
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the

text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleedthrough, substandard margins, and improper alignment

can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and

there are missing pages, these will be noted. Also, if unauthorized copyright

material had to be removed, a note will indicate the deletion.

Oversize materials (e-g., maps, drawings, charts) are reproduced by sectioning

the original, beginning at the upper left-hand wmer and continuing from left to

right in equal sections with small overlaps. Each original is also photographed in

one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6" x 9" black and white photographic

prints are available for any photographs or illustrations appearing in this copy for

an additional charge. Contact UMI directly to order.

Bell & Howell Information and Learning
300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA

800-521 -0600

A Study of Loop Nest Structures and
Locality in Scientific Programs

Robert Sawaya

A thesis submitted in conformity with the requirements
for the degree of Master of Applied Science

Graduate Department of Electrical and Computer Engineering
University of Toronto

@ Copyright by Robert S a y 1998

Nationai Library 1*1 of Canada
Biblioth&que nationale
du Canada

Acquisitions and Acquisitions et
Bibliographic Services services bibliographiques

395 Wellington Street 395. rue WelIington
Ottawa ON K I A ON4 OttawaON K l A O N 4
Canada Canada

Your W VOIIB reler8nce

Our t l k Nofre reUreMe

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts fiom it
may be printed or otherwise
reproduced without the author' s
permission.

L'auteur a accorde me licence non
exclusive pernettant a la
Bibliotheque nationale du Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/fiIm, de
reproduction sur papier ou sur format
electronique .

L7auteur conserve la propriete du
droit d'auteur qui protege cette these.
Ni la these ni des extraits substantiels
de ceLle-ci ne doivent Etre imprimes
ou autrement reproduits sans son
autorisation.

Abstract

A Study of Loop Nest Structures and
Locality in Scientific Programs

Robert Sawaya

bf as t er of Applied Science

Graduate Department of Electrical and Computer Engineering

University of Toronto

1998

This study evaluates four techniques that improve the structures of loop nests, in order

to make transformations targeting perfect loop nests more applicable. These techniques

are code sinking, loop distribution, loop distribution with scalar expansion, and loop

fusion. This study also exrnines the subscript expressions of array references, in order

to conclude whether spatial locality can be enhanced. This research is conducted on 23

applications from the Perfect Club, Nas, Spec92 and NCSA benchmark suites.

The results indicate that code sinking and loop distribution- with or without scalar

expansion- can be effective in increasing perfect nests, in more than half of the bench-

mark applications. The overhead introduced by loop distribution is negligible, while the

overheads of code sinking and especially of loop distribution with scalar expansion are

found to be prohibitive for some applications.

Furthermore. in more than half of the benchmark applications, it is found that the

array references exploit locality effectively. In only a quarter of the applications, loop

permutation may be beneficial to spatial locality. Similarly, flexible data layout may be

beneficial in only a quarter of the applications.

Acknowledgements

First of all, I want to express my gratitude to my supervisor, Dr. Tarek S. Abdelrahman.

During the past two years, he provided me with valuable guidance and priceless advice.

I would also like to thank the members of my examination committee? Dr. Corinna

G. Lee, Dr. Charles Clarke and Dr. Wai Tung Ng for their valuable comments on my

thesis.

I am thankful for the financial help during the past two years, provided through a

Graduate Scholarship from the Natural Sciences and Engineering Research Council of

Canada,

I would also like to thank my parents, Georges and Iihaoula, my sister Carole, and

my brothers Lou, Maurice and Edward for their care, support and love.

To my fiancCe, Faten, words cannot describe the gratefulness I feel for the support,

strength and love you have given me.

Finally, I dedicate all my work to my very special friend, Shamita Mukherjee. I will

never forget her.

Contents

I Introduction

. 1.1 Summary of the Study

. 1.1.1 Motivation

. 1 . 2 Goals

. 1.1.3 Summary of t he Results

. 1.2 Contributions

. . 1 .3 Thesis Organization

2 Background 5

. 2.1 Loops and Loop Nests 5

. 2.1.1 Loops .5

. 2 - 1 2 Loop Nests 6

. 2.2 DataDependence 9

. 2.3 Data Dependence in Loops 10

. 2.3.1 Dependence Distance Vectors 11

. 2.3.2 Dependence Direction Vectors 12

. 2.3.3 Dependence Cycles 13

. 2.4 Loop and Data Transformations 13

. 2.4.1 Loop Permutation 14

. 2.4.2 LoopDistribution 14

. 2.4.3 Loop Fusion 15

. 2.4.4 Code Sinking 16

. '5.45 Strip-&lining 16

. 2.4.6 Tiling

2 -5 Data Reuse and Cache Locality .

2.5.1 Cache Temporal Locality .

. 2.5.2 Spatial Locality and Reuse

2.5.3 Data Layout .

'5.6 ReIated Work .

3 Methodology

.3.1 General Issues .

3.1. General Definitions .

3 .12 Benchmarks Used .

3 Research Approach .

3.3 Code Sinking .

. 3.3.1 Mechanics of Code Sinking

. 3.i3.2 Inner Loops Enclosed by ifstmts

3 - 3 3 Nests with Loops at Same Nesting Level

. 13.4 Loop Distribution

. 34.1 Mechanics of Loop Distribution

. 3.4.2 Legalityof Loop Distribution

. 3.4.3 Scalar Expansion

3-4.4 Reasons for the Ineffectiveness of Loop Distribution in 0 btaining

. Perfect Nests

3.5 Scalar Expansion .

. 3.5.1 Mechanics of Scalar Expansion

3.6 Loop Fusion .

. 3.6.1 Mechanics of Loop Fusion

3.6.2 Legality of Loop Fusion .

3.6.3 Reasons for the Ineffectiveness of Loop Fusion in Obtaining Perfect

Nests .

. 3.6.4 Fusion Algorithm

. 3.7 Spatial Locality 45

3.7. l Array Reference Characterization 46

.3.7.1.1 Self-spat ial Locality . 46

3.7.1.2 Group-Spatial Locality 49

3.7.2 Data Layout Framework . 51

.3.7.3 Loop Permutat ion Framework . 53

4 Improvements in Nest Structures 54

. 4.1 Timing Technique -54

4.1.1 Timing of Nests Made Perfect by Code Sinking 55

4.1.2 Timing of Nests Made Perfect by Loop Distribution 56

4.1.3 Timing of Wests Made Perfect by Loop Fusion 57

4.1.4 Times of Pseudo and Real Perfect Nests 57

. 4.2 Characterization of Execution Time 60

. 4.2.1 Coarse-Grain Characterization 60

. 4.2.2 Fine-Grain Characterization 62

. 4.3 The Effect of Code Sinking on Nest Structures 63

. 4.4 The Effect of Loop Distribution on Nest Structures 66

. 4.4.1 Loop Distribution without Scalar Expansion 67

4.4.2 Loop Distribution with Scalar Expansion 70
C 4.4.2.1 Array Sizes of Expanded Scalars i 2

4.4.2.2 Overhead of Scalar Expansion 73
P.- 4.5 The Effect of Loop Fusion on Nest Structures rs

. 4.6 Summary 76

5 Improvements in Locality 81

5.1 Applicability of Loop Permutation . S 1

5.2 Potential Benefit of Tiling 83

5.3 Improvements in Spatial Locality . SS

5.3.1 Characteristics of Array References SS

3 . 1 . Array References and Self-spatial Locality SS

5.3.1.2 Array References and Group-Spatial Locality 91

5 - 3 2 Effect of Flexible Layout on Spatial Locality 92

5.3.3 Loop Permutation To Enhance Spatial locality 94

5.4 Summary . 99

6 Conclusion 100

1 Nest Structures . 100

6.2 Locality . 101

6.3 Future Work . 102

A System Detail 103

A.l New Polaris Passes . 103

A.2 TheFT'iSystem . 104

A.3 Database . 105

. A.4 Post-Processing 106

Bibliography 107

vii

List of Tables

. 3.1 Applications examined and their respective benchmark suites 24

. 4.1 Coarse-grain characterization of execution time 61

. 4.2 The causes of the ineffectiveness of loop distribution 70

. 4.3 The causes of the ineffectiveness of loop fusion 76

A. l Passes added to Polaris . 104

.A.2 Post-processing passes . 106

3.1 1 Example of scalar expansion of a scalar with upward-exposed use
3.12 Example of scalar expansion in a nested loop

3.13 Example of scalar expansion with variable loop bounds

3-14 Example of scalar expansion with nested loops and variable loop bounds

3.15 Example of loop fusion .

3.16 Example of loop fusion and zJstmt propagation

3.17 Example of Legal Fusion and Illegal Fusion

3-18 Effect of Code Sinking on Loop Fusion

3.19 .Algorithm Used in Applying Loop Fusion to Obtain Perfect Nests

3.20 Example of self-temporal locality with respect to the innermost loop . . .

3.21 Example of how loop permutation can achieve self-spatial locality

. . . 3.22 Example of how data layout change can achieve self-spatial locality

:3.23 Example of how loop permutation and data layout can achieve self-spatial

locality .

3.24 Example of how changing the array layout enhances group-spat ial locality

3 . 2 5 Algorithm used to assess the effects of data layout on the array references

. with self or group-spatial Locality

. 1.1 Loop and loop nest timing

. 4.2 Loop times after code sinking

. -2.3 Loop times after Loop distribution

. 4.4 Loop times after loop fusion

4.S Timing of Pseudo and Real Perfect Nests

4.6 Timing of Pseudo and Real Perfect Nests

. 4.7 Characterization of execution time of the applications

4.S Effects of code sinking on the characterization of execution time

4.9 Effects of code sinking on pseudo and real perfect nests

. 4.10 Overhead of code sinking

4.11 Effects of loop distribution on the characterization of execution time . . .

4.12 Effects of loop distribution on pseudo and real perfect nests

4.13 Effects of loop distribution with scalar expansion on the characterization

of execution time . 71

4.14 Effects of Ioop distribution with scalar expansion on pseudo and real per-

fect nests .

4.15 Size of Arrays Allocated in Scalar Expansion

. 4.16 Overhead of Loop Distribution with Scalar Expansion

4.17 Variation of the numbers and dimensions of perfect nests before and after

the application of code sinking, loop distribution, and loop distribution

with scalar expansion.

4.18 Effects of code sinking, loop distribution and loop distribution with scalar

expansion, on pseudo perfect nests .

4.19 Effects of code sinking, loop distribution and loop distribution with scalar

. expansion, on real perfect nests

. 5.1 Permutable perfect nests

5 .2 Effects of code sinking. loop distribution, loop distribution with scalar

expansion, on permutable pseudo perfect nests

5.3 Effects of code sinking. loop distribution, loop distribution with scalar

expansion, on permutable real perfect nests

5.4 Contribution to execution time of tilable nests

5.5 Effects of code sinking, Ioop distribution and loop distribution with scalar

expansion, on tilable (binary) perfect nests - -

5.6 Effects ofcode sinking, loop distributionand loop distribution with scalar

expansion, on t ilable (linear) perfect nests

5.7 Classification of array references vis-a-vis self-spatial locality.

. . . . 5.S Classification of array references time vis-a-vis self-spatial locality

5.9 Classification of array references vis-a-vis group-spatial locality.

5.10 Classification of array references time vis-a-vis group-spatial locality . . .
5.1 1 Effects of layout change on the number of array references with spatial

locality .

5.12 Effects of layout change on the time of array references spatial locality .

5-13 Percentage of nests requiring loop permutation for better spatial locality. 95

5.14 Percentage of execution time of nests requiring loop permutation for better

spatial locality. 96

5.15 Effects of code sinking, loop distribution, and loop distribution with scalar

expansion on the legality of applying loop permution when it is needed. . 97

xii

Chapter 1

Introduction

Scientific applications motivated the early development and accelerated the advances of

computers. Today, due to their characteristics, scientific applications continue to drive

advances in high-performance computing. In fact, some scientific applications, called

dat a-parallel, require mult i-processors to provide the needed processing power. Data-

parallel applications consist. mainly, of loops iterating over a set of large arrays.

In order to achieve high-performance for data-parallel applications, optimizing and

parallelizing compilers are highly desirable. Most data-parallel applications are written

as sequential programs. Thus, compilers that can extract parallelism from sequential pro-

grams relieve application developers from the task of re-writing their codes to explicitly

express parallelism. Furthermore, a high-performance compiler can relieve the devel-

oper from implementing machine-dependent source-level optimizations, hence improving

portability across plat forms.

.AS the gap between processor and memory speeds continues to widen. cache locality

optimizations, in particular, are becoming a crucial responsibility of high-performance

compilers [W L9 la]. Indeed. many transformations and algorithms are designed to im-

prove cache locality [ITSS. LRW9 1, MT96]. This thesis is mainly concerned with improv-

ing loop nest structures to make these transformat ions more applicable.

1.1 Summaryof the Study

1.1.1 Motivation

On the one hand, most cache locality optimizations, such as loop perrnutat ion and tiling.

are designed to target the perfect nests of an application, i-e. nests that consist of loops

with no intervening code between their headers, and no intervening code between their

tails. Therefore. the applicability and effectiveness of such optimizations are limited

by the relative contribution to execution time of perfect nests. This work determines

how common perfect nests are, and to what extent they contribute to execution time.

Moreover, this research evaluates techniques that can be used to transform imperfect

nests into perfect ones.

On the other hand. many algorithms [WLSlb, WLSla, IiM92, CMT91: KRCS'i] at-

tempt to improve spatial reuse and translate it into spatial locality. The results pre-

sented [WLglb. WLSla, IiM92. CMT94, IiRCS'i], however. show little benefit when

these algorithms are applied to complete applications. The main explanation offered is

that the applications already have very high hit rates (close to 95%). Other researchers

[CMT94, bfT96] have found that programs are usually written with good spatial locality.

This research tries to verify this finding and to determine if the good locality is due to

coding that effectively exploits spatial locality, but uses an approach that is independent

of machine specific parameters.

1.1.2 Goals

The study has two main goals. First, the thesis evaluates techniques used to improve nest

structures. It also uses the nests structures and characteristics to measure an upper bound

on the expected benefits of tiling and the applicability of loop permutation. Second, the

thesis s t ~ ~ d i e s array reFerences and their subscript expressions, as well as loop ordering in

loop nests to determine whether spatial locality can be improved by loop permutation or

data layout.

1.1.3 Summary of the Results

This research establishes that on the average, perfect nests contribute to 39% of the

execution time of 23 applications from 4 benchmark suites. Four transformations are

evaluated for their effectiveness in increasing the relative contribution t o execution time

of perfect nests: code sinking, loop distribution, loop distribution with scalar expansion.

and loop fusion. It is found that code sinking causes the largest increase in the relative

contribution to execution t ime of perfect nests (56%): followed by loop distribution with

scalar expansion (51%). and loop distribution (45%). Loop fusion is found to result in no

significant improvement on the relative contribution to execution time of perfect nests.

Loop permutation is found to have a limited applicability across the benchmarks.

mainly because the contribution to execution time of perfect nests is small. Tiling is

found beneficial in few applications, because most perfect nests do not carry temporal

locality. -4lso. it is found that increasing the contribution of perfect nests makes loop

permutation more applicable and increases the potential benefit of tiling. This study

also shows that loop permutation or data layout would only enhance spatial locality in

a quarter of the benchmarks.

1.2 Contributions

The contributions of this research are summarized in the following points.

The study characterizes loop nests structures in terms of the applicability of many

locality optimization transformations.

The study evaluates the benefits and overheads of four techniques that improve

loop nests structures.

The study implements two simple separate frameworks, independent of cache pa-

rameters. to assess the need for loop permutation and flexible data layout to improve

spatial locality.

This research adopts a new approach to assess the contribution of loop nests. The

majority of previous studies have relied solely on the number of loop nests. which

may be misleading because loop nests might have very different impacts on the

overall execution time. Consequently, measurements of actual execution times are

used to statistically weight the loop nests in a given application.

1.3 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 provides background on

high-performance compilers. Chapter 3 examines the four techniques that improve nests

structures. Chapter 3 presents, also, the frameworks used to assess the need for spatial

locality enhancements. Chapters 4 and 5 present the reuslts on the structure of nests

and spatial locality, respectively. Chapter 6 concludes the thesis and discusses future

work.

Chapter 2

Background

This chapter provides background material on loop nests and on locality enhancement

transformat ions. It also describes past research related to this study.

2.1 Loops and Loop Nests

In this section. the issues of what constitutes a loop nest and what is a perfect loop

nest are defined and illustrated. Since this research evaluates the effects of various

transformations on the perfect nests of an application, it is important to clearly define

what constitutes a loop nest and what makes it a perfect nest. Before discussing loop

nests, some notions concerning loops need to be defined.

2.1.1 Loops

A DO-loop (later referred to as loop) is defined as a structured program construct con-

sisting of a loop header statement: a sequence of inner statements called loop body, and

a loop tail statement that marks the end of the loop [ManS'i].

do i = ib, if, s loop header

< statements > (i) + loop body

end do + loop tail

In the above definition, i is the loop index variable, and ib, i f , s are integer-valued

expressions, called lower bound, upper bound and step, respectively. At the loop entry,

the index variable takes the value of is. With each iteration of the loop, the index variable

is incremented by s. The loop is exited when the index variable is outside the ib to ij

range. The loop body consists of statements in which the index variable i may appear.

Therefore, there are instances of the body of the loop, depending on the value of i.

The following characteristics of loops can be defined:

A loop A is said to enclose a loop B, if and only if all the statements of loop B are

also statements of loop A. Loop A is said to be the outer loop and loop B is said

to be the inner loop.

The depth level of a loop is defined as the number of its outer loops.

A loop -4 is said to directly enclose loop B, if and only if loop A encloses loop B

and the depth level of loop A is one less than the depth level of loop B. In other

worcls: there is no third loop C that encloses loop B and is enclosed by loop A .

A loop is said to be a single loop if it encloses no loops and is enclosed by no loops.

Two loops A and B: where -4 encloses B, are said to be tight19 or perjectly nested

if and only if loop -4 contains no other statement than loop B.

Two loops are said to be adjacent if and only if there are no statements between

the tail statement of one and the header statement of the other.

Figure 2.1 illustrates the above definitions. For instance, L1 encloses L 2 ; L3 , L4 and L5.

However, L1 directly encloses La only. La directly encloses both L3 and LA. L4 directly

encloses L s , while Lg encloses no loops. Moreover, in Figure 2.1, loops L4 and L5 are

tightly nested while loops L I and L2 are not. Finally, the loops L3 and Lq are adjacent.

2.1.2 Loop Nests

A loop nest N is a sequence of loops (L I , L2, . .. , L,), where n 2 1, and where the following

conditions hold:

1. Every loop Li7 where (1 5 i < n), directly encloses loop Li+l only.

enddo
enddo
st3

enddo

Figure 2. 1: Example illustrating loop definitions.

2. Loop L, may or may not enclose another loop.

Loop L l which is not enclosed by any loop in the nest is called the outennost loop of

the nest. Loop L,, which encloses no other loop belonging to the nest (L L ? L2; L,), is

called the innennost loop of the nest. The dimension of the nest is the number of Loops

in the nest. i.e. n. In Figure 2.1 there are 2 loop nests: (L L , L 2) and (L4.Ls) .

A loop nest is said to be r e d perfect if there is no intervening code between the

headers of the loops. there is no intervening code between the tails of the loops, and the

innermost loop does not enclose any loop. More rigorously. a loop nest (L 1 , L2 , -.. , L n) is

considered real perfect if the following conditions are satisfied:

1. The outermost loop L is not enclosed by a loop L,

nested.

2. All loops Li and L;+l, where (I 5 i < n) , are tight1

such that L, and Ll are tightly

y nested.

3. The innermost loop L, does not enclose any other loop.

Second, a loop nest is said to be pseudo perfect if there is no intervening code between

the headers of the loops and between the tails of the loops, and the innermost loop does

not tightly enclose any loop. More rigorously, a loop nest (L 1 , L2? ...? L,) is considered

pseudo perfect if the following conditions are satisfied:

1. The outermost loop Ll is not enclosed by a loop L, such that L, and Ll are tightly

nested.

2 . All loops Li and Li+l, where (1 5 i < n), are tightly nested.

3. The innermost loop L, may enclose other loops but not tightly.

Hence . by definition. a real perfect nest is also a pseudo perfect nest.

Figure 2.2 illustrates real and pseudo perfect nests. The following remarks try to

clarify the differences and similarities between the two types of perfect nests.

According to the definition of real and pseudo perfect nests above, the code segment

in Figure 2.2 contains two perfect nests: a pseudo perfect nest (L 1 , Lq) and a real

perfect nest (L g , L.q, L 5) .

The first condition for both real and pseudo perfect nests avoids redundant perfect

nests. For instance, the nest (LiI, L 5) is not considered a perfect nest because L3

and LYI are tightly nested. It is desirable to consider loop nests with the largest

granularity for the purposes of loop optimizations.

Similar to the first condition, the last condition for pseudo perfect nests, avoids

redundant perfect nests. The nest (LJ7 L4) is not considered pseudo perfect because

L4, the innermost loop. encloses Ls tightly.

Transforming pseudo perfect nests into real perfect nests is desirable because:

- The number of loops that can be part of an algorithm or an optimization (e.g.

loop interchange) is increased.

- The innermost loop of a pseudo perfect nest ~ o u l d enclose at least a loop

L that is not part of the nest. The loop L, which is directly related to the

spatial locality, will be shielded from the effect of a given transformation. By

transforming the loop nest into a real perfect nest, the loop L becomes part

of the perfect nest and thus can be affected by the optimization.

L1 do i = 1, 10, 1
L2 d o j = 1 , 1 0 0 , 1

st2
L3 do k = 1,100, 1
L4 do m = 1, 100, 1
L5 d o n = 1, 100, 1

st5
enddo

enddo
enddo

enddo
enddo

Figure 2.2: There are 2 perfect loop nests. First, the nest IV, (L l : L 2) is a pseudo perfect
nest. It is not real perfect because loop L2 encloses loop L3. Second, the nest (L3? L4 L 5)
is a real perfect nest.

2.2 Data Dependence

Compilers rely on data dependence analysis [GKTSl, MHL91, Pug921 to determine the

constraints on the order of execution of the statements in a program. A data dependence

exists between two statements S1 and S2, where S1 is executed before S2 , that access the

same memory location. There are four data dependence types:

True or pow dependence occurs when Sl writes to a memory location that is Iater

read by S2. This dependence is denoted as S16f Sz.

Anti dependence occurs when S1 reads a memory location that is later written by

S2. This dependence is denoted as SIPS2.

Ovtput dependence occurs when Sl writes to a memory location that is later written

by S2. This dependence is denoted as SIP$.

Input dependence occurs when 4 reads to a memory location that is later read by

Sz This dependence is denoted as SlbiSz

For a data dependence, the statement that first accesses the memory location is called

the source of the dependence, while the statement that last accesses the memory location

Figure 2.3: The four basic dependence types in a straight-line code

is called the sink or target of the dependence. Figure 2.3 illustrates the four types of

dependence. First there is SIGf ,$2 because SI writes the variable X which is later read

by S2. Second, there is S26a53 because Sz reads the variable X which is later written by

&. Third. there is SlSoS3 because SI writes the variable X which is later written by S3.

Finally, there is StJiS3 because S1 reads the variable Z which is later read by S3.

2.3 Data Dependence in Loops

Extending the notion of data dependence to loops is complicated because there are mul-

tiple instances of the statements in the loops. Depending on the iterations of the source

and target instances, two types of loop dependences are distinguished [BGS94].

1. A loop carried dependence is a dependence between two statement instances in two

different iterations of a loop.

2. r\ loop independent dependence is a dependence between two statement instances

in the same iteration of a loop.

Each statement in a loop might be executed more than once, thus the need for dis-

tinguishing instances of statement executions becomes necessary. Given a statement SI

enclosed in a loop: such as in Figure 2.4, the instance of Sl for iteration i = i l is labelled

Sl(il). This extension to the statement notation is required to represent dependences

between instances of statements executed at different iterations of the loop. For example,

in Figure '3.4 the following dependences, among others, are present.

a In each iteration i, the statement SI uses and then defines a (i) resulting in the

Sl (i)GaSl (i) loop independent dependence.

Figure 2.4: Example of loop dependences.

0 In the iteration i, the assignment to the array reference b (i) in S2 writes to the ith

element of the array b. In the iteration i-1, the use of the array reference b (i+l)

in SI reads the ith element of the array b. Consequently, there is a loop carried

dependence represented by Sl (i - l)JaS2 (i) .

In the iteration i? the assignment to the array reference a (i) in SI writes to the ith

element of the array a. In the iteration i+l, the use of the array reference a(i-I)

in S2 reads the ith element of the array a. Consequently, there is a loop carried

dependence represented by Sl (i)Jf S2(i + 1).

0 There is a loop carried dependence sl (i)Gis2(i + 1) due to the array references a (i)

and a (i - 1) in SL and S2, respectively.

2.3.1 Dependence Distance Vectors

An iteration of a loop nest with a dimension (n 3 1) is represented by an n-tuple called

iterntion vector i. Each of the entries in i corresponds to the value of the index of one

of the loops in the nest. The first and last entries in i corresponds to the outermost

and innermost loops of the nest. respectively. For example, Figure 2.5 shows a nest N

with dimension equal to 3. The iteration i = Z , j=5 and k=3 is represented by the vector

(2,5,3).

Data dependences in nests are represented, if possible, using dependence distance

vectors [BGS94, WLSlb]. A dependence with the sink statement at iteration vector

isink and the source statement a t iteration vector is,,,,,, is represented by a dependence

distance vector d = isink - i,,,,ce.

L I do i = 1, 10, 1
L2 d o j = 1 ? 1 0 , 1
L3 do k = 1, 10, 1
SL a(k.j,i) = a(kj , i) + b(k+lj-l , i+l) + 7
s 2 b(k-1 j+3,i-2) = a(k-2 j+2,i)
E3 enddo
E2 enddo
El enddo

Figure 2.5: Example to illustrate distance and direct ion vectors.

A distance vector d= (dl , d2 , . . . , d,) is said to be lexicographica~ly positive if and

only if for any di<O there exist a dj>O where j ci.

Figure 2.5 illustrates dependence distance vectors. The dependences, in the nest

depicted in this figure are discussed below:

0 The statement S1 writes and the statement S2 later reads the same element of

the array a at iteration vectors (k , j , i) and (k+2, j -2, i) , respectively. Thus.

there is a loop carried flow' dependence from SI to S2. The distance vector of this

dependence is d= (2, -2,O). The dependence is denoted by ~ ~ b h , - ~ , , , S ~ .

The statement S1 reads and the statement S2 later writes the same element of

the array b at iteration vectors (k-1, j+I , i -I) and (k+l, j-3, i+2), respectively.

S Thus. there is a Loop carried anti-dependence denoted by S16r2,-4,3) 2 .

0 The statement Sl reads then writes the same element of the array a. Thus, there

is a loop independent anti-dependence denoted by SLb~o,o,o~Sl. All the elements in

the distance vector are equal to zero because the source and sink of the dependence

are in the same iteration.

2.3.2 Dependence Direction Vectors

The dependence direction vector [BGS94, WLSlb] represents an ordering between the

iteration vectors of the source and the target of the dependence. More precisely, for a

'It is a flow dependence because the write occurs before the read since the iteration (k, j , i) occurs
before (k+2, j-2, i).

dependence where the source and target iterations are represented by s= (sl , s 2 , . . . , sn)

and t=(tl , t2, . . . , t,), respectively, the direction vector is given by d=(d l , d2, . . . ,dn)

where, for (1 < i < n),

In Figure "5 , there are the following dependences with direct ion vectors: 5'1 d:<,,,=) S 2 ,

S1 J?< ,,,<) S 2 and Slq S1.

A direct ion vector d= (dl , dl , . . . , d) is said to be lexicographically positive if and

only if for any d;=> there exist a d,=< where j<i.

Even though direction vectors are less accurate in representing dependence relations

than distance vectors, they are still frequently used. In fact, in some cases, distance

vectors cannot be computed while direct ion vectors can be. Moreover, some optimizations

(e g . loop permutation) require only direction vectors.

2 -3 -3 Dependence Cycles

-4 dependence from a block of statements B1 to another block of statements B2 exists, if

there exists a dependence S16S2: where S t belongs to BI and S2 belongs to B2.

A dependence cycle, between two blocks of statements B1 and B2, indicates the pres-

ence of two dependences B L6B2 and B36B1. The dependence B16B2 indicates that the

block B2 (i.e. the target) depends on block Bl (i.e. the source). Similarly. the dependence

B26B1 indicates that the block B l depends on block B2.

2.4 Loop and Data Transformations

This section describes loop and data transformations that are frequently used in compilers

and are relevant to this research.

Ll do i = 1: 10, 1
L3 do k = 1: 20, I
L2 d o j = 1: 10, 1
s1 a(k j , i) = a(k,j,i) + b(k+l j - l , i+l) + 7
s z b(k-1 j+3,i-2) = a(k-2.j+2,i)
E2 enddo
E3 enddo
El enddo

Figure 2.6: After permuting loops L2 and L3 in Figure 2.5, the above nest is obtained.
The permutation of loops L2 and L3 is legal.

2.4.1 Loop Permutation

Loop permutation interchanges the position of two loops L; and Lj belonging to a loop

nest N [MWSG. AKS41. The loop nest N must be a perfect nest. The permutation of Li

and Lj affects the dependence relations in the loop nest. To account for the permutation

of Li and Lj, the elements of all the direction and distance vectors, a t the ith and jth

positions must. be similarly permuted. The permutation is legal if the direction vectors

of the dependences in N remain lexicographically positive. Figure 2.6 shoivs the loop

nest of Figure 2.5 after permuting loops L2 and L3. After permutation the dependences

f become the following: S16(2,0,-21S2, SL6F2,3,-4)s2 and S16~o,o ,o$ ' l -

2.4.2 Loop Distribution

Loop distribution, also known as loop fission, splits a loop into multiple loops with the

same header but each containing a subset of the statements of the original loop [Iiuc77].

Loop distribution is legal if all the statements causing a dependence cycle are kept in

the same loop. Figure 2.7 shows an example of loop distribution. There is a dependence

cycle between the statements Sl and S2 in Figure 2.'i(a). Thus these two statements

must be kept in the same loop as shown in Figure 2.7(b). In Figure Z.'i(c), statements

S1 and S2 are enclosed by different loops, thus the distribution is not legal.

L1 do i = 1, 10, 1
Sl a(i) = a(i) + b(i-1)

L1 do i = 1, 10, 1 El enddo
Sl a) = a) + (- 1) L2 do i = 1, 10, 1

L1 do i = 1: 10, 1 S2 b(i) = a(i-1) S2 b(i) = a(i-1)
S1 a) = a) + (- 1) El enddo E2 enddo
S2 b(i) = a(i-1) L2 do i = 1, 10, 1 L3 do i = 1, 10, 1
S3 ~ (i) = b(i-2) S3 ~ (i) = b(i-2) S3 ~ (i) = b(i-2)
El enddo E2 enddo E3 enddo

(a) original loop (b) legal distribution (c) illegal distribution

Figure 2.7: Example of loop distribution.

L1 do i = 1, 10, 1
B1 body1
El enddo L12 do i = 1, 10, 1
L2 do i = 1: 10, 1 B1 body1
B2 body':! B2 body2
E2 enddo E12 enddo

(a) original [oops (b) after fusion

Figure 2.8: Example of loop fusion.

2.4.3 Loop Fusion

Loop fusion combines the bodies of multiple loops into one [KuhSO, MAS'i]. The resulting

body is enclosed by a new loop while the original loops are removed. Figure 2.8 shows

the fusion of two loops LI and L2 with bodies BL and B2 respectively, into a loop L12

whose body is made of BL followed by B2. The fusion is legal if there are no dependences

in Ll2 from B2 to B1.

Loop fusion can be complicated if the loop headers are not compatible (i.e. same loop

bounds and step), or if the loops to be fused are not adjacent (i.e. there is code between

them).

L do i = 1: 10, 1
C i f (i = = l) t h e n

S BlockOfStatements S BlockOfStatements
L do i = 1, 10, 1 endif
B body B body
E enddo E enddo

(a) original loop (b) after sinking

Figure 2.9: Example of code sinking.

2.4.4 Code Sinking

Code sinking moves a block of statements into a loop [MW96]. A guard is used to ensure

the sunk code is executed the correct number of times. Figure 2.9 shows the sinking of

a block of statements S into a loop L with a body B. The sinking is legal if and only if

there are no flow dependences between the block S and the header of the loop L. The

ifstrnt makes sure the block S is executed only once during the first iteration of L.

2.4.5 Strip-Mining

Strip-mining splits a loop into two tightly nested loops [BGS94]. The outer loop, called

the controlling loop, steps between strips of consecutive iterations. The inner loop steps

between consecutive iterations within a strip. Strip-mining is always legal because it does

not change the order of execution of the iterations. Figure 2.10 shows a loop L before

and after being strip-mined into two loop L1 and L2.

2.4.6 Tiling

Tiling consists of strip-mining two or more tightly nested loops, followed by loop per-

mutation [MW96. WLSlb]. The goal of tiling is to change the way the iteration space

is traversed. such that the accesses to a region of an array are brought closer in time.

Tiling is legal if the loops to be tiled can be permuted. Figure 2.11 shows a nest that

implements matrix multiplication before and after tiling.

L1 do j = 1, n, s
L2 do i = j, min(j+s-1, n) , 1
B a(i) = b(i) + c(i)
E2 enddo
El enddo

(a) original loop (b) after strip-mining

Figure 2.10: Example of strip-mining.

(a) original nest

do ii = 1, n, s
do jj = 1? n, s

do kk = 1, n, s
do i = ii, min(n,ii+s-l), 1

do j = jj, min(njj+s-l) , 1
do k = kk, min(n,kk+s-l), 1

a(k,i)+=b(j,i)'c(k.j)
enddo

enddo
enddo

enddo
enddo

enddo

(b) after tiling

Figure 2.11: Example of tiling.

2.5 Data Reuse and Cache Locality

On the one hand, data reuse [MT96, WLSla] occurs when an application accesses the

same data multiple times. Data reuse is a function of the application and its data access

patterns. On the other hand, cache locality [MT96, WLSla] occurs when the data to be

reused is found in the cache. Cache locality depends on the presence of data reuse in the

application, the size of the data and the cache parameters (e.g. size and associativity).

Data reuse does not always translate into cache locality due to cache line evictions.

2.5.1 Cache Temporal Locality

The cache t empora l locality indicates that the s a m e da ta e l emen t in the cache line is

referenced more than once. There are two types of temporal locality.

Self- temporal locality indicates that the same array reference causes the multiple

accesses to the same data element. In Figure 2.12, the reference c (i) exhibits

self-temporal Iocality.

Group- temporal locality indicates that distinct array references cause the multiple

accesses to the same data element. In Figure 2.12, the reference a(2 j , i) in SL and

in S2 exhibit group-temporal locality.

2.5.2 Spatial Locality and Reuse

The cache spatial locality indicates that diflerent data e l e m e n t s in the same cache line

are referenced. The reuse d i s tance is the number of data elements between the two

referenced elements in the same cache line. Similar to temporal locality. there are two

types of spatial locality-

a SeEf-spatial locality indicates that the same array reference causes the accesses to dif-

ferent data elements in the same cache line. In Figure 2.12: the reference d (j + l , i)

exhibits self-spatiai locality.

Figure 2.12: Example of different types of locality.

Group-spatial locality indicates that distinct array references cause the accesses

to different data elements in the same cache line. In Figure 2.12. the references

b (4j+l, i) in SI and b (4j , i) in S2 exhibit group-spatial locality.

2.5.3 Data Layout

Data lnyo,ut refers to the way the elements of a multi-dimensional array are arranged in

memory [IiRCS'i, M.A95]. Fortran uses column-major storage order for arrays. In the

column-major order, two array elements whose index differs by one in the leftmost (first)

subscript position are allocated consecutively in memory.

The stride-1 (also referred to as the fastest changing) dimension of an array is the

dimension in which two consecutive elements are mapped onto two consecutive elements

on the same cache line.

The data layout of arrays can affect the spatial locality of a reference. The array

reference d (2i, j) , in Figure 2.12, exhibits no locality. However, by changing the data

layout to row-major, the reference would exhibit self-spatial Locality.

2.6 Related Work

In his book [MW96], Michael Wolfe discusses techniques that transform imperfect loop

nests into perfect ones. However? there is very little research on the metrics and the

effectiveness of these techniques. Most proposed algorithms that target perfect nests

ignore imperfect nests and do not try to make them perfect.

Carr, McKinley and Tseng [CMT94] use loop distribution to enable loop permutation

either by making the nest perfect or by simplifying the dependences. Moreover. they use

loop fusion to either increase temporal locality or to make nests perfect. Carr et al.

report that loop distribution was applied in 12 of the 35 applications considered. Loop

distribution was applied to 23 nests and resulted in 29 additional nests. Fusion, however,

is found to be unsuccessful in enabling loop permutation. Similarly, this study applies

loop distribution and loop fusion to obtain perfect nests. In contrast, this thesis reports,

in more detail, on how successful loop distribution and loop fusion are. and on the

reasons why they are sometimes ineffective. The study also evaluates scalar expansion

that makes loop distribution more effective. Moreover, the thesis measures the execution

time overhead introduced by these techniques.

To enhance cache locality, several researchers have proposed a variety of optimizations

and algorithms. Carr, McKinley and Tseng [CMT94] study loop permutation to enhance

cache spatial locality in sequential programs. A cost model is derived to estimate the

number of cache lines accessed when a given loop should be made innermost. A collection

of 35 programs and kernels are considered. They report that loop permutation increased

the percentage of loop nests, in which the loop with the least cost is innermost, from

74% to 85%. Of the 35 programs, 27 showed degradation o r no benefit in performance.

Seven programs experienced a speedup of 1% to 13%. One program posted a speedup of

1 . . Hence. they conclude that applications are often programmed with good locality.

Part of this thesis verifies these results. However, our cost model is simpler, and some

run-time profiling is used to attribute different weights to loop nests. Moreover. this

study considers the possibility of array layout changes to improve spatial locality.

M. Iiandemir, J . Ramajunam and A. Choudhary [I<RC97] propose a cache locality

enhancing framework that unifies loop and data transformations. The framework consid-

ers both loop permutation and changing array layout to improve cache spatial locality.

The researchers present results for small kernels chosen from some NAS benchmarks. In

contrast. this thesis uses two separate simple frameworks to assess the need for changing

the data layout and the need for loop permutation, in 23 complete applications (not only

kernels). It should be noted that the unified framework [ICRC97] is better than our two

separate frameworks, because it considers the interaction between changing the array

layouts and loop permutation.

Chapter 3

Methodology

In this chapter, the methodology and the details of the transformations used in this re-

search are presented. First. Section 3.1 deals with some general issues. Then, Section 3.2

highlights the research approach. Sections 3.3, 3.4, 3.5 and 3.6 discuss the details of

code sinking, loop distribution, scalar expansion, and loop fusion. respectively. Finally.

Section 3.7 deals with spatial locality and presents the loop permutation framework and

the da ta layout framework.

3.1 General Issues

3.1.1 General Definitions

I ' s ta temen t (ifstmt) propagat ion refers to moviog an ifstmt that encloses a loop

inside this loop. Consequently, the loop body will consist of the ifstmt. The block

of statements that used to make up the body of the loop will become the new body

of the i/strnt. Figure 3 .1 illustrates ifstmt propagation.

0 A zero-trip loop is loop which has a trip count equal t o zero, i-e. no iterations of

the loop are executed.

We refer to a loop as safe if the three following conditions hold:

I. the loop is not exited nor entered by a goto statement,

if (cond) then
do i = 1: 10, 1

s t
enddo

endif

(a) NL

do i = 1, 10, 1
if (cond) then

st 1
endi f

enddo

Figure 3.1: T h e nest N: is NI after qstrnt propagation.

2. the loop body has no subroutine calls, and

3 . the loop body has no I/O statements.

3.1.2 Benchmarks Used

In total. 23 applications are considered. Table 0.1 lists all the applications and their

respective benchmark suites. Moreover, the table shows the abbreviations used in the

results chapters (Chapters 4 and 5) . T h e applications are chosen from 4 suites: Perfect

Club [BCP+S9], NAS [BBB+91]. SPEC92 [Dix92] and NCSA [NCS]. Some of the figures

presented in this thesis include a n entry labelled AV. This entry represents the average

for all t h e applications shown.

3.2 Research Approach

The first goal of this research is to investigate how the relative contribution t o execution

t ime of perfect nests can be increased by using the three transformations, namely, code

sinking, loop distribution, and loop fusion. Figure 3.2 shows a block diagram of the

system used.

The block labelled Polaris + New Passes represent the Polaris [BEF+95] compiler and

the passes added for this research. Polaris is a compiler for "Automatic Parallelization

of Conventional Fortran Programs", from the University of Illinois [B D E+96]. Polaris

is a source-to-source restructuring compiler, whose main objective is t o detect parallel

Benchmark Suites

fftpde I FT

Applications

NAS

Abbreviations

buk I IS

mgrid

track

ocean I oc

ora

arc2d

fl052q

t rfd

hydro2d

tomcatv

SR

TF

TI

H Y

wave5

cmhog NCSA

Table 13.1: Applications examined and their respective benchmark suites.

Source Timing
* FI7 System t.

Database
Polaris

Application +
It.

t. Profile
New Metrics

Passes 2 2
Post -- Post

Processing Processing :

i v Results - - - - - Results

Figure 3 . 2 Block diagram of the approach used

loops. It consists of multiple passes (e-g. constant propagation, dead code elimination)

that are applied in sequence. The block labelled F77 System represents a system that

compiles and executes Fortran 77 programs. The Database represents the storage for the

information provided by Polaris and the F7T System. Finally, the Post Processing units

query the database and produce specific results.

The application source is processed, using Polaris, to generate an instrumented source

and a set of profile information. The source is instrumented to measure execution time of

loop nests and subroutine calls in the program. The profile contains information such as

the number of loops and the nesting structures. The instrumented code is then compiled

using a native F7i compiler. and the executable is used to generate timing information.

This timing information along with the profile information is stored in a database. This

database allows subsequent queries that derive the various met rics presented in this thesis,

such as the relative contribution to execution time of nests that may benefit from tiling.

The main advantage of this approach stems from storing timing and profile informa-

tion for later reuse. The time it takes to run Polaris and execute some of the applications

is 1000 times greater than the time it takes to do the post processing. Hence, the infor-

mation in the database can be accessed multiple times without the need to re-run Polaris

or to re-examine the original source code. Thus, the approach makes getting results very

efficient and fast. Moreover, the approach is extensible; to get some new results, simply

a new post processing module needs to be added.

do i = ib, i f . 1
st 1
do j = jbr j f r 1

st2
enddo
st 3

enddo

do j = j b . max(jbjj), 1
if (j == j b) then

st1
endif
if (jb 5 j f) then

st2
endif
if (j == rnax(jb j f)) then

st3
endif

enddo

do i = ib. ilr 1
do j = jb, j j , 1

if (j == j b) then
s t 1

endif
st2
if (j == j f) then

s t3
endif

enddo
enddo

Figure 3.3: The nest N I is imperfect. The nest Ni is N I made perfect by code sinking.
N; is N I made perfect by code sinking when the inner loop is known to execute a t least
once.

3.3 Code Sinking

3.3.1 Mechanics of Code Sinking

Code sinking can be used to transform an imperfect nest into a perfect one [MW96].

The program segments in Figure 3.3 illustrate this transformation. The nest N l , in

Figure 3.3(a). is imperfect because of the statements st1 and s t 3 Code sinking pushes

theses two statements inside the inner loop, as shown in Figure 3.3(b). Guards around

the pushed statements are needed to ensure that they are executed the correct number of

times. Since it may not be known whether the inner loop is a zero-trip loop, its bounds

must be changed to have a trip count of a t least 1. Moreover, the original statements

of the inner loops must be guarded to execute only if the original inner loop executes at

least once. However, if it is known that jb 5 jf then the bounds of the inner loop need not

be changed and the guard around the statement st'- i.e. the inner loop statements-

would not be required, as shown in Figure 3.3(c) .

Code sinking is only legal if dependences allow it. For example, in Figure 3.3(a), a

flow dependence between st1 and the header of the inner loop would make code sinking

illegal. Also, in this research we do not apply code sinking in Loops that a r e not safe,

because of the complications involved. For example, the label of a goto statement that

exits the loop, may need to be redefined, especially when there is code after t h e loop that

has be sunk.

3.3.2 Inner Loops Enclosed by ifstmt s

One code structure that code sinking, as well as loop distribution and loop fusion, must

deal with is a nest where loops are enclosed by ifstmts. This structure is dealt with here

and can also be handled similarly for loop distribution and for loop fusion- Figure 3.4

shows an example of a nest N2, where the inner loop is enclosed by an ifslmt, and how it

is handled to give a perfect nest N;. The statement st1 is sunk in the inner loop to give

an ifstmt that tightlyi encloses the inner loop. Then, the ifstmt is propagated inside the

inner loop. Thus, the ifstmt becomes the only statement in the inner loop. Furthermore,

the statements that used to make up the b ~ d y of the inner loop constitute the body of

the ifstmt. The following assumptions are made:

0 T h e conditional expression cl is assumed to have no side effects. Otherwise. it

would be illegal to sink it into the inner loop, because it will be evaluated itrip*jtrip

times instead of itrip times. where itrip and $rip are the trip counts for the outer

and inner loops, respectively.

0 There are no flow dependences from statements s t1 and st2 to the condition cl .

0 The inner loop of N2 is known to be a non zero-trip loop. Otherwise, the bounds

of the inner loop must be changed and guards must be placed around s t 2

The technique described above is not applied directly when the i/strnt encloses more

then one loop at the same nesting level. Instead, the inner loops must first be fused. Then

the ifstmt is propagated inside the inner loop. Another option would be to propagate the

ifsrnt into each loop and then fuse the loops. This case is mostly relevant when trying

'The ifstmt has only one statement, which is the inner loop.

do i = imin, imax. 1
if (c l)

st 1
do j = jmin, jmax, 1

st2
endclo

endif
enddo

do i = imin, imax, 1
do j = jmin, jmax, Z

if (c l)
if (j == jmin)

st 1
endif
st2

endif
enddo

enddo

(a) N2 (b) Ni

Figure 3.4: The nest N2 is imperfect and has an if statement that encloses a loop. The
nest N; is Nz made perfect by code sinking and ifstmt propagation.

to apply loop fusion to obtain perfect nests, and it will be discussed in more details in

Section 3.6.

3.3.3 Nests with Loops at Same Nesting Level

Figure 3.5 shows how sinking a loop inside another loop can transform a nest N3? where

two inner loops are nested a t the same level, into a perfect nest Ni. The statement st1

can be sunk in the first inner loop. However, this will not make N3 perfect because the

outer loop has two inner loops nested at the same level. .An option is to sink the first

inner loop in the second inner loop. This will make it possible to obtain a perfect nest

with a depth of 3. in the general case, if there were n inner loops at the same nesting

level, then code sinliing the inner loops will result in a perfect nest with depth n+l.

However, in this research, we do not implement this technique, because we believe it will

lead to very complicated code structures, especially in nests with depth greater than 2,

and with more than two loops nested at the same level. Furthermore, loop distribution

and loop fusion are used to handle nests exhibiting this structure.

do i = imin. imax, 1
st 1
do j = jmin. jmax, 1

st2
enddo
do k = kmin, kmax, 1

st:3
enddo

enddo

do i = imin, imax, 1
do k = kmin, kmax, 1

do j = jmin, jmax, 1
if (k == kmin)

if (j == jrnin)
st 1

endif
st2

endif
if (j == jmax)

st3
endif

enddo
enddo

enddo

Figure 3.5: The nest N3 has inner loops nested at the same level. Using code sinking to
push loops inside other loops, the nest N3 can be transformed into a perfect nest N;.

L1 do i = 1: 10, 1
Sl a(i) = b(i) + c(i)
L2 d o j = 1 , 1 0 , 1
5 2 d (i j) = b(j) + c(j)
E2 enddo
El enddo

L; do i = 1, 10, 1

S; a(i) = b(i) + c(i)
E; enddo
Lydo i = 1: 10, l
Ly d o j = 1 , 1 0 , 1

S;l d(iJ = b(j) + c(j)
E: enddo
E; enddo

Figure 3.6: The nest NI is imperfect. The nests N; and N;', are the results of applying
loop distribution to N I .

3.4 Loop Distribution

3.4.1 Mechanics of Loop Distribution

Loop distribution can be used to transform an imperfect nest into a perfect one. as shown

in Figure 3.6. The original imperfect nest NI , is split into two distinct nests, Ni and Ny.

The statement S2, common to both loops Ll and L2 in N L I becomes the body Si of

the perfect nest (L::L:) in N:. The statement S1, enclosed by the outer loop L l only.

constitutes the body Si of the loop L; in N;.

3.4.2 Legality of Loop Distribution

The legality of loop distribution is determined by the dependences between the blocks of

statements to be placed in different loops. Loop distribution is legal if and only if there

exists no dependence cycles, as defined in Section 2.3.3, between the blocks [IiuciT].

Dependences carried by outer loops that enclose the loop to be distributed do not affect

the Legality of distribution because they will always be satisfied by the outer loops[MCV96].

Figure 3.7 shows a n esample where the legality of loop distribution depends on the

blocks of statements to be split. The relevant dependences are S26LS3 due to the ref-

erences to the array a, and 46{s2 due to the references to the array c. On the one

hand, Figure 3.'i(b) shows the distribution when statements S2 and S3 are considered

L; do i = 1, 10, 1 L; do i = 1, 10, 1
S; d(i) = a(i) S; d(i) = a(i)

L I do i = 1, 10: 1 E; enddo S; a(i) = c(i)
Sl d(i) = a(i) Ly do i = 1, 10, 1 E; enddo
$ a(i) = c(i) Si a(i) = c(i) L: do i = 1, 10, 1
S3 c(i+l) = a(i) S;' c(i+l) = a(i) S;' c(i+l) = a(i)
El enddo E; enddo E; enddo

(a) Original loop (b) Legal (c) Illegal

Figure 3.7: Loop distribution, as in (c) is illegal because the distributed blocks, caused
by S2dLS3 and s3d{&. Loop distribution in (b) is legal because the above dependences
are in the same block.

a block, and the statement S1 is considered another. The distribution is legal because

there are no dependence cycles between the two blocks. On the other hand: Figure 3.7(c)

shows the distribution when statements S1 and S2 are considered a block BL2, and the

statement S3 is considered another block B3. The distribution is illegal because there is a

dependence cycle between BI2 and B3. The cycle is made of BL26L B~ caused by Sz6&

and of ~ ~ 6 { BL2 caused by s ~ ~ S { & .

3.4.3 Scalar Expansion

The definition and use of a scalar variable in a loop may give rise to loop-carried anti

and output dependences [ILIWSG]. Loop distribution may become illegal due to a scalar

dependence cycle. A scalar dependence cycle is a dependence cycle that will cease to be

a cycle once scalar anti and output dependences are removed.

Scalar espansion[PCVS 61 is a transformation tha t replaces references to a scalar in

a loop by references to an array. Each Ioop iteration references a different element of

the array- Consequently, scalar expansion replaces scalar jIow dependences with loop-

independent dependences. More importantly, scalar expansion eliminates t he scalar anti

and output dependences. Hence, scalar expansion may enable loop distribution by re-

moving such dependences and thus breaking up scalar dependence cycles.

Figure 3.8 illustrates the scalar expansion transformation and how it can enable loop

L; do i = i6, il. 1
5'; rx(i) = a(i)

Ll do i = ib r if, 1 L1 do i = ib, if, 1 E; enddo
SL r = a(i) SL rx(i) = a(i) L; do i = ib, ilr 1
L2 do j = jb7 jf. 1 L2 do j = jb, jt7 1 L; d o j = jb , j l , 1
5'2 b(i.j) = r $2 b(i j) = rx(i) S: b(i.j) = rx(i)
E2 enddo E2 enddo EF enddo
El enddo El enddo Ey enddo

(a) Original (b) Scalar expansion (c) Loop distribution

Figure 3.8: The nest in (a) cannot be made perfect by loop distribution because there
exists a scalar dependence cycle caused by the variable r. After expanding r into a one
dimensional array r x in (b) , loop distribution is applied to yield (c)

distribution. In the program segment shown in Figure 3.8(a), L1 is t he Loop to be

ditributed. The blocks to be distributed are: S1 constitutes the first biock BI while La:

S2 and E2 constitute the second block B2. LOOP distribution is illegal because there is

a dependence cycle between Bl and B2. The cycle consists of S16f S2, which flows from

Bl to B2, and S262S1 which flows from B2 to BI . Figure 3.S(b) shows the result after

scalar expansion of the scalar r. The scalar anti-dependence S26;S1 is removed and the

dependence cycle between Bl and B2 is broken. Therefore. loop distribution becomes

legal. as shcwn in Figure :3.S(c). The mechanics and legality of scalar expansion are

discussed in detail in Section 3.5 .

3.4.4 Reasons for the Ineffectiveness of Loop Distribution in
Obtaining Perfect Nests

There are several reasons that disallow loop distribution from obtaining perfect nests.

They are classified below:

UNSAFE: the loop considered is not a safe loop. If the loop is entered or exited by

a goto statement then applying Loop distribution becomes very complicated. The

presence of 110 or subroutine calls requires inter-procedural analysis which is not

available for this research. Thus, in this case, loop distribution is considered unable

to transform an imperfect nest into a perfect one.

STRUCTURE: the structure of the nest will disallow distribution. The two blocks

to be placed in different loops might not be separable. In fact, even after trying

ifstmt propagation, there may remain an ifstmt whose header and tail statements

are in the two different blocks to be distributed.

ARRAYDEP : there exists a dependence cycle that prevents distribution. This cycle

is made up of only array dependences and scalar flow dependences. In this case.

scalar expansion would not enable distribution.

SCALARDEP : all the dependence cycles that prevent distribution are scalar depen-

dence cycles, as defined in Section 3.4.3. In this case, scalar expansion can enable

distribution.

In applying loop distribution, the reason for failure in obtaining a perfect nest is noted. If

a loop is found to be unsaje then the reason for distribution failure is marked as UNSAFE,

and the other conditions are not checked. Analogously, if SCALARDEP is marked as the

reason for failure then the loop is safe: its structure allows distribution; there are no

dependence cycles made of only array dependences: and finally there exists a t least one

scalar dependence cycle.

3.5 Scalar Expansion

Scalar expansion is a transformation that replaces a scalar variable, in a loop, by an

array variable [PWSG, MW961. Each element of the new array variable replaces the

scalar variable for one iteration of the loop. Scalar expansion eliminates an t i and output

dependences caused by references to the scalar. Also, f low depe~ldences will be replaced

by loop-independent dependences. Hence, scalar expansion can be used to eliminate

scalar anti and output dependences that are part of a dependence cycle, allowing loop

distribution to be applied.

REAL r
do i = 1: 10, 1

S1 r = ... SL'
s 2 ... = r s2 '

enddo

(a) N

REAL r, rx(l0)
do i = 1, 10, 1

rx(i) = ...
... = rx(i)

enddo

(b) 14"

Figure 3.9: The loop dependent dependence, in the nest N, is eliminated by expanding
the scalar r into an array rx (nest N').

3.5.1 Mechanics of Scalar Expansion

Figure 3.9 illustrates the application of scalar expansion. The references to the scalar

r are replaced by references to the array rx. The number of elements of r x should be

at least equal to the trip count of the loop considered. In the nest N. there are two

dependence relations. First, there is the ff ow dependence SlSLS2, which becomes S',6LS,

in the nest N'. Second, there is the anti dependence S16;Sz, which is eliminated in N'.

Thus, scalar expansion eliminated the loop carried anti dependence.

There are some factors that complicate the application of scalar expansion. First.

if the scalar to be expanded is alive after the loop then the correct value of the scalar

must be copied from the appropriate array element to the scalar after the loop is exited.

Figure 3.10 illustrates this case and shows how it is handled. Second. if there is an

upward-exposed use2 of the scalar in the loop, then the flow dependence is a loop carried

dependence. Hence, the use and the definition of the scalar in the loop would be replaced

by references to consecutive array elements. Figure 3.11 illustrates this case and shows

how correctness is preserved. Third, if scalar expansion is to be applied for a loop nest

with a dimension greater than 1, then the number of elements in the array should be

equal to the multiplication of all the trip counts of the loops in the considered nest.

Hence, the size of the array may be very large which may cause considerable execution
-- - - -

',4n upward-exposed use of a variable A means that the variable A is used before it is defined inside
the loop. During the first iteration of the loop, the value of the variable to be used comes from outside
the loop.

REAL r
do i = 1, 10: 1

REAL r: rx(l0)
do i = 1, 10, 1

rx(i) = ...
... = rx(i)

enddo
r = rx(l0)

(a) N (b) N f

Figure 3.10: The scalar r is used after the loop. Thus, it must be assigned the correct
value at the exit of the loop.

REAL r
r = ...
do i = 1. 10, 1

... = r
r = ...

enddo

REAL r, rx(lO+l)
r = ...
rx(1) = r
do i = 1: 10, 1

... = rx(i)
rx(i+l) = ...

enddo

Figure 3.11: The use of r in the nest N is upward-exposed. The nest N' shows how to
apply scalar expansion to r. It should be noted that the flow dependence between rx(i+l)
and rx(i) is a loop carried dependence.

REAL r
do i = 1, 10, 1

do j = 1, 5 , 1
do k = 1: 15, 1

r = ...

REAL r, rx(15,5?10)
do i = 1, 10, 1

do j = 1, 5, 1
do k = 1, 15, 1

rx(kj, i) = -..
... = rx(k.j,i)

enddo
enddo

enddo

(a) N (b) N'

Figure 3.12: To eliminate the loop carried anti-dependence, the scalar r must be expanded
such that there is a distinct array element for every triplet (k.j,i).

time overhead. When loop bounds are compile-t ime constants, a multi-dimensional array

can be used to replace the scalar. Each dimension of the array would correspond to a

loop of the nest. Figure 3-12 illustrates this case and how it is handled. The use of rnulti-

dimensional arrays m a h s indexing straightforward. Finally, if the bounds of the loop

are not compile-time constants then static arrays cannot be used. Instead dynamically-

allocated arrays must be used. Figure 3.13 illustrates this case and how it can be handled

for a loop nest with dimension equal to 1. The syntax to express the dynamic allocation.

use and deallocation of arrays in this figure, conforms to that of the SGI fi'i compiler. The

following remarks clarify some of the constructs used in the code segments in Figure 3-13.

The declaration POINTER (n p t r , m) states that the pointer rxptr and the array

rx are associated. The pointer -mptr is used to allocate the array. The array rx is

used to access the array elements.

The declaration DI!IfE!VSION n(0:O) indicates that rx is a uni-dimensional array

where the number of elements is not specified.

The statement rxptr = malloc(imax*8) allocates imax*8 bytes. These bytes will

be pointed to by rxptr. ,4 variable of type REAL is assumed to be 8 bytes long.

REAL r
do i = I, irnax, 1

r = ...
..- = r

enddo

REAL r, rx, rxptr
POINTER (rxptr? rx)
DIMENSION rx(0:O)
rxptr = malloc(imax"S)
do i = 1, imax, 1

rx(i-I) = ...
... = rx(i-1)

enddo
CALL free(rxptr)

(a) N (b) N'

Figure 3.13: The upper bound, imax, of the loop in the nest N is not a compile-time
constant. To apply scalar expansion correctly? the array, used replace the scalar, must
be declared dynamically, as shown in nest N'.

0 The array rx is indexed from 0 to irnax-1. This explains the use of the array

reference m(i-I).

a The statement CALL freelrxptr) deallocates the memory used for the array .rx.

Figure 3.14 illustrates the case of variable Loop bounds and a 2-dimnesional loop nest.

In this case. the number of array elements allocated is equal to the multiplication of the

trip counts of all the loops in the nest. Moreover, indexing the array that replaces the

scalar is complicated because the 2-dimensional iteration space is mapped onto a one

dimensiona1 array.

3.6 Loop Fusion

3.6.1 Mechanics of Loop Fusion

Loop fusion can be used to transform an imperfect nest into a perfect one [CMT94].

Figure 3.1.5 illustrates this transformation. The nest N I has two inner loops L2 and L3

at the same nesting level. The perfect nest N; is obtained after fusing these two inner

loops. The headers of the loops L2 and L3 need not be compatible. The lower bound

of the resulting loop Li3 is equal to the minimum of the lower bounds of the loops to

REAL r
do i = 1, imax, 1

do j = 1, jmax, 1
r = ...

REAL r, rx, rxptr
POINTER (rxptr, rx)
DIMENSION rx(0:O)
rxptr = rnalloc(imax*jmax*S)
do i = 1, imax, 1

do j = 1, jmax, 1
rx((j-1) + jmax*(i-1)) = ...
-.. = rx((j-1) + jmax*(i-1))

enddo
enddo
CALL free(rxpt r)

Figure 3.14: In nest N, scalar expansion is to be applied in two nested loops whose upper
bounds are variable. The nest N'. shows the result after applying scalar espansion to the
nest N. It should be noted that the use of a two-dimensional array is not possible, because its
dimensions are not known constant. Thus, a one dimensional array must be used. Hence, the
comples array subscripts.

be fused. Similarly, the upper bound of the resulting loop L;, is equal to the maximum

of the upper bounds of the loops to be fused. The guards C[and C!J ensure that the

bodies of L2 and L3 respectively, are executed the correct number of times. -Also, the

loop indices are unified and the array subexpressions are modified accordingly.

When applying loop fusion to obtain a perfect nest, the loops to be fused may be

enclosed by a common ifstrnt, similar to nest N2 shown in Figure 3.16. To transform a

nest such N2 into a perfect one, the loops are fused inside the qstmt. Then the ifstmt

is propagated in the fused loop, to give a perfect nest N; in Figure 3.16. This example

also shows the case when the loops to be fused have compatible headers. Another way

to handle this case is to propagate the ifstmt into the the two loops and then fuse the

loops. However, we do not adopt this strategy because it adds more code to the body of

the loops, hence decreasing the chance of having a legal fusion.

L1 do i = is, if, 1
Lz do j = jb7 jl, 1
C L-2 st%)
Ez enddo
L3 do k = kb, kf , 1
S2 st2(k)
E3 enddo
El enddo

L; do i = ib, if, 1

L;, do h = min(jb,kb), max(j ,k), 1
c; if (jb 5 h 5 jf)
s : st l (h)

endif

G if (kb 5 h 5 kl)
qf 2 st?(h)

endif
E: enddo
E; enddo

Figure 3.15: The nest N I has inner loops nested at the same level. Fusing the two inner
loops, transforms the nest N1 into a perfect nest Nl.

3.6.2 Legality of Loop Fusion

Fusing two adjacent loops Ll and L2 with bodies B l and B2 respectively, to yield LIZ with

a body made of BI followed by B2, is legal if the following conditions are satisfied. First:

in L12 there should be no dependences, unless carried by an outer loop, whose source is

B2 and sink is BI [MW96, MAS'i]. Second, the header of each loop to b e fused should

not depend on the body of the other loop. The loop headers need not be compatible as

illustrated in Figure 3-15.

Figure 3-17 illustrates a case where loop fusion is illegal and a case where it is legal.

Fusing L2 and L3 to give L23 as shown in Figure 3.17(b) is illegal. In fact, in L23, there is

a dependence SjJ;,S2 caused by the refernces to the array c. This dependence indicates

that in every iteration, S3 uses an element of c that will be written by S2 in the next

iteration. The original nest in Figure 3.l'i(a), however, indicates that the elements of c

read by S3 will be previously defined by S2: which is no longer the case in the nest of

Figure :3.17(b).

In Figure 3.17(c), the fusion of LI and L2 into LIZ is legal because in L I Z there is no

dependence whose source is S2 and sink is SI. The only dependence in Ll:! is SlJLS2

caused by the references to the array a.

do i = ib, ij: 1
if (c l) then

do j = j b . jf, 1
s t 2
enddo
do j = jb l j f? 1

st3
enddo

endif
enddo

do i = ibr i f ? 1
do j = jb , jf, 1

if (c l)

enddo

(a) N2 (b) N',

Figure 3-16: The nest Nz has inner loops nested at the same level. These inner loops
are also enclosed by a common ifstmt. Using loop fusion and ifstmt propagation, N2 is
transformed into a perfect nest N;.

L L do i = 1, 10, 1
S, a(i) = b(i) + 2
EL enddo L l do i = 1, 10, 1 L I 2 do i = 1, 10. 1
L2 do i = 1, 10, 1 Sl a(i) = b(i) + 2 Sl a(;) = b(i) + 2
S ~ (i) = a(i) * 2 EL enddo S2 c(i) = a(i) * 2
E2 enddo L23 do i = 1, 10, 1 EL2 enddo
L3 do i = 1, 10, 1 S2 c(i) = a(;) 2 L3 do i = 1, 10, 1
S d(i) = c(i+l) S d(i) = c(i+l) S3 d(i) = c(i+l)
E3 enddo E23 enddo E3 enddo

(a) Original nest (b) Illegal fusion (c) Legal fusion

Figure 3.17: Fusion of L2 and L g , as shown in (b), is illegal (see text). However, fusion
of Lland L2, as shown in (c) is legal.

3.6.3 Reasons for the Ineffectiveness of Loop Fusion in Obtain-
ing Perfect Nests

There are several reasons that disallow loop fusion from obtaining perfect nests. They

are classified below.

UNSAFE: one of the loops to be fused is an unsafe loop, i.e. it is entered or exited by

a goto statement. The presence of I/O or subroutine calls requires inter-procedural

analysis which is not available for this research. Thus, in this case, loop fusion is

considered unable to transform an imperfect nest into a perfect one.

STRUCTURE: the structure of one of the nests disallows fusion. For instance, even

after trying qstmt propagation, there may remain an ifstmt that encloses one of

the loops to be fused. Therefore, the i/stmt prevents the loops from being adjacent.

INTERCODE: some code between the loops to be fused cannot be moved to make

the loops adjacent.

BACKDEP: a dependence in the fused loop indicates that fusion is illegal. as seen

in Section :3.6.2.

HEADERDEP: there is a dependence between the body of one of the loops to be

fused and the header of the other.

In applying loop fusion to two loops L2 and L3 that are enclosed by L,, the above

categories, are examined, in the listed order. For instance, if one of the three loops is

found to be unsafe then the reason for fusion failure is marked as UNSAFE, and the other

conditions are not checked. Analogously, if HEADERDEP is marked as the reason for

failure, then all three loops are safe; their structure allows fusion; there is no intercode

that cannot be moved between the loops to be fused L2 and L3; there are no backward

dependences in the resulting fused loop; and finally there exists a dependence between

the header of L2 and the body of Lg or vice-versa.

3.6.4 Fusion Algorithm

Our fusion algorithm targets a loop that directly encloses multiple loops with possible

straight-line code (called INTERCODE) between them. It tries to fuse directly enclosed

loops and sink straight-line code in order to obtain a perfect nest. There are more than

one variations of handling the straight-line code between the loops to be fused. In fact,

the order of applying code sinking to handle the INTERCODE and fusing adjacent loops

may affect the legality of loop fusion.

Indeed, it is beneficial to always fuse adjacent loops before sinking code in any of

the loops. Figure 3.1s illustrates why. There are two ways of obtaining NIinar from

N,,,. First, Sl can be sunk in L2 and then L2 and L3 can be fused. In N, which is

obtained from No,, after code sinking, the fusion of L2 and L3 is illegal because there

would be backward dependence in the resulting loop from S3 to Sl. Thus. for No,, code

sinking followed by loop fusion is illegal. However, L2 and L3 can be fused. which is

legal, then S1 is sunk in the resulting loop, which is also legal. Thus, for No,, loop fusion

followed by code sinking is legal. Ideally, sinking followed by fusion and fusion followed

by sinking are equivalent because they yield the same transformed code. However. most

compilers are conservative when dealing with control dependences and thus fusion after

code sinking may be illegal. Code sunk inside a loop is executed only once either at the

first iteration or the last iteration of the loop. Most compilers assume that the sunk code

may be esecuted at every iteration of the loop, hence the additional dependences that

make fusion illegal.

The algorithm in Figure 3-19 implements loop fusion in order to obtain perfect nests.

The strategy of the algorithm is to delay code sinking as much as possible. Code sinking

is applied only when there are no more adjacent loops.

First: the algorithm starts by making a copy of the whole nest (i-e. Lout, ,) . A copy

is needed to restore the nest to its original state, in case the algorithm is not successful

in obtaining a perfect nest.

Second, all the adjacent loops are fused. When two adjacent loops cannot be fused

then the whole algorithm fails and the original nest must be restored. If the number

of loops directly enclosed by Lout,,, becomes equal to one, then all the directly enclosed

L1 do i = 1, 10, 1
Sl a(i) = b(i) + 2
L2 d o j = 1 , 1 0 . 1
s2 c (i j) = c(j.i)
E2 enddo
L3 do j = 1, 10: 1
S3 d(i.j) = a(j)
E3 enddo
El enddo

(a) Original nest NOrg

Ll do i = 1, 10, 1
L2 do j = 1, 10, 1
C1 if (j == 1) then
SI a(i) = b(i) + 'I!
c2 endif
s 2 c[i:j) = c(j:i)
E2 enddo
L3 do j = 1, 10. 1
-C3 d(i:j) = a(j)
E3 enddo
El enddo

(b) After code sinking, N,,

L1 do i = 1, 10, 1
L2 do j = 1, 10. 1
G if (j == 1) then
S1 a(i) = b(i) + 2
c2 endif
sz c(i.j) = c(j,i)
5'3 d(i:j) = a(j)
E2 enddo
El enddo

(c) After fusion, Nj,,, (d) Final nest Nfinal

Figure 3.18: Esample of a code segment where applying code sinking before loop fusion
might make loop fusion illegal. The nest No, is the original nest. The nest Ncs is Nor,
after sinking Sl in L 2 . For W,, fusion of L2 and Lg is not Legal. The nest Ni,,, is No,,
after fusing L2 and L3. Finally, the nest NIi,,[is obtained from NI,,, by sinking Sl in
L2

Input: A loop Loutet
Output: A boolean indicating if a perfect nest is obtained

LoUte, is modified to obtain the perfect nest

begin
//Make a copy of the original loop to be restored if fusion is not successful
Loop Copy = ~lone(L,,~,,)
SetofLoops DirectlyEnclosed = G e t D i r e ~ t l y E n ~ l ~ ~ e d L o o p s (L ~ ~ ~ ~ ~)
//if Louter directly encloses 0 or 1 loops then fusion
//is not applicable. Code sinking should be used if there is only 1 enclosed
//loop. If there are no enclosed loops then nothing needs to be done.
if (DirectlyEnclosed. Cardinal() C 2)

return FALSE;
endif
while (TRUE)
while(Direct1yEnclosed has two loops Lint and Lin2 that are adjacent)

L f used = fuse(Linlr Lin2)
if (Fusion failed)

LOLLter = Copy //restore the original Louter
return FALSE

endif
DirectlyEnclosed.Remove(Lin~)
DirectlyEnclosed. Remove(Lin2)
DirectlyEnclosed. Add(Lfused)

endwhile

//check if all the inner loops were fused into one
if (DirectlyEnclosed. Cardinal () == 1)

ApplyCodeSinking(LoUt,,)
if (Sink succeeded)

return TRUE
endif
else

Lout,, = Copy //restore the original Louter
return FALSE

endelse
endif
else //there are at least two loops Linl and Lin2

//in DirectlyEnclosed with code between them
SinkIntercode (L;,, , Lin2)
if (Sink failed)

L,,ter = Copy //restore the original Lovter
return FALSE

endif
endelse

endwhile
end

Figure 3.19: Algorithm Used in Applying Loop Fusion to Obtain Perfect Nests

loops by Lo,,,, are fused into one loop. Thus, sinking the code between Lout,, and

the remaining inner loop would make the nest perfect. In this case, fusion succeeds in

transforming the imperfect nest into a perfect one.

However, if there are no more adjacent loops to fuse and the number of loops directly

enclosed by LoUte,, is greater than one, then intercode between two loops must be moved

to make the loops adjacent. If code sinking fails in making the two loops adjacent then

the algorithm fails. Otherwise, there are two new adjacent loops? and the algorithm goes

back to the stage of fusing the adjacent loops.

Handling the intercode between two loop requires more explanation. The intercode

handler (SinkInterCode()) tries to make the two loops Linl and Lin2 adjacent. It

determines the block of statements B12 that needs to be sunk. Then it computes the

dependences between BI2 and Linl on the one hand, and between Lin2 and B12 on the

other. These dependences determine where the block of statement B12 can or must be

sunk. If there are no dependences between BIZ and neither loop, then B12 can be sunk

in either loop. However, if there are dependences between Bl2 and both loops, then code

sinking in any of the loops is useless because loop fusion of Linl and Lin2 would later fail.

If there are dependences between BI2 and only one of the loops, then BI2 must be sunk

in the loop with which it has a dependence. If BL2 is sunk in the loop with which it has

no dependence then the fusion of Lin1 and Lm2 would later fail.

3.7 Spatial Locality

This section deals with locality in general and spatial Locality in particular. First: a

characterization of array references is presented. Second, the framework used to assess

the need for data layout to enhance spatial locality is discussed. Third, the framework

used to assess the need for loop permutation to enhance spatial locality is presented. This

research does not present a framework to combine both loop permutation and array layout

changes. We make two assumptions in our work on locality. First, arrays are assumed

to be stored in Fortran's column-major order. This assumption is not restrictive and

does not affect the generality of the work. Second, multiple (i.e. more than one) data

elements are assumed to fit in a cache line; otherwise: no spatial locality can occur.

3.7.1 Array Reference Characterization

This section characterizes individual array references in terms of what transformations

are needed to achieve spatial locality for each reference. In order to have spatial locality.

certain conditions, regarding array subscript expressions and the order of loops in a nest,

must exist. The conditions for self-spatial locality are different than those for group-

spatial locality.

3.7.1.1 Self-spatial Locality

Self-spatial locality depends on the subscript expressions of the array reference and on the

loops ordering of its enclosing nest [KRC97, MT96, WLSla]. Given an array reference:

the following conditions must exist to have self-spatial locality.

0 One of the loop index variables appears only in the stride-1 dimension of the array

reference.

0 The coefficient of the index variable mentioned above, should be either 1 or -I.

The position of the corresponding loop must be innermost in the nest.

Given an array reference, it can be classifed into one of the following categories. These

categories reflect how the given array reference can be affected to exhibit self-spatial

Iocality, if possible.

0 Reference not enclosed: the array reference is not enclosed by any loop. Hence,

self-spatial locality is not possible.

e Inner temporal: the array reference exhibits self-temporal locality with respect

to the inner Loop (see Section '2.5.1). Thus, spatial locality may only be obtained.

if possible, by permuting the innermost loop with one of the outer loops, which

in this case will disturb the temporal locality. Therefore, we believe that , in this

case, obtaining spatial locality would not be beneficial. Figure 3.20 illustrates this

case. For a given value of the index i, all the iterations of loop j access the same

element of array A. Therefore, the array reference A (i) exhibit self-temporal locality

with respect to the inner loop j . Moreover, the reference A (i) exhibit self-spatial

do i = 1, 10, 1
d o j = 1, 10, 1

... = A(i) + ...
enddo

enddo

Figure 3.20: Example of self-temporal locality with respect to the innermost loop

reuse with respect to the outer loop i. To increase the potential of translating

this reuse into spatial locality, the i loop should be permuted to the innermost

position. However. by doing so, the loop carrying the self-temporal locality will be

made outermost7 which may diminish the temporal locality.

0 Spatial locality not possible: the subscript expressions of the array reference

prevent spatial locality. The reference a [3i ,4 j 1 is an example of this case. Indeed.

the reference a[Bi ,4j] cannot exhibit self-spatial locality because both of the in-

dices, in the subscript expressions, have coefficients that are different than 1 and

-1.

0 Already in spatial order: the array reference exhibits self-spatial locality already.

0 Loop Permutation Needed: even though spatial reuse may be present due to

accesses to the same cache line, it may not be translated into spatial locality if

the loop carrying the locality is not innermost. The reason for this is that the

multiple accesses to the same cache line w e separated by the iterations of inner

loops. Therefore, the accessed cache line may be evicted before it is reused. By

making the loop that carries the reuse innermost, the accesses to the same cache

tine would become closer in time which increases the chance of obtaining spatial

locality. Figure 3-21 illustrates this case. Two consecutive iterations of the i

loop, access two consecutive elements of array a in the same cache line. However,

since the i loop is outermost, consecutive iterations of this loop are separated by

jmax-jmin iterations of the j loop. Thus, the cache line may be evicted before the

next iteration of the i loop occurs. By making the i loop innermost, there will

do i = imin, imax, 1
do j = jmin, jmax, 1

sum = sum + A(iJ
enddo

enddo

do j = jmin, jmax, I
do i = imin, imax, 1

sum = sum + A(i.j)
enddo

enddo

Figure :3.21: The nest N L has no spatial locality. The nest NL', obtained from N1 by loop
permutation, has spatial locaIity from the array reference A(i.j).

be no j loop iterations between consecutive iterations of the i loop. Thus, spatial

locality may be improved.

Layout Change Needed: in some array access patterns, consecutive elements in

an array dimension D may be accessed. If dimension D is the stride-1 dimension

than the accessed elements will be in the same cache line and thus there will be

spatial locality. However, i f dimension D is not the stride-1 dimension then the

accessed elements will be in different cache lines and there would be no spatial

locality. By changing the array layout such that dimension D becomes the stride-1

dimension would cause spatial locality. Figure 3.22 illustrates this case. By storing

the array .-\ in row-major order, the subscript expression of the stride-1 dimension

becomes j instead of 2i. And since the j loop is innermost, spatial locality will

result.

0 Layout Change and Loop Permutation Needed: this case is the combination

of the two cases above. Changing the array layout is needed to obtain spatial reuse.

and loop permutation is needed to translate this reuse into locality. Figure 3.23

illustrate this case. Two consecutive iterations of the i loop access two consecutive

elements in a row of array A. However, since array A is stored such that a cache

line contains consecutive elements of a column of A, there is no spatial reuse. By

laying out A in row-major order, the two consecutive iterations of the i loop would

access two elements of A in the same cache line. Even though at this stage there

exist spatial reuse, the accesses to the same cache line are separated by jmax-jmin

do i = irnin, irnax, 1
do j = jmin: jmax, 1

sum = sum + A(2i j)
enddo

enddo

Figure 3.22: The array reference A(2i j) exhibits no spatial locality because it is stored
in column-major order. If array A is stored in row-major order, then the index j will be
in the stride-l dimension, and spatial Iocality will be achieved.

do i = imin, imax, I
do j = jmin: jmax, 1

sum = sum + A(2j;i)

(a) Nl

do j = jmin, jmas, 1
do i = imin, imax, 1

sum = sum + A(2j,i)
enddo

enddo

Figure 3.23: The nest N1 has no spatial locality. The nest N1' is obtained from Nl by
loop permutation. And if array A is stored in row-major order then spatial locality will
be achieved.

iterations of the j loop, during which the cache line may be evicted. By permuting

the i and j loops, the two accesses to the same cache line will be in two consecutive

iterations of the inner loop i. Thus spatial locality would be obtained.

0 Permutation or layout needed: either loop permutation or a change in the array

layout is needed and sufficient to get self-spatial locality for the array reference.

3.7.1.2 Group-Spatial Locality

Group-spatial locality depends on the subscript expressions of the array references in-

volved. Given an array reference, it can be classifed into one of the following categories.

These categories reflect how the given array reference can be affected, to exhibit group-

spatial locality, if possibIe.

Temporal group: the reference belongs to a group of references exhibiting group-

temporal locality. Two array references Al and A*, to the same array, are considered

to exhibit group-temporal locality with respect to an enclosing loop L if either of

the next two conditions hold [CMT91]:

1. there exists a loop-independent dependence caused by the references to A L

and A2, or

2. there exists a loop-carried dependence S16S2 represented by distance vector d

= (dl , dN), and caused by the references to Al and -A2, where lldLll 5 2.

and all other entries in d are zero.

In this case, changing the array layout is considered not beneficial because the

reference already exhi bits group-temporal locality.

Spatial group: the reference belongs to a group of references exhibiting group-

spatial locality. Two array references Al and A*? to the same array. are considered

to exhibit group-spatial locality if the two following conditions hold [CMT94]:

1. All array subscripts in -A1 and A2 must be pairwise identical except the sub-

scripts in the stride-1 dimension.

2. The absolute value of the difference of the subscripts in the stride-1 dimension

of A l and A2 must be greater than zero and smaller than the cache line size

in array elements.

Layout change needed: the above two conditions listed for "Spatial group"

may hold for a dimension D that is different than the stride-1 dimension. If the

layout of the array can be changed such that dimension D becomes the s t r ide1

dimension, then group-spatial locality may be obtained. Figure 3-24 illustrates this

case. The two references A (3 j ,4i) and A (3 j ,4i+1) access two elements of A that

are consecutive and in the same row. If A is stored in column-major order then

cache lines would contain consecutive array elements of the same column. Thus,

A(3j ,4i) and A(3 j ,4i+l) will exhibit no group-spatial locality. However, if A is

stored in row-major order than the elements accessed by the two references would

be in the same cache line. Thus group-spatial locality would be exhibited. Loop

do i = 1, 10, 1
do j = 1, 10, 1

B(j,i) = A(3j74i) + A(3j,4i+l)
enddo

enddo

Figure 3.24: By laying out the array A in row-major order: then the two array reference
to .A would exhibit group spatial locality.

permutation does not affect group-spatial locality because it does not affect the

st ride-1 dimension of arrays.

3.7.2 Data Layout Framework

This section describes the framework used to assess whether changing the da t a layout

of arrays is needed to enhance spatial locality. First, it should be pointed out that this

framework does not check for the legality of changing the data layout. Data layout

may be illegal due to array aliasing. Second, this framework only considers changing the

array layout as a n int ra-procedural transformation as opposed to a global transformation.

Hence, the effects of changing the layout of an array, in a given procedure, are not

considered on other procedures. Because of the above two limitations, the framework

presented here will yield optimistic results as to the benefit of layout change. In other

words, when the legality and the inter-procedural effects of changing array layouts are

taken into accout, the benefit of data layout would be smaller than the one reported by

this framework.

This framework considers conflicts between references to the same array. In fact, two

array references A L and -A2 to the same array A, may require different layouts to exhibit

spatial Locality. By choosing an array layout to make A l exhibit spatial locality then .A2

would not exhibit spatial locality, and vice-versa. It should be noted that the layout of

a given array is considered static, i.e. it remains the same during the whole program.

To estimate the effect of allowing different layouts for different arrays, the algorithm in

Figure 3-25 is applied to the benchmark applications. First, the algorithm divides array

references into groups. Each group contains all the references to a given array. Second,

Input : Pgm : A program
Output : Norig : Number of a r r ay references exh ib i t ing s e l f

o r group-spatial l oca l i t y without any change i n layout
N,,,: Maximum number of ar ray references exh ib i t ing s e l f

o r group-spatial l oca l i t y when t h e a r r ay layout can be
d i f f e r e n t f o r d i f fe ren t ar rays

//group t he a r r ays such t h a t a l l references t o t h e same a r ray a r e together
Set of ArrayGroups arraygroups = ~ g m . Group~rrays (1

/ / i t e r a t e over a l l t h e groups of a r rays
fo r (1 t e r a to r g roup i t e r = arraygroups; g roup i t e r . va l i d () ; ++groupiter)

/ / i t e r a t e over t h e dimensions of t h e a r ray t h a t represents t he
/ /current arraygroup
f o r (1 t e r a t o r d imi te r = groupiter.current().array~).dimensions();

dimiter .va l id () ; ++dimiter)
//count and saves t he number of references with s e l f o r group-spatial
/ / l o c a l i t y when the current dimension is t h e f a s t e s t changing
groupiter.current~).C0~11tSpatialRefs(dimiter.current~~~

endf o r

/ /get t h e number of references with s p a t i a l l o c a l i t y f o r t h e
//dimension o r i g i n a l l y f a s t e s t changing, and add it t o N o r i g

NDrig += groupi t e r . current (1 . GetOrgCount ()

/ /ge t t h e maximum number of references with s p a t i a l l o c a l i t y f o r
//any dimension made f a s t e s t changing, and add it t o N,,,
N,,, += g roup i t e r . current 0 . GetMaxcount ()

endf o r
end

Figure 3.25: Algorithm used to assess the effects of data layout on the array references
with self or group-spatial locality.

for each group, each dimension of the array is considered as the stride-1 dimension. and

the number of references exhibiting self or group-spatial locality is recorded. The total

number (N,,;,) of array references with spatial locality for the original stride-l dimension

for all the arrays is computed. The maximum number N,,, of array references with spatial

locality for any dimension in the stride-1 position for all the arrays is also computed.

Hence, N,,, is the maximum total number of array references, in the application, that

exhibit group or self-spatial locality, when having different layouts for different arrays

is allowed. If N,,, is found to be greater than Norig, then flexible layout is considered

desirable.

3.7.3 Loop Permutation Framework

This section describes the framework used to assess whet her loop permutation is needed

to enhance spatial locality. This framework considers conflicts between array references

in the same nest. In fact, two array references may require two different loops in the

innermost posit ion of the enclosing nest.

For every nest, an index is calculated for every loop when it is placed innermost.

Then, it is decided whether loop permutation is desirable. The decision is made by

comparing the maximum index calculated with the index of the original inner loop. If the

maximum index is larger than the index of the original inner loop, then loop permutation

is considered desirable. The index is simply the count of array references that exhibit

spatial locality when the considered loop is innermost. More precisely, for each nest N

with loops (L I , Lz. L,), a vector (MI, Mz, . . . , M,) is calculated, where Mi is the

number of array references exhibiting spatial locality when loop Li is made innermost. RII,

is the number of array references with spatial locality for the loop L, which is originally

innermost. kI,,, is the maximum of the elements in the vector (M I , Mz, . . . , M,), and

corresponds to the highest number of axray references exhibiting spatial locality if any

loop in the nest N can be made innermost. To decide if loop permutation is desirable

hI,,, is compared to M,. If (M,,, > M,) then loop permutation is considered desirable,

otherwise it is not.

Chapter 4

Improvements in Nest Structures

This chapter reports on the experimental results concerning loop nests structures. Sec-

tion 4.1 describes how loops and nests are timed. Section 4.2 describes the nest structures

before any transformation. Sections 4.3, 4.4 and 4.5 respectively present the effects on

nest structures and the overhead of code sinking, loop distribution with and without

scalar expansion. and loop fusion. Finally, Section 4.6 compares the three techniques

and draws general conclusions.

4.1 Timing Technique

Since this research uses the relative contribution to execution time of loop nests as a

metric. it is important to explain how the timing of loops is conducted. First, the

following terms are defined.

1. Total Time

The to ta l t i m e of a loop is the time it takes to execute the loop.

The to ta l t ime of a perfect nest is the total time of its outer loop.

2. Net Time

The net t i m e of a loop is equal to its to ta l t i m e minus the total t i m e of all the

loops and subroutines directly enclosed by it.

The net t i m e of a perfect nest is equal to the net t i m e of the innermost loop

of the perfect nest.

beg = time()
do i = ib, i j , 1

enddo
end = time()
looptime += end - beg

begl = time()
do i = ib , il: I

beg:! = time()

enddo
end2 = time()
looptime2 += end2 - beg:!

looptimel += end1 - begl

(a) Loop timing (b) Loop nest timing

Figure 4.1: Loop and loop nest timing

To time a given loop L: calls to timing routines are inserted before the header and

after the tail of the loop. The execution time of L is equal to the difference between

the two timing calls. However, the loop L may be executed multiple times1. Thus, the

execution time of L needs to be accumulated. Figure 4. l (a) illustrates how a loop is

timed. Figure 4.l(b) shows how loops in nests are timed.

It should be noted that the insertion of timing calls is intrusive. That is, the timing

calls affect the execution time of the application. However: we believe that the effects of

timing routines are small.

4.1.1 Timing of Nests Made Perfect by Code Sinking

This subsection describes how the execution time for nests made perfect by code sinking

is derived. Given two loops LGUt,, and Linner that can be made tightly nested using code

sinking as Figure 4.2 shows, then the times of the resulting perfect nest and the involved

loops are computed as follows. The total time of Lb,,,, is considered equal to the time of

L o t i . . the overhead of the guards used in code sinking is ignored. The overhead is

'The loop L may be inside a subroutine that is called multiple times, o r the loop L may be enclosed
by an outer loop,

LoUte, do i = ij, 1 LL,,, do i = i b l il, 1
Code X LInne, d o j = j b r j j . l

Linnet- d o j = j b , j f r l Code X

enddo enddo

(a) Original (b) Code sinking

Figure 4.2: Loop times after code sinking.

ignored in order to keep execution time of perfect nests from being artificially inflated.

The total time of L:,,,, is given by:

L:, ,,,. total = L;, ,,,. total + LOut,,.net

The equation tries to approximate the addition of the execution time of the sunk code

to the total time of Linner. It is only an approximation because the net time of LoUte,

includes the execution time for the header and tail of Lout,,. We believe that this is a

reasonable approximation because usually the body of a loop contribute to most of the

execution time of the loop. The net times of the loops and the new perfect nest are

recomputed as described in the previous section.

4.1.2 Timing of Nests Made Perfect by Loop Distribution

This subsection describes how the execution time for nests made perfect by loop distri-

bution is derived. Given a Loop LoUte, enclosing a loop Linner, and given that Lout,, can

be distributed to obtain a single loop LSingI, and a perfect nest (L~,,,,,L~,,,,), as shown

in Figure 4.3, then the times of the resulting loops are computed as Follows. The total

time of L:,,,, is equal to the total time of Linner- The total time of L;,,,, is approximated

as the total time of L;,,,,. The header and tail times of Lb,,,, are not included. They

are expected to be small compared to the total time of L;,,,, . The total time of Lsingre

is given by:

Lsingle. total = Loutcr .total - Linner .total

enddo enddo
enddo enddo

(a) Original (b) Loop Distribution

Figure 1.3: Loop times after loop distribution.

The equation states that the total time of the new loop LSingl. is equal to the execution

time of the code between Lout,, and L;,,,, plus the time of the header and tail of LoUte,--

The net times of the loops and the new perfect nest are recomputed as described in

Section 3.1.

4.1.3 Timing of Nests Made Perfect by Loop Fusion

This subsect ion describes how the execution time for nests made perfect by loop fusion is

derived. Given a loop LoUte, enclosing loops LinI and Linz, and given that these inner loops

can be fused to obtain a loop Linner which will be part of a perfect nest (L,ut,r,L;,n,r), as

Figure 4.4 shows. then the times of the resulting loops are computed as follows. The total

time of LoUte, is unchanged. The total time of Linner is approximated as the addition of

the total times of LinL and Linl. This is an approximation because it ignores the saving

in time clue to combining the headers of Linl and Linl The net times of both loops and

the perfect nest are recomputed as described in Section 4.1.

414 Times of Pseudo and Real Perfect Nests

As mentioned before, real perfect nests are also pseudo perfect nests by definition. Hence;

when computing the times for these types of nests, some clarifications are required.

Figure 4.5(a) shows two perfect nests. The nest N1 = (L l r L 2) is pseudo perfect, while

. .
Lout., do i = 1s; 11, 1
L i n ~ do j = j b , j1, 1

Body of LinI Louter do i = ib7 if: 1
enddo Linnet- d o j = j f i 7 j j r 1

Lin2 do j = j b ? jl, 1 Body of LinL
Body of Lin2 Body of Lin2

enddo enddo
enddo enddo

(a) Original (b) Loop Fusion

Figure 3.4: Loop times after loop fusion.

the nest N3 = (L3,LL1) is real perfect. On the one hand, when computing the time of real

perfect nests, only the time of N3 is included. The t ime of NI is not included because

NI is not a real perfect nest. On the other hand, when computing the time for pseudo

perfect nests, the time of Nl is included. The time for Ng is not considered even though

it is also a pseudo perfect nest; the time of N3 has already been accounted for by the

time of NI .

Figure 4.5(b) shows the real perfect nest NL3, obtained by applying code sinking to Nl

and N3. N13 is a real perfect nest. In this case, the times for pseudo and real perfect nests

are identical. and are equal to the time of Nl. The time of real perfect nests increases

while the time of pseudo perfect nests remains the same.

Figure 4.6 illustrates a different case where the time for pseudo perfect nests increases

while the time for real perfect nests remains the same. In Figure 4.6(a) there are no

perfect nests. After code sinking, and assuming that the code cannot be sunk further

down into L3, Figure 4.6(b) has one pseudo perfect nest (LL,L2) and still no real perfect

nests. Hence, the time of pseudo perfect nests will increase while the time for real perfect

nests remains the same.

enddo

Figure 4.5: Example to illustrate how the time of real perfect nests may increase while
the time of pseudo perfect nests remains the same.

LI do i = ib, i f , I
S1

L2 d o j = jb. j f l 1
s2

L3 do k = kbl kf: 1
s3

enddo
enddo

enddo

Ll do i = ib, if, 1
L2 d o j = j b , j f r 1

Sr
s2

L3 do k = kb, kf? I
s3

enddo
enddo

enddo

(a) Original (b) After Code Sinking

Fig~lre 4.6: Example to illustrate how the time of pseudo perfect nests may increase while
the time of real perfect nests remains the same.

4.2 Characterization of Execution Time

This sect ion characterizes the execution time of the benchmark applications. It starts

with a coarse-grain characterization, according to which execution time is spent in loops

or outside loops. This characterization examines the assumption that most execution

time is spent in loops. Then, a fine-grain characterization of execution time is presented.

The fine-grain characterization considers execution time spent in different nest structures.

4.2.1 Coarse-Grain Characterization

To gain a better understanding of the characteristics of the applications considered. the

execution time of an application is characterized as follows.

1. The execution time of code enclosed by a loop.

2. The execution time of code not enclosed by a loop.

The above characterization is important because most optimizations target loops. In

fact, it is assumed that the relative contribution to execution time of the loops, in a

given data parallel application. is high (more than 90%).

Table 4.1 is derived using the system described in Section 3.2. It summarizes the

measured relative contribution to execution time of loops in the benchmark applications.

In particular, table 4.1 shows the following:

For 13 applications, the relative contribution to execution time of loops is greater

than 98%. Such high relative contribution to execution time of loops is expected

and indeed desired.

For 19 applications, the relative contribution to execution time of loops is greater

than 90%.

The applications LG, LW, MT, OR and WV have significantly lower relative con-

tribution to execution time of loops. The high relative contribution to execution

time of unenclosed code is due to a large number of calls to subroutines and func-

tions that contain no loops. However, when these subroutines and functions are

%Loop Time %UnEnclosed
Time APP

I

7.46 WVI

Table 4.1: Coarse-grain characterization of execution time. LGI, LPN, MTI, OR1 and
WVI are partially-inlined versions (see text) of LG, LW, MT, OR and WV respectively.

inlined2, all five applications, indicated by LGI, LWI, MTI, OR1 and WVI. exhibit

relative contribution to execution time of loops higher than 90%. Hence, the inlined

versions of these applications are used subsequently.

4.2.2- Fine-Grain Characterization

As mentioned above, a high relative contribution to execution time of Loops is desirable

because most optimizations target the loops in an application. However, some optimiza-

tions are designed to target specific loop structures. For example? neither tiling nor

permutation can be applied to a Loop nest of dimension equal to 1. T h e following is a

refined characterization of execution time.

Unenclosed time: the time for code segments that are not enclosed by any loop.

Single time The net time of single loops.

Perfect time: the net time of real perfect nests.

Code-motion time: the net time of nests that may be made real perfect using

code sinking. Nests that are characterized under this category can also be made

real perfect by loop distribution. Loop fusion, however, cannot transform such

nests into perfect ones.

Fusion time: the net time of nests that require loop fusion to become real perfect.

Nests that are characterized under this category can also be made real perfect by

loop distribution. Code sinking, however, does not target such nests3.

Figure -2.7 shorvs the execution time characterizations of the 23 benchmarks. In the

applications SR, HY and SW: perfect nests contribute to almost 100% of the execution

time. Therefore, none of the transformations considered in this research are needed for

these applications. In MG and TF, perfect nests contribute to a high percentage of

execution time. Thus the effects of the transformations is expected to be minimal. The

'Only the routines which have no loops and that are called a large number of times are inlined.
Inlining some of the applications fully is not practical because of compilation times involved.

31f sinking loops into other loops is allowed then code sinking would target these nests. However, we
do not consider this case as indicated in Section 3.3.3.

2 100

F
g 80
.-
C

3 p 60
w -
0

40
0
cCI
C

g 20
2
Q)

& o
BT EP FT IS LU MG SP LG LW MT NA OC SD SR TF TI HY OR SU SW TO WV HG AV

Applications

UnEnclosed Single 1-1 Perfect Code Motion Fusion

Figure 4.7: Characterization of execution time of t h e applications.

execution time labelled as "Unenclosed" and "Single" is not targetable by any of the

transformations. Therefore the relative contribution to execution time of perfect nests

in IS and SU cannot be increased. Code sinking targets the percentage of execution

time labelled as "Code Motion". Therefore, it has the potential to significantly improve

the contribution to execution time of perfect nests in FT, LUI SP, OC, TI, OR and TI.

Loop distribution targets the percentage of execution time classified under the categories

"Code Motion" and "Fusion'. Loop distribution is expected to target the applications

with significant execution time in these two categories. Finally, loop fusion only handles

nests whose time is classified as "Fusion". Thus, loop fusion can potentially increase the

relative contribution to execution time of perfect nests in BT, EP, SP, L W ? &IT, NA.

WV and HG. From the above, it can be conclude that the three transformations may be

needed to increase the contribution to execution time of real perfect nests.

4.3 The Effect of Code Sinking on Nest Structures

This section reports on how code sinking affects the contribution of perfect nests in the

applications. It also discusses the overhead introduced by code sinking.

Figure 4.S(a) and Figure 4.S(b) show the characterization of execution time before

and after code sinking, respectively. The figures indicate tha t code sinking is effective

in transforming most nests labelled as T o d e Motionn into real perfect nests. In Fig-

ure 4.S(b), there remain little execution time labelled as "Code Motion". However, code

motion is not successful in transforming some imperfect nests into perfect nests due to

unsafe loops and dependences. For instance, in OR, there is an unsafe loop that con-

tribute to most of the execution time. In general, code sinking is successful in increasing

the relative contribution to execution time of perfect nests in the appIications that have a

significant portion of execution time classified as "Code Motion". The applications that

have a low percentage of execution time labelled as "Code Motion" are not affected by

code sinking.

Code sinking increases the relative contribution to execution time of real perfect nests

in 13 benchmarks. Figure 4.9 shows the increase in the relative contribution to execution

time of pseudo and real perfect nests, for these applications.

By examining Figure 4.9, it can be seen that, for BT, LU, SP and LG. code sinking

increases only the relative contribution to execution time of real perfect nests, while it has

little or no effect on the pseudo perfect nests contribution. There are two reasons for this.

First, there is a number of pseudo perfect nests that are transformed into real perfect

nests and since real perfect nests are also pseudo perfect nests, the relative contribution

to execution time of real perfect nests will increase, while the one for pseudo perfect

nests remains unchanged (see Section 4.1.4). Second, if a nest that is made real perfect

by code sinking, is already enclosed by a pseudo perfect nest, then the execution time of

the new perfect nest will not be added to the time of pseudo perfect nests; otherwise the

time of the new perfect nest would be accounted for twice.

The computational overhead, due to code sinking, stems from the execution of the

guards used to ensure proper execution. Although the sunk code will be executed only

once for the trip count of the inner loop, the ifststmt used to guard the sunk code will

be executed trip count times. The addition of the ifstmt to the inner Loop increases

execution time because the arithmetic operations to evaluate the conditional require

additional cycles. Moreover, the conditional may cause a pipeline control hazard or a

cache miss.

To assess the computational overhead due to code sinking, the execution times of the

-
BT EP n is LU MG SP LG LW MT NA oc SD SR TF TI HY OR su SW'TO wv HG AV

Applications

UnEnclosed Single [l Perfect Code Motion Fusion

(a) Original

Applications
OR SUSWTO WVHG AV

UnEnclosed Single 1-1 Perfect , Code Motion Fusion

(b) After Code Sinking

Figure 4.8: Characterization of execution time before and after code sinking.

O
BT FT LU SP LO MTOC SD TF TI SU TO WV

Applications Applications

No Tranfonnation Code Sinking No Tranfonation Code Sinking
I

(a) Pseudo Perfect Nests (b) Real Perfect Nests

Figure 4.9: Contribution to execution time of pseudo and real perfect nests before and
after code sinking.

applications after code sinking, are compared with the execution times of the original

applications. Figure 4.10: shows the overhead of code sinking for the applications affected

by this transformation. Code sinking caused no overhead in S of the 13 applications in

which it increased the relative contribution to execution time of perfect nests. For 3

other applications, the overhead is less than 5%. Thus, for most applications code sinking

introduces acceptable overhead. However. code sinking may be prohibitive for SD and

T I because of the high overhead of 35% and 2S%, respectively. The large overhead in

these two applications is due to sinking code in loops that have small bodies (one or

two statements). Consequently. the guards used to ensure proper execution have a n

execution time that is comparable to that of the body of the original loop. Therefore,

special attention should be paid when sinking code into loops with small bodies.

4.4 The Effect of Loop Distribution on Nest Struc-
tures

This section reports on how loop distribution with and without scalar expansion affects

the number of perfect nests and their relative contribution t o execution time in the

applications. It also discusses the overhead introduced by loop distribution.

Overhead of Code Sinking
I

t
iz 130
5 120 -
C z 110
Q,
100

-0 90
3 = 80 a

70
8 so

BT FT LU SP LG MT OC SD TF TI SU TO WV AV
Applications

Original After Code Sinking

Figure 4.10: Overhead of code sinking on the applications that benefited from this trans-
formation.

4.4.1 Loop Distribution without Scalar Expansion

Figure 4.11(a) and Figure 4.1 1(b) show the characterization of execution time before and

after loop distribution, respectively. These two figures indicate that in 9 of 12 appli-

cations, loop distribution only targets the execution time labelled "Code Motion". In

these applications, execution time labelled "Fusion" is not affected due to dependences.

Only in MG, loop distribution succeeds in transforming all the imperlect nests, whose

execution time is characterized as "Fusion", to perfect nests. In SD and TF. loop dis-

tribution targets loop nests whose times are characterized as either "Code Motion" or

"Fusion". For most applications, most of the loops nests that can be made perfect by

loop distribution have their execution time labelled as "Code Motion", hence they can

also be made perfect by code sinking. Loop nests that require loop fusion t o become

perfect, can rarely be made perfect by loop distribution.

Loop distribution increased the relative contribution to execution time of perfect nests

in 12 benchmark applications. Figure 4.12 shows the increase in the relative contribution

to execution time of pseudo and real perfect perfect nests, for the applications that are

targeted by loop distribution.

As mentioned before, loop distribution only targets nests that can be made perfect

by code sinking or loop fusion. Therefore, loop distribution has a potential of increasing

L
SP LG'LW'MT'NA'OC'SD SR TF TI 'H-

Applications

UnEnclosed Single i-[Perfect Code Motion Fusion

(a) Original

Applications

UnEnclosed Single -1 Perfect Code Motion Fusion

(6) After Loop Distribution

Figure 4.11: Characterization of execution time before and after loop distribution.

O
BT LU MG SP LG MT OC SD TF SU TO WV ,

O
BT LU MG SF' LG MT OC SD TF SU TO WV

Applications Applications

No Tranformation Loop Distribution No Tranforrnation Loop Distribution

(a) Pseudo Perfect Nests (b) Reat Perfect Nests

Figure 4.12: Contribution to execution time of pseudo and real perfect nests before and
after loop distribution.

the relative contribution to execution time of perfect nests in applications where the

time classified under "Code Motion" and 'LFusion7' is significant (see Figure 4.11). Loop

distribution succeeds in increasing the relative contribution to execution time of perfect

nests to more than 95%, for 3 applications, namely MG, TF and TO. For 9 applications

(other than the 3 above), loop distribution increases the relative contribution to execution

time of perfect nests. However. in these 9 applications, there are loop nests which loop

distribution has the potential to make perfect but fails to do so, as indicated below. For 7

applications. loop distribution is not effective in transforming imperfect nests into perfect

ones.

Table 4.2 presents the reasons why loop distribution is ineffective in t ransforrning more

imperfect nests into perfect ones. The table shows that array dependences are often the

main reason for disallowing distribution. However, it also shows that for FT, LU, OC.

SD and TI, scalar dependences prevent loop distribution from obtaining perfect nests.

Thus, scalar espansion has the potential of making loop distribution more effective for

these applications. Unsafe loops disallow distribution in only few applications, namely,

EP, MT and OR.

The applications in which the relative contribution to execution time of perfect nests

increased due to loop distribution, are executed after applying loop distribution to assess

the overhead introduced. It is found that loop distribution added negligible overhead to

the execution time in all of the apptications.

Table 4.2: The reasons for the ineffectiveness of loop distribution

In summary, loop distribution succeeds in increasing the number and relative contri-

bution to execution time of perfect nests in half of the applications. Array dependences

I LU 1 169 1 7 1 2 1 1 6 1 1 1 I 1 7 1 3 2

App

BT
EP
FT

%Time
Scalar
D ~ P

0
0

31

are t he main reason for the ineffectiveness of loop distribution in tranforming an im-

%Time
Unsafe

6
55
S

perfect nest into perfect one. However, in some applications, scalar dependences play a

Total
Loops

193
13
63

#Scdar
D ~ P

2
0
6

#Array
Dep

25
0
3

significant role in preventing distribution. In these cases, scalar expansion map be used

#Unsafe

7
1
4

%Time
Array
Dep

63
0
9

to enable distribution.

4.4.2 Loop Distribution with Scalar Expansion

Loop distribution with scalar expansion targets the applications for which scalar depen-

dences play a significant role in disallowing loop distribution from obtaining perfect nests.

Figure 4.13(a) and Figure 4.13(b) show the characterization of execution time before and

after loop distribution with scalar expansion, respectively. Loop distribution with scalar

expansion mainly targets the execution time labelled as "Code Motion". Only FT and

-

-

-

-I
9

Applications

1
ORSUSWTOWVHGAV

UnEnclosed Single -1 Perfect Code Motion Fusion

(a) Original

1 . A, "
BTEPFT IS .LUMGSPLG LW MT NAOCSD SRTF TI HY OR~SU~SWTOWVHG AV

Applications

UnEnclosed Single 1-1 Perfect Code Motion Fusion

(b) After Loop Distribution with Scalar Expansion

Figure 4.13: Characterization of execution time before and after loop distribution with
scalar expansion.

Applications I .
I / Applications

No Tranforrnation Loop Oistnbution No Tranfonnation Loop Distribution

fl Dist with Scalar Expansion Dist with Scalar Expansion

(a) Pseudo f erfect Xests (b) Real Perfect Nests

Figure 4.14: Contribution to execution time of pseudo and real perfect nests before and
after loop distribution with scalar expansion.

SD have their execution time labelled "Fusion" reduced by loop distribution with scalar

expansion. Thus, loop nests, that require loop fusion to become perfect, can not be made

perfect by loop distribution with or without scalar expansion.

Figure 4.l-4 shows the increase in the relative contribution to execution time of pseudo

and real perfect perfect nests, for the applications targeted by loop distribution with

scalar expansion, nameIy FT, LU. OC: SD and TI. For all five applications, scalar expan-

sion makes loop distribution more applicable. Scalar expansion enables loop distribution

for most of the nests in which scalar dependences disallow loop distribution. Thus, scalar

expansion is legal in most of the cases where it is desirable.

4.4.2.1 Array Sizes of Expanded Scalars

To handle loops with variable trip counts, scalars are expanded into dynamically allocated

arrays. Static arrays can only be used to expand scalars in loops with trip counts known

at compile time4. It is found that most arrays must be allocated dynamically in four

(FT, LU, SD, TI) of the five applications. Only in OC, the sizes of the arrays to be

allocated are known at compile time.

"heoretically, static arrays may be used for trip counts that are constant but unknown at compile
time. However, the compiler used does not provide a mechanism for specifying static array sizes at, run
time.

Figure 4.15, shows the distribution of the sizes of the arrays allocated to expand the

scalars in FT, LU, OC, SD and TI. For SD, some array sizes are omitted because they

are used a very small number of times compared to the other sizes. For TI, array sizes

are grouped in ranges; otherwise there would be too many array sizes to be shown on

the horizontal axis of the figure. For instance, the figure indicates that 10 arrays of sizes

ranging between 1OOkbytes and lMbytes are allocated. From the figure. two extreme

cases can be seen. First there is a large number (in the 10000D7s range) of small arrays

(in the few hundred bytes range) to be allocated, as for FT and SD. In this case. the

overhead is expected to be due to the large number of calls to the memory management

routines. Second, there may be a small number (in the lo's range) of large arrays (more

than hundred kilobytes) to be allocated, as for LU and TI. In this case, the overhead is

expected to be mainly due to the large arrays allocated and their effects on the cache.

These large arrays would occupy most of the cache and thus increase the number of cache

misses to other data. The large size of some of the arrays (e.g. in TI) are due to applying

scalar expansion in loop nests, where the array size must be equal to the multiplication

of the trip counts of the loops in the nests (Section 3.5).

4.4.2.2 Overhead of Scalar Expansion

The overhead of scalar expansion has multiple sources. First, references to arrays that

replace scalars may cause cache misses to original data. Second, references to arrays must

go to the cache while references to scalars can be satisfied by a register. Third, there is

a computational overhead in evaluating the subscript expressions of the array references.

Fourth, when using dynamically allocated arrays, memory management routines such as

malloc and free increase esecution time.

Figure 4.16 shows the overhead of applying loop distribution with scalar expansion to

the five applications. The numbers in Figure 4.16 are normalized to the execution time

of the applications without any transformations:

0 For TI, scalar expansion caused an overhead of 250%. This huge overhead is due

to cache misses caused by the large sized arrays allocated. The allocation of very

large chunks of memory (in the order of 1 Mbytes to 20 Mbytes, see Figure 4.15)

O 8 16 32 48 6.4 Total
Number of Bytes Allocaled I

1 ROO 1

" 1024 2064 8256 Total
Number of Bytes A!located

Number of Bytes Allocated

Number of Eves Allocated

<I 0000 el 00000 ~1000000 ~10000000 ~20000000 Total
Number of Bytes Allocated

Figure 1.15: Size of Arrays Allocated in Scalar Expansion

1

Application

No Transformation Dis t with Scalar Expansion

Figure 4.16: Overhead of Loop Distribution with Scalar Expansion

also contribute to the overhead.

For FT and SD, scalar expansion caused overheads of 16% and 43%, respectively.

These overheads are caused by a large number (more than 100000) of calls to malloc

even though the size of the allocated arrays are relatively small (see Figure 4.15).

For LU and OC, the overheads of scalar expansion are 17% and 15%- The overheads

are due cache misses introduced by accessing the arrays introduced by scalar ex-

pansion. Also, the overhead is due to several hundreds of calls to malloc to allocate

arrays in the kilobytes size range.

The overhead due to scalar expansion is prohibitive, and thus scalar expansion should

be applied with special care. It is likely to be useful when the sizes of the arrays to be

allocated and the number of calls to malloc are small.

4.5 The Effect of Loop Fusion on Nest Structures

This section reports on how loop fusion affects the contribution of the perfect nests in

the benchmark applications. It also discusses the overhead introduced by loop fusion.

Loop fusion increases the relative contribution to execution time of perfect nests in

only 2 applications. The relative contribution to execution time of real and pseudo perfect

nests increases from 88% to 99% in MG. In SD, the relative contribution to execution

time of pseudo perfect nests increased from 29% to 34%, and the relative contribution to

execution time of real perfect nests increased from 18% to 23%. Loop fusion caused no

overhead in MG, and a 3% overhead in SD.

Loop fusion has the potential to increase perfect nests contribution in the applications

that have a significant portion of its execution time labelled as "Fusion" in Figure 4.7.

For these applications, the reasons why Ioop fusion failed to increase perfect nests are

presented in Table 4.3. MG is omitted because loop fusion brought the relative contri-

bution to execution time of perfect nests to 99%. The main reason for the ineffectiveness

of loop fusion is the presence of backward dependences in the fused loop which makes

fusion illegal. The presence of INTERCODE (i.e. code between Ioop nests) that cannot be

moved is a factor in OC only.

-- -

Table 1.3: The reasons for the ineffectiveness of loop fusion

App

BT
EP
FT
SP
LPV
MT
NA
OC
SD
SU
PVV
KG

4.6 Summary

Code sinking, loop distribution and loop fusion are three transformations that can trans-

form an imperfect nest into a perfect one. These three transformations, along with loop

distribution with scalar expansion are implemented and applied to a suite of 23 applica-

tions. Loop Fusion is found to be effective at transforming imperfect nests into perfect

ones in only two applications (see Section 4.5). The effects of the three other transfor-

Total
Loops

205
1 :3
6 3

247
106
102
246
'272
'346
173
566
395

#Unsafe

9 -
1
3 -
6
0
4
3
6
12
9
3 u

3 -

%Time
Unsafe

3
5s
3
3 -
0
1'7
3 d

1
5
6
0
1

#Intercode

0
0
0
0
3 -
1
0
3
1
0
0
0

%Time
~nter-
code

0
0
0
0
1
1
0
4
0
0
0
0

#Back
Dep

12
0
3
15
5
13
4
9
I
CI

12
23
3 -- 3

%Time
Back
Dep
5 9
0
i
C

3 :3
96
49
'26

1
-
6
1 3
3s
S1

mations are summarized below, using three criteria: the number of perfect nests, the

relative contribution to execution time of perfect nests and the overhead introduced.

The effects of the transformations on the numbers and dimensions of perfect nests

are shown in Figure 4.17. The figure shows that transformations- that require perfect

nests- have to deal mostly with perfect nests with small dimensions (typically 2 or

3) even after increasing the number of perfect nests. Therefore, contrary to previous

assumptions [I\'M92], algorithms that exhaustively try different loop orderings of a nest,

would not be impractical. The maximum dimension of a perfect nest is 2 or B1 in 9 of the

14 applications. For 4 of 14 applications, BT, LU1 SP and SU, the maximum dimension

of a perfect nest is 4. Only in LG, there is one perfect nest with a dimension of 5 . Also in

all of these applications except MG, perfect nests with dimension equal to 2, constitate

the majority (more than 60%) of perfect nests. Moreover, the number of perfect nests

decreases with the increase of the dimension.

In i of 14 applications (BT, LU, MG, SP, SD, TF and TI), loop distribution with

scalar expansion results in more perfect nests than code sinking. The reason is that the

Latter transformation transforms one imperfect nest into one perfect nest, while the former

transformation splits loop nests into multiple nests that may or may not be perfect.

Altogether. the three transformations increase the relative contribution to execution

time of perfect nests in 14 benchmarks. The effects of the three transformations on

the relative contribution to execution time of pseudo and real perfect nests are shown in

Figures 4.1s and Figure 4.19, respectively. The average relative contribution to execution

time of real perfect nests for the 14 applications can be increased from 38% to 66% by

code sinking, to 58% by loop distribution with scalar expansion, and to 50% by loop

distribution without scalar expansion. It should be noted that scalar expansion made

loop distribution more effective in 5 applications.

The transformations used to increase the perfect nests introduce some overhead to the

execution time of the applications. Loop distribution is found to have no overhead. Code

sinking caused no overhead in more than half of the applications. It caused low overhead

(less than 5%) in some applications. For few applications, the overhead of code sinking is

found prohibitive (more than 10%). Scalar expansion caused the highest overhead (more

than 15%) in the applications it targeted.

To conclude, given an imperfect nest that needs to be made perfect, loop distribution

should be tried first because it causes the lowest overhead. If loop distribution fails to

make the nest perfect, then code sinking should be tried next because it introduces a

smaller overhead than loop distribution with scalar expansion. If code sinking failed

to make the nest perfect then loop distribution with scalar expansion could be tried.

However, special attention should be paid, when applying scalar expansion, especially to

the size of the arrays to be allocated.

Total 2 3 Total 2 3 4
Ohmiion d Perfea Nest Dimawon of ~er(ect Nest Dimenuon of Perfect Nest

too
1 2 80

F so
z
a 40

% 20 z
0

Dlrnension of Periect Nest D i m e m of Per(ecl Ned

" Total 2 3 4
Oimewon d Perlecl Nest O~menwon 01 Perlecl Nest Omenston ot Perfect Nest

Total 2 3
D~menslon 01 Perlect Nest

" Total 2 3 4
Drinefwon of Pdect Nest Dimension of Perfect Nest

- To131 2
Oimewon 01 Perfect Nest

" Tokt 2 - 3
Dimemion of Perfect Nest

Figure 4.17: Variation of the numbers and dimensions of perfect nests before and after the
application of code sinking, loop distribution, and loop distribution with scalar expansion.

Applications

No Tranformation

fl Loop Distribution
Code Sinking
Dist with Scalar Expansion

Figure 4. IS: Contribution to execution time of pseudo perfect nests before and after code
sinking, loop distribution and loop distribution with scalar expansion.

II - BT t U MG SP LG MT OC SD TF TI SU TO W V AV
Applications

No Tranformation

1-1 Loop Distribution
Code Sinking
Dist with Scalar Expansion

Figure 4.19: Contribution to execution time of real perfect nests before and after code
sinking, Ioop distributionand Ioop distribution with scalar expansion.

Chapter 5

Improvements in Locality

This chapter presents experimental results concerning cache locality. Section 5.1 con-

siders the applicability of loop permutation and how it is affected after applying the

techniques that increase the relative contribution to execution t ime of perfect nests.

Similarly, Section 5.2 discusses the potential benefit of tiling and how i t is affected af-

ter applying the techniques tha t increase the relative contribution t o execution time of

perfect nests. Section 5.3 presents the results on the need to enhance spatial locality.

5.1 Applicability of Loop Permutation

Loop permutation is the most commonly used techniques to enhance cache locality

[CMT94]. However, loop permutation targets only perfect nests. This section presents

results on how applicable is loop permutation, and on how its applicability is affected by

the transformations discussed in the previous chapter.

A nest N is classified as pennutable if it is perfect and there exists a t least a pair of

Loops belonging to W that can be permuted'. The relative contribution to execution time

of permutable nests is measured before and after code sinking, loop distribution, and loop

distribution with scalar expansion. Loop fusion is not considered because it is ineffective

in increasing perfect nests. Figure 5.1 shows the relative contribution to execution time

of permutable perfect nests for t h e 23 applications considered. The relative contribution

to execution time of permutable nests is negligible in quarter of the applications, EP,

IS, LW, MT, OR and SU. This is expected because Figure 4.7, in the previous chapter,

lThe dependences are examined to determine if permutation is legal.

Applications

Pseudo Perfect Permutable Real Perfect Permutable

Figure 5.1: Contribution to execution time of permutable pseudo and real perfect nests.

shows that for these applications, perfect nests account for less than 1% of execution

time. The relative contribution to execution time of permutable perfect nests in half of

the applications (BT, LU, MG. SD, SR; TF, HY, SW, TO, WV and HG) is equal to the

contribution to execution time of perfect nests. This implies that in these applications,

all the perfect nests with significant contribution to execution time are permutable. For

the remaining quarter of the applications, FT, SP, LG, NA, OC and TI, permutable

perfect nests contribute less than perfect nests to execution time. Moreover, in most (20)

applications, pseudo and real permutable perfect nests have identical relative contribution

to execution time.

Figure 5.2 and Figure 5.3 show the effects of the three transformations on permutable

pseudo perfect nests and permutable real perfect nests2, respectively. -411 the applications

considered in the last two figures have shown an increase in the contribution to execution

time of perfect nests. In most applications (11 of 14) the increase in the relative contri-

bution to execution time of perfect nests causes an increase in the relative contribution to

execution time of permutable nests. In less than a quarter of the applications (3 of 14, FT,

LG and SU), the increase in the relative contribution to execution time of perfect nests

does not cause an increase in the relative contribution to execution time of permutable

'Dependence testing is rerun on the transformed applications to determine which nests are
permutable.

nests. The previous chapter shows that code sinking is the most effective in increasing

the contribution to execution time of real perfect nests. In fact, code sinking achieved

the highest contribution to execution time of r e d perfect nests for 1% of 14 applications

(except for MG and TF). For permutable perfect nests, however, Figure 5.3 shows that

code sinking is more effective than loop distribution for only 5 applications (BT, LU, SP,

M T and OC). Loop distribution is more effective than code sinking for 3 applications

(MG, SD and TF). For the other six applications, the two transformations achieve sim-

ilar results. When applying scalar expansion, loop distribution achieves better results

than code sinking for LU: MGI SD: TF and TI. Considering the averages. it can be seen

that code sinking achieves similar results as loop distribution. However, when applying

scalar expansion to enable loop distribution, the average contribution to execution time3

of permutable nests is higher than the one obtained by code sinking. The reason for this

is that code sinking creates perfect nests with more complex dependences than does loop

distribution. This should be expected since code sinking pushes additional statements

into the body of a loop, while loop distribution moves these statements to a separate

loop. Moreover? scalar expansion eliminates scalar anti and output dependences, and

replaces scalar flow dependences with loop-independent dependences, hence simplifying

the dependence relations in the nest.

5.2 Potential Benefit of Tiling

This section reports on the potential benefit of tiling which is one of the most commonly

used techniques for enhancing temporal locality. A loop nest is considered tilable if it is

real perfect and encloses at least an array reference with a number of variable subscripts'

(referred to later as variable dimension) smaller than the dimension of the nest. The

presence of this property (tilable) indicates that part of the array is being iterated over,

hence there will be temporal locality. Tiling may also be beneficial in exploiting spatial

locality [BGSSI] . However. we believe that tiling is mostly effective for temporal locality,

3The overhead of scalar expansion is not included.
"he number of variabIe subscripts in an array reference, or the variable dimension of the array

reference, is equal to the total number of subscripts minus the number of subscripts with constant
expressions.

Applications

No Tranformation

[-I Loop Distribution

Code Sinking

Dist with Scalar Expansion

Figure 5.2: Contribution to execution time of permutable pseudo perfect nests before
and after code sinking, loop distribution, loop distribution with sca!ar expansion.

- BT FT LU MG SP LG MT OC SD TF TI SU TO WV AV
Applications

No Tranformation
[? Loop Distribution

Code Sinking
Dist with Scalar Expansion

Figure 5.3: Contribution to execution time of permutable real perfect nests before and
after code sinking, loop distribution, loop distribution with scalar expansion.

which is reflected by our definition of tilable nests.

When approximating the potential benefit of tiling , two options are considered.

Binary: if the nest is tilable then the time for the whole nest is considered as part

of the potential benefit of tiling.

Linear: given a tilable nest where there are n array references in total, and m array

references with variable dimensions smaller than the dimension of the nest, then

the time considered as part of the potential benefit of tiling is the whole time of

the nest, scaled by E.

Figure 5.4 shows the relative contribution to execution time of tilable nests using the

binary and linear approximations, for all the applications considered. Both approxima-

tions give the same results for '20 applications. Thus, in most applications, when one of

the array references has a variable dimension that is smaller than the dimension of the

enclosing nest, then most array references in the same nest also have a variable dimension

that is smaller than the dimension of the nest. For 17 applications, tilable nests con-

tribute to less than 3% of execution time. This is expected for 6 applications (EP, IS, LFV;

MT, OR snd SU) because in these applications perfect nests have relative contribution to

execution time of less than 2%. For 11 applications (BT, LU; MGI SP, LG, SD, TF, TI,

TO, S W and SR). tilable nests have relative contribution to execution time to execution

time less than 3%, even though perfect nests in these applications contribute significantly

(more than 20%) to execution time. For the remaining 6 applications, namely FT, NA,

OC. HY: WV and HG, tilable nests contribute significantly (between 10% and 50%) to

esecut ion time.

Thus, tiling may be beneficial to a quarter (6 of 23) of the applications. Tiling is

not beneficial for another quarter (6 of 23) of the applications because perfect nests in

these applications have negligible contribution to execution time. For the remaining half

(11 of 23) of the applications, tiling is not beneficial because the perfect nests in these

applications do not have temporal locality that is targetable by tiling as defined in this

research.

Figure 5.5 and Figure 5.6, show the effects of code sinking, loop distribution, and loop

distribution with scalar expansion on the potential benefits of tiling using the binary and

linear approximations, respectively. Only the applications whose relative contribution

to execution time of perfect nests increased due to any of the transformations are con-

sidered. When deriving the results the following two points are considered. First: the

array references, whose variable dimensions become smaller than the dimension of their

enclosing nest because they are sunk inside a loop, are not considered when determining

whether a nest is tilable. Second, the array references introduced by scalar expansion

are not considered when determining whether a nest is tilable. Increasing the relative

contribution to execution time of perfect nests does not increase the potential benefit of

tiling in a third (5 of 14) of the applications, BT, MG, SP, TF and TO. The contribution

to execution time of tilable nests in these applications remains negligible. This indicates

that in these applications, the original perfect nests and those obtained by the three

transformations do not have temporal locality that is targetable by tiling.

Increasing the relative contribution to execution time of perfect nests increases the

potential benefit of tiling in two thirds (9 of 14) of the applications. This indicates that

in these applications, there are imperfect nests for which tiling is desirable. Moreover,

these imperfet nests can be made perfect by one of the three transformations.

Figures 5.5 and 5.6 show that loop distribution with scalar expansion achieves higher

potential benefit for tiling than code sinking, for SD and TI. However, Figures 4.9 and

4.11, in the previous chapter, show that code sinking achieves higher relative contribution

to execution time of perfect nests than loop distribution with scalar expansion for the

same two applications. Figure 4. l i shows that loop distribution with scalar expansion

results in more perfect nests than code sinking for SD and TI. The additional perfect

nests are tilable nests and account for the difference between the potential benefits of

tiling after code sinking and after loop distribution with scalar expansion.

Given that tiling mainly targets tilable nests as defined in this research, 6 of 23

applications would have a potential benefit from tiling. Applying code sinking or loop

distribution with scalar expansion, makes 5 additional applications targetable by tiling.

The transformations also increase the potential benefit of tiling for 3 of the 6 applications

that may benefit from tiling originally.

Application

Binary Linear

Figure 5.1: Contribution to execution time of tilable nests for both binary and linear
approximat ions.

" B T ' F T ' L U ' M G ' S P ' L G . M T ' O C ' S D ' T F TI S U ' T O ' W V ' A V
Applications

No Transformation

1 LOOD Distribution
Code Sinking
Dist with Scalar Expansion

Figure 5.5: Contribution to execution time of tilable (binary) perfect nests before and
after code sinking, loop distributionand loop distribution with scalar expansion.

" B T ' FT LU MG SP LG MT OC SD TF TI SU TO WV AV
Applications

No Transformation Code Sinking
7 Loop Distribution Dist with Scalar Expansion

- -

Figure 5.6: Contribution to execution time of tilable (linear) perfect nests before and
after code sinking, loop dist ri but ionand loop distribution with scalar expansion.

5.3 Improvements in Spatial Locality

This section reports on the need for loop permutation and flexible array layout to enhance

cache spatial locality. First, the section describes the characteristics of individual array

references with respect to self-spatial locality and group-spatial locality. Then, it eval-

uates the need for flexible array layout to enhance spatial locality. Finally, it examines

the need for loop permutation to improve spatial locality.

5.3.1 Characteristics of Array References

This sect ion reports on the characteristics of array references regarding self-spatial locality

and group-spatial locality. Conflicts among array references enclosed by the same nest

regarding the best innermost loop, and conflicts among array references to the same array

regarding the best array layout, are not considered in this section; they will be considered

later.

5.3.1.1 Array References and Self-spatial Locality

All array references are examined and classified under the categories discussed in Sec-

tion 3.7.1.1. Figure 5.7 shows a breakdown of the array references of different applica-

tions. Figure 5.8 is similar to Figure 5.7, however, it shows the relative contribution to

O
BT EP FT IS LU MG SP LG LW MT NA OC SD SR TF TI HY OR SU SW TO WV HG AV a

Applications

Unenclosed Reference Inner Temporal r l Spatial Order not Possible

Already in Spatial Order Only Permutation only ~ayout

Permutation & Layout Permutation or Layout

Figure 5.7: Classification of array references vis-a-vis what needs to be done to achieve
self-spatial locality.

execution time of the different array reference classifications. The relative contribution

to execution time of an array reference is approximated as foltows.

0 The relative contribution to execution time of an array reference is equal to the

net execution time of the enclosing loop divided by the number of array references

enclosed by this loop. The aim of this approximation is to assign different weights

to array references in different loop nests, depending on the execution time of the

of the nests involved. Therefore, we believe that this approximation is a reasonable

one even though it ignores the effects of arithmetic operations.

The relative contribution to execution time of an unenclosed array reference is equal

to the net execution time (excluding loop times and unenclosed subroutine times)

of the program unit divided by the number of unenclosed array references.

Averaged over all the benchmarks, unenclosed array references constitute 15% of all

array references and contribute to only 1% of the total execution time. This is expected

since loops contribute to more than 98% in most applications. Also, 60% of array refer-

ences, contributing to 66% of the total execution time, already exhibit self-spatial locality.

Moreover, array references, exhibiting self-temporal locality with respect to the loop di-

Applications

Unenclosed Reference Inner Temporal [-I Spatial Order not Possible

Already in Spatial Order Only Permutation only layout

Permutation & Layout [-I Permutation or Layout

Figure 5.S: Classification of array references time vis-a-vis what needs to be done to
achieve self-spat ial locality.

rectly enclosing them, constitute 12% of all array references, and contribute to 16% of

the total execution time. Hence, it can be concluded that program developers ensure

that the majority of array references exhibit either self-temporal locality or especially

self-spat ial locality.

For more than half (13) of the applications, self-spatial locality cannot be improved

by neither loop permutation nor by flesible data layout. In 11 of 1 3 of these applicat.ions,

most of t h e array references already exhibit self-temporal locality or self-spatial local-

ity. In the other two applications (EP and OR), the majority of array references have

subscript expressions that prevent self-spatial locality. For 40% (9) of the applications,

array references that can be made to exhibit self-spatiaI reuse contribute to a significant

percentage of execution time. For these array references in these applications, either loop

permutation or change in the array layout is applicable. Only in OC, there are array

references that can be made to exhibit self-spatial locality using loop permutation only.

Loop permutation and flexible data layout are not required together (except for WV) to

make an array reference exhibit self-spatial locality.

Hence, in most applications, the majority of array references already exhibit self-

spatial locality. When there is a potential to increase the number and the relative con-

U
C

5 80
.c
a
a
2 60
L z
'i5 40
a
U J

C 20
a
0,
a
a O

8T EP FT IS LIJ MG SP LG LW MT NA OC SD SR TF TI HY OR SU SW TO WVHG AV
Applications

Group Temporal Already Group Spatial

r 1 Layout Needed for Group Spatial

Figure 5.9: Classification of array references vis-avis group-spat ial locality.

tribution to execution time of array references that exhibit self-spatial locality, either

loop permutation or change in the array layout can be used. The case when only one of

the two transformations can be used is rare. The case where both transformations are

needed to benefit individual references is also rare.

5.3.1.2 Array References and Groupspatial Locality

-411 array references are examined and classified under the categories discussed in Sec-

t ion 3.7.1.2. The categories reflect what needs to be done to achieve group-spatial locality.

Figure 5.9 shows a breakdown of the array references of t he 23 benchmark applications.

Figure 5.10 is similar to Figure 5.9, however, it shows the relative contribution to execu-

t ion time of the different array reference ~Iassifications.

Averaged over all the applications, most (52%) array references exhibit group-temporal

reuse. Some (15%) of the array references already exhibit group-spatial reuse. Only (7%)

of the array references can be made to exhibit group-spatial reuse by changing the array

layout. The remaining array references cannot be made to exhibit group-spatial reuse.

In half (12) of the applications, changing the array layout may increase the number of

array references exhi biting group-spatial locality.

L

i=
c 80
0 -
c.
3

8 so
3
.c

40
01
cCI
Y

g 20
2 z

B T E P F T IS LVMGSPLGLWMTNAOCSDSRTF TI HYORSUSWTOWVHGAV
Applications

Group Temporal Already Group Spatial

3 Layout Needed for Group Spatial

Figure 5.10: Classification of array references time vis-a-vis group-spat ial locality.

5.3.2 Effect of Flexible Layout on Spatial Locality

This section presents results on whet her having different layouts for different arrays

in an application would be beneficial. The framework used to obtain the results is

described in Section 3-72. The sections 5.3.1.1 and 5.3.1.2 above considered changing

the layout to benefit an individual array reference, by making it exhibit self or group-

spatial locality. However, the above sections do not consider conflicts in the array layouts

among references to the same array. Figure 5.11 shows the percentage of array references

that exhibit self or group-spatial locality when the array layout is fised, and when it

can be different for different arrays. Figure 5.12 is similar to Figures 5.1 1, however, it

shows the contribution to execution time of references instead of the percentage of array

references. The following remarks discuss the results.

For 7 applications, EP, LG: LW, MT, NA, OC and OR, having different layouts for

different arrays does not increase the references with spatial locality. This result

can be explained by examining Figures 5.8 and 5.10. Since, Figures 5.8 and 5.10

show that for the 7 applications above, data layout cannot benefit individual array

references, therefore when considering all references together, data layout would

not be benefitial.

1

80

60

40

20

O
BTEPFT IS LUMGSPLGLWMTNAOCSDSRTF TI H Y O R S U S W T O W V H G A V

Applications

Refs in Spatial Order without Layout Refs in Spatial Order with Layout

Figure 5.11: Effects of layout change on the spatial locality of array references

O BTEPFT IS LUMGSPLGLWMTNAOCSDSRTFTI H Y O R S U S W T O W V H G A V
Applications

Refs in Spatial Order without Layout Refs in Spatial Order with Layout

Figure 5.12: Effects of layout change on the spatial locality of array references

0 For 6 applications, BT, FT, IS, HY, TO and SW, data layout does not increase

the contribution to execution time of references with spatial locality. Figure 5.8

shows that the references with self-spatial locality contribute to more than 90%

of execution time. Therefore, changing the layout to increase the references with

group-spatial locality would decrease the references with self-spatial locality. Thus

changing the data layout for these applications is not effective.

For 4 applications, MG, SP, TF and SU, changing the data layout has the potentiai

of making additional references exhibit spatial locality, as can be seen from Fig-

ures 5.8 and 5.10. However, due to conflicts, changing the data layout in these

applications causes an overall decrease in array references exhibiting spatial locality.

For only a quarter (6 of 23) of the applications (LU, SD, SR, TI, WV and HG),

having different layouts for different arrays increases the overall number and con-

tribution to execution time of the array references that exhibit either self or group-

spatial locality. However, it should mentioned that once the legality of changing

the array layout is taken into consideration then the benefits for these applications

may be reduced.

In summary, it is found that changing the data layout of some of the arrays in 17

applications would have no benefit. For the remaining 6 applications, data layout may

increase the overall array references that exhibit self or group-spatial locality. However,

the benefit of data layout for these 6 applications, may be less than expected when the

legality of data layout is considered.

5.3.3 Loop Permutation To Enhance Spatial locality

Section 5.3.1.1 evaluates the need for loop permutation at the Ievel of individual array

references. It does not consider conflicts among the array references belonging to the

same nest. In contrast, this section reports on the need to use loop permutation to

enhance spatial locality, when such conflicts are considered. The framework described

in Section 3.7.3 is used to determine whether loop permutation needs to be applied to a

given nest.

Imperfect Nests: Permutation Needed Perfect nests: Permutation Needed

Imperfect Nests: No Permutation Needed Perfect Nests: No Permutation Needed

Figure 5.13: Percentage of nests requiring loop permutation for better spatial locality.

Figures 5.13 and 5-14 show the percentage of nests and contribution to execution time

of nests, that may benefit from loop permutation, respectively. The nests are classified

according to whether permutation is needed or permutation is not needed. Furthermore,

the nests are classified as real perfect or not real perfect.

In two thirds (16) of the applications, loop permutation would have no benefits with

respect to spatial locality. In particular, Figure 5.8 supports this finding for 13 of these

16 applications (BT, EP, IS, MG. LG, LW, MT, NA, HY, OR, SU, SW and TO). In fact,

Figure 5.8 shows that for the l:3 applications listed above, array references that would

exhibit spatial locality clue to loop permutation contribute to a very small percentage of

execution time. For the remaining 3 of the 16 applications FT, SD and TI, innermost

loop conflicts among array references in the same nest make loop permutation ineffective

in making more array references exhibit spatial locality.

For the remaining 7 applications (LU, SP, OC, SR, TF, WV and HG), Figure 5.13

and Figure 5.14 show that loop permutation would increase the overall number and

contribution to execution time of array references that exhibit spatial locality. These 7

applications warrant further consideration. The transformations discussed in the previous

chapter are applied to the nests that require loop permutation and that are not perfect.

Applications

Imperfect Nests: Permutation Needed Perfect nests: Permutation Needed

1-1 Imperfect Nests: No Permutation Needed Perfect Nests: No Permutation Needed

Figure 5.14: Percentage of execution time of nests requiring loop permutation for better
spatial locality.

These transformat ions attempt to make loop permutation applicable by transforming

the imperfect nests into perfect ones. Also the legality of loop permutation is examined

for the nests that require loop permutation. The loop nests in the 7 applications are

classified under four categories:

0 Permutation is not needed.

Permutation is needed and legal.

0 Permutation is needed but is illegal due to dependences.

Permutation is needed but is illegal because the nest is imperfect.

Figure 5.15 shows the classification of the loop nests in these 7 applications, before

and after applying code sinking, loop distribution, and loop distribution with scalar

expansion. The effects on these applications are discussed next.

0 For HG, all the nests that required loop permutation are imperfect. None of the

transformations is able to transform these imperfect nests into perfect ones. This

is consistent with the reuslts of the previous chapter that indicate that none of the

transformations is effective for HG.

Applications

(a) Original

u - . .

LU SP OC SR TF WV H G '
Applications

Applications

(b) Code Sinking

" LU ' SP OC SR TF WV HG '

Applications

(c) Loop Distribution (d) Dist. with Scalar Espansion

Figure 5.15: Effects of code sinking, b o p distribution, and loop distribution with scalar
expansion o n the legality of applying loop permution when it is needed.

0 For WV, originally, loop permutation is legal in most nests where it is needed.

Some nests however are not perfect and permutation is not possible. None of the

transformations is able to make these nests perfect.

0 For SR and TF, loop permutation is legal in all the nests that required permutation.

0 For OC, most nests that require loop permutation are perfect. However, for the

majority of these nests loop permutation is illegal due to dependences. There

are also some imperfect nests that require permutation. Code sinking and loop

distribution with scalar expansion transform all these nests into perfect nests? where

dependences allow the required permutation. Loop distribution is able to transform

most (not all) of these nests into perfect nests, where the dependences allow the

required permutation.

0 For SP7 all the nests that require loop permutation are imperfect. Code sinking

transformed the majority of these nests into perfect nests where the required per-

mutation is legal. in contrast, loop distribution- with or without scalar expansion

- transformed only a few of these nests into perfect nest, where the dependences

allow the required permutation.

For LU, in half of the nests, the required permutation is legal. In the other half, loop

permutation is illegal because these nests are not perfect. Code sinking transforms

all these imperfect nests into perfect nests, however, the resulting dependences

prevent the required permutation. In contrast, loop distribution with scalar expan-

sion succeeds in transforming all the imperfect nests into perfect ones, where the

dependences allow the needed permutation. Loop distribution has no effect on LU.

To summarize, the three transformations fail to enable permutation in 2 of the 7 appii-

cations. In h t h e r applications, they are not needed. For the remaining 3 applications,

the 3 transformations have different degrees of success in enabling loop permutation in

imperfect nests. Therefore, and because of the overhead that these transformations intro-

duce as seen in the previous chapter, loop distribution should be tried first; code sinking

should be tried second; and finally, loop distribution with scalar expansion may be tried.

5.4 Summary

This chapter shows that perfect loop nests, that have at least a pair of permutable loops,

contribute to less than 20%, in half of the benchmark applications. In general, increasing

the relative contribution to execution time of perfect nests causes an increase in the

relative contribution to execution time of permutable perfect nests. Loop distribution

with scalar expansion achieves the highest relative contribution to execution time of

permutable nests. It outperforms code sinking because distributing loops and replacing

scalars with arrays simplifies the dependences in loop nests.

In only 6 applications. loop nests that may benefit from tiling contribute significantly

to execution time. Code sinking and loop distribution with scalar expansion succeed in

increasing the number of applications that may benefit from tiling to 11.

This chapter also shows that for S applications, the array references that can ex-

hibit self-spatial locality due to loop permutation or a different data layout contribute

significantly to execution time. Moreover, in 12 applications, changing the data layout

can cause array references, with significant contribution to execution time, to exhibit

group-spat ial locality. On the one hand, however, when self and group-spat ial locali tp

are considered together, and data layout conflicts between references t o the same array

are considered, only 5 applications may benefit from flexible data layout. On the other

hand, when inner loop conflicts, between array references in the same nest, are considered

only 7 applications may benefit from loop permutation.

Chapter 6

Conclusion

This chapter concludes the thesis. First, it presents conclusions concerning loop nest

structures. Second, it draws conclusions about cache locality. Finally, the chapter pro-

poses future work.

6.1 Nest Structures

Many locality optimizations target the perfect nests of an application. This research

shows that perfect nests. on average, contribute to only 39% of the execution time of the

benchmarks application. Therefore, increasing the presence of perfect nests across the

applications may make these optimizations more applicable, and hence: more beneficial.

Code sinking, loop distribution and loop fusion are three transformations that can

transform an imperfect nest into a perfect one. These three transformations, along with

loop distribution with scalar expansion, are implemented and applied to a suite of 23

applications.

This research finds that loop fusion is ineffective in transforming imperfect loop nests

into perfect ones. In 9 applications, no transformation increased the relative contribution

to esecution time of perfect nests. However, for the 14 remaining applications: the average

relative contribution to execution time of real perfect nests increased from 38% to 66%

by code sinking, to 50% by Loop distribution, and to 58% by loop distribution with

scalar expansion. Loop distribution with scalar expansion causes the highest overhead,

followed by code sinking and then by loop distribution which had negligible overhead.

When applying code sinking, the size of the loop into which code is sunk should be

considered carefully; when the size is small, the overhead may be too high. Similarly,

when applying loop distribution with scalar expansion, the size of the arrays into which

scalars are to be expanded should be small, otherwise the overhead becomes very high.

The assumption that loops account for more than 90% of the execution time of an

application is not always true. For some applications, this assumption is false due to

loops enclosing calls to routines with only straight-line code. In this case, in order for the

optimizations targeting loops to be effective, inlining [Bal'TS, Shei'i] or inter-procedural

analysis [ASUYG, FJSl] must be used.

6.2 Locality

Even though loop permutation is found legal for most perfect nests, the low contribution

to execution time of perfect nests, makes loop permutation applicabIe in only a few

applications. Code sinking and especially loop distribution with scalar expansion make

loop permutation more applicable by increasing the relative contribution to execution

time of perfect nests.

The potential benefit to temporal locality of tiling is found significant. in only 6 appli-

cations. By transforming imperfect loop nests into perfect nests, code sinking and loop

distribution with scalar expansion increase the potential benefit of tiling in 11 applica-

t ions.

In most applications, most array references are found to exhibit seIf-spatial Iocali ty.

This research shows that loop permutation may benefit spatial loacality in only 7 ap-

plications. For 3 other applications, loop permutation would be benefical to individual

array references. However, due to inter-nest confiicts, loop permutation would have no

benefit.

Changing the data layout of an array may make the references to this array eshibit

self or group-spatial locality. This research shows that for 17 applications, data layout

would have no benefit to spatial locality. This indicates that , generally, array layouts are

carefully chosen by the application developers.

6.3 Future Work

Loop nests that require loop fusion to become perfect contribute significantly to the exe-

cution time of many applications. Neither loop distribution nor loop fusion are effective

in transforming these nests into perfect nests. However, by sinking loops inside other

loops, these loop nests may be made perfect. Hence, an extension to this work would

be to allow code sinking of loops inside other loops. Also the shift-and-peel transforma-

tion [MA971 may be used to eliminate the dependences that prevent fusion from obtaining

perfect nests.

The frameworks used to evaluate spatial locality should be unified in order to handle

cases where both loop permutation and data layout are needed. Also the framework can

be extended to consider parallelism requirements. When parallelism is not considered,

loop permutation and data layout are often not needed because most array references

exhibit spatial locality already. However, to satisfy parallelism requirements and maintain

good spatial locality the need for loop permutation and data layout may become greater.

The framework for data layout can also be extended to handle the aliasing of arrays, and

to propagate the effects of changing the layout of arrays across procedures.

Appendix A

System Detail

This appendix describes in greater detail the approach used in this thesis. In particular,

it presents an implementational view of the system shown in Figure 3.2. First, the new

passes added to Polaris are described. Second, the F77 system is presented. Third, the

information held in the database is listed. Finally, the post-processing units are discussed.

A.1 New Polaris Passes

During the course of this research several passes have been added to the Polaris passes.

Each of these passes can be classified under one of the following categories:

The t m n s ~ o r r n n t i o n pass implements a specific transformation (e-g. loop fusion).

The i n s t m m e n t a t i o n pass adds routine calls to provide run-time information (e.g.

size of arrays allocated by rnnlloc).

r The profiiing pass gathers various application rnetrics and characteristics (e-g. num-

ber of loops).

Table A. 1 shows and describes all the passes added to Polaris in this research. These

passes implement the transformations applied, add instrumentation calls to provide the

run-time information, and gather profile information about the benchmark applications.

Polaris provides a "switches" file to control which passes are applied when the compiler

is processing a given application.

A switch called "Transform" controls which transformation to apply, if any. Code

sinking, loop distribution, loop distribution with scalar expansion, and loop fusion can

Pass Type I Pass Name I Description

Transformation

Instrumentation

code sinkine: I a ~ ~ l i e s code sinking
loop distribution
scalar expansion
loop fusion
inlining

- -

routine counting [inserts routine counting calls

applies loop distribution
applies loop distribution with scaIar expansion
applies loop fusion
inlines specific program units

-

loop timing
routine timing

-

inserts loop timing calls
inserts routine timing calls

array size

Table A.1: Passes added to Polaris

inserts calls to output the array
sizes used in scalar expansion

Profiling

be applied by setting T'ransform" to 1, 2, 3, and 4, respectively. If "Transform" is set

to 0 then no transformation is applied. To apply the inlining transformation, the switch

"AddInliningAssertions" should be set to 1. The timing of loops and program units and

the counting of how many times each program is called are controlled by the switch

"InsertTiming" . The calls to print the array sizes allocated by "Malloc" are inserted by

setting the '*ProfileMalloc" switch to 1. To extract information about loops and programs

units, the switch "Profile" is set to 1. To extract information about the array references,

the switch "Arrref" is set to 1.

A.2 The F77 System

Ioop profiling
program profiling
array profiling

The Fi'i system represents a system that compiles and executes Fortran-77 programs.

This research uses the Silicon Graphics Incorporated's Fortran-77 compiler. This compiler

provides mechanisms For dynamic memory allocation, use and deallocat ion, which are not

available in other Fortran compilers (e-g. g7'i). Programs are compiled using the default

optimization setting (i.e. option -01). Executables produced by this compiler are run on

an SGI Challenge. The Challenge runs IRIX 5.3, has eight MIPS R4400 processors and

has 512 megabytes of RAM.

extracts inforamtion about loops
extracts information about program units
extracts information about array references

A.3 Database

The database consists of files containing the profiling information. Program and loop

information are combined with timing information and are stored in files with ".info7?

extension. The information about array references is stored in files with ".refn extension.

The following list describes the main elements of the information kept in the database

for every loop.

1. The loop identifier.

2. The statement numbers of the header and the tail.

3. The level, i.e. the number of loops enclosing this loop.

4. The maximum level of all the loops enclosed by this loop.

5 . The bounds and step.

6. The net and total times.

7- Belongs to a perfect nest or not.

S. Safe or not.

9. A list of all the loops directly enclosed by this loop.

10. A list of all the loops enclosing this loop.

11. A list of all the loops with which this loop can be permuted.

12. A list of alI the subroutines directly enclosed by this loop.

13. A list of the array references directly enclosed by this loop.

The following list describes the main elements of the information kept in the database
for every array reference.

1. The name of the array.

2. The dimension of the array reference.

3. The variable dimension of the array reference.

4. The contribution to execution time of the reference.

5 . A list of all loops enclosing the array reference.

6. A list of the subscript expressions of the array reference.

7. Preferred loop ordering for self-spatial locality.

S. Preferred loop ordering for self-temporal locality.

perfect
perfdim
loopstruct
permutable

Pass Name
~ r i n t l o o ~ s

tiling
printarref

Description
mints the loom information

arrref

c o m ~ u t e s the number and the execution time of ~ e r f e c t nests - -
L

computes the number of perfect nests with different dimensions
computes t h e execution time of different nest structures
computes the number and the execution time of permutable perfect nests
computes the potential benefit of tiling
prints the array references information
classifies the arrav references into different categories

Table -4.2: Post-processing passes.

datalayout
loopperm

A.4 Post-Processing

determines whether d a t a layout is needed
determines whether loop permutation is needed

T h e post-processing units use the information stored in the database in order t o derive

more complex results (e-g. relative contribution to execution t i m e of perfect nests).

These post-processing units are independent of Polaris. However, similar to the Polaris

switches file, a switch file (called "pswitcbes") is used to select which post-processing

units t o run. In this research, several post-processing passes a re implemented and are

listed in Table -4.2. These passes reflect the results presented throughout this thesis.

Bibliography

[AKSI] J. R. Allen and I<. Kennedy. Automatic loop interchange. In Proceedings of
the ACM SIGPLAN'84 Symposium on Compiler Construction. pages 233-246:
Montreal, Quebec, Canada, June 1984

[..\SUSG] -4. V. Aho, R. Sethi, and J. D. Ullrnan. Compilers: Principles, Techniques,
and Tools. Addison-CVesley, Reading, Massachusetts, 1986.

[Ba1'79] J . E. Ball. Predicting the effects of optimization on a procedure body. In
Proceedings of the SICPLAN Symposium on Compiler Constrwction, pages
2 14-220, Denver, Colorado, August 1979.

[BBB'al] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, and R. L. Carter. The
NAS parallel benchmarks. h t . J. Supe.rco-mp. Appl., .5(3):63-'7.3, 199 1.

[BCP+S9] hl. Berry, D. Chen, P-Iioss, S. Lo, and Y. Pang. The Perfect Club benchmarks:
Effective performance evaluation of supercomputers. Technical Report 527,
CSRD, University of Illinois, May 19S9.

[BDE+96] W. Blume, R. Doallo. R. Eigenmann, J. Grout, J. Hoeflinger, T. Lawrence,
J . Lee, D. Padua, Y. Paek, B. Pottenger, L. Rauchwerger, and P. Tu. Parallel
programming with Polaris. IEEE Computer, 29(12):7S-SZ, 1996.

[BEF+95] W. Blume, R. Eigenmann, I<. Faigin, J. Grout, J. Hoeflinger, D. Padua, P. Pe-
tersen, B. Pottenger, L. Rauchwerger, P. Tu, and S. Weatherford. Polaris:
Improving the effectiveness of parallelizing compilers. In Proceedings of the
7th Workshop on languages and Compilersfor Parallel Computing, pages 141-
154, Springer-Verlag, Berlin, 1995.

[BGS94] DavidF.Bacon, SusanL.Graham,andOliverJ.Sharp. Compilertransforma-
t ions for high-performance computing. -4 CM Computing Surue ys, 26(4) :345-
420, December 1994.

[CbIT94] Steve Carr, Kathryn S. McKinley, and Chau-Wen Tseng. Compiler optimiza-
tions for improving data locality. In Proceedings of the gh International Con-
ference on Architectural Support for Progra,mming languages and Operating
Systems, pages 252-262, San Jose, CA, October 1994.

[Dix92] I<. M. Dixit. New CPU benchmarks from SPEC. Digest of Papers, Spring
COMPCON 1992, Thirty-Seventh IEEE Computer Society International Con-
ference, pages 305-310, February 1992.

BIBLIOGRAPHY 10s

Charles N. Fischer and Richar J. LeBlanc Jr. Crafting a Compiler with C.
The Benjamin/Cummings Publishing Company, 390 Bridge Parkway Red-
wood City, CA 94065, 1991.

Gina Goff, Ken Kennedy, and Chau-Wen Tseng. Practical dependence testing.
In Proceedings of the ACM SIGPL-4N791 Conference on Programming Lan-
guage Design and implementation, pages 15-29, Toronto, Ontario, Canada,
June 1991.

F. Irigoin and R. Tiolet. Supernode partitioning. In Proceedings of the Fif-
teenth Annual ACM Symposium on the Pn'nciples o j Programming Languages,
San Diego, CA, USA, January 198s.

Ken Kennedy and Kathryn S. McKinley. Optimizing for parallelism and data
locality. In Proceedings of the 1992 .4CM International Conference on Super-
computing, pages 323-334, Washington, DC, July 1992.

Ad. Kandernir. J. Ramanujam, and A. Choudhary. A compiler algorithm for
optimizing locality in loop nests. In Proceedings of the 1997 ACM interna-
tional Conference on Supercompeting, pages 269-276, Vienna, Austria, July
1997.

D. J. Iiuck. A survey of parallel machine organization and programming.
Computing Surveys, 9(1):29-59, March 1977.

R. Kithn. Optintization and interconnection co,mplexity for: pa-rallel proces-
sors, single-stage netu~orks, and decision trees. PhD thesis, University of Illi-
nois a t Urbana-Champaign, February 1980.

M. Lam, E. Rotherberg, and M. E. Wolf. The cache performance and optimiza-
tions of blocked algorithms. In Proceedings of the d th international Conference
on Architectural Support for Programming languages and Operating Systems.
Santa Clara, CA, April 1991.

Naraig Manjikian and Tarek S. Abdelrahrnan. Array data layout for the
reduction of cache conflicts. In Proceedings of the gh International Conference
on Parallel and Distributed Computing Systems, pages 111-1 18, Orlando, FL,
September 1995.

Naraig Manjikian and Tarek S. Abdelrahman. Fusion of loops for paral-
lelism and locality. IEEE Transactions on Parallel and Distributed Systems,
S(2): 193-209, February 1997.

Naraig Manjikian. Program transformations /or cache locality enhance-
,merits on shared-memory ~multiprocesso~rs. PhD thesis, University of Toronto,
Toronto, Ontario, Canada, 1997.

BIBLIOGRAPHY 109

[NCS]

Dror E. Maydan, John L. Hennessy, and Monica S. Lam. Efficient and exact
data dependence analysis. In Proceedings of the ACM SICPLAN'S1 Con-
ference on Programming Language Design and Implementation, pages 1-14,
Toronto, Ontario, Canada, June 1991.

Kathryn S. McKinley and Olivier Ternam. A quantitative analysis of Ioop nest
locality. In Proceedings o j the V h International Conference on Architectural
Support for Programming languages and Operating Systems, pages 94-104,
Cambridge, MA, October 1996.

Joseph Michael CVolfe. High performance co.mpilers for parallel computing.
Addison-Wesley Publishing Company, 390 Bridge Parkway Redwood City.
CA 94065. 1996.

National Center for Supercomputing Applications, University of Illinois a t
Urbana-Champaign. ln fonat ion on their scientific applications is auailable
a t the website http://zeus.ncsa.uiuc.edu:8080/archives/.

William Pugh. A practical algorithm for exact array dependence analysis.
Com~munications of the clCk1, 35(S):102-114, August 1992.

David -4. Padua and Michael J. Wolfe. Advanced compiler optimizations for
supercomputers. Communications of the -4 Ci.l, S(12):l lS4-12O1, December
1986.

R. W. Sheifler. An analysis of inline substitution for a structured programming
language. Conrnunicntions of the AC!K 20(9):647-654, September 197'7.

Michael E. Wolf and Monica S. Lam. A data locality optimizing algorithm. In
Proceedings of the A CM SIGPLAN'SI Conference on Programming Language
Design and implementation, pages 30-44, Toronto, Ontario, Canada, June
1991.

Michael E. Wolf and .Monica S. Lam. A loop transformation theory and
a n algorithm to maximize parallelism. IEEE Transactions on Parallel and
Distributed Systems, 2(4):152-471, October 1991.

