values. The

simulation procedure includes two steps. First, an unconditional simulation has to be
computed at all grid and data locations. Then, the required conditional simulation is
derived based on both the conditioning data and the unconditional simulation results.

Direct conditional simulation techniques: Since conditional simulations require the
same results as measured values at data locations, an effective technique of conditional
simulations should perform the conditional simulation without redundant calculations at
data locations. This consideration led to the development of direct conditional simulation
techniques which implement conditioning simultaneously with simulation, so that extra
unconditional simulation processes and redundant calculations at data locations are
unnecessary. Essentially, there are three popular types of direct conditional simulation
techniques: the LU decomposition algorithm proposed by Davis (1987a), the sequential
simulation approaches, devised by Johnson (1987) and developed by Alabert (1987) and
Isaaks (1991), and the simulated annealing approaches developed by Farmer (1991) and
Deutsch (1992).

Direct techniques are favorable to spatiotemporal conditional simulations due to the
fact that they perform simulation directly on the simulation nodes, and the only
prerequisite to the implementation process is the availability of covariance calculations
between the simulation nodes and data. This requirement can be easily satisfied through
the space-time continuity characterization process.

This chapter will show that all three of the above direct conditional simulation
techniques are appropriate for spatiotemporal simulations. After proving that the LU
decomposition algorithm is equivalent to the sequential Gaussian simulation (SGS), a fast
simulation technique, called the sequential group Gaussian simulation (SGGS), will be
developed. This technique consists of a series of algorithms, the first of which is linked to
sequential Gaussian simulation and the last of which is linked to the LU decomposition
algorithm. In addition, the simulated annealing technique which reproduces experimental
variograms will be developed. This technique allows us to bypass covariance/variogram
model fitting in conditional simulations.
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5.1.1 The LU Decomposition Algorithm

Let the conditioning data set {x';, 1 = 1, ..., N} be a realization of a Gaussian RF X(s)
with a mean vector m, and let C be the covariance matrix associated with conditioning
data locations and grid nodes. The LU decomposition algorithm is based on the LU
triangular decomposition of the covariance matrix

C=LU whereL'=U
Now consider the vector

x=Lw+m (5.1)

where x = (X'}, ..., X, X[, - xK)T, {x'|, ..., X'p} and {Xx,, ..., Xg} respectively denote the
conditioning data and the required conditional simulation, w is a vector of independently
N(O, 1) distnibuted random numbers, N(O, 1) denotes the standard normal distribution.
The expectation of x is given by

E{x} =E{Lw+m}=m
and the corresponding covariance matrix

E{(x-m)(x-m)'} =E{Lww'L'} =LE{ww}U=LIU=LU=C
where I is a unit matrix. Therefore, the vector x is a conditional simulation of X(u).
Partition C as:
[CDD CTGD)
Cop Cao

where Cp is the covariance matrix between data locations, Cgp, is the covariance matrix
between grid locations and data locations, and Cgg is the covariance matrix between grid

_(Lpp O (UDD Usb
C-[LGD L(,.:J 0 U (>-2)

Partition w as: w = (w', w';)", where w is a vector of independently standard normally

locations. This entails

distributed random numbers, and wy, is the conditioning vector such that

where xp, and my, are vectors of the data and means, respectively. The required simulation

is then obtained by
Xg = [LopLis(Xp- mp) + mg] + Logwg (5.4)
Note that [LgpLi (xp-mp)tmg] is the simple kriging vector deduced from the

conditioning values.
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5.1.1.1 Summary of the LU Decomposition Computations

The computation of the LU decomposition algorithm includes (1) the computation of
the lower triangular matrix L from a given covariance matrix C, (2) the computation of
L, from the given Ly, and (3) the computation of Equation 5.4. We are assuming that

the random numbers and the covariance matrix have been previously computed.

The pseudocode for the computation of the lower triangular matrix is presented as a
procedure called LU-DECOMPOSITION(L, n+K) where L denotes a lower triangular matrix
and n+K denotes the number of columns of L. Note that the covariance matrix is
symmetric, therefore it is convenient to build only the lower triangular part of the
covariance matrix. The input matrix L loads the lower triangular part of the covariance
matrix. The output is the required lower triangular matrix which is also loaded by L. The

pseudocode is shown below.

LU-DECOMPOSITION(L, n+K)
1 fori=1tontK

2 dol;=+L;

3 for k =i+1 to ntK
4 do L; = Ly/L;
5 forj=i+1 to n+K
6

7

8

9

do for k =] to ntK
Lij = Lig-LiLii
return L

The number of additions in LU-DECOMPOSITION, N,4¢(LU, n+K), are calculated from
Step 7:
n+Kn+K
Nuo(LU, n+K) =3 ¥ (n+K-j+1) = —(an)3 —(n+K)-+l—(n+K)

1=l =i

The number of multiplication’s, Ny (LU), are calculated from Step 2, 4, and 7:
n+Kn+K n+K
Nmi(LU, n+K) =3 3 (n+K-j+1) + Z (n+K-i) = —(n+K)3-(n+K)2+—(n+K)

1=l ]—\"‘l

The pseudocode for the inverse of the lower triangular matrix, Ly, is presented as a

procedure called INVERSE shown below.
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INVERSE(Lpp, 1)

1 fori=1ton

2 Li=1/L

3 for k=1toi-1

4 dofor}j=ktoi-1

5 tmp = tmp + L
6 Lix = -tmpxL;

7 retwmn L,

The number of additions required in INVERSE can be calculated from Step 5:

n i-l
1.1
Naugi(INVERSE, n) = T3 (i-k) = gns_gn

=1 k=1

the number of multiplication’s are calculated from Step 2, 5, and 6:

n i-1 n
. ) 1,1 l
Nrmu(INVERSE, ) = T3 (i-k) + Y (i-1) + n= & 3+12 2 +3n

1=] k=l 121

Finally, the computation of Equation 5.4 consists of two parts: the operations invoived
in the first term, [LgpLis(xp- mp) + mg], and the operations involved in the second term,

1 ) I n
LogWg. The first term requires 5K(n*+n) + Kn + (n+K) additions and SK(n*+n) + Kn

multiplications, and the second term requires ;K(K+1) additions and multiplications.

Therefore, the total number of arithmetic operations of the LU decomposition algorithm,
N.g(LUD) and N, (LUD), are as follows.

[ 1 1 1,1 1 1

N.a(LUD) = E(n+K)3—1§(n+K)2+ll—2(n+K) + 8113-61+-2-K(n2+n) + Kn + (n+K) + 5K(K+1)

= O((n+K)’)

7

Npu(LUD) = %(n+K)3-(n+K)3+‘I‘2'(n+K) + én’*-%nz +;71 +Kn+ %K(Kﬂ)

= @((n+K)’)

Here the notation @ indicates that for a given function g(n), ®(g(n)) represents the set

of functions such that

©(g(n)) = {f{n): there exist positive constants c;, ¢, and ng such that
0 < ¢,g(n) < f{n) < c,g(n) for all n 2 ny}
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A function f{n) belongs to the set ®@(g(n)) if there exist positive constants ¢, and ¢, such
that the function f{n) can be 'sandwiched' between c;g(n) and c,g(n), for sufficiently large
n (e.g., Cormen, Leiserson, and Rivest, 1990).

In addition, the amount of storage required in the LU decomposition algorithm is
mainly determined by the size of the lower triangular matrix L, which is @((n+K)?).

The advantages of the LU decomposition algorithm are that it is simple to implement,
and performs conditioning simultaneously with simulation Also it is not limited to
particular forms of covariance functions and automatically handles anisotropies. The main
drawbacks of this method are the amount of memory required, which increases with the
square of the number of gnd nodes and conditioning data, and the computing time which
increases with the cube of the number of grid nodes and conditioning data. In practice,
storage effectively limits this method to applications in at most two dimensions and with
not more than several thousand grid nodes, which makes it inapplicable in the space-time

domain.

Several attempts have been made to reduce storage limitations and calculations. Alabert
(1987) introduced a way to reduce memory requirements by using this technique in
conjunction with a moving neighborhood. The main drawback of this method is that the
discontinuities between contiguous neighborhoods could alter the covariance structure,
thus introducing additional noise and banding. Davis (1987b) introduced a matrix
polynomial approximation method as a further development of the LU decomposition
approach. Although this approach simplified some calculations, it did not reduce memory
requirements. In 1993, Dietrich suggested an algonthm that under some specific
conditions reduced the memory requirement from ©@(m} m3) to @(2mim,), where m,
denotes the number of grid rows, m, denotes the number of grid columns, and the total
number of grid nodes is m,-m,. In that same year Dowd and Sarac used a ring
decomposition algorithm which, similar to Dietrich's approach, took advantage of the
block Toeplitz property of covariance matrices to reduce memory requirements and
calculations. To date, despite these improvements, problems concerning the amount of
required storage and computing time still exist.
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5.1.2 The Sequential Simulation Techniques

Based on the theorem of sequential simulation introduced by Johnson in 1987, Alabert
(also in 1987) proposed the sequential indicator simulation (SIS) for categorical variable
simulation, and Issaks in 1991, introduced the sequential Gaussian simulation (SGS) for
continuous variable simulation. In 1992, Verly developed the joint sequential simulation
(JSS) which expanded the sequential simulation technique from one Gaussian field to
multiGaussian fields.

The SIS is implemented through a sequential procedure by means of indicator kriging,
and generates conditional probabilities of RF X(u) at K locations u; for L thresholds x,
{Prob(X(u; ) < x |(n)), i from 1 to K; | from 1 to L}. The main advantage of sequential
indicator simulation is the possibility of controlling L spatial covariances instead of a single
one, as in other simulation techniques. For details about SIS and its development see
Alabert (1987) and Journel (1989).

SGS has become the most extensively used algorithm for conditional simulations of
continuous variables. SGS requires sampling from the following K-variant distribution
posterior to the data set (n) (Isaaks, 1991):

F(u,, ..., U X, ..oy X | (1)) = P(X(u,) £ X,, ..., X(ug) € x| (0)) (5.5)
with a density equal to the product of the K single-variate posterior probability density
functions

fx(uy), ... x(u) | () = {(x(ug) | (n+K-1))..(x(u,) | (n)) (5.6)
where K denotes the number of grid nodes, n denotes the number of data, and u; denotes
the locations of grid nodes. The posterior probability density functions are given by

(g x| (ny)) = N(m(x(w) | (ny), var(x(uy) | (ny))) (5.7)
where N(m(x(u,) |(n,)), var(x(u;) | (ny))) denotes the normal probability density function of
x(u;) with the mean m(x(u))|(n,)) and the variance var(x(u)|(n,)), posterior to the
information (n;) ((n;) = (n+1) indicates the data plus simulated values). Therefore the
simulated value can be obtained by

x(u; | (np)) = E{x(u) | (0} + Vvar(x(u) [ (np)ee; (5.8)
where the random number ¢~N(0,1). The posterior mean and variance can be obtained
from the following equation,

E{x(u)| (n)} = m;+ C,Cph(x,-my) (5.9)

and
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var(x(w) | (n) = C; - CyCyCy (5.10)

Equation 5.8 can be rewritten as follows,

x(u; | (n))=m+ Cuq;(‘rmx) +4/Cii - Cilciicli'ei (5.11)

where m; and C; are the prior mean and variance of x(u;), m; and C; denote respectively
the prior mean vector and covariance matrix of the information (n,), vector x; denotes the
values of the information (n,;), and the vector C; denotes the covariances between x(u;)
and (n,).

The implementation of SGS proceeds as follows:

define a path that visits each node of the gnd (K),

at each node u; generate the simulated value by Equation 5.11,
add the simulated value into the data set;

el o S e

proceed to the next node until all nodes are simulated.
5.1.2.1 Summary of the SGS Computations

The computation of SGS at the ith node during the sequential process involves the

following:
(1) The inverse of the lower triangular matrix of the covariance matrix, Lli requires

Naga(LU,n+i-1)+N,44(INVERSE, n+i-1) additions and Npyy(LU,n+i-1)+Np,(INVERSE,
n+i-1) muitiplications, obtaining

.. 1 I, . 1 . 1 . 1.
# of additions: g(rrh-l)3 - I5(n+i-1)2 + IT5(n+i-1) + g(nﬂ-l)3 - g(ni-1)

b/_L-—-

. | 11
=2(n+-1) - 15(n+-1)2+ T:,'(nﬂ-l)

n+i-1)

b’J_L-—o

e 1. Y T P 1.
# of multiplications: g(n+1-1)3-(n+1-1)-+1—,)(n+1-1)+g(n+1-1)3 +5(n+-1)2 +

= %(n+i-1)3 - %(mi-l)2 + %(nﬁ-l)

@ since CyCtxrm) = (LiaC)Lixrm)) and CiCaCy = (LiC(LAC,), the
computations of these two matrix products include the computations of (L;Cy;) and
(L;:(xl-m,)), requiring  (n+i)(n+i-1)+2(n+i-1)  additions and (n+i)(nti-1)
multiplications, plus another (n+i-1) additions and multiplications. The total
computation at this step requires (n+i-1)? + 4(n+i-1) additions and (n+i-1)? +2(n+i-1)
multiplications.
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Thus, the total computation at the ith node includes approximately %(n~l~i-1)3-%(r1+i-l)2

| . C e .
+4:—;(n+i-l) additions and %'(n+i-1)3+:;(n+1-1)2+21—,1,(n+1-1) multiplications. The overall

computation of SGS can be approximated as follows:

K
1
N.ai(SGS) = Z[%(n+i-1)3-%ﬂ(n+i-l)2+4—(;z n+i-1)]
1=l

=715[(n+f<)2(n+1<-1)2-n2(n-1)2]-11—2[(n+1<-1)(n+K)(2(n+K>-1)-n(n-1>(3n-1)]+4%K("*K)

= O((n+K)%)

X 1 11
Neui(SGS) = ;[%(n+i-l)3+§(n+i-l)2+ZE(n+i-l)]

——11:;[(n+K)2(n+K- 1)%-n%(n-1 )2]+11—2[(n+[(- {(n+K)(2(n+K)-1)-n(n-1)(2n-1 )]+2%K(n+K)
= 0((n+K)*)

SGS is much slower than the LU decomposition algorithm. This is because the number
of computations required by SGS quadruple relative to the number of grid nodes and
conditioning data. Also, the storage requirement increases with the square of the number
of grid nodes and conditioning data, this makes the SGS algorithm impractical. In practice,
the following so-called 'screen-effect approximation' (SEA) has to be used in the SGS

implementation.
5.1.2.2 SGS Using the Screen-Effect Approximation

Screen-effect approximation: the probability density function at a node posterior to all
information can be approximated by that posterior to the information closest to this node:
fx(u) | () = f(x(u) | (amy)) (5.12)

where (nn;) denotes the information within a neighborhood of u;, (nn;) < (ny).

Based on the SEA, the overall conditional density function is approximated by
f(x(wy),..., x(ug) | (m)) = i(x(ug) | (any))... 7 (x(u,) | (nny)) (5.13)
Therefore, SGS is approximated by
x(u; | (n) = E(x(w) | (ny)} + Yvar(x(u) | (nn))-e
- m; + CyCrlx-my) +4/C;; - CCyCpees (5.14)

The implementation of SGS using the SEA is, in terms of the steps defined below,

62



1. define a path,

2. define a neighborhood for the node in question

3. calculate the mean and variance posterior to the information in this neighborhood
4. generate a value by Equation 5.14

5. add the simulated value into the data set

6. proceed to the next node and repeat the procedure until all nodes have been visited.

5.1.2.3 Summary of the SGS Computations Using the SEA

Define the upper bound of samples in a neighborhood as v, and assume that v is
adopted as the neighborhood size at most nodes. In practice, v=10~50 on most occasions.
There are two parts to the computation of SGS using the SEA at the ith node: (a) the
operations for neighborhood searching, and (b) the operations involved in Equation 5.14.

Assuming that the optimal neighborhood searching algorithm is adopted in R*xT using
super blocks, then the average number of distance caiculations involved in neighborhood
searching at each node is approximately av, and each distance calculation requires 2
additions and 3 multiplications, where o is a positive number and usually a<v. The total
number of additions involved in neighborhood searching is approximately 2Kav, and the
total number of multiplications is approximately 3Kav.

Analogous to the discussion in Section 5.1.2.1, the computations involved in Equation
) 1.1 11 .. 1,1, .11 e
5.14 require K(§v3-év2+4ﬁv+3) additions and K(Sw3+§v~+2?+2) multiplications. The

overall number of arithmetic operations can then be estimated as follows.

] I .1 11
N.4a(SGS with SEA) = K(sw3-5v2+4'ﬁv+3) + 2Kav

1
= K(?P-%vz + 2Kawv)

- 0K
1 1 1
Nmut(SGS with SEA) = K(§v3+;v2+21—iv+2) + 3Kav
1
=~ K(§v3+%v2 +3Kav)
=O(KWv?)
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SGS using the SEA is much faster than the LU decomposition algorithm, since the
number of arithmetic operations is greatly reduced from @((n+K)*) to ®(Kv?), in practice
K is usually over one thousand while v, as has been mentioned, is usually 10~50.

5.2 Equivalence of the LU Decomposition Algorithm and SGS
Though the LU decomposition algorithm and SGS were each developed independently
and each follow different implementation processes, this section will demonstrate their

equivalence in terms of simulation results.

Let the lower triangular matrix L = (L), Equation 5.1 can be rewritten as
/xl'-ul'\ ( L“ 0 \ ( w, \

xn.'“'n' - Lnl e er Wn
XpoHy Loetr+ v+ Lyetnet Wast

%tk \Lgy - men_k.j Y

The required conditional simulation {x;, i=1,..., K} can be given by
Xi = Lnei Wi o F L e WMy, 151, K
If we let vector L;;" = (Lyui 1 ---» Lyei nti) @nd W= (W, .., W), the above formula can

then be rewnitten as follows,

Xi= Li[TWi+mi + Ln+i n+i " Wn+is P = 1, .., K. (5 1 5)
To derive the first term Lw;, consider the covariance matrix Cy, ., associated with
the value x; plus the information (n;). This matrix is composed of the covariance matrix
C,; associated with the information (n,), the prior variance C;, and C;, the covariance
vector between x; and (n,), therefore

C =(Cu Cli)=(LLu 0 (Uﬂ Liy
1+1 I+1 Cﬂ Cii iIT er -/\0 Ln*;n,.

Cy=Ly Ly
L;,'w; can then be obtained as follows,
Ly'w;=C; L'y'w;

from
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= Cy L/ L/ Lyw;

= C;CLywi
Since Lyw; forms the values of the information (n)): Lyw; = x; -my, L;'w; +m; is but the
posterior mean,

Liw; +m; = CyCiy(x, -my) +m
As for the element L ,; .., from C; = L;;/'L;; + Lrvin-i and L, = C,CyLy,;, one obtains
Lyvinei = C;i- LyLy = C;- GGGy

Equation 5.15 can then be rewritten as follows,

X =m+ Cilc;:(xl'ml) +4/C;i - Cqu;Cﬁ‘Wi

This is equivalent to Equation 5.11.

In practice SGS using the SEA is highly preferable to the LU decomposition algorithm
since the computation is greatly reduced from ©((n+K)?) to ®(Kv3). More importantly,
the storage required is reduced from ©(K?) to @(v?), where v is the upper bound of
samples in a neighborhood, as has been mentioned previously. This indicates that the
storage problem which exists in the LU decomposition algorithm does not exist in SGS
using the SEA. For convenience, SGS using the SEA will be referred to simply as SGS in
all further discussion.

5.3 Sequential Group Gaussian Simulation
5.3.1 Problem Definition

The implementation of SGS is entirely based on the computation of the kriging system.
As Chapter 4 indicates, the spatiotemporal kriging system is quite similar to the spatial
kriging system, the difference being that the covariances are obtained by space-time
covariance models. This implies that SGS is applicable to conditional simulations of

spatiotemporal processes.

The implementation of SGS is actually a node-by-node sequential process, implying
that neighborhood searching and a kriging operation are required at each node. In
practice, the simulation grid is usually large and dense, which usually leads to overlapping
of neighborhoods among closest nodes (see Figure 5.1). Therefore, it is rational to
consider sharing neighborhood searching and kriging operations among closest nodes.
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The sequential group Gaussian simulation (SGGS), proposed in this section, takes
advantage of neighborhood sharing for closest nodes. Analogous to SGS, SGGS is also a
sequential process. However, this sequential process is performed from one group of
closest nodes to the next group rather than node by node, and simulated values of each

group are generated simultaneously.
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///
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. — data location

@ — node to be simulated

Figure 5.1 Four neighborhoods of four closest nodes are overlapped.

5.3.2 Theory

Cluster the K nodes into k groups such that the nodes in each group are close to each
other: (K,) = (uy,..., ug,), ..., (K) = (ug, , -y,..., ug), K; + ... + K = K. Analogous to SGS
which partitions the posterior probability density into K posterior probability densities for
K nodes, we can decompose the posterior probability density into k posterior probability
densities for k groups of K nodes,

(x(u,),.... x(ug) | () = (K H{ntK-K,)... /(K )) | (n)) (5.16)
If we denote the neighborhood of the ith group (K;) by (nn)), i, I = 1 to K, then Equation
5.18 can be approximated with the SEA as follows,

f(x(uy),.... x(ug) | (@) (K | (n))...{(K,) | (an)) (5.17)
The posterior probability density of the ith group, {[(K)) | (nn,)], is determined by the
following posterior mean vector and posterior covariance matrix,

E((K)| ()} = m; + C,Cii(x-my) (5.18)
and

C((K) | (any) = C;,= C;-CiC;iCy; (5.19)

where vector m, and m, respectively denote the original means of (K;) and of (nn;); vector
x, denotes the information in the neighborhood, C;| denotes the inverse of the prior
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covariance matrix of (nn;), C; denotes the covariance matrix of (K;), and vector C;'=C;;
denotes the prior covariances between (K;) and (nn,). Let C; =L L; ", where L, is the
lower triangular matrix of C,,, then the simulated values of the ith group can be obtained

by
x((K)) | (nny) = m; + CCil(x,-my) + Ly e, (5.20)

where the vector of random numbers e; ~ N(0, I).

For convenience, the number of nodes in most groups can be identically designed, that
is, K, = ... = K; = x and K = k, the proposed algorithm can then be defined by the x-
SGGS. Notice that when k = 1, the 1-SGGS is but SGS; and when x = K, the K-SGGS is
exactly equivalent to the LU decomposition algorithm. Therefore, SGGS is a series of
sequential Gaussian simulation algorithms associated with different group sizes which
progresses from SGS to the LU decomposition algorithm.

5.3.3 Summary of the SGGS Computations

Recall that the upper bound v is assumed to be the neighborhood size for most groups.
Corresponding to the discussion of SGS using the SEA, the computations of SGGS for
each group can be summarized as follows
(1) the implementation of neighborhood searching discussed in Section 5.1.2.3, requires

(2B-1)av additions and (B+1)av multiplications, where o and [ are constants as

mentioned in Section 5.1.2.3.
. . oL 1,11 1.1,
(2) the computation of L] for a given C; requires 5\13-['2'\/-? additions and :’:VJ-EV"
11 C e .
1Y multiplications;
(3) the computation of two matrix products, C;C;}(x;-m;) = (L;;C,.)'(L;}(x,-m,)) and C;-
U . 1 bl -~ .. 1
(L CyY (L Cp), requires Sv(v+1)(x+1)+xv+x*v+x*+v additions and Sv(v+1)(k+1)+
kv+k?v multiplications.
. . i 1 1 1
(4) the computation of L;; from a given C;, requires Nadd(LU,x)?ll;szF(

. . l - 7 . g- .
additions and N, (LU, k) = ?(34("*'1—,,!( multiplications.

: : ] -
(5) the computation of the matnx product L e requires Sx(k+1) additions and

multiplications.
(6) the addition of (m; + C;C;{(x;-m,)) and (L; e;) requires x additions.
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. The total number of computations in SGGS can be estimated as follows.
K 1 11 1
N.4a(SGGS) = T(‘[(ZB-l)av + :_:-v3 - 15vi+ TV V(v D(k+1) +xv + Kiv+xi+y

1 1 1
=3 - Ik + 175x +5x(k+1) + ]

+
N r—

l 1 1 1
2+ Jxv? + 1'21<v+1(2v+§142+g)(3]

—
W

a{

AR AR
O’\J\v—- (98]

J
0~

2

2

]

I\u —

+11 t
v

b3~
I\)J.—.

1
k+v)? +gVitoKiv -

1
®
A
A
<

)

K 1 1 11 1 R
Naut(SGGS) = ;[(Bﬂ)av + ?3 - Evz T ?(v+l)(rc+1) + KV + %V

1 7 1
+ 31<3~ K2+‘1_2‘K +5x(x+1)]
K 1 1, 1 1
~ ;[3\/3 + kv Iy + k?v + 31(3-?(2]
K 1 1 1 1 1
= ;[g(tc-é-v)J +gV t kv + kv o]
K
= @(;(K'*'V):’)
. K. . :
where T(‘ indicates the number of groups. Since

K K
EE(K+V)3 <Naga( SGGS)SEE(HV):’
and

K K
a(K+v)3stu,(SGGS)$§;(K+v)3

K
one may estimate N,44(SGGS) and Ny, (SGGS) by aadd'E(K+v)3 and G.mu|;'(l(+v)3, where

1 1 1 1 .
the constants 44 and O, are between 5 and 37 &S tadd, et <5 Furthermore, assuming

that the cost to perform an addition is a,g and the cost of an multiplication is ag, the
total cost of all total anthmetic operations can be estimated as the following,

K
Nioui(SGGS) =N.as(SGGS) + Npu(SGGS) = (aaddaadd+a1nulawnul)%(K+v)3= b;(‘(“*")3

where b = QLadd8add TO0lmul@mul-

Note that when k=1, the computation of SGGS is O(K(1+v)})=@(Kv3). This is
consistent with the computation of SGS since the 1-SGGS is but SGS. When x=K,
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implying v=n, the computation is ©((n+K)?), this is consistent with the computation of the
LU decomposition algorithm since the K-SGGS is but the LU decomposition algorithm.

5.3.4 Optimal SGGS in Terms of Group Size

Equation 5.20 indicates that the computing time is determined by the upper bound v
and the group size x. In practice, it is interesting to discuss the optimal group size x for a
given upper bound v, with regard to computations. The derivative of Ny, (SGGS) is given
by
bK(x+v)*(2v-k)

>
K2

d d K
T Voal(SGGS) = a('[b;(ﬁv)"’ 1=

Formula 5.21 indicates that the computing time decreases when the group size, ,
increases from 1 to 0.5v, then, the computing time increases when x increases after 0.5v.
Therefore, the optimal SGGS is the 0.5v-SGGS.

(5.21)

If we substitute x with 0.5v, the arithmetic operations of the 0.5v-SGGS can be
approximated as follows,
2K13 1, 4+ 1,3, 1,
N.asa(0.5v-SGGS) ::—v—[g('iv) +gv v ovit +§V]

41 , 9
~Kige -3

2K 1
Nimut(0.5v-SGGS) zT[g(

41 5
=K )

L1,
= K(EFv+3vY)

1 1 3
3 3 3
)+gv vty

IQJ [P

It is interesting to compare the 0.5v-SGGS and SGS in terms of arithmetical

operations. The ratio of additions of these two algorithms is approximated by

41 ., 9
4" "8V 41v-27

)

N,dd(O. SV-SGGS) -

t

Naa(SGS)  ~ 1, 1, 8v-12v
EAE )
J o~
and the ratio of multiplications is approximated by
41 S
2
Nuw(0.5v-8GGS) 24" 72" 41v+30

Nei(SGS) "1,

J

, 8Vi+12v

Nj—
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Figure 5.2 shows these ratios vs. the neighborhood size v. The ratio of additions is very
similar to that of multiplications, and both indicate that the larger the neighborhood size
chosen in the sequential simulation process, the better the 0.5v-SGGS as opposed to SGS.
The 0.5v-SGGS is roughly 2 times faster than SGS if v =10, and roughly 10 times faster
than SGS when v reaches S0.

Note that the SEA causes a smaller error in the 0.5v-SGGS than in SGS. As will be
mentioned later in Section 5.4, the larger neighborhood size, the smaller the error caused
by the SEA. In SGS, the neighborhood size is not more that v; while in SGGS, the
neighborhood size of the first node in a group is v, but the size of the second node
becomes v+1, then v+2, ... and the last one is v+k-1. This indicates that the 0.5v-SGGS
is preferable to SGS not only in computing time, but also in precision .
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v
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Figure 5.2 The arithmetic operation ratios between the 0.5v-SGGS and SGS vs.
neighborhood size.
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5.3.5 Implementation Process of SGGS

The implementation of SGGS proceeds as follows:
. Define an external path that visits each group in the grid, and an internal path that visits

—

all nodes in each group;
Find a neighborhood for the current group to be simulated;

[

3. Calculate the posterior mean vector and the posterior covariance matrix of the current
group by Equation 5.18 and 5.19;

4. Generate the simulated values of the current group by Equation 5.20;

5. Add the simulated values of the current group into the data set;

6. Proceeds to the next group until all groups are simulated.

An important characteristic of SGGS is that it uses two paths to visit all grid nodes: an
internal path and an external path. A sequential path in the sequential simulation
algorithms has the great advantage of saving time, since the configuration of simulated
values selected in the neighborhood can be fixed so that no searching time is required, and
its covariance matrix will be invariant for most nodes. However, a sequential path
generates anisotropic artifacts, and this leads to a random path solution in SGS, at the cost
of computing time (e.g., Isaaks, 1991).

Fortunately, a proper internal path may provide a way to successfully reduce the
amount of artifacts caused by a sequential external path. One option is the inverse-
direction path, iilustrated by Figure 5.3. Also, one may choose several random paths for
the internal path design to reduce the number of artifacts. For example, we design 10
unique random paths. During the sequential process the internal path of each group is
randomly chosen from these 10 paths. The reduction of artifacts is based on both the
group size and the number of random paths. The larger the group size and the more
random paths, the greater the reduction of artifacts.
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Figure 5.3 An inverse-direction combination of an internal path and an external path.

5.3.6 The SEA Loss

The computing time of the 0.5v-SGGS increases quadrically with the neighborhood
size, indicating that a smaller neighborhood size is always preferred in terms of computing
time. On the other hand, however, a smaller neighborhood size will cause a larger
precision loss, therefore a larger neighborhood size is favorable in accounting for precision
requirement. Therefore, a good sequential simulation should balance the precision
requirement and the computing time. To measure the precision loss caused by the SEA,

the following definition is useful.

Definition 3.1 the SEA loss at a node u; can be defined as the mean square difference
between the simulated value generated by the information in the neighborhood and the

simulated value generated by all information,

pLx(u) |, (m)] = 3E (s (any) - xus | ()12 (5.22)

In order to simplify Equation 5.22, we first introduce the following property of

posterior covariances.
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Property 5.1. The covariance of z(u;) and z(u;) posterior to (k), Cjjx = cov{z(u;), z(u;) |
(k)], equals to zero if (i) one of z(u;), z(y;) has no correlation with the other and with the
information (k), or (ii) z(u;)c(k) or Z(y;)(k).

Proof.
(1) Suppose z(u;) has no correlation with z(u;) and with the information (k), then

this leads to
Cij.k = CU - Clkcilkckj =0 - OCLLCM =0

(ii) Assume z(u,)c(k), then vector
Cy = [Cov(z(u;).2(u))), .., Cov(z(u;),z(wy)), ..., Cov(z(u;),2(uy))]
is but a raw of the covariance matrix of (k), C,,, which entails

C,Ci =(0,...,0,1,0,...,0)

this is a raw with all zeros except the ith element being one. Consequently,

Cikcic}\-ckj =C;

then the posterior covariance
- -1 -
Cij.k - Clj - Cﬁ\CU(CkJ - 0

Therefore the above property is true.

The SEA loss can be further developed as follows,
1
plx(u;) | (nn,),(n)] = 3E{ [x(u; [ (nny)) - x(us | (np)) ]2}

= %E{[E{x(ui) | (o)} var(x(u;) | (nng))ees -E{x(u) | () }-Vvar(x(w) | (np)ee; 12}

= SEE(x(w) | (0} -Efx(u) | ()} + 5Exfvarte(u) ] () var(e(u) [ (m) )
Since
E{[E{x(w)] (an)} - E{x(u) | )} 2} = E{Iu; + CuCulxrny) - ; - CuGil(xru)]?)

= CuCyCy + € (G;iC;; - 2C4CrCyy CiC,
= C; G Cyi - CyuCiCy + 2(CyCyCy; - CCiCy GiiCyy)
= var{x(u) | (any)] - var{x(u) | (n)] + 2(CyCuC)

where C;; denotes a vector of posterior covariances. Note that (nn;)c(n,), according to

Property 5.1, C;;; = 0. This entails

E{[E{x(u)| (nn)} - E{x(uy)| (n)}12} = var[x(u)| (amy)] - var{x(u)) [ (n)] (5.23)

and
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plx(u) | (), ()] = 3 (varx(w) | (any))-varfxcu) | (n)D)

+(\var(x(uy) | (nn)))-\var(x(u;) | (ny)) ]2}
= var{x(u;) | (nn)))(1.0-Vvar(x(w) | (np)varlx(u) [ (an)] ) (5.24)

Equation 5.24 indicates that the SEA loss is only determined by two posterior variances

var[x(ui)|(nn,)] and var[x(ui)l(n,)]. Furthermore the SEA loss has the following
properties:
1. The SEA loss is positive:

plx(u) | (nny),(n)] 2 0
2. The SEA loss is monotonic decreasing with regard to increasing data in the
neighborhood:

olx(u) | (ang+1), (1)) = 5 (varfx(u) | g+ Dl-varx(u) | ()
+(\var(x(u;) | (ang+ 1)\ var(x(u;) [ (0,))]2)
< 3{(varlxu) | () varx(u) | ()
+(\var(x(u) | (an)-\var(x(u)) [ (0) ]2}
= plx(u) | (n),(ny))

The SEA loss will be zero when the neighborhood (nn;) expands to include all

information (ny),

plx(u;) | (ny),(np] = 0

3. The SEA loss is monotonic increasing with regard to increasing overall information:
plx(u) | (any).(np+1)] = 3 ((varlx(u) | (nngl-var{x(u) | (nr+ 1))
+ (Wvar(x(u) | (any)-\var(x(u) [ (ng+ D))
> 3{(varlx(u) | (an)]-varlx(u) | (a)])

+ (Vvar(x(w) | (anp))-\var(x(u) | (n)]}

= p[x(u;) | (ny),(ny)]
(5) The SEA loss is bounded between 0 and var[x(u;,) | (nn))]:

0 < plx(w;) | (any),(ny)] <var[x(u;) | (nn))]

It might be more meaningful to consider the following relative SEA loss:
Rx(w;) | (any),(n))] = p{x(w;) | (amy), () var{x(u;) | (nny)]
= 1.O-\var(x(u;) | (ny))/var(x(u;) | (nny)] (5.25)

The RSEA loss is within the interval [0, 1]. The information behind the RSEA loss is
straightforward: decreasing of the RSEA loss is directly associated with decreasing of the

difference between two posterior variances, and the RSEA loss reaches zero when these
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posterior variances become identical. An advantage of the RSEA loss is that it is only
affected by the grid, the range, and the type of the covariance model, without any effect
from the sill.

After the definition of the RSEA loss, our next concern is to assess it in different grid
designs using different covariance models.

5.3.6.1 Assessment of the RSEA loss

This section concentrates on the assessment of the upper bound of the SEA loss for a
given grid ratio l/a (a is the range and | is the lag of the grid) and a given covariance
model. Two popular covariance models are discussed: the spherical model and exponential
model. The discussion of the Gaussian model will be mentioned at the end of this section,

as a counterpart example.

The RSEA loss for a given grid ratio reaches its upper bound when var[x(u;) | (nny)]
reaches its lower bound and var[x(u;) | (ny)] reaches its upper bound simultaneously. The
lower bound of var[x(u;) ‘ (nn))] is given by

rg.lin var{x(u;) | (n)]= Lllrn o var(x(u) | (ny)] = var[x(u;) | ()]
and the upper bound of varx(u,) l (np)] 1s given by
max var[x(u;) | (nny)] = lim, | var[x(u) | ()] = var{x(u) | (1)]

where var[x(ui)| (ec)] denotes the variance posterior to the information on the whole grid
and var[x(u,) i (1)] denotes the variance posterior to the closest datum. One may get
ROx(w) | (nny),(ng)] < 1.0-Vvar(x(uy) | (0))var(x(uy) [ (1)]
var{x(u;) | ()] converges very fast for a given grid design, that is, for a given grid ratio,
var{x(u;) | ()] = var{x(u) | (ny)]

where (n;) is a neighborhood of considerably small size (n,<50). This can be demonstrated

by the following configuration design: var{x(u;) [ (np] is calculated sequentially by
considering the 8 closest data locations around u; (see Figure 5.4(a)), then the 24 closest
locations (see Figure 5.4(b)), then the 48 closest locations (see Figure 5.4(c)), etc.. The
results of var{x(u;) | (n,)] for both the spherical model and exponential model are shown in
Figure 5.5 and 5.6, indicating that var[x(ui)l(oo)] can be approximated sufficiently by
considering only 48 closest locations around u;,

var{x(u;) | (0)] = var{x(u;) | (48)]
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On the other hand, var[x(u;) | (1)] is given by

varx(u)| (1)] = C(0) - C(h)?/C(0)
where h denotes the distance of the closest datum. Figure 5.7 and 5.8 show the lower
bounds of the RSEA loss of the exponential model and spherical model with the grid ratio
changing from 0.001 to 0.5, implying (i) the upper bound of the RSEA loss is decreasing
when the grid ratio is increasing, and (ii) the upper bound is between 0.0 and 0.42.

5.3.6.2 Optimal size of neighborhood with required RSEA loss

The RSEA loss of both the exponential model and the spherical model is, in practice,
much smaller than its upper bound, this makes SGGS appropriate and reliable. To show
practical variations of the RSEA loss, the data configuration and the neighborhood are
designed as follows. Randomly pick up 120 nodes from a 21x21 grid around the node to

be simulated, these nodes construct the configuration of the information, thus the

. ) simulated nodes 1 .. )
simulated node ratio = all nodes ~y Partition the area into 4 sub-areas, and select

the closest node in each sub-area to construct a 4-location neighborhood, then calculate
the RSEA loss. Next choose the two closest nodes in each sub-area to construct an 8-
location neighborhood, again calculate the RSEA loss. As the neighborhood is continually
extended, the variation of the RSEA loss is apparent. This process can be repeated many
times to get a reliable evaluation of the RSEA loss.

Figure 5.9 shows the results of the RSEA loss for the exponential mode! with /a =0.01,
0.05, and 0.1 with 50 repetitions. Based on these results, the optimal size of the
neighborhood of the exponential model with two RSEA loss requirements (5% and 1%) is
shown in Table 5.1. In general the optimal size decreases when the grid ratio increases.
When the grid ratio larger than 0.1, under the 5% RSEA loss requirement it is enough to
pick up only 1 datum in each sub-area to construct a 4 point data neighborhood.

Table 5.1 Optimal size of the neighborhood for the exponential model.

grid ratio (V/a) optimal size optimal size
(the RSEA loss < 5%) | (the RSEA loss < 1%)
<0.01 2x4 5x4
>0.01 & <0.1 2x4 4x4
>0.1 1x4 3x4
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The RSEA loss does not vary monotonically for the spherical model, this is
demonstrated in Figure 5.10, 5.11, and 5.12. It is interesting to note that the RSEA loss is
very small and roughly invariant when the gnd ratio is not more than 0.05, but it increases
a considerable amount when the grid ratio is between 0.07 and 0.25, then it decreases
rapidly when the grid ratio is over 0.25. The optimal size of the neighborhood with respect
to different grid radios is given in Table 5.2.

Table 5.2 Optimal size of the neighborhood for the spherical model.

grid ratio (l/a) optimal size optimal size
(the RSEA loss < 5%) | (the RSEA loss < 1%)
<0.07 2x4 6x4
>0.07 & <0.17 5x4 not available
>0.17 & <0.25 5x4 9x4
>0.25 2x4 S5x4

Both the exponential and the spherical model demonstrate the presence of the screen
effect. This effect is sufficient that a small neighborhood can fulfill the 5% RSEA loss
requirement, thereby ensuring the success of the SGGS implementation.

Unfortunately, the success of SGGS for the exponential and spherical models does not
tndicate that it is applicable for any covariance model, and a counterpart example is the
Gaussian model. Figure 5.13 shows the RSEA loss of the Gaussian model with the grid
ratio = 0.15, 0.20, and 0.25, indicating that the RSEA loss increases when the grid ratio
decreases. When the grid ratio is less than 0.25, the RSEA loss is fairly high (>> 5%), this
infers that SGGS is much less effective for the Gaussian model in most applications.
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Figure 5.9 The RSEA loss of exponential model for grid ratio=0.01, 0.05, 0.10.
120 ‘real’ data are randomly distributed in a grid of 21x21.
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Figure 5.10 The RSEA loss of spherical model for grid ratio=0.01, 0.05, 0.07.
120 ‘real’ data are randomly distributed in a grid of 21x21.
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Figure 5.11 The RSEA loss of spherical model for gnd ratio=0.10, 0.12, 0.15.
120 ‘real’ data are randomly distributed in a grid of 21x21.
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Figure 5.12 The RSEA loss of spherical model for grid ratio=0.20, 0.25, 0.30.
120 ‘real’ data are randomly distributed in a grid of 21x21.

84



Gaussian model
grid ratio = 0.16

10 20 30 40 50 60 70 80
number of data in the neighborhood
1
Gaussian model
08FfF

grid ratio = 0.20

10 20 30 40 S0 60 70 80
number of data in the neighborhood

1

Gaussian modei
08t grid ratio = 0.25
08¢
0.7+

(]

2 06¢F

< 05t
?

204y

03

0.2

0.1

0

10 20 30 40 S0 60 70 80
number of data in the neighborhood

Figure 5.13 The RSEA loss of Gaussian model for gnid ratio=0.15, 0.20, 0.25.
120 ‘real’ data are randomly distributed in a grid of 21x21.
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5.4 The Simulated Annealing Technique Honoring Experimental
Variograms

5.4.1 Problem Definition

Covariance/variogram model fitting is an important step for all current simulation
techniques. The fitted covariance/variogram model is assumed to characterize the
properties of the second-order moment presented in the experimental variograms of the
conditioning data. In practice, covariance/variogram model fitting is a time-consuming
process which involves a great number of modifications, such as anisotropy recogmition,
nested structure identification, model type selection, and the adjustment of sills and
ranges. Moreover, the model candidates must be constrained by the positive definite
requirement, regardless of whether this hinders their ability to properly characterize the
space-time continuity.

Another negative impact of covanance/variogram model fitting is that, for natural
processes, the variations of the second-order moment are often artificially smoothed. This
variation reduction of the second-order moment more or less simplifies the nature of
space-time continuity. Therefore, it is argued that instead of fitting experimental
covariances/variograms with a model, one would consider generating simulations which
directly reproduce experimental covariances/variograms. The simulated images with
reproduced experimental covariances/variograms mimic more faithfully the nature of
physical processes than those generated by the algorithms commemorating
covariance/variogram models.

Though this idea might be attractive, it is impractical for most simulation techniques,
due to the requirement of positive covariance matrices. Fortunately, the development of
the simulated annealing method provides a means to implement the experimental
covariance/variogram reproduction in simulated images.

The simulated annealing method generates the required simulations through an

objective function design. Given an initial image, the annealing method swaps values at
different nodes to minimize the objective function, instead of regenerating values at nodes
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directed by specific rules, as do most simulation techniques. Therefore, the requirement of

positive covariance matrices becomes unnecessary.

5.4.2 Simulated Annealing Techniques

In the 'annealing’ approach to stochastic simulation there is no explicit random function
model. Rather, the creation of a simulated realization is formulated as an optimization
problem to be solved with a stochastic relaxation or 'annealing' technique. An objective
function is needed to implement some practical requirements of the desired simulation,
which is a measure of the difference between the desired spatial characteristics and those
of the candidate realization. The essential feature of annealing methods is to iteratively
perturb the candidate realization and then to use a decision rule to accept or reject the
perturbation. The decision rule is based on how much the perturbation has brought the
candidate realization closer to having the desired properties. One possible decision rule is
based on an analogy with the metallurgical process of annealing, hence the name simulated
annealing (e.g., Kirkpatrick, et al., 1983; Geman and Geman, 1984).

Simulated annealing is a prescription for whether or not to accept a given perturbation.
The acceptance probability distribution is given by

1 Opew < Ogld
P{accept} ={ Duid o e

e » otherwise (5.26)

where O4 denotes the previous value of the objective function, Opew denotes the value of
the objective function associated with the current perturbation, and the parameter p is
analogous to the 'temperature' in annealing. The higher the ‘temperature’, the more likely
an unfavorable perturbation will be accepted.

The virtues of simulated annealing techniques are as follows: (i) they are model-free,
that is, the impiicit S/TRF model can be Gaussian or non-Gaussian, homogeneous or non-
homogeneous. Moreover, there is a potential for simulated annealing to generate
conditional simulations directly based on experimental data without models, such as the
histogram, the experimental variogram, and so on; (ii) multiple-point statistics, which has
the potential to generate conditional simulation by accounting for geometncal structures
of spatiotemporal variations, (iii) it could be used to implement other relevant

requirements for the simulated realization.

87



5.4.3 Experimental Variogram Reproduction

The experimental variograms of the conditioning data can be reproduced through the
proper design of the objective function, which might be defined as the square difference
between the variograms of the current image, y*(h, 1), and the experimental variograms of
the conditioning data, y*(h, 1),

0= ho- y°(h, O (5.27)
h.t y'(h, 1)?

Rather than a variogram model which is continuous with any space lags and time
intervals, the experimental variograms of the conditioning data are always discretely
calculated. To generate experimental covariances between any space lags and time
intervals, a multivariate interpolation is needed. Suppose an experimental variogram is
denoted as y*(h, 6, 1), where h is the space absolute distance with h,<h<h,, 6 is the
direction in space with 8,<6<8,, and T is the time interval with t,<t<t,. Then the required

interpolation is given by
1 i .
Y (h, 9, t) = (hl.hz)(el_62)(tl_tz)l'(h'hl)(e'el)(t'tl)Y (h'.” e'.” tz)

+ (h-h)(8-8,)(t-T,)y*(h,, 85, T,) + (h-h, }(0-8,)(t-1))y*(h,, 6, T,)

- (h-h))(8-6,)(t-T,)y"(h,, Oy, 7)) + (h-h,)(8-8,)(z-1))y*(hy, B,. 1,)

- (h-h,)(8-8,)(t-t,)y*(h}, 8,, 1) - (h-h,)(8-6,)(z-t,)y*(h,, 6, T;)

+ (h-h,)(8-6,)(t-T,)v°(hy, 6,, T))] (5.28)
where v*(h;, 9;, T,), i = | to 2, are known experimental variograms of the conditioning data.

5.4.4 The Implementation Procedure

The implementation procedure of the required simulation can be represented as
follows. First, an initial simulation is generated by assigning each node a value at random
from the desired distribution. This initial simulation is sequentially modified by swapping
the values in pairs of nodes not involving a conditioning datum. A swap is accepted if the
objective function is lowered. Not all swaps which raise the objective function are
rejected,; the success of the method depends on a slow cooling of the simulation controlled
by a 'temperature’ function which decreases with time. The higher the ‘temperature’, the
greater the probability that an unfavorable swap will be accepted. The simulation is
completed when the simulation is 'frozen!, in other words, when further swaps do not
lower the objective function or when a specified minimum objective function is reached.
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The following parameters determine the computing time of this method:

D,: the initial ‘temperature’. Usually p, is designed to be high. The default p, is 1.0.

A: the reduction factor, 0 < A < 1. It is used to lower the temperature whenever enough
perturbations have been accepted or too many perturbations have been tried.

K the maximum number of attempted perturbations at any one temperature. The
temperature is multiplied by A whenever K_, is reached (on the order of 100 times the
number of nodes).

K cen: the acceptance target. After K., perturbations are accepted, the temperature is
multiplied by A (on the order of 10 times the number of nodes).

S: the stop number. When K__is reached S times the process is stopped (set at 2 or 3).

N,,.: the number of experimental variograms involved in each objective function updating.

N
directions, and time intervals) that are to be reproduced. In practice, N, indicates the

v determines the number of experimental variograms (related to space lags and
neighborhood size associated with each swap: all variograms between one swapped
value and other values in its neighborhood will be updated.

Usually no screen effect approximations exist in the simulated annealing process,
therefore, N_,, is crucial for the required experimental variogram reproduction and for the
computing time as well. In practice, the grid lag is smaller than the unit lag of the
experimental variogram calculation, therefore N_ . might be relatively large in
spatiotemporal simulations. For example, if the grid lag is half of the unit lag of the
experimental variograms, to reproduce experimental covariances for 5 lags in R2xT, there
must be around (2x10)? experimental variogram updating required in each objective

function updating; if the grid lag is 3 of the unit lag, then each objective function updating

requires around (2x5x5)* = 125000 experimental variogram updating.

When a swap is considered, the variograms of the current image are updated rather
than recalculated. Suppose two values x; and x; are potentially swapped, as an example.
For another value x,, there are three conditions for variogram updating, shown in Figure
5.14: (a) no variograms involving x, will be updated since x, is far away from both x; and
x;; (b) only the variogram between x; and x, needs to be updated since x, is far from x;
and (c) two variograms need to be updated: one between x; and x, and another between x;
and x,.
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Xk

>
x

Figure 5.14 Three conditions in the swap between x; and x;: (a) variogram updating does
not involve x, since it is far away from both x; and x;; (b) only the variogram between
x; and x, needs to be updated since x, is far from x;, and (c) two variograms need to be
updated: one between x; and x, and another between x; and x;.
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The updating in condition (b) is given by
. . 1 )
Ynew (B B T = Yoid (hye, B, T + IN(hy, B, tjk)l("‘k -x)2- (5 - %) (5.29)
b J b

where (hy, 6, T;) denotes the space-time difference associated with x;, x,, characterized
by the spatial absolute distance hy,, the spatial orientation 6;, and the time interval ;.

For condition (c), in addition to Equation 5.31, the updating is as follows,

)L(xk x,) (x¢ - %) (5.30)

1
'}’new (hlk' elk, ,k) 'Yold (hlkv ik lk) * 2N(h1k’ e\k’ ik

5.4.3 An Improvement of Implementation

Though the above updating make the implementation faster than recalculation, the
computing time is still huge due to the great amount of variogram updating involved in
updating each objective function. More effects are needed to speed up the simulation

process. The following implementation is one way to do so.

In practice, the pair of two swapped values, x; and x;, are close to each other. Suppose
there are p variograms involving x; and q variograms involving x; to be updated. Denote
these variograms by (¥;, ..., ¥;,) and by (¥ir, - Yig)- When x; and x; are not close to the
edges of the simulation grid, as shown in Figure 5.15(a), then p = q, that is, for each
variogram involving x;, Yy, there exists a variogram involving x;, v;,, whose space-time
difference is the same as that of v, (hy, 8y, Ty) = (b, 64 ). If x; and x; are close to
the edges of the simulation grid as shown in Figure 5.15(b), for most variograms involving
x;, there still exists corresponding variograms involving x; such that their space-time

differences are identical.

Now, let the space-time difference between x; and x, be identical to that between X; and
X, which is represented by (h, 8, t). Then instead of two variogram updating in the
current implementation, v, and ¥, one may consider the following simplified formula,

L] L 1 - - -
Yrew (1, 8, T) =7o1a (h, 6, 1) + W(Xw - %) - (K = P+ - %)% - (% - %))
=7Youd (1, 6, 1) +2N(h—632(>q - X)(%y - %) (5.31)
In fact, this implementation saves more than half of updating time.
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r‘

Figure 5.15 The swap between x; and x;. For one variogram updating between x; and x,,
there usually exists another variogram updating x; and x,, such that their space-time
differences are identical. (2) x; and x; are not close to the edges of the grd, and (b) x;
and x; are close to the edges. The dot line implies the neighborhood of the swap.

5.5 Summary

Both SGGS and the simulated annealing technique can be applied to generate
realizations of spatiotemporal processes. An advantage of these techniques for
spatiotemporal conditional simulations is that their implementation does not explicitly
involve the joint space-time measure which is often a topic of argument.

SGGS is a series of sequential Gaussian simulation algorithms including the current
SGS and LU decomposition algorithm. Among them, the best is the 0.5v-SGGS, where v
indicates the neighborhood size. For instance, the 0.5v-SGGS with v being 50 is roughly
10 times faster to calculate than the current SGS.
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The SGGS error caused by the SEA can be characterized by the SEA loss defined as
the mean square difference between the simulated value posterior to the information in the
neighborhood and the simulated value posterior to all information. The SEA loss is fully
determined by the posterior variances, monotonic increasing with the whole information
and monotonic decreasing with the information in the neighborhood. The result shows that
both the exponential model and the spherical model can match the 5% RSEA loss
requirement for any grid design with a considerably small neighborhood. However, a
Gaussian model has a fairly high SEA loss in most applications.

It is worth noting that the SGGS technique can be easily expanded to the Gaussian
joint simulation with the same strategy. However, a detailed discussion of this expansion is

beyond the scope of this thesis.

Also, the SEA loss is a very useful tool for sequential joint simulation techniques to
evaluate the error generated by ignoring further information. Also indicated in this
discussion are the potential problems associated with sequential simulation techniques if
the covariance model is neither an exponential model nor a spherical model. A good
strategy is to evaluate its SEA loss and estimate the optimal size with an acceptable loss
before implementing the simulation.

The simulated annealing technique honoring experimental variograms provides a way
of generating realizations of spatiotemporal processes without the covariance/variogram
model fitting, which is prerequisite for other simulation algorithms. This saves a great
amount of computations in model identification and avoids possibly complicated
derivation of positive definite property of model candidates. Furthermore, the simulated
images honoring experimental covariances/variograms mumic more faithfully the nature of
physical processes than that generated by the simulation algorithms honoring

covariance/variogram models.

The computing time of the simulated annealing algorithm honoring experimental
variogram reproduction is crucial to generate satisfactory realizations of spatiotemporal
processes. In practice the current implementation can only reproduce a small part of
experimental variograms of conditioning data due to the huge number of computations
associated with experimental variogram reproduction. Further improvements of computing
time needs to be made to obtain ideal images.
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Chapter 6
Space-Time Modelling of the Pressure System in a

Carbeonate Reservoir

6.1 Introduction

Reservoir pressure is a key parameter in predicting reservoir performance, guiding
reservoir management decisions and developing operating strategies. During the
production life of a reservoir, pressure is monitored at various wells and the results are
used to address reservoir management problems. For instance, reservoir performances are
checked against flow simulation predictions, changes in patterns of pressure gradients are
evaluated, and pressure build-ups or drops are examined. Injection and production
operations may then be adjusted to improve production performance. Optimization of the
pressure monitoring process is an essential element of reservoir management.

A pressure monitoring scheme should address the question of which wells and how
often they should be sampled to adequately monitor both local and global pressure
changes. The development of such a scheme should account for distinct physical,
engineering and economic characteristics. The distribution of reservoir pressure is a joint
function of spatial geological heterogeneity and temporal production characteristics.
Economic considerations of the monitoring scheme relate to the lack of production in a
shut-in well for the period of pressure transient testing.

In addition, one of the most important goals of reservoir management is to predict
future production rates. Over the years, engineers have developed several methods to
achieve this goal. These methods, ranging from simple decline curve analysis techniques to
sophisticated multidimensional and multiflow reservoir simulators, involve a process of
parameter modifications to let the calculated production rates match the real rates. This
process is referred to as history matching (e.g., Dake, 1978; Aziz, 1979). The reservoir
pressure history match is requisite to history matching, which includes the match of local
average pressures as well as the match of pressure distribution in the reservoir at different
times. An adequate space-time mapping of the reservoir pressure during a past period,
therefore, provides a basis for history matching. The space-time mapping of the reservoir
pressure will contribute to an understanding of the evolution of the reservoir pressure,
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reveal the potential gradients that are controlling fluid movement in the reservoir, and
allow the inference of a pressure distribution in parts of the reservoir or parts of the
production period where or when there are no data.

In this chapter, a case study is presented which is based on the shut-in pressure
measurements of a carbonate reservoir. The space-time continuity of the reservoir
pressure is investigated using spatiotemporal experimental variograms. The space-time
mapping of the pressure is estimated using S/T block OK. The pressure monitoring
scheme is analyzed based on muitiple conditional simulations of the reservoir pressure in
order to estimate local changes of the reservoir pressure adequately.

6.2 Statistics of Pressure Measurements

A total of 644 pressure measurements were collected from 145 wells in the carbonate
reservoir, 576 of them from 116 production wells and the others from 29 injection wells.
The wells are irregularly located in the study area , as shown in Figure 6.1, and pressure
data were irregularly collected from 1986 up to 1993.
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Figure 6.1 The well locations in the study area.
The histogram of pressure measurements of production wells, illustrated in Figure 6.2,

approximately shows a normal distribution shape. However, the histogram of pressure
measurements of injection wells, illustrated in Figure 6.3, shows a somewhat negatively
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skewed distribution. Thus, it may be reasonable to consider that the pressure data of
production wells and injection wells come from different populations. The pressure data of
injection wells were then excluded from the original data set and the investigation was
concentrated on the pressure system of production wells.
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Figure 6. 2 Histogram of the pressure data from production wells.
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Figure 6.3 Histogram of the pressure data from injection wells.
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6.3 Spatiotemporal Continuity Characterization of the Reservoir Pressure

The spatiotemporal continuity of the pressure data was investigated using
spatiotemporal experimental variograms computed in the N-S, NE 45°, E-W, and SE 45°
directions, with a space lag of 0.2(km) and a time interval of 1(month). The directional
tolerance, space-lag tolerance, and time-interval tolerance are respectively 45°, 0.1(km),
and 0.5(month). These variograms are shown in Figure 6.4, 6.5, 6.6, and 6.7. The
characteristics of the experimental variograms are:

(1) the behaviors at the origin show a good continuity, indicating that no nugget effect
existed for the spatiotemporal continuity;,

(2) the spatial anisotropy, involving different ranges in the four directions, is apparent.
More precisely, the range is around 0.66 km in the E-W direction, around 0.52 km in
the NE 45° direction, around 0.33 km in the N-§ direction, and around 0.52 km in the
SE 45° direction. These four space ranges, denoted by aj, a3, a3, and a4, form an
elliptical-shaped directional graph, which is shown in Figure 6.8. Note that sills in four
directions are all around 8-103, implying the presence of geometric anisotropy in the
data set.

Based on these characteristics, the space-time continuity of the reservoir pressure was
assumed that the pressure data show a homogeneous spatiotemporal continuity with
distinct geometric anisotropy, which could be modeled by a joint distance variogram
function. The geometric anisotropy demonstrates that the long axis of the ellipse is along
the E-W direction, with a ratio of 2.0. The fitted spatiotemporal variogram model is given

by
hI

v(h, T) = 8x10°x(1 - expl-((5 5 ) ¢

=P (6.1)

and the reduced space distance h, is given by

where h, denotes the distance in the E-W direction while h, denotes the distance in the N-
S direction. This model indicates a spatial range of 0.11x3 km in the N-S direction and a
spatial range of 0.22x3 km in the E-W direction. Also, Equation 6.1 indicates a time range
of 183x3 days, or 1.5 years. Figure 6.9 shows the fitted model, which is comparable with
the experimental variograms in the E-W direction shown in Figure 6.4.
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Figure 6.4 Spatiotemporal experimental variogram of pressure data in the E-W direction,
the unit of space lag is kilometer and the unit of time interval is month.

Figure 6.5 Spatiotemporal experimental variogram of pressure data in the NE 45°
direction, the unit of space lag is kilometer and the unit of time interval is
month.
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Figure 6.6 Spatiotemporal experimental variogram of pressure data in the N-S direction,
the unit of space lag is kilometer and the unit of time interval is month.

Figure 6.7 Spatiotemporal experimental variogram of pressure data in the SW 45°
direction, the unit of space lag is kilometer and the unit of time interval is

month.
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Figure 6.8 The elliptical-shaped directional graph. ai, as, a3, and a4 denote four space
ranges in the N-S direction, NE 45° direction, E-W direction, and SE 45°
direction, respectively.

Figure 6.9 The spatiotemporal variogram model of the reservoir pressure. The space
distance here is the reduced distance h] given in Equation 6.2. This model is
comparable with the experimental variograms in the E-W direction shown in
Figure 6.4.
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6.4 Space-Time Mapping of the Reservoir Pressure

The space-time mapping of the reservoir pressure, in this context, was computed using
S/T block OK, developed in Section 4.3, with the spatiotemporal variogram model given
by Equation 6.1.

The space-time mapping of the reservoir pressure was computed in an area of 16 km*
during 1989-1992. The total number of space-time gridblocks to be estimated is 20x20x
16=6400, each gridblock has a size of 0.2(km)x0.2(km)x3(month). The block discretion is
4x4x3. The quadrant search was applied for the neighborhood determination at each
space-time gndblock to be estimated, each quadrant has not more than 8 data. Note that
the quadrant search implies the quadrant spatial partition of the neighborhood, and the
neighborhood partition in time was not considered in order to ensure enough data for
kriging operations. The space-time mapping from the first quarter of 1989 up to the fourth
quarter of 1992 are shown from Figure 6.10 up to 6.17.

The result of spatiotemporal mapping of reservoir pressure shows the following

properties:

(1) Inthe maps of 1989, high pressure zones (> 60) are around the northeast, and a few
are around the southwestern corner. The low pressure zones (< 50) spreads from
southeast to northwest, where the production wells are located in.

(2) The gradient of the pressure tends to decrease with time passing. This can be seen
from the maps of 1989 and 1990, where both the high pressure zones and the low
pressure zones are gradually reducing from the first quarter of 1989 up to the last
quarter of 1990, since then these zones are only scattered in the center. From 1991
to 1992, the high pressure zones and low pressure zones tend to disappear, leading
to significant reduction of pressure gradients in most areas.
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Pressure Mapping During the First Quarter of 1989
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Figure 6.10 Space-Time mapping of reservoir pressure in (a) the first quarter of 1989, and (b) the
second quarter of 1989.
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Pressure Mapping During the Third Quarter of 1989
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Figure 6.11 Space-Time mapping of reservoir pressure in (a) the third quarter of 1989, and (b) the
fourth quarter of 1989.
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Pressure Mapping During the First Quarter of 1990
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Figure 6.12 Space-Time mapping of reservoir pressure in (a) the first quarter of 1990, and (b) the

second quarter of 1990.
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Pressure Mapping During the Third Quarter of 1990
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Figure 6.13 Space-Time mapping of reservoir pressure in (a) the third quarter of 1990, and (b) the
fourth quarter of 1990.
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Pressure Mapping During the First Quarter of 1991
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Figure 6.14 Space-Time mapping of reservoir pressure in (a) the first quarter of 1991, and (b) the
second quarter of 1991,
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Pressure Mapping During the Third Quarter of 1991
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Figure 6.15 Space-Time mapping of reservoir pressure in (a) the third quarter of 1991, and (b) the
fourth quarter of 1991.
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Pressure Mapping During the First Quarter of 1992
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Pressure Mapping During the Second Quarter of 1992
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Figure 6.16 Space-Time mapping of reservoir pressure in (a) the first quarter of 1992, and (b) the

second quarter of 1992.
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Pressure Mapping During the Third Quarter of 1992
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Figure 6.17 Space-Time mapping of reservoir pressure in (a) the third quarter of 1992, and (b) the
fourth quarter of 1992.
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6.5 Conditional Simulations of the Reservoir Pressure

The conditional simulations of the reservoir pressure for the year of 1990 were
generated by using the SGGS technique developed in Section 5.3. The simulation grid was
designed to have 200x200x12=480000 nodes, with a space-time spacing of 0.02(km)x
0.02(km)xI(month). The selection of such space-time spacing is based on the
spatiotemporal correlation structure and the requirement of sampling scheme discussed
after this section. The quadrant search was applied for the neighborhood determination of
each node to be simulated, and each quadrant has an upper bounds of 8 data, implying that
the neighborhood size v=4x8=32 data. The group size of SGGS was designed to be 4x
4=16, which indicates that the 0.5v-SGGS was adopted to save computing time.

The 576 conditioning data are mentioned in Section 6.1, with the histogram shown in
Figure 6.2 and the joint-distance variogram model expressed by Equation 6.1. In view of
the histogram of the conditioning data, it was decided to use a single population Gaussian
S/TRF model for the conditional simulations of the reservoir pressure, with the
spatiotemporal covariance model corresponding to the variogram model given by

Equation 6.1.

Histograms of two conditional simulations of the reservoir pressure are shown in
Figure 6.18. In comparison with Figure 6.2, it is apparent that the normal distribution
shape and statistics of the pressure data are reproduced in conditional simulations by
SGGS. Their corresponding experimental variograms are shown in Figure 6.19 and 6.20,
which indicates that the characteristics of the space-time continuity of the pressure data
were also reproduced in the conditional simulations. Note that these experimental
variograms are fairly smooth due to that hundreds of thousands pairs are involved in each
experimental variogram calculation, which leads to a strong smooth effect.

Figure 6.21, 6.22, 6.23, and 6.24 show two conditional simulations of the reservoir
pressure during 1990, each have 4 time slices (January, April, July, and October). The
anisotropy feature of the reservoir pressure was also reproduced in the conditional
simulations of the reservoir pressure, showing that the continuity of the conditional
simulation in the E-W direction was longer than that in the N-S direction.
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Figure 6.18 Histograms of two conditional simulations of the reservoir pressure
generated by SGGS.
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Figure 6.19 Experimental variograms of one conditional simulation of the reservoir
pressure generated by SGGS. (a) variograms in the E-W direction, (b)
variograms in the N-§ direction.
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Figure 6.20 Experimental variograms of one conditional simulation of the reservoir
pressure generated by SGGS. (a) variograms in the E-W direction, (b)
variograms in the N-S direction.
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Figure 6.21 Conditional simulations of the reservoir pressure using SGGS at two
time slices: January 1990 and April 1990.
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Pressure simulation at July 90
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Figure 6.22 Conditional simulations of the reservoir pressure using SGGS at two
time slices: July 1990 and October 1990.
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Figure 6.23 Conditional simulations of the reservoir pressure using SGGS at two
time slices: January 1990 and April 1990.
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Pressure simulation at July 90
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Figure 6.24 Conditional simulations of the reservoir pressure using SGGS at two
time slices: July 1990 and October 1990.
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6.6 Pressure Monitoring Scheme

The goal of pressure monitoring scheme is to construct an appropriate monitoring grid
which may estimate local pressure changes in a given period of time adequately for
reservoir management and history matching. Therefore, the investigation of monitoring
scheme requires space-time sampling design accounting for local averages of pressure to
minimize the error level of monitoring in terms of local changes.

In the geostatistical literature, this investigation can be traditionally carried out using
average local kriging variance as the sampling criterion (e.g., Bamnes, 1988). The local
kriging variance indicates the estimation error associated with the neighborhood
configuration, hence, the sampling design asking for minimization of average local kriging
variance might provide a solution for monitoring scheme. However, this sampling
investigation has a drawback that the local variation of interest is disregarded. In practice
the estimation error is caused by both the configuration of samples in the neighborhood
and values of samples. As an example, Figure 6.25 shows two neighborhoods used to

' estimate the blocks indicated by squares. Their configurations are the same, but the local
variations are different: the local variation in (a) is smaller than that in (b). The estimation
error in (a) is hopefully smaller than that in (b). The difference of estimation errors
between these neighborhoods indicates the difference of estimation error caused by the
local variations which cannot be indicated by local kriging variance.

0.4 0.5 34 0.1
o o o o
L | o o
0.3 04 03 1.4

(a) (b)
Figure 6.25 Two neighborhoods used to estimate the blocks indicated by the squares. Their
configurations are the same, but the local variations are different: the variation in (a) is
smaller than that in (b).

Fortunately, the sampling design concerning both the local configuration and variation

‘ of samples was introduced by using conditional simulations (e.g., Englund and Heravi,
1993). Conditional simulation mimics both the correlation structure and local variations of
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interest. Based on conditional simulation results, the sampling design regarding local
variations can be carried out using a criterion accounting for local estimation errors. The
crucial point of sampling investigation using conditional simulation is that it not only
accounts for local estimation error caused by both local configuration and local variation
of samples, but also is capable of showing the uncertainty associated with local estimation

€ITors.

In practice there are three types of sampling scheme (e.g., Bras and Rodnguez, 1985):
(i) systematic sampling scheme where the sampling is performed with a regular gnd, (ii)
stratified-random sampling scheme where samples are picked up randomly in gridblocks,
but these gridblocks are regularly distributed, and (iii) simple-random sampling scheme
where the sampling is performed randomly in the entire area. Stratified-random sampling
scheme is most widely used in geoscience applications, which will be adopted in the study
of sampling scheme in this chapter and in Chapter 7. Stratified-random sampling scheme is
defined by the sampling spacing. Once the sampling spacing is determined, the size of
gridblock is fixed, and the sampling is performed by randomly choosing one sample site in
each gridblock.

In this section, the investigation of pressure monitoring scheme is carried out based on
spatiotemporal conditional simulations of the reservoir pressure. The spatiotemporal
conditional simulations of the reservoir pressure are generated by using SGGS. The
sampling criterion regarding local changes of pressure is defined in terms of average local
estimation error. The uncertainty associated with average local estimation error of a given
sampling grid is also investigated based on muitiple conditional simulations of the

reservoir pressure.
6.6.1 Implementation Steps

The sampling investigation of the reservoir pressure was implemented as follows:

1. define a sampling criterion accounting for local estimation errors. This criterion can be
defined in terms of average local estimation error. The average local estimation error
(ALEE) can be defined as follows,

Ne
5m=i§; (sx/C(0.0) 6.1
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where x; denotes the ‘true' pressure of a gridblock defined as the average pressure of
the gridblock, x;* denotes the estimated pressure of the gridblock, ne denotes the
number of gridblocks to be estimated, and C(0,0) is the variance of the simulation
model. Generally da1es €[0, 1].

2. define a simulation grid and a division of the space-time domain. The number of

stmulated nodes must be much larger than the number of space-time gridblocks.

generate a realization of the reservoir pressure on the simulation grid.

define a sampling grid.

calculate 'true’ pressures of gridblocks.

A

sample pressures from simulated pressures with the given sampling grid, use these
samples to estimate pressures of gridblocks.

compute the average local estimation error given by Equation 6.3.

repeat Step 4-7 to obtain average local estimation errors of different sampling grids.

9. repeat Step 3-8 to obtain uncertainties associated with average local estimation errors

o0

of different sampling grids.
6.6.2 Computations and Resuits

The sampling investigation of the reservoir pressure was performed for the year of
1990. The reservoir during 1990 was divided into 1080 space-time gridblocks, each has a
size of 0.32(km)x0.32(km)x3(month). The 'true’ pressure of a gridblock is defined as the
average pressure of 16x16x3 pressure values in this gndblock.

The sampling grid was initially set with a space-time spacing of 0.2(km)x0.2(km)x
3(month), the average local estimation error given by Equation 6.3 was calculated. Then
the spatial spacing was increased 0.04 km each time, until it reached 0.68 km. the spatial
spacings beyond 0.68 km were not considered since they are out of the range of the
correlation structure. After the spatial spacing reaches 0.68 km, it was reset to 0.2 km,
and the time spacing was increased one month each time. This process keeps running until
the spatial spacing reached 0.68 km and the time spacing reached five months
simultaneously, the average local estimation errors associated with different sampling
spacings were obtained. This procedure was repeated 40 times to demonstrate the
uncertainty of average local estimation errors associated with different sampling spacings.

Figure 6.26 shows average local estimation errors vs. spatial spacing for three time
spacings: 3 months, 4 months, and 5 months. The thick lines indicate the means of average
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local estimation errors. The differences of these three thick lines are fairly small. The mean
of average local estimation errors tends to be minimum when the spatial spacing is around
0.32 km. After 0.32 km the mean of average local estimation error is increased almost

linearly with the spatial spacing.

To verify these observations, conditional simulations during 1991 were generated, and
similar sampling scheme was performed with different sampling grids. Figure 6.27 shows
the result of average local estimation errors vs. spatial spacing. In comparison with Figure
6.26, their difference is considerably small, which implies that the impact of time spacing
on the average local estimation error is fairly small. and the optimal spatial spacing 1s
around 0.32 km.
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Figure 6.26 Average local estimation error vs. spatial spacing for three time spacing for
1990: 2 months, 3 months, and 4 months. The thick line indicates the means.
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6.7 Summary

This chapter presents the space-time modelling of reservoir pressure systems in a
carbonate reservoir. The reservoir pressure was viewed as a spatiotemporal process, and
its variation was characterized, estimated and simulated with the means of S/TRF

proposed in previous chapters.

The space-time modelling of the reservoir pressure system was concentrated on the
pressure data in production wells, since the pressure data in injection wells are likely to be
different from that in production wells in terms of population distributions. The
distribution of the reservoir pressure was assumed to be normal based on its histogram,
and the space-time continuity was supposed to be stationary with a geometric anisotropy
structure. A joint-distance exponent function was adopted as the spatiotemporal

variogram model.

The space-time mapping of the reservoir pressure from the first quarter of 1989 up to
the last quarter of 1992 was performed by using S/T block OK techniques. The results
show that the gradient of the reservoir pressure tends to decrease with time passing, and
high/low pressure bands likely spread from north to south, which is consistent with the
space-time continuity characteristics of the reservoir pressure mentioned previously.

The monitoring scheme of the reservoir pressure system was analyzed based on
spatiotemporal conditional simulations of the reservoir pressure. The goal of the
monitoring scheme is to monitor local changes of the reservoir pressure adequately,
therefore, average local estimation error is adopted to evaluate different sampling grids.
The conditional simulations of the reservoir pressure was generated by using SGGS.
Average local estimation errors and associated uncertainties of different sampling grids
were computed based on multiple conditional simulations of the reservoir pressure. The
result shows that (i) the impact of time spacing on the average local estimation error is not
significant, and (ii) the optimal spatial spacing is approximately 0.32 km.



Chapter 7

Space-Time Modelling of Springwater Contents

7.1 Introduction

The deterioration of groundwater quality is an increasingly critical situation throughout
the world. This concern has given rise to regulations that require extensive groundwater
monitoring to detect, at the earliest possible time, the release of contaminants from natural
sources, resource extraction and other man-made sources. Groundwater contamination
can be monitored by analyzing well and spring water for a series of dissolved ion species.
Groundwater quality data sets can then be used to model changes in the composition of
groundwater and outline potential zones of contamination. Groundwater contents vary in
space and in time simultaneously depending on such factors as the geological
environments of acquifers, human activities, and climate conditions. The spatiotemporal
variability of groundwater contents can therefore be modelled based on the framework of
S/T RF.

This study will attempt to utilize the techniques of spatiotemporal processes developed
in previous chapters to model spatiotemporal variability of groundwater contents, based
on the springwater data from a Belgian study. The study area is the Dyle watershed,
located in the Dyle River basin, 30 km southeast of Brussels (Belgium). This area is made
up of a Paleozoic basement overlaid unconformably by a thick honizontal layer (30-50 m
thick) of Tertiary sand of Bruxellian age (Legrand, 1968). The Bruxellian sand layer forms
the main part of the acquifer. The main Bruxellian acquifer behaves like an unconfined
porosity aquifer recharged by rainwater over its whole surface and drained by valleys.

From 1974 to 1983, spring waters were repeatedly analyzed upstream in the Dyle River
basin. In 1975, Goovaerts, Sonnet and Navarre (1993) used factorial kriging analysis to
analyze a data set of 11 ions. Principal component analysis was performed to determine
three principal component groups. The first group was alkaline, containing Ca, Sr, and
EC, and was likely influenced by the geological characteristics of the acquifer. The second
group seemed to contain properties influenced by the geology and/or human activities. It
contained Mg, Cl, and SO,. The third group contained Na, NOs, and K, which are highly
influenced by human activities. The experimental variograms of the three groups show two
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scales of spatial varation: the first one is modelled with a range of 1 km and the second
one is modelled with a range of 9 km. The cokriged maps of the three groups were
computed to demonstrate the spatial variability of these groups.

In the present study, the data of three ions (Ca, Cl, and NO3) from 68 springs for six
years (1975, 1979, 1980, 1981, 1982, 1983) were used to show the space-time variability
of springwater contents. Each spring was sampled once every year, indicating that a total
of 408 data are available for each ion. The locations of springs are shown in Figure 7.1.
The characteristics of space-time continuity of springwater contents were investigated by
spatiotemporal experimental variograms. The space-time mapping of springwater contents
was performed for four years (from 1979 to 1982) to show the space-time variability of
springwater contents. Finally, the sampling design was analyzed based on conditional
simulations of springwater contents.
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Figure 7.1 Locations of 68 springs.
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7.2 Statistics and Space-Time Continuity of Spring Data

The histograms of Ca, Cl, and NO, concentrations are illustrated in Figures 7.2, 7.3,
and 7.4. The Cl and NO, histograms each show a roughly normal distribution shape, while
the Ca histogram demonstrates a two-peaked shape. Their four space-directional
experimental variograms and space-omnidirectional experimental variograms are shown in
Figures 7.5, 7.6, and 7.8. The experimental variograms of Ca concentrations show a
presence of space-anisotropy structure: the range in the E-W direction is longer than that
in the N-S direction. In general, experimental variograms of Ca, Cl, and NO,
concentrations show fairly large fluctuations. The space-anisotropy structure and the large
fluctuations of the experimental variograms may be caused by the presence of space-time
trends due to zonal variations of geological environments and periodical alternations of
climate and human activities. The presence of space-time trends was identified and the
types of trend models were recognized in sections below.
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Figure 7.2 The histogram of Ca concentrations.
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Figure 7.3 The histogram of Cl concentrations.
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Figure 7.4 The histogram of NO; concentrations.
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Figure 7.5 Experimental variograms of Ca concentrations. (a) variograms in the E-W
direction, (b) variograms in the NE 45 direction, (¢) variograms in the N-S
direction, (d) variograms in the NW 45 direction, and (e) omnidirectional
variograms .
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Figure 7.6 Experimental variograms of Cl concentrations. (a) variograms in the E-W
direction, (b) variograms in the NE 45 direction, (c) variograms in the N-§
direction, (d) variograms in the NW 45 direction, and (e) omnidirectional
variograms .
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Figure 7.7 Experimental variograms of NO; concentrations. (a) variograms in the E-W
direction, (b) variograms in the NE 45 direction, (c) variograms in the N-S
direction, (d) variograms in the NW 45 direction, and (¢) omnidirectional

variograms .
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7.3 Recognition of a Space-Time Trend

The presence of the space-time trend was investigated using trend-surface analysis with
16 trend models and 4 critena in four subareas. Trend-surface analysis is one of the most
powerful tools used for trend recognition (e.g., Davis, 1973; Agterberg, 1974). Once the
space-time trend was recognized, the residuals of springwater contents could be
computed, and the correlation structures of these residuals could be obtained (e.g.,
Matheron, 1971; David, 1977). The partition of four subareas was based on the
distribution of high/low value bands in the study area. The 16 trend models were
constructed by different combinations of spatial components (indicated by £) and temporal
components (indicated by ), see Table 4.1. Average absolute error, average square error,
average error, and coefficient of determination were calculated for each trend model.

CoefTicient of determination is one of the most important measures of the adequacy of
regression/trend models (e.g., Gunst and Mason, 1980), which is defined as follows,

= Y(Z -2)2/§(zi -7y

A
where Z; (i=1to N) denote values of the interest, Z; (i=1to N) denote values of the trend

function, and Z denotes the average. r*<[0, 1]. Generally an appropriate trend model is

associated with a large value of coefficient of determination.

The determination of harmonic trends involves choosing spatial and temporal periods.
The spatial and temporal periods were selected by trial and error with regard to coefficient
of determination. The results showed that the spatial periods of Ca, Cl, and NO,
concentrations are respectively around 4.0, 4.2, and 4.0 kilometers, and the temporal
period of Ca, Cl, and NO; concentrations are all around 3 years.

The average results of trend-surface analysis for Ca, Cl, and NO5 concentrations in four
subareas are shown in Tables 7.1, 7.2, and 7.3. The trend model that was linear plus
harmonic in space (3=1+i) and linear in time (Z=1) obtained large values of coefficient of
determination for all of these ion concentrations. Therefore, this type of trend model is
chosen and its adequacy is further investigated based on the residuals.



7.4 Statistics and Space-Time Continuity of Ion Residuals

The following definition of the residual of a S/TRF X(s, t) can be obtained from
Equation 1.10,

Y(s, t) = X(s, t) - m(s, t) = [m(s, t) - m(s, )] + Y(s, 1)

A . - . A - -
where m(s, t) indicates the chosen trend model. The residual Y(s, t) is actually an estimate
of Y(s, t) assumed to be stationary with a mean of zero. Therefore, if the chosen trend

A . . . .
model, m(s, t), is an appropriate estimate of the trend, m(s, t), then the difference, [m(s, t)

- Am(s, t)], should be sufficiently small, indicating that the residual /\\{(s, t) should also be

stationary with a mean of zero. In addition, there should no distinct anisotropy in
correlation structures of the residuals (e.g., Neuman and Jacobson, 1984).

Figures 7.8, 7.9, and 7.10 show the histograms of Ca, Cl, and NO, residuals. They all
approximately show normal distributions with a mean of zero. In comparison with Figure
7.2, the two-peaked shape presented in the histogram of Ca concentrations disappeared in
the histogram of Ca residuals. The four directional (E-W, NE 45, N-§, and NW 45) and
omnidirectional experimental variograms of Ca, Cl, and NO, residuals were calculated
with a space lag of 0.2 kilometer and a time interval of 1.0 year. The directional tolerance,
space-lag tolerance, and time-interval tolerance were respectively set to be 45°, 0.1
kilometer, and 0.5 year. These experimental variograms are illustrated in Figures 7.11,
7.12, and 7.13. These pictures show fairly stable structures of the space-time continuity.
All of these residuals show space-isotropic structures in their experimental variograms.
These improved illustrations of the space-time continuity and distribution of residuals

imply the adequacy of trend models given in Table 7.4, 7.5, and 7.6.

The space-omnidirectional experimental variograms of Ca residuals were fitted by the

following joint-distance spherical model (shown in Figure 7.12(f)):

h
y(h, ) = 13.13 + 250.0° sph(\/ (572 '1%)2 ) (7.1)

where sph(*) stands for a standard spherical function with a range of 1.

The space-omnidirectional experimental variograms of Cl residuals were also fitted by a
joint-distance spherical model (shown in Figure 7.13(f)):



h
y(h, T) = 7.25 + 74.0- sph(-\/ (577 )2+ 7—1-)- 32 ) (1.2)

The space-omnidirectional experimental variograms of NO; residuals were fitted by a
separable exponential model (shown in Figure 7.13(f)):

h
y(h, 1) = 2.98 + 415 exp(-5 5) expl5 ) (1.3)

Table 7.1 The average results of trend-surface analysis for Ca concentrations.
Spatial period = 4.0 and temporal period = 3.0

trend average average average coefficient of

model absolute error | square error error determination
E=0/C=1 24,943 957.541 -.00000221 .0063
E=0/2=2 24.831 952.961 -.00004422 .0139
£=1/2=0 18.059 583.443 .00000004 2545
I=1/C=1 17.991 579.113 .00000214 2609
E=1/C=2 17.962 574.534 .00000640 2683
£E=2/2=0 15.999 468.741 .00000760 3783
& =2/C=1 15.923 464 .413 -.00004929 3847
£E=2/2=2 15.889 453.404 -.00000228 4005
E=0/C=1i 24.847 951.451 .00000033 0145
t=1lZ=i 17.862 567.982 .00000340 2754
t=1/2=0 21.671 767.480 -.00000133 1559
E=v_i=1 16.199 466.690 .00000087 4617
E=Vg=i 24572 933.461 -.00000036 .0285
2= 1+i/ = 16.520 494.140 .00000014 3484
E=1+/0=1 11.164 238.481 .00001198 .6343
E=1+/C=i 17.703 559.604 -.00000321 .2809
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Table 7.2 The average resuits of trend-surface analysis for Cl concentrations.

Spatial period = 4.2 and temporal period = 3.0

coefficient of

trend average average average

model absolute error | square error error determination
£E=0/C= 11.679 220.704 -.00000145 0247
E=0/C=2 11.648 219.929 .00000726 .0290
E=1/=0 10.900 188.841 .00000231 .1809
t=1/C=1 10.733 183.622 -.00000049 .2057
E=1/c=2 10.683 182.846 .00000757 2100
£=2/C=0 9.101 138.588 -.00001974 3876
£=2/C= 8.828 133.368 .00003704 4123
E=2/=2 8.748 131.116 00001034 4231
&=0/C=1 11.622 219.702 -.00000036 0307
E=1/¢=1 10.533 178.386 .00000059 2292
E=vVi=0 11.424 211.254 .00000070 0584
E=1i=1 7.808 106.367 .00000037 5104
E=Y =t 11.796 219.028 -.00000001 0281
E=1+/C=0 10.315 174.096 .00000193 2403
E=1+/C=1 6.542 74.147 -.00000966 6661
E=1+41/C=1 10.633 182.867 .00000023 2063
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Table 7.3 The average results of trend-surface analysis for NO3 concentrations.

Spatial period = 4.0 and temporal period = 3.0

trend average average average coefficient of

model absolute error | square error error determination
£E=0/C= 8.436 127.397 .00000035 .0231
£t=0/z=2 8.293 124,276 -.00000559 0516
E=1/C=0 7.901 107.738 -.00000006 .1667
E=1/C=1 7.789 105.012 00000096 .1899
t=1/C=2 7.660 101.890 .00000593 2184
$=2/C=0 7.251 83.306 .00002093 3304
t=2/C=1 7.122 80.579 -.00000799 3535
E=2/C= 6.936 76.875 -.00002518 3871
E=0/C=1 8.357 125.140 -.00000081 0439
E=1/C=1 7.551 97.714 .00000145 2531
E=2/C=i 8.249 110.703 -.00000019 1317
I=v_C=0 5.542 48.530 -.00000003 5742
E=vi=1 8.470 128.254 .00000005 0128
E=id=1 7.504 94.344 .00000005 2578
I=1+/C=0 7.504 94.344 .00000005 2578
E=1+/C= 1 4.978 41.534 -.00001967 6265
E=1+/C=1 7.824 105.721 .00000032 .1809
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Table 7.4 The coefficients of trend models for Ca concentrations. Spatial period = 4.0.

Terms Coefficients
Subarea 1 Subarea 2 Subarea 3 Subarea 4
1 -398.79626 302.25021 1874.58632 580.06381
sinxsiny -27.86769 23.45691 5.66300 7.07465
sinxcosy -21.94068 33.69272 -7.90850 8.91022
cosxsiny 2.86373 1.38780 19.44422 -32.35837
COSXCOsY 17.94947 27.09368 -15.08979 -15.06449
X 31.96374 -7.57923 -135.55691 -26.33426
. v 2.77919 -5.43775 31.67979 9.04106
t 7.55964 -7.46086 -22.68417 -5.11834
tsinxsiny 22724 33661 16236 -.10872
tsinxcosy -.32940 22874 12255 .07076
tcosxsiny -46521 13306 -.06551 - 11483
tcosxcosy 22879 -.00087 -.05824 .09079
xt -.54492 34294 1.73524 27718
vt -.00970 06615 -42142 -.07785
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Table 7.5 The coeflicients of trend models for Cl concentrations. Spatial period = 4.2.

Terms Coefficients
Subarea 1 Subarea 2 Subarea 3 Subarea 4
! -112.00518 -63.17836 586.22471 536.81793
sinxsiny 2.07095 3.59487 24.31402 1.28652
sinxcosy 35.37537 10.63452 -11.38405 -10.97134
cosxsiny -1.90274 -15.28992 -17.77876 -20.81482
COSXCOSY 7.66108 11.93763 4.69861 -3.07201
X 13.67018 -4.38449 -33.50940 -24.73183
v -5.00613 5.23969 20.46250 6.05729
. t 3.02683 -1.60488 -7.05936 -5.63734
tsinxsiny -.09512 -.07059 -.21906 01349
tsinxcosy 25492 .00068 27136 .09082
tcosxsiny .16508 02191 -.19702 -.10498
1COSXCOSY .14932 -.12683 13263 -.01334
xt -.19088 20607 65101 29269
yt 00704 -06771 -.21731 -.07580
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Table 7.6 The coefficients of trend models for NO3 concentrations. Spatial period = 4.0.

Terms Coefficients
Subarea 1 Subarea 2 Subarea 3 Subarea 4
1 36.16709 1388.28317 -11.37017 91.21171
sinxsiny 14.66309 6.93164 5.94253 1.73782
SINXCosy -11.24191 11.39687 -13.22187 -2.95470
cosxsiny 28.48949 2.38497 -9.09622 1.61511
COSXCOSY 3.58883 1.56553 14.33264 -2.84192
X 3.17122 -9.25165 4.85633 -11.85963
' v -3.72212 -11.34528 1.84959 491687
t -.37057 -16.95049 -2.19038 -2.30121
tsinxsiny -.27221 -.08980 -.10192 06021
tsinxcosy -.00568 16163 12205 01690
tcosxsiny -.06222 -.12204 -.10081 .00007
tcosxcosy 45124 16563 -.25864 08260
xt -.02094 74913 19562 15677
vt 07927 13082 -.07948 -.06043
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Figure 7.8 The histogram of Ca residuals.
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Figure 7.9 The histogram of Cl residuals.
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Figure 7.10 The histogram of NOs residuals.
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Ca residual simivariograms in O degree Ca residual simivariograms in 45 degree

(a) (b)

(c) (d)

(e) ®

Figure 7.11 Experimental variograms of Ca residuals. (a) variograms in the E-W
direction, (b) variograms in the NE 45 direction, (c) variograms in the N-S
direction, (d) variograms in the NW 45 direction, (e¢) omnidirectional
variograms, and (f) the fitted variogram model.
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Cl residual simivariograms in 90 degree Cl residual simivariograms in 135 degree
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(e) ®

Figure 7.12 Experimental variograms of Cl residuals. (a) variograms in the E-W
direction, (b) variograms in the NE 45 direction, (c) variograms in the N-S
direction, (d) variograms in the NW 45 direction, (e) omnidirectional

variograms, and (f) the fitted variogram model.
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Figure 7.13 Experimental variograms of NQO; residuals. (a) variograms in the E-W
direction, (b) variograms in the NE 45 direction, (c) variograms in the N-S
direction, (d) variograms in the NW 45 direction, (e¢) omnidirectional
variograms, and (f) the fitted variogram model.
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7.5 Space-Time Mapping of Springwater Contents
7.5.1 Different Trend Models in Subareas

A question may arise for UK system when different trend models are specified in
subareas. Figure 7.14 shows that the location to be estimated has a neighborhood
including data points from other subareas. Assume that the trend is represented by
different coefficients in subareas,

L
m(s, t) = 5 o, f(s, t), (s, t) € Subarea;
™l
as a result, the unbiased condition of the UK system is changed into the following,
L N
¥ [y filsy, tp) - 3 Ai o filsi, )] = 0
i=1 1=]
or

N an
T hi gy 5 1) = fis t) 1= Lo L.

1=

Note that this condition becomes the common unbiased condition when ay;=ay, , i=1 to N.

@ - data point
O - location to be estimated

sA1 | - subarea
- trend model

Figure 7.14 A neighborhood configuration. The data points in the neighborhood come
from different subareas, and the trend function at the location to be estimated
is different from that of some data points.

In practice, however, this problem can be solved simply by constraining neighborhood
in the same subarea. More often, most boundaries used to split the area into subareas are
man-made for convenience. It is reasonable to assume that in any small neighborhood the
trend model is invariant, so that the common UK technique can be used without
modifications. This assumption is applied in the following sections.
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7.5.2 Mapping Results

The space-time mapping of Ca, Cl, and NO, concentrations was performed by S/T
block UK technique developed in Section 4.4, using the following kriging plan.
o Block discretion = 4x4x3.
o Search radius = 5 km/year.
e Octant search (8 data per octant).
o Use of the trend form (=1+v/¢C=1).
o Use of the variogram function defined by Equation 6.1.

Figure 7.15 shows the space-time mapping of Ca concentrations from 1980 to 1982.
The north-south central area of low values corresponds to the valley of the Dyle River, the
high values are mostly observed in the northeast part and the southwest comer of the

maps.

Figure 7.16 shows the space-time mapping of Cl concentrations from 1980 to 1982.
High values are mostly observed in the east-central part of the maps. With a close look at
the south part of maps, the high-value band tends to expand with passing time.

Figure 7.17 demonstrates the space-time mapping of NO; concentrations from 1980 to
1982. High values are mostly observed in the south of the maps. The high-value band in
the central part tends to expand with passing time.

The result of Ca mapping is compatible with the cokriging result of the first group from
Goovaerts' work, while the Cl mapping and NO; mapping are fairly consistent with that of
the second and third group, respectively. This is reasonable since the first group contains
Ca, the second group contains Cl, and the third group contains NO;,
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Figure 7.15 Space-Time mapping of Ca concentrations from 1980 to 1982.
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Cl mapping of 1980
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Figure 7.16 Space-Time mapping of Cl concentrations from 1980 to 1982.
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NO3 mapping of 1980
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Figure 7.17 Space-Time mapping of NO3 concentrations from 1980 to 1982.
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7.6 Conditional Simulations of Ca Residuals

Conditional simulations of Ca residuals were generated by using both SGGS and the
simulated annealing technique honoring experimental variograms. The simulation grid was
designed to have 100x100x5=50000 nodes, with a spacing of 0.2(km)x0.2(km)x1(year).
A total of 408 conditioning data were used for the conditional simulation of Ca residuals.

7.6.1 Conditional Simulations of Ca Residuals Using SGGS

Conditional simulations of Ca residuals were first generated by using SGGS. The
quadrant search was applied for the neighborhood determination, each quadrant having 8
data, which gives a neighborhood size of v=4x8=32 data. The group size of SGGS was
designed to be 4x4=16, therefore the 0.5v-SGGS was adopted.

Figure 7.18 shows histograms of two conditional simulations of Ca residuals. The
corresponding variograms are shown in Figure 7.19. The sample variograms of two
conditional simulations are fairly smooth since hundreds of thousands of pairs were
involved in each variogram calculation and that resulted in smooth effect. As a result, the
difference between the variograms of these simulations is indistinct. In comparison with
the histogram and variogram model of Ca residuals shown in Figure 7.8 and 7.11, these
conditional simulations reproduced the first and second-order moments of Ca residuals.

Figure 7.20 and 7.21 show the two simulations of Ca residuals using SGGS. Each
simulation has three time slices (1980, 1981, 1982). Note that a sequential external path
along the E-W direction with an inverse-direction internal path was adopted in the
implementation, and the results show that there are no distinct artifacts in the E-W

direction (x axis).

Figure 7.22 and 7.23 show the two simulations of Ca concentrations corresponding to
residuals shown in Figure 7.20 and 7.21. Each simulation has three time slices (1980,
1981, 1982). Though there are some local changes between these two simulations, the
regional bands of high and low values honor the same structure of Ca mapping shown in
Figure 7.15 because of the trend.
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Figure 7.18 Histograms of two conditional simulations of Ca residuals generated by
SGGS.
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19 Omnidirectional variograms of two conditional simulations of Ca residuals

Figure 7.

generated by SGGS.
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Figure 7.20 A conditional stmulation of Ca residuals at three time slices (1980, 1981, 1982)
generated by using SGGS.
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Simulation of Ca residual at 1980
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Figure 7.21 A conditional simulation of Ca residuals at three time slices (1980, 1981, 1982)
generated by using SGGS.
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Ca simulation at 1980
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Figure 7.22 A conditional simulation of Ca concentrations at three time slices (1980, 1981, 1982).
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Figure 7.23 A conditional simulation of Ca concentrations at three time slices (1980, 1981, 1982).
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7.6.2 Conditional Simulations of Ca Residuals Using Simulated Annealing
The conditional simulations were also generated using simulated annealing to examine
the impact of experimental variogram reproduction of Ca residuals. The space-

omnidirectional experimental variograms were used to construct the objective function.

The implementation parameters of the simulated annealing algorithm were set as

follows:
Po: the initial ‘temperature’ was set to 1.0.
A: the reduction factor was set to 0.1.

K_,. the maximum number of attempted perturbations was set to 600,000.
the acceptance target was set to 60,000.

S: the stop number was set to 3.
AO: the low objective function indicating convergence was set to 0.02,
N.,  the number of nodes in neighborhood, to be taken into account in the objective

function updating of each swap, was set to 600.

The parameter N, determines the number of experimental variograms to be
reproduced through implementation. Since the simulation lag is usually smaller than that
involved in experimental variogram calculation (in the case study the simulation lag is 0.2
km while the space lag involved in experimental variogram calculation is 0.6 km), a large
N, is needed for the reproduction of whole experimental variograms. For instance, to
reproduce a total of 130 experimental variogram values of Ca residuals, N, has to be set
to at least (0.6x25/0.2)°x5 = 28125, which will claim colossal amount of computing time.
Consequently, a N, of 600 implies that only a small portion of experimental variograms
of Ca residuals can be reproduced. Fortunately, this portion includes the experimental
variograms associated with nearest nodes which are most significant in experimental
variogram reproduction.

Figure 7.24 shows the histograms of two conditional simulations of Ca residuals. They
are quite close to the histogram of Ca residuals shown in Figure 7.8. Figure 7.25(a) shows
the portion of experimental variograms of Ca residuals required to be reproduced in the
simulations (y*(h, t) with h<2(km) and t<2(year)), (b) and (c) show the portions of the
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corresponding experimental variograms of the two conditional simulations. The similarity
of these pictures indicates that these conditional simulations reproduced adequately the
structure of experimental variograms.

Figure 7.26 and 7.27 show the two conditional simulations of Ca residuals by using the
simulated annealing, and the corresponding simulations of Ca concentrations are shown in
Figure 7.28 and 7.29. Similarly to the results by using the SGGS shown in Figure 7.22 and
7.23, the regional distribution of high/low value bands remains unchanged due to the
impact of the trend.
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(a)

(b)

Figure 7.25 Space-Omnidirectional variograms of Ca residuals are shown in (a), and
space-omnidirectional variograms of two conditional simulations of Ca
residuals are shown in (b) and (c).
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Figure 7.26 A conditional simulation of Ca residuals at three time slices (1980, 1981, 1982)
generated by using the simulated annealing.
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Figure 7.27 A conditional simulation of Ca residuals at three time slices (1980, 1981, 1982)
. generated by using the simulated annealing.
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Ca simulation at 1980
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Figure 7.28 A conditional simulation of Ca concentrations at three time slices (1980, 1981, 1982).
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Figure 7.29 A conditional stmulation of Ca concentrations at three time slices (1980, 1981, 1982).
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7. 7 Monitoring Scheme of Ca Concentrations

This section will concentrate on the groundwater monitoring scheme with reference to
Ca concentrations, in order to show the impact of the sampling grid on average local
estimation errors and associated uncertainties. The sampling criterion and control
parameters are mentioned in Section 6.5.1, and the implementation procedure is similar to
that discussed in Section 6.5.2. Since Ca concentrations are considered to be
nonstationary, and are assumed to have the space-time trends given in Tables 7.4, their
conditional simulations are generated by combining the space-time trend with realizations
of residuals. The conditional simulations of Ca residuals were generated first by using the
SGGS, and then by using the simulated annealing algorithm honoring experimental
variograms. The size of the space-time gridblock to be estimated is chosen to be 1.0(km)x
1.0(km)x1(year). The selection of gridblock size is based on the average spacing of
springwater data as well as the correlation structure of Ca concentrations. Consequently a
total of 20x20x5=2000 gridblocks were estimated.

The sampling grid was initially set with a spacing of 0.6(km)x0.6(km)x 1(year), then the
spacing was expanded to 0.8(km)x0.8(km)x1(year), 1(km)x1(km)x 1(year), and so on. By
continuing this process of expanding the spatial spacing ultimately to 3.0 km, a variation
curve of average local estimation error vs. spatial spacing was obtained. This procedure
was repeated 40 times, in order to demonstrate the uncertainty associated with average
local estimation errors.

7.7.1 Sampling Results

Based on the simulations of Ca concentrations using the SGGS, the variation of
average local estimation error was calculated, which is shown in Figure 7.30. The average
local estimation error is flat when the spatial spacing is from 0.6 km to 1.0 km, and then it
increases quickly when the spacing is from 1.0 km to 1.4 km. The estimation error keeps
flat again when the spacing is from 1.4 km to 2.6 km, finally it increases quickly after 2.6
km.

The sampling investigation was also performed with the simulations using the simulated
annealing, and the average local estimation error vs. spatial spacing is shown in Figure
7.31. In comparison with Figure 7.30, they are highly similar to each other. These results
suggest that the optimal spatial spacing is approximately 1.0 km. Note that the average
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estimation error is fairly high (20%-50%) compared with the result shown in Figure 6.28
(<20%), this is true because Ca concentrations are treated to be nonstationary while the
reservoir pressure is treated to be stationary. In general the local estimation error of a
nonstationary process is larger than that of a stationary process.
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Figure 7.30 Average local estimation error vs. spatial spacing. The thick line indicates the
means. The conditional simulations of Ca residuals were generated by the SGGS.
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Figure 7.31 Average local estimation errors vs. spatial spacing. The conditional
simulations of Ca residuals were generated by the simulated annealing.
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7.8 Summary

In the present study, the space-time modelling of springwater contents was performed
using the data from a study of spring water in the Dyle watershed. Under the framework
of S/TRF modelling, space-time continuity characterizations, space-time estimations,
space-time conditional simulations, and space-time monitoring scheme of springwater
contents were accomplished. Due to the nonstationary properties of spring contaminants,
the proposed methodology is a decomposition-combination process: first, decompose
spring contaminants into trend components and residual components by trend-surface
analysis; then, study residual components with space-time continuity characterization tools
to obtain space-time variogram models and required conditional simulations of residuals;
finally, use trend models and variogram models to estimate variations of springwater
contents, and combine trend components with residual simulations to construct

simulations of springwater contents for sampling investigation.

The space-time trend of springwater contents was recognized by using trend-surface
analysis, leading to residuals with isotropic structures of space-time continuity. The space-
time mapping of springwater contents was performed by using S/T block UK, and the
results were compatibie with previous work in this area.

The conditional simulation of Ca concentrations were generated by combining the trend
with the simulation of Ca residuals. Because of the presence of a trend, the randomness of
simulations of Ca concentrations is greatly lowered compared with that of Ca residuals,
which can be seen in Figure 7.22 and 7.23, or in Figure 7.28 and 7.29. The main property
of simulations of Ca concentrations is the combination of the randomness owned in
simulations of Ca residuals and the determination owned in the trend. The monitoring
scheme was investigated using conditional simulations of Ca concentrations, and the result
suggests that the optimal spatial spacing is approximately one kilometer.

The simulated annealing algorithm honoring experimental variograms provides a means
to generate conditional simulations that incorporate the natural properties of
spatiotemporal processes. Furthermore, it suggests the possibility that the continuity
characterization step may no longer be prerequisite for conditional simulations. However,
the case study shows that the long running time of the implementation process greatly
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constrains its capacity for large-scale spatiotemporal simulations. For example, if one
wants to obtain a denser simulation, which shortens the simulation spacing from 0.2 km to
0.1 km in the case study, then the maximum number of attempted perturbations and the
acceptance target have to increase four times, and the number of experimental variograms
involved in each objective function updating also has to increase four times to ensure the
reproduction of the same required variograms. This implies that the running time will
increase by 16 times. Therefore, future research associated with this algorithm should
focus on the reduction of running time, in order to make it applicable for large-scale

spatiotemporal simulations.
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Chapter 8

Conclusions and Recommendations

This chapter summarizes the project results and outlines how the initial objectives have
been reached. Recommendations for further work are finally highlighted.

8.1 Conclusions

According to the specific objectives addressed in Chapter 1, the systematic analysis of
spatiotemporal processes was studied with regard to three aspects: the space-time
continuity characterization, the space-time estimation, and the space-time simulation. For
the space-time characterization, spatiotemporal experimental variograms were displayed
with recognition of different space and time measures to show the nature of space-time
continuity of spatiotemporal processes. Features of the space-time continuity were
summarized in terms of both traditional hypotheses such as homogeneity, anisotropy, and
regularity, and special hypotheses for space-time continuity such as separability. The
permissibility criteria of space-time covariance models were proposed and two popular
types of covariance models were discussed: separable models and joint-distance models. A
general form of spatiotemporal covariance functions was also addressed.

The estimation of spatiotemporal processes was developed in terms of space-time
kriging techniques. The singularity analysis of simple/ordinary space-time kriging
techniques was carried out showing that any strictly positive definite covariance model
ensures a unique solution to simple/ordinary space-time kriging systems. The criteria of
strictly positive definite functions were consequently proposed. The singularity analysis of
universal space-time kriging techniques was emphasized in the form of space-time trends
and data configuration. Finally, the tensorial invariance of universal spatiotemporal kriging
systems was investigated in terms of the space-time trend.

The conditional simulation techniques of spatiotemporal processes were developed in
terms of SGGS and the simulated annealing honoring experimental variograms. The
SGGS is actually a series of sequential simulation algorithms associated with different
group sizes, including SGS and LUD. The optimal algorithm is the 0.5v-SGGS whose
group size is around half of the neighborhood size v, and its running time is practically 2-7
times faster than the current SGS depending on the neighborhood size. The simulation
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error caused by ignoring farther information during the SGGS process was characterized
by the SEA loss and investigated with popular covariance models using different
simulation grids. The optimal neighborhood sizes with acceptable SEA loss were
provided. The simulated annealing algorithm with experimental variogram reproduction
was proposed, with an emphasis on the interpolation of experimental variograms and the
improvement of the implementation process as well. Ihis provides a way of generating
realizations of spatiotemporal processes without covariance/variogram model fitting,
which is prerequisite for other simulation algorithms.

The techniques of S/TRF modelling were used first for modelling the pressure system
in a carbonate reservoir. The quantification of continuity patterns in terms of
spatiotemporal variograms was used to subsequently estimate and conditionally simulate
the reservoir pressure. Finally, groundwater monitoring in terms of spatiotemporal
processes was investigated using springwater data in the Dyle watershed. The space-time
trends of three contaminants were recognized through trend-surface analysis. The
estimation of spring contaminants was performed using the space-time block UK. The
sampling grid of groundwater monitoring was investigated in terms of Ca concentrations.
The results of these case studies as well as the theory suggest that the techniques of
S/TRF modelling are realistic and feasible.

8.2 Recommendations
The following issues remain open to further research and enhancement:

1. Space-Time covariance/variogram models are crucial for S/TRF modelling. Futher
research could be directed to investigate various types of permissible space-time
covariance models in addition to joint-distance models and separable models.

2. Spatiotemporal estimation techniques are extensively used in geoscience applications.
It would be interesting to consider the development of other estimation techniques
such as spatiotemporal indicator kriging and IRF-k methods. As for spatiotemporal
IRF-k, the permissible models would be deliberately investigated.

3. The SGGS greatly improves Gaussian simulations in terms of running time. The
strategy of the SGGS could also apply to multivariate Gaussian simulations without
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huge modifications. The SEA loss of multivariate simulations could be discussed in a
similar manner.

4. The simulated annealing technique with experimental variogram reproduction has the
great benefit of generating simulations with more natural properties of space-time
continuity. However, its computing time greatly constrains its capacity for large-scale
spatiotemporal conditional simulations. The further research should focus on the
improvement of implementation in terms of running time.

5. Sampling investigation of spring contaminants focused on the evaluation of average
local estimation error and associated uncertainty using different sampling grids. The
economic impact on sampling investigation was not taken into account due to the
lack of information. In environmental engineering, it is more interesting to estimate
optimal sampling with regard to sampling and remediation costs. Further research
could construct economic objective functions and evaluate their uncertainties as a

function of different sampling grids.
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