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Abstract

A Study of Loop Nest Structures and
Locality in Scientific Programs

Robert Sawaya
Master of Applied Science
Graduate Department of Electrical and Computer Engineering

University of Toronto

1998

This study evaluates four techniques that improve the structures of loop nests, in order
to make transformations targeting perfect loop nests more applicable. These techniques
are code sinking, loop distribution, loop distribution with scalar expansion, and loop
fusion. This study also exmines the subscript expressions of array references, in order
to conclude whether spatial locality can be enhanced. This research is conducted on 23
applications from the Perfect Club, Nas, Spec92 and NCSA benchmark suites.

The results indicate that code sinking and loop distribution— with or without scalar
expansion— can be effective in increasing perfect nests, in more than half of the bench-
mark applications. The overhead introduced by loop distribution is negligible, while the
overheads of code sinking and especially of loop distribution with scalar expansion are
found to be prohibitive for some applications.

Furthermore, in more than half of the benchmark applications, it is found that the
array references exploit locality effectively. In only a quarter of the applications, loop
permutation may be beneficial to spatial locality. Similarly, flexible data layout may be

beneficial in only a quarter of the applications.
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Chapter 1

Introduction

Scientific applications motivated the early development and accelerated the advances of
computers. Today, due to their characteristics, scientific applications continue to drive
advances in high-performance computing. In fact, some scientific applications, called
data-parallel, require multi-processors to provide the needed processing power. Data-
parallel applications consist. mainly, of loops iterating over a set of large arrays.

In order to achieve high-performance for data-parallel applications, optimizing and
parallelizing compilers are highly desirable. Most data-parallel applications are written
as sequential programs. Thus, compilers that can extract parallelism from sequential pro-
grams relieve application developers from the task of re-writing their codes to explicitly
express parallelism. Furthermore, a high-performance compiler can relieve the devel-
oper from implementing machine-dependent source-level optimizations, hence improving
portability across platforms.

As the gap between processor and memory speeds continues to widen, cache locality
optimizations, in particular, are becoming a crucial responsibility of high-performance
compilers [WL91a]. [ndeed, many transformations and algorithms are designed to im-
prove cache locality[IT88. LRW91, MT96]. This thesis is mainly concerned with improv-

ing loop nest structures to make these transformations more applicable.
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CHAPTER 1. INTRODUCTION

1.1 Summary of the Study

1.1.1 Motivation

On the one hand, most cache locality optimizations, such as loop permutation and tiling,.
are designed to target the perfect nests of an application, i.e. nests that consist of loops
with no intervening code between their headers, and no intervening code between their
tails. Therefore, the applicability and effectiveness of such optimizations are limited
by the relative contribution to execution time of perfect nests. This work determines
how common perfect nests are, and to what extent they contribute to execution time.
Moreover, this research evaluates techniques that can be used to transform imperfect
nests into perfect ones.

On the other hand, many algorithms [WL91b, WL9la, KM92, CMT94, KRC97] at-
tempt to improve spatial reuse and translate it into spatial locality. The results pre-
sented [WL91b, WL91la, KM92, CMT94, KRC97], however. show little benefit when
these algorithms are applied to complete applications. The main explanation offered is
that the applications already have very high hit rates (close to 95%). Other researchers
[CMT94, MT96] have found that programs are usually written with good spatial locality.
This research tries to verify this finding and to determine if the good locality is due to
coding that effectively exploits spatial locality, but uses an approach that is independent

of machine specific parameters.

1.1.2 Goals

The study has two main goals. First, the thesis evaluates techniques used to improve nest
structures. It also uses the nests structures and characteristics to measure an upper bound
on the expected benefits of tiling and the applicability of loop permutation. Second, the
thesis studies array references and their subscript expressions, as well as loop ordering in
loop nests to determine whether spatial locality can be improved by loop permutation or

data layout.
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1.1.3 Summary of the Results

This research establishes that on the average, perfect nests contribute to 39% of the
execution time of 23 applications from 4 benchmark suites. Four transformations are
evaluated for their effectiveness in increasing the relative contribution to execution time
of perfect nests: code sinking, loop distribution, loop distribution with scalar expansion,
and loop fusion. It is found that code sinking causes the largest increase in the relative
contribution to execution time of perfect nests (56%), followed by loop distribution with
scalar expansion (51%). and loop distribution (45%). Loop fusion is found to result in no
significant improvement on the relative contribution to execution time of perfect nests.
Loop permutation is found to have a limited applicability across the benchmarks.
mainly because the contribution to execution time of perfect nests is small. Tiling is
found beneficial in few applications, because most perfect nests do not carry temporal
locality. Also, it is found that increasing the contribution of perfect nests makes loop
permutation more applicable and increases the potential benefit of tiling. This study
also shows that loop permutation or data layout would only enhance spatial locality in

a quarter of the benchmarks.

1.2 Contributions

The contributions of this research are summarized in the following points.

e The study characterizes loop nests structures in terms of the applicability of many

locality optimization transformations.

e The study evaluates the benefits and overheads of four techniques that improve

loop nests structures.

e The study implements two simple separate frameworks, independent of cache pa-
rameters, to assess the need for loop permutation and flexible data layout to improve

spatial locality.
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e This research adopts a new approach to assess the contribution of loop nests. The
majority of previous studies have relied solely on the number of loop nests, which
may be misleading because loop nests might have very different impacts on the
overall execution time. Consequently, measurements of actual execution times are

used to statistically weight the loop nests in a given application.

1.3 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 provides background on
high-performance compilers. Chapter 3 examines the four techniques that improve nests
structures. Chapter 3 presents, also, the frameworks used to assess the need for spatial
locality enhancements. Chapters 4 and 5 present the reuslts on the structure of nests
and spatial locality, respectively. Chapter 6 concludes the thesis and discusses future

work.



Chapter 2

Background

This chapter provides background material on loop nests and on locality enhancement

transformations. It also describes past research related to this study.

2.1 Loops and Loop Nests

In this section, the issues of what constitutes a loop nest and what is a perfect loop
nest are defined and illustrated. Since this research evaluates the effects of various
transformations on the perfect nests of an application, it is important to clearly define
what constitutes a loop nest and what makes it a perfect nest. Before discussing loop

nests, some notions concerning loops need to be defined.

2.1.1 Loops

A DO-loop (later referred to as loop) is defined as a structured program construct con-
sisting of a loop header statement, a sequence of inner statements called loop body, and

a loop tail statement that marks the end of the loop [Man97].

do i =4, iy, s <= loop header
< statements > (i) <= loop body
end do <= loop tail

In the above definition, ¢ is the loop index variable, and iy,1f,s are integer-valued

expressions, called lower bound, upper bound and step, respectively. At the loop entry,
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the index variable takes the value of 7,. With each iteration of the loop, the index variable
is incremented by s. The loop is exited when the index variable is outside the 7, to iy
range. The loop body consists of statements in which the index variable { may appear.
Therefore, there are instances of the body of the loop, depending on the value of .

The following characteristics of loops can be defined:

e A loop A is said to enclose a loop B, if and only if all the statements of loop B are
also statements of loop A. Loop A is said to be the outer loop and loop B is said

to be the inner loop.
e The depth level of a loop is defined as the number of its outer loops.

e A loop A is said to directly enclose loop B, if and only if loop A encloses loop B
and the depth level of loop A is one less than the depth level of loop B. In other

words, there is no third loop C that encloses loop B and is enclosed by loop A.
e A loop is said to be a single loop if it encloses no loops and is enclosed by no loops.

e Two loops A and B, where A encloses B, are said to be tightly or perfectly nested

if and only if loop A contains no other statement than loop B.

e Two loops are said to be adjacent if and only if there are no statements between

the tail statement of one and the header statement of the other.

Figure 2.1 illustrates the above definitions. For instance, L, encloses L,, L3, Ly and Ls.
However, L, directly encloses L, only. L, directly encloses both L3 and L. L4 directly
encloses Ls, while Lz encloses no loops. Moreover, in Figure 2.1, loops Ly and Ls are

tightly nested while loops L; and L, are not. Finally, the loops L3 and L4 are adjacent.

2.1.2 Loop Nests

A loop nest N is a sequence of loops (L, Lo, ..., L), where n > 1, and where the following

conditions hold:

1. Every loop L;, where (1 < ¢ < n), directly encloses loop L;;, only.
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L doi=1,10,1

stl
L, doj=1,100,1
st2
L3 dok =1, 100, 1
st4
enddo
Ly dok =1, 100, 1
Ls dom =1, 100, 1
std
enddo
enddo
enddo
st3
enddo

Figure 2.1: Example illustrating loop definitions.
2. Loop L, may or may not enclose another loop.

Loop L; which is not enclosed by any loop in the nest is called the outermost loop of
the nest. Loop L., which encloses no other loop belonging to the nest (L, Lo, ..., L), is
called the innermost loop of the nest. The dimension of the nest is the number of loops
in the nest, i.e. n. In Figure 2.1 there are 2 loop nests: (L;,L2) and (L4,Ls).

A loop nest is said to be real perfect if there is no intervening code between the
headers of the loops. there is no intervening code between the tails of the loops, and the
innermost loop does not enclose any loop. More rigorously, a loop nest (L, Lo, ..., L) is

considered real perfect if the following conditions are satisfied:

1. The outermost loop L, is not enclosed by a loop L, such that L, and L, are tightly

nested.

o

All loops L; and L4y, where (1 <7 < n), are tightly nested.
3. The innermost loop L, does not enclose any other loop.

Second, a loop nest is said to be pseudo perfect if there is no intervening code between

the headers of the loops and between the tails of the loops, and the innermost loop does



CHAPTER 2. BACKGROUND 8

not tightly enclose any loop. More rigorously, a loop nest (L, Lo, ..., L,) is considered

pseudo perfect if the following conditions are satisfied:

1. The outermost loop L is not enclosed by a loop L, such that L. and L, are tightly

nested.
2. All loops L; and L;;1, where (1 < i < n), are tightly nested.

3. The innermost loop L, may enclose other loops but not tightly.

Hence , by definition. a real perfect nest is also a pseudo perfect nest.
Figure 2.2 illustrates real and pseudo perfect nests. The following remarks try to

clarify the differences and similarities between the two types of perfect nests.

e According to the definition of real and pseudo perfect nests above, the code segment
in Figure 2.2 contains two perfect nests: a pseudo perfect nest (L, L;) and a real

perfect nest (L3, Ly, Ls).

e The first condition for both real and pseudo perfect nests avoids redundant perfect
nests. For instance, the nest (L, Ls) is not considered a perfect nest because L3
and L, are tightly nested. It is desirable to consider loop nests with the largest

granularity for the purposes of loop optimizations.

e Similar to the first condition, the last condition for pseudo perfect nests, avoids
redundant perfect nests. The nest (L3, L,) is not considered pseudo perfect because

L., the innermost loop. encloses Ls tightly.
e Transforming pseudo perfect nests into real perfect nests is desirable because:

— The number of loops that can be part of an algorithm or an optimization (e.g.

loop interchange) is increased.

— The innermost loop of a pseudo perfect nest would enclose at least a loop
L that is not part of the nest. The loop L, which is directly related to the
spatial locality, will be shielded from the effect of a given transformation. By
transforming the loop nest into a real perfect nest, the loop L. becomes part

of the perfect nest and thus can be affected by the optimization.
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Lydoi=1,10,1
[, doj=1,100,1

st2
L3 dok =1, 100, 1
Ly dom =1, 100, 1
Ls don=1,100,1
sth
enddo
enddo
enddo
enddo

enddo

Figure 2.2: There are 2 perfect loop nests. First, the nest NV,(L,, L,) is a pseudo perfect
nest. It is not real perfect because loop L, encloses loop L3. Second, the nest (L3, Ly, Ls)
is a real perfect nest.

2.2 Data Dependence

Compilers rely on data dependence analysis [GKT91, MHL91, Pug92] to determine the
constraints on the order of execution of the statements in a program. A data dependence
exists between two statements S; and S,, where S, is executed before S5, that access the

same memory location. There are four data dependence types:

e True or flow dependence occurs when S; writes to a memory location that is later

read by S,. This dependence is denoted as 5;875,.

e Anti dependence occurs when S; reads a memory location that is later written by

S,. This dependence is denoted as 5,4%5..

e Qutput dependence occurs when S; writes to a memory location that is later written

by S;. This dependence is denoted as 516°55.

e /nput dependence occurs when S| reads to a memory location that is later read by

S,. This dependence is denoted as S,4S,.

For a data dependence, the statement that first accesses the memory location is called

the source of the dependence, while the statement that last accesses the memory location
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S[Z X = Z‘Y
So: V= X+4
532 X =175

Figure 2.3: The four basic dependence types in a straight-line code

is called the sink or target of the dependence. Figure 2.3 illustrates the four types of
dependence. First, there is S5,8/S, because S; writes the variable X which is later read
by S3. Second, there is 536°S3 because S, reads the variable X which is later written by
S3. Third, there is 5,8°S3 because S; writes the variable X which is later written by Si.

Finally, there is $,6'S3 because S, reads the variable Z which is later read by Ss.

2.3 Data Dependence in Loops

Extending the notion of data dependence to loops is complicated because there are mul-
tiple instances of the statements in the loops. Depending on the iterations of the source

and target instances, two types of loop dependences are distinguished [BGS94].

1. A loop carried dependence is a dependence between two statement instances in two

different iterations of a loop.

2. A loop independent dependence is a dependence between two statement instances

in the same iteration of a loop.

Each statement in a loop might be executed more than once, thus the need for dis-
tinguishing instances of statement executions becomes necessary. Given a statement S
enclosed in a loop, such as in Figure 2.4, the instance of S, for iteration : = i; is labelled
S1(z,). This extension to the statement notation is required to represent dependences
between instances of statements executed at different iterations of the loop. For example,

in Figure 2.4 the following dependences, among others, are present.

e [n each iteration i, the statement S; uses and then defines a(i) resulting in the

S51(2)6°5,(2) loop independent dependence.
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Lydoi=1,10,1

Sy a(i) =a(i) + b(i+l) + 7
S, b(i) = a(i-1)

E, enddo

Figure 2.4: Example of loop dependences.

e In the iteration i, the assignment to the array reference b(i) in S, writes to the :*?
element of the array b. In the iteration i-1, the use of the array reference b(i+1)
in S| reads the i** element of the array b. Consequently, there is a loop carried

dependence represented by S;(z — 1)§*S,(z).

e In the iteration i, the assignment to the array reference a(i) in S, writes to the :**
element of the array a. In the iteration i+1, the use of the array reference a(i-1)
in S, reads the i** element of the array a. Consequently, there is a loop carried

dependence represented by $,(7)d4S,(z + 1).

e There is a loop carried dependence S, (7)8'S2(i+1) due to the array references a (i)

and a(i-1) in S|, and S, respectively.

2.3.1 Dependence Distance Vectors

An iteration of a loop nest with a dimension (n > 1) is represented by an n-tuple called
iteration vector 1. Each of the entries in i1 corresponds to the value of the index of one
of the loops in the nest. The first and last entries in 1 corresponds to the outermost
and innermost loops of the nest, respectively. For example, Figure 2.5 shows a nest N
with dimension equal to 3. The iteration i=2, j=5 and k=3 is represented by the vector
(2,5,3).

Data dependences in nests are represented, if possible, using dependence distance
vectors [BGS94, WL91b]. A dependence with the sink statement at iteration vector
1sint and the source statement at iteration vector isource, is represented by a dependence

distance vector d = igink - lsource-
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Lydoi=1,10,1
Lz doj=1,10,1

Ls dok=1,10,1

St a(ky,i) = a(kyj,i) + b(k+1,j-1,i+1) + 7
Sa b(k-1,j4+3,i-2) = a(k-2,j+2,1)

E3 enddo

E, enddo

F| enddo

Figure 2.5: Example to illustrate distance and direction vectors.

A distance vector d=(d;,d2, ... ,dn) is said to be lexicographically positive if and
only if for any d,<0 there exist a d;>0 where j<i.
Figure 2.5 illustrates dependence distance vectors. The dependences, in the nest

depicted in this figure are discussed below:

e The statement S, writes and the statement S, later reads the same element of
the array a at iteration vectors (k,j,i) and (k+2,j-2,1i), respectively. Thus,
there is a loop carried flow! dependence from S, to S;. The distance vector of this

dependence is d=(2,-2,0). The dependence is denoted by 5'15{2'_2'0)52.

e The statement S| reads and the statement S, later writes the same element of
the array b at iteration vectors (k-1,j+1,i-1) and (k+1,j-3,1i+2), respectively.

Thus, there is a loop carried anti-dependence denoted by S16f; _4 3,52

e The statement S| reads then writes the same element of the array a. Thus, there
is a loop independent anti-dependence denoted by S18{;¢)S1- All the elements in
the distance vector are equal to zero because the source and sink of the dependence

are in the same iteration.

2.3.2 Dependence Direction Vectors

The dependence direction vector [BGS94, WLILb] represents an ordering between the

iteration vectors of the source and the target of the dependence. More precisely, for a

It is a flow dependence because the write occurs before the read since the iteration (k,j, 1) occurs
before (k+2,j-2,1).
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dependence where the source and target iterations are represented by s=(s,,s2, ... ,sn)
and t=(t|,t,, ... ,t,), respectively, the direction vector is given by d=(d;,d2, ... ,d,)

where, for (1 <1 < n),
< ifs; <t
di =< = if S$; = t;

> ifs; >t

.

In Figure 2.5, there are the following dependences with direction vectors: 515{<,>.=)52’
S18(<.>.<)S2 and S16f _ )51

A direction vector d=(d;,ds, ... ,d,) is said to be lexicographically positive if and
only if for any d;=> there exist a dj=< where j<i.

Even though direction vectors are less accurate in representing dependence relations
than distance vectors, they are still frequently used. In fact, in some cases, distance

vectors cannot be computed while direction vectors can be. Moreover, some optimizations

(e.g. loop permutation) require only direction vectors.

2.3.3 Dependence Cycles

A dependence from a block of statements B, to another block of statements B, exists, if
there exists a dependence 5,85,, where S, belongs to B; and S, belongs to Ba.

A dependence cycle, between two blocks of statements B; and B, indicates the pres-
ence of two dependences B,éB; and B2dB;,. The dependence B;dB, indicates that the
block B; (i.e. the target) depends on block B, (i.e. the source). Similarly, the dependence
B,éB, indicates that the block B, depends on block B,.

2.4 Loop and Data Transformations

This section describes loop and data transformations that are frequently used in compilers

and are relevant to this research.
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Lydoi=1,10,1
Ls dok=1,10,1

L, doj=1,10,1

Sy a(k,j.i) = a(k,j,i) + b(k+1,-1,i+1) + 7
Sy b(k-1,j+3,i-2) = a(k-2,j+2,i)

FE, enddo

Es enddo

E, enddo

Figure 2.6: After permuting loops L, and L3 in Figure 2.5, the above nest is obtained.
The permutation of loops L, and Lj is legal.

2.4.1 Loop Permutation

Loop permutation interchanges the position of two loops L; and L; belonging to a loop
nest N [MW96, AKS84|. The loop nest N must be a perfect nest. The permutation of L;
and L; affects the dependence relations in the loop nest. To account for the permutation
of L; and L;, the elements of all the direction and distance vectors, at the i* and j*
positions must be similarly permuted. The permutation is legal if the direction vectors
of the dependences in N remain lexicographically positive. Figure 2.6 shows the loop
nest of Figure 2.5 after permuting loops L, and Lj. After permutation the dependences

become the following: S18(4 552, S18% 5 _4)S2 and S18%.0,0)51-

2.4.2 Loop Distribution

Loop distribution, also known as loop fission, splits a loop into multiple loops with the
same header but each containing a subset of the statements of the original loop [Kuc77].
Loop distribution is legal if all the statements causing a dependence cycle are kept in
the same loop. Figure 2.7 shows an example of loop distribution. There is a dependence
cycle between the statements S; and 5; in Figure 2.7(a). Thus these two statements
must be kept in the same loop as shown in Figure 2.7(b). In Figure 2.7(c), statements

S1 and S, are enclosed by different loops, thus the distribution is not legal.
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Lidoi=1,10,1
S, a(i) = a(i) + b(i-1)

Lidoi=1,10,1 F, enddo
St a(i) = a(i) + b(i-1) L doi=1, 10,1
Lidoi=1,10,1 Ss b(i) = a(i-1) S, b(i) = a(i-1)
S\ a(i) = a(i) + b(i-1) £E; enddo E, enddo
52 b(i) = a(i-1) Lydoi=1,10,1 Lydoi=1,10,1
S, c(i) = b(i-2) 53 c(i) = b(i-2) Sa c(i) = b(i-2)
E: enddo E> enddo E5 enddo
(a) original loop (b) legal distribution {c) illegal distribution

Figure 2.7: Example of loop distribution.

Lydoi=1,10,1

B, bodyl
E, enddo Lisdoi=1,10,1
Lydoi=1,10,1 B, bodyl
Bs body?2 B, body2
FE> enddo Ei, enddo
(a) origtnal loops (b) after fusion

Figure 2.8: Example of loop fusion.

2.4.3 Loop Fusion

Loop fusion combines the bodies of multiple loops into one [Kuh80, MA9T7]. The resulting
body is enclosed by a new loop while the original loops are removed. Figure 2.8 shows
the fusion of two loops L; and L, with bodies B; and B, respectively, into a loop L,
whose body is made of B, followed by B;. The fusion is legal if there are no dependences
in L2 from B, to B;.

Loop fusion can be complicated if the loop headers are not compatible (i.e. same loop
bounds and step), or if the loops to be fused are not adjacent (i.e. there is code between

them).
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Ldoi=1,10,1
C  if(i == 1) then

S BlockOfStatements S BlockOfStatements
Ldoi=1,10,1 endif
B body B body
F enddo E enddo
{a) original loop (b) after sinking

Figure 2.9: Example of code sinking.

2.4.4 Code Sinking

Code sinking moves a block of statements into a loop [MW96]. A guard is used to ensure
the sunk code is executed the correct number of times. Figure 2.9 shows the sinking of
a block of statements S into a loop L with a body B. The sinking is legal if and only if
there are no flow dependences between the block S and the header of the loop L. The

ifstmt makes sure the block S is executed only once during the first iteration of L.

2.4.5 Strip-Mining

Strip-mining splits a loop into two tightly nested loops [BGS94]. The outer loop, called
the controlling loop, steps between strips of consecutive iterations. The inner loop steps
between consecutive iterations within a strip. Strip-mining is always legal because it does
not change the order of execution of the iterations. Figure 2.10 shows a loop L before

and after being strip-mined into two loop L; and L.

2.4.6 Tiling

Tiling consists of strip-mining two or more tightly nested loops, followed by loop per-
mutation [MW96, WL91b]. The goal of tiling is to change the way the iteration space
is traversed, such that the accesses to a region of an array are brought closer in time.
Tiling is legal if the loops to be tiled can be permuted. Figure 2.11 shows a nest that

implements matrix multiplication before and after tiling.
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Lldoj=1,n,s
L2 do i =}, min(j+s-1, n), 1

Ldoi=1,n.1 B a(i) = b(i) + ¢(i)
B a(i) = b(i) + <(i) E2  enddo
E enddo F'1 enddo

(a) original loop (b) after strip-mining

Figure 2.10: Example of strip-mining.

doii=1,n,s
dojj=1,n,s
dokk=1,n,s
do i = 1i, min(n,ii+s-1), 1
do j = jj, min(n,jj+s-1), 1
do k = kk, min(n,kk+s-1), 1

doi=1,n,1 a(k,i)+=b(j,i)*c(k,j)
doj=1,n.1 enddo
dok=1,n,1 enddo
a(k.1)+=b(j.i)*c(k,j) enddo
enddo enddo
enddo enddo
enddo enddo
(a) original nest (b) after tiling

Figure 2.11: Example of tiling.
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2.5 Data Reuse and Cache Locality

On the one hand, data reuse [MT96, WL9la] occurs when an application accesses the
same data multiple times. Data reuse is a function of the application and its data access
patterns. On the other hand, cache locality [MT96, WL91a] occurs when the data to be
reused is found in the cache. Cache locality depends on the presence of data reuse in the
application, the size of the data and the cache parameters (e.g. size and associativity).

Data reuse does not always translate into cache locality due to cache line evictions.

2.5.1 Cache Temporal Locality

The cache temporal locality indicates that the same data element in the cache line is

referenced more than once. There are two types of temporal locality.

e Self-temporal locality indicates that the same array reference causes the multiple
accesses to the same data element. In Figure 2.12, the reference c(i) exhibits

self-temporal locality.

e Group-temporal locality indicates that distinct array references cause the multiple
accesses to the same data element. In Figure 2.12, the reference a(2j,1) in S, and

in S, exhibit group-temporal locality.

2.5.2 Spatial Locality and Reuse

The cache spatial locality indicates that different data elements in the same cache line
are referenced. The reuse distance is the number of data elements between the two
referenced elements in the same cache line. Similar to temporal locality, there are two

types of spatial locality.

e Self-spatial locality indicates that the same array reference causes the accesses to dif-
ferent data elements in the same cache line. In Figure 2.12, the reference d(j+1,1)

exhibits self-spatiai locality.



CHAPTER 2. BACKGROUND 19

Lidoi=1,n,1
Lo doj=1,n,1

St a(2,i) = b(4j+1,1) + (i) + d(21,))
S, d(j+1,i) = a(2j,1) + b(4j,i)

Es enddo

E| enddo

Figure 2.12: Example of different types of locality.

o Group-spatial locality indicates that distinct array references cause the accesses
to different data elements in the same cache line. In Figure 2.12, the references

b(4j+1,1i) in S; and b(4j,1i) in S, exhibit group-spatial locality.

2.5.3 Data Layout

Data layout refers to the way the elements of a multi-dimensional array are arranged in
memory [KRC97, MA95]. Fortran uses column-major storage order for arrays. In the
column-major order, two array elements whose index differs by one in the leftmost (first)
subscript position are allocated consecutively in memory.

The stride-1 (also referred to as the fastest changing) dimension of an array is the
dimension in which two consecutive elements are mapped onto two consecutive elements
on the same cache line.

The data layout of arrays can affect the spatial locality of a reference. The array
reference d(2i,j), in Figure 2.12, exhibits no locality. However, by changing the data

layout to row-major, the reference would exhibit self-spatial locality.

2.6 Related Work

In his book [MW96], Michael Wolfe discusses techniques that transform imperfect loop
nests into perfect ones. However, there is very little research on the metrics and the
effectiveness of these techniques. Most proposed algorithms that target perfect nests

ignore imperfect nests and do not try to make them perfect.
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Carr, McKinley and Tseng [CMT94] use loop distribution to enable loop permutation
either by making the nest perfect or by simplifying the dependences. Moreover, they use
loop fusion to either increase temporal locality or to make nests perfect. Carr et al.
report that loop distribution was applied in 12 of the 35 applications considered. Loop
distribution was applied to 23 nests and resulted in 29 additional nests. Fusion, however,
is found to be unsuccessful in enabling loop permutation. Similarly, this study applies
loop distribution and loop fusion to obtain perfect nests. In contrast, this thesis reports,
in more detail, on how successful loop distribution and loop fusion are. and on the
reasons why they are sometimes ineffective. The study also evaluates scalar expansion
that makes loop distribution more effective. Moreover, the thesis measures the execution
time overhead introduced by these techniques.

To enhance cache locality, several researchers have proposed a variety of optimizations
and algorithms. Carr, McKinley and Tseng [CMT94| study loop permutation to enhance
cache spatial locality in sequential programs. A cost model is derived to estimate the
number of cache lines accessed when a given loop should be made innermost. A collection
of 35 programs and kernels are considered. They report that loop permutation increased
the percentage of loop nests, in which the loop with the least cost is innermost, from
1% to 85%. Of the 35 programs, 27 showed degradation or no benefit in performance.
Seven programs experienced a speedup of 1% to 13%. One program posted a speedup of
115%. Hence, they conclude that applications are often programmed with good locality.
Part of this thesis verifies these results. However, our cost model is simpler, and some
run-time profiling is used to attribute different weights to loop nests. Moreover. this
study considers the possibility of array layout changes to improve spatial locality.

M. Kandemir, J. Ramajunam and A. Choudhary [KRC97] propose a cache locality
enhancing framework that unifies loop and data transformations. The framework consid-
ers both loop permutation and changing array layout to improve cache spatial locality.
The researchers present results for small kernels chosen from some NAS benchmarks. In
contrast, this thesis uses two separate simple frameworks to assess the need for changing
the data layout and the need for loop permutation, in 23 complete applications (not only

kernels). It should be noted that the unified framework [KRC97] is better than our two
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separate frameworks, because it considers the interaction between changing the array

layouts and loop permutation.



Chapter 3

Methodology

In this chapter, the methodology and the details of the transformations used in this re-
search are presented. First. Section 3.1 deals with some general issues. Then, Section 3.2
highlights the research approach. Sections 3.3, 3.4, 3.5 and 3.6 discuss the details of
code sinking, loop distribution, scalar expansion, and loop fusion, respectively. Finally,
Section 3.7 deals with spatial locality and presents the loop permutation framework and

the data layout framework.

3.1 General Issues

3.1.1 General Definitions

o [f statement (ifstmt) propagation refers to moving an ifstmt that encloses a loop
inside this loop. Consequently, the loop body will consist of the ifstmé. The block
of statements that used to make up the body of the loop will become the new body

of the ifstmt. Figure 3.1 illustrates ifstmt propagation.

e A zero-trip loop is loop which has a trip count equal to zero, i.e. no iterations of

the loop are executed.
e We refer to a loop as safe if the three following conditions hold:

L. the loop is not exited nor entered by a goto statement,

o
o



CHAPTER 3. METHODOLOGY 23

if (cond) then do1=1,10,1
doi=1,10,1 if (cond) then
st stl
enddo endif
endif enddo
(a) Ny (b} N}

Figure 3.1: The nest N/ is N; after ifstmt¢ propagation.

2. the loop body has no subroutine calls, and

3. the loop body has no /O statements.

3.1.2 Benchmarks Used

In total, 23 applications are considered. Table 3.1 lists all the applications and their
respective benchmark suites. Moreover, the table shows the abbreviations used in the
results chapters (Chapters 4 and 3). The applications are chosen from 4 suites: Perfect
Club [BCP*89], NAS [BBB*91], SPEC92 [Dix92] and NCSA [NCS]. Some of the figures
presented in this thesis include an entry labelled AV. This entry represents the average

for all the applications shown.

3.2 Research Approach

The first goal of this research is to investigate how the relative contribution to execution
time of perfect nests can be increased by using the three transformations, namely, code
sinking, loop distribution, and loop fusion. Figure 3.2 shows a block diagram of the
system used.

The block labelled Polaris + New Passes represent the Polaris [BEF*95] compiler and
the passes added for this research. Polaris is a compiler for “Automatic Parallelization
of Conventional Fortran Programs”, from the University of Illinois [BDE*96]. Polaris

1s a source-to-source restructuring compiler, whose main objective is to detect parallel
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Benchmark Suites Applications | Abbreviations
appbt BT
embar EP
fitpde FT

NAS buk IS
applu LU
mgrid MG
appsp SP

qcd LG
mdg LW
track MT
bdna NA
PerfectClub ocean 0oC
dyfesm SD
arc2d SR
flo52q TF
trfd TI
hydro2d HY
ora OR
Speco2 su2cor SU
swm256 SW
tomcatv TO
waved \\AY%
NCSA cmhog HG

Table 3.1: Applications examined and their respective benchmark suites.
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Source ' Timing

> F77 System . >
Database
Polaris
Application + -
L Profile I l
New Metrics | — — — — — — - Metrics
Passes
Post o Post
Processing ! Processing:
Resvu!ts ————— Flesvults

Figure 3.2: Block diagram of the approach used

loops. It consists of multiple passes (e.g. constant propagation, dead code elimination)
that are applied in sequence. The block labelled F77 System represents a system that
compiles and executes Fortran 77 programs. The Database represents the storage for the
information provided by Polaris and the F77 System. Finally, the Post Processing units
query the database and produce specific results.

The application source is processed, using Polaris, to generate an instrumented source
and a set of profile information. The source is instrumented to measure execution time of
loop nests and subroutine calls in the program. The profile contains information such as
the number of loops and the nesting structures. The instrumented code is then compiled
using a native F77 compiler, and the executable is used to generate timing information.
This timing information along with the profile information is stored in a database. This
database allows subsequent queries that derive the various metrics presented in this thesis,
such as the relative contribution to execution time of nests that may benefit from tiling.

The main advantage of this approach stems from storing timing and profile informa-
tion for later reuse. The time it takes to run Polaris and execute some of the applications
is 1000 times greater than the time it takes to do the post processing. Hence, the infor-
mation in the database can be accessed multiple times without the need to re-run Polaris
or to re-examine the original source code. Thus, the approach makes getting results very
efficient and fast. Moreover, the approach is extensible; to get some new results, simply

a new post processing module needs to be added.
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doi= ib, if, 1
do j = js, max(je.js), 1

if (j == j») then doi =1, iy, |
stl do j =je jss 1
endif if (j ==]s) then
if (jo < jy) then stl
doi= ib, if, 1 st2 endif
stl endif st2
do j = jo if 1 if (j == max(jss)) then if (j == j;) then
st2 st3 st3
enddo endif endif
st3 enddo enddo
enddo enddo enddo
(a) Ny (b) N} (c) NY

Figure 3.3: The nest N is imperfect. The nest N} is N, made perfect by code sinking.
N7 is N; made perfect by code sinking when the inner loop is known to execute at least
once.

3.3 Code Sinking

3.3.1 Mechanics of Code Sinking

Code sinking can be used to transform an imperfect nest into a perfect one [MW96].
The program segments in Figure 3.3 illustrate this transformation. The nest Ny, in
Figure 3.3(a). is imperfect because of the statements st/ and st3. Code sinking pushes
theses two statements inside the inner loop, as shown in Figure 3.3(b). Guards around
the pushed statements are needed to ensure that they are executed the correct number of
times. Since it may not be known whether the inner loop is a zero-trip loop, its bounds
must be changed to have a trip count of at least 1. Moreover, the original statements
of the inner loops must be guarded to execute only if the original inner loop executes at
least once. However, if it is known that j, < j; then the bounds of the inner loop need not
be changed and the guard around the statement st2— i.e. the inner loop statements—
would not be required, as shown in Figure 3.3(c).

Code sinking is only legal if dependences allow it. For example, in Figure 3.3(a), a
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flow dependence between st/ and the header of the inner loop would make code sinking
illegal. Also, in this research we do not apply code sinking in loops that are not safe,
because of the complications involved. For example, the label of a goto statement that
exits the loop, may need to be redefined, especially when there is code after the loop that

has be sunk.

3.3.2 Inner Loops Enclosed by ifstmts

One code structure that code sinking, as well as loop distribution and loop fusion, must
deal with is a nest where loops are enclosed by ifstmts. This structure is dealt with here
and can also be handled similarly for loop distribution and for loop fusion. Figure 3.4
shows an example of a nest N2, where the inner loop is enclosed by an ifstmt, and how it
is handled to give a perfect nest N5. The statement st! is sunk in the inner loop to give
an ifstmt that tightly! encloses the inner loop. Then, the ifstmt is propagated inside the
inner loop. Thus, the ifstmt becomes the only statement in the inner loop. Furthermore,
the statements that used to make up the body of the inner loop constitute the body of

the ifstmt. The following assumptions are made:

e The conditional expression c! is assumed to have no side effects. Otherwise, it
would be illegal to sink it into the inner loop, because it will be evaluated itrip*jtrip
times instead of itrip times, where itrip and jtrip are the trip counts for the outer

and inner loops, respectively.
e There are no flow dependences from statements st/ and st2 to the condition c!.

e The inner loop of N; is known to be a non zero-trip loop. Otherwise, the bounds

of the inner loop must be changed and guards must be placed around st2.

The technique described above is not applied directly when the ifsimt¢ encloses more
then one loop at the same nesting level. Instead, the inner loops must first be fused. Then
the ifstmt is propagated inside the inner loop. Another option would be to propagate the

ifsmt into each loop and then fuse the loops. This case is mostly relevant when trying

'The ifstmt has only one statement, which is the inner loop.
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do i = imin, imax. 1
if (cl)
stl

do j = jmin, jmax, 1

st2
enddo
endif
enddo

(a) N2

do i = imin, imax, 1
do j = jmin, jmax, 1
if (cl)
if (j == jmin)
stl
endif
st2
endif
enddo
enddo

(b) Ny

Figure 3.4: The nest N, is imperfect and has an if statement that encloses a loop. The
nest N3 is N made perfect by code sinking and ifstmt propagation.
to apply loop fusion to obtain perfect nests, and it will be discussed in more details in

Section 3.6.

3.3.3 Nests with Loops at Same Nesting Level

Figure 3.5 shows how sinking a loop inside another loop can transform a nest N3, where
two inner loops are nested at the same level, into a perfect nest N5. The statement st
can be sunk in the first inner loop. However, this will not make N3 perfect because the
outer loop has two inner loops nested at the same level. An option is to sink the first
inner loop in the second inner loop. This will make it possible to obtain a perfect nest
with a depth of 3. In the general case, if there were n inner loops at the same nesting
level, then code sinking the inner loops will result in a perfect nest with depth n+1.
However, in this research, we do not implement this technique, because we believe it will
lead to very complicated code structures, especially in nests with depth greater than 2,
and with more than two loops nested at the same level. Furthermore, loop distribution

and loop fusion are used to handle nests exhibiting this structure.
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do 1 = imin, imax, 1
do k = kmin, kmax, 1
do j = jmin, jmax. L

if (k == kmin)
if (j == jmin)
stl
do t = imin, imax, 1 endif
stl st2
do j = jmin, jmax, L endif
st2 if (j == jmax)
enddo st3
do k = kmin, kmax, 1 endif
st3 enddo
enddo enddo
enddo enddo
(a) N3 (b) N4

Figure 3.5: The nest N3 has inner loops nested at the same level. Using code sinking to
push loops inside other loops, the nest N3 can be transformed into a perfect nest Nj.
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L doi=1,10,1
S'  a(i) = b(i) + (i)

Lydoi=1,10,1 E] enddo
Sy a(i) = b(i) + c(1) LY doi=1,10,1
L, doj=1,10,1 L7 doj=1,10,1
S2 d(i,j) = b(j) + <(j) 52 d(ij) = b(j) + <(j)
E;  enddo EJ  enddo
E, enddo E{ enddo
(a) Ny (b) N{ and NY

Figure 3.6: The nest N, is imperfect. The nests N| and NY, are the results of applying
loop distribution to Nj.

3.4 Loop Distribution
3.4.1 Mechanics of Loop Distribution

Loop distribution can be used to transform an imperfect nest into a perfect one, as shown
in Figure 3.6. The original imperfect nest Ny, is split into two distinct nests, N} and NY.
The statement S, common to both loops L; and L, in N;, becomes the body S5; of
the perfect nest (LY,L}) in N{. The statement S, enclosed by the outer loop L; only,

constitutes the body 5] of the loop L] in Ni.

3.4.2 Legality of Loop Distribution

The legality of loop distribution is determined by the dependences between the blocks of
statements to be placed in different loops. Loop distribution is legal if and only if there
exists no dependence cycles, as defined in Section 2.3.3, between the blocks [Kuc77].
Dependences carried by outer loops that enclose the loop to be distributed do not affect
the legality of distribution because they will always be satisfied by the outer loops[MW96].

Figure 3.7 shows an example where the legality of loop distribution depends on the
blocks of statements to be split. The relevant dependences are S28£S; due to the ref-
erences to the array a, and 53645, due to the references to the array c. On the one

hand, Figure 3.7(b) shows the distribution when statements S, and S3 are considered
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Lidoi=1,10,1 Lidoi=1,10,1
S d(i) = a(i) Sy d(i) = a(i)
Lidoi=1,10,1 E] enddo S5 a(i) = c(i)
Sy d(i) = a(i) LY{doi=1,10,1 E} enddo
S, a(i) = c(i) Sy a(i) = cfi) Lidoi=1,10,1
S3 c(i+1) = a(i) ST c(i+1) = a(i) S3 c(i+1) = a(i)
E; enddo EY enddo E{ enddo
(a) Original loop (b) Legal (c) Illegal

Figure 3.7: Loop distribution, as in (c) is illegal because the distributed blocks, caused
by 5,6£.53 and 5'35£52. Loop distribution in (b) is legal because the above dependences
are in the same block.

a block, and the statement S, is considered another. The distribution is legal because
there are no dependence cycles between the two blocks. On the other hand, Figure 3.7(c)
shows the distribution when statements S; and S; are considered a block B2, and the
statement S3 is considered another block B;. The distribution is illegal because there is a
dependence cycle between B, and B;. The cycle is made of B,,6{ B; caused by 536155,

and of BgééBm caused by 5'35£.5'2.

3.4.3 Scalar Expansion

The definition and use of a scalar variable in a loop may give rise to loop-carried anti
and output dependences [MWY6]. Loop distribution may become illegal due to a scalar
dependence cycle. A scalar dependence cycle is a dependence cycle that will cease to be
a cycle once scalar ant: and output dependences are removed.

Scalar expansion[PWS86] is a transformation that replaces references to a scalar in
a loop by references to an array. Each loop iteration references a different element of
the array. Consequently, scalar expansion replaces scalar flow dependences with loop-
independent dependences. More importantly, scalar expansion eliminates the scalar ant:
and output dependences. Hence, scalar expansion may enable loop distribution by re-
moving such dependences and thus breaking up scalar dependence cycles.

Figure 3.8 illustrates the scalar expansion transformation and how it can enable loop
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Lidoi=1s,if 1
St rx(i) = a(i)

L1 doi= ib, if, 1 Ll doi = ib, if, 1 E{ enddo
S r = a(i) S rx{i) = a(i) L{ doi =i, iy, 1L
L, doj:jb,jf,l Lo dOj——‘jb,jf,l L'{ d0j=jb,jf,l
S, b(i.j) =r S b(i,j) = rx(i) Sy b(i.j) = rx(i)
E, enddo E, enddo EY enddo
E| enddo F enddo EY enddo

(a) Original (b) Scalar expansion (c) Loop distribution

Figure 3.8: The nest in (a) cannot be made perfect by loop distribution because there
exists a scalar dependence cycle caused by the variable r. After expanding r into a one
dimensional array rx in (b), loop distribution is applied to yield (c)

distribution. In the program segment shown in Figure 3.8(a), L, is the loop to be
ditributed. The blocks to be distributed are: S| constitutes the first block B; while L,,
S, and £ constitute the second block B;. Loop distribution is illegal because there is
a dependence cycle between B, and B;. The cycle consists of $,6£5,, which flows from
By to B,, and 53625, which flows from B; to B,. Figure 3.8(b) shows the result after
scalar expansion of the scalar r. The scalar anti-dependence 5,25, is removed and the
dependence cycle between B, and B; is broken. Therefore, loop distribution becomes
legal, as shown in Figure 3.8(c). The mechanics and legality of scalar expansion are

discussed in detail in Section 3.3.

3.4.4 Reasons for the Ineffectiveness of Loop Distribution in
Obtaining Perfect Nests

There are several reasons that disallow loop distribution from obtaining perfect nests.

They are classified below:

® UNSAFE: the loop considered is not a safe loop. If the loop is entered or exited by
a goto statement then applying loop distribution becomes very complicated. The
presence of [/O or subroutine calls requires inter-procedural analysis which is not

available for this research. Thus, in this case, loop distribution is considered unable
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to transform an imperfect nest into a perfect one.

® STRUCTURE: the structure of the nest will disallow distribution. The two blocks
to be placed in different loops might not be separable. In fact, even after trying
tfstmt propagation, there may remain an ifstmt whose header and tail statements

are in the two different blocks to be distributed.

® ARRAYDEP: there exists a dependence cycle that prevents distribution. This cycle
is made up of only array dependences and scalar flow dependences. In this case,

scalar expansion would not enable distribution.

e SCALARDEP: all the dependence cycles that prevent distribution are scalar depen-
dence cycles, as defined in Section 3.4.3. In this case, scalar expansion can enable

distribution.

[n applying loop distribution, the reason for failure in obtaining a perfect nest is noted. If
a loop is found to be unsafe then the reason for distribution failure is marked as UNSAFE,
and the other conditions are not checked. Analogously, if SCALARDEP is marked as the
reason for failure then the loop is safe; its structure allows distribution; there are no
dependence cycles made of only array dependences; and finally there exists at least one

scalar dependence cycle.

3.5 Scalar Expansion

Scalar expansion is a transformation that replaces a scalar variable, in a loop, by an
array variable [PW86, MW96]. Each element of the new array variable replaces the
scalar variable for one iteration of the loop. Scalar expansion eliminates anti and output
dependences caused by references to the scalar. Also, flow dependences will be replaced
by loop-independent dependences. Hence, scalar expansion can be used to eliminate
scalar anti and output dependences that are part of a dependence cycle, allowing loop

distribution to be applied.
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REAL r REAL r, rx(10)
do1=1,10,1 doi=1,10,1
S r=.. S\ rx(i) = ...
Sy e =T Sy’ e = rx(i)
enddo enddo
(a) N (b) N'

Figure 3.9: The loop dependent dependence, in the nest N, is eliminated by expanding
the scalar r into an array rx (nest N’).

3.5.1 Mechanics of Scalar Expansion

[igure 3.9 illustrates the application of scalar expansion. The references to the scalar
r are replaced by references to the array rx. The number of elements of rx should be
at least equal to the trip count of the loop considered. In the nest N. there are two
dependence relations. First, there is the flow dependence 5,6L5,, which becomes 5,475,
in the nest N’. Second, there is the anti dependence S,8%25,, which is eliminated in N'.
Thus, scalar expansion eliminated the loop carried anti dependence.

There are some factors that complicate the application of scalar expansion. First,
if the scalar to be expanded is alive after the loop then the correct value of the scalar
must be copied from the appropriate array element to the scalar after the loop is exited.
Figure 3.10 illustrates this case and shows how it is handled. Second, if there is an
upward-exposed use? of the scalar in the loop, then the flow dependence is a loop carried
dependence. Hence, the use and the definition of the scalar in the loop would be replaced
by references to consecutive array elements. Figure 3.11 illustrates this case and shows
how correctness is preserved. Third, if scalar expansion is to be applied for a loop nest
with a dimension greater than 1, then the number of elements in the array should be
equal to the multiplication of all the trip counts of the loops in the considered nest.

Hence, the size of the array may be very large which may cause considerable execution

2An upward-exposed use of a variable A means that the variable A is used before it is defined inside
the loop. During the first iteration of the loop, the value of the variable to be used comes from outside
the loop.
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REAL r, rx(10)

REAL r doi=1,10,1
doi=1,10,1 rx(i) = ...
r=.. .. = rx(1)
e =T enddo
enddo r = rx(10)
=T e =T
(a) N (b) N’

Figure 3.10: The scalar r is used after the loop. Thus, it must be assigned the correct

value at the exit of the loop.

REAL r, rx(10+1)

REAL r r=..
r=.. rx(l) =r
doi=1,10,1 doi=1,10,1
e =T .o = 1x(i)
r=.. rx(i+1) = ...
enddo enddo
(a) N (b) N’

Figure 3.11: The use of r in the nest N is upward-exposed. The nest N’ shows how to
apply scalar expansion to r. It should be noted that the flow dependence between rx(i+1)

and rx(1) is a loop carried dependence.
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REAL r REAL r, rx(15,5,10)
doi=1,10,1 doi=1,10,1
doj=1,5,1 doj=1,5,1
dok=1,15,1 dok =1, 15,1
r=.. rx(kj,i) = ...
e =T . = rx(kj,1)
enddo enddo
enddo enddo
enddo enddo
(a) N (b) N’

Figure 3.12: To eliminate the loop carried anti-dependence, the scalar r must be expanded
such that there is a distinct array element for every triplet (k.j,i).

time overhead. When loop bounds are compile-time constants, a multi-dimensional array
can be used to replace the scalar. Each dimension of the array would correspond to a
loop of the nest. Figure 3.12 illustrates this case and how it is handled. The use of multi-
dimensional arrays makes indexing straightforward. Finally, if the bounds of the loop
are not compile-time constants then static arrays cannot be used. Instead dynamically-
allocated arrays must be used. Figure 3.13 illustrates this case and how it can be handled
for a loop nest with dimension equal to 1. The syntax to express the dynamic allocation,
use and deallocation of arrays in this figure, conforms to that of the SGI f77 compiler. The

following remarks clarify some of the constructs used in the code segments in Figure 3.13.

e The declaration POINTER (rzptr, rz) states that the pointer rzpér and the array
rr are associated. The pointer rzptr is used to allocate the array. The array rz is

used to access the array elements.

e The declaration DIMENSION rz(0:0) indicates that rz is a uni-dimensional array

where the number of elements is not specified.

e The statement rzptr = malloc(imaz*8) allocates imaz*8 bytes. These bytes will

be pointed to by rzptr. A variable of type REAL is assumed to be 8 bytes long.
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REAL r, rx, rxptr
POINTER (rxptr, rx)
DIMENSION rx(0:0)

rxptr = malloc(imax™*8)

REAL r doi =1, imax,1
doi =1, imax, 1 rx(i-1) = ...
r=.. . = rx(i-1)
e =T enddo
enddo CALL free(rxptr)
(a) N (b) N/

Figure 3.13: The upper bound, imax, of the loop in the nest N is not a compile-time
constant. To apply scalar expansion correctly, the array, used replace the scalar, must
be declared dynamically. as shown in nest N’

e The array rr is indexed from 0 to imaz-I. This explains the use of the array

reference rr(i-1).
e The statement CALL free(rzptr) deallocates the memory used for the array rr.

Figure 3.14 illustrates the case of variable loop bounds and a 2-dimnesional loop nest.
In this case. the number of array elements allocated is equal to the multiplication of the
trip counts of all the loops in the nest. Moreover, indexing the array that replaces the
scalar is complicated because the 2-dimensional iteration space is mapped onto a one

dimensional array.

3.6 Loop Fusion
3.6.1 Mechanics of Loop Fusion

Loop fusion can be used to transform an imperfect nest into a perfect one [CMT94].
Figure 3.15 illustrates this transformation. The nest N, has two inner loops L, and L3
at the same nesting level. The perfect nest N{ is obtained after fusing these two inner
loops. The headers of the loops L; and L3 need not be compatible. The lower bound

of the resulting loop Ljs is equal to the minimum of the lower bounds of the loops to
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REAL r, rx, rxptr
POINTER (rxptr, rx)
DIMENSION rx(0:0)

rxptr = malloc(imax*jmax*8)

REAL r doi =1, imax, 1
doi =1, imax, | do j = 1, jmax, 1
doj =1, jmax, L rx((j-1) + jmax*(i-1)) = ...
r=.. ... = 1x((j-1) + jmax*(i-1))
e =T enddo
enddo enddo
enddo CALL free(rxptr)
(a) N (b) N

Figure 3.14: [n nest N, scalar expansion is to be applied in two nested loops whose upper
bounds are variable. The nest N’, shows the result after applying scalar expansion to the
nest N. [t should be noted that the use of a two-dimensional array is not possible, because its
dimensions are not known constant. Thus, a one dimensional array must be used. Hence, the
complex array subscripts.

be fused. Similarly, the upper bound of the resulting loop Lj; is equal to the maximum
of the upper bounds of the loops to be fused. The guards C| and C; ensure that the
bodies of L, and L3 respectively, are executed the correct number of times. Also, the
loop indices are unified and the array subexpressions are modified accordingly.

When applying loop fusion to obtain a perfect nest, the loops to be fused may be
enclosed by a common ifstmt, similar to nest N shown in Figure 3.16. To transform a
nest such N, into a perfect one, the loops are fused inside the ifstmt. Then the ifstmt
is propagated in the fused loop, to give a perfect nest Nj in Figure 3.16. This example
also shows the case when the loops to be fused have compatible headers. Another way
to handle this case is to propagate the ifstmt into the the two loops and then fuse the

loops. However, we do not adopt this strategy because it adds more code to the body of

the loops, hence decreasing the chance of having a legal fusion.
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L,l doi= ib, if, 1
L5  do h = min(js,ks), max(js.ky), 1

Lydoi=iiy 1 Ci if (jop < h < jy)
Ly doj=jsisl s st1(h)
S5 st1(j) endif
F;  enddo (034 if (ks < h < ky)
La do k = ks, kf, 1 55 StQ(h)
S, st2(k) endif
E3  enddo E; enddo
F| enddo E’; enddo
(a) Ny (b) Ni

Figure 3.15: The nest N, has inner loops nested at the same level. Fusing the two inner
loops, transforms the nest Ny into a perfect nest N7.

3.6.2 Legality of Loop Fusion

Fusing two adjacent loops L, and L, with bodies B, and B, respectively, to yield L, with
a body made of B, followed by B, is legal if the following conditions are satisfied. First,
in L,y there should be no dependences, unless carried by an outer loop, whose source is
B; and sink is B; [MW96, MA97]. Second, the header of each loop to be fused should
not depend on the body of the other loop. The loop headers need not be compatible as
illustrated in Figure 3.15.

Figure 3.17 illustrates a case where loop fusion is illegal and a case where it is legal.
Fusing L, and L3 to give L,z as shown in Figure 3.17(b) is illegal. In fact, in L,3, thereis
a dependence 53825, caused by the refernces to the array c. This dependence indicates
that in every iteration, S; uses an element of ¢ that will be written by S, in the next
iteration. The original nest in Figure 3.17(a), however, indicates that the elements of ¢
read by S; will be previously defined by S3, which is no longer the case in the nest of
Figure 3.17(b).

In Figure 3.17(c), the fusion of L; and L; into L, is legal because in L;, there is no
dependence whose source is S, and sink is S;. The only dependence in L3 is 516185,

caused by the references to the array a.
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doi= ib, if, 1
if (c1) then

doj =js is. 1

st2

enddo

d0j=jb,jf,1

st3
enddo

endif
enddo

(a) Na

doi= ib, if, 1
dOj =jbvjf’ 1
if (cl)
stl
st2
endif
enddo
enddo

(b) Ny
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Figure 3.16: The nest N, has inner loops nested at the same level. These inner loops
are also enclosed by a common ifstmt. Using loop fusion and ifstm¢ propagation, Nj is
transformed into a perfect nest Nj.

Ly
S
Ey
L,
S2
£

doi=1,10,1
a(i) = b(i) + 2
enddo

doi=1,10,1
c(i) = a(i) * 2
enddo
doi=1,10,1
d(i) = c(i+1)
enddo

(a) Original nest

Lidoi=1,10,1

Si a(i) = b(i) + 2
E, enddo

ng doi= 1, ].0, 1
Se (i) =a(i) * 2
Ss3 d(i) = c(i+1)
Ezg enddo

(b) Illegal fusion

L12 d0i=1, 10. 1

S a(i) =b(i) + 2
Sy cfi) =ali) *:

E,; enddo
Lydoi=1,10,1

Sy d(i) = c(i+1)

Fs enddo

(c) Legal fusion

Figure 3.17: Fusion of L, and L3, as shown in (b), is illegal (see text). However, fusion
of Liand L,, as shown in (c) is legal.
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3.6.3 Reasons for the Ineffectiveness of Loop Fusion in Obtain-
ing Perfect Nests

There are several reasons that disallow loop fusion from obtaining perfect nests. They

are classified below.

e UNSAFE: one of the loops to be fused is an unsafe loop, i.e. it is entered or exited by
a goto statement. The presence of [/O or subroutine calls requires inter-procedural
analysis which is not available for this research. Thus, in this case, loop fusion is

considered unable to transform an imperfect nest into a perfect one.

e STRUCTURE: the structure of one of the nests disallows fusion. For instance, even
after trying ifstm¢ propagation, there may remain an ifstmt that encloses one of

the loops to be fused. Therefore, the ¢fstmt prevents the loops from being adjacent.

e INTERCODE: some code between the loops to be fused cannot be moved to make

the loops adjacent.

e BACKDEP: a dependence in the fused loop indicates that fusion is illegal, as seen

in Section 3.6.2.

e HEADERDEP: there is a dependence between the body of one of the loops to be

fused and the header of the other.

In applying loop fusion to two loops L, and Lj that are enclosed by L,, the above
categories, are examined, in the listed order. For instance, if one of the three loops is
found to be unsafe then the reason for fusion failure is marked as UNSAFE, and the other
conditions are not checked. Analogously, if HEADERDEP is marked as the reason for
failure, then all three loops are safe; their structure allows fusion; there is no intercode
that cannot be moved between the loops to be fused L, and Li; there are no backward
dependences in the resulting fused loop; and finally there exists a dependence between

the header of L, and the body of Lz or vice-versa.
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3.6.4 Fusion Algorithm

Our fusion algorithm targets a loop that directly encloses multiple loops with possible
straight-line code (called INTERCODE) between them. [t tries to fuse directly enclosed
loops and sink straight-line code in order to obtain a perfect nest. There are more than
one variations of handling the straight-line code between the loops to be fused. In fact,
the order of applying code sinking to handle the INTERCODE and fusing adjacent loops
may affect the legality of loop fusion.

Indeed, it is beneficial to always fuse adjacent loops before sinking code in any of
the loops. Figure 3.18 illustrates why. There are two ways of obtaining Nyine from
Norg. First, Sy can be sunk in L, and then L, and L3 can be fused. In N which is
obtained from N,., after code sinking, the fusion of L, and Lj is illegal because there
would be backward dependence in the resulting loop from S; to Si. Thus, for N,.4, code
sinking followed by loop fusion is illegal. However, L, and L3 can be fused, which is
legal, then S is sunk in the resulting loop, which is also legal. Thus, for N,.4, loop fusion
followed by code sinking is legal. Ideally, sinking followed by fusion and fusion followed
by sinking are equivalent because they yield the same transformed code. However, most
compilers are conservative when dealing with control dependences and thus fusion after
code sinking may be illegal. Code sunk inside a loop is executed only once either at the
first iteration or the last iteration of the loop. Most compilers assume that the sunk code
may be executed at every iteration of the loop, hence the additional dependences that
make fusion illegal.

The algorithm in Figure 3.19 implements loop fusion in order to obtain perfect nests.
The strategy of the algorithm is to delay code sinking as much as possible. Code sinking
is applied only when there are no more adjacent loops.

First, the algorithm starts by making a copy of the whole nest (i.e. Louter). A copy
is needed to restore the nest to its original state, in case the algorithm is not successful
in obtaining a perfect nest.

Second, all the adjacent loops are fused. When two adjacent loops cannot be fused
then the whole algorithm fails and the original nest must be restored. If the number

of loops directly enclosed by L,ute-, becomes equal to one, then all the directly enclosed
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Liydoi=1,10,1

S a(i) = b(i) + 2
Lo doj=1,10.1
Sy c(ig) = c(j.i)
E, enddo

La doj=1,10,1
S d(ij) = a(j)
Es enddo

E| enddo

(a) Original nest Nypg

Lydoi=1.10,1

S a(i) = b(i) + 2
Sa C(iJ) (J,l)
S d(ij) = aj)
Es enddo

E, enddo

(c) After fusion, Njyyse
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Lidoi=1,10,1
L, doj=1,10,1

C, if (j == 1) then
Sh a(l) = b(i) + 2
C, endif

Sa c(ij) = c(J.1)

F>  enddo

Ly doj=1,10,1

S3 d(ij) = a(j)

Es enddo

E, enddo

(b) After code sinking, N,

‘leOi:l,lo,l

C, if (_] == 1) then
St a(i) = b(i) +

C, endif

S2 c(i.j) = c(ji)

S3 d(ij) = a(j)

Es enddo

E, enddo

(d) Final nest Nyfipa

Figure 3.18: Example of a code segment where applying code sinking before loop fusion
might make loop fusion illegal. The nest N,,, is the original nest. The nest N¢ is Ny
after sinking S; in L,. For N, fusion of L, and L3 is not legal. The nest Njyse is Norg

L,.

after fusing L, and L. Finally, the nest N ;o is obtained from Ny, by sinking S in
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Input: A loop L,yuter
OQutput: A boolean indicating if a perfect nest is obtained
Loyter is modified to obtain the perfect nest

begin
//Make a copy of the original loop to be restored if fusion is not successful
Loop Copy = clone(L,yter)
SetofLoops DirectlyEnclosed = GetDirectlyEnclosedLoops(L,yter)
//if L,uier directly encloses O or 1 loops then fusion
//is not applicable. Code sinking should be used if there is only 1 enclosed
//loop. If there are no enclosed loops then nothing needs to be domne.
if(DirectlyEnclosed.Cardinal() < 2)
return FALSE;
endif
vhile (TRUE)
while(DirectlyEnclosed has two loops L;,, and L;,, that are adjacent)
qused = fuse([lfn“ Linfz)
if(Fusion failed)
Louter = Copy //restore the original L,yer
return FALSE

endif

DirectlyEnclosed.Remove(L;,,)

DirectlyEnclosed.Remove(L;,o)

DirectlyEnclosed.Add (L ryseq)

endwhile

//check if all the inner loops were fused into one
if(DirectlyEnclosed.Cardinal() == 1)
ApplyCodeSinking(L,yter)
if (Sink succeeded)
return TRUE
endif
else
Louter = Copy //restore the original L,uter
return FALSE
endelse
endif
else //there are at least two loops Lin, and L
//in DirectlyEnclosed with code between them
SinkIntercode(L;n , Lin2)
if(Sink failed)
Louter = Copy //restore the original L,uter
return FALSE
endif
endelse
endwhile
end

Figure 3.19: Algorithm Used in Applying Loop Fusion to Obtain Perfect Nests
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loops by Louter are fused into one loop. Thus, sinking the code between L, and
the remaining inner loop would make the nest perfect. In this case, fusion succeeds in
transforming the imperfect nest into a perfect one.

However, if there are no more adjacent loops to fuse and the number of loops directly
enclosed by Ly, is greater than one, then intercode between two loops must be moved
to make the loops adjacent. If code sinking fails in making the two loops adjacent then
the algorithm fails. Otherwise, there are two new adjacent loops, and the algorithm goes
back to the stage of fusing the adjacent loops.

Handling the intercode between two loop requires more explanation. The intercode
handler (SinkInterCode()) tries tc make the two loops L;,; and L2 adjacent. It
determines the block of statements B, that needs to be sunk. Then it computes the
dependences between B, and L;,; on the one hand, and between L;,, and B;, on the
other. These dependences determine where the block of statement Bj, can or must be
sunk. If there are no dependences between B, and neither loop, then By can be sunk
in either loop. However, if there are dependences between B;; and both loops, then code
sinking in any of the loops is useless because loop fusion of L;,; and L;,2 would later fail.
[f there are dependences between B, and only one of the loops, then B2 must be sunk
in the loop with which it has a dependence. If B, is sunk in the loop with which it has

no dependence then the fusion of L;,; and L2 would later fail.

3.7 Spatial Locality

This section deals with locality in general and spatial locality in particular. First, a
characterization of array references is presented. Second, the framework used to assess
the need for data layout to enhance spatial locality is discussed. Third, the framework
used to assess the need for loop permutation to enhance spatial locality is presented. This
research does not present a framework to combine both loop permutation and array layout
changes. We make two assumptions in our work on locality. First, arrays are assumed
to be stored in Fortran’s column-major order. This assumption is not restrictive and
does not affect the generality of the work. Second, multiple (i.e. more than one) data

elements are assumed to fit in a cache line; otherwise, no spatial locality can occur.
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3.7.1 Array Reference Characterization

This section characterizes individual array references in terms of what transformations
are needed to achieve spatial locality for each reference. In order to have spatial locality,
certain conditions, regarding array subscript expressions and the order of loops in a nest,
must exist. The conditions for self-spatial locality are different than those for group-

spatial locality.

3.7.1.1 Self-Spatial Locality

Self-spatial locality depends on the subscript expressions of the array reference and on the
loops ordering of its enclosing nest [KRC97, MT96, WL91a|. Given an array reference,

the following conditions must exist to have self-spatial locality.

e One of the loop index variables appears only in the stride-1 dimension of the array

reference.

e The coefficient of the index variable mentioned above, should be either 1 or -1.
e The position of the corresponding loop must be innermost in the nest.

Given an array reference, it can be classifed into one of the following categories. These
categories reflect how the given array reference can be affected to exhibit self-spatial

locality, if possible.

e Reference not enclosed: the array reference is not enclosed by any loop. Hence,

self-spatial locality is not possible.

e Inner temporal: the array reference exhibits self-temporal locality with respect
to the inner loop (see Section 2.5.1). Thus, spatial locality may only be obtained,
if possible, by permuting the innermost loop with one of the outer loops, which
in this case will disturb the temporal locality. Therefore, we believe that, in this
case, obtaining spatial locality would not be beneficial. Figure 3.20 illustrates this
case. For a given value of the index i, all the iterations of loop j access the same
element of array A. Therefore, the array reference A (i) exhibit self-temporal locality

with respect to the inner loop j. Moreover, the reference A(i) exhibit self-spatial
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doi=1,10,1
doj=1,10,1
Lo =A) +.
enddo
enddo

Figure 3.20: Example of self-temporal locality with respect to the innermost loop

reuse with respect to the outer loop i. To increase the potential of translating
this reuse into spatial locality, the i loop should be permuted to the innermost
position. However, by doing so, the loop carrying the self-temporal locality will be

made outermost, which may diminish the temporal locality.

e Spatial locality not possible: the subscript expressions of the array reference
prevent spatial locality. The reference a[3i,4j] is an example of this case. Indeed,
the reference a[3i,4j] cannot exhibit self-spatial locality because both of the in-
dices, in the subscript expressions, have coefficients that are different than 1 and

-1.
e Already in spatial order: the array reference exhibits self-spatial locality aiready.

e Loop Permutation Needed: even though spatial reuse may be present due to
accesses to the same cache line, it may not be translated into spatial locality if
the loop carrying the locality is not innermost. The reason for this is that the
multiple accesses to the same cache line are separated by the iterations of inner
loops. Therefore, the accessed cache line may be evicted before it is reused. By
making the loop that carries the reuse innermost, the accesses to the same cache
line would become closer in time which increases the chance of obtaining spatial
locality. Figure 3.21 illustrates this case. Two consecutive iterations of the i
loop, access two consecutive elements of array a in the same cache line. However,
since the i loop is outermost, consecutive iterations of this loop are separated by
jmax-jmin iterations of the j loop. Thus, the cache line may be evicted before the

next iteration of the i loop occurs. By making the i loop innermost, there will



CHAPTER 3. METHODOLOGY 48

do i = imin, imax, 1 do j = jmin, jmax, 1
do j = jmin, jmax, 1 do i = imin, imax, 1
sum = sum + A(i,j) sum = sum + A(i,j)
enddo enddo
enddo enddo
(a) Ny (b) Ny/

Figure 3.21: The nest N, has no spatial locality. The nest N|’, obtained from N, by loop
permutation, has spatial locality from the array reference A(i,j).

be no j loop iterations between consecutive iterations of the i loop. Thus, spatial

locality may be improved.

e Layout Change Needed: in some array access patterns, consecutive elements in
an array dimension D may be accessed. If dimension D is the stride-1 dimension
than the accessed elements will be in the same cache line and thus there will be
spatial locality. However, if dimension D is not the stride-1 dimension then the
accessed elements will be in different cache lines and there would be no spatial
locality. By changing the array layout such that dimension D becomes the stride-1
dimension would cause spatial locality. Figure 3.22 illustrates this case. By storing
the array A in row-major order, the subscript expression of the stride-1 dimension
becomes j instead of 2i. And since the j loop is innermost, spatial locality will

result.

e Layout Change and Loop Permutation Needed: this case is the combination
of the two cases above. Changing the array layout is needed to obtain spatial reuse,
and loop permutation is needed to translate this reuse into locality. Figure 3.23
illustrate this case. Two consecutive iterations of the i loop access two consecutive
elements in a row of array A. However, since array A is stored such that a cache
line contains consecutive elements of a column of A, there is no spatial reuse. By
laying out A in row-major order, the two consecutive iterations of the i loop would
access two elements of A in the same cache line. Even though at this stage there

exist spatial reuse, the accesses to the same cache line are separated by jmax-jmin
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do i = imin, imax, 1
do j = jmin, jmax, 1
sum = sum + A(21)
enddo
enddo

Figure 3.22: The array reference A(21,j) exhibits no spatial locality because it is stored
in column-major order. If array A is stored in row-major order, then the index j will be
in the stride-1 dimension, and spatial locality will be achieved.

do i = imin, imax, 1 do j = jmin, jmax, 1
do j = jmin, jmax, 1 do i = imin, imax, 1
sum = sum + A(2j,i) sum = sum + A(2j,1)
enddo enddo
enddo enddo
(a) Ny (b) Ny’

Figure 3.23: The nest N; has no spatial locality. The nest N,’ is obtained from N, by
loop permutation. And if array A is stored in row-major order then spatial locality will
be achieved.

iterations of the j loop, during which the cache line may be evicted. By permuting
the 1 and j loops, the two accesses to the same cache line will be in two consecutive

iterations of the inner loop i. Thus spatial locality would be obtained.

e Permutation or layout needed: either loop permutation or a change in the array

layvout is needed and sufficient to get self-spatial locality for the array reference.

3.7.1.2 Group-Spatial Locality

Group-spatial locality depends on the subscript expressions of the array references in-
volved. Given an array reference, it can be classifed into one of the following categories.
These categories reflect how the given array reference can be affected, to exhibit group-

spatial locality, if possible.

e Temporal group: the reference belongs to a group of references exhibiting group-

temporal locality. Two array references A and A,, to the same array, are considered
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to exhibit group-temporal locality with respect to an enclosing loop L if either of

the next two conditions hold [CMT94]:

1. there exists a loop-independent dependence caused by the references to A;

and A,, or

2. there exists a loop-carried dependence S;4S, represented by distance vector d
= (dy, ..., dn), and caused by the references to A; and A,, where ||d.|| < 2.

and all other entries in d are zero.

In this case, changing the array layout is considered not beneficial because the

reference already exhibits group-temporal locality.

e Spatial group: the reference belongs to a group of references exhibiting group-
spatial locality. Two array references A; and A, to the same array, are considered

to exhibit group-spatial locality if the two following conditions hold [CMT94]:

1. All array subscripts in A; and A, must be pairwise identical except the sub-

scripts in the stride-1 dimension.

o

The absolute value of the difference of the subscripts in the stride-1 dimension
of A; and A, must be greater than zero and smaller than the cache line size

in array elements.

e Layout change needed: the above two conditions listed for “Spatial group”
may hold for a dimension D that is different than the stride-1 dimension. If the
layout of the array can be changed such that dimension D becomes the stride-1
dimension, then group-spatial locality may be obtained. Figure 3.24 illustrates this
case. The two references A(3j,41i) and A(3j,41+1) access two elements of A that
are consecutive and in the same row. If A is stored in column-major order then
cache lines would contain consecutive array elements of the same column. Thus,
A(3j,41) and A(3j,4i+1) will exhibit no group-spatial locality. However, if A is
stored in row-major order than the elements accessed by the two references would

be in the same cache line. Thus group-spatial locality would be exhibited. Loop
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doi=1,10,1
doj=1,10,1
B(j,1) = A(3),4i) + A(3j,4i+1)
enddo
enddo

Figure 3.24: By laying out the array A in row-major order, then the two array reference
to A would exhibit group spatial locality.
permutation does not affect group-spatial locality because it does not affect the

stride-1 dimension of arrays.

3.7.2 Data Layout Framework

This section describes the framework used to assess whether changing the data layout
of arrays is needed to enhance spatial locality. First, it should be pointed out that this
framework does not check for the legality of changing the data layout. Data layout
may be illegal due to array aliasing. Second, this framework only considers changing the
array layout as an intra-procedural transformation as opposed to a global transformation.
Hence, the effects of changing the layout of an array, in a given procedure, are not
considered on other procedures. Because of the above two limitations, the framework
presented here will yield optimistic results as to the benefit of layout change. In other
words, when the legality and the inter-procedural effects of changing array layouts are
taken into accout, the benefit of data layout would be smaller than the one reported by
this framework.

This framework considers conflicts between references to the same array. In fact, two
array references A| and A, to the same array A, may require different layouts to exhibit
spatial locality. By choosing an array layout to make A, exhibit spatial locality then A,
would not exhibit spatial locality, and vice-versa. It should be noted that the layout of
a given array is considered static, i.e. it remains the same during the whole program.

To estimate the effect of allowing difterent layouts for different arrays, the algorithm in
Figure 3.25 is applied to the benchmark applications. First, the algorithm divides array

references into groups. Each group contains all the references to a given array. Second,
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Input: Pgm: A program
Output: Norip: Number of array references exhibiting self
or group-spatial locality without any change in layout
Ningr: Maximum number of array references exhibiting self
or group-spatial locality when the array layout can be
different for different arrays

begin
Norig =0
Nmgr = 0

//group the arrays such that all references to the same array are together
SetofArrayGroups arraygroups = Pgm.GroupArrays ()

//iterate over all the groups of arrays
for(Iterator groupiter = arraygroups; groupiter.valid(); ++groupiter)
//iterate over the dimensicns of the array that represents the
//current arraygroup
for(Iterator dimiter = groupiter.current().array().dimensions();
dimiter.valid(); ++dimiter)
//count and saves the number of references with self or group-spatial
//locality when the current dimension is the fastest changing
groupiter.current() .CountSpatialRefs(dimiter.current())
endfor

//get the number of references with spatial locality for the
//dimension originally fastest changing, and add it to N,
Norig += groupiter.current().GetOrgCount()

//get the maximum number of references with spatial locality for
//any dimension made fastest changing, and add it to Ny,
Npmar += groupiter.current().GetMaxCount ()
endfor
end

Figure 3.25: Algorithm used to assess the effects of data layout on the array references
with self or group-spatial locality.
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for each group, each dimension of the array is considered as the stride-1 dimension, and
the number of references exhibiting self or group-spatial locality is recorded. The total
number (N,.;y) of array references with spatial locality for the original stride-1 dimension
for all the arrays is computed. The maximum number N,, ., of array references with spatial
locality for any dimension in the stride-1 position for all the arrays is also computed.
Hence, Nq- i1s the maximum total number of array references, in the application, that
exhibit group or self-spatial locality, when having different layouts for different arrays
is allowed. If Np,, is found to be greater than N,,.;;, then flexible layout is considered

desirable.

3.7.3 Loop Permutation Framework

This section describes the framework used to assess whether loop permutation is needed
to enhance spatial locality. This framework considers conflicts between array references
in the same nest. In fact, two array references may require two different loops in the
innermost position of the enclosing nest.

For every nest, an index is calculated for every loop when it is placed innermost.
Then, it is decided whether loop permutation is desirable. The decision is made by
comparing the maximum index calculated with the index of the original inner loop. If the
maximum index is larger than the index of the original inner loop, then loop permutation
is considered desirable. The index is simply the count of array references that exhibit
spatial locality when the considered loop is innermost. More precisely, for each nest N
with loops (L, Lo, ..., L,), a vector (M, M2, ..., M,) is calculated, where M; is the
number of array references exhibiting spatial locality when loop L; is made innermost. M,
is the number of array references with spatial locality for the loop L, which is originally
innermost. Mg, is the maximum of the elements in the vector (M, M,, ..., M,), and
corresponds to the highest number of array references exhibiting spatial locality if any
loop in the nest N can be made innermost. To decide if loop permutation is desirable
Moz is compared to M,. If (M. > M,) then loop permutation is considered desirable,

otherwise it is not.



Chapter 4

Improvements in Nest Structures

This chapter reports on the experimental results concerning loop nests structures. Sec-
tion 4.1 describes how loops and nests are timed. Section 4.2 describes the nest structures
before any transformation. Sections 4.3, 4.4 and 4.5 respectively present the effects on
nest structures and the overhead of code sinking, loop distribution with and without
scalar expansion, and loop fusion. Finally, Section 4.6 compares the three techniques

and draws general conclusions.

4.1 Timing Technique

Since this research uses the relative contribution to execution time of loop nests as a
metric, it is important to explain how the timing of loops is conducted. First, the

following terms are defined.

1. Total Time

e The total time of a loop is the time it takes to execute the loop.

e The total time of a perfect nest is the total time of its outer loop.

2. Net Time

e The net time of a loop is equal to its total time minus the total time of all the

loops and subroutines directly enclosed by it.

o The net time of a perfect nest is equal to the net time of the innermost loop

of the perfect nest.

54
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begl = time()
doi1= i[,, if, 1

beg2 = time()
dOj =jbajf)’ 1

beg = time() end.do

doi =1, is 1 end2 = time()

: looptime2 += end?2 - beg?2
enddo enddo

end = time() endl= time()

looptime += end - beg looptimel += endl - begl

(a) Loop timing (b) Loop nest timing
Figure 4.1: Loop and loop nest timing

To time a given loop L. calls to timing routines are inserted before the header and
after the tail of the loop. The execution time of L is equal to the difference between
the two timing calls. However, the loop L may be executed multiple times'. Thus, the
execution time of L needs to be accumulated. Figure 4.1(a) illustrates how a loop is
timed. Figure 4.1(b) shows how loops in nests are timed.

[t should be noted that the insertion of timing calls is intrusive. That is, the timing
calls affect the execution time of the application. However, we believe that the effects of

timing routines are small.

4.1.1 Timing of Nests Made Perfect by Code Sinking

This subsection describes how the execution time for nests made perfect by code sinking
is derived. Given two loops Loyter and Lipqer that can be made tightly nested using code

sinking as Figure 4.2 shows, then the times of the resulting perfect nest and the involved

7
outer

loops are computed as follows. The total time of L is considered equal to the time of

Louter, i.€. the overhead of the guards used in code sinking is ignored. The overhead is

!The loop L may be inside a subroutine that is called multiple times, or the loop L may be enclosed
by an outer loop.
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Louter do i = i, if! 1 L:)uter doi= b, if’ 1
Code X L:'nner do j = jbv jfa 1
Linner doj=13s]Js. 1 Code X
enddo enddo
enddo enddo
(a) Original (b) Code sinking

Figure 4.2: Loop times after code sinking.

ignored in order to keep execution time of perfect nests from being artificially inflated.

The total time of L/

nner 15 glven by:

L! _ .total = Linner-total + Loycer.net

tnner

The equation tries to approximate the addition of the execution time of the sunk code
to the total time of Liiner. [t is only an approximation because the net time of Loyzer
includes the execution time for the header and tail of L,y... We believe that this is a
reasonable approximation because usually the body of a loop contribute to most of the
execution time of the loop. The net times of the loops and the new perfect nest are

recomputed as described in the previous section.

4.1.2 Timing of Nests Made Perfect by Loop Distribution

This subsection describes how the execution time for nests made perfect by loop distri-
bution is derived. Given a loop Lyuser e€nclosing a loop Lipner, and given that Loy can
be distributed to obtain a single loop Lsingre and a perfect nest (L! wtersLinner )s as shown
in Figure 4.3, then the times of the resulting ioops are computed as follows. The total

time of L} is approximated

tnner outer

is equal to the total time of L;ipne-- The total time of L!
as the total time of L;uner. The header and tail times of L, .. are not included. They
are expected to be small compared to the total time of Liyn.r. The total time of Lgingie

is given by:

Lsingle.total = Loute,.total - Linncr.total
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Loute:r doi= iba if7 1
Code X
Linner dO_] :.jbv .]f~ 1

enddo
enddo

(a) Original

L_.,,'ngie doi= ib, if, 1
Code X
enddo
Lguter doi= ib, if, 1
Lier  doj = b s 1

enddo
enddo

{b) Loop Distribution

Figure 4.3: Loop times after loop distribution.

The equation states that the total time of the new loop Lgingie is equal to the execution
time of the code between L,yter and Linner plus the time of the header and tail of L,yer-
The net times of the loops and the new perfect nest are recomputed as described in

Section 4.1.

4.1.3 Timing of Nests Made Perfect by Loop Fusion

This subsection describes how the execution time for nests made perfect by loop fusion is
derived. Given a loop Lyt enclosing loops Lin; and L;n2, and given that these inner loops
can be fused to obtain a loop Linner which will be part of a perfect nest (Louter,Linner ), as
Figure 4.4 shows, then the times of the resulting loops are computed as follows. The total
time of L,y is unchanged. The total time of Lin.r is approximated as the addition of
the total times of L;,; and L;y2. This is an approximation because it ignores the saving
in time due to combining the headers of L;,; and L;,,. The net times of both loops and

the perfect nest are recomputed as described in Section 4.1.

4.1.4 Times of Pseudo and Real Perfect Nests

As mentioned before, real perfect nests are also pseudo perfect nests by definition. Hence,
when computing the times for these types of nests, some clarifications are required.

Figure 4.5(a) shows two perfect nests. The nest N; = (L;,L,) is pseudo perfect, while
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Louter doi = ib7 if? 1

Linl dO_] =jb’ jf1 1
Body of L;n; Louter do 1 = 1, iy, 1
enddo Linner do j =js, js, L
Lin2 do j = jbv jf7 1 BOdy of Linl
Body of L;.» Body of L;,,
enddo enddo
enddo enddo
(a) Original (b) Loop Fusion

Figure 4.4: Loop times after loop fusion.

the nest N3 = (Ls,Ly) is real perfect. On the one hand, when computing the time of real
perfect nests, only the time of Nj is included. The time of N; is not included because
N, is not a real perfect nest. On the other hand, when computing the time for pseudo
perfect nests, the time of N, is included. The time for N3 is not considered even though
it is also a pseudo perfect nest; the time of N3 has already been accounted for by the
time of Nj.

Figure 4.5(b) shows the real perfect nest N3, obtained by applying code sinking to N,
and N3. N3 is a real perfect nest. In this case, the times for pseudo and real perfect nests
are identical. and are equal to the time of N,. The time of real perfect nests increases
while the time of pseudo perfect nests remains the same.

Figure 4.6 illustrates a different case where the time for pseudo perfect nests increases
while the time for real perfect nests remains the same. In Figure 4.6(a) there are no
perfect nests. After code sinking, and assuming that the code cannot be sunk further
down into Lj, Figure 4.6(b) has one pseudo perfect nest (L;,L2) and still no real perfect
nests. Hence, the time of pseudo perfect nests will increase while the time for real perfect

nests remains the same.
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Lidoi =1 1iy,1 Lidoi =1, iy, 1
Ly doj=jsjs. 1 Ly doj=]s s 1

L3 d0k=kb, kf,l
Ls do k = ks, ky, 1 L4 do m = my, my, 1
L, do m = my, my, 1 :

enddo enddo
enddo enddo
enddo enddo
enddo enddo
(a) N, and N3 (b) Ni3

Figure 4.5: Example to illustrate how the time of real perfect nests may increase while
the time of pseudo perfect nests remains the same.

L[ d0i=i(,, if, 1 L[ dOi‘—‘ib, i_f,l
S[ L2 d0j=jb,jf,l
Lo doj=1ijeisl St
Sz S'Z
L3 dOk=kb, kf, 1 L3 d0k=kb, kf, I
Sa S
enddo enddo
enddo enddo
enddo enddo
(a) Original (b) After Code Sinking

Figure 4.6: Example to illustrate how the time of pseudo perfect nests may increase while
the time of real perfect nests remains the same.
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4.2 Characterization of Execution Time

This section characterizes the execution time of the benchmark applications. It starts
with a coarse-grain characterization, according to which execution time is spent in loops
or outside loops. This characterization examines the assumption that most execution
time is spent in loops. Then, a fine-grain characterization of execution time is presented.

The fine-grain characterization considers execution time spent in different nest structures.

4.2.1 Coarse-Grain Characterization

To gain a better understanding of the characteristics of the applications considered, the

execution time of an application is characterized as follows.
l. The execution time of code enclosed by a loop.
2. The execution time of code not enclosed by a loop.

The above characterization is important because most optimizations target loops. In
fact, it is assumed that the relative contribution to execution time of the loops, in a
given data parallel application. is high (more than 90%).

Table 4.1 is derived using the system described in Section 3.2. It summarizes the
measured relative contribution to execution time of loops in the benchmark applications.

[n particular, table 4.1 shows the following:

o For 13 applications, the relative contribution to execution time of loops is greater
than 98%. Such high relative contribution to execution time of loops is expected

and indeed desired.

e For 19 applications, the relative contribution to execution time of loops is greater

than 90%.

e The applications LG, LW, MT, OR and WV have significantly lower relative con-
tribution to execution time of loops. The high relative contribution to execution
time of unenclosed code is due to a large number of calls to subroutines and func-

tions that contain no loops. However, when these subroutines and functions are
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%UnEnclosed

%Loop Time ; App
Time

99.81 0.19 BT
99.95 0.05 EP
94.82 5.18 FT
98.06 1.94 IS
99.93 0.07 LU
99.79 0.21 MG
99.87 0.13 SP
51.17 48.83 LG
91.43 8.57 LGI
75.51 24.49 LW
99.99 0.01 LWI
53.66 46.34 MT
92.87 7.13 MTI
95.63 4.37 NA
98.85 1.15 oC
95.39 4.61 SD
99.04 0.96 SR
99.98 0.02 TF
99.98 0.02 TI
98.41 1.59 HY
20.27 79.73 OR
99.99 0.01 ORI
96.16 3.84 SU
99.92 0.08 SW
99.90 0.10 TO
77.89 22.11 wVv
92.54 7.46 WVI
99.97 0.03 HG

61

Table 4.1: Coarse-grain characterization of execution time. LGI, LWI, MTI, ORI and

WVTI are partially-inlined versions (see text} of LG, LW, MT, OR and WV respectively.
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inlined?, all five applications, indicated by LGI, LWI, MTI, ORI and WVI, exhibit
relative contribution to execution time of loops higher than 90%. Hence, the inlined

versions of these applications are used subsequently.

4.2.2 Fine-Grain Characterization

As mentioned above, a high relative contribution to execution time of loops is desirable
because most optimizations target the loops in an application. However, some optimiza-
tions are designed to target specific loop structures. For example, neither tiling nor
permutation can be applied to a loop nest of dimension equal to 1. The following is a

refined characterization of execution time.
¢ Unenclosed time: the time for code segments that are not enclosed by any loop.
e Single time The net time of single loops.
e Perfect time: the net time of real perfect nests.

e Code-motion time: the net time of nests that may be made real perfect using
code sinking. Nests that are characterized under this category can also be made
real perfect by loop distribution. Loop fusion, however, cannot transform such

nests into perfect ones.

e Fusion time: the net time of nests that require loop fusion to become real perfect.
Nests that are characterized under this category can also be made real perfect by

loop distribution. Code sinking, however, does not target such nests®.

Figure 4.7 shows the execution time characterizations of the 23 benchmarks. In the
applications SR, HY and SW, perfect nests contribute to almost 100% of the execution
time. Therefore, none of the transformations considered in this research are needed for
these applications. In MG and TF, perfect nests contribute to a high percentage of

execution time. Thus the effects of the transformations is expected to be minimal. The

2Only the routines which have no loops and that are called a large number of times are inlined.
Inlining some of the applications fuily is not practical because of compilation times involved.

3If sinking loops into other loops is allowed then code sinking would target these nests. However, we
do not consider this case as indicated in Section 3.3.3.



CHAPTER 4. IMPROVEMENTS IN NEST STRUCTURES 63

-
(=]
o

[01]
o

o
o
]
I
|

a
(=]
]

n
o
]

| , i

BT EP FT IS LU MG SP LG LW MT NA OC SD SR TF Tl HY OR SU SW TO WV HG AV
Applications

i UnEnclosed [l Single [ Perfect B Code Motion B

Percentage of Execution Time

Figure 4.7: Characterization of execution time of the applications.

execution time labelled as “Unenclosed” and “Single” is not targetable by any of the
transformations. Therefore the relative contribution to execution time of perfect nests
in IS and SU cannot be increased. Code sinking targets the percentage of execution
time labelled as “Code Motion”. Therefore, it has the potential to significantly improve
the contribution to execution time of perfect nests in FT, LU, SP, OC, TI, OR and TI.
Loop distribution targets the percentage of execution time classified under the categories
“Code Motion” and “Fusion™. Loop distribution is expected to target the applications
with significant execution time in these two categories. Finally, loop fusion only handles
nests whose time is classified as “Fusion”. Thus, loop fusion can potentially increase the
relative contribution to execution time of perfect nests in BT, EP, SP, LW, MT, NA,
WV and HG. From the above, it can be conclude that the three transformations may be

needed to increase the contribution to execution time of real perfect nests.

4.3 The Effect of Code Sinking on Nest Structures

This section reports on how code sinking affects the contribution of perfect nests in the
applications. [t also discusses the overhead introduced by code sinking.
Figure 4.8(a) and Figure 4.8(b) show the characterization of execution time before

and after code sinking, respectively. The figures indicate that code sinking is effective
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in transforming most nests labelled as “Code Motion™” into real perfect nests. In Fig-
ure 4.8(b), there remain little execution time labelled as “Code Motion”. However, code
motion is not successful in transforming some imperfect nests into perfect nests due to
unsafe loops and dependences. For instance, in OR, there is an unsafe loop that con-
tribute to most of the execution time. In general, code sinking is successful in increasing
the relative contribution to execution time of perfect nests in the applications that have a
significant portion of execution time classified as “Code Motion”. The applications that
have a low percentage of execution time labelled as “Code Motion” are not affected by
code sinking.

Code sinking increases the relative contribution to execution time of real perfect nests
in 13 benchmarks. Figure 4.9 shows the increase in the relative contribution to execution
time of pseudo and real perfect nests, for these applications.

By examining Figure 4.9, it can be seen that, for BT, LU, SP and LG, code sinking
increases only the relative contribution to execution time of real perfect nests, while it has
little or no effect on the pseudo perfect nests contribution. There are two reasons for this.
First, there is a number of pseudo perfect nests that are transformed into real perfect
nests and since real perfect nests are also pseudo perfect nests, the relative contribution
to execution time of real perfect nests will increase, while the one for pseudo perfect
nests remains unchanged (see Section 4.1.4). Second, if a nest that is made real perfect
by code sinking, is already enclosed by a pseudo perfect nest, then the execution time of
the new perfect nest will not be added to the time of pseudo perfect nests; otherwise the
time of the new perfect nest would be accounted for twice.

The computational overhead, due to code sinking, stems from the execution of the
guards used to ensure proper execution. Although the sunk code will be executed only
once for the trip count of the inner loop, the ifstmt used to guard the sunk code will
be executed trip count times. The addition of the ifstmt to the inner loop increases
execution time because the arithmetic operations to evaluate the conditional require
additional cycles. Moreover, the conditional may cause a pipeline control hazard or a
cache miss.

To assess the computational overhead due to code sinking, the execution times of the
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after code sinking.

applications after code sinking, are compared with the execution times of the original
applications. Figure 4.10, shows the overhead of code sinking for the applications affected
by this transformation. Code sinking caused no overhead in 8 of the 13 applications in
which it increased the relative contribution to execution time of perfect nests. For 3
other applications, the overhead is less than 5%. Thus, for most applications code sinking
introduces acceptable overhead. However, code sinking may be prohibitive for SD and
TI because of the high overhead of 35% and 28%, respectively. The large overhead in
these two applications is due to sinking code in loops that have small bodies (one or
two statements). Consequently, the guards used to ensure proper execution have an
execution time that is comparable to that of the body of the original loop. Therefore,

special attention should be paid when sinking code into loops with small bodies.

4.4 The Effect of Loop Distribution on Nest Struc-
tures

This section reports on how loop distribution with and without scalar expansion affects
the number of perfect nests and their relative contribution to execution time in the

applications. It also discusses the overhead introduced by loop distribution.
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4.4.1 Loop Distribution without Scalar Expansion

Figure 4.11(a) and Figure 4.11(b) show the characterization of execution time before and
after loop distribution, respectively. These two figures indicate that in 9 of 12 appli-
cations, loop distribution only targets the execution time labelled “Code Motion™. In
these applications, execution time labelled “Fusion” is not affected due to dependences.
Only in MG, loop distribution succeeds in transforming all the imperfect nests, whose
execution time is characterized as “Fusion”, to perfect nests. [n SD and TF, loop dis-
tribution targets loop nests whose times are characterized as either “Code Motion” or
“Fusion”. For most applications, most of the loops nests that can be made perfect by
loop distribution have their execution time labelled as “Code Motion”, hence they can
also be made perfect by code sinking. Loop nests that require loop fusion to become
perfect, can rarely be made perfect by loop distribution.

Loop distribution increased the relative contribution to execution time of perfect nests
in 12 benchmark applications. Figure 4.12 shows the increase in the relative contribution
to execution time of pseudo and real perfect perfect nests, for the applications that are
targeted by loop distribution.

As mentioned before, loop distribution only targets nests that can be made perfect

by code sinking or loop fusion. Therefore, loop distribution has a potential of increasing
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the relative contribution to execution time of perfect nests in applications where the
time classified under “Code Motion” and “Fusion” is significant (see Figure 4.11). Loop
distribution succeeds in increasing the relative contribution to execution time of perfect
nests to more than 95%, for 3 applications, namely MG, TF and TO. For 9 applications
(other than the 3 above), loop distribution increases the relative contribution to execution
time of perfect nests. However, in these 9 applications, there are loop nests which loop
distribution has the potential to make perfect but fails to do so, as indicated below. For 7
applications, loop distribution is not effective in transforming imperfect nests into perfect
ones.

Table 4.2 presents the reasons why loop distribution is ineffective in transforming more
imperfect nests into perfect ones. The table shows that array dependences are often the
main reason for disallowing distribution. However, it also shows that for FT, LU, OC,
SD and TI, scalar dependences prevent loop distribution from obtaining perfect nests.
Thus, scalar expansion has the potential of making loop distribution more effective for
these applications. Unsafe loops disallow distribution in only few applications, namely,
EP, MT and OR.

The applications in which the relative contribution to execution time of perfect nests

increased due to loop distribution, are executed after applying loop distribution to assess
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the overhead introduced. It is found that loop distribution added negligible overhead to

the execution time in all of the applications.

. %Time %Time
App g:;:ls #Unsafe %:;;nf: #g(;:;lar Scalar #gzrl;ay Array
Dep Dep
BT 193 7 6 2 0 25 63
EP 13 1 58 0 0 0 0
FT 63 4 8 6 31 3 9
LU 169 7 2 16 11 L7 32
SP 247 9 3 6 0 27 46
LG 193 12 2 0 0 18 4
LW 106 0 0 4 0 17 96
MT 102 6 23 0 0 17 59
NA 246 13 8 5 0 18 21
ocC 272 10 1 5 2 33 20
SD 246 26 15 18 39 T 8
TI 133 4 0 21 53 25 29
OR 7 2 100 0 0 0 0
SU 173 9 6 0 0 19 27
WV 566 2 0 14 1 43 39
HG 395 4 1 0 0 22 81

Table 4.2: The reasons for the ineffectiveness of loop distribution

In summary, loop distribution succeeds in increasing the number and relative contri-
bution to execution time of perfect nests in half of the applications. Array dependences
are the main reason for the ineffectiveness of loop distribution in tranforming an im-
perfect nest into perfect one. However, in some applications, scalar dependences play a
significant role in preventing distribution. In these cases, scalar expansion may be used

to enable distribution.

4.4.2 Loop Distribution with Scalar Expansion

Loop distribution with scalar expansion targets the applications for which scalar depen-
dences play a significant role in disallowing loop distribution from obtaining perfect nests.
Figure 4.13(a) and Figure 4.13(b) show the characterization of execution time before and
after loop distribution with scalar expansion, respectively. Loop distribution with scalar

expansion mainly targets the execution time labelled as “Code Motion”. Only FT and
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SD have their execution time labelled “Fusion” reduced by loop distribution with scalar
expansion. Thus, loop nests, that require loop fusion to become perfect, can not be made
perfect by loop distribution with or without scalar expansion.

Figure 4.14 shows the increase in the relative contribution to execution time of pseudo
and real perfect perfect nests, for the applications targeted by loop distribution with
scalar expansion, namely FT, LU, OC, SD and TI. For all five applications, scalar expan-
sion makes loop distribution more applicable. Scalar expansion enables loop distribution
for most of the nests in which scalar dependences disallow loop distribution. Thus, scalar

expansion is legal in most of the cases where it is desirable.

4.4.2.1 Array Sizes of Expanded Scalars

To handle loops with variable trip counts, scalars are expanded into dynamically allocated
arrays. Static arrays can only be used to expand scalars in loops with trip counts known
at compile time*. It is found that most arrays must be allocated dynamically in four
(FT, LU, SD, TI) of the five applications. Only in OC, the sizes of the arrays to be

allocated are known at compile time.

*Theoretically, static arrays may be used for trip counts that are constant but unknown at compile
time. However, the compiler used does not provide a mechanism for specifying static array sizes at run
time.
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Figure 4.15, shows the distribution of the sizes of the arrays allocated to expand the
scalars in FT, LU, OC, SD and TI. For SD, some array sizes are omitted because they
are used a very small number of times compared to the other sizes. For TI, array sizes
are grouped in ranges; otherwise there would be too many array sizes to be shown on
the horizontal axis of the figure. For instance, the figure indicates that 10 arrays of sizes
ranging between 100kbytes and 1Mbytes are allocated. From the figure, two extreme
cases can be seen. First, there is a large number (in the 100000’s range) of small arrays
(in the few hundred bytes range) to be allocated, as for F'T and SD. In this case, the
overhead is expected to be due to the large number of calls to the memory management
routines. Second, there may be a small number (in the 10’s range) of large arrays (more
than hundred kilobytes) to be allocated, as for LU and TI. In this case, the overhead is
expected to be mainly due to the large arrays allocated and their effects on the cache.
These large arrays would occupy most of the cache and thus increase the number of cache
misses to other data. The large size of some of the arrays (e.g. in TI) are due to applying
scalar expansion in loop nests, where the array size must be equal to the multiplication

of the trip counts of the loops in the nests (Section 3.5).

4.4.2.2 Overhead of Scalar Expansion

The overhead of scalar expansion has multiple sources. First, references to arrays that
replace scalars may cause cache misses to original data. Second, references to arrays must
go to the cache while references to scalars can be satisfied by a register. Third, there is
a computational overhead in evaluating the subscript expressions of the array references.
Fourth, when using dynamically allocated arrays, memory management routines such as
malloc and free increase execution time.

Figure 4.16 shows the overhead of applying loop distribution with scalar expansion to
the five applications. The numbers in Figure 4.16 are normalized to the execution time

of the applications without any transformations:

e For TI, scalar expansion caused an overhead of 250%. This huge overhead is due
to cache misses caused by the large sized arrays allocated. The allocation of very

large chunks of memory (in the order of 1 Mbytes to 20 Mbytes, see Figure 4.15)
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also contribute to the overhead.

e For FT and SD. scalar expansion caused overheads of 16% and 43%, respectively.
These overheads are caused by a large number (more than 100000) of calls to malloc

even though the size of the allocated arrays are relatively small (see Figure 4.15).

e For LU and OC, the overheads of scalar expansion are 17% and 15%. The overheads
are due cache misses introduced by accessing the arrays introduced by scalar ex-
pansion. Also, the overhead is due to several hundreds of calls to malloc to allocate

arrays in the kilobytes size range.

The overhead due to scalar expansion is prohibitive, and thus scalar expansion should
be applied with special care. It is likely to be useful when the sizes of the arrays to be

allocated and the number of calls to malloc are small.

4.5 The Effect of Loop Fusion on Nest Structures

This section reports on how loop fusion affects the contribution of the perfect nests in
the benchmark applications. It also discusses the overhead introduced by loop fusion.
Loop fusion increases the relative contribution to execution time of perfect nests in
only 2 applications. The relative contribution to execution time of real and pseudo perfect
nests increases from 88% to 99% in MG. In SD, the relative contribution to execution

time of pseudo perfect nests increased from 29% to 34%, and the relative contribution to



CHAPTER 4. IMPROVEMENTS IN NEST STRUCTURES 76

execution time of real perfect nests increased from 18% to 23%. Loop fusion caused no
overhead in MG, and a 3% overhead in SD.

Loop fusion has the potential to increase perfect nests contribution in the applications
that have a significant portion of its execution time labelled as “Fusion” in Figure 4.7.
For these applications, the reasons why loop fusion failed to increase perfect nests are
presented in Table 4.3. MG is omitted because loop fusion brought the relative contri-
bution to execution time of perfect nests to 99%. The main reason for the ineffectiveness
of loop fusion is the presence of backward dependences in the fused loop which makes
fusion illegal. The presence of INTERCODE (i.e. code between loop nests) that cannot be

moved is a factor in OC only.

. %Time %Time
App E otal #Unsafe %Time #Intercode| Inter- #Back Back
oops Unsafe Dep
code Dep
BT 205 2 3 0 0 12 59
EP 13 1 58 0 0 0 0
FT 63 2 3 0 0 3 7
SP 247 6 2 0 0 15 33
LW 106 0 0 2 1 5 96
MT 102 4 17 1 1 13 49
NA 246 3 2 0 0 4 26
oC 272 6 1 4 4 9 T
sD 246 12 5 1 0 7 6
SU 173 9 6 0 0 12 13
WV 566 2 0 0 0 23 38
HG 395 2 1 0 0 22 31

Table 4.3: The reasons for the ineffectiveness of loop fusion

4.6 Summary

Code sinking, loop distribution and loop fusion are three transformations that can trans-
form an imperfect nest into a perfect one. These three transformations, along with loop
distribution with scalar expansion are implemented and applied to a suite of 23 applica-
tions. Loop fusion is found to be effective at transforming imperfect nests into perfect

ones in only two applications (see Section 4.5). The effects of the three other transfor-
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mations are summarized below, using three criteria: the number of perfect nests, the
relative contribution to execution time of perfect nests and the overhead introduced.

The effects of the transformations on the numbers and dimensions of perfect nests
are shown in Figure 4.17. The figure shows that transformations— that require perfect
nests— have to deal mostly with perfect nests with small dimensions (typically 2 or
3) even after increasing the number of perfect nests. Therefore, contrary to previous
assumptions [KM92], algorithms that exhaustively try different loop orderings of a nest,
would not be impractical. The maximum dimension of a perfect nest is 2 or 3, in 9 of the
14 applications. For 4 of 14 applications, BT, LU, SP and SU, the maximum dimension
of a perfect nest is 4. Only in LG, there is one perfect nest with a dimension of 5. Also in
all of these applicattons except MG, perfect nests with dimension equal to 2, constitute
the majority (more than 60%) of perfect nests. Moreover, the number of perfect nests
decreases with the increase of the dimension.

In 7 of 14 applications (BT, LU, MG, SP, SD, TF and TI), loop distribution with
scalar expansion results in more perfect nests than code sinking. The reason is that the
latter transformation transforms one imperfect nest into one perfect nest, while the former
transformation splits loop nests into multiple nests that may or may not be perfect.

Altogether, the three transformations increase the relative contribution to execution
time of perfect nests in 14 benchmarks. The effects of the three transformations on
the relative contribution to execution time of pseudo and real perfect nests are shown in
Figures 4.18 and Figure 4.19, respectively. The average relative contribution to execution
time of real perfect nests for the 14 applications can be increased from 38% to 66% by
code sinking, to 58% by loop distribution with scalar expansion, and to 50% by loop
distribution without scalar expansion. It should be noted that scalar expansion made
loop distribution more effective in 5 applications.

The transformations used to increase the perfect nests introduce some overhead to the
execution time of the applications. Loop distribution is found to have no overhead. Code
sinking caused no overhead in more than half of the applications. It caused low overhead
(less than 5%) in some applications. For few applications, the overhead of code sinking is

found prohibitive (more than 10%). Scalar expansion caused the highest overhead (more
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than 15%) in the applications it targeted.

To conclude, given an imperfect nest that needs to be made perfect, loop distribution
should be tried first because it causes the lowest overhead. If loop distribution fails to
make the nest perfect, then code sinking should be tried next because it introduces a
smaller overhead than loop distribution with scalar expansion. If code sinking failed
to make the nest perfect then loop distribution with scalar expansion could be tried.
However, special attention should be paid, when applying scalar expansion, especially to

the size of the arrays to be allocated.
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Chapter 5

Improvements in Locality

This chapter presents experimental results concerning cache locality. Section 5.1 con-
siders the applicability of loop permutation and how it is affected after applying the
techniques that increase the relative contribution to execution time of perfect nests.
Similarly, Section 5.2 discusses the potential benefit of tiling and how it is affected af-
ter applying the techniques that increase the relative contribution to execution time of

perfect nests. Section 5.3 presents the results on the need to enhance spatial locality.

5.1 Applicability of Loop Permutation

Loop permutation is the most commonly used techniques to enhance cache locality
[CMT94]. However, loop permutation targets only perfect nests. This section presents
results on how applicable is loop permutation, and on how its applicability is affected by
the transformations discussed in the previous chapter.

A nest N is classified as permutable if it is perfect and there exists at least a pair of
loops belonging to N that can be permuted!. The relative contribution to execution time
of permutable nests is measured before and after code sinking, loop distribution, and loop
distribution with scalar expansion. Loop fusion is not considered because it is ineffective
in increasing perfect nests. Figure 5.1 shows the relative contribution to execution time
of permutable perfect nests for the 23 applications considered. The relative contribution
to execution time of permutable nests is negligible in quarter of the applications, EP,

IS, LW, MT, OR and SU. This is expected because Figure 4.7, in the previous chapter,

!The dependences are examined to determine if permutation is legal.

81



CHAPTER 5. IMPROVEMENTS IN LOCALITY 32

s
o
o

60

40

N
o
!

Percentage of Execution Time

Q
l

BT EP Fr IS LU MG SP LGLW MT NA oc SD SR TF Tl HY OR SU swro WV'HG AV
Applications

B Pseudo Perfect Permutable ] Real Perfect Permutable
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shows that for these applications, perfect nests account for less than 1% of execution
time. The relative contribution to execution time of permutable perfect nests in half of
the applications (BT, LU, MG, SD, SR, TF, HY, SW, TO, WV and HG) is equal to the
contribution to execution time of perfect nests. This implies that in these applications,
all the perfect nests with significant contribution to execution time are permutable. For
the remaining quarter of the applications, FT, SP, LG, NA, OC and TI, permutable
perfect nests contribute less than perfect nests to execution time. Moreover, in most (20)
applications, pseudo and real permutable perfect nests have identical relative contribution
to execution time.

Figure 5.2 and Figure 5.3 show the effects of the three transformations on permutable
pseudo perfect nests and permutable real perfect nests?, respectively. All the applications
considered in the last two figures have shown an increase in the contribution to execution
time of perfect nests. In most applications (11 of 14) the increase in the relative contri-
bution to execution time of perfect nests causes an increase in the relative contribution to
execution time of permutable nests. In less than a quarter of the applications (3 of 14, F'T,
LG and SU), the increase in the relative contribution to execution time of perfect nests

does not cause an increase in the relative contribution to execution time of permutable

®Dependence testing is rerun on the transformed applications to determine which nests are
permutable.
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nests. The previous chapter shows that code sinking is the most effective in increasing
the contribution to execution time of real perfect nests. In fact, code sinking achieved
the highest contribution to execution time of real perfect nests for 12 of 14 applications
(except for MG and TF). For permutable perfect nests, however, Figure 5.3 shows that
code sinking is more effective than loop distribution for only 5 applications (BT, LU, SP,
MT and OC). Loop distribution is more effective than code sinking for 3 applications
(MG, SD and TF). For the other six applications, the two transformations achieve sim-
ilar results. When applying scalar expansion, loop distribution achieves better results
than code sinking for LU, MG, SD. TF and TI. Considering the averages, it can be seen
that code sinking achieves similar results as loop distribution. However, when applying
scalar expansion to enable loop distribution, the average contribution to execution time?
of permutable nests is higher than the one obtained by code sinking. The reason for this
is that code sinking creates perfect nests with more complex dependences than does loop
distribution. This should be expected since code sinking pushes additional statements
into the body of a loop, while loop distribution moves these statements to a separate
loop. Moreover, scalar expansion eliminates scalar anti and output dependences, and
replaces scalar flow dependences with loop-independent dependences, hence simplifying

the dependence relations in the nest.

5.2 Potential Benefit of Tiling

This section reports on the potential benefit of tiling which is one of the most commonly
used techniques for enhancing temporal locality. A loop nest is considered ¢ilable if it is
real perfect and encloses at least an array reference with a number of variable subscripts*
(referred to later as variable dimension) smaller than the dimension of the nest. The
presence of this property (tilable) indicates that part of the array is being iterated over,
hence there will be temporal locality. Tiling may also be beneficial in exploiting spatial

locality [BGS94]. However, we believe that tiling is mostly effective for temporal locality,

3The overhead of scalar expansion is not included.

“The number of variable subscripts in an array reference, or the variable dimension of the array
reference, is equal to the total number of subscripts minus the number of subscripts with constant
expressions.
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which is reflected by our definition of tilable nests.

When approximating the potential benefit of tiling , two options are considered.

o Binary: if the nest is tilable then the time for the whole nest is considered as part

of the potential benefit of tiling.

e Linear: given a tilable nest where there are n array references in total, and m array
references with variable dimensions smaller than the dimension of the nest, then
the time considered as part of the potential benefit of tiling is the whole time of

the nest, scaled by 2.

Figure 5.4 shows the relative contribution to execution time of tilable nests using the
binary and linear approximations, for all the applications considered. Both approxima-
tions give the same results for 20 applications. Thus, in most applications, when one of
the array references has a variable dimension that is smaller than the dimension of the
enclosing nest, then most array references in the same nest also have a variable dimension
that is smaller than the dimension of the nest. For 17 applications, tilable nests con-
tribute to less than 3% of execution time. This is expected for 6 applications (EP, IS, LW,
MT, OR snd SU) because in these applications perfect nests have relative contribution to
execution time of less than 2%. For 11 applications (BT, LU, MG, SP, LG, SD, TF, TI,
TO, SW and SR), tilable nests have relative contribution to execution time to execution
time less than 3%, even though perfect nests in these applications contribute significantly
(more than 20%) to execution time. For the remaining 6 applications, namely FT, NA,
OC. HY, WV and HG, tilable nests contribute significantly (between 10% and 50%) to
execution time.

Thus, tiling may be beneficial to a quarter (6 of 23) of the applications. Tiling is
not beneficial for another quarter (6 of 23) of the applications because perfect nests in
these applications have negligible contribution to execution time. For the remaining half
(11 of 23) of the applications, tiling is not beneficial because the perfect nests in these
applications do not have temporal locality that is targetable by tiling as defined in this
research.

Figure 5.5 and Figure 5.6, show the effects of code sinking, loop distribution, and loop
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distribution with scalar expansion on the potential benefits of tiling using the binary and
linear approximations, respectively. Only the applications whose relative contribution
to execution time of perfect nests increased due to any of the transformations are con-
sidered. When deriving the results the following two points are considered. First, the
array references, whose variable dimensions become smaller than the dimension of their
enclosing nest because they are sunk inside a loop, are not considered when determining
whether a nest is tilable. Second, the array references introduced by scalar expansion
are not considered when determining whether a nest is tilable. Increasing the relative
contribution to execution time of perfect nests does not increase the potential benefit of
tiling in a third (5 of 14) of the applications, BT, MG, SP, TF and TO. The contribution
to execution time of tilable nests in these applications remains negligible. This indicates
that in these applications, the original perfect nests and those obtained by the three
transformations do not have temporal locality that is targetable by tiling.

[ncreasing the relative contribution to execution time of perfect nests increases the
potential benefit of tiling in two thirds (9 of 14) of the applications. This indicates that
in these applications, there are imperfect nests for which tiling is desirable. Moreover,
these imperfet nests can be made perfect by one of the three transformations.

Figures 5.5 and 5.6 show that loop distribution with scalar expansion achieves higher
potential benefit for tiling than code sinking, for SD and TI. However, Figures 4.9 and
4.14, in the previous chapter, show that code sinking achieves higher relative contribution
to execution time of perfect nests than loop distribution with scalar expansion for the
same two applications. Figure 4.17 shows that loop distribution with scalar expansion
results in more perfect nests than code sinking for SD and TI. The additional perfect
nests are tilable nests and account for the difference between the potential benefits of
tiling after code sinking and after loop distribution with scalar expansion.

Given that tiling mainly targets tilable nests as defined in this research, 6 of 23
applications would have a potential benefit from tiling. Applying code sinking or loop
distribution with scalar expansion, makes 5 additional applications targetable by tiling.
The transformations also increase the potential benefit of tiling for 3 of the 6 applications

that may benefit from tiling originally.
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5.3 Improvements in Spatial Locality

This section reports on the need for loop permutation and flexible array layout to enhance
cache spatial locality. First, the section describes the characteristics of individual array
references with respect to self-spatial locality and group-spatial locality. Then, it eval-
uates the need for flexible array layout to enhance spatial locality. Finally, it examines

the need for loop permutation to improve spatial locality.

5.3.1 Characteristics of Array References

This section reports on the characteristics of array references regarding self-spatial locality
and group-spatial locality. Conflicts among array references enclosed by the same nest
regarding the best innermost loop, and conflicts among array references to the same array
regarding the best array layout, are not considered in this section; they will be considered

later.

5.3.1.1 Array References and Self-Spatial Locality

All array references are examined and classified under the categories discussed in Sec-
tion 3.7.1.1. Figure 5.7 shows a breakdown of the array references of different applica-

tions. Figure 5.8 is similar to Figure 5.7, however, it shows the relative contribution to
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Figure 5.7: Classification of array references vis-a-vis what needs to be done to achieve
self-spatial locality.
execution time of the different array reference classifications. The relative contribution

to execution time of an array reference is approzimated as follows.

e The relative contribution to execution time of an array reference is equal to the
net execution time of the enclosing loop divided by the number of array references
enclosed by this loop. The aim of this approximation is to assign different weights
to array references in different loop nests, depending on the execution time of the
of the nests involved. Therefore, we believe that this approximation is a reasonable

one even though it ignores the effects of arithmetic operations.

e The relative contribution to execution time of an unenclosed array reference is equal
to the net execution time (excluding loop times and unenclosed subroutine times)

of the program unit divided by the number of unenclosed array references.

Averaged over all the benchmarks, unenclosed array references constitute 15% of all
array references and contribute to only 1% of the total execution time. This is expected
since loops contribute to more than 98% in most applications. Also, 60% of array refer-
ences, contributing to 66% of the total execution time, already exhibit self-spatial locality.

Moreover, array references, exhibiting self-temporal locality with respect to the loop di-
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rectly enclosing them, constitute 12% of all array references, and contribute to 16% of
the total execution time. Hence, it can be concluded that program developers ensure
that the majority of array references exhibit either self-temporal locality or especially
self-spatial locality.

For more than half (13) of the applications, self-spatial locality cannot be improved
by neither loop permutation nor by flexible data layout. In 11 of 13 of these applications,
most of the array references already exhibit self-temporal locality or self-spatial local-
ity. In the other two applications (EP and OR), the majority of array references have
subscript expressions that prevent self-spatial locality. For 40% (9) of the applications,
array references that can be made to exhibit self-spatial reuse contribute to a significant
percentage of execution time. For these array referencesin these applications, either loop
permutation or change in the array layout is applicable. Only in OC, there are array
references that can be made to exhibit self-spatial locality using loop permutation only.
Loop permutation and flexible data layout are not required together (except for WV) to
make an array reference exhibit self-spatial locality.

Hence, in most applications, the majority of array references already exhibit self-

spatial locality. When there is a potential to increase the number and the relative con-
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tribution to execution time of array references that exhibit self-spatial locality, either
loop permutation or change in the array layout can be used. The case when only one of
the two transformations can be used is rare. The case where both transformations are

needed to benefit individual references is also rare.

5.3.1.2 Array References and Group-Spatial Locality

All array references are examined and classified under the categories discussed in Sec-
tion 3.7.1.2. The categories reflect what needs to be done to achieve group-spatial locality.
Figure 5.9 shows a breakdown of the array references of the 23 benchmark applications.
Figure 5.10 is similar to Figure 5.9, however, it shows the relative contribution to execu-
tion time of the different array reference classifications.

Averaged over all the applications, most (52%) array references exhibit group-temporal
reuse. Some (15%) of the array references already exhibit group-spatial reuse. Only (7%)
of the array references can be made to exhibit group-spatial reuse by changing the array
layout. The remaining array references cannot be made to exhibit group-spatial reuse.
In half (12) of the applications, changing the array layout may increase the number of

array references exhibiting group-spatial locality.
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5.3.2 Effect of Flexible Layout on Spatial Locality

This section presents results on whether having different layouts for different arrays
in an application would be beneficial. The framework used to obtain the results is
described in Section 3.7.2. The sections 5.3.1.1 and 5.3.1.2 above considered changing
the layout to benefit an individual array reference, by making it exhibit self or group-
spatial locality. However, the above sections do not consider conflicts in the array layouts
among references to the same array. Figure 5.11 shows the percentage of array references
that exhibit self or group-spatial locality when the array layout is fixed, and when it
can be different for different arrays. Figure 5.12 is similar to Figures 5.11, however, it
shows the contribution to execution time of references instead of the percentage of array

references. The following remarks discuss the results.

e For 7 applications, EP, LG, LW, MT, NA, OC and OR, having different layouts for
different arrays does not increase the references with spatial locality. This result
can be explained by examining Figures 5.8 and 5.10. Since, Figures 5.8 and 5.10
show that for the 7 applications above, data layout cannot benefit individual array
references, therefore when considering all references together, data layout would

not be benefitial.
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e For 6 applications, BT, FT, IS, HY, TO and SW, data layout does not increase
the contribution to execution time of references with spatial locality. Figure 5.8
shows that the references with self-spatial locality contribute to more than 90%
of execution time. Therefore, changing the layout to increase the references with
group-spatial locality would decrease the references with self-spatial locality. Thus

changing the data layout for these applications is not effective.

e For 4 applications, MG, SP, TF and SU, changing the data layout has the potential
of making additional references exhibit spatial locality, as can be seen from Fig-
ures 5.8 and 5.10. However, due to conflicts, changing the data layout in these

applications causes an overall decrease in array references exhibiting spatial locality.

e For only a quarter (6 of 23) of the applications (LU, SD, SR, TI, WV and HG),
having different layouts for different arrays increases the overall number and con-
tribution to execution time of the array references that exhibit either self or group-
spatial locality. However, it should mentioned that once the legality of changing
the array layout is taken into consideration then the benefits for these applications

may be reduced.

In summary, it is found that changing the data layout of some of the arrays in 17
applications would have no benefit. For the remaining 6 applications, data layout may
increase the overall array references that exhibit self or group-spatial locality. However,
the benefit of data layout for these 6 applications, may be less than expected when the

legality of data layout is considered.

5.3.3 Loop Permutation To Enhance Spatial locality

Section 5.3.1.1 evaluates the need for loop permutation at the level of individual array
references. It does not consider conflicts among the array references belonging to the
same nest. In contrast, this section reports on the need to use loop permutation to
enhance spatial locality, when such conflicts are considered. The framework described
in Section 3.7.3 is used to determine whether loop permutation needs to be applied to a

given nest.
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Figure 5.13: Percentage of nests requiring loop permutation for better spatial locality.

Figures 5.13 and 5.14 show the percentage of nests and contribution to execution time
of nests, that may benefit from loop permutation, respectively. The nests are classified
according to whether permutation is needed or permutation is not needed. Furthermore,
the nests are classified as real perfect or not real perfect.

In two thirds (16) of the applications, loop permutation would have no benefits with
respect to spatial locality. In particular, Figure 5.8 supports this finding for 13 of these
16 applications (BT, EP, IS, MG, LG, LW, MT, NA, HY, OR, SU, SW and TO). In fact,
Figure 3.8 shows that for the 13 applications listed above, array references that would
exhibit spatial locality due to loop permutation contribute to a very small percentage of
execution time. For the remaining 3 of the 16 applications FT, SD and TI, innermost
loop conflicts among array references in the same nest make loop permutation ineffective
in making more array references exhibit spatial locality.

For the remaining 7 applications (LU, SP, OC, SR, TF, WV and HG), Figure 5.13
and Figure 5.14 show that loop permutation would increase the overall number and
contribution to execution time of array references that exhibit spatial locality. These 7
applications warrant further consideration. The transformations discussed in the previous

chapter are applied to the nests that require loop permutation and that are not perfect.
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These transformations attempt to make loop permutation applicable by transforming
the imperfect nests into perfect ones. Also the legality of loop permutation is examined
for the nests that require loop permutation. The loop nests in the 7 applications are

classified under four categories:
e Permutation is not needed.
® Permutation is needed and legal.

e Permutation is needed but is illegal due to dependences.

e Permutation is needed but is illegal because the nest is imperfect.

Figure 5.15 shows the classification of the loop nests in these 7 applications, before
and after applying code sinking, loop distribution, and loop distribution with scalar

expansion. The effects on these applications are discussed next.

e For HG, all the nests that required loop permutation are imperfect. None of the
transformations is able to transform these imperfect nests into perfect ones. This
is consistent with the reuslts of the previous chapter that indicate that none of the

transformations is effective for HG.
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expansion on the legality of applying loop permution when it is needed.
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e For WV, originally, loop permutation is legal in most nests where it is needed.
Some nests however are not perfect and permutation is not possible. None of the

transformations is able to make these nests perfect.
e For SR and TF, loop permutation is legal in all the nests that required permutation.

e For OC, most nests that require loop permutation are perfect. However, for the
majority of these nests loop permutation is illegal due to dependences. There
are also some imperfect nests that require permutation. Code sinking and loop
distribution with scalar expansion transform all these nests into perfect nests, where
dependences allow the required permutation. Loop distribution is able to transform
most (not all) of these nests into perfect nests, where the dependences allow the

required permutation.

e For SP, all the nests that require loop permuta.tioﬁ are imperfect. Code sinking
transformed the majority of these nests into perfect nests where the required per-
mutation is legal. In contrast, loop distribution— with or without scalar expansion
— transformed only a few of these nests into perfect nest, where the dependences

allow the required permutation.

e For LU, in half of the nests, the required permutation is legal. In the other half, loop
permutation is illegal because these nests are not perfect. Code sinking transforms
all these imperfect nests into perfect nests, however, the resulting dependences
prevent the required permutation. In contrast, loop distribution with scalar expan-
sion succeeds in transforming all the imperfect nests into perfect ones, where the

dependences allow the needed permutation. Loop distribution has no effect on LU.

To summarize, the three transformations fail to enable permutation in 2 of the 7 appii-
cations. In 2 other applications, they are not needed. For the remaining 3 applications,
the 3 transformations have different degrees of success in enabling loop permutation in
imperfect nests. Therefore, and because of the overhead that these transformations intro-
duce as seen in the previous chapter, loop distribution should be tried first; code sinking

should be tried second; and finally, loop distribution with scalar expansion may be tried.
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5.4 Summary

This chapter shows that perfect loop nests, that have at least a pair of permutable loops,
contribute to less than 20%, in half of the benchmark applications. In general, increasing
the relative contribution to execution time of perfect nests causes an increase in the
relative contribution to execution time of permutable perfect nests. Loop distribution
with scalar expansion achieves the highest relative contribution to execution time of
permutable nests. It outperforms code sinking because distributing loops and replacing
scalars with arrays simplifies the dependences in loop nests.

In only 6 applications, loop nests that may benefit from tiling contribute significantly
to execution time. Code sinking and loop distribution with scalar expansion succeed in
increasing the number of applications that may benefit from tiling to 11.

This chapter also shows that for 8 applications, the array references that can ex-
hibit self-spatial locality due to loop permutation or a different data layout contribute
significantly to execution time. Moreover, in 12 applications, changing the data layout
can cause array references, with significant contribution to execution time, to exhibit
group-spatial locality. On the one hand, however, when self and group-spatial locality
are considered together, and data layout conflicts between references to the same array
are considered, only 5 applications may benefit from flexible data layout. On the other
hand, when inner loop conflicts, between array references in the same nest, are considered

only 7 applications may benefit from loop permutation.



Chapter 6

Conclusion

This chapter concludes the thesis. First, it presents conclusions concerning loop nest
structures. Second, it draws conclusions about cache locality. Finally, the chapter pro-

poses future work.

6.1 Nest Structures

Many locality optimizations target the perfect nests of an application. This research
shows that perfect nests, on average, contribute to only 39% of the execution time of the
benchmarks application. Therefore, increasing the presence of perfect nests across the
applications may make these optimizations more applicable, and hence, more beneficial.

Code sinking, loop distribution and loop fusion are three transformations that can
transform an imperfect nest into a perfect one. These three transformations, along with
loop distribution with scalar expansion, are implemented and applied to a suite of 23
applications.

This research finds that loop fusion is ineffective in transforming imperfect loop nests
into perfect ones. In 9 applications, no transformation increased the relative contribution
to execution time of perfect nests. However, for the 14 remaining applications, the average
relative contribution to execution time of real perfect nests increased from 38% to 66%
by code sinking, to 50% by loop distribution, and to 58% by loop distribution with
scalar expansion. Loop distribution with scalar expansion causes the highest overhead,
followed by code sinking and then by loop distribution which had negligible overhead.
When applying code sinking, the size of the loop into which code is sunk should be

100
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considered carefully; when the size is small, the overhead may be too high. Similarly,
when applying loop distribution with scalar expansion, the size of the arrays into which
scalars are to be expanded should be small, otherwise the overhead becomes very high.

The assumption that loops account for more than 90% of the execution time of an
application is not always true. For some applications, this assumption is false due to
loops enclosing calls to routines with only straight-line code. In this case, in order for the
optimizations targeting loops fo be effective, inlining [Bal79, She77] or inter-procedural

analysis [ASU86, FJ91] must be used.

6.2 Locality

Even though loop permutation is found legal for most perfect nests, the low contribution
to execution time of perfect nests, makes loop permutation applicable in only a few
applications. Code sinking and especially loop distribution with scalar expansion make
loop permutation more applicable by increasing the relative contribution to execution
time of perfect nests.

The potential benefit to temporal locality of tiling is found significant in only 6 appli-
cations. By transforming imperfect loop nests into perfect nests, code sinking and loop
distribution with scalar expansion increase the potential benefit of tiling in 11 applica-
tions.

In most applications, most array references are found to exhibit self-spatial locality.
This research shows that loop permutation may benefit spatial loacality in only 7 ap-
plications. For 3 other applications, loop permutation would be benefical to individual
array references. However, due to inter-nest conflicts, loop permutation would have no
benefit.

Changing the data layout of an array may make the references to this array exhibit
self or group-spatial locality. This research shows that for 17 applications, data layout
would have no benefit to spatial locality. This indicates that, generally, array layouts are

carefully chosen by the application developers.
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6.3 Future Work

Loop nests that require loop fusion to become perfect contribute significantly to the exe-
cution time of many applications. Neither loop distribution nor loop fusion are effective
in transforming these nests into perfect nests. However, by sinking loops inside other
loops, these loop nests may be made perfect. Hence, an extension to this work would
be to allow code sinking of loops inside other loops. Also the shift-and-peel transforma-
tion [MA97] may be used to eliminate the dependences that prevent fusion from obtaining
perfect nests.

The frameworks used to evaluate spatial locality should be unified in order to handle
cases where both loop permutation and data layout are needed. Also the framework can
be extended to consider parallelism requirements. When parallelism is not considered,
loop permutation and data layout are often not needed because most array references
exhibit spatial locality already. However, to satisfy parallelism requirements and maintain
good spatial locality the need for loop permutation and data layout may become greater.
The framework for data layout can also be extended to handle the aliasing of arrays, and

to propagate the effects of changing the layout of arrays across procedures.



Appendix A

System Detail

This appendix describes in greater detail the approach used in this thesis. In particular,
it presents an implementational view of the system shown in Figure 3.2. First, the new
passes added to Polaris are described. Second, the F77 system is presented. Third, the

information held in the database is listed. Finally, the post-processing units are discussed.

A.1 New Polaris Passes

During the course of this research several passes have been added to the Polaris passes.

Each of these passes can be classified under one of the following categories:
e The transformation pass implements a specific transformation (e.g. loop fusion).

e The instrumentation pass adds routine calls to provide run-time information (e.g.

size of arrays allocated by malloc).

¢ The profiling pass gathers various application metrics and characteristics (e.g. num-

ber of loops).

Table A.1 shows and describes all the passes added to Polaris in this research. These
passes implement the transformations applied, add instrumentation calls to provide the
run-time information, and gather profile information about the benchmark applications.
Polaris provides a “switches” file to control which passes are applied when the compiler
is processing a given application.

A switch called “Transform” controls which transformation to apply, if any. Code

sinking, loop distribution, loop distribution with scalar expansion, and loop fusion can
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Pass Type Pass Name Description

code sinking applies code sinking

loop distribution | applies loop distribution

Transformation | scalar expansion applies loop distribution with scalar expansion

loop fusion applies loop fusion

inlining inlines specific program units
loop timing inserts loop timing calls
routine timing inserts routine timing calls

Instrumentation| routine counting | inserts routine counting calls
inserts calls to output the array
sizes used in scalar expansion

array size

loop profiling extracts inforamtion about loops
Profiling program profiling | extracts information about program units
array profiling extracts information about array references

Table A.l: Passes added to Polaris

be applied by setting “Transform” to 1, 2, 3, and 4, respectively. If “Transform” is set
to 0 then no transformation is applied. To apply the inlining transformation, the switch
“AddInliningAssertions” should be set to 1. The timing of loops and program units and
the counting of how many times each program is called are controlled by the switch
“InsertTiming”. The calls to print the array sizes allocated by “Malloc” are inserted by
setting the “ProfileMalloc” switch to 1. To extract information about loops and programs
units, the switch “Profile” is set to 1. To extract information about the array references,

the switch “Arrref” is set to 1.

A.2 The F77 System

The F77 system represents a system that compiles and executes Fortran-77 programs.
This research uses the Silicon Graphics Incorporated’s Fortran-77 compiler. This compiler
provides mechanisms for dynamic memory allocation, use and deallocation, which are not
available in other Fortran compilers (e.g. g77). Programs are compiled using the default
optimization setting (i.e. option -O1). Executables produced by this compiler are run on
an SGI Challenge. The Challenge runs [RIX 5.3, has eight MIPS R4400 processors and
has 512 megabytes of RAM.
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A.3 Database

The database consists of files containing the profiling information. Program and loop
information are combined with timing information and are stored in files with “.info”
extension. The information about array references is stored in files with “.ref” extension.
The following list describes the main elements of the information kept in the database
for every loop.

1. The loop identifier.

o

The statement numbers of the header and the tail.

hed

The level, i.e. the number of loops enclosing this loop.

B

The maximum level of all the loops enclosed by this loop.

The bounds and step.

Ut

. The net and total times.

(o))

'—I

Belongs to a perfect nest or not.

Safe or not.

(Lo Vo]

A list of all the loops directly enclosed by this loop.

10. A list of all the loops enclosing this loop.

11. A list of all the loops with which this loop can be permuted.
12. A list of all the subroutines directly enclosed by this loop.

13. A list of the array references directly enclosed by this loop.

The following list describes the main elements of the information kept in the database
for every array reference.

1. The name of the array.

I

The dimension of the array reference.
The variable dimension of the array reference.
The contribution to execution time of the reference.

A list of all loops enclosing the array reference.

A

A list of the subscript expressions of the array reference.
. Preferred loop ordering for self-spatial locality.

8. Preferred loop ordering for self-temporal locality.
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Pass Name | Description

printloops prints the loops information

perfect computes the number and the execution time of perfect nests
perfdim computes the number of perfect nests with different dimensions
loopstruct computes the execution time of different nest structures
permutable | computes the number and the execution time of permutable perfect nests
tiling computes the potential benefit of tiling

printarref prints the array references information

arrref classifies the array references into different categories
datalayout determines whether data layout is needed

loopperm determines whether loop permutation is needed

Table A.2: Post-processing passes.

A.4 Post-Processing

The post-processing units use the information stored in the database in order to derive

more complex results (e.g.

relative contribution to execution time of perfect nests).

These post-processing units are independent of Polaris. However, similar to the Polaris

switches file, a switch file (called “pswitches”) is used to select which post-processing

units to run. In this research, several post-processing passes are implemented and are

listed in Table A.2. These passes reflect the results presented throughout this thesis.
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