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ABSTRACT

INTEGRATING MODELLING TECHNIQUES FOR FINANCIAL TIME SERIES

Victor Khoon-Lee Tan Supervisors:

University of Guelph, 1999 Professor P. T. Kim and A. F. Desmond

The use of a related series of historical values as evidence or a guide line to predict
and to draw conclusions about future events is a practice common to researchers of
many disciplines. In order to achieve a better outcome, researchers are motivated to
search for rules that can explain relationships between the past and future. However,
any forecast is affected by the unpredictable nature of future events as well as by the
limitations of past data. Moreover, a forecasting model used by one field may not

necessarily be used by another, because there are problems which are unique to each

field.

In standard statistical treatment of time series, time domain and frequency domain
are the classical techniques used as a basis for characterising an observed system and
forecasting its future behaviour. However, due to complicated data structures of
time series, recent research developments-along with the availability of high-speed
computers—have facilitated the development of modern nonparametric methods such

as the moving blocks bootstrap and the neural networks.

The inadequacy of the efficient market hypothesis and the instability of data
structures found in financial market create serious challenges to the implementation

of modelling strategies for financial time series. However, a combination of both



classical techniques and modern nonparametric methods may offer a more effective

solution to financial forecasting problems.

This thesis will implement a financial time series model which utilizes both clas-
sical techniques and nonparametric methods for estimation and inference. It will
go on to propose a modified bivariate transfer function model. Both time domain
and frequency domain techniques will be used in order to determine a relationship
between bivariate time series. After generating the less model dependent samples
using the moving blocks bootstrap, a neural network will be applied to achieve better
point estimation. Integrating these techniques provides the best alternative solution
to financial forecasting problems. The bivariate time series in question is interest
rate spreads and the spot Canadian dollar. Simulation results showed undercoverage
overall, but the integrated modelling technique appears robust to the choice of noise

distribution as well as the sample size.
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Chapter 1

Introduction

1.1 Introduction

The use of a related series of historical values (or past data collected) as evidence
or a guide line to predict and to draw conclusions about future events, is a practice
common to researchers of many disciplines. In order to achieve a ‘better’ outcome,
researchers are motivated to search for rules that can explain relationships between
the past and future. However, any forecast is affected by the unpredictable nature of
future events as well as by the limitations of past data. Moreover, a forecasting model
used by one field may not necessarily be used by another, because there are problems
which are unique to each field. However, an awareness of the characteristics of the
field specific models may allow the application of a translational model to obtain an

adequate level of forecast accuracy.



In financial time series, the following two problems always exist. They are:

1. The inadequacy of the efficient market hypothesis; that is, market prices always
reflect the available information set. However, in the actual market, deviations
exist between true prices and market prices because not all traders have all
the existing information, and may not always act rationally. Moreover, “the
verification of the efficient market hypothesis (EMH) is impossible” Granger

(27, p.12].

2. Instability of the data structure. The system may be influenced by major factors
such as monetary policies, economic indicators, and interest rates. In addition,
certain information cannot be modelled statistically, which leads to an unstable

structure of past data sets.

These problems create serious challenges to the implementation of modelling strate-

gies for financial time series.

In standard statistical treatment of time series, the first step is to ‘look’ at the
data, and then select suitable mathematical models for the data. Before we can do
this, we must first study and understand the techniques which have been developed
for forecasting and drawing inferences from the series. Classical time series techniques
are used as a basis for characterising an observed system and forecasting its future
behaviour and, therefore, is the starting point for conventional statistical time series

model building.

In the time series literature, classical time series analysis is based on the theory of

stationary processes, and it has been demonstrated that most stationary processes can
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be approximated by a model drawn from the class of autoregressive moving average
(ARMA) models. In addition, some non-stationary processes may be represented by
an ARMA process after differencing. This is known as the autoregressive integrated
mouving average (ARIMA) class of models, for which a model selection strategy has
been developed by Box and Jenkins [8]. The significant contribution of Box and
Jenkins to time series analysis is based on the invertible ARMA class of processes and
the four phases of: identification, estimation, diagnostic checking, and forecasting.
Particularly in the identification phase, plots of the sample autocorrelation function
and the sample partial autocorrelation function can yield important information in
identifying the orders p and ¢ of an autoregression moving average (ARMA(p, q))
model. Because of the developments of Box and Jenkins [8], the problem of estimat-
ing the ARMA (p, ¢) model has attracted considerable attention in the time series

literature.

The frequency domain analysis of time series has its own share in the time series
literature. Frequency domain analysis is mathematically equivalent to time domain
analysis, which is based on the autocovariance function, but provides an alternative
way of viewing an observed system. In frequency domain analysis, “the spectral
density function describes how the variation in a time series may be accounted for by
cyclic components at different frequencies” Chatfield {10, p.7]. As a result, frequency
domain analysis provides many important insights which would not be apparent in

the time domain analysis.

“The spectral point of view is particularly advantageous in the analysis of mul-

tivariate stationary processes and in the analysis of very large data sets, for which

3



numerical calculations can be performed rapidly using the fast Fourier transform”,
Brockwell and Davis [9, p.112]. By combining the frequency domain technique and
the transfer function model-as proposed by Box and Jenkins [§] in the time domain-

we are able to exploit the relationship between any two financial time series.

Due to the complicated data structures of financial markets such as stock returns,
exchange rates, and interest rates, there is a need to improve the performance of
parameter estimates in time series. In addition, the behaviour of these financial
time series could perhaps be described more accurately by non-linear mathematical
models. Such major developments such as bootstrap techniques have been applied to
problems from time series analysis. In the time series literature the use of bootstrap
techniques can be found in Efron and Tibshirani [19], Freedman [23], Kinsch {43] and

Liu and Singh [46].

Recently, artificial neural networks (ANNSs) have formed a basis for an entirely dif-
ferent non-linear approach to the analysis of time series. Together with the widespread
availability of powerful computer hardware and efficient training algorithms, neural
networks are now a subject of interest to professionals in almost every quantitative
field and there is increasing focus on the potential benefits that neural networks can
offer. Neural networks have been applied to a wide variety of problems, such as pattern
recognition, classification, process control, and prediction. Recent reviews from a
statistical perspective include: Cheng and Titterington [11], Ripley [51] and White
[55] [56]. Weigend and Gershenfeld [54] provide a computer scientist’s perspective of
neural networks in time series. In addition, Cybenko [13], Funanhashi [24], Gallant
and White [25] [26], Hecht-Nielsen [31], and Hornik, Stinchcombe and White [32]

4



[33] provide some important references on the existence properties of the feedforward

networks.

1.2 Scope of The Thesis

The main objective of this thesis is to model financial time series. After a review
of classical time series approaches to time domain and frequency domain approaches,
the thesis will examine the moving blocks bootstrap and neural networks before going
on to integrate these techniques to form an integrated modelling technique for the

analysis of financial time series.

Chapter 2 will discuss classical and modern nonparametric methodologies to time
series. In Section 2.1, time and frequency domain techniques are reviewed as these
techniques are used (in a later section of the thesis) to determine the existence
of a relationship between financial time series, and to develop a bivariate transfer
function model. In Section 2.2, nonparametric methods—the moving blocks bootstrap
and neural networks—are discussed in detail. These methods, together with classical

techniques, provide the theoretical basis for the derivation of an integrated technique.

In Chapter 3, an integrated modelling technique will be developed to analyse
financial time series. The proposed method offers an improved solution to financial

forecasting problems.



Chapter 4 presents an application of the integrated modelling technique to fi-
nancial time series, interest rate spreads and spot Canadian dollar data sets. The
empirical results support the use of the integrated modelling technique to financial

time series.

The integrated modelling technique will be applied to simulated time series data
in Chapter 5, which will also summarise and present the results of the simulation.
The simulation results show undercoverage overall, but the integrated modelling
technique appears robust to the choice of noise distribution as well as the sample

size. Conclustons and suggestions for future work will be presented in Chapter 6.



Chapter 2

Time Series Methodologies

Time series analysis is an important technique in a wide variety of quantitative
fields. Over the years, a number of quantitative techniques and nonparametric
methods have been developed for analysing and predicting time series values (essential

references can be found in Chatfield [10]).

2.1 Classical Time Series Methods

To simplify the review of classical methods, we will not review time domain
techniques here. Adequate references about the autoregressive integrated moving
average (ARIMA) models, known as the Box and Jenkins approach, can be found
in studies by Brockwell and Davis [9], Chatfield [10], and Priestley {48], which pro-

vide readable introductions to time series analysis and cover both time domain and

T



frequency domain techniques. In this section, a brief review of frequency domain

techniques is presented.

2.1.1 Spectral Analysis

“Spectral analysis is essentially a modification of Fourier analysis so as to make
it suitable for stochastic rather than deterministic functions of time” Chatfield [10,
p-105]. Hence, spectral analysis of stationary time series involves decomposing the

given time series into a linear combination of sinusoids.

For a given time series, Z;, ¢ = 0,+1,+£2,..., with E(Z;) = 0, the frequencies

R N~ T

are called the Fourier frequencies of Z, and [-] denotes the greatest integer function.
Notice that k£ contains n integers. For example, at frequency k, a waveform is the

sinusoidal function
cos(2myt) + sin(2rwit) t=1,...,n (2.2)

which constitutes cycles over t = 1,... ,n, where k = —[L“T—l)—], ---,[3]. Since the
length of time required to complete one cycle is called the period, the frequency vy

measures the number of cycles per time point . Note that, by knowing the Fourier

8



frequencies, we can capture the time path of Z; as a weighted sum of the sinusoids in

(2.2).

In order to estimate the contribution of each sinusoid (2.2), we estimate the

autocovariances; yz(k) = Cov(Ziyk, Z¢), by

n—|kj
cz(k) = % Y Zewps — 2)(2 — 2) (2.3)

t=1L

for k=-n+1,...,n—1and Z = (23, Z). Note that cz(0) is an estimate of the

variance of Z;. Following this we define the periodogram

n—1

L(vk) = cz(0) + 23 cz(k) cos(2muik) . (2.4)
k=1

The periodogram appears to be a natural way of estimating the spectral density

function (or the power spectrum)

fz(v) = 4z(0) + 2i7z(k) cos(2mkv) (2.5)
k=1

where

vz(k) = /j_ fz(v) cos(2rkv)dy .

Moreover, the total area under the periodogram is an estimate of the variance of Z;;

that is,

n (2]
SN2 — 2 = Y, ILiw)- (2.6)



Although the periodogram is asymptotically unbiased; that is
E[L(v)] = fz(v), asn—oo @7

the variance of I,,(v&) is not zero as n — ooc. Hence I,(v:) is not a consistent estimator
for fz(v). Thus, in order to restore consistency, we will consider an alternative
procedure of estimating a power spectrum-—that is, the method of smoothing the
periodogram. This procedure, which provides a consistent estimate of the spectral

density function, is called a lag window estimator, defined by

folv) = ez(0) + ng(g)cz(k) cos(2rkv), vE [—% %] ,(28)

where the lag window; w(-), is a weight function on [0,1] with 0 < w(z) < w(0) =1,
and a sequence, m, is chosen such that = — oo as n — co. This method eliminates
the inconsistency of the periodogram without destroying its asymptotic unbiasedness.
Moreover, it allows us to examine the sources of variability in the total variation of a
given time series. However, the choice of m is important because “the larger the value
of m the smaller will be the variance of the resulting estimate but the larger will be
the bias, and if m is too large then interesting features of fz(v), such as peaks, may
be smoothed out” Chatfield (10, p.117]. Since there is no effective method for making
the choice of m, we can try several values in the region of {5 according to Chatfield
[10]. The most basic lag window estimator is the uniformly weighted average. In this

thesis, the modified Daniell smoothing function, which is defined below, will be used

10



for data analysis

w(z;) -(:;a;lt_l)—{é ['—@%:—Hli-x[i--(-ﬂ%:ﬂ-{-l]-iﬂ”-{'
z[i + -"-————(st;— D_ 1] +:;--z[i+———-—(spm;— 1)]} , (2.9)

where span (= 2m + 1) is an integer giving the length of the smoothing window for
the given series. Note that w(z;) in (2.9) is the computational expression of w(ZX) in
(2.20). Moreover, the smoothing window or average only considers the m neighboring
values and z; in smoothing z;; the smoothing window actually includes span points

with half-weights on the ends.

If Z, is a generic white noise series which is defined to be an uncorrelated series,
then we have vz(0) = 0%, and vz(k) = 0 Vk = +1,+2,.... Moreover, we have a flat
spectral density because fz(v) =% forv € [-—%, :}] In addition, we have Fz(v) = v

for all v € [0, %] hence define the nermalised spectral measure by

fo fz(v)dv

FZ(”) = I )
¢ fz(v)dv

vE [0, ;)-] . (2.10)

By defining the sample version of equation (2.10) in the following way

U(u)—"kzs"llzcz ue[ol] (2.11)
n = zIn(I!],) 52 3 <

we can use U,(v) to test whether or not a time series is white noise. That is, we

plot the U,(v) function and check its compatibility with the diagonal line (uniform

11



distribution function; F(z) = z,0 < z < 1) using the Kolmogorov Smirnov test.
Moreover, for n > 62 (see Brockwell and Davis [9]), a good approximation to a level
a Kolmogorov Smirnov test is to reject the null hypothesis if the statistic falls outside

of the bounds.

2.1.2 Cross Spectra Coherency

Thus far, we have been concerned with analysing a univariate time series. We will
now examine the relationship between two time series. For two given non-white noise
time series, Y; and X, we use the cross spectrum to establish whether a structural

relationship exists between them. The cross spectral density is defined as

— : 11
fyx(l/) = Z Wx(k)e—h'wk , v e [—5, ;] ) (2.12)
k=-—c0 -
where
vrx(k) = Cov(Yepus X)),  k=0,%1,%2,... (2.13)

is called the cross covariance and its inverse representation is defined as

vrx(k) = /_ * frx@)em™, k=0,41,42,... (2.14)

12



Note that fyx(v) is a complex valued function. The reason is that yyx(k) (2-13) is

not an even function; that is, vy x(k) # yvx(—k).

The cross-coherence function between two series is defined by

K(v) =

frx(v) ve [__

1
11 =1 s 2-15
[fx(v) fr(v)]z ] (2.15)

and the Cauchy - Schwarz inequality ensures that squared coherence, K*(v), is bounded
as follows:

11

= =- 2.16
> 5 (2.16)

0<K*v)<1, ve [—

Here K?(v) can be interpreted as the spectral equivalent of the ordinary linear
regression R? statistic. Note that (2.16) measures the extent to which ¥; and X

series are correlated at each frequency. Two situations of particular interest arise:

Case I: When Y, series is an exact linear function of X; series, we have
1
Fel0) = |AWfx(v) and fxr(v) = A@)fx(w), v €[5, 3] 2 (@17)
where

— —2mivh 1
AW)= ) e , VE|-35
h=—00 i

] (2.18)

o -

is called the frequency response function.

13



Case II: When no correlation between Y; and X; series exists, we have

fxr)=0 v ve[-3 5] - (2.19)

Therefore, by the definition of squared coherence, we have

[K(v)?=1, ve [—é—, %] , for case I,

and
IK(v)I*=0, ve 5 5} , for case I .

These are the two extremes that can happen to the Y; and X; series. However, in
case II, no further analysis is required, as no relationship between Y; and X, series

exists.

To test whether or not the Y; and X, series are correlated, we use

F2(v) = ez(0) + 2§:w(—:—l)cz(k)cos(21rku), v e [—% %] . (2:20)

k=1

as well as

frxy= Y Wx(k)w(lkl)e"z’{”k, vE [——%, %] . (2.21)

[k|<m m

where w(-) is a weight function supported on the interval [0,1] with 0 < w(z) <

14



w(0) = 1, and m is chosen to be a sequence such that 2 — oo as n — co with

[ n—k
DY M - Y)( X — X) for 0<k<n-1,
t=1
crx (k) = 4
L Z (Yeer —Y)(X;—X) for —n+1<k<0,
L t=—k+1
and
. 3 2
gy = MoxWlF [—1, 3] . (2.22)
fx(v)fr(v) 272

Asymptotically, we can test the hypothesis H, : K?(v) =0, v € [—i—, %—] , and

the alternative hypothesis H, : K?(v) > 0 using the statistic

Z 2
LT

T 1K)’ 2’ (223)

o]
eed

-

Since K%(v) is distributed as the square of a multiple correlation coefficient, so that
S ~ F 4, under the hypothesis that K?{v) = 0, we can therefore reject the hypothesis
K?*(v) = 0if S > Fi_qa,2 4m, Where Fi_, 2 4m is the (1 — a) quantile of the F
distribution with 2 and 4m degrees of freedom. As we mentioned earlier, the choice

of m can bhe important; it can also affect the F' test as demonstrated here.
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2.1.3 Bivariate Transfer Function Model

After establishing the existence of a structural relationship between the X; and

Y: series, we have the following model :

m2

Y= Z s Xe—s + Ny, (2.24)

s=mjy

where m; < my and N; is a random noise which is assumed to be uncorrelated with
X;. Here, m; and m, have to be estimated. Note that if m; > 0, we assume the past
X; will influence future Y;, but not vice versa. Thus, in the former case the model

given in (2.24) would be called causal.

Having considered the model, we follow the procedures in Brockwell and Davis
[9, pp-455—457] to estimate a,, s = m,,... ,m; and possibly the N, process in model

(2.24). The procedures will be presented in Chapter 3.

2.2 Nonparametric Methods

In this section, nonparametric methods will be discussed. Bootstrap techniques
and neural networks are computer based (nonparametric) techniques. Although
the two techniques use different computer algorithms, they provide an alternative
approach to modern data analysis and are particularly useful in the analysis of

complicated data structures.
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2.2.1 Moving Blocks Bootstrap Sample

The bootstrap is a computer based resampling technique (as initiated by Efron
[15]) used to gain information on the distribution of an estimator. A more general
resampling technique, called the moving blocks bootstrap (see Kinsch [43], Liu and
Singh [46], and Léger, Politis and Romano [44], and Efron and Tibshirani [20]), is used
for model dependent data. The procedure for obtaining the moving blocks bootstrap
time series samples will be discussed. In the case where n # k-l (where k is the
number of blocks and ! is the block size), it is proposed that a modified moving

blocks bootstrap be used to generate the bootstrap time series.

Simple bootstrap resampling involves fitting a model and then sampling from the
residuals. An alternative method is the moving blocks bootstrap, for bootstrapping
time series: For any given time series sample, we can generate a bootstrap time series.
In order to do so we must (1) choose a block length; (2) form the time points to all
possible contiguous blocks of chosen length; (3) draw the samples with replacement
from these blocks; and (4) join all the samples together to form a bootstrap time
series. These steps can be applied to generate a bivariate bootstrap time series—that
is, we pair-up the original bivariate time series and then apply the four steps to the
series. For example, if we have samples of size n, and the block length is chosen to be
[, then we can have k blocks to form the bootstrap time series. The number of blocks,

k, is chosen so that n = k - I. Figure 2.1 shows the bootstrap samples for a bivariate

17



time series with block length [ = 3. “The idea for the moving blocks bootstrap is to
choose a block size [ large enough that observations more than ! time units apart will
be nearly independent” Efron and Tibshirani [20, p.102]. However, Kiinsch [43] and
Liu and Singh [46] show that B; = (X;, Xit1,--. s Xipi—1), ¢ = 1,2,... ,k, are t.i.d.
for fixed [ under some conditions. Note that the moving blocks bootstrap coincides
with the classical ¢.7.d bootstrap of Efron [15] when { = 1. The advantage of using
the moving blocks bootstrap is that we will not destroy the correlation that we are
trying to capture since we are resampling from the blocks of observations. Next, we

propose a modified moving blocks bootstrap when k- # n.

2.2.2 Modified Moving Blocks Bootstrap

We note that if k- [ # n; that is, when n is not exactly divisible by [/, then Efron
and Tibshirani [20] suggest that we have to multiply the bootstrap standard errors
by \/7‘7_’ to adjust for the difference in lengths of the series. We propose an additional
step to the moving blocks bootstrap procedure; that is, the addition of a random
block with the block size I’ = n — (k - [) to the bootstrap time series, in order to

resolve this adjustment problem.
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Figure 2.1: A schematic diagram of the moving blocks bootstrap for time series
(Modified from Efron and Tibshirani [21}).
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2.2.3 Neural Networks

Artificial neural networks (ANNs) are mathematical models for human brain
activities. In general, neural networks are often applied to applications such as

classification, pattern learning, and prediction.

Neural networks are considered a nonparametric method for drawing statistical
inferences. The important aspect of neural networks is their capability to construct
nonlinear relationship between the given input and output data. When used together
with powerful computer hardware and training algorithms, ANNs allow gtatistical
inference to be made without any structural formula. This implies that nonlinear
time series are more suitable for analysis by neural networks. Because time series are
statistically more volatile in financial markets than in other applications, the financial

industry has become a prime application area for neural networks.

Although there are a numerous of networks of which many are recurrent neural
networks (e.g. Kuan and Liu [42]), the multilayer perceptrons is the simplest neural
network representation, and it can well approximate a large class of functions. Hence,
in this thesis, the feed-forward networks are used as the only nonparametric model.
Authors such as Cybenko [13], Funanhashi [24], Gallant and White [25] [26], Hecht-
Nielsen [31], and Hornik, Stinchcombe and White [32] {33] provide some important
references on the existence properties of the feedforward networks. Recent reviews
from a statistical perspective include Cheng and Titterington [11], Ripley [51], and
White [55] [56]. Weigend and Gershenfeld [54] present a computer scientist’s perspec-

tive of Neural networks in time series.
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2.2.4 Feed-forward Networks : Multilayer Perceptrons

Feed-forward networks are an important class of neural networks. Typically, the
network consists of a set of source nodes that constitute the input layer of one or
more hidden layers of computation nodes, and an output layer of computation nodes.
The input signal propagates through the network in a forward direction, on a layer-
by-layer basis. These feed-forward networks are commonly referred to as mulitlayer
perceptrons (MLP) when there is at least one hidden layer. From the statistical point
of view, the multilayer perceptron networks provide nomnlinear regression functions
that are estimated by optimising some measure of fit to the training data. Figure 2.2
shows a typical multilayer perceptron with only one hidden layer, flowing from the

bottom up.

The multilayer perceptron network is a supervised neural network since, during
training, each input data vector is paired with a corresponding desired target for
the network output. The actual outputs in the output layer are now compared with
their desired targets, the difference being the output errors. The errors are then
fed back to the network to improve the performance. This process is known as the
backpropagation algorithm. This algorithm is based on the mean squared error (MSE)
as an error-correction learning rule. Basically, the back-propagation process consists
of two passes: the forward pass and backward pass. In the forward pass, the input

data vectors are applied to the source nodes and propagate, layer by layer, through
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Figure 2.2: Three-Layer Feedforward Network.

the network. Once one forward pass is completed, a set of outputs is obtained as the
actual output of the network. Note that the synaptic weights (which are the inter-
node connection weights of the network) are fixed during the forward pass. During
the backward pass, the synaptic weights of the network are all adjusted according
to the error-correction rule. An error signal is then obtained by subtracting the
actual output of the network from the desired target. This updated error signal is
then propagated backward through the network; that is, in the opposite direction of
synaptic connections. The synaptic weights are adjusted to improve the performance
until a zero, or minimum, error signal is obtained. The learning process performed
by this algorithm 1is called backpropagation learning. A complete presentation cycle,
or iteration, comprises the forward pass and backward pass cycles. One complete

presentation of the entire training set is called an epoch. The learning process is
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maintained on an epoch by epoch basis, until the synaptic weights and the threshold
levels of the network stabilise and the Ejrsg over the entire training set converges to

some minimum value. The Ejssg is defined by

. 2
B, = 3. ZO(TmEe; Qutput) , (2.25)

where N, is the number of training vectors in one complete presentation of the entire
training set during the learning process (an epoch), and N, is the number of output

neurons.

It is advisable to randomise the order of presentation of training sets from one
epoch to the next in order to make the search in weight space stochastic over the
learning cycles, and avoid the possibility of limit cycles in the evolution of the synaptic
weight vectors. Moreover, the randomisation of the training sets allows for a testing
technique that reflects the practical utilisation of the network in actual forecasting

problems.

The normalised mean squared error (NMSE) is used to evaluate the model of the
network, and is defined by

AR Ak
ZK Y2 ?

s=1 “*s

NMSE = (2.26)

where K is the number of data in the validation set, Y, is the desired target, and Y,
is the actual output. Note that the quantity (1— NMSE) measures the percentage

variance in the data which is explained by the model. Moreover, if we plot the learning
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curve (the NMSE versus the epoch) for the function estimated from the training set,

we can easily see that the learning curve is monotonically decreasing.

The essence of backpropagation learning is to encode an input-output relation. A
multilayer perceptron will be considered well trained if it learns enough about the past
to be able to generalize about the future. However, if we allow the learning process
to proceed indefinitely, we will overfit the data and begin modelling only noise-that
is, the NMSE reduces to zero. The cause of this problem is understandable if we
consider the linear regression case: if we constantly add parameters to its full rank,
the R-square becomes 1. Hence, we need a stopping criteria in order to end the

learning process when the generalization performance is adequate.

Kim, Martin and Staley [39] identify the technique most commonly used to end
the learning process: First, the available data set (or the moving blocks bootstrap
time series samples) is randomly partitioned into a training set and a validation set
(there are no fixed rules for selecting the amount of data for either the training set or
the validation set). We propose to select 75% of the data to be used for the training
set, and 25% of the data to be used for the validation set. The motivation here is to
validate the model on a data set which is different from the one used for parameter
estimation. In this way, we can compute the NMSE (2.26) based on a validation
set using the resulting network used on the training set. Consequently, we plot the
learning curve of the Validat%on set, and look for the epoch at the point on the curve
where the direction starts to change. Note that the learning curve of the validation
set will not necessarily monotonically decrease. This number of epochs will then be

used to determine the stopping point for the learning process. It should be noted that
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this situation does not always occur, but if it does happen, the network should be
re-trained on the validation set. Finally, the configuration of the resulting multilayer
perceptron network on the given training set and validation set is used for prediction

or forecasting on the given test set.

In neural network architecture, Figure 2.3 shows the commonly used threshold
functions. The threshold function is used in the forward pass computation. Using
the architecture of Figure 2.2 as an example, we process input X’s to calculate new

hidden layer #** neuron using

k
b: = f(z Tpvni + B, (2.27)

h=1

where f(-) is the threshold function, v4; is the weight between the input layer and hid-
den layer, and ®; is the hidden layer threshold values. Note that the backpropagation

algorithm is presented in Appendix A.

Remarks : A multilayer perceptron has the following distinctive characteristics :

1. “The model of each neuron in the network includes a nonlinearity at the output
end. The important point of emphasis here is that the nonlinearity is smooth;
that is, differentiable everywhere” Haykin {30, p.138]. In the prediction context,

a nonlinear function that satisfies this requirement is a symmetric sigmoidal
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function defined by the logistic function :

1
YT Tren(a) (228
f = (1-Y)Y, (2.29)

where f’ is the derivative of the logistic function. Note that the logistic function
is a commonly used function which transforms the input value in the range r €
[—o00, + oo] into the output range O € [0, 1]. “The presence of nonlinearities is
important because, otherwise, the input - output relation of the network could

be reduced to that of a single-layer perceptron” Haykin [30, p.139].

For the choice of the maximum number of layers in the network, Lippmann [45]
recommends that three layer networks, with just one hidden layer, are sufficient

to solve arbitrarily complex input-output mappings.

3. The hidden neurons which are not part of the input or output of the network

enable the network to learn complicated data by extracting more information

or features from the input vectors.

The network is connected between the layers by the synapses of the network.
Hence, a change in the connectivity of the network requires a change in synaptic

weights of the network.
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Chapter 3

Integrated Modelling

In this chapter, a strategy called integrated modelling will be implemented in
order to analyse time series based on financial data. Since the modelling tool is
a combination of the methodologies described in the previous chapters, the term
integrated modelling is used. The objective for implementing this technique is to
achieve a more reliable solution to the modelling and forecasting problems which
occur in the financial world. The technique utilizes both classical techniques and
ponparametric methods for estimation and inferences. This chapter will begin with

an examination of the theoretical foundations for integrated modelling.

3.1 Theoretical Foundations for Integrated Modelling.

In Chapter 2, the theoretical background for the derivation of classical techniques
and nonparametric methods is discussed. These techniques and methods form the

basis of implementing techniques in modelling time series. In this section, with the

28



support of these techniques and methods, we present the theoretical foundations in

detail for the derivation of the integrated modelling technique.

An initial approach is to follow the method of Kim and Martin [40], using spectral
analysis to uncover certain statistical details. For a given bivariate time series, the
statistic U,(v) (see Chapter 2) is used to determine whether the two time series
are white noise. That is, the Kolmogorov Smirnov test is used to reject the null
hypothesis with level « if the function U, (v) falls outside of the bounds for each time
series. Once we reject the null hypothesis and conclude that the two given time series
are not white noise, the cross spectrum is applied to determine the existence of the

relationship between the two series.

After establishing the existence of a structural relationship between the two series,
the proposed model (which is modified from the bivariate transfer function model) is
applied to further analyse the time series. Before implementing the proposed model,
it is helpful to provide the rationale for modifying the bivariate transfer function

model. The bivariate transfer function model is restated below:

my
Y, = E o, X;—s+ N;. (3.1)

S=my

Recall that (3.1) is valid only if it is causal, that is, the past X; will influence future
Y:, but not vice versa. In particular, the model requires that m; < m, and m; > 0.
Next, we follow the procedures listed in Brockwell and Davis [9, pp.455-457] in order
to estimate m;, m,, and a,, s = my,...,mz. The following steps are applied to

obtain m; and m,:
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Step 1. We calculate the cross correlation function (CCF); pw.y-(h) of the two
filtered series; namely W; and Y;". The filtered series W; and Y;" are obtained
by applying the prewhitening techniques to X, and Y; series, respectively. This

is achieved by transforming the X, series to a white noise series by
$(BYH(B)X: = W:, (3.2)

and applying the same transformation; that is, #(B)~1(B), to the Y, series to

obtain

Y = $(B)§(B)Y: . (3.3)

Step 2. We performed an asymptotic test of no cross correlation at the 5% level
using the bounds +1.96n~%. The comparison of pw.ys(h) with the bounds
+1.96n~% gives an indication of the lags h at which pw,y-(h) is significantly

different from zero.

Step 3. From the previous step, we estimate 7h; and 7h, to be the minimum and

maximum of lags k at which pw,y-(h) # 0, respectively.
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To continue the process of estimating a,, s =m;y,... ,m, for the bivariate transfer

function model, we apply the filter &(B)ﬁ“(B) to the model (3.1), which yields

m2
Yo=Y eaWes + N . (3.4)

S=Tmy

This implies that the transfer function between X, and Y; series is the same as
that between W; and Y,". By multiplying both sides of (3.4) by W;_., and taking

expectation, we obtain
E(Wi_i Y7) = {00 E (Wi W) + 01 E (WirkWimy) + -+ } + E(WoieNf) - (3.5)

Since

E(WerY) = wrs(F)

EWeiWij) = 0 for j # k

and E(W,_¢N;) =0, Vk (because X; and N; are uncorrelated). Therefore,

ey (k) = aroiy, (3.6)
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WY
ow?
oys Yw.y: (k)

oW, ay; oW,

gy e
= —pwye(k), £=0,12,...
oW,

ar =

The estimates of & for lag h at which jpw,y+(k) is found to be significantly different

from zero are

- s .
ar = pwyys——, h=rh,... .2 3.7

~

Now that we understand the frame work of the bivariate transfer function model, we

present our proposed model for bivariate time series.

The first step in integrated modelling is a modification of (3.1) as follows:

P
ift = z ws(Xt-s + .Bt—-s) + Nt 1 (3'8)

s=0
where N, is random noise assumed to be uncorrelated with X;, and 3: is defined by

r f X1 > X2

Be=1q 0 if Xey =Xe2

A if X < X2
where B’s, k£, and A are unknown parameters. Note that we fix the term p to be 4
in (3.8) for daily closing data and, for simplicity we let X, = X; + B:. In addition,

the coefficient w, will be estimated by using the mazimum likelihood estimate (MLE).
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Furthermore, we introduce two constant terms, namely « and A, in (3.8). The reason
for this is that we believe that the increase (decrease) in previous time points X, 1
will result in an increase (decrease) in present time point X,. The estimates of « and

A are defined as follow:

k = average of{Z(Xt — XX > Xt_l)} ,

t=2

and
X = average of {i(Xt - XX < Xt_l)} .
t=2

So far, we have only used the classical techniques with modifications. The next
step in integrated modelling is to incorporate the nonparametric methods. We gen-
erate bootstrap time series samples using the moving blocks bootstrap method for
drawing samples. It is important to note that we do not apply the moving blocks
bootstrap method to the residuals. The reason for this is that the bootstrapping of
residuals method is “model dependent”, that is, the model, for example an AR(1)

model, is fit to the original time series.

Next, we apply the multilayer perceptron network to the original bivariate time
series and the bootstrap generated bivariate time series samples for estimation and in-
ference. These applications complete the derivation of the theoretical foundations for
integrated modelling where the procedures of the nonparametric methods introduced

in Chapter 2 are followed closely.
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3.2 Modelling Procedures

After deriving the theoretical foundations for integrating a model, the modelling

procedure is used to analyse bivariate financial time series.

The correct approach for analysing bivariate financial time series is to use spectral
analysis in order to uncover certain statistical details. In particular, we need to
determine the existence of the relationship between the two given time series. If it is
determined that a relationship exists, we continue to apply the integrated modelling
technique to further the analysis of the bivariate time series. Having defined the
model structure, the moving blocks bootstrap is applied to the given time series.
However, we need to know the block size [ in order to generate the bootstrap time
series samples. Since there is no effective way of choosing the block size at this

moment, we suggest an algorithm for choosing an appropriate block size.

3.2.1 Algorithm for Choosing the Block Size

Step 1. We fit an ARMA(p,q) model to the stationary time series. We use the first
coefficient and its associated standard error as true values. For example, we

have the AR(1) model for the given series z;, t =1,2,... ,n;
= ﬁzt-l +e€.

We now choose S and 63 as our true values.
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Step 2. Here we fix the block size to be [ = 1,5,10,... ,100, and select B = 200
(Where | < ). For each [, we generate the independent bootstrap time series
=56 =1,2,..., B, each consisting of n data values drawn with replacement

from z;.

Step 3. For each I, we fit the ARMA(p,q) model to each bootstrap time series

=6 = 1,2,...,B. In the example given, we fit an AR(1) model to each

generated series and obtain the bootstrap coefficients of B‘( b,b=1,2,...,B.

Step 4. For each [, we estimate the standard error crp(,é) by the sample standard

deviation of the B replications

&5 = {fj [B&) - BC)]" /1B - 11};— :

b=1

where

B
B() = b}; B*(b)/B.

Step 5. Here we plot the standard errors obtained from Step (4) versus the block
size {. Finally, we choose the block size [ such that the standard error of [ is

closest to the true estimate obtained in Step (1).
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3.2.2 Generating Bootstrap Bivariate Time Series.

Once the block size is chosen, the bootstrap time series samples are generated by

using the following steps:

Step 1. Use the algorithm described above to select an appropriate block size l.

Step 2. Select B independent bootstrap samples (X1, Y1), (X;2,Y;%),--- . (X;B,Y;"B),
each consisting of n data values drawn with replacement from (X, Y;). Here we
use the moving blocks bootstrap procedures to generate the bootstrap sample
pairs. Note that we need to have B > 1000 for constructing the intervals (See

Tibshirani [53]).

3.2.3 Neural Network Estimations

After obtaining the moving blocks bootstrap time series for each set of bootstrap
sample pairs (X;%,Y;"%),b=1,2,..., B, we construct the multilayer perceptron net-
work with 4 input layers, n hidden units for the hidden layer (where n is determined
by trial and error in the region of % of input vectors), and 1 output layer. The three-
layer perceptron network with the backpropagation algorithm is now used to train on
the input-output pair; that is, ((j(t_4,f(,_3,f{t-g, X't_.l), Y.),t =1,2,... ,n, where
X_3,X_»,X_; and X, are set to zero. Since the underlying (2.28) activation function

of the network is logistic, it would be better to choose the data that fits a range
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that does not “saturate” the network neurons. Thus, we have the range of the inputs
X.,t=1,2,... , ntobe X, € [~1, +1], and the range of the output ¥;, =1.2,... ,n

to be ¥; € [0, 1] (i.e., Sigmoid range).

Finally, we can construct the bootstrap forecast intervals for the financial time
series. For example, if we want to have a forecast interval for one step ahead future

value, Y41, then the procedure is as follows:

Step 1. Usethe neural network to obtain the forecasted values; l},f_f_l ,b0=1,2,...,B.

Step 2. We now construct the forecast intervals for Y, ;. Letting

-~

D-=}/n+1—?;_:1, b=1,2,...,B,
where f;.;_l is the forecasted future value obtained from the original time series,
we approximate the bootstrap distribution of D* by its empirical distribution.

Step 3. Let u} be the a quantile of the bootstrap distribution of D*. Then a

bootstrap forecast interval is given by

-

[Y:;+1 - u{_a, K,,+1 - u;] .

Note that this is the bootstrap percentiles method applied to prediction. Other
methods of bootstrap confidence intervals can be found in Efron and Tibshirani

[20].
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Chapter 4

Application to Financial Time Series

Based on the theoretical foundations discussed in Chapter 2, we derive the inte-
grated model presented in Chapter 3. This chapter will apply the integrated model
to a given set of data, namely the interest rate spread and the spot Canadian dollar

series, in order to examine how the integrated model will perform.

4.1 The Interest Rate and Spot Canadian Dollar Data

The interest rate spread data (IS;) and the spot Canadian dollar data (C:) are

taken from Kim and Martin [40]. A brief description of the data set is given below.

A total of 1476 daily trading data, commencing January 1991 through to August
1996, are used in this study. The interest rate spread IS; {in percent) is defined as

the difference between 90 day Canadian and 90 day US treasury bill rates, and the

38



spot Canadian dollar C; is defined as the closing price of the exchange rate measured

in US cents. The time plots of C; and IS; are presented in Figure 4.1.

Next, we define the changes in the interest rate spread IS; by
X, = IS — IS, (4.1)
and define the changes in log C: (or Return R:) by
Y: = logC: — logCy; . (4-2)

Note that the time unit for Y; is one day. The time plots of Y¥; and X series are
presented in Figure 4.2A and 4.2C. It is apparent that the two series appear to be

random quantities over time.

In Figure 4.2C however, the X, series exhibits extreme movements, while the Y;
series (Figure 4.2A) is bounded within a smaller range over the time period. Moreover,
since we are trying to identify the “stable” model for the long term link between the

X; and Y; series, we will remove these extreme points and replace them as follows:

X, = { +a if X.> +a

—a if Xi<—a
Y, = { +5b if Yi> +b

—b if Yi<-b,

where a =4 -0x, and b =4 - oy,.

In particular, we will bound the movement in X, between +38 (= +4 - 6x,) basis
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Figure 4.1: Time Series Plots for Spot Canadian Dollar and Interest Rate Spread.
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Figure 4.2:
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points, and bound the movement in Y; between #1.1 (= +4 - dy;) basis points. This
means that we adjust the extreme points and replace them as follow:

X - 038 if X,> 0.38
7 1 —038 if X,<—038

v - 0.011 if Y,> 0.011
t= —0.011 if Y, < —0.011.

In Figure 4.2B and 4.2D, we replot the time plots of ¥; and X; with these changes.
There are a total of 12 extreme points in X; and a total of 5 extreme points in Y;

adjusted using the 4 - & rule.

The histogram of Y; and X series are presented in Figure 4.3. Notice that all the

histograms are symmetrical at zero.

Now that we have the data in hand, an initial approach is to use spectral analysis
to determine the existence of the relationship between the Y; and X, series. From
Chapter 2, we have a consistent estimator of the spectral density function, which we
apply to the ¥; and X, series using the modified Daniell smoothing function in Splus
with a span of 71 points (m = 35). In Figure 4.4, we plot the spectrums of the two

series.

From the figures, we can see that there is some power in the high frequencies in
Y; series and low frequencies in X, series. Although we do not know where the power
is coming from, we can relate some of the power to the short noisy appearance in the

time plots of Figure 4.2B and 4.2D.

Next, Figure 4.5 shows the cumulative periodogram and the 95% confidence limits
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Figure 4.3: Histograms of the Changes in Spot Canadian Dollar and Interest Rate

Spread Data.
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(Kolmogorov Smirnov boundaries) for both the X; and Y; series. It is apparent that
the Y; series falls within the confidence limits, whereas the X; series fall outside of the
confidence limits. The Kolmogorov Smirnov test (see Chapter 2) suggests that Y; is
white noise, although it is interesting to note that the spectral density of the Y; series
in Figure 4.4A is not “flat” enough; that is, this “visual” criterion disagrees with the
Kolmogorov Smirnov test. Thus, we reject that the two time series are white noise,

and we can carry on our analysis.

Since the bivariate time series is not white noise, we carry out the hypothesis
testing defined in Chapter 2 in order to test whether these series are correlated at
each frequency. To continue our example, using the modified Daniell smoothing

function with m = 35, and a = 0.1, we reject H, if

P T0K?(v)

= = > Fo. = 2.3408 . 4.3
1— R2(0) 0.90, 2, 140 (4.3)

In Figure 4.6, a plot of the statistic S is presented with the accompanying F statistic
(Fo.s0,2, 140)- It is apparent that the hypothesis K?(v) = 0 is rejected for all v € [0, %

and that the Y; and the X, series have correlation over the entire frequency range.
Therefore, there is strong statistical evidence that the two series are correlated and

we can proceed with our analysis.
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Figure 4.5: Cumulative Spectrum Plots of ¥; and X, Series.

“"

"

e @ [t as as as

Frequency

A ) Cumultative Spectrum of Y_t Series.

"

oo . L%y a3 ce as

Frequency

B8 ) Cumulative Spectrum of X_t Series.

46



To proceed to our data analysis, that is, to generate bootstrap time series samples,
we first apply the algorithm for choosing appropriate block size. Note that here we
apply the algorithm to the Y; series (spot Canadian dollar data). We plot the standard
errors versus the block size in Figure 4.7. Note that the horizontal line is the true
value of 64 obtained from the Y; series. It is evident that the plot suggests that [ = 60
is preferred here. After fixing the block size [ = 60, we follow the steps described in
Chapter 2 in order to generate B = 1500 bootstrap time series samples. Next, we
can use the integrated model to obtain a point estimate and/or inference for spot

Canadian dollar series.

4.2 Empirical Results

In this section, the bootstrap forecast interval for the spot Canadian dollar is
presented. The intervals are constructed with B = 1500, moving block size { = 60,
and the multilayer perceptron network with 4 input layers, 3 hidden units for the
hidden layer, and one output layer. Note that the three-layer multilayer perceptron
network with the backpropagation algorithm is used to train on the input-output
pair; that is, ((Xt_4,Xt_3,Xt_2,Xt_1), Y:),t=1,2,... ,n, where X _3,X_5,X_; and

X are set to zero.

Before we provide the point estimate and the forecast interval for spot Canadian

dollar series, we need to carry out the following transformation:
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Figure 4.6: Plot of Squared Coherence Statistic.
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Figure 4.7: The plot of standard error estimates for all chosen block sizes. The true

standard error is 0.02605
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Recall that Y; in (4.2) is defined as
Y; = lOg Ct - log Ct—lr

hence the forecast value for the spot Canadian dollar Cpyy is :

Cn+1 —_— 61}n+1 + log(Cn)

= e ., (4.4)

As an example, the forecasted one step ahead future value for spot Canadian

dollar, at n = 1476, is given by
Cnyr = 73.0678 ,
and the 95% forecast interval is given by

(72.0251 < Cpy1 < T4.0755) .

Note that, the actual value of C,41 is 73.0033. These results justify the use of the

integrated modelling technique to financial time series.
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Chapter 5

Simulation

A simulation study is carried out to evaluate the performance of the model
described in Chapter 3. Note that the integrated modelling technique utilizes both
the classical techniques and nonparametric methods for this data analysis. For this
study, we generate n+1 data with sample sizes n = 500, and » = 1000, for the X; and
Y, series and simulate X; as Interest rate spreads data and Y; as spot Canadian dollars
data. For each sample size, the simulated time series are generated with Gaussian
and non-Gaussian noises. In addition, the X; series are generated as follows: For
simulation studies I - V, we have M A = 0 order and the orders for autoregressive
(AR) are assigned to be 2, 3, 5,7, and 10; For simulation study VI, we have AR = 2

and M A = 2; and for simulation study VII, we have AR =5 and MA = 5.

We will only use the first n samples of (X, Y;) for model building. The following
steps are applied to each simulated series: (1) The extreme points are adjusted

according to the “adjustment rule” described in Chapter 4; (2) spectral analysis is
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used to determine the existence of the relationship between the two series; (3) if
the two series are not white noise and are correlated over the frequency range, we
proceed to the next step, otherwise, we have to start on a new simulated series; (4) the
algorithm for choosing the block size is applied; (5) the bootstrap time series samples
are generated with B = 1000; (6) a three-layer multilayer perceptron network with the
backpropagation algorithm is used to train on the input-output pair; (7) the future
value for }A’;H.I, and the forecast interval for Y, are forecasted; and (8) after obtaining
the 95% forecast intervals for the Y,,,,, we then compare them to the actual Y,4+:. By
repeating this procedure 200 times, with only the complete procedure counted, we can
then calculate the percentage of the intervals that cover the actual or targeted Y, 41
for sample sizes n = 500 and n = 1000, respectively. Note that we use a bootstrap
resample size of B = 1000 to construct the bootstrap forecast intervals. Next, we

present the simulated time series and the simulation results.

5.1 Simulated Series I and Simulation Results

Simulated Series I(a): With Gaussian Noise

We simulate time series X; as ARIMA(2,1,0), as shown below:

(1- i $;:BY1—B)X,=U,, U,~ N(0,1) (5.1)

=1
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where the coefficients ¢;, j = 1,2 are randomly chosen to be 0.65 and —0.2.

We simulate time series Y; as follows:

Zt = '—0.2Xt + Vv 1-— 0-22 - Hg
Y, = |trunc {min(Z)}|+1+Z;, (5.2)

where the function min(-) returns a number that is the minimum of the inputs,
trunc(-) is the function that creates integers from floating point numbers by

going to the next integer closer to zero, and H; is defined by
(1-¢B)Y1-B)H: =V, Vi~ N(0,1) (5.3)

and a randomly chosen coefficient, ¢ = 0.32.

Simulated Series I(b): With Non-Gaussian Noise

We simulate time series X; as ARIM A(2,1,0), as shown below:

(1-Y 6;B)(1 - B)X. = U:.

=1

U, ~ (80% of N(0,1) + 20% of Caucky(0,1)) (5.4)

where the coefficients ¢;, j = 1,2 are randomly chosen to be 0.58 and —0.12.

We simulate time series Y; as follows:

Zt = -0.2Xt + Vv 1 s 0.22 . Ht
Y, = [trunc{min(Z)}+1+ Z,, (5.5)
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where H, is defined by

(1-¢B)1-B)H:=V:, V.~ N(0,1) (5-6)

and a randomly chosen coefficient, ¢ = 0.45.

Simulation Result I
The simulation results are summarised in Table 5.1. Note that the coverage
probability for simulation results are lower than the nominal level of 95%.
Moreover, the results show indifferently for both sample sizes as well as the
noise distributions. However, for both samples sizes, the average error is higher

in non-Gaussian noise series than the Gaussian noise series. The average error

Table 5.1: Results for Forecast Intervals on Simulated Series 1

N =500 N = 1000
AR=2and MA=0 AR=2and MA=0
Noise Nominal | Coverage | Average || Nominal | Coverage | Average

Level Proportion | Error Level Proportion | Error

Gaussian 95 % 92.0 % 0.801 95 % 92.5 % 0.763

Non-Gaussian 95 % 92.0 % 0.922 95 % 92.0 % 0.920
is defined by

S |V - Y

(5.7)

Average Error =

N
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5.2 Simulated Series IT and Simulation Results

Simulated Series II(a): With Gaussian Noise

We simulate time series X; as ARIM A(3,1,0), as shown below:

(A~ 6:B)(1-B)X.=U;, U ~NO,1). (5.3)

=1

Note that the series is generated using the Splus function. We simulate time

series Y; as follows:

Zt = —0.2X¢ + Vv 1-0.22. Ht

Y. = |trunc {min(Z)} +1+ Z:, (5.9)
where H, is defined by
(1-¢BY1-B)H:=V,, Vi~ N(0,1). (5.10)

Note that the series H; is also generated using Splus function.

54



Simulated Series II(b): With Non-Gaussian Noise

We simulate time series X; as ARIM A(3,1,0), as shown below:

(1— }fj 6;B)1 - B)X, =U,,

=1

U: ~ (80% of N(0,1) +20% of Cauchy(0,1)) - (5.11)
We simulate time series Y; as follows:

Z; = -02X;+Vv1-0.22-H,

Y. = |[trunc {min(Z)}+1+ Z;, (5.12)
where H, is defined by

(1—¢B)A—B)H, =V, Vi~ N(0,1). (5.13)

Simulation Result IT
The simulation results are summarised in Table 5.2. Note that the autoregres-
sive order is 3 in this simulation study. Although the coverage probability
for simulation result II show slight improvement in coverage probability as
compared with the simulation result I, the coverage probability is still under the
nominal level of 95%. The average error for non-Gaussian noise series remained
high at about 1 basis point (which is about 4oy, in actual spot Canadian dollar

data in Chapter 4).
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Table 5.2: Results for Forecast Intervals on Simulated Series I1

N =500 N =1000
AR=3and MA =0 AR =3 and MA=0
Noise Nominal { Coverage | Average | Nominal | Coverage | Average
Level Proportion | Error Level | Proportion | Error
Gaussian 95 % 93.0 % 0873 || 95 % 93.0 % 0.861
Non-Gaussian 95 % 920 % 0.902 95 % 925 % 0911
5.3 Simulated Series III and Simulation Results
Simulated Series III(a): With Gaussian Noise
We simulate time series X; as ARIMA(5,1,0), as shown below:
5 -
(1- qu,—B’)(l -B)X;=U;, U:~N(0,1). (5.14)
j=1
We simulate time series Y; as follows:
Zt = —0.2Xg + v 1— 0-22 . Ht
Y: = |trune {(min(Z)}+1+ 2, (5.15)
where H; is defined by
(1-¢B)(1-B)H:=V,, Vi~ N(0,1). (5.16)
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Simulated Series ITI(b): With Non-Gaussian Noise

We simulate time series X; as ARIMA(5,1,0), as shown below:

(1 zsj 6;B)(1 — B)X; = U, ,

=1

U; ~ (80% of N(0,1) + 20% of Cauchy(0,1)) . (5.17)
We simulate time series Y; as follows:

Zt = —0-2Xt + Vv 1— 0-22 - Ht

Y. = |trunc {min(Z)}|+1+ Z:, (5.18)
where H; is defined by

(1-¢B)1—B)H,=V,, Vi~N(0,1). (5.19)

Simulation Result IIT
The simulation results are summarised in Table 5.3. In this study, the autore-
gressive order is increase from 3 to 5. The coverage probability for simulation
results show decreases as compared with simulation results I and II. However,
the average error for non-Gaussian noises are appears closer to Gaussian noise
series for both sample sizes. The coverage probability for these simulation

results are still lower than the nominal level of 95%.
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Table 5.3: Results for Forecast Intervals on Simulated Series III

N =500 N =1000
AR=5and MA=0 AR =5and MA=0
Noise Nominal | Coverage | Average || Nominal | Coverage | Average
Level | Proportion | Error Level Proportion | Error
Gaussian 95 % 92.0 % 0.882 95 % 92.0 % 0.863
Non-Gaussian 95 % 915 % 0.900 95 % 92.0 % 0.874
_ N 1
5.4 Simulated Series IV and Simulation Results
Simulated Series IV(a): With Gaussian Noise
We simulate time series X; as ARIMA(7,1,0), as shown below:
(1-34,B)1-B)X;=U., U~ N(0,1). (5.20)
1=1
We simulate time series Y; as follows:
Zg = '—0.2Xg + vV 1— 0-22 - Ht
Y. = l|trunc {min(Z)}H +1+ Z;, (5.21)
where H; is defined by
(1-¢B)(1—-B)H;=V,, V.~ N(0,1). (5.22)
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Simulated Series IV(b): With Non-Gaussian Noise
We simulate time series X; as ARIM A(7,1,0), as shown below:

(1-3 6;B7)(1 - B)X. = UL,

=1

Us ~ (80% of N(0,1) + 20% of Cauchy(0,1)) . (5.23)
We simulate time series Y; as follows:

Zt = —0-2Xt + \"4 1-— 0-22 - Hg

Y, = [trunc{min(Z)} +1+ Z;, T (5.24)
where H; is defined by

(1—¢B)1—-B)H.=V;, Vi~ N(0,1). (5.25)

Simulation Result IV
The simulation results are summarised in Table 5.4. Note that the autore-
gressive order is now 7. The coverage probability for the simulation results
show no improvement; they also show decreases as compared with the previous
simulation results. As usual, the coverage probability for the simulation results
are lower than the nominal level. But the average errors are almost the same

for both noise distributions within the same sample size.
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Table 5.4: Results for Forecast Intervals on Simulated Series IV

N =500 N = 1000
AR=Tand MA =0 AR=T7and MA=0
Noise Nominal | Coverage | Average || Nominal | Coverage | Average
Level | Proportion | Error Level Proportion | Error
Gaussian 95 % 91.5 % 0.781 95 % 92.0 % 0.832
Non-Gaussian 95 % 90.5 % 0.779 95 % 91.0 % 0.869
5.5 Simulated Series V and Simulation Results
Simulated Series V(a): With Gaussian Noise
We cimulate time series X, as ARIM A(10,1,0), as shown below:
10 )
(1 - Z ;B 1-B)X;=U,, U,~ N(0,1). (5.26)
=1
We simulate time series Y, as follows:
Z, = —-02X,+vV1-0.22-H,
Y = |trunc {min(Z)} +1+ Z:, (5.27)
where H, is defined by
(1-¢B)(1-B)H,=V,, V,~N(0,1). (5.28)
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Simulated Series V(b): With Non-Gaussian Noise

We simulate time series X; as ARTM A(10,1,0), as shown below:

(1~ 3" 4;B)(1 - BYX, =T

i=1

U: ~ (80% of N(0,1) +20% of Cauchy(0,1)) . (5.29)
We simulate time series Y; as follows:

Zt = —0.2Xt + Vv 1-— 0.22 - Hg

Y, = |trunc {min(Z)}+1+ Z,, (5.30)
where H, is defined by

(1—¢B)(1—B)H.=V., V,~ N(0,1). (5.31)

Simulation Result V
The simulation results are summarised in Table 5.5. Notice that the coverage
probability for simulation results are decreasing as the autoregressive order
increases to 10. In fact, the average errors are higher than usual. In this
simulation study, we still have the coverage probability lower than nominal

level.
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Table 5.5: Results for Forecast Intervals on Sirmulated Series V

N =500 N = 1000
AR=10and MA=0 AR=10and MA=0
Noise Nominal | Coverage | Average || Nominal | Coverage | Average
Level Proportion | Error Level Proportion | Error
Gaussian 95 % 90.0 % 1.080 95 % 90.5 % 0.897
Non-Gaussian 95 % 89.0 % 1.110 95 % 90.0 % 0.903

5.6 Simulated Series VI and Simulation Results

Simulated Series VI(a): With Gaussian Noise

We simulate time series X; as ARIM A(2,1,2), as shown below:

(1— Zz:qﬁij)(l —B)X,=(1+ zzja,-Bf)Ut , U~ N(0,1).

=1 j=1

We simulate time series Y; as follows:

Zt == —02Xg + v 1 hand 0.22 . Ht
Y: = [trunc{min(Z)}+1+ Z;,

where H, is defined by

(1-¢B)1—B)H,=V;, Vi~N(0,1).
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Simulated Series VI(b): With Non-Gaussian Noise

We simulate time series X; as ARIM A(2,1,2), as shown below:

(1-— i $;B)(1—B)X, = (L + 223 8;B°)U. ,

j=1 i=1

U. ~ (80% of N(0,1) 4+ 20% of Cauchy(0,1)) . (5.35)
We simulate time series Y; as follows:

Zg = —O.2Xt + Vv 1-— 0.22 . Ht

Y, = |trunc{min(Z)} +1+ 2Z:, (5.36)
where H, is defined by

(1-¢B)(1-B)H:=V;, V.~ N(0,1). (5.37)

Simulation Result VI
The simulation results are summarised in Table 5.6. Note that we have the
MA = 2 and AR = 2 in this simulation study. The coverage probability
for simulation results are very similar to simulation results I and II. However,
for respective sample size, the average errors are almost indifferent for both
Gaussian and non-Gaussian noises. Again, the coverage probability results are

still lower than the nominal level.
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Table 5.6: Results for Forecast Intervals on Simulated Series VI

N =500 N =1000
AR=2and MA=2 AR=2and MA=2
Noise Nominal | Coverage | Average || Nominal | Coverage | Average
Level | Proportion | Error Level | Proportion | Error
Gaussian 95 % 92.0 % 0.887 95 % 92.0 % 0.916
Non-Gaussian 95 % 92.0 % 0.879 95 % 92.0 % 0.920

5.7 Simulated Series VII and Simulation Results

Simulated Series VII(a): With Gaussian Noise

We simulate time series X; as ARIM A(5,1,5), as shown below:

(1— i 6;B)(1-B)X, = (1L + 25: 0;B\U,, U~ N(0,1).

=1

1=1

We simulate time series Y; as follows:

where H, is defined by

Zg =

(1-—¢B){1 —B)H. =V, ,

Y, =
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-0.2X;+v1-02%-H,

[trunc {min(Z)}H +1+ Z: ,

V; ~ N(0,1) .

(5.38)

(5.39)
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Simulated Series VII(b): With Non-Gaussian Noise

We simulate time series X; as ARIM A(5,1,5), as shown below:

(1= 3 :BI)(1 — BYX, = (1+ 30,890

=1 j=1

U: ~ (80% of N{0,1) + 20% of Cauchy(0,1)) -

We simulate time series Y; as follows:

Zt = —0.2Xg + \' 1-—- 0.22 - Ht

Y: = [trunc {min(Z)}H+1+ Z:,

where H, is defined by

(1-¢B)1-B)H:=V,, Vi~N(0,1).

Simulation Result VIL

(5.41)

(5.42)

(5.43)

The simulation results are summarised in Table 5.7. As we increase both the

order for M A and AR to 5, the coverage probability for simulation results are

considered the lower as compared to previous simulation results. Also, the

average errors show no improvement.
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Table 5.7: Results for Forecast Intervals on Simulated Series VII

N =500 N =1000
AR=5and MA=5 AR =5and MA=35
Noise Nominal | Coverage | Average || Nominal | Coverage | Average
Level Proportion | Error Level Proportion | Error
Gaussian 95 % 90.0 % 1.053 95 % 89.5 % 0.976
Non-Gaaussian 95 % 89.5 % 1.092 95 % 89.5 % 1.022

5.8 Discussion

In Table 5.8, it is apparent that the coverage probability for all simulation results
are lower than the nominal level of 95%. There are five possible reasons for this
low coverage probability: (1) The estimates taken to be the true values used for
constructing the bootstrap forecast intervals are inaccurate. (2) The confidence
intervals based on bootstrap percentiles method may not have performed well due to
the consequence of nonparametric inferences. It may have underestimated the tails
of the distribution of prediction. (3) The number of repetitions for the simulation
procedure in this study was too low (in this study the simulation procedure was
only repeated 200 times). (4) The adjustment rule for extreme points might affect
the results for coverage probability. However, because we are trying to model the
long term relationship for bivariate financial series, it seems reasonable to apply

the adjustment rule to those extreme points for better model analysis. (5) As the

simulation results show, the coverage probability decreases as we increase the order

66



for M A and/or AR. This may be due to computation errors occurring as the model

becomes more complicated.

Table 5.8: Results for 95% Forecast Intervals on Simulated Series

N =500 N =1000
Sirsnélgizt;ed Gaussian | Non-Gaussian Gaussian | Non-Gaussian
I(AR=2,MA=0) 92.0 % 92.0 % 92.5 % 92.0 %
O (AR=3,MA=0) 93.0 % 92.0 % 93.0 % 925 %
IfT (AR=5, MA =0) 92.0 % 91.5 % 92.0 % 92.0 %
IV(AR=7, MA =0) 91.5 % 90.5 % 92.0 % 91.0 %
V(AR=10,MA=0) || 90.0% 90.0 % 90.5 % 90.0 %
VI(AR=2,MA=2) 92.0 % 92.0 % 92.0 % 92.0 %
VI (AR=5,MA=5)| 90.0% 89.5 % 89.5 % 89.5 %

The results obtained when n = 500 do not differ greatly as compared with those
obtained when n = 1000. In addition, the simulation results show that the integrated
modelling technique is insensitive to the choice of distribution for the noise. Since we
must clean up the extreme points for each of the simulated series, this may explain
why this technique is insensitive to the Gaussian or non-Gaussian noise. However,

there is a slight decrease in coverage probability when we increase the order for AR
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and MA. This also suggests that we may want to keep the model simple in order
to save computation time and obtain better results. Again, the integrated modelling

technique is not sensitive to the complicated series.

Although the results seem reasonable when using the integrated modelling tech-

nique, the operation costs are high in terms of CPU.

To conclude, the integrated modelling technique is worthwhile when the complex-
ity of the data requires a more versatile approach than allowed by classical methods.
As to the reason for under coverage in probability, this remains an issue to be resolved

in future studies.
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Chapter 6

Conclusions

This thesis has demonstrated the usefulness of both classical methods and non-
parametric methods in analysing financial time series. The approach developed in
Chapter 2 give the basic ideas for implementing techniques in modelling financial

time series.

As discussed in Chapter 2, commonly used methodologies (such as ARIMA mod-
els) provide us with estimation and forecast interval. However, in financial markets,
time series are statistically more volatile as compared to other applications. Thus,
simple models alone are unable to solve difficult problems such as exchange rate
prediction. The bivariate transfer function model is introduced in order to improve
the forecast estimation as compared with the univariate case. However, the transfer
function model requires the value of X, 1, which is not available and must itself be
forecast in order to forecast Y,41. The accuracy of the forecasting interval for ¥, ; can
be improved by not requiring the estimation of X,;;l, thus reducing the probability

of error in estimation of Y, 4, as shown by the integrated model.
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The frequency domain methods provide us (with the aid of high speed computer
hardware), a more efficient way to uncover certain statistical details. Particularly for
the bivariate time series, we need to determine the existence of a relationship between
two time series in order to further the data analysis. Together with the classical
techniques, modern nonparametric methods such as the moving blocks bootstrap and
neural network provide us with a theoretical basis for the derivation of an integrated

modelling technique.

The integrated modelling technique described in Chapter 3 provides us with
the tools to further analyse the bivariate time series. The technique utilizes both
classical techniques and nonparametric methods for better estimation and inference.
In Chapter 4, an illustration of integrated modelling techniques is applied to the
financial time series. The empirical result support the use of the proposed modelling

technique.

In Chapter 5, although the simulation study was only carried out for n=500 and
n=1000, the simulated time series were generated with Gaussian and non-Gaussian
noises. The simulation results showed undercoverage overall, but the integrated
modelling technique appears robust to the choice of noise distribution as well as

the sample size.

70



6.1 Future Research

This research could be extended by adding more variables to the model given in
chapter 3. For the spot Canadian dollar example, we can add other variables such
as the demand and/or supply of Canadian dollars, demand and/or supply of U.S.
dollars, and the stock indexes to the model. The demand and supply of currency will
help us predict whether or not future values will soon rise or fall. As for the stock
indices, increase or decrease, this would help us to determine whether the market is
performing well. Other possible variables to add are those pertaining to available

information from the derivative markets.

By adding more variables to the model, two approaches to analysing the time
series are possible. The first approach would be to utilize multiple linear regression
techniques. Note that economists describe a regression model as an econometric
model. Although multiple linear regression models are widely used due to their
computational simplicity, there are problems inherent to this approach which need to
be pointed out. One problem is that explanatory variables can be highly correlated,
leading to singularity problems. Hence, it is advisable to look at the correlation
matrix of the explanatory variables before carrying out a multiple linear regression
analysis. Another problem involves the structure of the error terms. It is always
assumed that the errors are i.2.d.N(0, 0?), but this assumption may not be correct.

If the residuals are correlated, one can try fitting a multiple linear regression model
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with autocorrelated errors (See Kendall ef al. [37]).

The second approach is to follow the approach developed in Chapter 3, but to
pair up the spot Canadian dollar with other variables. However, how do we combine
the information from different pairings of Y; (spot Canadian dollar series) and other

variables, without producing too many forecast intervals?

Since the confidence intervals based on the bootstrap percentiles method have
less satisfactory probability coverage, this research could be improved by replacing
the confidence intervals with more advanced bootstrap intervals methods such as bias-
corrected and accelerated (BCa) method, and the approzimate bootstrap confidence
intervals (ABC) method. These advance bootstrap intervals methods could partially

correct the undercoverage problems in our simulation studies.

In dynamic representation, the recurrent networks may be more in line with
nonlinear time series. Hence, by replacing the feed-forward network with recurrent
network, we may achieve a better point estimation and satisfactory probability cov-

erage.
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Appendix A : The Back-Propagation Algorithm

Before we provide the back-propagation algorithm, we present the multilayer
perceptron network model used for financial data analysis. For the given input
X(s) = (Xi(s), X2(s),---, Xk(s)):, s = 1,2,...,n, the output of the network is

defined as
P
Go(X) =T, + Y w, f(v'X +&.)
s=1

where the activation function f(-) is the logistic function defined in (2.28), and © =
(wi, w2, - .. ,wp, ¥4, v, ... , 05, [, 01, 8,,...,8,) where v = (vs1,Vs2,--- 5 Usk ), are

the weights and threshold values, and the superscript ¢ is denoted as transpose.

The following backpropagation algorithm is modified from the lecture notes by

Stacey [52].

1. Notations :

Ly : theinput layer

Ly : the hidden layer

Lo : the output layer

vin : the synaptic weight between the L; and Lg

who : the synaptic weight between the Ly and Lo
®; : LpyProcessing Elements (PE) threshold values
[, : LoPE threshold values

Note that we assign random values in the range [ —1, + 1] to vir, Who, ®r, and
r,.
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2. Forward Pass Computation : For each input-output pair (X, O,):

a. Process X,’s values to calculate new Lg PE activations using
k
b: = f()_ zhvni + @)
h=1

where f(-) is the sigmoid function defined in equation 2.28.
b. Filter the Ly activations through the weights; W, to Lo using

p
Oj = Z b,-w,-j + FJ'
=1

c. Compute the output differences by d; = (0% — Oj)

3. Backward Pass Computation :

I. Compute the output error at Lo PE values using
e; = O0;{(1 — 0;)d;

II. Calculate the error of each Ly PE relative to each d; with

P
t: = b{(l - bg) z w;;€5

=1
III. Adjust the Ly to Lo connections; that is, the amount of change made to
the connection from the ¢** Ly to the j* Lo.

Aw,-j = o.rb,—e,—

where a is a positive constant controlling the learning rate.
IV. Adjust the Lo threshold value Al'; = ce;
v

Adjust the Ly to Ly connections Av,; = PBzit; where B is a positive
constant controlling the learning rate.

VI. Adjust the Ly threshold value A®; = Bt;

4. Tteration : Repeat Step 2 and Step 3 until e;’s are all either zero or at the
minimum value.
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5. Recall : The recall mechanism consists of the two feed-forward operations.
1. Create L, PE values
3
b: = f(Q_ zavai + @)

h=1
2. After all Ly PE activations have been calculated, they are used to compute
the output.

P
Oj = Z: bwy; +T;

=1
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