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ABSTRACT 

INTEGRATING MODELLMG TECHNIQUES FOR FINXNCWL TIME SEMES 

Victor EChoon-Lee Tan 

University of Guelph, 1999 

Super visors: 

Professor P- T. Kim and A- F- Desmond 

The use of a related series of historicd values as evidence or a guide line to predict 

and to draw conclusions about future events is a practice common to researchers of 

many disciplines. In order to achieve a bette+ outcorne, researchers are motivated to 

search for d e s  that cas explain relationships between the past and future. However, 

any forecast is affected by the unpredictable nature of future events as well as by the 

limitations of past data. Moreover, a forecasting mode1 used by one field may not 

necessarily be used by another, because there are problems which are unique to each 

field- 

In standard statisticai treatment of time series, time domain and frequency domain 

are the classical techniques used as a basis for characterising an observed system 2nd 

forecasting it s future behaviour. However, due to complicated data structures of 

time series, recent research developments-along with the availability of high-speed 

computers-have facilitated the development of modern nonparametric methods such 

as the rnoving blocks bootstrap and the neural network-s. 

The inadequacy of the efficient market hypothesis and the instability of data 

structures found in financial market create serious challenges to the implement ation 

of modelling strategies for financial time series. However, a combination of both 



classical techniques and modern nonparametric methods may offer a more effective 

solution to financial forecasting probiems. 

This thesis will implement a hancial time series model which utilizes both clas- 

sical techniques and nonparametric methods for estimation and inference- It WU 

go on to propose a modified bivariate transfer function model. Botb time domain 

and frequency domain techniques wili be used in order to determine a relationship 

between bivariate time series. After generating the less model dependent sarnples 

using the moving blocks bootstrap, a neural network WU be applied to achieve better 

point estimation. Integrating these techniques provides the best alternative solution 

to hancial forecasting problems. The bivariate time series in question is interest 

rate spreads and the spot Canadian dollar. Simulation resuIts showed undercoverage 

overall, but the integrated modelling technique appears robust to the choice of noise 

distribution as weil as the sample size. 
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Chapter 1 

Introduction 

1.1 Introduction 

The use of a related series of historical values (or past data collected) as evidence 

or a ,pide line to predict and to draw conclusions about future events, is a practice 

common to researchers of many disciplines. In order to achieve a 'better ' out corne, 

researchers are motivated to search for rules that con explain relationships between 

the p u t  and future. However, any forecast is affected by the unpredictable nature of 

future events as well as by the limitations of past data. Moreover, a forecasting model 

used by one field may not necessady be used by asother, because there are problems 

which are unique to each field. However, an awareness of the characteristics of the 

field specific models may d o w  the application of a translational model to obtain an 

adequate level of forecast accuracy. 



In financial time series, the fouowing two problems always exist. They are: 

1. The inadequacy of the efficient market hypothesis; that is, market prices always 

reflect the available information set. However, in the actud market, deviations 

exist between true prices and market prices because not ail traders have al l  

the existing information, and may not always act rationdy. Moreover, Yhe 

verification of the efficient market hypothesis (EMH) is impossiblen Granger 

[27, p.121. 

2. lnstability of the data structure. The system may be iduenced by major factors 

such as monet ary policies, economic indicators, and interest rat es. In addition, 

certain information cannot be modelled statistically, which leads to an unst able 

structure of past data sets. 

These problems create serious challenges to the implementation of modelling strate- 

gies for hancial time series. 

In standard statisticd treatment of t h e  series, the first step is to 'look' at the 

data, and then select suitable mathematical models for the data. Before we can do 

this, we must first study and understand the techniques which have been developed 

for forecasting and drawing inferences from the series. Classical time series techniques 

are used as a basis for characterising an observed system and forecasting its future 

behaviour and, therefore, is the starting point for conventional st atistical t ime series 

mode1 building. 

In the tirne senes literature, classicd time series onalysis is based on the theory of 

stationary processes, and it has ben demonstrated t hat most st ationary processes can 

2 



be approximated by a mode1 drawn from the class of autoregressiue mouing average 

(ARMA) models. In addit ion, some non-st ationary processes may be represented by 

a n  ARMA process after differencing. This is h o w n  as the autoregressiue integrated 

moving average (ARIMA) class of rnodels, for which a model selection strategy has 

been developed by Box and Jenkins [BI. The signincant contribution of Box and 

Jenkins to time series anaiysis is based on the invertible ARMA class of processes and 

the four phases of: identification, estimation, diagnostic checkïng, and forecasting. 

Particdarly in the identification phase, plots of the sample autocorrelation function 

and the sample partid autocorrelation function can yield important information in 

identifying the orders p and q of an autoregression moving average (ARMA(p, q ) )  

model. Because of the developments of Box and Jenkins [8], the problem of estimat- 

ing the ARMA (p, q) mode1 has attracted considerable attention in the time series 

lit erature. 

The frequency domain analysis of tirne series has its own share in the time series 

literature. Frequency domain analysis is mathematicdy equivdent to time domain 

andysis, which is based on the autocovariance function, but provides an alternative 

way of viewing an observed system. In Lequency domain analysis, %e spectral 

density function describes how the variotion in a time series may be accounted for by 

cyclic components at difFerent fiequenciesn Chatfield [IO, p.71. As a result , frequency 

domain analysis provides many important insights which would not be apparent in 

the time domain analysis. 

"The spectral point of view is particularly advantageous in the analysis of mul- 

tivâriate stationary processes and in the analysis of very large data sets, for which 
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numerical calculations can be performed rapidly using the fast Fovrier transfonn", 

Brockwell and Davis [9, p.1121. By combining the frequency domain technique and 

the transfer function model-as proposed by Box and Jenkins [SI in the time domain- 

we are able to expioit the relationship between any two financIaI time series. 

Due to the complicated data stmctures of hancial markets such as stock retunis, 

exchange rates, and interest rates, there is a need to improve the performance of 

parameter estimates in time series- In addition, the behaviour of these hanciaI 

time series codd perhaps be described more accurately by non-Iinear mathematical 

models. Such major developments such as bootstrap techniques have been applied to 

problems £rom time series analysis. In the time series literature the use of bootstrap 

techniques can be found in Efron and Tibshirani [19], Freedman [23], Kiinsch [43] and 

Liu and Singh [46]. 

Recently, art ificial neural networks ( ANNs ) have formed a basis for an ent irely dif- 

ferent non-linear approach to the analysis of time series. Together with the widespread 

availability of powerful computer hardware and efficient training algorithms, neural 

networks are now a subject of interest to professionals in almost every quantitative 

field and there is increasing focus on the potential benefits that neuraI networks c m  

offer. Neural networks have been applied to a wide variety of problems, such as pattern 

recognition, classification, process control, and prediction. Recent reviews £rom a 

statisticd perspective inchde: Cheng and Titterington [ll], Ripley [5 11 and White 

[55] [56]. Weigend and Gershenfeld [54] provide a computer scientist's perspective of 

neural networks in time series. In addition, Cybenko [13], Funonhashi [24], Gallant 

and White [25] [26], Hecht-Nielsen [31], and Hornik, Stinchcombe and White [32] 



[33] provide some important references on the existence properties of the feedforward 

networks. 

1.2 Scope of The Thesis 

The main objective of this thesis is to model hanciai time series. After a review 

of classicd time series approaches to time domain and fkequency domain approaches, 

the thesis wiU examine the moving blocks bootstrap and neural networks before going 

on to integrate these techniques to form a n  integrated modelling technique for the 

malysis of h m c i d  time series. 

Chap ter 2 will discuss classical and modern nonpararnetric methodologies to time 

series. In Section 2.1, time and fiequency domain techniques are reviewed as these 

techniques are used (in a later section of the thesis) to determine the existence 

of a relationship between hancial time series, and to develop a bivaziate transfer 

funct ion model. In Section 2.2, nonparametric met hods-t he moving blocks bootstrap 

and neural networks-are discussed in detail. These methods, together with classical 

techniques, provide the theoretical basis for the derivation of an integrated technique. 

In Chapter 3, an integrated modelling technique will be developed to analyse 

hancid time series. The proposed method offers an improved solution to financial 

forecasting problems. 



Chapter 4 presents an application of the integrated m o d e b g  technique to fi- 

nanciai time series, interest rate spreads and spot Canadias dollar data sets. The 

empirical results support the use of the integrated m o d e h g  technique to financial 

t ime series. 

The integrated rnodelling technique will be ôpplied to simulated time series data 

in Chapter 5,  which w i i l  also summarise and present the results of the simulation. 

The simulation resuIts show undercoverage overd, but the integrated modehg 

technique appems robust to the choice of noise distribution as weII as the sample 

size. Conclusions and suggestions for future work will be presented in Chapter 6. 



Chapter 2 

Time Series Methodologies 

Time senes analysis is an important technique in a wide variety of quantitative 

fields. Over the years, a number of quantitative techniques and nonparametric 

met hods have b e n  developed for andysing and predicting t ime series values (essent i d  

references can be found in Chatfield [IO]). 

2.1 Classical Time Series Met hods 

To simpli& the review of classical methods, we will not review time domain 

techniques here. Adequate references about the autoregressive integrated moving 

average (ARIMA) models, known as the Box and Jenkins approach, can be found 

in studies by Brockwell and Davis [9], Chaffield [IO], and Priestley [48], which pro- 

vide readable introductions to time series analysis and cover both time domain and 



frequency domain techniques. In this section, a brief review of fiequency domain 

techniques is presented. 

2.1.1 Spectral Analysis 

"Spectral analysis is essentiaily a modification of Fourier analysis so as to make 

it suitable for stochastic rather than deterministic functions of t h e "  Chatfield [IO, 

p. 1051. Hence, spectral anaiysis of stationary time series involves decomposing the 

given time series into a linear combination of sinusoids. 

For a given time series, Zt, t = O, f 1, f 2, .  . . , with E(Zt)  = 0, the frequencies 

are called the Fourier frequencies of Z, and denotes the greatest integer function. 

Notice that k contains n integers. For example, at frequency k, a wave fom is the 

sinusoïdal function 

which constitutes cycles over t = 1, . . . , n, where k = -[VI , . . . , [FI. Since the 

length of time required to complete one cycle is c d e d  the pen'od, the fiequency ui, 

rneasures the number of cycles per time point t. Note that, by knowing the Fourier 

8 



frequencies, we can capture the t h e  path of Zt as a weighted sum of the sinusoids in 

(2.2). 

In order to estimate the contribution of each sinusoid (2.2), we estimate the 

autocovariances; rz(k) = Cm(Zt+t, Zt ) , by 

for k = -n + 1,. . . , n - 1 and 2 = (1  C, 2,). Note that cz(0) is an estimate of the 

vanance of Zt. FoUowing this we define the periodograrn 

The periodogram appears to be a natural way of estimating the spectral density 

function (or the power spectrurn) 

where 

Moreover, the total area under the periodogram is an estimate of the variance of Zt; 

that is, 



Alt hough the penodogram is asyrnp tot i c d y  unbiased; t hat is 

the vaziance of I,(vk) is not zero as  n -t m. Hence I,(vc) is not a consistent estimator 

for fi(u). Thus, in order to restore consistency, we WU consider an alternative 

procedure of estimating a power spectnim-that is, the method of smoothing the 

periodogram. This procedure, which provides a consistent estimate of the spectral 

density function, is cded  a [ag window estimator, dehed by 

where the Zay tuindolu; w(-), is a weight function on [OJ] with O 5 w(x) 5 w(O) = 1, 

and a sequence, m, is chosen such that 2 + m as n + m. This method eLiminates 

the inconsistency of the periodogram without destroying its asymptotic unbiasedness. 

Moreover, it allows us to examine the sources of variability in the total variation of a 

given time series. Kowever, the choice of m is important because 'the larger the value 

of rn the smaller will be the variance of the resulting estimate but the larger wiU be 

the bias, and if rn is too large then interesting features of fi (v), such as peaks, may 

be smoothed out" Chatfield [IO, p.1171. Since there is no effective method for making 

the choice of rn, we can try several vaiues in the region of 2 according to Chatfield 

[IO]. The most basic lag window estimator is the unifomdy weighted average. In this 

t hesis, the modified Danieil smoothing function, which is defmed below, will be used 



for data analysis 

(span - (span - 1) 
w ( x ~ )  = + ~ [ i  - +l] + - - -+  

3 2 

where span (= 2m + 1) is an integer giving the iength of the smoothing window for 

the given series. Note that w(xi) in (2.9) is the computational expression of w($) in 

(2.20). Moreover, the smoothing window or average only considers the n neighboring 

values and xi in smoothing zi; the smoothing window actudy includes span points 

with half-weights on the ends. 

If Zt is a generic white noise series which is defined to be an uncorrelated senes, 

then we have ~ ~ ( 0 )  = O;, and ~ ( k )  = O Vk = *1,f 2,. . .. Moreover, we have a flat 

spectral density because fi(v) = 0% for v E [-$, $1. In addition, we have Fz(v) = v 

for all v E [O, $1 hence define the normalised spectral measure by 

By defining the sample version of equation (2.10) in the following way 

we can use U . ( u )  to test whether or not a time series is white noise. That is, we 

plot the Un(v) function and check its compatibility with the diagonal Line (uniform 

11 



distribution function; F ( x )  = x,O 5 x 5 1) using the Kolmogorov Smirnov test. 

Moreover, for n > 62 (see Brockwell and Davis [91), a good approximation to a level 

<r Kolmogorov SmKnov test is to reject the n d  hypothesis if the statistic f d s  outside 

of the bounds. 

2-12 Cross Spectra Coherency 

Thus far, we have been concerned with analysing a univariate tirne series. We will 

now examine the relationship between two time series. For two given non-white noise 

tirne series, and Xt,  we use the ross spectrum to establish whether a structural 

relationsKp exists between them. The cross spectral density is defined as 

where 

is called the cross covariance and its inverse representation is defined as 



Note that fux(v) is a complex vdued funftion. The reason is that yvx(k) (2.13) is 

not an even hinction; that is, yyx(k) # yux(-k). 

The cross-coherence function between two series is defined by 

and the Cauchy - Schwaxz inequality ensures that spuared coherence, K2(v),  is bounded 

as follows: 

Here K2(u)  can be interpreted as the spectral equivalent of the ordinâry linear 

regression R2 statistic. Note that (2.16) mesures the extent to which I; and Xt 

series are correlated at each frequency. Two situations of part icdu interest arise: 

Case 1: When series is an exact linear function of Xt series, we have 

where 

is called the frequency response function. 
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Case II: When no correlation between 

f x y ( ~ )  = 0 

and Xt series exists, we have 

Therefore, by the definition of squared coherence, we have 

I l  
K U )  = 1, Y E [-- 2' -1 2 , fsr case I 

and 

I I  
I K ( U ) ~ ~  = O ,  E [-5, for case II . 

These are the two extremes that can happen to the and Xt series. However, in 

case II, no further andysis is required, as no relationship between & and Xt series 

exists. 

To test whether or not the & and Xt series are correlated, we use 

where w(-) is a weight function supported on the intenml [0,1] with O 5 w(x) 5 

14 



w(0) = 1, and rn is chosen to be a sequence such that 2 + ca as n + oo with 

n 

( - ( x )  for - n + l l k < O ,  n 
t=-k+l 

and 

AsymptoticaUy, we c m  test the hypothesis Ho : K2(v )  = O, v E [-$, $1, and 

the alternative hypothesis Ha : K2(u) > O using the statistic 

Since K2(u)  is distributed as the squaire of a multiple correlation coefficient, so that 

S - F2,4nr under the hypothesis that K2(v)  = O, we c m  therefore reject the hypothesis 

K 2 ( u )  = O if S > Fi-o, 2, 4m7 where 2,4m is the (1 - a) quantile of the F 

distribution with 2 and 4m degrees of fieedom, As we mentioned earlier, the choice 

of m can he important; it can also affect the F test as demonstrated here. 



2.1.3 Bivariate Transfer Function Mode1 

After establishing the existence of a structural relationship between the Xt and 

Y( series, we have the foLlowing model : 

where ml _< rn2 and & is a random noise which is asswned to be uncorreIated with 

Xt. Here, ml and rnz  have to be estimated. Note that if ml 2 O, we assume the pst 

Xt will influence future K, but not vice versa. Thus, in the former case the model 

given in (2.24) would be called causal. 

Having considered the model, we folIow the procedures in Brockwell and Davis 

[9, pp.455-4571 to estimate ,tea,, s = ml,.  . . , rn* and possibly the Nt process in model 

(2.24). The procedures will be presented in Chapter 3. 

2.2 Nonparametric Methods 

In t his section, nonparametric methods will be discussed. Bootstrap techniques 

and neural networks are computer based (nonparametric) techniques. Although 

the two techniques use different computer algorithms, they provide an alternative 

approach to modern data analysis and are particulariy useful in the analysis of 

complicated data structures. 



2.2.1 Moving Blocks Bootstrap Sample 

The bootstrap is a computer based resampling technique (as initiated by Efion 

[ls]) used to gain information on the distribution of as. estimator. A more general 

resampling technique, cded  the rnouing blocks bootstrap (see Kiinsch [43], Liu and 

Singh [46], and Léger, Politis and Romano [44], and Efkon and Tibshirani [ZO]), is used 

for model dependent data. The procedure for obtaining the moving blocks bootstrap 

time series samples will be discussed. In the case where n # k 1 (where k is the 

number d blocks and Z is the block size), it is proposed that a modified moving 

blocks bootstrap be used to generate the bootstrap time series. 

Simple bootstrap resampling involves fitting a model and then sampling fiom the 

residuals. An alternative method is the moving blocks bootstrap, for bootstrapping 

time series: For any given time series sample, we c m  generate a bootstrap time series. 

In order to do so we rnust (1) choose a block length; (2) f o m  the time points to all 

possible contiguous blocks of chosen length; (3) draw the samples with replacement 

£rom these blocks; and (4) join all the samples together to hm a bootstrap time 

series. These steps c m  be applied to generate a bivanate bootstrap time series-that 

is, we pair-up the original bivariate thne series and then apply the four steps to the 

series. For example, if we have samples of size n, and the block length is chosen to be 

1, then we can have k blocks to form the bootstrap time series. The number of blocks, 

k, is chosen so that n = k - Z. Figure 2.1 shows the bootstrap samples for a bivariate 
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time series with block length 1 = 3. T h e  idea for the moving blocks bootstrap is to 

choose a block size I large enough that observations more than I time units apart WU 

be nearly independent" Efion and Tibshirani [20, p. 1021. However, Kiinsch [43] and 

Liu and Singh [46] show that Bi = (Xi, Xi+i,. . . , X;+i-i), i = 1,2, . . . , k, are i-i-d. 

for fixed 1 under some conditions. Note that the moving blocks bootstrap coincides 

with the classical i i . d  bootstrap of Efion [15] when 2 = 1. The advantage of using 

the moving blocks bootstrap is that we will not destroy the correlation that we are 

trying to capture since we are resampkg fkom the blo&s of observations. Next, we 

propose a modified moving blocks bootstrap when k - 1 # n. 

2.2.2 Modifled Moving Blocks Bootstrap 

We note that if k - 1 # n; that is, when n is not exactly divisible by 1, then Efion 

and Tibshirani [20] suggest that we have to mdtiply the bootstrap standard errors 

by to adjust for the difference in lengths of the series. We propose an additional 

step to the moving blocks bootstrap procedure; that is, the addition of a random 

block with the block size 2' = n - (k - Z) to the bootstrap time series, in order to 

resolve this adjustment problem. 



Boouoap Tirne Series Samples ( X and Y pairs 

Figure 2.1: A schematic diagrûm of the moving biocks bootstrap for time series 
(Modified from Efron and Tibshiraai [21]). 



2.2.3 Neural Networks 

Artificial neural networks (ANNs) are mathematical rnodels for human brain 

activities. In general, neural networks are often applied to applications such as 

classification, pattern learning, and prediction. 

Neural networks are considered a nonparametric method for drawing statistical 

inferences. The important aspect of neural networks is their capability to constmct 

nonlinear relationship between the given input and output data. When used together 

wit h powemil computer hardware and training algorithms, ANNs allow statistical 

inference to be made without any structural formula. This Ïmplies that nonlinear 

time series u e  more suitable for analysis by neural networks. Because time series are 

statistically more volatile in financial markets than in other applications, the financial 

industry has become a prime application area for neural networks. 

Although there are a numerous of networks of which many are recurrent neural 

networks (e.g. Kuan and Liu [42]), the multilayer perceptrons is the simplest neural 

network representation, and it can well approximate a large class of functions. Hence, 

in t his t hesis, the feed-forward networks are used as the only nonparamet ric model. 

Authors such as Cybenko [13], Funanhashi [24], G d m t  and White [25] [26], Hecht- 

Nielsen [31], and Hornik, Stinchcombe and White [32] [33] provide some important 

references on the existence properties of the feedforward networks. Recent reviews 

fiom a statisticd perspective include Cheng and Titterington [ll], Ripley [SI], and 

White [55] [56]. Weigend and Gershenfeld [54] present a computer scientist 's perspec- 

tive of Neural networks in time series. 



2.2.4 Feed- forward Networks : Mult ilayer Percept rom 

Feed-forward networks are on important dass of neural networks. Typicdy, the 

network consists of a set of source nodes that constitute the input layer of one or 

more hidden layers of computation nodes, and an output layer of computation nodes. 

The input signal propagates through the network in a fornard direction, on a. Iayer- 

by-layer basis. These feed-forward networks are commonly referred to as mulitlayer 

perceptrons ( M L P )  when there is at least one hidden layer. From the statistical point 

of view, the multilayer perceptron networks provide nonlinear regression funcitions 

that are estimated by optimising some rneasure of fit to the training data. Figure 2.2 

shows a typical multilayer perceptron with only one hidden layer, flowing £rom the 

bottom up. 

The multilayer perceptron network is a supervised neural network since, during 

training, each input data vector is paired with a correspondhg desired target for 

the network output. The actual outputs in the output layer are now compared with 

their desired targets, the Merence being the output errors. The errors are then 

fed back to the netrvork to improve the performance. This process is known as the 

backpropagation algorithm. This algorithm is based on the mean squared error ( M S E )  

as as error-correction leaniing rule- Basicdy, the back-propagation process consists 

of two passes: the forruard pass and backward p a s .  In the forward pass, the input 

data vectors are appLied to the source nodes and propagate, layer by layer, through 
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Figure 2.2: Three-Layer Feedforward Network. 

the network. Once one forward pass is completed, a set of outputs is obtained as the 

actual output of the network. Note that the synaptic weights (which are the inter- 

node connection weights of the network) are k e d  during the forward pas. During 

the backward pas ,  the synaptic weights of the network are all adjusted according 

to the error-correction d e .  An ewor signal is then obtained by subtracting the 

actual output of the network fiom the desired target. This updated error signal is 

then propagated backward through the network; that is, in the opposite direction of 

synaptic connections. The synaptic weights ore adjusted to improve the performance 

until a zero, or minimum, error signal is obtained. The learning process performed 

by this algorithm is c d e d  backpropagation learning. A complete presentation cycle, 

or iteration, comprises the forward pass and backward pass cycles. One complete 

presentation of the entire training set is c d e d  an epoch. The learning process is 



maintainecl on an epoch by epoch basis, mtil the synaptic weights and the threshold 

levels of the netuiork stabilise and the EMsE over the entire training set converges to 

some minimum value. The EMSE is defined by 

where N, is the number of training vectors in one complete presentation of the entire 

training set during the learning process (an epoch), and No is the number of output 

neurons. 

It is advisable to randomise the order of presentation of training sets fiom one 

epoch to the next in order to make the search in weight space stochastic over the 

learning cycles, and ôvoid the possibility of limit cycles in the evolution of the synaptic 

weight vectors. Moreover, the randomisation of the training sets dows  for a testing 

technique that reflects the practical utilisation of the network in actual forecasting 

problems. 

The normalised mean squared e m r  (NMSE) is used to evduate the model of the 

network, and is defined by 

N M S E  = E~(K - RI* 
h V 2  

where K is the number of data in the validation set, Y, is the desired target, and 

is the actual output. Note that the quantity (1- NMSE) measures the percentage 

variance in the data which is explkined by the model. Moreover, if we plot the learning 
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curve (the NMSE versus the epoch) for the function estimated fiom the training set, 

we c m  easily see that the learning curue is monotonically decreasing. 

The essence of badcpropagation learning is to encode an input-output relation. A 

multilayer perceptron will be considered weU trained Xit l e m s  enough about the past 

to be able to generalize about the future. However, if we ailow the learning process 

to proceed indeiinitely, we WU overfit the data and begin m o d e h g  only noise-that 

is, the NMSE reduces to zero. The cause of this problem is understandable if we 

consider the linear regression case: if we constantly add parameters to its full rank, 

the R-square becomes 1. Hence, we need a stopping criteria in order to end the 

leorning process when the generalïzation performance is adequate. 

Kim, Martin and Staley [39] identify the technique most commonly used to end 

the learning process: First, the available data set (or the moving blocks bootstrap 

time series sarnples) is randody partitioned into a training set and a validation set 

(there are no fixed d e s  for selecting the amount of data for either the training set or 

the validation set). We propose to select 75% of the data to be used for the training 

set, and 25% of the data to be used for the validation set. The motivation here is to 

validate the mode1 on a data set which is different from the one used for parameter 

estimation. In this way, we con compute the NMSE (2.26) based on a validation 

set using the resulting network used on the training set. Consequently, we plot the 

learning c w e  of the validation set, and look for the epoch at the point on the curve 

where the direction starts to change. Note that the learning cuve  of the validation 

set will not necessarily rnonotonicaIly decrease. This number of epochs will then be 

used to detennine the stopping point for the learning process. It should be noted that 
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this situation does not always occur, but if it does happen, the network shodd be 

re-trained on the validation set. Findy, the configuration of the resulting multiIayer 

perceptron network on the given training set and validation set is used for prediction 

or forecasting on the given test set. 

In neurd network architecture, Figure 2.3 shows the commonly used threshold 

functions. The threshold function is used h the forward pass computation. Using 

the architecture of Figure 2.2 as an exampIe, we process input X 7 s  to calculate new 

hidden Iayer tth neuron using 

where f (-) is the threshold function, vh; is the weight between the input layer and hid- 

den layer, and Oi is the hidden layer threshold values. Note that the backpropagation 

algorithm is presented in Appendix A. 

Remarks : A multilayer perceptron has the following distinctive characteristics : 

1. "The mode1 of each neuron in the network includes a nonlinearity at the output 

end. The important point of emphasis here is that the nonlùiearity is smooth; 

that is, differentiable everywhere" Haykin [30, p.1381. In the prediction context, 

a nonlinear function that satisfies this requirement is a symmetnc sigrnoidal 
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Figure 2.3: Threshold Funct ions for Neural Networks . 



function d e h e d  by the logistic function : 

where f' is the derivative of the logistic function. Note that the logistic function 

is a commonly used function which transforms the input value in the range x E 

[-m, + oo] into the output range O E [O, 11. "The presence of nonTinearities is 

important because, otherwise, the input - output relation of the network could 

be reduced to that of a single-layer perceptron" Haykin [30, p.1391. 

2. For the choice of the maximum number of layers in the network, Lippmann [45] 

recommends that three Iayer networks, with just one hidden layer, are sufncient 

to solve arbitrarily cornplex input-output mappings. 

3. The hidden neurons which are not part of the input or output of the network 

enable the network to l e m  complicated data by extracting more information 

or features from the input vectors. 

4. The network is connected between the layers by the synapses of the network. 

Hence, a change in the comectivity of the network requires a change in synaptic 

weights of the network. 



Chapter 3 

Int egrated Modelling 

In this chapter, a strategy cded integrated modelling will be implemented in 

order to analyse time senes based on financial data. Since the modelling tool is 

a combination of the methodologies described in the previous chapters, the term 

integrated modelling is used. The objective for implementing this technique is to 

achieve a more reliable solution to the modelling and forecasting problems which 

occur in the financial world. The technique utilizes both classical techniques and 

nonpazametric methods for estimation and inferences. This chapter wiU begin with 

an examination of the theoretical foundations for integrated modelling. 

3.1 Theoretical Foundat ions for Integrat ed Modelling. 

In Chapter 2, the theoretical background for the derivation of classical techniques 

and nonporametric methods is discussed. These techniques and methods form the 

basis of implementing techniques in rnodelling time series. In this section, with the  
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support of t hese techniques and met hods, we present the theoret icd foundations in 

detail for the derivation of the integrated m o d e h g  technique. 

An initial approach is to follow the method of Kim and Matin [40], using spectral 

analysis to uncover certain statistical details. For a given bivarÏate time series, the 

statistic U,(v) (see Chapter 2) is used to determine whether the two time series 

are white noise. That is, the Kolmogorov Smimov test is used to reject the n d  

hypothesis with level a if the function Un@) f d s  outside of the bounds for each time 

series. Once we reject the n d  hypothesis and conclude that the two given time series 

are not white noise, the cross spectnim is applied to determine the existence of the 

reiationship between the two series- 

After est ablishing the existence of a structura1 relationship between the two series, 

the proposed model (which is modified from the bivariate transfer function model) is 

applied to further analyse the time series. Before implementing the proposed model, 

it is helpful to provide the rationale for modifying the bivariate transfer function 

model. The bivariate t r ader  function model is restated below: 

Recall that (3.1) is valid only if it is causal, that is, the past Xt will influence future 

x, but not vice versa. In partidar,  the model requires that ml 5 rnz and ml 2 O. 

Next, we follow the procedures listed in Brockwell and Davis [9, pp.455-4571 in order 

to estimate ml, ml, and a,, s = ml,. . . , rnz- The folloning steps are applied to 

obtain fil and fi2: 



Step 1. We calculate the cross correlation function (CCF); FwtT(h) of the two 

filtered series; namely Wt and Y;. The filtered series and are obtained 

by app'ying the prewhitening techniques to Xt and series, respectively- This 

is achieved by transforming the Xt series to a white noise series by 

and applying the same transformation; that is, & B ) B - ~ ( B ) ,  to the senes to 

obtain 

Step 2. We performed an asymptotic test of no cross correlation at the 5% level 

using the bounds k1.96n-5. The cornparison of ( h )  with the bounds 

A~1.96n-f gives an indication of the Lags h at which @w,y; ( h )  is significantly 

different from zero. 

Step 3. From the previous step, we estimate fil and m2 to be the minimumand 

maximum of lags h at which Pwty;(h) # O ,  respectively. 



To continue the process of estimating a,, s = ml, . . . , rnz for the bivariate transfer 

function model, we apply the filter & B ) ~ ' ( B )  to the model (XI), which yields 

This implies that the transfer function between Xt and k; series is the same as 

that between Wt and Y;. By multiplying both sides of (3.4) by WtWht and taking 

expectation, we obtain 

E(Wt-a Y;) = { W E  ( Wt-kW,) + ai E (WLc Wt-,) + - - ) + E(Wt-LN;) . (3.5) 

and E(Wt+N;) = O, V k (because nf  and Nt axe uncorrelated). Therefore, 



and 

The estimates of a for lag h at which jWv ( h )  is found to be significantly Merent 

£rom zero are 

Now that we understand the frame work of the bivariate transfer function model, we 

present our proposed model for bivarïate time series. 

The fist  step in integrated modelling is a modification of (3.1) as follows: 

where Nt is random noise assumed to be uncorrelated with Xt,  and Pt is defined by 

where P's, n, and X are UILknown parameters. Note that we fix the term p to be 4 

in (3.8) for daily closing data and, for simplicity we let xt = Xt + Pt. In addition, 

the coefficient w, will be estimated by using the rnazimum likelihood estimate (MLE). 
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Furthemore, we introduce two constant tems ,  namely K and A, in (3.8). The reason 

for this is that we believe that the increase (decrease) in previous time points Xt-= 

will result in an increase (decrease) in present time point Xt.  The estimates of il and 

X are defined as follow: 

and 

So far, we have only used the classical techniques with modifications. The next 

step in integrated modelling is to incorporate the nonpararnetric methods. We gen- 

erate bootstrap time series samples using the moving blocks bootstrap method for 

drawing samples. It is important to note that we do not appIy the moving blocks 

bcotstrap method to the residuals. The reason for this is that the bootstrapping of 

residuals method is "mode1 dependent", that is, the model, for example an AR(1) 

model, is fit to the original time series. 

Next, we apply the multilayer perceptron network to the origind bivariate time 

series and the bootstrap generated bivariate time series samples for estimation and in- 

ference. These applications complete the derivation of the theoretical foundations for 

integrated modelling where the procedures of the nonpararnetric methods introduced 

in Chapter 2 are followed closely. 



3.2 Modelling Procedures 

After deriving the t heoretical foudations for integrating a model, the modelling 

procedure is used to analyse bivariate financial time series. 

The correct approach for andysing bivariate financial time series is to use spectral 

malysis in order to uncover certain statistical detds. In particdax, we need to 

det ermine the existence of the relationship between the two given t h e  series. If it is 

determined that a relationship exïsts, we continue to apply the integrated m o d e h g  

technique to further the analysis of the bivariate time series. Having defined the 

model structure, the moving blocks bootstrap is applied to the given time series. 

However, we need to know the block size Z in order to generate the bootstrap time 

series samples. Since there is no effective way of choosing the block size at this 

moment, we suggest an algorithm for choosing an appropriate block size. 

3.2.1 Algorithm for Choosing the Block Size 

Step 1. We fit an AMA(p,q) model to the stationary time series. We use the first 

coefficient and its associated standard error as tme values. For example, we 

have the AR(1) model for the given series q, t = 1,2, . . . , n; 

We now choose B and ôp as our true values. 
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Step 2. Here we fix the block size to be I = L,5: 10, - . . ,100, and select B = 200 

(Where 1 < s). For each 1, we generate the independent bootstrap time series 

z;', b = 1,2, . . . , B, each consisting of n data values drawn with replacement 

Step 3. For each Z, we fit the ARMA(p,q) mode1 to each bootstrap time series 

z ; ~ ,  b = 1, 2,. -. , B- k the example given, we fit an AR(1) mode1 to each 

generated series and obtain the bootstrap coefficients of &b), b = 1,2, . . - , B. 

Step 4. For each 1, we estimate the standard error by the sample standard 

deviat ion of the B replications 

Step 5. Here we plot the standard errors obtained fiom Step (4) versus the block 

size 1. Finally, we choose the block size Z such that the standard error of 1 is 

closest to the tme estimate obtained in Step (1). 



3.2.2 Generating Bootstrap Bivariate Tirne Series. 

Once the block size is chosen, the bootstrap time series samples axe generated by 

using the foilowing steps: 

Step 1. Use the algorithm described above to select an appropriate block size 2. 

Step 2. Select B independent bootstrap samples (X;', Tl), (Xr2, v2), - - - (X;B, Y;*), 

each consisting of n data &es drawn with replacement fiom (Xt, y;)- Here we 

use the moving blocks bootstrap procedures to generate the bootstrap sample 

pairs. Note that we need to have B 2 1000 for constructing the intervals (See 

Tibshirani [53]). 

3.2.3 Neural Network Estimations 

Afier obtaining the moving blocks bootstrap time series for each set of bootstrap 

srtmple pairs (X:b, rb), b = l7 2, - - . , B, we construct the multilayer perceptron net- 

work with 4 input layers, n hidden units for the hidden layer (where n is determined 

by trial and error in the region of 3 of input vectors), and 1 output layer. The three- 

layer perceptron network with the backpropagation algorithm is now used to train on 

the input-output pair; that is, ( ( ~ t - 4 ,  x t - 3 ,  ~ ~ - 2 ,  ~ + l ) ,  K),  t = 1,2, . . . , n, where 

x-3 x - ~  , z-l and X* axe set to zero. Since the underlying (2.28) activation function 

of the network is logistic, it would be better to choose the data that fits a range 



that does not 'saturaten the network neurons. Thus, we have the range of the inputs 

zt,t = 1,2,. . . , n to be xt E [-1, +Il, and the range of the output &, t = 1: 2,. . . , n 

to be I; E [O, II (Le., Sigmoid range). 

Findy,  we can constmct the bootstrap forecast intervals for the financiai time 

series. For example, if we want to have a forecast intenal for one step ahead future 

value, Y,+=, then the procedure is as foIIows: 

Step 1. Usetheneuralnetworktoobtaintheforecastedvdues;~~~,b=1,2, ... ,B. 

Step 2. We now constmct the forecast in tends  for Y,+1. Letting 

where %',+, is the forecasted future v a h  obtained £rom the original tirne series, 

we approximate the bootstrap distribution of D* by its empirical distribution. 

Step 3. Let uz be the a quantile of the bootstrap distribution of D'. Then a 

bootstrap forecast interval is given by 

Note that this is the bootstrap percentiles method applied to prediction. Other 

metliods of bootstrap confidence intervals can be found in Efron and Tibshirani 

[20]. 



Chapter 4 

Application to Financial Time Series 

Based on the theoretical foundations discussed in Chapter 2,  we derive the inte- 

grated model presented in Chapter 3. This ehapter will apply the integrated model 

to a given set of data, namely the interest rate spread and the spot Canadian dollar 

series, in order to examine how the integrated model will perform. 

4.1 The Interest Rate and Spot Canadian Dollar Data 

The interest rate spread data (ISJ and the spot Canadian dollar data (Ct) are 

taken from Kim and Martin [40]. A bnef description of the data set is aven below. 

A total of 1476 daily trading data, commencing January 1991 through to August 

1996, are used in this study. The interest rate spread ISt (in percent) is defined as 

the Merence between 90 day Canadian and 90 day US treasury bill rates, and the 
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spot Canadian dolIax Cf is deiined as the cIosing pnce of the exchange rate measured 

in US cents. The time plots of Ct and 1st are presented in Figure 4.1. 

Next, we define the changes in the interest rate spread 1st by 

and d e h e  the changes in log Ct (or Retum Rt) by 

Note that the time unit for k; is one day. The time plots of and ,Yt series are 

presenteci in Figure 4.2A and 4.2C. It is apparent that the two series appear to be 

random quant ities over tirne, 

Ln Figure 4.2C however, the Xt series exhibits extreme movernents, while the I; 

series (Figure 4.2A) is bounded within a smder  range over the time period. Moreover, 

since we are trying to identify the "stable" mode1 for the long term link between the 

Xt and series, we will remove these extreme points and replace them as follows: 

where a = 4 - crx, and b = 4 - au,- 

In particular, we will bound the rnovement in Xt between f 38 (= &4 - 6%) basis 
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Figure 4.1: Time Series PIots for Spot Canadion Doua and Interest Rate Spread. 

A ) Time Series Plot for Spot Canadian Dollar, 

B ) Time Series Plot for Interest Rate Spread- 



Figure 4.2: Changes in Spot Canadian Dollar (YI) and Interest Rate Spread (X t ) .  

Timr 

A ) The Changea in Spot Canadian Dotlar- 

T h o  

C ) The Changes in Interest Rate Spread. 

B ) the Changes in Spot Canadian Dollar wft 
Aqustrnent 

Timr 

O ) m e  Changes In Interest Rate Spread wIU 
Adiustment- 



points, and bound the movement in I; between H.1 (= M - ô&) basis points- This 

means that we adjust the extreme points and replace them as follow: 

In Figure 4.2B and 4.2D, we replot the time plots of and Xt with these changes. 

There  are a total of 12 extreme points in Xt and a total of 5 extreme points in 

adjusted using the 4 - ô d e .  

The histogram of and Xt senes are presented in Figure 4.3. Notice that aIl the 

his t ograms are syrnI.net rical at zero. 

Now that we have the data in haad, an initial approach is to use spectral analysis 

to determine the existence of the relationship between the k; and Xt series. From 

Chapter 2, we have a consistent estimator of the spectral density function, which we 

apply to the and Xt series using the modîfied Daniell smoothing function in Splus 

with a span of 71 points (m = 35). Ln Figure 4.4, we plot the spectrums of the two 

series- 

From the figures, we can see that there is some power in the high hequencies in 

series and low kequencies in Xt series. Although we do not know where the power 

is coming fiom, we c m  relate some of the power to the short noisy appearance in the 

tirne plots of Figure 4.2B and 4.2D. 

Next, Figure 4.5 shows the cumulative periodogram and the 95% confidence Limits 



Figurr 4.3: Histograms of the Changes in Spot Canadian Dollar and Interest Rate 
Spread Data. 



Figure 4.4: Spectral Density Plots of k; and Xt Series. 

6 ) Spectral Density of >Ct Serfes- 



(Kolmogorov Smirnov boundaries) for both the Xt and k; series. It is apparent that 

the I; series f d s  within the confidence limits, whereas the Xt senes f d  outside of the 

confidence Limits. The Kolmogorov Smirnov test (see Chapter 2) suggests that k; is 

white noise, although it is interesting to note that the spectral density of the series 

in Figure 4.4A is ~ o t  qa t "  enough; that is, this "visual" criterion disagrees mith the 

Kolmogorov Smirnov test. Thus, we reject that the two time series are white noise, 

and we can cary on our analysis. 

Since the bivariate time series is not white noise, we carry out the hypothesis 

testing defined in Chapter 2 in order to test whether these series are correlated at 

each frequency. So continue o u .  example, using the modified Danid  smoothing 

function with m = 35, and cu = 0.1, we reject Ho if 

In Figure 4.6, a plot of the statistic S is presented wi th  the accompanying F statistic 

(Fo.w, 2, 140). It is apparent that the hypothesis K2 ( v )  = O is rejected for a l l  v E 10, f ]  

and that the aad the Xt series have correlation over the entire hequency range. 

Therefore, there is strong statistical evidence that the two series are correlated and 

we can proceed with our analysis. 



Figure 4.5: Cumulative Spectnun Plots of I: and X, Series. 

Frequency 

A ) Cumulative Spectmrn of Y-t Series, 

Frequency 

6 ) Cumulaiive Spectnim of X-t Serfes- 



To proceed to our data analysis, that is, to generate bootstrap time series samples, 

we first apply the dgorithm for choosing appropriate block size. Note that here we 

apply the algonthm to the Y; series (spot Canadian dollar data). We plot the standard 

errors versus the block size in Figure 4.7. Note that the ho~zontal line is the true 

value of ôg obtained £iom the series. It is evident that the plot suggests that 1 = 60 

is preferred here. m e r  fùang the block size I = 60, we follow the steps described in 

Chapter 2 in order to generate B = 1500 bootstrap tirne series samples. Next, we 

can use the integrated mode1 to obtain a point estimate andlor inference for spot 

Canadian dollar series. 

4.2 Empirical Results 

In this section, the bootstrap forecast intemal for the spot Canadian dollar is 

presented. The intervals are constmcted with B = 1500, moving block size 1 = 60, 

and the multilayer perceptron network with 4 input layers, 3 hidden uaits for the 

hidden layer, and one output layer. Note that the three-layer multilayer perceptron 

network with the backpropagation dgorithm is used to train on the input-output 
- 

p"r; that is, x + ~ ,  2t-2, Z t 4  K), t = 1,2,. . . , n, where X-3, X2, x - ~  and 

& are set to zero. 

Before we provide the point estimate and the forecast interval for spot Canadian 

dollar series, we need to carry out the following transformation: 
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Figure 4.6: Plot of Squared Coherence Statistic. 

Figure 4.7: The plot of standard error estimates for d chosen block sizes. The true 
standard error is 0.02605 



R e c d  that k; in (4.2) is dehed  as 

Y, = log c, - log ct+ 

hence the forecast value for the spot Canadian dollar en+= is : 

As an example, the forecasted one step ahead future value for spot Canadian 

dollar, at n = 1476, is given by 

and the 95% forecast interval is given by 

Note that, the actual value of C,+l is 73.0033. These results justify the use of the 

integrated modelling technique to financial time series. 



Chapter 5 

Simulation 

A simulation study is carried out to evaluate the performance of the mode1 

described in Chapter 3. Note that the integrated modeiling technique utilizes both 

the classical techniques and nonparametric methods for this data analysis. For this 

study, we generate n + 1 data with sample sizes n = 500, and n = 1000, for the Xt and 

series and simulate Xt as hterest rate spreads data and Y; as spot Canadian dollars 

data. For each sample size, the simulated time series are generated with Gaussian 

and non-Gaussian noises. In addition, the Xt series are generated as follows: For 

simulation studies 1 - V, we have MA = O order and the orders for autoregressive 

(AR) are assigned to be 2, 3, 5,7, and 10; For simulation study VI, we have AR = 2 

and M A  = 2; and for simulation study VII, we have AR = 5 and M A  = 5. 

We will only use the first n saniples of ( X t ,  x) for mode1 building. The following 

steps are applied to each simulated series: (1) The extrerne points are adjusted 

according to the "adjustment d e n  described in Chapter 4; (2) spectral analysis is 
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used to determine the existence of the relationship between the two series; (3) if 

the two series are not white noise and are correlated over the hequency range, we 

proceed to the next step, otherwise, we have to start on a new simulated senes; (4) the 

algorithm for choosing the block size is applied; (5) the bootstrap time series samples 

are generated with B = 1000; (6) a three-layer multilayer perceptron network with the 

backpropagation aigonthm is used to train on the input-output pair; (7') the future 

value for E+, , and the forecast interval for Y,+l are forecasted; and (8) after ob t aining 

the 95% forecast intervals for the we then compare them to the actud Y& - By 

repeating this procedure 200 tines, with only the complete procedure counted, we can 

then calculate the percentage of the intervals that cover the actud or targeted Y*+= 

for sample sizes n = 500 and n = 1000, respectively. Note that we use a bootstrap 

resâmple size of B = LOO0 to construct the bootstrap forecast intervals. Next, we 

present the simulated time series and the simulation results. 

5.1 Simulated Series Iand Simulation Results 

Simulated Series I(a): With Gaussian Noise 

We simulate time series Xt as ARTMA(2,1, O), as shown below: 



where the coefficients q&, j = 1,2 axe randomly chosen to be 0.65 and -0.2- 

We simulate thne series Y; as follows: 

where the function min(-) retunis a number that is the minimum of the inputs, 

trunc(-) is the function that creates integers fiom ffoating point numbers by 

going to the next integer closer to zero, and I& is defined by 

and a randomly chosen coefficient, # = 0-32- 

Simulated Series I(b): With Non-Gaussian Noise 

We simulate time series Xt as ARIMA(2,1, O), as shown below: 

where the coefficients q5j, j = 1,2 are randomly chosen to be 0.58 and -0.12. 

We simulate time series as follows: 



where I& is defined by 

(1 - QB)( l -  B)& = V, , V, - N(0,1)  

and a randody chosen coeficient, q5 = 0.45. 

Simulation Result 1 

The simulation results are summansed in Table 5.1. Note that the coverage 

probability for simulation results are lower than the nominal level of 95%. 

Moreover, the results show indifferently for both sample sizes as weU as the 

noise distributions. However, for both samples sizes, the average error is higher 

in non-Gaussian noise series than the Gaussian noise series. The average e m r  

Table 5.1: Results for Forecast Intervals on Simulated Series 1 

Noise 

Gaussian 

Non-Gaussian 

is defined by 

Average Error = CE, IYt -k;l 
N 

N = 500 
A R = 2 a n d M A = O  

Nominal 
Level 

95 % 

95 % 

N = 1000 
A R = 2 a n d M A = O  

Nominal 
Level 

95 % 

95 % 

Coverage 
Proportion 

92.0 % 

92.0 % 

Average 
Error 

0.801 

0.922 

Coverage 
Proportion 

92.5 % 

92.0 % I 

Average 
Error 

0.763 

0.920 



5.2 Simulated Series II and Simulation Results 

Sirnulated Series =(a): With Gaussian Noise 

We simulate time series Xt as ARIMA(3,1, O), as shown below: 

Note that the senes is generated using the Splus function. We sirnulate time 

series as follows: 

where Ht is defined by 

Note that the series Hf is also generated using Splus function. 
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Sirnulated Series II@): With Non-Gaussian Noise 

We simulate time series Xt as ARlMA(3,1, O), as s h o w  below: 

We simulate t h e  series Yt as foUows: 

where Ht is defined by 

(1 - 4 ~ ) ( 1 -  B ) H ~  = V, , K - N(O, 1) . 

Simulation Result II 

The simulation resdts ore summarised in Table 5.2. Note that the autoregres- 

sive order is 3 in this simulation study. Although the coverage probability 

for simulation result II show slight improvement in coverage probability as 

compared with the simulation result 1, the coverage probabiiity is still under the 

nominal level of 95%. The average error for non-Gaussian noise series remained 

high at about 1 basis point (which is about 4 . 0 ~  in actual spot Canadian dollar 

data in Chapter 4). 



Table 5.2: ResuIts for Forecast IntervaIs on Sirnulated Series II 

Gaussian 11 95 % 

Coverage 
Proport~on 

Average Nominal Coverage Average 
Error LeveI Proportion Error 

5.3 Simulated Series III and Simulation Results 

Simulated Series III(a): With Gaussian Noise 

We simulate time series Xt as ARIMA(5,1, O), as shown below: 

We simulate time series & as follows: 

where & is dehed by 



Sirnulated Series III(b): With NonGaussian Noise 

We simulate time series Xt as ARIMA(5,1, O), as shown below: 

We simulate time series as follows: 

where l& is dehed by 

Simulation Result 111 

The simulation results are summaxised in Table 5.3. In this study, the autore- 

gressive order is increase £rom 3 to 5. The coverage probabiiity for simulation 

results show decreases as compared with simulation results 1 and II. However, 

the average error for non-Gaussiaa noises are appears closer to Gaussian noise 

series for both sample sizes. The coverage probability for these simulation 

results are stiil lower than the nominal level of 95%. 



Table 5.3: Results for Forecast I n t e d s  on Simulated Series III 

I II 11 

Noise Nominal Coverage 
Level Proportion 

Gaussian / /  95 % 1 92.0 % 

Non-Gaussian 95 % 91-5 % 

II -N = 1000 
;IR = 5 and hf A 

Average Nominal Coverage 
Error Level Proportion 

5.4 S.hulated Series TV and Simulation Results 

Simulated Series IV(a): With Gaussian Noise 

We simulate time series Xt as ARIMA(7,1, O ) ,  as shown below: 

We simulate time series Y; as foUows: 

where Ht is defined by 

Average 
Error 



Simulated Series IV(b): With Non-Gaussian Noise 

W-e simulate time series Xt as ARIMA(7,1, O), as shown below: 

We simulate time series as follows: 

where Ht is defined by 

Simulation Result IV 

The simulation results are siimmarised in Table 5.4- Note that the autore- 

gressive order is now 7. The coverage probability for the simulation resdts 

show no improvement; they also show decreases as compared with the previous 

simulation results. As usual, the coverage probability for the simulation results 

are lower than the nominal Ievel. But the average errors are almost the same 

for both noise distributions within the same sample size. 



Tabie 5.4: Results for Forecast Intervals on Simulated Series IV 

5.5 Simulated Series V and Simulation Results 

Noise 

Gaussian 

Non-Gaussian 

Simulated Series V(a): With Gaussian Noise 

We simulate time senes Xt as AMMA(IO,1, O ) ,  as shown below: 

We simulate time series as follows: 

where Ht is defined by 

L 

Nominal 
Level 

95 % 

95 % 

Nominai 
Level 

95 % 

95 % 

Coverage 
Proportion 

91.5 % 

90-5 % 

Average 
Enor 

0.781 

0,779 

Coverage 
Proportion 

92-0 % 

91-0 % 

Average 
Error 

0.832 

0.869 



Simulated Series V(b): With Non-Gaussian Noise 

We simulate time series Xt as ARIMA(10,1, O) ,  as shown below: 

where Kt is defined by 

Simulation Result V 

The simulation results are summarised in Table 5.5. Notice that the coverage 

probability for simulation results are decreasing as the autoregressive order 

increases to 10. In fact, the average errors are higher than usual. In this 

simulation study, we stiU have the coveage probability lower thm nominal 

level. 



Table 5.5: Results for Forecast Intervals on Simdated Series V 

Noise 

Gaussian 

Non- Gaussian 

Nominal Coveage Average 
Levd Proportion Error 

N = 1000 
AR = 10 and M A  = O 

Nominal Coverage Average 
Levd Proportion Error 

5.6 Simulated Series VI and Simulation Results 

Simulated Series VI(a): With Gaussian Noise 

We simulate time series Xi as ARIMA(P,l,  2), as shown below: 

where Hi is defined by 



Simulated Series VI(b): With Non-Gaussian Noise 

We simulate time series Xt as ARIMA(3,1,2),  as shown below: 

We simulate time series Y; as follows: 

where Ht is defined by 

( i - 6 B ) ( l - B ) & = & ,  V,-N(O,l). 

Simulation Result VI 

The simulation results are summarised in Table 5.6. Note that we have the 

MA = 2 and AR = 2 in this simulation study. The coverage probability 

for simulation results are very similar to simulation resdts 1 and 11- However, 

for respective sample size, the average errors are almost indifferent for both 

Gaussion and non-Gaussian noises. Again, the coverage probability results are 

stiU lower than the nominal level- 



Table 5.6: Redts  for Forecast Intervals on Simdated Series VI 

Noise Nominal Coverage Average 
Levd Proportion Error 

Gaussian 95 % 92.0 % 0.887 

I 

Non-Ganssian 95 % 92.0 % 0.879 

NominaL C o v ~ e  Average 
Levd Proportion Error 

5.7 Simulated Series VII and Simulation Results 

Simulated Series M(a): With Gaussian Noise 

We simulate time series Xt as ARIMA(5,1 ,5) ,  as shown below: 

5 5 

(1 - C 4 j ~ j ) ( i  - B ) X t  = (1 + C O ~ B ~ ) U ~  , Ut N ( 0 , l )  - (5-38) 
j=l j=l 

We simulate time series as follows: 

where Ht is defined by 



Simulated Series W ( b ) :  With Non-Gaussian Noise 

\Ve simulate time series Xt as ARIMA(5,1,5), as shown below: 

W e  simulate tirne series Y f  as foIIows: 

where Ht is defined by 

Simulation Result VII 

The simulation results are summarised in Table 5.7, As we increase both the 

order for MA and AR to 5, the coverage probability for simulation results are 

considered the Iower as cornpazed to previous simulation results. Also, the 

average errors show no improvement. 



Table 5.7: Results for Forecast I n t e d s  on Simulated Series VI1 

Noise 

N = 500 
A R = 5 a n d M A = 5  

Nominal 
Level 

Coverage 
Proportion 

5.8 Discussion 

Average 
Error 

Nominal 
Levd 

In Table 5.8, it is apparent that the coverage probability for all simdation results 

ore lower than the nominal level of 95%. There are five possible reasons for this 

low coverage probability: (1) The estimates taken to be the tme d u e s  used for 

constmcting the bootstrap forecast intervals are inaccurate. (2) The confidence 

intervals based on bootstrap percentiles method may not have performed weU due to 

the consequence of nonparametric inferences. It may have underestimated the tails 

of the distribution of prediction. (3) The number of repetitions for the simulation 

procedure in this study was too low (in this study the simulation procedure was 

only repeated 200 times). (4) The adjustment d e  for extreme points might d e c t  

the results for coverage probability. However, because we are trying to model the 

long term relationship for bivariate hancial series, it seems reasonable to apply 

the adjustment d e  to those extreme points for better model analysis. (5) As the 

simulation results show, the coverage probability decreases as we increase the order 
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95 % 

95 % 

Coverage 
Proportion 

G aussian 

Non-Ganssian 

Average 
Error 

I 



for MA and/or AR. This may be due to computation errors occurring as  the mode1 

becomes more complicated. 

Table 5.8: Results for 95% Forecast Intervals on Simulated Series 

Simdated 
Series 

I - II (AR = 3, M A  = 0) 

III (AR = 5, M A  = 0) 

IV (AR = 7, M A  = 0) 

V (AR = 10, M A  = 0) 

VI (AR = 2, M A =  2 )  

N = 500 N = 1000 

Gaussian Non-Ganssian Gaussian Non-Ganssian 

92.0 % 92-0 % 92.5 % 92.0 % 

The results obtained when n = 500 do not differ greatly as cornpared 6 t h  those 

obtained when n = 1000. In addition, the simulation results show that the integrated 

modelling technique is insensitive to the choice of distribution for the noise. Since we 

must clean up the extreme points for each of the simulated series, this may explain 

why this technique is insensitive to the Gaussian or non-Gaussian noise. However, 

there is a slight decrease in coverage probability when we increase the order for AR 
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and MA. This dso suggests that we may want to keep the mode1 simple in order 

to Save computation time and obtain better results. Again, the integrated m o d e h g  

technique is not sensitive to the complicated series. 

Although the results seem reasonable when using the integrated m o d e h g  tech- 

nique, the operation costs axe high in ternis of CPU. 

To conclude, the integrated modeIling technique is worthwhile when the cornplex- 

ity of the data requires a more versatile approach than allowed by c1assica.I methods. 

As to the reason for under coverage in probability, this remains an issue to be resolved 

in future studies. 



Chapter 6 

Conclusions 

This thesis has demonstrated the usefulness of botb ciassical methods and non- 

parametnc methods in analysing financial time series. The approach developed in 

Chapter 2 give the basic ideas for implementing techniques in modelling financial 

time series. 

As discussed in Chapter 2, commonly used rnethodologies (such as ARIMA mod- 

els) provide us with estimation and forecast interval. However, in finucial markets, 

time series are statisticdy more volatile as compared to other applications. Thus, 

simple models alone are unable to solve diflicult problems such as exchange rate 

predictior.. The bivariate transfer function model is introduced in order to improve 

the forecast estimation as compared with the univariate case. However, the transfer 

function model requires the value of X,+l, which is not available and must itself be 

forecast in order to forecast Y,+1. The accuracy of the forecasting interval for Y,+1 can 

be improved by not requiring the estimation of Xn+l, thus reducing the probability 

of error in estimation of as shown by the integrated model. 
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The fiequency domain methods provide us (with the aid of high speed cornputer 

hardware), a more eficient way to uncover certain statisticd details. Particularly for 

the bivariate tirne series, we need to determine the existence of a reIationship between 

two time series in order to further the data andysis. Together with the classical 

techniques, modern nonparametric methods such as the moving blocks bootstrap and 

neural network provide us with a theoretical basis for the derivation of an integrated 

mo d e h g  t echnique- 

The integrated modehg  technique described in Chapter 3 provides us with 

the tools to further analyse the bivariate tirne series. The technique utilizes both 

classical techniques and nonparametric methods for bet ter estimation and inference. 

In Chapter 4, an illustration of integated modelling techniques is appiied to the 

hancia.1 time series. The empincal result support the use of the proposed modelling 

t echnique. 

In Chapter 5, although the simulation study was oniy carrïed out for n=500 and 

n=1000, the simulated time series were generated with Gaussian and non-Gaussian 

noises. The simulation results showed undercoverage overall, but the integrated 

modelling technique appears robust to the choice of noise distribution as weU as 

the sample size. 



6.1 Future Reseasch 

This research could be extended by adding more &ables to the model given in 

chapter 3. For the spot Canadian dollar example, we can add other variables such 

as the demand andfor supply of Canadian dollars, demand and/or supply of U S  

dollars, and the stock indexes to the model. The dernand and supply of currency will 

help us piedict whether or not future values will soon r ise or f d .  As for the stock 

indices, increase or decrease, this would help us to determine whether the market is 

performing weil. Other possible Milables to add are those pertaining to available 

information rom the derivative markets. 

By adding more variables to the model, two approaches to analysing the time 

series are possible. The first approach would be to utilize multiple linear regression 

techniques. Note t hot economists desc~be a regression model as an econometric 

model. Although multiple Linear regression models are widely used due to their 

computational simplicity, there are problems inherent to this approach which need to 

be pointed out. One problem is that explanatory variables can be highly correlated, 

leading to singularity problems. Hence, it is advisable to look at the correlation 

matrix of the explanatory variables before cazrying out a multiple Linear regression 

analysis. Another problem involves the structure of the error terms. It is always 

assumed that the errors axe i.i.d.N(O, a*), but this assurnption may not be correct. 

If the residuals are correlated, one can try fitting a multiple linear regression model 



with autocorrelated errors (See KendaII et al. [37]). 

The second approach is to follow the approach developed in Chapter 3? but to 

pair up the spot Canadian dollar with other variables. However, how do we combine 

the information kom different pirings of I; (spot Canadian dollar series) and other 

variables, without producing too many forecast intervals? 

Since the confidence intervals based on the bootstrap percentiles method have 

less satisfactory probability coverage, this research codd be hproved by repIaciog 

the confidence intervds with more advanced bootstrap intervals methods such as bias- 

corrected and accelerated (BCa) method, and the approzimate bootstrap confidence 

intervals (ABC) method. These advance bootstrap intervals methods could partially 

correct the undercoverage problems in our simulation s t udies. 

In d ~ a m i c  representation, the recurrent networks may be more in h e  with 

nonlineu time series. Hence, by replacing the feed-forward net work wit h recurrent 

network, we may achieve a better point estimation and satisfactory probability cov- 

erage. 
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Appendix A : The Back-Propagation Algorithm 

Before we provide the back-propagation dgorithm, we present the mdtilayer 

perceptron network mode1 used for financial data analysis. For the given input 

X ( s )  = (Xl(s),Xz(s), .. . ,Xk(s))' ,  s = l ,2 ,  ... ,n, the output of the network is 

defined as 

where the activation function f (-) is the logistic function defined in (2.28), and 8 = 

(ml, WZ, - . - , wp, v:, v:, . . . , v;, r,, al, aZ,. -. , Qp) where v: = (vSi, V S ~ , .  . - , are 

the weights and threshold values, and the superscript t is denoted as transpose. 

The folIorPllig backpropagation algorithm is modified from the lecture notes by 

Stacey [52]. 

1. Notations : 

LI : the input layer 

LH : the hidden layer 

Lo : the output layer 

2)ih : the synaptic weight between the LI and LH 
who : the synaptic weight between the LH and Lo 
Qh : LwProcessing Elements (PE) t hreshold values 

I', : LOPE threshold values 

Note that we assign random values in the range [ -1, + 11 to Vihi who, é h ,  and 



2. Forward Pass Computation : For each input-output pair (X,, O,): 

Process XS7s d u e s  to calculate new LH PE activations using 

where f(-) is the sigmoid function defined in equation 2.28. 

Filter the Lw activations through the weights; W, to Lo using 

Compute the output differences by dj = (0; - Oj )  

3. Backward Pass Computation : 

1. Compute the output error at Lo PE values using 

II. Calculate the error of each LH PE relative to each d j  with 

III. Adjust the LH to Lo connections; that is, the amount of change made to 
the connection from the ith LET to the jth Lo. 

where a is a positive constant controlling the learning rate. 

IV. Adjust the Lo threshold value Arj = aej 

V. Adjust the LI to LH connections Auai = Pxhti where P is a positive 
constant controlling the leaming rate. 

VI. Adjust the LK threshold value hai = Pti 

4. Iteration : Repeat Step 2 and Step 3 until ej ls  are all either zero or at the 
minimum value. 
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1. Create Lh PE vaIues 
k 

2. After all LH PE activations have been calculated, they are used to cornpute 
the output. 
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