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Abstract 

In this thesis 1 introduce LEX, a new mode1 of visual word identification. The mode1 is 

built on three guiding assumptions. First, word identification is considered as a retrieval 

operation whereby identified letters are used as a probe to retrieve information from 

lexical memory Second, phonological information about a word is associated with 

orthographic information within the same memory trace. In other words, letters are not 

ueated as graphitai representations of sounds. Finaiiy , lexicai access follows the order of 

the retrieval probe's leaers. Specifically, 1 assume that the lexical access system requires 

a list of leaers, organised from left to right, as a retneval probe. Lexical access follows 

the organisation of the letters by reaieving a word starting with the first letter and 

teminating at the last letter. 1 demonstrate that LEX is capable of explaining many 

phenornena considered important to the validation of competing niodels. 1 also provide 

empirical evidence for the requirement that the lexical access system expects a list of 

letters to retrieve a word. 
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Chapter 1: The Scope of the Problem 

"Reading research" has many faces. Some s t ~ d y  the most effective way to teach 

children how to read (e.g., Adams, 1990). Others are interested in the processes involved 

in comprehending text (e.g., Kintsch, 1998) or sîudy the mechanisms controlling when 

and where a readets eyes move across a page of text (e.g., Rayner & Pollatsek, 1989). 

Finallv. some readinp researchers studv the processes used to identiij individual words 

The processes used to identiQ individual words are the focus of the present work; in 

panicular, 1 will focus on how people name words and how they decide on a letter 

string's lexical status. 

The tasks 

Students of word identification have used the naming and lexical decision tasks 

almost exclusively in  their expenments. In a naming task, subjects are shown strings of 

letters and asked to pronounce the letter string out loud as quickly and as accurately as 

they can  Each string is either a word or pronounceable nonsense, that Is, a nonword like 

dorch In a lexical decision task, subjects are shown strings of letters, some words and 

some nonwords, and asked to indicate whether or not the string is a word. Both tasks are 

designcd to measure how long it takes a person make access to a word in the mental 

lexicon. 

In the nûming task, researchers are interested in both the accuracy of the response 

and the time it takes to initiate the pronunciation of the letter string. Early researchers 

took the time to Say a word as a measure of the time find the word's pronunciation in the 

reader's mental lexicon. The tirne to read a nonaord was thought to measure the time it 

ukes to "sound out" a string of letters. 

The time to name a word is a potentially problernatic measure of lexical access 

time, however. Rayner and Pollatsek (1989) pointed out that the time it takes a person to 

read a word aloud also reflects several processes that are unrelated to finding a word in 

the lexicon. After a word has been found in the lexicon, a motor program for 

pronouncing it must be found, sent to the articulators, and finally, executed. The steps in 

pronouncing a word after it has been found take time, hence, response time in the narning 



task may be contaminated by factors unrelated to lexical access. The second problem 

with the naming task, according 10 Rayner and Pollatsek, is that farniliar words are read 

aloud about as well as words that are unknown to readen (e.g., nonwords). Part of 

lexical access entails making access to its meaning. If readen c m  narne words that they 

know about as well as they can name words they do not know, the task rnay not provide a 

fair measurement of the time to make lexical access. 

The lexical decision task may provide a more adequate measure of the time to 

gain access to the lexicon because it requires subjects to decide whether a letter string is a 

word. Presumably, if readers know a letter string is a word, they also know its meaning. 

Further, the lexical decision task requires a simpler response-usually, subjects press one 

bunon on a response key if the letter string is a word, and another if it is not. The lexical 

decision task may, however, also be an imperfect task with which to measure lexical 

access time. First, there is no guarantee that a reader knows the meaning of a word even 

though she can identify a letter string as a word. Second, half of the stimuli used in the 

lexical decision task are nonwords, and the time required to decide on whether a lener 

string is a word depends on how word-like the nonwords are (e.g., Andrews, 1989). For 

example, deciding on the lexicality of a letter string is easier when the nonwords are 

strings of consonants (e.g., drm) than when they contain ietter combinations found in 

words ( e g ,  dronr). If decision time for words is sensitive to the constmction of the 

nonword materials, lexical decision times might not be any more accurate as measures of 

lexical access than latencies in the naming task. 

Despite their shoncomings, the naming and lexical decision tasks are widely used 

in word identification experirnents. In most expenrnents, psychologists often Vary the 

class of word or nonword and gauge performance across the classes of stimuli. Any 

regulanties in performance across the classes are taken to reflect storage and processing 

mechanisms that are comrnon to al1 readers For example, i n  both the naming and the 

lexical decision tasks, readers respond more quickly and accurately to words that occur 

frequently in text than words that occur relatively infrequently (e.g., Baron & Strawson, 

1976). Frequency varies widely across words in text; for example, the occun over 

69,000 times per million words of text according to Kucera and Francis (1967) word 

norms, whereas apf occun about once every million words of text. Any mode1 with 



hopes of becoming the generally accepted theory of word identification must be able to 

account for such regularities in reading behaviour. 

Motivation for the thesis 

Prior to around 1980, research in word identification and memory were closely 

aligned in that both fields used the same metaphor to describe how a subject gets 

information out of memory or the lexicon. Access to an item in memory or a word was 

described in terms of a "look-up" or search operation. 

Around 1980, a split occurred between reading research and memory research. 

The split was brought on by the invention of a new class of memory models, distributed 

memory models ( e g ,  Hintzman, 1 984; Murdock, 1 982; Metcalfe-Eich, 1 982). 

Distnbuted models abandoned the idea of search for an item in memory in favour of the 

notion that an item is retneved from memory by blending information in the memory 

system to create a facsimile of the probe. 

While distributed models of memory have become, and still are, the dominant 

form of simulation model for theories of memory, most models of word identification 

have retained the notion that access to information in the lexicon is essentially a search 

operation. My thesis represents an attempt to reunify theories of word identification and 

theories of memory by building a model of word identification that borrows from a 

well-known distributed model of human memory (Hintzman's, 1984, Minerva? mernory 

mode]). 

Guiding assumptions in thcones of word identification 

Current theories of word identification are based on three guiding assumptions. 

First, identify ing a word i s  treated as the operation by which a word's address is found. 

That is, the lexicon is treated as a content addressable system. Second, word 

identification is treated as an extension of perceptual classification. The input stimuli 

(letters) are passed through a series of filten that transform the letten into sounds or into 

units of representation that correspond to entire word entries. Finally, theories of word 

identification treat letters as graphical representations of sounds. As such, current theory 

treats word identification as the operabon by which sounds, or phonemes, are derived 

from the letters they represent. In this thesis, 1 introduce a model that eschews al1 three 



assum ptions and demonstrate that it is capable of reproducing several phenomena 

considered important in the word identification literature . 

Organisation of the thesis 

In this thesis, 1 introduce a new model of word identification to explain 

performance in both the naming and the lexical decision tasks. The organisation of the 

tnesis is as follows. 1 will first discuss current models of word identification. 1 will then 

introduce a new way to treat word identification. 1 will argue that word identification is a 

special case of rnemory retrieval that requires specialised data storage and processing. 1 

will also empirically test one of the model's assumptions Finally, 1 will demonstrate that 

a very simple model of memory with few processing mechanisms and a life-size lexicon 

can capture a large number of empirical phenomena in the word-identification literature. 



Chapter 2 : The Interactive-Activation Mode1 of Word 

Identification 

Current models of word identification have a common ancestry in the 

interactive-activation model (LAM) of word identification (McClelland & Rumelhart, 

198 1 ; Rumelhart & McClelland, 1982). 

Basic Structure 

McClelland and Rumelhart (1 98 1 ; Rumelhan & McClelland, 1982) proposed that 

word identification could be understood in terms of a hierarchical network of detectors. 

A graphical representatiori of the IAM is shown in Figure 2.1. The IAM uses what is 

called a localist represcntatiori in that single detectors, or nodes, represent entire entities 

such as letters or words. 

At the lowest level of the hierarchy, detecton register the visual features of the 

display The system is tuned to detect 14 features. Features are defined in terms of 

horizontal, verncai, and diagonal line segments 

Word Nodes (1,179) 

Figure 2.1 Basic architecture of the IAM (Arrows denote excitatory connections and 

solid circles denote inhibitory connections. The number of nodes in each part of the 

model is in parentheses). 



Feature detection occurs separately and simultaneously in each of four letter 

positions, or letter channels, in the visual display. That is, there is an array of 14 feature 

detectors for each letter position. Once the features in each letter position are detected, 

their activation spreads automatically to the lener nodes. A complete set of 26 letter 

nodes, one for each letter of the alphabet, is connected to each letter channe!. Depending 

on which line segments, or features, are activated by the display, a letter node is activated 

in each letter position. Letter nodes are rnutually inhibitory-as a letter node becomes 

activated, the other letters in the letter channel are inhibited. 

Activated lener detectors automatically activate consistent word nodes. Hence, a 

detector that represents a T in the first lener channel will activate word nodes for words 

with an initiai T and will inhibit word nodes that represent words without an initial T. 

Like the letter nodes, word nodes are rnutually inhibitov; activated word nodes inhibit al1 

other word nodes. 

Interconnections 

Every node is connected to every other node within the same layer As well, 

every node is connected to every node in its neighbouring layer. For example, every 

letter riode is connected to every other letter node within a letter channel and connected to 

every word node. 

Node Activation 

Letter and word nodes are assumed to possess a resting level of activation. In the 

model's quiescent state, the resting level of activation for any node is determined by 

frequency of usage. For example, a word node representing a high-frequency word such 

as the would possess a higher resting activation than a low-frequency word like apt. 

During processing, however, a node's activation is determined by the impact that 

neighbouring nodes have upon it. The impact of neighbouring nodes on the activation of 

any one node (n,) at time t ,  is expressed as the net input to the node from al1 its 

neighbouring nodes. The equation is given by 



Where e and i represent excitatory and inhibitory connections, respectively. a and y 
represent the connection weights between neighbounng nodes. The end result of the 

equation is a change in the resting value of node i at time t as a function of the excitatory 

and inhibitory connections of neighbounng nodes. 

When the net activation to a node is excitatory, the node activation is prevented 

from exceeding a maximum activation of 1 .O by scaling the node's activation using the 

formula 

When the net activation to a node is inhibitory, its activation is prevented from exceeding 

a minimum activation of -0.2 using the formula 

Usiny the above formulae, the IAM updates the activation of word and lener 

nodes over successive processiny cycles. On each cycle, letter nodes that have been 

ac tivated bv the feanires registered from the dis play decrease the resti ng activation of the 

other lener nodes within the letter channel. Lener nodes also push the resting level of the 

word nodes above or below their resting levels as the lener nodes' activation is passed to 

the word nodes. The connection between a letter node and a word node is excitatory if 

the word contains a letter in the same ordinal position as one of the letter channels. For 

example, a lener T in the founh letter channel will push the resting activation of the word 

node for cart above its resting value. The opposite occurs for the word node for the word 

cars. Because word nodes are mutually in hibitory, as a word node's activation increases, 

it does so against a background of inhibition from the other word nodes that try to push 

its activation back down to its resting levels. 

As word nodes compete with one another, they ais0 pass their activations back 

down to the lener nodes. A word node has an excitatory connection back to a letter node 

if the two share a letter in the same ordinal position. The connection is inhibitory when 



they do not. The updating of the letter nodes by the word nodes at time t signals the end 

of one processing cycle. 

Word identification occun over several processing cycles. McClelland and 

Rumelhart (1981) calculated the new activation of any node at time t+l as a function of 

the net influence of neighbouring nodes, n',(t), and a rate of the activation's decay that 

occurs between cycles (8). They express the activation a node a at time i +  1 as: 

where r, is the resting activation of the node. 

If a word node exists that is consistent with the leners in the ietter channels, the 

resting activation of the word node will gradually rise over the processing cycles. As the 

node's activation rises toward threshold, the activation of the other word nodes are 

pushed down towards the minimum activation. Word identification has occurred when 

on1 y one word node's activation has reached threshold. 

Roblems with the U M  

ï7le separution of identity and location i>,/ormu~ion. 

The IAM performs letter identification independently in each letter channel. The 

letter channels represent the ordinal spacing of characters in the display. Done in this 

way, a lener's identity is tied to its channel, that is, letter identities can not migrate across 

channels. Several studies, using the bar-probe task (Averbach & Coriel, 196 1)  however, 

have dernonstrated that lener identity information is stored independentl y from 1 etter 

location information; lener identities appear to migrate across the space defined by the 

display. 

In one variation of the bar-probe task, a letter string masked immediately 

following a brief (a duration less than 200 ms) display. Mter a delay (between 20 and 

200 ms), an arrow is placed under one letter position in the array. The subject is required 

to repon the letter at the position of the probe As the delay between the mask and probe 

increases, subjects' accuracy for letter repon decreases. Of vital importance is the types 

of errors subjects make. Subjects make predominantly location errors (Mewhort, 

Campbell, Marchetti, & Campbell, 1981). That is, they report a letter from the display, 



but one frorn a location other than the probed location. Clearly, identity and location 

infonation are stored separately because the two kind of information are not iost 

simultaneously Identity and location are tied in the IAM-location errors and identity 

errors are not separable. 

Feedbackfront word represe~itariorrs to rhe lerter levef. 

Mewhort and Johns (1988) evaluated the IAM's account of the word mperrorig 

effécr (WSE); the target phenomenon for the LQM. Made popular by Reicher (1969), the 

WSE refers to the finding that, using brief displays, a letter is more easily identified when 

i t  is presented in a word than when i t  is presented in the context of a pseudoword or 

alone To account for the effect, the IAM places responsibility on the word nodes' 

feedback to the letter nodes When the characters of a letter string match t h ~ s e  of a word 

stored among the word nodes, the word node increases the activation level of the 

consistent letter nodes thus making the letter easier to identify when it  is in the context of 

a word than other contexts. Such feedback is less strong when the letters form a 

nonword; hence letter activations are not as drastically increased by word activations 

when Ietter identification occtirs in the context of a nonword 

Mewhon and Johns ( 1988) chalienged the notion that the WSE occurs because of 

fettdback to the letter nodes tiom the activated word nodes. The IAM's word nodes are 

activated automaticallv when letter nodes are activated. Feedback to the iener nodes also 

occurs automalically. Hence, word node activation and feedback to the letter nodes will 

occur automatically yielding a W SE as long as subjrcts can identify letters. However, 

Mewhon and Johns (Expenments 3 )  failed to produce a WSE when the letters of a word 

were transfoned (e.g., upside down)  Even when letter identification performance was 

equated for upnght and transformed letters in the control condition (identifying letters in 

a transformed pseudoword), only upnght letters yielded a WSE. Letter node 

re-activation, if it occurs, is not automatic. 

n e  represe>rtnliari of space r irhi~i  arid benueerr lezrer chmlds.  

The IAM has an inconsistent representation of space. Within a letter channel, 

space is assumed explicitly-letters within each channel are defined by the spatial 

arrangement of lines that make up the characters. The LAM is inconsistent in its 

representation of space because i t  does not represent space befiveen letter channels. As a 



result, although the IAM assumes that a vertical bar at the left of a letter channel is a 

different feature than the same bar at the right of the channel, the mode1 has not defined 

space well enough to distinguish TRAP from T R A P. The point is important because 

letter spacing provides a boundary condition on the WSE, the target phenornenon for the 

model (Marchem & Mewhon, 1986). In addition, letter spacing controls the familiarity 

effect in tachistoscopic whole-report (Campbell & Mewhort, 1980) and the familianty 

effect predicts word identification (Mewhort & Beal, 1977). 

An improvement tu the L4M - BLIRNE T 

Mozer ( 1  987; 199 1) proposed a model, BLIRNET, as an improvement to the 

IAM. BLIRNET was able to identify words in arbitrary positions on an artificial retina. 

Because the model could identify a word in any retinal location, it overcame an important 

limitation of the MM's letter-channel representation scheme. For example, word dog 

would be encoded as -dog or dog - in the four letter channels of the IAM (the -denotes a 

word boundary). The two words are the same, but because they are offset by one 

character, the IAM treats the two words as though they were different because -dog and 

d g  have none of the sarne letters in the same letter channel. BLIRNET overcomes this 

limitation by using a representational scheme that maintains the relative position of letters 

in the visual display By passiny retinal information through five additional layers of 

nodes diat are not sensitive to retinal position, BLIRNET can identiQ the word, dog 

regardless of where on it is positioned on its ahficial retina. 

Despite BLIRNET's improvement over the IAM, and the criticisms raised above, 

the IAM remains an influential model of word identification. In fact, as 1 will discuss 

shortiy, the IAM, and not BLiRNET, is the model that has been incorporated in the 

recent computational version of Coltheart's (1978; Coltheart, Curtis, Atkins, & Haller, 

1993) dual-route model of word identification. 



Chapter 3: Current Theories 

In this chapter I introduce connectionist models of word identification and the 

dual-route theory of word identification. The connectionist models I will discuss in this 

chapter have abandoned the iocalist representation scherne used by the IAM in favour of 

what is called a dis~ibuted  representatjon. Recall that the IAM uses single nodes to 

represent feanires. letters. and whole words. More recent connectionist models have 

opted to represent the words across several nodes. 

1 Input Layer Hidden Layer Output Layer 

Figure 3.1 A generic three-layer artificial neural network 

A Generic Neural Network 

An example of a generic connectionist, or neural network, mode1 is s h o w  in 

Figure 3.1. At the lefi of the figure, is a layer of nodes, labelled the input layer. 

Information is presented to the mode1 by "turning on" the appropriate nodes in the input 

layer. For example, one stimulus can be represented by the vector, [O O 1 O 11, and 

another by the vector [O 1 1 O O] where O represents a node in the row that is tumed off, 

and 1 represents a node that is tumed on. The middle layer of nodes, the hidden layer, 



integrates information from the input lay er and passes it to the nodes of the next layer, 

the output layer. The pattern of activity in the nodes at the output layer corresponds to the 

response associated with the input pattern. 

Notice that every node is connected to every node in the adjacent layer. Each 

connection is weighted to represent the strength with which one node is connected to the 

next. As well, each connection between nodes possesses a connection weight (a random 

real number between O and l ) ,  so that information that is integrated from the previous 

level's nodes will either increase or decrease the receiving node's activation. To derive an 

output pattern from an input pattem, the input nodes' activations are multiplied by the 

weights connecting them to the hidden layer of nodes. The activations of the nodes at the 

next layer, the hidden layer, are calculated as a hnction of the net activations from al1 

connection from the previous layer Finally, the activations of the nodes in the output 

layer are calculated as a hnction of the net input to the output nodes from the hidden 

nodes. 

To work, a neural network must leam to associate a stimulus (input pattern) to a 

response (output pattem). For exarnple, the network could leam to associate a spelling 

pattem with a sound pattern. Leaming is accomplished by adjusting the connecbon 

weights among the nodes so that when the network is presented with an input pattern, the 

appropriate output pattern emerges in the nodes of the output layer. 

Leaming is accomplished over several repeated pairings of the input and output 

patterns. One pairin): of each of the input and output patterns is called an epoch. Prior to 

leaming, the networks connection weights are set to random values. When the network 

is presented with the first stimulus, the output it generates at the output layer is compared 

to the correct response. The connection weights between nodes are adjusted, over several 

epochs, to minimise the discrepancy between the network's output and the correct 

response. Further, the degree to which the weights are adjusted is a hnction of how 

discrepant the output and correct patterns are-this type of leaming is generally refemed 

to as supervised learning. The network is said to have leamed an association between an 

input and output pattern when the discrepancy reaches a predetemined, minimum level. 



The Seidenberg and McClellond (1 989) model of word identification 

The model of word identification proposed by Seidenberg and McClelland (1 989) 

is an example of a network similar to the one descnbed above. The model has three 

layers of nodes: an input layer, output layer, and an intervening or hidden layer. The 

model's knowledge about orthography and phonology is represented in the connections 

between an orthographic (input) and phonological (output) layer 

Onhographic Hidden Layer Phonological 
Layer Layer 

Figure 3.2 Outline of the architecture of Seidenberg and McClelland's (1 989) model 

Traoiaig operatiom. 

To train the network on a set of words, Seidenberg and McClelland (1989) used a 

supervised leaming algorithm called back-propogafion (Rumel han, Hinton, & Williams, 

1986). At the beginning of training, a word's spelling is encoded into to the orthographic 

nodes. The activation of the orthographic nodes spreads through the hidden nodes to the 

nodes at the phonological layer A hidden node's activation is a function of the weighted 

sum of al1 the connections that teminate upon it. Seidenberg and McClelland calculate a 

hidden node's activation using the formula 
I a, = - 

l*-'l 



where a, is the activation of unit j and net, is the summed influence of node in the 

orthographic layer, and is given by the formula 

net, = w ,,a, + bias 
J 

The bias term treated as an "extra weight or connection to the unit from a special unit that 

always has an activation of 1" (Seidenberg & McCielland, 1989, p. 527). Once the 

hidden nodes' activations are detemined, they produce a feedback pattern un the 

orthographic units and a feedfonvard pattern on the phonological units using the same 

forrnulae. 

The orthographic and phonological panems produced from the input are 

compared to the activation of the correct response using the formula 
E = E(r, -a , )*  

1 

where E i s  the measure of error, f is the target activation of node i, and a is the activation 

of the ith node in  the feedback or feedfoward pattern Over several training cycles, the 

connection weights in the network are adjusted to minimise E, or the degree to which the 

output of the mode1 misniatches the target orthography and phonology 

Representing orthographic and phonological information in the nodes presented a 

special challenge for Seidenberg and McClelland (1989). Intuitively, one might consmict 

a network wherein 26 nodes, each corresponding to a letter of the alphabet, are used for 

the orthographic nodes Likewise, one could dedicate one node to each phoneme in the 

ianguage. Learning a word's pronunciation then, would simply be to associate lener 

nodes with phoneme nodes. However, without reference to the spatial arrangement of the 

letters, letter nodes for the word tclp would be consistent with tap, par, and apt. A similar 

problem exists for phonemes without reference to their organisation 

Seidenberg and McClelland solved the relative position problem by making a set 

of nodes collectively represent a tri-gram of letters or phonemes. Seidenberg and 

McClelland referred to the letter tri-grarns as "wickelgrams" and the phoneme tri-grams 

as "wickelphones"; collectively referred to as "wickeifeatures" named in honour of 

Wickelgren (1969), who proposed the represeiitation scheme. Hence, the word iup, was 



presented to their mode1 by activating the nodes corresponding to - ta, the nodes 

corresponding to tap. and the nodes corresponding to ap - (where - represents a word 

boundary). 

Training regim e . 

Seidenberg and McClelland (1989) trained their model on every one-syllable 

word in the Kucera and Francis (1967) words noms  that had three or more letters. After 

removing proper narnes, inflected fonns of words, and abbreviations frorn the corpus, 

they were left with 2,897 words with which to train the model. 

On each training epoch, every word in tlie corpus had a chance to be selected 

from the corpus. The probability a word was sampled from the corpus of words was a 

function of its printed frequency as tabulated by the Kucera and Francis (1967) word 

noms.  

Sintularing word recognition tasks. 

To simulate word naming, wickelgrams appropnate to the orthography of a word 

are activated in the orthographic nodes in the input layer b~ clamping the appropnate 

nodes to an activation of 0.9. Nodes that were not relevant to the orthography were set to 

an activation of 0.1. Activation from the orthographic layer spreads through the network 

to the wickelphones represented in the phonological layer. Naming latency is estimated 

as a function of the difference between the models response in the phonemic nodes at the 

output layer and the correct response. Because response time generally increases with the 

probability of making an error, Seidenberg and McClelland (1989) reasoned that 

response latency could be estimated from the degree to which the model's output 

mi smatched the correct output. Seidenberg and McClelland assumed that high similarity 

between the model's output and the correct response reflected a fast response time and 

that low similarity reflected a long, error-prone, response. 

The lexical decision task is simulated by comparing the wickelgrams at the input 

level with an orthographic output. Similar to the naming task, latency in the lexical 

decision is calcolated as a fûnction of the discrepancy between the input pattern and the 

orthography that is retumed IO the orthographic unis. 



Problems with the Seidenberg and McClelhd (1989) model. 

Besner, McCann, Twilley, and Seergobin (1990) criticised Seidenberg and 

McClelland's model on the grounds that, while the model seemed to perfom well when 

asked to read words, it did not read nonwords as well as humans. The failure of the 

model to mimic nonword reading in humans led Besner et al. to conclude that a separate 

rnechanisrn, one which uses rules for spelling-to-sound translation, is necessary for 

pronouncing nonwords. 

Seidenberg and McClelland (1990) defended their model by claiming first, that 

the model's performance is judged more hanhly than human performance, and second, 

that its inability to read nonwords well was a consequence of the small training set of 

words of approximately 3000 one-syllable words. 

Seidenberg and McClelland's (1990) defence of the model is not adequate. Their 

model reads nonwords by using word knowledge to generalise to novel stimuli. They 

were correct in their claim that the success with which the model can generalise depends 

on how much knowledge i t  possesses. However, regardless of how many words the 

model knows, because the model reads nonwords by generalising from words it knows, 

the model will only be able to read nonwords that contain lener combinations present in 

words. For example, there are no one-syllable words that contain the ~ v e  tri-gram in the 

nonword jitvr; hence it  is a problematic letter srring for the Seidenberg and McClelland 

model In sum, the model's dificulty with nonwords is not merely a function of a lack of 

word knowledge; the dificulty is caused by the constraint that the structure of the 

mappings between spelling and sound place on generalisation. 

Naming latencies in the model are also denved inappropnately. Seidenberg and 

McClelland (1989) derived a naming latency from the difference between the model's 

response and the correct response. While there is a relationship between response time 

and the probability of making an error, response latency is not necessanly a function of 

the probability that a subject rnakes an error. Their method of deriving a response time 

en sures that error response tirne are always slower than correct response times-an 

observation that is not always made in data. 

Finally, letters are encoded by Seidenberg and McClelland as a spatial 

arrangement across a set of orthographie units. While there is nothing inherently wrong 



with supposing that spatially arranged letters are used as a data structure for finding a 

word, the psychological reality of wickelgraphs and wickelphones is, as yet, 

unestablished. Further, using wickelgraphs lends Seidenberg and McClelland's model to 

the same criticism raised for the IAM. Space between letters is not represented, hence, 

the model cannot use extra-letter infornation to denve a response. 

nte Plaut, Seidenberg, McClelland, di Paîterson (1 996) 

mode1 of word naming 

The Seidenberg and McClelland (1989) model was recently improved upon by 

Plau< Seidenberg, McClelland. and Patterson (1996). The new version of the model did 

wo things that the original rnodel could not. First, the model read words and nonwords 

as well as humans c m ,  and second, the model responded to stimuli in real time. 

Onhographic Hidden Layer Phonological 
Layer Layer 

Figure 3.3 Outiine of the architecture of Plaut et al.3 (1996) model. Grouped nodes 

represent nodes that are devoted to components of words (Le., onset, vowel, and 

coda). 

Plaut et al. (1996) rciterated Seidenberg and McClelland's (1990) claim that the 

small training corpus was, in part, responsible for the Seidenberg and McClelland (1989) 

model's poor nonword reading performance. Plaut et al. also blamed the use of 



wickelfeatures as the other source of dificulty for nonword reading. They argued that, 

the condensing of information using wickelfeatures cornes at the cost of other useful 

information. For example, consider the letter r in the words rag, gmb, and hurt. Each r 

must be represented in separate wickelgraphs; hence, the system loses ability to 

generalise among the words even though they contain the same letters. Plaut et al. 

referred to the loss of information as the dispersion problem. Their solution to the 

dispersion problem, was to encode graphemes and phonemes as components of a word: 

onset (the first grapheme or phoneme), vowel (the middle grapheme or phoneme) and 

coda (the final grapheme or phoneme). Hence the word rog as an input would be 

represented as the activation of nodes corresponding to the onset r,  the vowel a, and the 

coda g. Using the componential representation scheme, Plaut et al. (1 996) demonstrated 

that the Seidenberg and McClelland (1989) model could read nonwords as well as 

hurnans. 

The oiher problem was the fashion in which a response latency is generated by the 

mode1 Recall that Seidenberg and McClelland ( 1 989) compared the Jiscrepancy 

between the pattern of activation at the phonological nodes and the correct response to 

sirnulate naming time. Sucti an estimation of response time is necessûry in feed-foward 

networks such as Seidenberg and McClelland's because responses are generated by the 

model in a single sweep through the system. Plaut et al .'s new model of word naming 

using an architecture that allows responses to be generated in real time. 

Hespwrse latrncy in the Pluut et al. nwdc.1. 

Unlike Seidenberg and McClelland's (1989) network, in which the nodes of each 

layer were connected to every node of the next layer, the phonological nodes in Plaut et 

al's model were connected to every other phonological node within the layer As well, 

phonological nodes were connected back to the nodes at the hidden layer (see Figure 

3 . 3 ) .  

Response latency was calcuiated as the number of processing cycles the model 

required to settle on a pronunciation for an input panem. Because the nodes within the 

phonological layer were connected to one another, when a phonological node is activated 

by the presence of an orthographic pattern on the orthographic nodes, the nodes' 

activations are squashed by the activations of neighbouring nodes. Activation from the 



phonological nodes is passed back to the nodes of the hidden iayer from where it is 

returned to the phonological layer. Response time was estirnated as the number of times 

the activations of the phonological nodes were updated before the change in their 

activation reached a minimum. When the network finishes updating its connection 

weights it is said to have sertled on an oftractor (hence the name, Attractor network). 

Plaut et al .'s attractor network version of Seidenberg and McClelland's model performed 

as well as the original model when it read words and read nonwords about as well as 

human subjects. As well, the settling times of the network mapped closely onto the 

latency estimates derived from the feed-forward version of the model. 

Prohlrrns wifh rhe Pluu~ el al. ( 1  996) mode L 

Plaut et a1.k (1996) model is clearly a better account of word naming than its 

1989 ancestor. However, it is still not without its problems. Each of the model's 

problems I will discuss stem from the representa~ooal scheme used to represent the 

orthography and phonology of the pnnted word. 

Unlike feed-forward networks, like Seidenberg and McCleiland's (1  989), attractor 

networks do not generaiise well to new stimuli. They depend on both a familiar input 

and output. The cornponential representatiori (onset, vowel, and coda) used by Plaut et al. 

solved the familiarity problem. While a letter string may be unfamiliar, the cornponents 

are likely to be familiar. The componential representation prevents the model from 

making lexicolisaiiotl errorr ( e g ,  responding with the phonological pattern of the word 

porch when presented with the nonword dorch). Componential representation al lows the 

onsets, vowels, apd codas of separate words to combine to f o m  a response. 

A word's orthography and phonology, are assumed to be parsed into onset, vowel, 

and coda components. The parsing stage that divides a letter string into these components 

is unspecified in the model. Plaut et al. (1996) finessed this cnticism by claiming that, 

with experience, readers gain knowledge about words that allows for a division among 

word components. 

By using the onset, vowel, coda representational scheme, Plaut et al. cannot 

daim, as their 1989 counterpan could, that the model is developmental. In fact, it is 

unclear what kind of reader the model is supposed simulate. Componential 

representations are assumed to develop in ski Il ed readers. But, if componential 



represeiitations for words are responsible for the success of the model, how are words 

represcnted in the reading systems of beginning readers who do not have enough 

knowledge of the language to parse a word into its components? As a consequence of the 

componential representation, when model leams a corpus of words, its learning progress 

cannot can not be gauged as one would gauge a beginning reader. This is unfortunate; 

connectionist models leam over time and are, therefore, good candidates as 

developmental modeis. 

Finally, the model is incapable of reading words that have more than the three 

components. In fact, it is unclear how additional components would be represented. 

Onset and coda components would remain unchanged, but several additional sets of 

nodes would need to be created in order to represent the intermediate letters or 

graphemes. Ultimately , a set of nodes for each letter or grapheme would need to be 

used- a representational scheme similar to the use of letter channels in the IAM. 

The Dual-Route Cascade (DRC) Mode1 

The DRC model (Colthean, Curtis, Atkins, & Haller, 1993) postdates the 

existence of two independent routes to pronunciation in word recognition (Figure 3.4) .  

The first route, sometimes called the lexical route, looks up a word directly from a mental 

lexicon The speed with which information can be accessed by the lexical route is a 

function of the word's familiarity; words that are highly frequent in text are looked up 

more quickly than words that rare by cornparison. The second route, sometimes called 

the nonlexical route, assembles a phonological code on the basis of d e s  goveming 

spelling-to-sound correspondence The speed with which the nonlexical route can 

translate a letter string into sounds depends on the length of the letter string. Letter 

strings with more words take longer to translate. 



Figure 3.4. The dual-route cascade model of word identification (Arrows denote 

excitatory connections and dots denote inhibitory connections). 

'The most cited evidence for two routes to pronunciation (besides the documented 

cases of dyslexia that appear to affect one route or the other) is found in the interaction in  

behveen a word's printed frequency and its cornpliance to the d e s  governing spelling to 

sound translation (Seidenberg, Waters, Bames, & Tannenhaus, 1984). The interaction is 

often referred to as the regulariv by freqzreticy i~iteracriot~. W ords that vi olate the 

spelling-to-sound rules of English (irregular words like w a 4 ,  are named more slowly 

than word that obey them, so called, regular words l i  ke had. The latency disadvantage 

for naming irreguiar words is attnbuted to conflicting evidence for two potential 

pronunciations derived independendy from the two routes. The disadvantage, however, 

interacts with a word's printed frequency such that, it tends to occur mainly for words 

that are relatively unfarniliar to the reader. Words that are highly familiar to the reader, 

high-frequency words, are quickly processed by the lexical route without the need for 

nonlexical involvement. 

Further expenmental evidence that is offered for a dual-route reading system is 

found in  experiments that examine the extent to which a reader can attend to one route 

while ignonng the other (e.g., Baluch & Besner, 199 1 ; Monsell et al, 1992; Lupker et 

al., 1997). Monsell et a1.k subjects named exception words and nonwords (e.g., dorch) 



embedded in various list structures. When irregular words were presented in a list of 

only irregular words, naming latency decreased compared to a list also containing 

nonwords. Baluch and Besner reported similar results using Persian words. The pattern 

of results was interpreted by both Monsell et al. and Baluch and Besner as evidence that 

subjects can strategically ignore the nonlexical route when reading a pure list of irregular 

words. Mixing the irregular words and nonwords together preclude subjects from relying 

on one strategy for pronunciation. As a result, naming latencies for irregular words are 

increased in mixed lists. 

Finally, Coltheart and Rastle (1994) dernonstrated that the naming advantage for 

reylar  words over irregular words depends on the gaphcmic position at which the letter 

string becomes irregular. They found a greater influence of irregularity on irregular 

words whose irregulanty was at the beginning of the word (cg., chen than words whose 

irregplarity was at the end of the word ( e g ,  glow). Coltheart and Rastle claimed that 

when the irreylarity is positioned at the end of a word, the lexical route accumulates 

most of the evidence for the correct pronunciation of the word before the nonlexical route 

translates the final letters. The lexical and nonlexical routes work in tandem to derive a 

response; hence, when the nonlexical route begins to translate the deviant phoneme, the 

correct pronunciation has been largely retrieved. The opposite is tsue when the deviant 

phoneme is positioned at the beginning of the word. When the irregulanty is at the 

beginning of a word, the nonlexical route provides early evidence for a pronunciation that 

will conflict with the pronunciation derived by the lexical route. 

Arcltitcctzrre und operations of the DRC 

The ititicairoute. Colthean et al. (1993) chose the IAM (McClelland & 

Rurnelhart, 1981; Rumelhan & McClelland, 1982) to serve as the lexical route and input 

system for the DRC model. Like the IAM, input to the system is represented as a set of 

feanires that feeds into letter channels. Coltheart and Rasde (1994) use eight channels 

instead of the four used in the IAM. Like the IAM, the lener nodes activate word nodes. 

The nodes containing the spelling of the stored words is collectively called the 

or~hographic lexicon. Each word node's resting activation level is a function of the 

word's printed frequency-high-frequency words are more highly activated than 

low-frequency words. Each word in the onhographic lexicon is connected to a node in a 



phonological output lexicon that represents the sound pattern for a word. Because the 

orthographie and phonological representations, or nodes, are linked, the phonology of a 

visually presented word is activated automatically when the word is looked up. Hrhen the 

phonological pattern of the word has been achvated, phoneme nodes at an output level 

are activated where they await articulation. 

nle nonlexical roule. The nonlexical route is a collection of d e s  used to 

translate graphemes (letters or letter combinations) into sounds. Rather than building 

grapheme-to-phonerne conversion (GPC) d e s  into the nonlexical route, Colthean et al. 

( 1  993) allowed the model to discover the mies on its own by exposing it to the spelling 

and sound patterns of about 3000 words. Each rule derives a single sound from a 

grap heme. 

Each time a grapherne is coupled with a single sound, the mode1 includes the 

relationship in its rule base and updates its tabulated frequency. The d e s  are divided 

into three general categories: beginning (B), end (E), and medial (M) rules: the ftrst 

grapheme of a word is translated to socnd by a B nile, the last phoneme is derived by the 

E rule, and the phonemes in between are generated by M rules. 

Some of the GPC rules are context sensitive. For example, consider the words 

hani and hurnr The phoneme associated with a is different for each word, and the model 

rnust decide which sound to associate with it. One strategy would be to choose the most 

frequent grapheme-phoneme pair (in this case, a's sound in han,). Doing so, however, 

would cause every word with the ar letter combination to be pronounced incorrectly. 

Coltheart et al. (1993) pointed out that there are 60 instances of ar words in the training 

corpus alone The alternative strategy, was to allow the pronunciation of a to change 

when it is followed by an r.  Hence, some GPC niles are context sensitive in that 

sometimes a letter's pronunciation depends on the letters aiso contained in the string. 

Finally, Coltheart et al. (1993) allow the GPC route to consolidate niles. Recall 

that GPC rules are categonsed into beginning, end, and media1 d e s .  The GPC route 

allows any d e  belonging to two categones to be included as an instance of the third. 

For example, the grapheme oo can occur as an argument to a medial or end nile in 

English words, for example, as in the wordspool and igloo The lener combination, oo 

does not occur as an initial grapheme of any word in their aaining corpus. Consequently, 



a nonword such as oop cannot be translated by the nonlexical route unless oo is also 

allowed to be a beginning nile. Consolidating d e s ,  then, allows the GPC route to 

translate letter strings containing a beginning letter combinations that did not occur 

dunng training. 

How does the nonlexical route use the GPC tules to denve a response? 

Translation proceeds in a lefi-to-nght direction staning with the largest multi-letter mle 

that maps ont0 one phoneme (the largest grapheme is four letters in length). If no 

applicable mle can be found, the last lrner is dropped from consideration and the search 

starts over again The process continues until an applicable rule can be found Once 

found and executed, the process begins again for the untranslated portion of the letter 

suing. 

Oupur ofthe DRc. At the output level of the rnodel, the DRC has six phoneme 

d o t s  Each slot represents one phoneme of the word being pronounced. Each dot 

contains 44 phoneme nodes. Phonemes are activated one at tirne as the GPC mles 

translate a letter string from left to right. Phonemes are activated in parallel as the lexical 

route cycles to look up  the correct pronunciation. To pronounce a word, one phoneme in 

each phoneme slot must exceed a criterion level of activation. The nodes within each dot 

are mutually inhibitory, hence, two nodes cornpeting for activation will slow the increase 

in activation for the more active phoneme. 

The tasks 

7he riaming task. To name a word, the lexical and nonlexical route operate in 

parallel to derive a response Because the two route operate together, the output of both 

routes simultaneously affect the activation of nodes in the phoneme system. 

When the DRC names a regular word, the lexical and nonlexical route provide the 

phoneme system with the same phonological information. When a word is irregular, 

however, the lexical and nonlexical routes provide divergent evidence for a phoneme's 

pronunciation. When the two routes yield diffèrent output, the phoneme corresponding 

to the irregular phoneme in the phoneme system is prevented fiom reaching critenon. 

The phonemic activation created by the lexical route is, of course, the correct response 

When a phoneme's activation is held below its criterion value because of cornpetition, the 

DRC allows the lexical route to continue cycling to help al1 the phonemes reach cntenon. 



Hence, the naming disadvantage for irregular words reflects the additional work that the 

lexical route must do to bring the correct phonemes to their critenal activation. 

Somebmes the nonlexical route will bring the phonemes in each dot to their 

critical activation before the lexical route has had much chance to influence phoneme 

activation. When the nonlexical route brings al1 the phonemes to criterion prematurely, 

the model makes a regufmisatiori error; that is, it pronounces a word like wad to rhyme 

with bad. 

Nonwords are read easily by the DRC. When the model is presented with a list of 

nonword, the GPC rules of the nonlexical route translate the letter string's spelling into 

sound. 

771e fexical decision tosk. The DRC simulates the lexical decision task (deciding 

whether a letter string is a word) by searching for a letter string in the orthographie 

lexicon that matches the input lrtter string. The srarch continues until the word's node 

activation reaches threshold, or until a deadline has been met. If a word node reaches 

threshold, the mode1 responds, "yes" The time limit for the search, expressed in the IAM 

component's cycles, is imposed on the model such that if no word node reaches the 

critical activation level after the deadline, the model responds "no". The deadline for 

search is adjusted from trial to trial to ensure vanabiiity on the finishing times for lexical 

decisions. 

I'rohlents wilh the DRC 

Dual-route theories of word identification hold a privileged spot in word 

recognition research. In fact, competing models have done little more than show that 

they are at least as good as the dual-route model. 

the IAM By building the DRC around the IAM, 

representation of space. 

To the further detriment of the duai-route 

frequency and spelling-to-sound regularity in the 

However, the DRC inherits a flaw from 

the DRC inherits the IAM's flawed 

model, the interaction between word 

naming task can also be simulated by l 

connectionist models (e.8,  Seidenberg & McClelland, 1989; Plaut, et al., 1996). 

Connectionist models account for the interaction between a word's frequency and 

phonological regularity using a single mechanism that translates spelling to sound. 

The posi tional sensi tivity of regulan ty effects documenied by Coltheart and 



Rastle (1 994) would appear problematic for connectionist models of word recognition- 

how would a model that operates in parallel mirnic sequential effects? Plaut et al. (1996) 

claimed that the sensitivity to positional irregularity is likely due to the number of words 

that share the irregularity at each of the positions. They claimed that more words share 

the same letters with a regular pronunciation at the beginning of the word than at the end 

of the word. As a dernonstration, Plaut et al. showed that their connectionist model 

yielded the same pattern of naming times as the DRC simulation. 

The necessity of a GPC route is questionable. 1 concede that the nonlexical route 

i s l i  kely essential for the beginning reader leaming how to attach sounds to the letters of 

novel words. However, the skilled reader has tens of thousands of words in her lexicon 

from which to generate a viable pronunciation of a novel word or nonword. A new 

word's pronunciation can be derived by analogy to words that the reader in already knows 

(Glushko, 1979). The ability of generalising to new stimuli is a strength of the 

connectionist models because they read both known and novel stimuli by analogy. 

The final criticism considers the relative time course required for direct retrieval 

frorn the lexicon and the algonthmic translation of a stimulus to a response. Reading is a 

rûpid, highly-learned activity. Theories of automaticity suggest that the use of algonthms 

to derive a response is generally required to process novel information. Once the input 

and output are familiar, a response can retrieved from rnemory automatically (e.g., 

Logan, 1988). Considenng the ski11 that people have generalising to stimuli that are 

similar to learned matenal, it seems unlikely that an algonthmic route to pronunciation is 

an eficient strategy for a skilled reader The criticism is especially salient given that the 

DRC applies the GPC rules on a trial-and-error basis. Applying the GPC niles on a trial 

and error basis should take a long time. 



Chapter 4 : A New Approach to Word Identification 

In this section 1 will rnake three arguments. First, 1 will argue that word 

identification or lexical access is more reasonably considered an example of retrieval 

from memory rather than an operation of looking up a word in the mental lexicon. I will 

also outline a computational mode1 of memory based heavily on Minerva2 (Hintzman, 

1984: 1988) that can be adapted to serve as a lexical memory system Second, 1 will 

argue that the research in tachistoscopic letter research provides evidence that a 

non-spatial organisation of letters is required for lexical access. Finally, 1 will argue that 

retrieval of a word from memory is constrained by the organisation of the data that is 

used as a retrieval cue. 

Word idcntijication is a forni of metnory retrievol 

The two principle tasks used by reading researchers, the naming and lexical 

decision tasks, can be viewed as modifications of cued recall and recognition memory 

tasks In cued recall, a subject might learn a list of associated items, for example, dog- 

a. car - g,  etc. After learning, a subject is shown one member of the pair as a retrieval 

cue l i  ke dog, and asked to report its associate, a.  Similarly, in the naming task, a printed 

string of letters can be viewed as a cue for the recall of the word's associated phonology. 

In the recognition memory task, a subj ect learns a list of items (usually words). After 

learning, the subject is shown items one at a time and asked to respond "yes" if that item 

was in the study set. and "no" if the item was not. In the same way for the lexical 

decision task, the subject must decide whether a letter string is among the letter strings 

stored in the reader's memory / lexicon. The only distinction between reading 

expenments and typical memory experiments is the type of memory that the tasks 

use-memory experiments test subjects' knowledge for what they remember; reading 

experiments test subjects' knowledge for what they h o w .  

A memory retneval approach to reading mns counter to one widely held 

assumption regarding lexical access. In the IAM (Rumelhart & McClelland, 1981), and 

DRC modei of word identification (Colthean et al.. 1993), words are stored as 

independent nodes that are activated when the appropriate feature and lener detectors 



have been excited. Similarly in the connectionist models, nodes devoted to word 

components are activated when the right input is presented to the models. Each class of 

model treats the lexicon as a content addressable system. That is, lexical access involves 

finding a stored word's address(es). By contrast, when reading is considered a problem 

of memory retrieval, lexical access involves asking the memory system to retum 

evidence that a particular word is in memory (c.f., Ratciiff, 1978). The distinction 

between the two approaches is that by accurnulating evidence for a word's presence in the 

lexicon, the system is not obliged to actually find the word. 

A strength of connectionist models is their ability to use stored information to 

create a response to novel inputs. Responses to leamed and novel stimuli are based on a 

weighted combination of the neural connections representing the items that the system 

has learned. Put other way. responses are made by averaging the data contained in the 

system. Data averaging is also a common method of retrieving information f r m  

computational rnemory model such as Minerva;! (Hintzman, 1984). While 1 agree that 

exuacting information from memory is done by averaging the data in the system, a 

memory retneval account of lexical access differs from a connectionist account in one 

important way. In a connectionist model, the data to be averaged are the mappings 

between the input and output patterns it has leamed. By contrast, a rnodel like Minerva2 

does not store mappings-it stores the input and output patterns in memory Hence, a 

reuieval account of word identification, while not entirely inconsistent with connectionist 

notions of data averaging, assumes that the averaging is done on materials the model 

knows, not on mapping relationships that have been leamed. 

Most importantly, treating reading as rnemory retrieval challenges current ideas 

about what skilled reading actually is. Current models of word identification generally 

assume that reading a word aloud requires deriving sounds from letters. That is, leners 

are treated as graphic representations of sound patterns, and the reader must decode 

letters into the sounds they represent. I argued earlier that the naming task is a special 

exarnple of the cued recall task; the letters of a word serve as a retrieval cue for the 

phonology of the word What does this mean to the notion that a word's pronunciation is 

derived from pnnt? Recall the example I used above where, given the retneval cue, dog, 

the subj ect is required to report the associate, a . The response, a, cannot be derived from 



the cue. The a is retrieved from memory because, when the subject retrieves dog from 

memory, its associated information is also retrieved. Both objects are part of the same 

memory trace. Extending the idea to word identification. the phonology of a word is not 

denved from the letters of' the word. A word's orthography and phonology are simply 

associated within one lexical entry. Reading a word aloud involves retrieving a match for 

the cue (Le., the letters) from memory. When the cue has been r e ~ e v e d ,  so has its 

associated information, (Le., the word's phonology). In sum, we do not translate letters 

into the sounds they represent (indeed, letters are not graphical representations of 

sounds), phonological information falls out of mernory when we retrieve a match to the 

cue. 

Starting with the notion that reading is a memory problem, 1 used a global 

memory model to serve as an architecture in constnicting a working model of word 

recognition. I chose to adopt a basic architecture similar to Hintzmsn's (1984; 1988) 

Minerva2 global memory model. 

.4 Simple Meniory Modd 

1 can represent an experience or rnemory trace in a model as a vector of features. 

In the example here, 1 will represent the features as random integers between - 1, and +1 

A + i may represent the presence of a feature, and -1 the absence of a feature. Traces are 

stored separately to f o m  a matrix. To retneve information, a probe, also represented as a 

vector of features, "resonates" with each memory trace. The similarity between the probe 

and memory trace is calculated by the formula: 

Where SI is the similarity of trace i to the probe. N is the number of pairs of features 

being compared. P, represents the f i  f e a ~ r e  of the probe, and T, represents thejth 

feature of the ith mernory trace. Each trace is activated by or resonates with the probe as 

non-linear function of its similarity. In Minerva2, for example, activation ( A )  of a trace 

is  measured as: 
A ,  = S3 



To retrieve an item from memory, the features of each trace are multiplied by its activation 

and surnmed across traces using the formula: 

The final formula yields a vector thût is a noisy composite of the probe vector. Hintunan 

(1984; 1988) refers to this composite vector as the echo content fiom memory (1 wiïl also 

adopt the rem echo content later to descnbe the output from the lexicon). 

dog 1 1 1 -1 +1 -1 -1 +1 -1 +1 -1 I A  

Figure 4.1 Three paired associates stored as a matrix of binary features. The first four 

features of a trace represent a word. The last four features represent its associated 

letter. 

A convenient property of the model is that a trace cm be subdivided to represent 

severd dimensions of an item. For example. h d f  of the features of a trace rnight represent 

a word. and the other haif may conespond to an associated letter. Subdividing a vector 

dlows the model to simulate cued recall. Consider the exarnple where the model learns 

three associate pairs: dog - a, coi - r ,  ont - y. Each pair would be represented as a 



representation of the items in matnx form. When the model is probed with a vector 

containing the features of the word dog, it retrieves dog and iü associate, a, by 

calculating trace activation from the similarity of the probe to the corresponding features 

of each trace. Each feature of the trace is multiplied by the trace's activation (Figure 4.2). 

When the activated features of the traces are summed, a composite vector representing 

DOG and A are contained in the echo content (Figure 4.3). 

The model 1 descnbe in the chapter 5 uses an adaptation of the above model as a 

lexical memory system. As in the paired associate leaming example above, each memory 

trace represents a word in  memory Half of the features of each trace represent the 

speliing or orthography of the word. The remaining features represent the word's 

phoriology Presumabiy, we could funher subdivide a word's vector representation to 

include fratures relevant to the motor commands required to pronounce a word. or even a 

Figure 4.2 The same items as in Figure 4.1 after they have been activated by the 

features of the word dog as a probe. The numbers down the left side of the figure are 

the activations of each trace. 



featural representation of meaning. In this thesis, however, we limit the lexicon's 

information to orthography and phonology because the scope of the thesis does not 

include an account of phenomena related to research in speech production or semantics. 

Letters require encoding prior to lerical access 

Current models of word recognition are mute with respect mechanisms involved 

in letter encoding. In fact, letter encoding is a stage in the reading process that is rarely 

considered. Much of the early work on letter encoding was done using tachistoscopic 

letter identification expenments. Out of this research, Mewhort and his associates (e.g., 

Mewhort, 1974; Mewhort & Campbell, 198 1; Mewhort & Beal, 1977, Feldman-Stewart, 

19%) proposed a theory for the initial stages of word recognition. 

In their expenments ( e g ,  Mewhort & Comett, 1972) subjects were briefly shown 

letter strings and asked to report as many letters as possible. Subjects typically showed a 

strong familiarity effect such that they could report more letters from a display that 

closely resembled a word (e.g., POLICKET) than one that did not ( e g ,  PRGEIDE). 

Further, and most importantly, repon typically followed a left to right order Mewhon 

( 1974) postulated that the tendency towards a left-right repon was the result of a 

mechanism, the scan, that loaded a short-tenn memory buffer with the letters of a strins 

in a beginning-to-end order. 

To explore the notion of scanning, Mewhort (1974) used a sequential presentation 

technique to gauge the familiarity effect and tendency for lefi-to-right report. Mewhort 

presented eight-letter pseudowords, one letter at a time, in either a left-to-right or 

riçht-to-left direction across the display screen and varied the intra-letter interval (ILI). 

He also presented the pseudowords in fonvard ( e g ,  POLICKET) or reversed spelling 

(e.g., TEKCILOP). When pseudowords were presented from left-to-right, subjects 

reported the letters in a left to right order regardless of the [LI. When the pseudowords 

were presented from right-to-left, subjects rrponed the letters from left-to-right at 

extreniely short LIS, and at long ILI'S, the order of repon matched the order of amval on 

the display. The familiarity effect also depended upon the direction of presentation and 

ILI. Subjecü sbowed a strong familiarity effect for fonvard-pnnted pseudowords at al1 

ILI'S when presented from left to right. When these pseudowords were presented from 

nght to left, however, there was a familiarity effect at only the shortest ILI'S. Reversed 



pseudowords exhibited a familiarity effect only when presented frorn right to left at the 

longest ILI'S. Taken together, the pattern suggested that the familiarity effect depended 

on a beginning-to-end encodi ng, or ordering, of the letters. 

I 1 

Echo Content 

Figure 4.3 When features are summed across the activated traces, an echo content is 

created. 

When a sequential presentation is rapid (e .g . ,  a 10 ms ILI), the scan can proceed 

without disruption regardless of the direction of presentation; that is, al1 the letters are 

scanned into the short-tenn memory buffer. When the transfer is disrupted by a slow 

sequential presentation, the order of report is forced to reflect the order of anival on the 

display. 

To corroborate the notion that scanning is an obligatory pan of identifying a 

word, Mewhort and Beal(1977) repeated Mewhort's (1974) sequential paradigm using 

eight-letter words. They found that the probability of identifying a word in the task 

mapped closely onto the size of the familiarity effect using pseudowords (n.b. Mewhort, 

1974). In sum, word identification requires the ordenng of the letters from beginning to 

end. 



From these data, Mewhort and Campbell (198 1) postulated a model for the initial 

stages of word identification called the Dual-bufier Model. According to Mewhort & 

Campbell ( 198 1 ; see Feldman-Stewart, 1992 for a fonnal account) the raw features of 

letters are stored in afeature buffer upon presentation of a string of letters Letters are 

identified in parallel from the features and stored as spatially arranged abstract forms in a 

labile storage mechanism called the character bufer. From the character buffer, the scan 

loads the letters into a temporal buffer where they can be rehearsed andior chunked. The 

order of encading is deterrnined by the direction in which a language is wrinen. Hence, 

encoding proceeds in a left to right direction for words made up of Roman characters, 

and the opposite for the letters of a language, such as Hebrew, that is read from right to 

left (Butler, Tramer, & Mewhon, 1985). 

Ordering letters pnor to lexical access solves a problem common to several 

formal models of word recognition. As I discussed above, several models have dificulty 

representing the spatial arrangement of the letters in a word (e.g., Coltheart et al., 1993, 

McClelland & Rumelhart, 198 1, Seidenberg & McClelland, 1989; Johnson & Pugh, 

1994; Mozer, 199 1) .  For example, consider a model wherein the word put is represented 

by the activation of nodes corresponding to the lettersp, a, and S. Without reference to 

their spatial organisation, the letters are consistent with the spelling of the words paf, iap, 

and upt. In the previous chapters, I outlined some solutions to this problem (i.e., 

wickelfeatures, componen tial representation, and letter channels). 1 also menti oned earlier 

that there is no evidence for the psychological reality of any of these representation 

schemes. It is therefore unclear whether they offer a reasonable solution to the problerns 

associated with representing spatial organisation within a letter string-especially when 

successful word recognition depends on thern. On the other hand, if letters are converted 

into a list by the scan, space is not an issue. 

A version of Mewhort's dual-buffer rnodel, the Letter Processing System (LEPS), 

was recently formalised by Feldman-Stewart ( 1992). LEPS, illustrated in Figure 4.4, 

begins at an artificial retina and tenninates at the level where identified characters are 

stored in the character buffer. My model of lexical access uses LEPS as a front end. That 

is, the output of LEPS is used as the input to rny model. Using LEPS as a front end to 

my model is desirable for two reasons. First, 1 assume that research in psychology is 



cumulative; models of higher processes can be built on top of existing models of lower 

processes. Second, because LEPS begins its processing at an artificial retina, adding a 

retrieval system for lexical information provides a fairly complete account of lexical 

access. 

( Feature Buffer I 
/ Artificial Retina 

Figure 4.4 Sketch of Feldman-Stewart's (1992) model of latter identification (LEPS) 

Rocesses in letter encorling determine the mode of lexical access 

1 use abstract letter identities as a retrieval cue or probe for the words stored in 

memory. The notion that encoded letters are ordered raises an interesting issue for 

retrieval. Current models of word identification are built on the premise that lexical 

access is an example of parallel processing. In one sense of the terni parallelprocrssi~~g, 

the models assume that the letters of a word are processed simultaneously dunng lexical 

access. A model that embodies the assumption of parallel processing must use an input 

representation that is amenable to parallel processing. Hence, choosing wickelfeatures 

( e g ,  Seidenberg & McClelland, 1989), lener channels (e.g., McClelland & Rumelhart, 

1981) or word components (Plaut et al., 1996) as input representations is a consequence 

of the theoretical framework in which the model was constmcted. 



I take a different view of model building as it relates to the choice of input 

representation. lnstead of choosing an input representation that is amenable to 

assumptions about how lexical access occurs, 1 argue that one must choose a strategy for 

lexical access that is amenable to the organisation of the letters that are used as an input. 

When we have an idea of how identified letters are organised, we can begin to consider 

how, given the organisation, information is extracted from the lexicon. Because we have 

evidence that a list of letters is used for lexical access, 1 chose an retneval rnethod that 

capitalises on the order of the letters within the list. Specifically, 1 assume that lexical 

access starts with the lefimost letter of the list and proceeds down the list until the last 

letter has been retrieved from the lexicon. 



Chapter 5 : The Theory "LEXu 

in what follows 1 describe the details of the model. It is illustrated in Figure 5.1.  

1 treat word identification as a three-stage process. At the first stage, the characters of the 

display are identified. At the second stage, identified characters serve as a cue for the 

reuieval of lexical information from lexical memory . The final stage constitutes the 

eeneration of a response based on the information that has heen retrieved When LEX 
CC 

names a word, 1 assume that the quality of retieved phonological information dictates 

when articulation will begin. When LEX decides on the lexical statu of a let-ter string in 

the lexical decision task, the quality of the orthographie information retrieved from the 

lexicon determines the speed of the response, and whether LEX will be biased to accept a 

letter string as a word, or reject it as a nonword 

Figure 5.1 . Basic architecture of LEX. 

LEX embodies the second and third stages of the word identification process. 

That is, letter identification has already occurred pnor to the point at which LEX starts 



processing. For a detailed description of the model I have chosen as a letter identification 

system, see Feldman-Stewart (1 992). 

An informa1 description of LEX 

Before 1 give a detailed account of how LEX works, 1 will give a verbal 

description of how LEX names words and makes lexical decisions. When a pnnted word 

is presented to a reader, its letters are identified and stored as a spatial array in the 

character buffer (Feldman-Stewart, 1992; Mewhon & Campbell, 198 1 ). From the 

character buffer, a scanning mechanism copies the contents of the character buffer into a 

temporal buffer. The scan copies the lenen one at a time beginning with the first lener. 

The letters in the temporal buffer are stored as a temporal array, or a lin, where they are 

used as a cue for retrieving a word from the lexicon. 

To retrieve a word, LEX uses the list structure to guide retneval That is, 

retrieval begins with the first letter in the list The first lener in the temporal buffer 

resonates with, or activates, the onhography and phonology of al1 the words in the 

lexicon to activate them. Because a word's orthography and phonology are pan of the 

same memory trace in LEX, both dimensions of the word resonate with the probe. If the 

probe lrtter matches the first letter of a word in the lexicon, its activation is higher than if 

the letters mismatch. The magnitude of the word's activation also depends on the pnnted 

frequency of the word such that high-frequency words are more highly activated by the 

probe than low-frequency words. Once al1 the words in the lexicon are activated, the 

model can retrieve the information from the lexicon. One way to retrieve the infonnation 

would be to collapse across al1 the words in the lexicon to yield a composite. or facsimile. 

of the target letter-the same retrieval operation 1 descnbed in the section A Simple 

Mmory Modrl in Chapter 4 wherein an echo content is created. Unfortunately , a 

retrieval method identical to the one described in Chapter 4 does not work. There are so 

many words in the lexicon that if LEX collapses across al1 the traces to find the first 

letter, ail it  retrieves is noise. The alternative is to irnplement the seategy embodied by 

other models of memory reaieval (e.g., Ratciiff, 1978). Specifically, LEX accumulates 

evidence for the target letter's presence in the lexicon over a series of time steps. 



At each time step, LEX samples a handful of words from the lexicon at random. 

Each time a sample is taken, the echo content for the sample is copied into two buffers. 

The part of the echo content corresponding to the orthographic information within the 

sample is copied into an orthographic buffer, and the part correspofiding to phonology is 

copied into a phonological buffer. For each sarnple, LEX measures how much the 

contents of the orthographic buffer have changed from the previous sample. When the 

change between samples reachrs a criterion minimum, the search for the target letter is 

terminated. 

ULEX finds the correct letter, it proceeds to retneve the next one. AAer LEX 

has retrieved the fint ktter, it knows two things: what letter the target word begins with, 

and also what words the target cannot be. In other words, LEX uses both positive and 

negative evidence to find a word. For exarnple, if LEX retrieved the letter c in the first 

position, it knows that the target word cannot be the word apple. but could be any word 

that Stans with c. LEX uses negative evidence by adjusting its search space to include 

only words whose spel ling is consistent with the identified letters of the probe. In other 

words, it adjusü a cohorr of candidate matches to the probe. For example, after LEX 

retrieves the c of the word car, it adjusts the cohort of candidate words to include only 

words that begin with the leaer c. 

LEX continues sampling and adjusting the cohon until it has retrieved the final 

character in the TB. the space character However, sometimes retrieval fails and LEX 

settles on the wrong lener. Reuieval failure happens for two reasons: a lener may be 

retrieved incorrectly, or a letter of the probe might belon): to a word that LEX does not 

know. In either case. LEX readjusts its search space and tries to retrieve the lener a 

second time. To readjust the search space, LEX drops the first letter of the probe so that 

it no longer resonates with the words in the lexicon. For example, if LEX failed to 

correctly retrieve the letter r of cal, it did so in a cohon containing only words that begin 

with ca. Following the failure, LEX would release the letter c from the probe leaving 

only the letter a to resonate with the words in the lexicon. Now, LEX would search for 

the letter t in  a cohort of words that have the letter a as a second character. LEX usually 

requires only one cohort readjustment after a retrieval failure. However, if it does 



experience another failure, the next letter is dropped from the probe to further aid 

retneval . 

After LEX finishes retrieving the last character (the space character), the 

orthographic and phonological buffers contain features that correspond to the 

orthography and phonology of the letter string, respectively. It is important to note that 

retrieval is guided entirely by orthography-phonological information simply falls out of 

die lexicon as orthographic information is retrieved. Phonology falls out because it is 

pan of the same mernory trace as the orthography. 

Once LEX has finished retrieving the letters, it can either name the word aloud or 

decide on its lexical status. When LEX names a word, the time required to begin 

pronunciation depends on how clear the phonemes in the phonological buffer are. if, 

dunng sampling, the phonemes of many words with imelevant phonemes are included in 

the phonological buffer, the clanty of the phonology in the buffer is compromised. The 

less clear the phonemes are. the longer it takes to initiate pronunciation. When LEX 

makes a lexical decision, it evaluates how closely the contents of the orthographic buffer 

match the probe letters in the temporal buffer. If the contents of the two buffers are 

similar enough, LEX is biased to respond that the retrieved orthography is that of a word. 

If the similarity between the two buffers is low (as is the case after retrieval failures) 

LEX is biased to respond that the retrieved orthography is a nonword. 

LEX's response bme is calculated as the sum of IWO values. In the naming task, 1 

sum the number of time steps, or samples, required to retrieve the orthography and the 

time required to initiate pronunciation The time required to initiate pronunciation is 

taken as the tinie required to build a motor program to pronounce the blumest phoneme. 

In the lexical decision task, 1 sum the number of required samples and the time it takes to 

decidc on the letter string's lexical status. The time required to make the decision is taken 

as the finishing time of a standard two-choice evidence accumulation mechanism 

(Ratcliff, 1978). 

Forrnal description of LEX 

Kno w le dge 

Creating a mode1 of skilled reading based on the principles outlined in the 

previous chapter, required that 1 represent far more lexical knowledge than the few 



thousand words found in many current models. LEX knows the orthography and 

phonology of about 103,000 types. 1 used the Carnegie-Melon Pronunciation Dictionary 

(Weide, 199 5) to serve as a lexicon. At first glance, 1 03,000 words might seem like too 

much knowledge (many compact dictionaries have less than half that number of entries, 

and, I imagine, few know the definitions of al1 the words contained in them). However, 

like humans, LEX knows several first names, sumarnes, Street names, profanities, and 

expletives not found in a standard dictionary. Second, the model treats the afixed foms  

of a word as separate entries. For example, the various foms  of the word ur~derstarid, 

( i  . e . , misundersmtd, understmding, uunderstu~idabie) are represented separatel y .  Hence, 

the large number of lexical entries in the model is not unrealistic. 

Representa~ion 

The basic units of representation in LEX are letters and phonemes. Each of the 

27 leners (the space character delineating the end of a word is treated as a ietter) and 40 

phonemes (the fortieth phoneme is a nul1 phoneme which also serves as a word delimiter 

See appendix A for a listing of phonemes) are represented as a vector of 50 features. 

Features are random integers of - 1 ' s  and + 1's sampled from a rectangular distribution. 

LEX represents letters and phonemes as abstract identities in the sense that the features 

do not correspond to physical characteristics of the characters or phonemes. 

A word's spelling patterns is represented in LEX by concatenating the letter 

vectors tliat spell the word. As well, the phonology of a word is created by concatenating 

the appropriate phoneme vectors. Each word is stored separately and çontained within a 

1800-feanire vector. The vector can handle a word that has up to 18 leners or phonemes. 

The first 900 features of the word vector store the word's orthography. 1 refer to this half 

as the orthographie jeld of the word. The phonologrcalfield of the word, the final 900 

features contains phonology of the word. 

Each word is lefi-justified in its field. That is, the first letter and the first phoneme 

are placed in the first position of their appropriate fields. The final character of every 



word is the space character, and the final phoneme of every word is the nuIl phoneme. 

To maintain equal dimensionality across al1 lexical entries, letter positions in the 

orthographic field not containing a chancter are assigned vectors of zeros, and phoneme 

positions in the phonological field not containing a phoneme are assigned a nul1 phoneme 

vector 

LEX is a multiple-trace model-the number of instances of a particular word in 

its lexicon is a function of the frequency with which the word occurs in text For 

example, LEX has more instances of the word the in the lexicon than instances of the 

word apt. 1 truncate the natural loganthm of the sum of one and a word's frequency (as 

tabulated by Kucera and Francis, 1967) as the number of instances for any word. 

Storage Medianisms 

In addition to the lexicon, LEX has three shon-tenn memory buffen, each of 

which is represented as a 900-feature vector. The temporal buffer (TB) receives the 

characters that have been scanned from the chaiacter buffer of the letter identification 

module (Feldrnan-Stewart, 1993) W hereas the characters in the character buffer are 

stored spatially, the characters in the temporal buffer are stored in a first-to-last order and 

usrd as a reuieval cue, or probe, for retrieving a word from the lexicon. The 

orrhopphrc (OB) and phoriologrcal buffers (PB) store the orthographic and 

phonological information that is retrieved from the lexicon 

Re aierwg r~i/ormatiorifroni ~ h e  lexicorr 

Activation LEX's retrieval operations begin where Mewhon and Campbell's 

( 198 1 ) dual -buffer mode1 and LEPS (Feldman-Stewan, 1992) terminates. The output of 

LEPS is a spatial array of letters stored in a character buffer. From the character buffer, 

LEX scans the characters to the TB. The scan orders the characters from 

beginni ng-to-end. 

LEX uses the order of the letters to guide lexical search. That is, lexical access 

begins with a search of the lexicon for a match to the first letter of the probe, and 

teminates with the retrieval of the last letter (always a space character). Every lexical 

entry is activated by the probe letter The degree to which a lexical entry, L, is activated, 

A ,  by the probe letter, P, is a function of the similarity betwecn the lexical entry's 

corresponding letter to the probe letter and its frequency. To get an activation value for a 



lexical entry, the measure of similarity is raised to the third power and multiplied by a 

number that is a function of the word's printed frequency (F) according to the Kucera and 

Francis (1967) word noms.  Raising the similanty to the third power serves to accentuate 

the degree to which the activation of similar and non-similar letters resonate with the 

probe letter. 

Where j indicates the jth feature of the letter's vector, and N indicates the number of 

features in a letter 

Words containing the matching letter will be activated more highly than any other 

lexical entry. Feanire values of vectors for words not containing the matching letter are 

pushed below a minimum value of 1 .  It is important to note, that a probe letter activates 

whole words, not just the characters at the letter position at which it is searching. For 

exarnple, whole instances of the words car and core will be activated by the lener C when 

it  is used to search for the first letter of the word car. 

Rrfrievol. After the entries in the lexicon have been activated, LEX can begin 

retrieving information. Retrieving information from the lexicon takes time. Following 

random walk theory (e.g., Ratcliff, 1 W8), retrieval in LEX involves the gradual 

accumulation of evidence for an item's presence in memory. Random walk theuries 

measures the accumulation of evidence over time. LEX uses a sampling method for 

retrieval that is an instantiation of what random walk theories simulate. Retrieval in LEX 

is the gradual accumulation of evidence that the probe letter is present in memory. To 

accumulate evidence, LEX repeatedly samples available lexical information against a 

background of noise from words in the lexicon. 

The probability of including any one word in a sample is a function of the word's 

frequency. Specifically, the probability of sampling any word is given by the formula: 



Where in(l+F), is one plus the natural logarithm of wordjs  printed frequency as 

calculated by Kucera and Francis (1967). The denominator of the equation is the sum of 

h1(1 +F) across ail words in the lexicon that are available for sampling. On each sample, 

or processing cycle, a composite vector, or echo corltenf, is created from the words in the 

sampie. The echo content is created in the same way as 1 described in Chapter 4. First, 

the features of each word in the sample are weighted by their activations. The echo 

content is created by summing corresponding features across the traces in the sample. 

The first 900 features of the echo content are copied into the OB. The final 900 features 

are copied into the PB. The formula for creating the echo content is 

Where E, i e jth fe abire of the echo content, A, is the activation of the rth word, L, in 

the sample. In the simulations to follow, 1 used a sample size of 100 items. Smaller 

sample sizes tended to result in a speed-accuracy trade-ofT, and iarger sample sizes 

introduced too much noise to the echo content. 

LEX stops sampling the iexicon for a match to the probe when it senles on a 

letter. On each cycle during sampling, LEX calculates how much the contents of the OB 

have changed from the previous cycle. The change is measured only for the features of 

the OB that correspond to the position of the probe lener. For example, if LEX is 

probing the lexicon with the first letter in the TB, the change in the features of the fint 

lener position in the OB is measured. LEX is considered to have senled on a lener when 

the difference in the correlation, as measured by Pearson's r, between the OB'S features 

on cycle N and cycle N-1 reaches a minimum (a parameter of the mode1 I set to 0.0005). 

It is worth restating that the decision to stop sampling is made on the basis of how 

a letter vector in the OB changes on successive cycles, nor on how similar the cue letter 

in the TB is to the echo content in the OB on successive cycles. LEX always settles on a 

letter; whether the correct letter has been retneved is determined after the system setties. 



After LEX stops sampling, the features in the OB comesponding to the retrieved 

letter are compared to the probe letter. LEX has settled on the correct letter if the 

correlation between the features of the OB and TB is higher than the correlation between 

the features of the OB and any other lener. 

VLEX settles on the correct letter, the search space for die next probe letter is 

redefined by excluding the words that failed to match the retrieved letter. For example, 

finding an c for the first letter precludes any words not starting with c from the search 

space when LEX searches for the next lener. The search space is consistently readjusted 

until the final character, always the space character, is retrieved. In other words, at each 

letter, LEX defines a new cohort of candidate words 

1 borrowed the idea of reducing a cohon of candidate words from 

Marslen-Wilson's ( 1984) mode1 of auditory word identification. He proposed on-line 

processing while listening to a spoken word. The processing narrows the range of 

possible words in real time as phonemes are delivered to the listener Hence, the listener 

mav know the meaning of the word before the unerance is complete LEX perfoms a 

sirnilar operation on the leners of a visually presented word. 

My retrieval method can be justified on two grounds. First, 1 use sampling dunng 

retrieval to acknowledge that the adult's lexicon is large; so large that readers cannot 

think about al1 the words they know simultaneously. Second, cohon reduction 

acknowiedges that the system can use both positive and negative evidence to identifi a 

word. Retrieval stam with a small amount of evidence about the word's identity, but the 

same information provides strong evidence for what the word cannot be. If the first letter 

retrieved from the system is c, for example, there are a large number of words consistent 

with tliat fact. But, it is also clear that the target word cannot be the word npple or any 

other word that does not start with c.  

The use of negative evidence in recognition has recently been snidied by Mewhort 

and Johns (in press). They report several examples in which subjects use negative 

evidence to drive a response in a recognition memory task. For example, test items that 

contain a feature novel to the study set are easy to identify as new items in a recognition 

memory task. 



W h m  Retrieval Fuils. When LEX retneves the wrong letter it adjusts the cohon 

to rnake re-identifying the missed letter easier. LEX adjusts the cohort by excluding the 

first letter frorn the probe. When the first letter has been eliminated from the probe, the 

letter no longer resonates wi th the words in the lexicon. Lexical entries that were 

previously excluded from the cohort of candidate words become reinstated because they 

share letters with the remaining letters in the OB. If retrieval fails again, the next letter in 

the probe is eliminated. For exanple, suppose LEX mis-identified the t of the word, car1 

as an s, that is, LEX senled on cars. In trying to find t ,  LEX used a search space 

containing words with c. a. and r as the first letters. To try again on r .  c is dropped from 

the letters of the probe Now, any word with ar as the second and third characters are 

contained within the search space. If LEX fails again, the a is dropped leaving only 

words with an r in the third position. 

When a lener is dropped from the probe, the letter in the corresponding position 

in the OB is ignored when the echo content is copied into the OB. The OB is a 

short-term memory buffer. Because the features of the first lener in the OB are no longer 

being reinforced by retrieval, 1 assume that its features decay mildly over successive 

samples To simulate decay, 1 subtract a random value, taken from a rectanbwlar 

distribution ranging from O to O 1 ,  from each feature of the ignored lener in the OB. 

However, the decay is rnild, hence, there is no danger that the identity of the first letter 

will be lost by the time LEX retrieves the final letter. Introducing decay to the unprobed 

leners was also motivated by the finding that the word frequency effect in the lexical 

decision tends to be larger than in the naming task. In LEX. retrieval from the lexicon is 

a cornmon stage to both the naming and lexical decision tasks. Hence, for LEX, the 

greater frequency effect in lexical decision reflects a difierence in  how much the 

retrieved orthography of a high- or low-frequency word resembles the probe letters in the 

temporal buffer. Whereas the retrieved orthography of a high-frequency word already 

tends to resemble the probe leners more closely the retrieved orthography of a 

low-frequency word does, the mild decay on the unprobed letten serves to accentuate the 

di fference. 

Retrieval failure also forces LEX to adjust the how phonemes are copied into the 

PB. If after adjiisting the cohort, LEX continued to copy al1 the features of the echo 



content into the PB, phonemes in the beginning positions in the PB would be overwritten 

by those from irrelevant words in the echo content. Instead, LEX treats the first phoneme 

in the PB as correct and ignores the features corresponding to the first phoneme in the 

echo content when it copies the echo content into the PB. 

How does LEX know where to begin copying phonemes into the PB when 

retrieval fails? There are two possibilities. If the second phoneme in the PB has near 

perfect clarity, LEX continues copying phonernes at the second phoneme. If, on the 

0 t h  hand, the second phoneme is not near perfect, LEX continues copying phonemes 

from rhe echo content at the phoneme preceding the blumest phoneme. Why the two 

different strategies? The clarity of the phonemes after retrieval is higher when LEX 

reads words than when it reads nonwords. Hence, if after retrieval failure, the second 

phoneme is pristine, LEX has evidence that the letter string it is reading is a word and, as 

such, producing a pronunciation by analogy from the second phoneme will yield an 

accurate pronunciation. On the other hand, if the second phoneme is not near perfect, 

LEX has some evidence that the lener string is a nonword. Lf LEX has some evidence 

that the lener string is a nonword, new phonemes can be copied into the PB wherever the 

clarity of the blumest phoneme can be increased. 

It should be clear at this point that, for LEX, lexical access is the search for a 

letter sting's onhography in the lexicon. No currency is placed on the phonology of the 

word during rebieval. Building a phonological representation necessary for naming a 

word occurs as a corollary to finding the orihography-phonological information is 

retrieved automatical: y when an activated word has been sampled In short, phonological 

information is retrieved from the lexicon because it is associated with orthographie 

information; a notion clearly ai odds with the popular idea that reading aloud involves 

mapping letters or letter combinations to sounds. Ignoring phonological information 

during word identification is also at odds with claims that phonological information is 

used by the reader at an eariy stage in word identification (see Lukatela and Turvey, 

1994a, 1994b). My position is that readers do not generally use phonological 

information at the begi nni ng stage of lexical access However, because phono1 ogical 

information is retrieved early, I believe a reader could exploit it. 



Meanrring the Time IO Retrieve Information from the Lexicon 

Retrieving information from the lexicon takes tirne. To measure lexical retrieval 

time, I count the number of cycles it takes to retneve al1 the letters from the lexicon. 

After retrieval, LEX uses the retrieved information to generate a response. 

Meclsuring the fime to Make a Response Afer bfinnation Retrievul 

Once lexical information has been retrieved from the lexicon, LEX can make a 

response Ta perform the naming task, LEX uses the information contained in the PB. 

In a lexical decision task, LEX bases its response on the information stored in the OB. 

An account of the articulatory mechanisms involved in naming a word, and the 

decision rnechanisms involved in rnaking a lexical decision is beyond the scope of this 

thesis. To acknowledge the point and to simulate response time afler retrieval from the 

lexicon, the quality of the representation in the PB and OB detemines the speed of the 

response When the information in the OB and PB is bluny, or unclear, LEX requires 

more time to generate a response than when there is linle ambiguity within the 

in fo mation. 

Simtilatirig the Lexical Decision Task 

In a lexical-decision task, subjects are asked to decide whether or not a letter 

stnng is a word. I assume, along with others (e.g., Andrews. 1989; Forster & Shen, 

1996) that the lexical decision task requires a decision stage after lexical access. LEX 

decides on the lexical sutus of a leaer stnng by cornpanng the contents of the OB to the 

TB. The cornparison yields a sirnilarity value that rneasures the quality of match between 

the two buffers. If the match exceeds a criterion, LEX is biased to consider the retrieved 

onhography to be that of a word; otherwise it is rejected as a nonword. Because the 

lexicon contains only words, it less likely to obtain a good match to a nonword. 

In the decision stage, LEX accumulates evidence for or against a string's lexical 

status. Evidence for either response is calculated as the difference between a cnterion 

match and the match of a small sample of pairs of features from the two buffers. The 

difference is summed over several iterations untii a critenon amount of evidence is 

accumulated. The accumulated evidence can be positive (where LEX decides that a letter 

stnng is a word), or negative (where LEX decides that a leaer string is a nonword). 



Evidenm (E) 

Figure 5.2 A diagram of the gradua1 accumulation of evidence over time in a 

two-barrier randorn walk. 

Because the decision rnechanism I have descrîbed is computationally expensive, 

LEX uses a two-bamer evidence accumulation mechanism. the random walk (Ratcliff, 

1978; Link, 1975: 199 1;  Link & Heath, 1975) to simulate decision time (DT) for the 

lexical decision task. The random walk was designed to explain response time and 

accuracy in a two-alternative, forced-choice task. The random walk is illustrated in  

Figure 5 2. Random-wal k theory postulates that, to make a two-alternative, 

forced-choice decision, evidence for one response or the other must accumulate over 

tirne. Accumulation continues until there is enough evidence to make a response. Using 

the random walk as a decision mechanism is functionally equivalent to the method 1 

described above for LEX's decision stage, but it has one advantage. An analytic 

expression is known for the random walk so that 1 can calculate the expected value of the 

finishing time instead of implementing the full stochastic decision process. 

The evidence for one response over the other is expressed as a signal, S. When s 

is negative, it is evidence for one response, and evidence for the other response when s is 



positive. To accumulate evidence, the signal value is summed across subsequent time 

slices, or steps. Accumulation continues until the evidence equals or surpasses a banier 

or threshold, T. Because the random walk simulates a two-choice decision, there are two 

bariers, -T and +T, one corresponding to each decision. 

Evidence accumuiation is a noisy process-at each time step, it is accurnulated 

against a background of noise. The addition of noise at each step causes the accumulated 

evidence to deviate randomly from a straight course to one of the two bamers. 

Noise is introduced to s on each cycle by adding a gaussian deviate from a 

distribution with a mean of O and a standard deviation of o. Hence, at each step, the 

amount of accumulated evidence can be calculated as: 

Where Er represents the accumulated evidence at time t, s corresponds to the signal value, 

and N(0.a) corresponds to a random deviate sampled from a gaussian distribution with a 

mean of O and a standard deviation of o. 

Once a letter string's onhography has been retrieved from the lexicon. a signal for 

a random walk is calculated as a function of the similarity between the letters used as a 

probe and the retrieved orthography. Similar to the technique used by Seidenberg and 

McClelland (1989), LEX considers the retrieved onhography to be a word when the 

correlation between the features of the OB and the TB exceeds a minimum, C If the 

value fails to reach the minimum, LEX considers the letter string to be a nonword. 

To simulate the decision and its latency, 1 calculate a signal for the random walk 

by subtracting the value from C, Le., 

s = r(OB, TB) -C 

(where r is Pearson's product moment correlation). If the value exceeds C, the random 

walk has a positive signal; that is, evidence that the letter string is a word. The signal is 

negative when the value fails to reach C, and is taken as evidence that the letter string is a 

nonword. 



The C parameter is LEX's only free parameter. 1 allow it to Vary to acknowledge 

that readers can adjust how carefully they decide on the lexical status of a letter stfing. 

For example, consider tiow readers might change how they make lexical decisions when 

the nonword foils in the lexical decision task are strings of random consonants, e.g., ghtk, 

versus foils that closely resemble words, e.g., lave. When readers are presented with 

nonword foils that do not resemble words, Andrew's (1989) demonstrated that decision 

latencies decrease compared to the case where word-like foils were used. From LEX's 

perspective, because a string of random consonants does not closely resemble any word 

in the lexicon, the correlation between the contents of the OB after retneval and the 

contents of the TB will be low relative to the case wherein the nonword foils are very 

word-like. I assume that, when the decision about a lettei stnng's lexical status is made 

easier by using un-wordlike foils, the correlation beween the contents of the OB and TB 

does not need to be very high to correctly accept letter strings as words. On the other 

hand, when the nonword foils closely resemble words, the minimum similanty between 

the two buffers miist be higher. Hence, when the correlation is high for nonword foils, 

LEX requires a higher more evidence to decide that the letter string is a word. 

One bamer of LEX's random walk corresponds to a noword response (set to -30 

in  LE>(), and the other to a word response (set to +30)  The gaussian distribution of 

noise that 1 used had a mean of O and a standard deviation of 0.5. Decision tirne PT) is 

measured as the number of steps the randorn walk takes to accumulate enough evidence 

to cross one of the two bamers. 

In the simulations that 1 report in Chapter 6, 1 calculated the expected DT and 

probability of an error for each trial from the signal values Using expected values 

instead of actually ninning a random wal k has two advantages. First, direct calculation is 

cornputationally cheaper than waiting for random waiks to finish. Second, the expected 

DT is a less noisy estimate of finishing times. The expected DT for a signal value is 

calculated by the formula: 

E(DQ = $ x ( l  - ( 2 x p e )  
Where p, is the probability of an error and is calculated as 



LEX's average response time (re time + DT) across trials (MLDT), is calculated as 

the mean of the expected DTs + letter retrieval time (1x7) weighted by their probability 

of being correct, 

Sintulati~tg the Namirtg Task. 

In the naming task, subjects are shown a letter string and asked to pronounce it as 

quickiy as they can. LEX models the naming task by reading off the phonemes that are 

copied into the PB during retrieval. 

The phonemes in  the PB are not generally pristine following retneval. Each 

phoneme in the PB contains features irrelevant to the correct pronunciation. lrrelevant 

features occur, of course, because irrelevant words were sampled during retrieval. 1 

assume that articulation begins after a pronunciation program has been created by the 

reader. To create the program, the retrieved phonology must first be de-blurred so that a 

pristine copy of each phoneme can be used to create a pronunciation. 1 assume further, 

that the time it  takes to begin creating the pronunciation program depends on how long 

the phonemes will take to de-blur. 

I assume that the phonemes are deblurred in  parallel. Hence, the time to it takes 

to pronounce a word following retrieval depends on how long it takes to clean up the 

blumest (non-null) phoneme. De-bluning occurs by first having the phonemes in the PB 

act as a probe to activate a set of canonical phonemes. The activation ( A )  of a canonical 

phoneme ( c )  is a function of its similarity to the phoneme in  the probe (p). Specifically, 



Following the activation of the canonical phonemes, a facsimile of the probe is created by 

taking the weighted (8) sum across the features of the activated canonical phonemes 

using the formula: 

Each facsimile is weighted (set to 0.01) so that the clean up process occurs 

yraduaily over several cycles. Tne facsimiie is used as a probe to the canonical phoneme 

set again to create another echo that is copied on top of the previous one. Each time the 

echo is used as a probe, the activations of the canonical phonemes change such that the 

phoneme most similar to the contents in the PB increases to approach 1 while the 

activations of the others approach zero. The de-blumng process stops when the 

activation of one of the phonemes in the canonical set reaches a criterion (set to 0.99) At 

the point where the criterion is  met, the canonical phoneme rnost similar to the contents 

of the PB is the only one that is active; as well, the facsimile created from die canonical 

set is a near perfect copy of the canonical f o m .  The winning phoneme is used in the 

creation of a motor program for pronunciation. 

The de-blumng process is computationally expensive. Hence, 1 simulated the 

time required for de-blumng and aniculatory program creation by using the clarity of the 

phonemes in the PB as a signal to drive a single-bamer random walk (SBRW) 

mechanism. To express the clanty of each phoneme in the PB, I measure the correlation 

between its features in the PB and each possible phoneme. The phoneme to which the 

features of the PB is most highly correlated is the phoneme that LEX will pronounce. 

The magnitude of the correlation reflects the degree to which the features of irrelevant 

phonemes are also present at that position. Hence, if a phoneme vector is most highly 

correiared to the /ah/ sound, we know two things: First, we know which phoneme the 

mode1 is storing in that position, and second we can express the clanty of the phoneme as 

a fùnction of the magnitude of that correlation. 

Like its two-bamer counterpart, a SBRW accumulates evidence over successive 

time steps against a background of noise until it reaches a bamer. As well, noise during 

evidence accumulation is acknowledged by adding a deviate from a normal distribution 



on each rime step (1 used a distribution with a mean of O and a a of 5 as a noise 

dishbution). Response time is measured as the number of steps required for the evidence 

to ~ a c h  the barrier (a parameter 1 set to 300). Because then  is only one barrier. the 

SBRW does not make errors; it simply yields a latency estimate for a given signal value. 

2 û O  300 310 O 330 340 350 340 370 360 300 

Finishing Time for SBRW 

Figure 5.3. Finishing times of the SBRW plotted against the finishing times for 

de-blurring. 

LEX has one SBRW attached to e x h  phoneme in the PB. Each SBRW uses the 

cliinty of tts phoneme to denve a signal to the walk. To cdculate the signals, each 

phoneme's clarity is rised to the 7th power. That 1s. 

Where S is signal value for the ith SBRW. derived from the cluity .C of the ith phoneme. 

The clarity of the phonemes for words tends to range between 0.900 and 0.999, a 

range generaüy too srnall for latencies from the evidence accumulator to exhibit strong 

sensitivity to differences in phonernic clarity. The large exponent accentuates diffennces 



in clarity among the phonemes, making the SBRW, and of course, naming latency, more 

sensitive to changes in clarity . 

A SBRW for each phoneme is staned simultaneously. Narning begins when the 

PB'S blumest phoneme has been included in a prograrn for articulation. Hence, naming 

latency, following lexical retrieval, is taken as the finishing tirne of the slowest SBRW. 

Unlike the calculations for DT for the lexical decision task, I do not calculate 

expected values for naming latency. Instead, I mn one SBRW using the signal derived 

from the blumest phoneme and take its finishing time as an estimate for naming latency 

after lexical retrieval. 

Muppi~ig De-blurring ilnie to the SBRW. Of course, using a SBRW to estimate 

response preparation time afier retrieval requires that 1 demonstrate that its finishing 

times map closely on to the finishing tirnes for the de-blumng mechanism To 

demonstrate that the SBRW is an useful tool in estimating response preparation time, 

LEX named 1 1 words for which the phonemes in the PB vaiied in clarity. Figure 5.3 

plots the finishing times of the de-blumny mechanism for the words (measured in 

numbcr of samples of the canonical phoneme set) against the corresponding finishing 

times for the SBRW. A constant (300) was added to the de-blumng times to reflect the 

time it takes to generate the articulation program after de-blumng. As is clear in the 

fi y r e ,  there is a very close relationship between the two. 

Respomr Laterlcy for a Trial 

For LEX, there are two stages in word identification: letter retrieval, and response 

generation/selection. Both stages take time. The retneval stage is common to both the 

naming task and the lexical decision. To estimate the response latency for a trial in 

which LEX names a word, I sum the number of samples required to retneve orthographie 

information frorn the lexicon and the number of cycles it takes the SBRW to reach 

threshold. To generate a response latency for û trial in which LEX makes a lexical 

decision, 1 sum the number of samples required to retrieve the word and the expected 

finishing time of the two-bamer random walk. 

Summary 

In this chapter, I provided a detailed account of LEX, a mode1 of visual word 

identification. LEX retrieves words from the lexicon beginning at the first letter of a 



probe stimulus. As it retrieves each letter, LEX reduces its search space by creating a 

cohort of candidate words. The process continues until the final letter (always a space 

character) has been retrieved. Because the orrhography and phonology of lexical items 

are stored in single memory traces, as letten are retneved out of the lexicon, so are 

phonemes. 

Response latency in LEX is estimated by summing two values: The number of 

samples required to retrieve lexical information, and the time to initiate a response. In 

the lexical decision task, a two-bamer random walk simulates decision t ime One bamer 

of the random walk corresponds to a word response, and the other to a nomvord response. 

In the narning task, the finishing time of the slowest in a group of single-bamer random 

walks is taken as an estimate of how the time required to build and begin the execution of 

an articulation program. 



Chapter 6:  Relating the Theory to Data 

This chapter presents some tests of LEX using archival data. Before applying 

LEX to individual expenrnents, there are several procedural consideration that deserve 

comment. The first concerns the parameterisation of the model; A second concems the 

scope of the model. 

The simulations will, except as noted, use the same parameters throuohout The 

archiva1 data are based on expenments that manipulate classes of words without 

retraining subjects. To be consistent with that strategy, it would be inappropriate to 

adjust the parameter of the model to fit the data. Phenornena that emerge empincally by 

changing classes of items should faIl naturally out of the model. 

The size of LEX's vocabulary, the familiarity of the words within it, and 

processes that LEX uses to identiQ words are invariant across runs of the model. 

Presurnably, al1 three factors differ across readers. Because the three factors are fixed in 

LEX, successive mns of the model are, in effect, data from the same subject. Because 

retrieval is a stochastic process, there is variability across runs That vanability 

represents trial-to-trial vanability for a single subject The simulation data described here 

were obtained by averaging across 16 independent runs of the model. 

In the chapter, separate sections are devoted to each of several phenomena along 

with a brief description of it. The description includes a simulation and explanation 

derived from LEX. Where possible, the description also includes an account of how the 

dual-route and connectionist models would explain the phenornenon. 

One final point about the simulation data is wonh making. The model has two 

mechanisms contributing to response latency. To get a response tirne, I sum the finishing 

times for both mechanisms Because the mechanisms are differentially affected by the 

characteristics of words, the size of the main effects in graphs showing an interaction can 

differ. Clearly, what must be done to the output of the model is a relative weighting of 

the contributions of each mechanism to response latency . 



Overall Performance of LEX 

In the sections to follow, I will demonstrate that LEX does a good job 

reproducing the phenornena considered important by the reading literature. As a test of 

LEX's ability to capture readen' response latencies for words in the naming and lexical 

decision tasks, I directly compared LEX's response times to subjects' response times. 

Al1 the simulation data for the naming task were obtained from a frozen model. 

That is, none of the parameters were changed across runs. I allowed one parameter, the 

word criterion parameter, to Vary across runs for the lexical decision task to reflect the 

difficulty of the decision as a result of the structure of the nonword foils. Allowing the 

one parameter to Vary also bnngs the predicted enor rates to a reasonable level. Figures 

6.1 and 6.7 plot LEX's mean response latency against subjects' mean response latency for 

the words every cell across al1 the expenrnents in the simulations to follow. Figure 6.1 

plots the relationship for naming latency, and Figure 6.2 plots it for lexical decision 

latency As is clear in both figures, LEX's response times can be mapped onto human 

response times. 

Naming Task 
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Figure 6.1 Mean naming latencies from each cell of each experiment plctted against 

LEX's mean naming latency for the same cells 



Lexical Decision Tark /; 
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Figure 6.2 Mean lexical decision latencies from each cell of each experirnent plotteci 

against Lm's  mean naming latency for the same cells 

The Word- Frequency Effect 

Words that occur frequently in text are identified more quickly than words that 

occur less frequently Thefieytiettcy c'ffc'ct, as it is called, is one of the most widely cited 

and replicated phenornenon in word-recognition research 

7he DRl ' s  accufint 

The DRC model (and by association, the IAM) explains the frequency effect in 

tems of the activation of word nodes in the orthographic lexicon. The resting activation 

of each word node in the orthographic lexicon is a fùnction of the word's frequency in 

pnnt. Nodes representing high-frequency words have a larger resting activation than 

nodes for low-frequency words. To identify a word, the activation of a word node is 

updated over successive processing cycles. On each cycle, the activation is increased for 

words that are consistent with the target letter string. Word nodes are rnutually 

inhibitory; that is, as a node's activation increases, it inhibits other word nodes. Given 

extended processing, the inhibition implies that only one word node will remain above 



threshold. Because high-frequency words have a high resting level of activation, they 

require fewer processing cycles to reach thres hold than nodes for l ow-frequcncy words. 

The Cortr~ectionist's accourit 

Plaut et al. (1996) and Seidenberg and McClelland (1989) do not use word nodes 

to represent word Instead, word knowledge is confined to mappings between an input 

(orthognphic) and output @honological) layer of nodes. In both models, the frequency 

effect is explained in ternis of the strength of die connections between the input and 

output nodes. 

During training, letter patterns are paired with sound patterns Each tirnr a 

particular lrtter pattern is paired with a sound pattern, the strength of the connections 

between the nodes increases. High-frequency words are presented dunng  training more 

often so that a word's frequency in pnnt is represented by greater training. Hence, the 

connections that pair the spelling and sound of a high-frequency word are stronger than 

those for a low-frequency word. 

.-1 prodrctro~i acc-owrr 

Balota and Chumbley ( 1  985) provide a different kind of account. Tliey argued 

that lexical access is only panially responsible for the frequency effect in the naming 

task They ciairned that the motor program required to pronounce a low-frequency word 

takes longer to compile and execute than one for a high-frequency word. In suppori of 

their argument, Balota and Churnblev showed subjects high- and low-frequency words 

and required them namr then aloud, but to wûit untii cued, a so-called deiayed-naming 

task They varied the drlay between the words' onset and tlie cue randomly between 

1000 and 2100 milliseconds (ms). Even long after lexical access would have taken place, 

there was an advantage for high-frequency Their results point to a pronunciation factor 

that presumably contributes to the frequency effect. Neither the DRC nor the 

connectionist rnodels can accommodate Balota and Chumbley's data. 

L W s  acco~rnt 

LEX uses word-frequency data at rwo points during renieval. First, the probability 

that a word is sampled from the lexicon depends on its frequency Secondly, when the 

similarity of the probe to the word in a sample is calculated, it is weighted by the word's 



frequency. For both reasons, retrieval for high-frequency words is faster than for iow 

frequency words. An example that illustrates LEX's frequency effect is illustrated is 

Figure 6.3. For the simulation data shown in Figure 6.3, LEX retrieved the orthography 

of the high-frequency words in a mean of 53 cycles. Low-frequency words, on the other 

hand, took a mean of 124 cycles. 

The nantitg task. Pronunciation begins when a motor program has been compiled 

for the phonemes in the P B  Recall that motor program initiation time is based on the 

clarity of the phonemes. Figure 6.6 shows the average blumness of the blumest phoneme 

for high- and low frequency words. As is clear in the figure, the blumest phonemes in 

the PB for high-frequency words have higher clarity than those for low-frequericy words 

A motor program to pronounce a low-frequency word will take longer to build and 

execute for than for a high-frequency word. LEX's two loci for the word frequency 

effect is an important and unique characteristic of the mode1 Because the phonemic 

clan ty serves as a locus for a naming advantage for high-frequency, LEX can explain the 

advantage in a delayed-naming task 

The lexrcal decisro~~ msk. To decide on the lexical status of a letter string, LEX 

niust decide if the retrieved orthography is similar enough to the probe letters to be called 

a word Afrer retrieval, the orthographie representation of low-frequency words in the 

OB is less similar to the probe (r = ,965) than the OB'S representation of high-frequency 

words (r = 995).  The difference in  clarity occurs for three reasons. First, because the 

system requires more samples to retrieve the orthography of low-frequency words, more 

irrelevant letters are included in the featural representation stored in the OB. Second, 

letter retrieval is more likely to fail when the system is retrieving the letters of a 

low-frequency word. When letter retrieval fails, the cohort of candidate words is 

adjusted. The adjustment d s o  increases the number of irrelevant words from which the 

system samples. Finally, 1 assume that when retrieval fails, the letters contained in the 

ccho that correspond to the positions of the already retrieved letters are not copied into 

the OB. After a retneval failure, 1 introduce a mild decay to the letters in the OB that 

have already been renieved. In sum, the frequency effect in the lexical decision task not 

only reflects the time it takes to retrieve information from the lexicon, it also reflects how 

well the retrieved information matches the probe. 



The Interaction Between Word Frequency and Spelling-tdound Reguiariîy 

In the naming task, words that violate spelling-to-sound correspondence niles 

(Le., irregular words such as WAD) take longer to name aloud than words that do not 

(i.e., regular words such as BAD). This is only tme, however, for low-frequency words. 

Regular and irregular words are named with about the same latency when they are 

high-frequency (Seidenberg, Waters, Bames, & Tannenhaus, 1984; Taraban & 

McClelland, 1987). 

Spelling-to-sound regularity affects response time only when subjects are asked to 

read words aloud. In the lexical decision task, subjects exhibit a reliable frequency 

effect. but the words' regularity has no effect on performance. The right panels of Figure 

6.1 and 6.3 show the typical pattern of data for the naming task and LDT respectively. 

The data are taken from mean latencies reported by Seidenberg el al. ( 1984). 

The LI RC 's expiurtatio>t 

The Nonrirg Tmk. The DRC interprets the interaction between word frequency 

and regularity in terms of cornpetition between the lexical and nonlexical routes. Recall 

that the speed with which the nonlexical route can derive a pronunciation using its 

grapheme-to-phoneme pronunciation rules is a function of the number of lerters in the 

string; the more leners there are to translate, the longer it will take to create a 

pronunciation The speed with which the lexical route activates a word node and its 

pronunciation depends on it resting level of activation. When the model reads a word 

aloud, the lexical and nonlexical routes operate simultaneously to denve a response. 

The lexical and nonlexical activate phonemes in the phoneme dots at the output 

level of the model to await pronunciation When the DRC reads a low-frequency word, 

the two routes derive a pronunciation at about the same speed. If the two routes denve 

divergent pronunciations, Le., when the system is reading an irreylar word, the DRC 

must decide which of the two pronunciations is the correct one. The extra time required 

to resolve the conflict caused by the divergent phonological codes causes low-frequency 

irregular words to be named more slowly than low-frequency regular words. When the 

DRC is reading a high-frequency word, the lexical route activates the phonological code 

for a word much faster than the nonlexical route can denve it. Hence, at the level of the 



phoneme siots, there is no conflict between phonological codes to resolve and regularity 

does no affect naming latency . 

rite Lexical Decision Task. In the lexical decision task, the DRC searches the 

orthographie lexicon to see if the stimulus letter string is present. Kit is present, the 

rnodel responds that the string is a word. If, af'ter a predeiermined deadline, the letter 

string has not been found in  the lexicon, the model considers the letter string to be 

nonword Because, deriving a phonological code is not required for the lexical decision 

task, regularity has no influence on the response. 

Ïhe Connectionist 's fiplarlation 

The Numing Task. Connrctionist models leam words by associating letter clusters 

with phoneme clusters over several training sessions. The speed with which the models 

identi@ a word is a function of how many times the clustcrs were paired during training, 

High frequency words are named more quickly than low frequency words becaiise the 

clusters in high-frequency words are associated more strongly than those in 

low-frequency words. 

A word's regularity affects naming latency in  the same fashion. There is a 

quasi-regular rnapping between letter clusters and phoneme clusters in  English. Irreylar 

words exemplify situations in which a frequent mapping does not apply. For example, 

the aïe letter combination is most frequently associated with the phonemes in words such 

as gave. .saile. rave, and The combination ave is also associated with the phonemes 

in have. Because the lener cluster is more frequently associated with the phoneme 

clusters in regular words, naming an irregular word is more dificult to read than a 

re y l a r  word. 

The interaction between word frequency and regularity in the naming task occurs 

because of the relative frequency with which the letter clusters are associated with 

phoneme clusters The ave letter cluster is associated with more regular words than 

irregular words, however, have is  a high-frequency word that will be encountered by the 

model many times during training. Hence, despite have's divergent mapping to 

phonemes, the mapping is frequent, making it, and other high-frequency words, 

insensitive to a word's reylanty in the naming task. 



The Lexical Decision Task To make a lexical decision, a Seidenberg and 

McClellandls (1989) mode1 uses a set of letter clusters as an input. The output is aiso set 

of letter cluster nodes. If the input stimulus is a word, the two sets of letter clusters will 

match closely. If' the two sets of letter clusters are not similar enough for the mode1 to 

consider it a word, it is labelled a nonword. 

Because the mapping between letter and phoneme clusters is irrelevant in the 

lexical decision, irregular spelling to sound relationships do not affect response time. 

Hence, while connectionist models show a string word frequency effect in the lexical 

decisi on, the advantage for low-frequency regular words over low-frequency irregular 

words is absent in the lexical decision task. 

Word Freqwncy 

Figure 6.3. Naming latencies for subjects (left panel) and LU( (right panel) for the 

items used by Seidenberg et al. (1984) 

&4 sin~lllutlo~1 

In the simulations to follow, LEX named and made lexical decisions on the 52 

words used by Seidenberg et al. (1984). LEX also named the 96 words used by Taraban 

and McClelland (1 987). There were four types of word in their lists: low-frequency 



65 

reguiar, low-frequency irregular, high-frequency regular, and high-frequency irregular. 

The proportion of error for each simulation is shown in Table 6.1. 

Word Freqwncy 

Figure 6.4. Naming latencies for subjects (left panel) and L I 3  (right panel) for the 

items used by Taraban and McClelland (1987) 

The right panels of Figures 6.3 and 6.4 show LEX's mean naming times, in 

cycles, for each type of word in Seidenberg et al.'s (1984) and Taraban and McClelland's 

( 1  987) experiments. The left panels of Fi y r e s  6.3 and 6.4 show the accornpanying 

latency data from subjects. As is clear in the figures, LEX replicates the naming 

advan tage for regular words over irregular words when they are low frequency 

High-frequency words exhibit no naming advantage for regular words over irregular 

words. 

The right panel of Figure 6.5 shows LEX's mean response times for lexical 

decisions to the words used by Seidenberg et al. (1984). The left panel contains subjects' 

data for the same words. In both panels, there is a clear advantage for high-frequency 

words over low-frequency words, but no advantage for regular words over irregular 

words. 



Table 6.1 

Proportion of errors for regular and irregular words in each simulation (Name = narning 

task, L DT = lexical decision task) 

Word Freauencv 

Experiment Low High 

Seidenberg et al. (1 984), Name 

Regular 

Irregu 1 ar 

Seidenberg et al. ( 1  984). LDT 

Regular 

Irregular 

Taraban & McClelland (1987) 

Regular 

hegular 

CVhv doc1.s it w ork? 

1 will consider the naming and lexical decision tasks separately 

ï k e  Naniitig ïàsk Recall that, after LEX retneves the letters of a word, h e  clanty 

of the phonemes retrieved from the lexicon dictates how quickly pronunciation will 

begin. In the previous section, 1 explained why LEX is able to capture the advantage for 

high-frequency words over low-frequency words-word frequency affects both the 

number of samples required to rrtrieve a word frorn the lexicon, and the clarity of the 

phonemes that are retrieved. 

The naming advantage for low-frequency regular words over low-frequency 

irregular words occurs because of the difference in clarity between the phonemes of the 

two types of words. The clarity of the phoneme responsible for the spelling-to-sound 

irregularity tends to be much lower than its corresponding phoneme in a yoked regular 

word, and the other phonernes of the word (see Figure 6.6) .  Figure 6.7 shows the clarity 

values for each phoneme in the words pint and mint. Notice that the clanty of the second 

phoneme ofpini is much lower than that for its corresponding phoneme in nrint. The 

decrease in clarity occurs for two reasons First, an i foilowing a p  is most frequentiy 

pronounced as /il as in pin, picture, pif, pill, etc. 



Word T m :  

Word Frequency 

Figure 6.5 Lexical decision latencies for subjects (left panel) and LEX (right panel) for 

the items used by Seidenberg et al. (1984). 

Hence, when the second phoneme is switched to the /Il ofpim. the features of /il, already 

in position from previous samples, interfere with those of the /Il phoneme. The second 

reason for the decreased clarity of the second phoneme occurs when LEX must restart its 

search for a letter after access has failed. Recall that. when LEX is forced to restart its 

search, a pronunciation is built as an analogy to other words whose spelling are consistent 

with the target staning at the second letter. Pitrr is the only four-letter word with the int 

letter string that does not rhyme with mmt. Hence, a pronunciation derived by analogy 

will cause the clarity of the second phoneme to suffer leading to increased narning time, 

and possible mispronunciations of the word. 

When LEX retneves a high-frequency word, however, its phonemes tend to be 

quite clear. The increased clarity associated with high-frequency words is the result of 

the high reshng level of excitation that high-frequency words possess. When LEX 

retrieves the phonemes of a high-frequency word, inconsistent phonemes from 

low-frequency words will have little impact on the clanty of the output relative to the 



Figure 6.6. Average clarity of the blurriest phonemes for each type of word in 

Seidenberg et al.'s materials. 

Figure 6.7. Clarity of the phonemes for the words pint and mint 



large impact that the phonemes from high-frequency words will have on the clarity of the 

phonological representation-the influence of phonernes from high-frequency words far 

ouhveighs any impact that inconsistent phonemes may have on the output. 

My account of the interaction between word frequency and regularity is in a 

strange position with respect to where it differs from the DRC and connectionist 

accounts. The DRC postdates two strategies for pronunciation; my account, like the 

connectionist account requires only one. The connectionist account considers word 

frequency and regularity effects in the naming task as the same effecc i.e., regularity 

effects are frequency effects. My account, like the DRC, places responsibility for 

frequency and regularity effects on separate rnechanisrns 

The LexicolDeczsion Task. In the lexical decision task, the clarity of 

phonological information is irrelevant to the response that LEX makes. Instead , LEX 

retrieves the letters from the lexicon using the target letters as a retrieval probe. Once the 

letters have been reuieved, LEX decides if the retrieved letters are a good match to the 

target. The extent to which the revieved letters are a good match to the probe leners is a 

match of the orthographic clarity of the retrieved letter string Phonological irregularity 

does nor affect the clar-ity of the retneved orthography, hence, it has no effect on response 

time in he lexical decision task. 

My account of the lexical decision differs greatly from the DRC account. The 

DRC searches the lexicon for a word's address until a deadline has been met. If a word 

has not been found by the deadline, the DRC considers the input to be a nonword. By 

contrast, LEX does not look for words; it retrieves information from the lexicon and 

decides if that information is good enough to be considered as belonging to a word. 

The connectionist account of Plaut et al. (1 996) did not make lexical decisions. 

Hence, my discussion of the connectionist account of the lexical decision task will be 

limited to the mode1 by Seidenberg and McClelland (1989). My account is similar to 

Seidenberg and McClellandis account in that the decision as to whether a letter string is a 

word is based on how well the system can reproduce a facsimile of the original letter 

string. The decision has nothing to do with finding the target word in the lexicon. 

The connectionist account and my account differ in that LEX treats the similanty 

of the probe letters to the retrieved orthography as part of the processing required for the 



lexical decision task. Absent from Seidenberg and McClelland's mode1 is a process by 

which creating the facsimile takes time. The lexical decision is a two-stage process in 

LEX. First, A facsimile of the original letter string is created over successive samples of 

lexi cal information. Mter retn eval, LEX decides whether the facsimile is word-like 

enough to be considered a word. 

Positionally Sensitive Rcgularity Effecis in Word Nomhg  

Coitheart and Rastle ( 1994) demonstrated an important constraint on the naming 

advantage for low-frequency regular words over low-frequency irregular words: The 

influence of irregularity on naming latency decreases as the position of the irregular 

phoneme, counting from lefi to nght, nears the end of a word. 

The DRC 's Explanarion 

Colthean and Rastle (1994) reponed the positional dependence of the naming 

advantage for l ow-frequency regular words over low-frequency irregul ar words as 

evidence for the necessity for the DUC'S grapheme-to-phoneme conversion route during 

reading aloud. They proposed that the decreasing naming advantage for regular words 

reflects a decrease in the conflict between the outputs of the lexical and nonlexical routes 

as the irregular phoneme position nears the end of a lener string. 

Recall that the lexical and nonlexical routes operate simultaneously to denve a 

pronunciation for a letter string Translating graphemes to phonemes via the nonlexical 

route takes time If the irregular phoneme is positioned near the end of a word such as 

nrrr~iorr, the lexical route will sometimes have enough time to activate the correct 

pronunciation before the irregular phoneme is translated-effectively avoiding a conflict 

between the outputs of the two routes. On the other hand, if the irregular phoneme is 

positioned at the beginning of a word such as chic, conflict between the two routes is 

unavoidable; the nonlexical route will decide on a different pronunciation for the fint 

grapheme before the lexical route is able to look up the correct pronunciation. 

m e  Cor~riectionist 's Erpiunation 

A massively parallel account of regulanty effects in word narning does not predict 

that the position of an irregular phoneme will affect on the magnitude of the naming 

advantage for regular words over irregular words. Plaut et al. (1996) offered other 

interpretations of Coltheart and Rastle's (1 994) result. 



First, Plaut et al. (1996) argued that the position of a word's regularity may be 

confounded with the degree to which words had a consistent pronunciation. For 

example, the ch in the word chic is highly inconsistent because the /SM phoneme is found 

in only five out of 63 monosyllabic words that stan with ch. A word like tomb, on the 

other hand, is only moderately inconsistent: tomb has one orthographically similar word 

that sliares the same body, wonib, and only two that do not (comb, and bomb). 

Figiire 6.8 LEX's naming latencies for the same three words used in Coltheart et al.'s 

(1993) and Plaut et al.'s (f 996) simulation. 

Plaut et al. (1  996) also objected to defining i rregularity in terms of GPC rules. 

The DRC considers the lener combination. age, of bandage, and the ive of festive as 

irregular. Plaut et al. pointed out that most two-syllable words with age or ive endings 

are not pronounced with a long vowel. It is questionable, therefore, whether such words 

can be considered irregular. 

Finally, Plaut et al. (1996) addressed the possibility that Coltheart and Rastle's 

effect was genuine. Plaut et al. speculated tliat the phenornenon might not be inconsistent 

with a parallel account of word naming if the time required to initiate articulation 



depends on propenies of the initial phonemes after parallel generation of the 

phonological code. 

Model Data 

96 102 
O 75 

93 
1 I 1 

chd tomb 9 h  

Word 

Figure 6.9. Average clarity of the blurriest phoneme for each word (the average number 

of samples from the lexicon required to retrieve the letters are above each word) 

,.i S~ntrtlatrori 

Considering the criticisms that Plaut et al. (1996) raise regarding Coltheart and 

Rastle's (1994) items, 1 was hesitant to use the same words in a simulation. Basically, if 

the position of irregulari ty is confounded with the number of words that share a similar 

spelling, simulating Colthean and Rastle's results using their words does nothing to 

provide evidence for a sequential operation during reading. 

Lnstead, LEX read the same words as the DRC and Plaut et al.'s (1996) models 

read in their simulations. LEX read the words chcL tontb, and glow 16 times. The word 

chefis irregular at the first phoneme, tomb at the second, and glow at the third. LEX 

made four pronunciation errors by regularising the pronunciation of chef: As is clear in 

Figure 6.8, LEX shows the same pattern of naming times as the DRC and Plaut et al .'s 

connectionist account; as the position of the irregulûr phoneme nears the end of a word, 

there is a decrease in  the degree to which the irregularity affects naming latency. 



W%y does it work? 

Recall that, after LEX retrieves a letter, it reduces the cohort of candidate words 

to include only those words that contain matches to the retxieved letters. Hence, at each 

cohon, LEX is more likely to sarnple a word from the lexicon that contains the target 

pronunciation for the irregular phoneme. In addition, because LEX only samples words 

from a cohon of candidate matches to the target, phonernes at the beginning of the 

retrieved word are reinforced on each sampie. 

Consider the case wherein LEX reads a word like glow whose irregularity is 

positioned at the final phonemc By the time LEX reaches the leners roughly 

comesponding to the irregular phoneme, LEX has aimost narrowed in on the 

pronunciation of the word. That is, there are few words lefi in  the cohori after retrieving 

gfo from the lexicon. Because there is littie competition from other words in  the lexicon 

containing the same letters and divergent pronunciations, there is little effect of 

irregularity on words whose regularity is positioned at the end of the word. 

Now consider what happens whrn LEX reads a word such as chej: Until LEX 

reaches the final letter, the dominant pronunciation for the first phoneme cornes from 

words such as chief, chore, choir, and chord. It is the retrieval of the final letter that 

changes the first phoneme to the lshl sound Even though the first phoneme changes to 

the Ishi sound, it does so against a background of evidence for the alternative 

pronunciations for ch. 

To illustrate the point, Figure 6.9 shows the clarity of the irreylar phoneme of 

each word LEX read (for each word, the irregular phoneme was the blumest one). The 

number of cycles required to retrieve the orthography from memory is listed above each 

word in  the figure. As is clear in the figure, the time it took to retneve the word from 

memory was fairly constant across the words. Consistent with decreased phonological 

competition as a consequence for cohon reduction, there is rnonotonic increase in clanty 

as the irregular phoneme approaches the end of the word. 

LEX's account shares some similarity to both Plaut et a1.b (1996) explanation and 

the DRC account for the phenornenon. Consistent with Plaut et al., LEX is sensitive to 

the position of the irregular phoneme because fewer words contain cornpeting phonemes 

as the phoneme's position nears the end of a word. Plaut et al. poshilated that the reduced 



cornpetition is a property of the way English words are constructed. By contrast, LEX 

reduces the number of words with competing phonemes through cohort reduction. 

The DRC account treats the effect as a reflection of the relative time-course for 

the lexical and nonlexical routes. If the irregular phonemes is positioned near the end of 

a word, the lexical route will likely have had enough time to look up the correct 

pronunciation before the nonlexical route reaches the cntical graphemes. In a similar 

fashion, LEX is more likely to have already narrowed-in on the target word when the 

irregular phoneme is positioned near the end than when i ts  position is at the beginning. 

Sequential processing is responsible for the effect in both LEX and the DRC. The 

obvious point of departure from Coltheart and Rastle's (1994) DRC account and LEX1s is 

the number of routes required to produce it. In LEX, the effect occurs because of how 

information from the lexicon is retrieved. 

Neighbourhood Bensity Eflects in Word Identification Tasks 

A word's neighbours (or neighbourhood) are the words that can be created by 

changing one letter in any letter position (Landauer & Streeter, 1973). For example, the 

neighbours of cart are dnn,part,  mort, turt, ~ u r t ,  casr, cars, cord, carc, and carp. Word 

identification is generally faster in the lexical decision and naming tasks when a word has 

rnany neighbours (a high-N word, or a word with a high neighbourhood density) than 

when it has few neighbours (a low-N word, or low neighbourhood density) There are 

two potential loci for a latency advantage for high-N words. 

To some extent, the advantage for high-N words in  the lexical decision task is 

intuitive-a word with niany neighbours resembles rnany words and is therefore more 

word-likc than a word with few neighbours The notion that word-li keness is a critical 

factor affecting identification is corroborated by the finding that nonwords with many 

neighboun, i.e., word-like nonwords, are more dificult to classify as nonwords in the 

lexical decision task than nonwords with few or no neighbours (Coltheart, Davelaar, 

Besner, & Johnason, 1977; Forster & Shen, 1996). 

A latency advantage for high-N words in the naming task is less intuitive. If a 

word is similar to many words that the reader knows, word identification should be more 

dificult. Specifically, the reader should be more inclined to misidentify the target word 

as one of its neighboun when the word has many neighbours than when it has few. If, 



however, a large neighbourhood size speeds up lexical access, there should be a both the 

naming and lexical decision tasks because the lexical access stage is common to both. 

Andrews (1 989, 1992) examined the effect of neighbourhood density on word 

identification to detemine the stage at which neighbourhood size exerts its influence. 

She reasoned that, if a decision stage after lexical access is responsible for neighbourhood 

density effects in the lexical decision, making the decision component easy should 

attenuate or eliminate the effect. To test the notion, Andrews (1989, Experiment 2) 

changed the nonword foils in the lexical decision task to illegal letter strings, e.g., r j k ,  

Illegal letter strings should make the decision stage of the lexical decision task easy 

because non-wordlike foils would be easily distinguishable from words. She found that, 

while i liegal foils decreased lexical decision latency and increased accuracy, the latency 

advantage for high-N words over low-N words persisted (in fact, it increased slightly). A 

pattern suggesting that neighbourhood density effects reflect differences in lexical access 

times for high- and low-N words. 

Andrews (1989; see also Sears, Hino, & Lupker, 1995, Experiment 3a for a 

replication) also noted that neighbourhood density affects performance only for 

low-frequency words. Her interpretation for the difference between high- and 

low-frequency words was couched in tenn of the operations of the IAM Because the 

1.4M was adopted as the lexical route in the DRC, 1 will defer discussion of the 

explanation to the next section. 

f i e  DRC 's Explatralio~i 

Colthean and Rastle (1994) simulated the effect of neighbourhood density in the 

lexical decision task using the DRC. Unfonunately, they did not include simulations that 

exarnined the neighbourhood density's effect on performance in the naming task. Hence, 

we will limit our discussion of the DRC account of neighbourhood density effects to data 

collected using the lexical decision task. 

Andrews (1989; see also Coltheart & Rastle, 1995; Coltheart, et al., 1993) placed 

responsibility for the effect of neighbourhood density in the lexical decision task and its 

interaction with a word's frequency on the feedback between the word and letter nodes of 

the [AM. When the IAM is presented with a low frequency word, activation from the 

letter nodes is passed up to the word nodes. Word nodes that are consistent with the 



activated letter nodes are excited. Low-frequency word nodes have a low resting 

activation level, hence, lexical access is unlikely to occur the fint tirne the word nodes 

are activated (Rzmember, lexical access occurs over several processing cycles). Because 

the MM postulates mutual inhibition between word nodes, one would expect that many 

neighbours would inhibit identification of a target word. However, Andrew's postulated 

that, when the model is presented with a low frequency word, activated word nodes 

increase the activation of consistent letter nodes Because the mode1 is interactive, letter 

node activation is sent back ro the word nodes strengthening the activation of the target 

word's node. The more word nodes feeding back to the letter nodes, the more activation 

is passed back to the word nodes from the word nodes causing the facilitatory effect of 

neighbourhood density on word identification. 

High-frequency word nodes have high resting activation levels relative to 

low-frequency words When the [AM is presented with a high-frequency word, lexical 

access occurs with little aid from reciprocal feedback between the letter and word nodes. 

That is, the target word's node reaches its threshold before it can gain much benefit from 

the interactive activation between the lener and word nodes. In sum, neighbourhood 

density etyects reflect the extent to which similar words in the lexicon can increase the 

target word's activation. 

For the same reason that words with rnany neighbours are easier to detect than 

ones wiih few neighbours, nonwords with many neighbours are harder to detect than 

nonwords with few neighbours. A nonword that is similar to many words is very 

"word-like" relative to a nonword that shares little similanty with words the reader 

knows. A nonword's letters activate words that are consistent with the letters of the target 

word. As word entnes are activated over several cycles, they feed their activation back to 

the letters, which in mm, funher activate the consistent words. Hence, the more words in 

the lexicon that share letters with the nonword, the more the nonword appears like a word 

for the DRC, and the harder it i s  to label a nonword. 

7he Coi~riectionist!~ Erplur~atimt 

The recent model by Plaut et al. (1996) does not include a discussion of 

neighbourhood effect in word identification; hence, 1 will forego speculating how their 



rnodel might simulate them. Seidenberg and McClelland (1 989) gave neighbourhood 

effects sorne treatment in their model so 1 wiH focus instead on their account instead. 

Seidenberg and McClelland (1 989) limited their discussion of neighbourhood 

density effects to a simulation of the advantage for high-N words over low-N words in  

the narning task. Recall that, dunng training, Seidenberg and  McClellandts model was 

presented with components of words in the form of wickelfeatures. Words with many 

neighbours necessady share wickelfeatures. For example, the wickelgraphs, ART, and 

RT - are contained in many of the neighbours of c m  ( h i ,  part, mort, tort). 

Connectionist models are able sirnulate neighbourhood effects because of the frequency 

witii which letter and phoneme combinations are paired during training. The components 

of words with many neighbours are more frequently presented to the rnodel during 

training than the components of words with few neighbours. Because the cornponents of 

high-N words are more highly leamed than those of low-N words, words with a large 

neighbourhood density are identified more quickly than words with a srnall 

neighbourhood density. 

Word Frsquency 

Figure 6.10 Subject and simulation data for Andrew's (1 989) Experiment 1 



Sin~ula~ions 

The DRC and connectionist explanations for neighbourhood density effects in 

word identification are incomplete because neither camp simulated both the lexical 

decision and naming tasks together. In the simulations to follow, LEX named and made 

lexical decisions to high- and low-frequency words that had either large or small 

neighbourhoods. In the first three simulations, 1 used Andrews' (1989) words. The 

words compnsing the factorial com'oination of high or low word frequency and large or 

small neiphbourhood density. In the last simulation, LEX made lexical decisions on both 

words and nonwords that varied in neighbourhood density The items for the final 

simulation were taken from Coltheart, Davelaar, Jonnasson and Besner (1 977) LEX's 

error rates for Andrews' materials are s h o w  in Table 6.2. LEX's Error rates for the 

materials used by Colthean et al. are shown in Table 6 . 3  

Table 6.2 

Proportion of Error Trial in E X ' S  Simulation of Andrews' ( 1  989) Experirnents 

W ord Freauencv 

Experimen t Low High 

Exp 1 

Large N O O 

SrnaIl N 0.05 O 

Exp 2 

Large N O 

Small N O 

Exp 3 

Large N O 

Srnall N 0.04 

Sinitîlatiorts 1 and 2 To simulate the increased ease with which a lexical decision 

can be made when illegal nonwords are used as foils, 1 adjusted LEX's word criterion 

parameter. Recall that, after retrieval, LEX uses the similarity (as measured by Pearson's 

correlation coefficient) between the probe letters and the retneved orthography to derive 

a signal value for a two-bamer random walk decision mechanism. The signal is 



calculated as the differeiice between the correlation and the word criterion. The word 

criterion denotes the minimum correiation required for LEX to consider a letter sûing a 

word. For example, with the word criterion set to 0.85, a correlation of 0.80 would yield 

a signal value of -0.05, corresponding to evidence that the retneved orthography is not a 

word. A correlation of 0.90 is yields a positive signal (0 .O5) and is taken as evidence that 

the retrieved orthography has lexical status. 

Word Ftequency 

Figure 6.1 1 Subject and simulation data for Andrew's (1989) Experiment 2 

1 assume that LEX, and readers, relax the word critenon when al1 the foils are 

illegal nonwords. Hence, to simulate Andrews' (1989, Experiment 1) experiment 

wherein legal nonwords were used as foils, the word cnterion was set to 0.90. I dropped 

the criterion to 0.88 in the second simulation to reflect the increased ease with which the 

system can make the decision when the foils are illegal letter strings (Andrews, 

Experiment 2). 

The left panels of Figures 6.1 0, 6 1 1, and 6.12 summanse the data reponed by 

Andrews (1989). Figures 6.8 and 6.9 shows summary data from the lexical decision task 

when legal and illegal nonwords are used as foils, respectively . Figure 6.12 contains 

Andrews' data from the naming task. The right panels of Figures 6.10, 6.1 1 and 6.12 



summarise data from LEX's performance in the same tasks. As is clear in the figures, 

LEX replicates the patterns reponed by Andrews (1 989) for both the naming a lexical 

decision tasks. Low-frequency words exhibit a strong advantage for words with 

high-density neighbourhoods over low-density neighbourhoods. There is no effect of 

neighbourhood density for high-frequency words. 

Sin~ulation 3 As mentioned above, nonwords exhibit a pattern of performance 

that is the opposite to words. Nonwords with many neighbours take longer to classi@ as 

nonwords than words with few neighbours (Andrews, 1989; Colthean, Davelaar, Besner, 

& Johnasson, 1977; Forster & Shen, 1996; Sears, et al, 1995). Put simply, nonwords that 

are similar to many words are more "word-like" than nonwords that are similar to few 

words. Coltheart et al. (1977) included the word and nonword stimuli in their article 

introducing the effect, so LEX made lexical decisions on their items 
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Figure 6.12 Subject and simulation data for Andrew's (1 989) Experiment 3 



Table 6.3 

LEX's error rates in the lexical decision for the Coltheart et al.3 (1977) materials 

Neighbourhood Size 

Materials Small Laree 

Words O. 12 

Nonwords 0.25 

There is one peculianty about the data reponed by Coltheart et al. ( 1  977). They 

reported an inhibitory effect of neighbourhood density on lexical decision latencies for 

nonwords, and a nul1 eflect of neighbourhood density on word identification latencies. 

The leR panel of Figure 6.13 mean the latency data reporied by Coltheart et al. ( 1  977). 

The right panel contains mean latencies from LEX. As is clear in the figure. LEX 

reproduces the inhibitory effect of neighbourhood density on decision times for 

nonwords, and the nul1 effect of neighbourhood density on decision times for words. 

Figure 6.13 Subject and simulation data for Coltheart et al. (1 977), Experiment 2 



Why does it work? 

Consistent with Andrews (1989) and Balota and Chumbley (1984; 1985). LEX 

treats lexical decision as a two-stage processes. During the first stage, information is 

retrieved from lexical memory. Once information has been retneved, the lexical decision 

is made by a decision mechanism that decides whether the retrieved orthography is a 

word. LEX also treats the naming task as a two-stage process-the task is performed by 

a set of mechanisms that are sensitive to the clarity of the phonemes that have fallen out 

of lexical memory during lexical access. 
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Figure 6.14 Mean number of samples required to retrieve the orthography of the words 

used by Andrews (1989) 

A~rdrews ( I Y N ) ,  Expennioits i & 2 : Lexrcal Decrsrot~. When Andrews (1989) 

used illegal letter strings as nonword foils in  the lexical decision task (Experiment 2), the 

effect of neighbourhood densi ty did not change. Andrews (1 989) a ryed ,  therefore, that 

neighbourhood effects occur during lexical access. Presumably, if the effect occurred at 

the decision stage, the neighbourhood effect should disappear because subjects would 

base the decision on the legality of the letter string. Placing the locus of neighbourhood 
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effects during lexical access is also consistent with the similar pattern of performance in 

the naming task-both tasks involve the lexical access stage. Forster and Shen (1 996) 

countered Andrews' argument by demonstrating an absence of neighbourhood density 

words effects in a semantic decision task. Presumably, a semantic decision also requires 

lexical access. Hence, if Andrews' analysis is correct, neighbourhood density should 

affect semantic decisions as well. Forster and Shen argued therefore, that neighbourhood 

density affects performance at the decision stage of processing. 

LEX is sensitive to neighbourhood density for the reasons offered by Forster and 

Shen; that is, the effect occurs during the decision stage. Recall that sometimes LEX 

fails to retrieve the correct letter from the lexicon (especially when the word is 

low-frequency). When the failure occurs, LEX readjusts its search space and continues 

reuleving the remaining letters. If the target word has many neighbours, there are more 

words with lener information that is consistent with the probe in the cohon than when the 

target has few neighbours. As shown in Figure 6.14, however, neighbourhood density, 

has little impact on the number of sarnples required to retneve the lexical information 

from memory. Rather, because low-N words share fewer letters in the same position 

with other words in  the lexicon, the clarity of the representation the OB is 

compromised. As is clear in figure 6.15, there is a clear difference between the average 

OB'S clarity for the large- and srnall-N words when the words are low-frequency, but 

l i  nl e correspondi ng di fference for hi eh-frequency words. Because high-frequency words 

are generally reuieved without failure, the clarity of the orthography in the OB is not as 

affected by repeated retrieval of irrelevant words. Consequendy, high-frequency words 

do not exhibit sensitivity to neighbourhood density. 

It is easy to understand why Andrews (1 989) placed responsibility for 

neighbourhood density effect at the lexical access stage. By using illegal nonword foils, 

she correcdy assumed that the decision stage was made easier. However, niaking the 

decision stage easier does not eliminate decision-the task requires it. I made the 

decision stage easier by decreasing LEX's word criterion. The decrease reflects a reader's 

strategic adjustment of how word-like a leaer string must be to be considered a word. If 

die nonwords look much like words, the reader must be cautious not to make an error, 



and the cnterion must be high. If. on the other hand, al1 the nonword foils are consonant 

strings, the reader can afford to be more lax. Decreasing the word criterion to a 

magnitude that still allows high accuracy increases the signal value to the decision 

mechanism yielding two results: faster response latencies and decreased errors. Because 

the decrease does not eliminate the contribution of the decision stage to the response, the 

latency advantage for high-N words persists when the word cnterion is lowered. 

rlr,drrws (1989,) Erperiment 3: The Naniing Task LEX's sensitivity to 

neighbourhood density in the naming iask also reflects the clarity of the information that 

is retrieved from lexical memory. Specifically, the clarity of the phonernes for low-N 

words is lower than that of high-N words causing longer naming latencies for low-N 

words (see Figure 6.16). The explsnation for the latency advantage for high-hi words 

over low-N words in  the naming task is sirnilar to LEX's explanation for the lexical 

decision task 

As mentioned earlier, following retrieval, the phonemes of high-frequency words 

tend to have almost perfect clarity for two reasons: ( 1 )  letter retrieval rarely fails and (2) 

the phonernes of words are weighted by their frequency during retrieval. The weighting 

causing the phonernes of high-frequency words to have a large impact on the phonemes 

in the PB Because the phonemes are almost at ceiling, there is little effect of 

neighbourhood density on naming latency when the words are high-frequency 

When the words are low-frequency, howrver, LEX is more likely to expenence 

failures during retrieval. Because LEX must adjust the cohon to aid identifying the 

missed letter, phonemes from several irrelevant words are included in the new cohort, 

and of course, each sample of words from lexical memory. If the word has many 

neighbours, many of the neighbours will also be included in the new cohon. A word's 

neighbours tend to have many phonemes in common as well as letters; hence, as is shown 

in Figure 6.16, the increased clarity of the features in the OB is paralleled by an increase 

in the clarity of the phonemes in the PB. 

Coltheart et al. (1977). Colthean et al. demonstrated a latency advantage for 

low-N nonwords over high-N nonwords in the lexical decision task. They found no 

effect of neighbourhood density for lexical decisions made to words. Andrews (1 989) 

pointed out that the words they used were generally high-frequency. Because the latency 



advantage for high-N words is limited to low-frequency words, it is not surpnsing that 

they failed to find an effect. For the same reason, LEX also failed to find an effect of 

neighbourhood density using their words. 

Because LEX is retrieving the letters of a nonword, retrieval M u r e  is 

inevitable-at some point, LEX will reach the lener that defines the letter string as a 

nonword. When the cohon is adjusted, many of a nonword's neighbours will be included 

in the cohon of potential matches. As with words, if the nonword has many neighbours 

the clarity of the letters in the OB will be higher than if the nonword has few neighbours. 

The higher the clarity of the OB, the more wordlike the features of the OB are 

considered to be. Hence. as the clarity increases. the signal to the random walk 

decreases Ln this simulation, the word criterion was set to 0.89 The average clanty of 

the OB for low-N and high-N nonwords was 7 6  and 7 8  respectively Using the clarities 

to derive sipnals for the random walk (clarity - word critenon), low-N nonwords had a 

mean signal of - O  13, and high-N nonwords had a signal of -0.11. 

In sum, the lexical status of a high-N nonwords takes longer to decide than the 

status of a low-N nonword because the former nonword is more wordlike than the latter. 

Busic Orthogrnp h ic Sylla blc Structure (BOSS) Effects in Lexical Decision 

Taft ( 1  979; 1986; Taft & Forster, 1976) theorised that reading a word requires 

matching a word's first onhographically and morphologically defined syllable with a 

sensory match in  the lexicon. Taft referred to the first syllable as the BOSS, an acronym 

for Basic Onhographic Syllable Structure To read the word bkmish, for example, the 

BOSS, hleni is matclied to its sensory representation in the lexicon. and subsequently, it 

is paired with rsh to form h l m l s h .  To demonstrate the importance of the BOSS as an 

anchor for accessing a word, Taft and Forster (1976; see alço Taft, 1986) examined 

lexical decision performance for three types of nonwords: nonwords that were BOSSes of 

words, for example, bien1 of the word, blemish, nonwords that formed the beginning of 

words, but were not BOSSes, for exampie, roun of the word round, and nonwords that 

did not form the beginning of any word, for example, w t h .  



Type of Nonword 

Figure 6.17 Subject and simulation data for lexical decision latencies for Taft and 

Forster's (1  976) nonwords 

Taft and Forster (1976, and also Taft, 1986) showed that BOSS nonwords took 

longer to reject in the lexical decision task than either nonwords that formrd the 

beginning of a word or nonwords that did not f om the beginning of a word. They 

interpreted the pattern of decision latencies as reflecting th; ~ p e ~ i a l  status of the BOSS'S 

in the lexicon. Their analysis makes sense; if a nonword is a BOSS of a word it is 

represented in the lexicon. If it is represented in the lexicon, it is very wordlike and 

should be dificult to reject in a lexical decision task. The left panel of Figure 6.17 

contains the mean lexical decision latencies reported by Taft and Forster (1976). 

A slnr idution 

The right panel of Figure 6.17 shows LEX's lexical decision latencies for Taft and 

Forstef s nonwords LEX replicates the basic pattern of data reponed by Taft and 

Forster; BOSS nonwords take longer to classify than non-BOSS nonwords LEX's error 

rates for BOSS nonwords, non-BOSS nonwords, and non-part nonwords were 0.26,O. 19, 

and 0.10 respectively . 



Type of Nonword 

Figure 6.18 Letter retrieval time and orthographic clarity of the OB for each class of 

nonword using Taft and Forster's (1 976) nonwords 

?VJy dors r r  work? 

In contrast to Taft's (1  979; 1986; Taft & Forster, 1976) theory of lexical access, 

LEX does not explicitly represent m y  onhographic structures within words LEX's 

sensitivity to the BOSS refiects the scale of its lexicon. When a lexicon is made to scale, 

what looks like sensitivity to stnicture may simply retlect sensitivity to redundancy in the 

language. To illusaate the point, 1 tabulated how many words in LEX's lexicon 

contained Taft and Forster's nonwords as beginnings. Across nonwords in each category, 

there are, on average, 13 words in LEX's lexicon that start with Taft and Forster's 

BOSSes, 7 words that start with their non-BOSS nonwords, and 3 words that start with 

their non-part nonwords (some of Taft and Forster's non-part nonwords were 

rnisclassified For example, prrrj forms the beginning of the word prenataf). Clearl y, 

BOSS nonwords are more wordlike that non-BOSS nonwords, which are in tum more 

wordlike than non-part nonwords. 

Figure 6.18 plots the average clarity of the OB for each type of nonword. As the 

Figure shows, as a nonword becornes less word-like, the degree to which the retrieved 



letters match the probe letters decreases. The less a letter string resembles a word, the 

faster, and more accurately. LEX can correctly respond to it. In sum, LEX's performance 

is sensitive to redundancy in the language that is correlated to the BOSS, not the BOSS 

itself. 

Reading Mu fti-Sy flab ic Words 

Almost everj simulation model of word identification limits its lexical knowledge 

to one-syllable words (for an exception, see Anns, et al., 1999). Why are multi-syllabic 

words so ofien excluded? There are two possible reasons. Perhaps, theorists are unsure 

how to implement a parsing mechanism that can divide a word into its constituent 

syllables. Indeed, syllables appear to be important structures for lexical access. Some 

models of letter encoding (e.g., Mewhon and Campbell, 198 1 ; Spoehr and Smith, 1973) 

have even postulated that the syllable is the functional un i t  for lexical access The other 

reason may be that the representation scheme used by many models for encoding words 

would have to change drastically to accommodate polysyllabic words For example, a 

bacli-propogation network model that uses Wickelfeatures to represent onhoçraphy and 

phonolo;g at its input and output layers could not uniquely represent words like ba>iana, 

n~ississippi. and chihuahua; their represen tations as wickel features are indistinguishable 

frorn hmra, nii.ssippi. and chihua. In a like fashion, the vowel, onset, and coda 

cornponent scheme chosen Plaut et al. (1996) would require change to accommodate 

several more components of words. As the number of components grows, eventually 

Plaut et al's model would be forced into using the letter channel representation scheme 

used by the DRC and IAM. To its credit, because the DRC uses letter channels to 

represent the spatial arrangement of letters in a display, it can represent the letters of long 

multi-syllabic words. Colthean and Kastle ( 1  994) reponed that the DRC can represent 

words up to nine leners in length However, because the DRC uses the IAM's letter 

channel representation, it inherits the earlicr mentioned problems associated with an 

inconsistent representation of space between letters. 
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Figure 6.1 9 Subject and simulation data for Jared and Seidenberg's (1 990) six-letter 

words in the naming task 

Jared and Seidenberg (1990, Experirnent 3 )  demonstrated readers' sensitivity to 

syllabic structure in word naming; niulti-syllabic words take longer to pronounce than 

monosyllabic words. They also noted that the effect is more pronounced when the words 

are l ow-frequency than high-frequency Clearly, the attenuation of a naming advantage 

for one-syllable high-frequency words over two-syllable high-frequency words is 

problematic for Spoehr and Smith's (1973) and Mewhon and Campbell's (198 1 )  

hy pothesis that reading involves an obligatory parsi ng stage pnor to lexical access. 

Jared and Seidenberg (1 990) suggested that readers' sensitivity to syilabic 

structure could reflect a correlati on between onhographic and phonological information 

contained in the words a reader knows. In essence, they proposed that readers are not 

sensitive to syllablesper se; they are sensitive to lexical knowledge that is correlated to 

syllables. They funher reasoned that a mode1 that stores little more than information 

correlatiny orthography and phonology (for example, Seidenberg and McClelland's, 

1989, connectionist account) should be able to reproduce the pattern of narning data. 



In the simulation that follows, we offer a confirmation of Jared and Seidenberg's 

(1990) speculation that a "mode1 lacking an explicit level of syllabic representation of 

syllabification niles" (p. 103) can demonstrate sensitivity to the number of syllables in a 

naming task. 

A Sin1ulation 

LEX named the 60 six-letter words used by Jared and Seidenberg (1990). Half of 

the words were rnonosyllabic, and the other half'were bisyllabic Half of the words were 

iow-frequency and half were high-frequency words 

The mean latency data for the six-letter words reported by Jared and Seidenberg 

(1990) are shown in the left panel of Figure 6.19. LEX made no pronunciation errors. 

There is a clear naming latency advantage for monosyllabic words over bisyllabic words 

when the words are low-frequency, but not when the words are high-frequency. LEXs 

rnean naming latencies for the same stimuli are shown in the right panel of Figure 6.19; a 

clear replication of the basic interaction reported by Jared and Seidenberg. 

Why does it work? 

The clarity of the information in LEX's phonological buffer dictates how long it 

will take to begin pronunciation after retrieval. Pronunciation begins when an articulatory 

code for the blumest phoneme has been prepared. As shown in Figure 6.20 the average 

phonemic blumness of bisyllabic words tends to be greater than that of rnonosyllabic 

words, but only when the words are low-frequency 

The inconsistency with which vowels are often pronounced in English is 

responsible for LEX's abitity to reproduce the phenornenon. When LEX reads a word, 

the vowels are often the blumest of the retrieved phonemes; hence, the cianty of the 

vowels often determines naming latency. Figure 6.2 1 plot. the average clarity of each 

phoneme for low-frequency, one and two-syllable words. The phonemes of two-syllable 

words are more blurry than those of one-syllable words. The noise associated with 

two-syllable words occurs because a two-syllable word generally has a vowel near the 

end of the word; a one-syllable wordfs vowel tends to be near the beginning of the word. 
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Figure 6.20 Average phonemic blur for each class of word used by Jared and 

Seidenberg (1 990) 

Figure 6.21 Average clarity of each phoneme in one- and two-syllable low-frequency 

words 



As LEX builds the information in the orthographic and phonological buffers by sampling 

lexical information, words that are inconsistent with the probe are eliminated through 

cohort reduction. Only lexical enhies that are consistent with the probe so far are 

available for sampling. Consequently, the leners and phonemes that have been retrieved 

are reinforced. Because initial leners and phonemes are reinforced more often than the 

final ones, a vowel positioned near the end of a word tends to be more blurry than one 

near the beginning. 

n e  Orthographie Clniqueness Point Effect 

The uniqueness point QJF) is a charactenstic of a word made popular by 

Marslen-Wilson's ( 1  984) tests of his cohort mode1 of auditory word identification. A 

word's UP is the phonerne, in the stream of phonemes that make up a word, that 

differentiates a word from al! other words that the listener knows. When subjects are 

asked to decide on the lexical status of a word that is presented auditorially, it is 

recognised as a word more quickly when it has an early UP than when the UP comes late 

in the stream of phonemes. 

Radeau, Morais, Mousty, Searens, and Benelson ( 1  992) reasoned that., if reading 

a word required left-to-right processing through die leners of a word, readers should be 

sensitive to the uniqueness point (UP) of the printed word as well Radeau et al. had 

subjects read words known to yield the UP in the auditory lexical decision task (Radeau, 

Mousty, & Serens, 1989). They found no evidence that a word's LJP affected 

identification latency in either a naming task or a gender classification task (French 

nouns were used in their experiments). On the basis of their nul1 result, they concluded 

that reading words was an example of parallel pr~cessing. 

Kwantes and Mewhon (1999) suggested that Radeau et a1.k (1992) use of the ü P  

did not provide a fair test of sequential processing in a reading task because the UP is a 

phonological charactenstic of a word. Kwantes and Mewhort selected 100 seven-letter 

words and classified them on the basis of their orthographic uniqueness point (OUP). 

The OUP was defined as the letter position, reading from lefi to nght, that diflerentiates a 

word from ali other words the reader may know. 

in two experiments, Kwantes and Mewhon (1999) found that naming latency was 

shorter for words that had their OUPs after the third letter than words that had OUPs after 



the sixth or seventh lener position. A pattern pointing to a sequential operation at some 

point dunng reading. The naming advantage for early-OUP words disappeared when 

they were named in a delayed-naming task; suggesting that the mechanisms responsible 

for production are not solely responsible for the effect. 

Orthographic Uniqueness Point 

Figure 6.22 Subject and simulation data for the words used by Kwantes and Mewhort 

(1 999) 

.4 Srnlulatrori 

For this simulation, LEX named the words used by Kwantes and Mewhort (1999). 

LEX erred on four trials when it read words with early-OUP words and 16 trials when it 

read late-OUP words. The left panel of Figure 6.22 shows mean naming latency for 

subjects. The right panel contains mean naming latencies frorn LEX. As is clear in 

Figure 6.22, LEX captures the naming advantage for early-OUP words. 

Why does if work? 

The latency advantage for words with an early OUP is a novel prediction from 

LEX. As LEX retrieves each lener from the lexicon, a cohort of candidate matches to the 

target is adjusted to include only the word that are consistent with the target so far. At 



sorne point during retrieval, there will be only few words in the cohort that are consistent 

with the target. In the case of an early-OUP word, such as biplme, the retrieval of the 

letter fa t  the fourth position differrntiates bplane from al1 other words in the lexicon. In 

the case of a word such as curtaif, a late-OüP word, LEX is uncertain about the identity 

if the word until it retrieves the final letter. Until LEX retrieves the 1, the word could be 

curtaii~. The naming advantage for early-OUP words reflects the speed with which LEX 

can retrieve the remaining letters after the OUP of a word has been reached. 

LEX required 158 and 272 samples from the lexicon to retrieve the letters of 

early- and iate-OUP words, respectively . In addition to a greater number of samples 

required to retrieve the letters of late-OUP words, the phonemes of late-OUP words in 

the PB were also more blurry ( .78) than the phonernes for early-OUP words (.84). 

Because of cohon reduction, by the time LEX reaches the letter corresponding to the 

OUF, only one word is available for sarnpling. With only one word available for 

sarnpling, the remaining leners are retrieved quickly from the lexicon. Cohon reduction 

is also responsible for the greater clarity associated with the phonemes of early-OUP 

words Whrn the OUP has been reached early in retrieval, the phonemes of only one 

word are being copied into the PB. When a word has an early OUP, its phonemes in the 

PB of the word are reinforced by many more sample than the phonemes retrieved for a 

word that is uniquely defined nrar the end of the lener string. 

Reading Nonwords 

Thus far, 1 have demonstrated that LEX and readrrs are sensitive to the same 

characteristics of words in two reading tasks. An important additional test of whether 

LEX's mechanisms are also present in readers is how closely its performance on novel 

stimuli parallels readers' performance. In order to match theory and data, three 

conditions must be met: first, LEX must generate plausible pronunciations for nonwords 

about as often as readers do (or at least as good as cornpeting models). Second, LEX's 

performance must be sensitive to the same chancteristics of nonwords that readers are. 

Third, there is often more than one way to pronounce a nonword which makes unclear 

what the correct pronunciation of a novel word should be. If, however, readen are 

biased to produce one pronunciation for a nonword over other pronunciations, the model 



should also be biased to make the same pronunciations. Finally, LEX should reflect any 

variability in readers' pronunciation of nonwords. 

There are two ways in which a reader might read nonwords: by analogy to words 

she knows or by implementing an algorithm that translates spelling to sound. The two 

strategies for deriving a pronunciation are at the heart of the debate between proponents 

of connectionist and dual-route models of reading aloud. Recall that the dual-route 

model's nonlexical route uses grapheme-to-phoneme conversion d e s  to derive a 

pronunciation for nonwords. Connectionist models such as those by Seidenberg and 

McClelland ( 1  989) and Plaut et al. (1996) read nonwords (and words, for that matter) by 

analo~y 

Andrews and Scarratt (1998) examined how nonwords that could be read by 

analo~g would be pronounced by readers. They divided the nonwords into four 

categories of body The body refers to the letter cluster following the first letter or 

graphenie in a monosyllabic word. For example, ittch is the body of the word pinch. 

First, Regular Consistent Body (RCB) nonwords contain word bodies whose 

pronunciation does not Vary across words containing the body. For example, the body, 

r r ~ h ,  possesses a pronunciation that is invariant across words containing it. Second, their 

subjects read nonwords with Inconsistent Bodies (IB), that is, nonwords with bodies that 

had more than one cornmon pronunciation. For example, ead, has two cornmon 

pronunciations such as in the words hcud and bead The final type of nonwords had 

bodies for which there was no r e g h  analogy ( M A )  That is, the body of the nonword 

is always pronounced irregularly when i t  appears in words They used two such types 

of nonword: NRA-M nonwords had many neighbouring words sharing the same body 

and irregular pronunciation, for example, the ight ofytghr 1s found in several words: 

jght,flight, sight, niight, right, lighr, ~ ~ i g h t ,  and trghr. In every instance of a word 

containing the ighr lener combination, the i is a long vowel, and the g is unpronounced. 

NRA-Li nonwords were nonwords for which the word body was irregular, but unique to 

only one word, for example, sign is the only word containing the body ign. 

Because al1 of Andrews and Scarratt's (1998) nonwords could be read by analogy 

to words, they provided a fair test to determine which class of model, dual-route or 

connectionist, predicts pronunciations that are cornmon to readers. Because connectionist 



should also be biased to make the same pronunciations. Finally, LEX should reflect any 

variability in readen' pronunciation of nonwords. 

There are two ways in which a reader might read nonwords: by analogy to words 

she knows or by implementing an algorithm that translates spelling to sound. The two 

strategies for deriving a pronunciation are at the heart of the debate between proponents 

of connectionist and dual-route models of reading aloud. Recall that the dual-route 

model's nonlexical route uses grapheme-to-phoneme conversion rules to drrive a 

pronunciation for nonwords. Connectionist models such as those by Seidenberg and 

McClelland (1989) and Plaut et al. (1996) read nonwords (and words, for that matter) by 

analogy . 

Andrews and Scanatt (1998) examined how nonwords that could be read by 

analogy would be pronounced by readers. They divided the nonwords into four 

categories of body. The body refers to the letter cluster following the first ietter or 

grapheme in a monosyllabic word. For example, i d  is the body of the wordpimh. 

First, Regular Consistent Body (RCB) nonwords contain word bodies whose 

pronunciation does not Vary across words containing the body For example, the body, 

irlch, possesses a pronunciation that is invariant across words containing it. Second, their 

subjects read nonwords with Inconsistent Bodies (IB), that is, nonwords with bodies that 

had more than one common pronunciation For example, rad, has two commoii 

pronunciations such as in the words hrad and head. The final type of nonwords had 

bodies for which there was no regular analogy (NRA). That is, the body of the nonword 

is always pronounced irreylarly when it appears in words. They used two such types 

of nonword: M A - M  nonwords had many neighbouring words sliaring the same body 

and irrebuiar pronunciation, for example, the ight of yight is found in several words: 

jigltt,jiight, si@, mi@, right, Iighi, riight, and tight. In every instance o f a  word 

containing the ight letter combination, the i is a long vowel, and the g is unpronounced. 

NRA-U nonwords were rionwords for which the word body was irregular. but unique to 

only one word, for example, s i p  is the only word containing the body rgn. 

Because al1 of Andrews and Scarratt's (1998) nonwords could be read by analogy 

to words, they provided a fair test to detemine which class of mode!, dual-route or 

connectionist, predicts pronunciations that are common to readers. Because connectionist 



models read nonwords as analogies to words that they know, they are biased to yield 

pronunciations corresponding to the most frequent proriunciation of the word bodies 

stored in the model. For example, the body of the nonword linth would be pronounced 

to rhyme with ninth by connectionist models because it is the only pronunciation 

associated with the body, ~rtth. On the other hand, the DRC translates letter strings iiito 

phonemes staning from the leftmost letter to the ending letter. Because the lener i is not 

followed by an e at the end of the nonword, the DRC's appropriate GPC mle will give i t  a 

shon vowel pronunciation. 
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Figure 6.23 Subject and simulation data for Andrews and Scarratt's (1998) nonwords 

The DRC predicts that nonwords will be generally be regularised regardless of the 

frequency of the pronunciations of the nonwords' bodies. On the other hand, 

connectionist models will regularise the pronunciations of nonwords whose bodies are 

most commonly found in regular word. Nonwords with bodies most commonly 

associated with exceptional pronunciations will be pronoonced consistent with irregular 

word S. 



Instead of discussing Andrews and Scarratt's (1998) results first, and follow the 

discussion with a simulation, 1 will describe their results concurrentiy with the results of a 

simulation. Andrews and Scarratt had subjects name two lists of 64 nonwords. LEX 

named only the nonwords from one of the lists (list b) becausc the two lists were 

composed largely of nonwords with the sarne bodies. LEX named each nonword 16 

times and produced plausible pronunciations for 96% of the trials. Andrews and Scarran 

had three measures of reading performance: naming latency, the likelihood that a 

nonword's pronunciation would be reylarised, and uncertainty about the nonwords 

pronunciation. I will discuss each measure of reading performance separately . 

Nanzitlg Latettcy 

Andrews And Scaman ( 1998) noted that nonwords without regular analogies 

(?WA nonwords) took longer to name that nonwords that had regular analogy bodies 

(RB) The left panel of Figure 6.23 plots subjects' mean naming latencies for the two 

types of nonwords. The right panel corresponds to LEX's naming latencies for the same 

nonwords. As is clear in the right panel, LEX replicates the basic pattern reported by 

Andrews and Scarratt. 

IWO 

Number 

Figure 6.24 Subject and simulation naming latencies for nonwords that yielded one and 

two pronunciations 



Andrews and Scarratt (1998; see also Seidenberg, Plaut., Panerson, McClelland, & 

McRae, 1995) also noted that nonwords with one pronunciation across subjects were 

named faster than nonwords that were given two pronunciations. Their data are 

surnmarised in the left panel of Figure 6.24. The right panel of the figure contains LEXs 

mean naming latencies for nonwords to which it gave one or two pronunciations across 

nins of the model. As is clearly shown in the figure, it also took LEX longer to name 

nonwords for which it settled on one of two pronunciations than nonwords that were 

given a single pronunciation. 

4 r I 1 

RA NRA 

Type of Nonword 

Figure 6.25 Average number of samples required to retrieve each class of nonword 

and the average phonernic clanty of each class of nonword 

W l y  does it work? 

Mean letter retrieval times are illustrated in Figure 6.25.  Nonwords that 

contained regular or inconsistent bodies, contained letter sequences that were common in 

rnany words. Half of the NRA nonwords, however, contained bodies that appear in few 

very few words. Hence, when LEX read NRA nonwords it took longer to retrieve their 

letters than the letters of nonwords containing bodies of several words. 



The mean clanty of the blumest phonemes for each class of nonwords are also 

shown in Figure 6.25. Because half of the NRA nonwords had only one word-body 

neighbour, the letters of NRA nonword were difficult to find in the lexicon. When 

nonwords are harder to find in the lexicon, LEX requires to take more samples to retrieve 

the letters than when the letters are easy to find. The more sarnples LEX is forced to take 

from the lexicon, the more irrelevant phonological information is copied into the PB. 

Irrelevant phonological information compromises the clanty of the PB, which in Nm, 

increases naming latency 

Replarisation of Nomuord Pronvnciation 

Andrews and Scarratt ( 1 998) noted that nonword pronunciations tended to be 

consistent with that of a regular word than an irregular pronunciation; even when the only 

other words containing the same body were irregular. For example, the letter 1 of the 

nonword lrtrrh was pronounced as a shon vowel rather than rhyming with the word m r h ,  

the only word conwining the r~rilr body The tendency to regularise nonwords is 

problrrnatic for strict analogy based models of word and nonword naming. The nonword 

h ~ t h  would consistently be pronounced to rhyme with ninrh by a connectionist model 

because it is the only pronunciation associated with the body ~ n t h  pronunciation during 

training. On the other hand, the DRC reads nonwords using its GPC rules. According to 

the mies, the i of the letter combination, rttth should be pronounced with a short vowei 

because there is no e at the end of the string to rnodify the 1 .  

Andrews and Scarratt (1998) compared readers' and the DRC's tendency to 

regularise nonword pronunciations. Andrews and Scarratt divided their nonwords into 

seven categones corresponding to how often they were regularised by subjects: 100% of 

die the ,  90-99%, 60-89%, 40-59%, 20-39%, 10-19%, and 0-9%. The open squares of 

Figure 6.26 shows the average regularisations produced by the DRC for the same 

nonwords. As is clear in the figure, the DRC generally overestimates the how many 

nonwords will be regulansed By cornparison, the solid circles of the figure correspond 

to the average number of LEX's regularisations for the same nonwords. Note the clear 

correspondence between subjects' and LEX's tendency to regulanse nonwords. In sum, 

LEX regdanses nonword pronunciations about as often as readen do, and predicis which 

nonwords will be regulansed bener than the DRC. 



Range of Regularisatjon 

Figure 6.26 A comparison of LEX's and the DRC's tendency to regularise groups of 

nonwords 

While Andrews and Scarratt ( 1  998) did not include a simulation from a 

connectionkt model. i r  is easy to anticipate how such a model would handle their stimuli 

Connectionist models create analogous pronunciations for nonwords frorn the overlap 

among nodes at the orthographic and phonological levels. For example, in Seidenberg 

and McClelland's (1989) model, the pronunciation of a nonword such aspask would be 

derived from a blend of connections between onhographic and phonological nodes that 

come from words that contain the right wickelfeatures. Specifically, the wickelfeatures 

used to pronouncepask would come from an "average" of words such as (with the 

wickelfeature in parentheses), part (-PA), p u t  (PAS), tusk (ASK) and wisk (SKJ. 

Likewise, Plaut et al .3  (1996) improvement to Seidenberg and McClelland's (1989) 

rnodel creates pronunciations for nonwords from the overlap among word components. 

Hence, the nonword pask is pronounced from an average of words such as (with the 

components in parentheses), pick (P onset), past (P onset and A vowel), &xk (A vowel 

and SK coda), and wisk (SK coda). Using the componential or wickelfeature scheme, the 

pronunciation of any letter is directly proponional to the frequency with which it is 



paired with a particular phoneme. Hence, while the number of nonwords with regular 

analogy bodies will b e accurately regularised, connectioni st model will underestimate the 

degree to which nonwords with NRA bodies will be regulansed. 

RB 
if Nonword 

Figure 6.27 Pronunciation uncertainty for each class of nonword 

L M y  does rt work? 

Like connectionist models, LEX is an analogy-based model. LEX is superior to 

connectionist models and the DRC in estimating the extent to which nonwords are 

regularised because LEX does not map letters to phonemes Instead, the analopy is built 

from the leftmost to the rightmost letter. By building the pronunciation from left to right, 

the phonemes at the beginning of the word are detennined early and are quite clear. LEX 

copies phonemes into the PB at a position corresponding to the blumest phonerne. 

Because the clanty of an early phoneme, like the ea of kead, is high, it is unlikely to be 

overwritten by the analogy. 

Promnciation Uncertainty 

Nonwords can often have more than one acceptable pronunciation. For example, 

the nonword, kead could be acceptably pronounced to rhyme with heod or beod. As a 



final test of how nonword are read by subjects, Andrews and Scarratt (1998) measured 

the uncenainty with which subjects generated pronunciations for their nonwords. 

Uncertainty reflects two aspects of pronunciation: the number of pronunciations 

generated by a nonword, and the degree to which subjects are biased to yield some 

pronunciations over others. To measure uncertai nty , Andrews and Scamatt adopted an 

uncertainty measure used by Trieman, Mullenix. Bijeljac and Richmond-Welty (19%) 

where uncertainty (H) is expressed as, H = Z p  l o g 9  Wherep is the probability of each 

proiiuniiaüsn in a sample of C O ~ C C ~  pr~nunciations 

Andrews and Scarratt (1998) noted that pronunciation uncertainty for nonwords 

paralleled naming latency. Pronunciabon uncertainty was higher for nonwords for which 

their bodies had no regular analogies than nonwords that had regular analogies. The left 

panel Figure 6.27 plots H for each type of nonword. The panel on the right plots LEX's 

pronunciation uncertainty for the same classes of nonwords. LEX clearly replicates the 

basic pattern of pronunciation uncertainty documented by Andrews and Scarratt. 

F@v dors rt work? 

Because NRA nonwords contain bodies that have no regular analogies, LEX was 

sometimes biased to pronounce the nonwords consistent with their irregular word 

neighbours In other words, sometimes. h t h  was pronounced to rhyme with tiitrth. 

Whether LEX pronounces the nonword consistent with an irregular word depends 

entirely on which phoneme LEX begins copying phonemes after retrieval failure. If, 

after retneval failure, the second phoneme in the PB is near perfectly clear, or the 

blumest phoneme happens to bc the one following the first phoneme of the nonword's 

body, LEX will pronounce the nonword consistent with an irregular pronunciation. On 

the other hand, when nonwords have regular analogies, there is often only one 

pronunciation for the nonword regardless of which phoneme in the PB is the blumest. In 

sum, LEX's ability to replicate the pronunciation uncertainty reported by Andrews and 

Scarratt reflects the fact that noriwords with regular analogy bodies often have only one 

plausible pronunciati on, and nonwords wi thout regular analogy bodies often have more 

than one. 



Chapter 7: A test of LEX's letter encoding assumption 

In this chapter, 1 test LEX's most important assumption; that the reading system 

expects û list of letters as a retneval probe for information stored in the lexicon. As I 

mentioned above, current models of word identification choose input represtntations for 

their models that are arnenable to the assumption that the letters of a word are processed 

in parallel. 1 have built LEX on a different principle; to allow the organisation of the 

letters guide retrieval. To test the assumption that the reading system requires a list of 

leners, 1 used a parafoveal pnming technique developed by Rayner and his associates 

(cg., Rayner, McConkie, & Erlich, 1978; Rayner, McConkie, & Zola, 1980). 

Para foveal Priming 

Imagine fixating a dot in the middle of a display monitor While you are holding 

fixation, a letter string (the prime stimulus) is shown briefly in the parafovea at a position 

to the left or the right of fixation Shonlv thereafter, the dot is replaced by a word (the 

target). Your task is to name the target as quickly as possible If the target and prime 

share the first few letters, you will be able to name the target more quickly than if they do 

not share the first few letters The advantage in naming time is known as parafoveal 

orthographic priming. 

Rayner and his associates have used the priming paradigm to study the nature of 

the infomation that readers extract from parafoveal text (e.g., Rayner, et al, 1980; see 

also Rayner. et al., 1978). According to Rayner and his associates, neither semantic nor 

morphological overlap yields priming (see also Lima, 1987; Lima & Inhoff, 1985; 

Rayner & Moms, 1992). Although there is evidence that limited phonological 

information can be obtained dunng a parafoveal preview (Pollatsek, Lesch, Moms, & 

Rayner, 1 Wî), pnming is largely controlled by the orthographic similarity of the target 

and prime stimuli. That in,  the target stimulus is facilitated when it shares letters with the 

prime stimulus. 

Two details of the overlap are of pariicular interest. Firstly, facilitation is 

equivalent when the wo stimuli are printed in different cases; we conclude that data 

obtained from both the target and the prime must be represented at an abstract, 



non-iconic, level. Secondly, pnming is asymmetrical in the sense that it occurs only 

when the prime shares the first leners with the target. Hence, bend will prime the target 

berzt, but rent will not. The asymmetry is the point of interest for this chapter. 

Rayner et al. (1 980) proposed a preliminary letter-identi ficati on hypothesis to 

explain the asymmetry for primes that share letters with the target. The hypothesis 

suggests that readers identiS, the prime stimulus' first few letters. If its letters match the 

first letters of the iarget, identification of the prime's letters establish a context that assists 

the identification of the remaining letters of the target. Altemately, having identified the 

first letters, readers may be able to focus attention on the letters that have not yet been 

identified. 

The asymmetry in parafoveal priming c m  also be interpreted in terms of 

assumptions required by LEX. LEX postdates that identified characters, represented as 

abstract lerter identities, are ordered in a list. The list serves as a retneval probe to gain 

access to lexical memory, and the list's structure is used to guide the retneval process 

(Mewhort, Kwantes, & Feldman-Stewart, 1997; see also Mewhort, 1974; Mewhort & 

Beal. 1977) Specifically, retrieval begins at the first lener in the list and teninates 

when a match for the last letter has been found. 

How does LEX handle parafoveal priming? 1 postdate that the letters of the 

prime stimulus ordered in a list and stored in LEX temporal buffer (TB). When the 

target is dispiayed, its characters are identified and copied on top of the list in the TB that 

stored the prime's letters. Note that letters of the target and prirne are identified 

indeprndently, a point consistent with the fact that mismatching the case of the prime and 

target does not affect the amount of pnming. If the letters of the target and prime match. 

the composite fomed by copying one ont0 the other will be clear; if the letters mismatch, 

the composite will be noisy. 

The composite formed by overprinting letters from the target and prime serves as 

a retrieval probe to the lexicon. Retrieval stam with the first letter of the list and will be 

hampered if the composite is noisy. If' the noise is toward the end of the list, as in the 

case when bend is used as a prime for bent, the retneval system can use the context 

provided by the partially retneved word to aid re-identification the misrnatched letten. 

By contrast., if the noise is toward the beginning of the list, as is the case when rent or 



xpjk is used as a prime for bent, renieval cannot suri  until the letters of the target have 

been re-identified. 

The beginning letten of the target and prime are always on the same side of the 

character string, the left side in English. Hence, it is unclear whether the benefit 

provided by bend as a prime for bent reflects the fact that subjects are biased to identib 

leners from the leR side or the fact that subjects process identified letters in left-to-right 

order. On the first view, the position of the first leners is known as a reading habit 

without reference to the stimulus, but on the second, it is a consequence of processing. 

To distinguish the two possibilities, 1 need to separate spatial bias from temporal ordering 

when defining the fiESf letters of a word 

To separate spatial from the temporal priority, I used English-Hebrew bilingual 

readers. The beginning of an English word is on the left side, whereas the beginning of a 

Hebrew word is on the nght side. If an English-Hebrew bilingual is shown words from 

both languages in  random order, a spatial bias to identify letters from one side would fail, 

and pnming should be attenuated or disappear. If subjects identifi the letters and then 

order them so that the first letter is from the language-appropriate side, pnming should 

occur as usual; that is, priming should occur in English when the target and prime match 

on the lefi, whereas priming should occur in  Hebrew when they match on the right. 

I report nvo experiments in this chapter: In the first, 1 replicated the basic 

phenornenon-the asymmetry discussed above. In the second, 1 eliminated a confound 

between spatial position and the beginning of a word by using bilingual English-Hebrew 

readers naming words of both languages If naming Hebrew and English words is fastest 

when preceded by primes that share the first letters, priming must occur because the 

letters of the prime are ordered by the reader 

Erperirnent 1 

The first experiment was conducted to ensure that 1 could replicate the studies of 

Rayner and his associates (e.g., Rayner et al., 1980). On each trial, subjects were given a 

parafoveal preview of a letter string followed by a word (the target) presented foveaily. 1 

varied the prime's similarity to the target by changing its letters to create nonwords that 

contained three, one, or none of the letters of the target. In addition, 1 used the target 

itself as a prime. 



Two types of nonwords were created so that common letters with the target were 

at the beginning or end of the prime. Hence, a target such as bem could be pnmed with 

bew, benk, barp, zetit, fort, and xpjk. 

I used nonword primes for two reasons. Firstly, orthographie priming from a 

parafoveal preview occurs prelexically ; hence, a nonword functions as an adequate 

prime (Rayner, et al. 1978). Secondly, by using nonwords, 1 could set the frequency of 

the prime at zero. 

Foilowing the Rayner et al. (1980) study, 1 anticipated two results. Firstly, primes 

sharing al1 or the fint three letters with the target should speed naming the target relative 

to primes that share no letters with the target. Secondly, primes shanng only final letters 

should not speed target naming. 

Rayner et al. (1980) found no reliable priming when the only the first letter was 

common to both the prime and target If the first lener of the target and prime match, Our 

account of the asymmetry in parafoveal prirning anticipates that the match should provide 

rnough context to yield a modest priming effect. The discrepancy can be explained in 

t e m s  of the power of Rayner et al.'s experirnents Their experiments included a 

maximum of five subjects and, hence, may have lacked the power to detect a naming 

advantage for targets preceded by a first-letter prime. By using a larger number of 

subjects in our experiment, 1 expcct to find a priming effect using first-letter primes. 

*wLJ thod 

Subjects. Twelve students enrolled in introductory psychology at Queen's 

University served as subjects for the experiment. All subjects had normal or 

corrected-to-normal vision, and al1 had English as a first language. 

Materials and apparams. Two lists of ~ e l v e  four-letter target words were 

constructed. Each word had a printed frequency between 2 and 10 occurrences per 

million words of text (Kucera & Francis, 1967). For each word, five nonwords were 

constnicted: one sharing the first three letters with the word, one sharing the first ietter of 

the word, one sharing the last three letters with the word, and one shanng the last letter of 

the word. A control with no overlap with the target was constructed using consonants 

(cf., Rayner et al., 1980). 



Items were presented on an IBM compatible PC equipped with an SVGA 

monitor. Subjects responded to stimuli by speaking into a head mounted microphone that 

triggered a response switch. The timing and screen contrul routines were taken from 

Heathcote (1988). Subjects sat 1.2 meters from the computer's monitor in a darkened 

room. Stimuli were presented in white letters on a dark background and subtended a 

vi sual angle of 1 .19". 

Procedure. Each trial s t a ~ e d  with a fixation dot presented at the centre of the 

computer's monitor. Afier 1200 ms. a prime was presented for 184 ms to either the left 

or the right side of the dot. Seventeen ms after the prime's offset. a target word was 

presented foveally; it remained until the subject named it. The space between the dot and 

the first letter of the prime to the right of fixation subtended a visual angle of 2". The 

space between the dot and the last letter of the prime to the left subtended the same visual 

angle. 

The subjects were required to name the target presented in the middle of the 

screen as quickl y and accurately as possible. They were infonned that the targets would 

be preceded by a letter string and that the string would be shown so briefly that they 

would be unable to shift they eyes to it. Instead, they were required to hold fixation at 

the dot. Subjects were cautioned to avoid making sounds that would trigger the 

voice-operated response key . 

Table 7.1 

Mean Naming Latency (in ms) for Targets in Each Prhing Condition in Experiment 1 

(Standard Devia fions are Shown in Paren theses) 

Prime letters in cornmon wi th target 

Side of fixation All 3 left I left 3 right I right no letters 

Right 468 486 498 508 516 510 

(58.3) (62.6) (70.0) (60.7) (75.9) (80.3) 

Left 470 49 1 489 502 500 498 

(55.0) (63 -9) (60.8) (72.3) (70.8) (76.8) 
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Figure 7.1 Magnitude of the priming effect for each overlap condition relative to the 

control condition 

After each trial, the experimenter çcorcd the mal (correct or incorrect) and typed 

the decision into the computer The fixation dot signalling the next v ia1 re-appeared 

immediately after the trial had been scorrd. 

Subjects perf'ormed 20 practice trials prior to reading the words of each list. After 

the practice tnals, which subjects read each list of words twelve times. 

Design. Each subject named 24 words in each of 12 priming conditions for a total 

of 288 trials. On separate trials, a target was preceded by itself, and by each of the five 

nonwords that had been consmicted for the word. Primes were presented once to the left 

side of fixation and once to nght of fixation. 

The 288 experirnental trials were divided iiito 24 blocks of twelve trials. Within 

each block, a target was presented once. As well, within each block, each of the twelve 

prirning conditions was represented once. Item order was randomised for each block, and 

the order of the priming conditions was counterbalanced across blocks. After each block 

of 12 trials, subjects were given an oppomnity to rest. 



Results and Discussion 

There were only six mals (out of the total 3456) on which subjects misnamed the 

target word. 1 focus, therefore, on naming latency. 

Mean naming latency for correct trials is shown in Table 7.1 as a function of 

pnming condition. Narning latency was independent of the position of the prime relative 

to the fixation point; when the prime was to the right (shown in the top row of the table), 

naming latency was 496 ms and when it was to the lefi (shown in the third row of the 

table), naming latency was 492, F(1, 1 1 )  = 2.0, . 15  < p  .: .20  The position factor did not 

interact with prime type, F(5, 55)  = 1.5, .2 < p  < 2 5 .  Because the position of the prime 

relative to the fixation did not affect perfbnance, we collapsed across that factor in the 

subsequent analyses. 

Figure 7.1 shows the magnitude, in ms, of the priming effect for each condition 

relative to the no-overlap control. To calculate the priming eff'ect, we subtncted each 

subject's mean naming latency for the zero overlap condition from the scores for the 

remaining five conditions. 

As is clear in Fi y r e  7 1, only prime stimuli sharing the left-rnost letters with the 

target word decreased naming latency for the target word. Using the target as a prime 

stimulus yielded larger pnming than any other condition, F(1, 1 1 ) = 3 3 . 3  1,  p < 00 1 .  

Priming occurred when the letters on the leh of the prime overiapped the conesponding 

leners in the target but not when the letters on the right overlapped the target F(1, 1 1 )  = 

47.10, p < 0 0  1. There was no reliable difference between the one-letter and three-letter 

overlap conditions, F(1, 1 1) < 1 .  

Recall that Rayner et al. (1980) found priming only when at least the first two 

letters overlapped. My results show the same trend-greater pnming with three-letters 

overlap than with one-letter overlap-but the advantage for three-letters over one-letter 

overlap was not reliable. The difference between our results and those of Rayner et al. 

can be understood in terms of the statistical power of the two experiments. 

The experiment confirms the asymmetry in parafoveal pnrning reported by 

Rayner et al. (1978, 1980): orthographie priming occurs only when the prime share the 

first letters of the target. The question remains, however, why it occurs. Rayner et a1.k 

account postulates that subjects identify the first letters of the prime, information that 



they use when narning the target. The account works only if the subjects can anticipate 

where the first letters are positioned. 

Erperiment 2 

Expenment 2 was conducted to demonstrate orthographie parafoveal priming 

under circumstances that do not allow the subjects to anticipate the position of the first 

letters of a word. When subjects cannot anticipate the position of the first letters, under 

Rayner et al.3 (1980) account, priming should be attenuated, or disappear. By contrast, 

LEX postdates that subjects identify the leners and then order them. Priming reflects the 

clarity of a composite formed by o v e h t i n g  the characters of the prime by the characters 

of the target. Because ordering is performed after the letters have been identified, 

however, subjects do not need to anticipate the position of the first letters. Hence, even 

under circumstances that do not allow the subject to anticipate the position of the first 

leners, LEX predicts that priming will occur provided that the prime and target share the 

first tetters. 

To deny subjects the ability to anticipate the position of the first letters of a word, 

we asked bilingual Hebrew-English readers to name both Hebrew and English words. 

English is read from left to nght, whereas Hebrew is read from right to lefi. By mixed 

the languages randomly across trials. we ensured that subjects could not anticipate the 

position of the first letters of the prime. 

Affc rhod 

Subjects. Four Israeli students and three native Canadian Hebrew-English 

bilingual students at Queen's University (5  undergraduate, 2 graduate) served as subjects. 

Subjects were paid $7 for their panicipation Al! had normal, or corrected-to-normal 

vision. All subjects reponed reading both languages for recreation on a regular basis. 

Marerials The stimuli were 48 four-letter words, 24 in English and 24 in 

Hebrew. Word frequency for the English words was held between 18 and 25 occurrences 

per million, according to the Kucera and Francis (1967) norms. The frequency of the 

English words was higher here than in Experiment 1 to ensure that the subjects would be 

familiar with the items. Frequency norms are not available for Hebrew words; a 

Professor of Jewish Studies at Queen's University verified that the Hebrew words would 

be familiar to Israeli readers. 



As in the first expenment, each word served as a prime stimulus for itself as a 

target. As well, five nonwords were created to serve as primes. The nonwords shared 

zero, one or three letten with the target. Two of the nonwords s h e d  the target's fint 

letters, and two shared the target's last letters. 

Left R,M 
Overiapping Letten 

Figure 7.2 Magnitude of the priming effect in both languages for targets preceded by 

prime stimuli overlapping on the left or right letters 

I created fonts for the alphabets of both languages so that the letters were defined 

using the same basic components (vertical, diagonal, and horizontal lines). Lines were 

two pixels in thickness. The characters were defined within a matrix of 23 by 15 pixels. 

Characters within each letter string were separated by 7 pixels. The stimuli subtended the 

sarne visual angles used in Expenment 1 The hardware and timing routines were the 

same as those used in  Experiment 1 .  

Procedure. Pnor to the expenment, subjects were shown each word and asked to 

name it aloud. They were also asked to indicate whether any of the words were 

unfamiliar. Subjects reported that al1 of the words were familiar. With the exception of 

the preview of the targets, the procedure was identical to that of Experiment 1.  



Design. Each subject named 48 words in each of 12 priming conditions for a total 

of 576 trials. On separate trials, a target was preceded by itself, and by each of the five 

nonwords that had been constmcted for the word Primes were presented once to the left 

side of fixation and once to right of fixation. 

The 576 expenmental trials were divided into 24 blocks of 24 trials. Within each 

block, a target was presented once; haif the targets were English words and half were 

Hebrew words Within each block, each of the twelve priming conditions was 

represented twice Item order was 

randomised for each block. and the order of the priming conditions was counterbalanced 

across blocks. After each block of 24 trials, subjects were given an oppominity to rest. 

To make it casier to read the Hebrew targets, they were pointed (Le., optional 

vowel markings were included). To avoid confounding the size of the prime's characters 

with language, 1 did not include the vowel markings when Hebrew letters were used as a 

prime stimulus. All seven subjects reponed, however, that they ignored the vowels 

when they named the Hebrew words. 

Rcstr Ifs ur ~d Discussion 

As in Experiment 1, subjects made few errors, they mispronounced the target item 

on only thineen of the 2303 trials (5  Hebrew and 7 English trials) I focus, therefore, on 

naming latency . 

Mean naming latency for correct trials is shown in Table 7.2  as a function of 

priming condition and language Naming latency was independent of the position of the 

prime relative to the fixation point: When the prime was to the left, naming latency was 

525 ms, and when it was to the right, the corresponding latency was 523 ms, F(1, I I )  < 

1 .  The position variable did not interact with prime type, F(5, 30) = 2.7, . 1 5  < p  < .20, 

or with language, F(I , 6 )  < 1 .  Because the position relative to the fixation did not affect 

performance, subsequent analyses collapsed across that factor. 

As in Experiment 1 , I  analysed the magnitude of the priming effect across 

conditions. As before, 1 subtracted each subject's mean narning latency for the zero 

overlap condition from the mean latency for the five prirning conditions, but I made the 

calculation separately for each language. 



The chief data of main interest concem the size of the priming effect as a 

hnction of the type of prime and the language of the target. As shown in Figure 7.2, 

naming an English target was facilitated only when the target and prime shared the left 

letters, Le., the first letten. Similady, narning a Hebrew word was facilitated only when 

the target and prime shared the right letters, F( l ,  6 )  = 1 8 . 0 5 , ~  < .O  1 .  

In addition to the interaction between the prime and language documented in 

Figure 7.2, naming latency for the target decreased as overlap between of the target and 

prime increased; that is, the advantage for targets preceded by primes containing al1 the 

lener target's Irtters (58 ms) was greater than the advantage for targets preceded by 

primes containing fewer of the target's letters (14 rns), F(1, 6) = 43.5, p < 0 5 .  In 

panicular, a prime that shared three letters with the target shortened naming more (21 

ms) than primes that shared only one lener (6 ms), F(1, 6) = 16.4, p < 0 5 .  Hence, using 

only seven subjects, a number close to the number of subjects tested by Rayner et al. 

( 1  978; 1 %!O), the present results, like Rayner et al.'s, indicate that the target and prime 

must overlap more than one letter to obtain priming. 

The results provide a clear confirmation of the prediction derived from LEX: 

Even when subjects cannot anticipate the position of the first leners of the pnme 

stimulus, narning the target was facilitated only when the prime shared the first letters 

with the target. Because the subject could not anticipate the position of the first letters 

without identifying the letters of the pnme, priming cannot reflect a bias to identify the 

first letters. If one assumes that subjects identify the characters and then order them, the 

priming data can be understood in terms of interference that occurs when the first letters 

of the target and pnme mismatch. 

General Discussion 

In two experiments, 1 have confinned that the naming latency for a target word is 

shortened by a parafoveal pnme only if the prime overlaps the first letters of the target. 

Expenment 1 allowed subjects to anticipate the position of the target's first letters and 

replicated the asymmetry reported by Rayner et ai. (1 978; 1980). In Expenment 2, I 

denied subjects the ability to anticipate the position of the first letten and showed that the 

asymmeby persists. 



Table 7.2 

Mean Target Naming Latencies (in ms) for Each Priming Condition in Experiment 2 

(Standard Deviations shown in parentheses) 

Prime letten in common with target 

Language Same 3 left 1 left 3 nght 1 right no letters 
-- 

Hebrew Side of 

fixation 
-- 

Right 502 558 562 526 5 54 570 

(77.2)  (72.6) (73.8)  (74.4) (85.5) (8 1 . 3 )  

Left 504 548 556 536 549 555 

(69.0) (74 O)  (75 4)  (71.2) (74.5) (84.2) 

English Side of 

fixation 

Right 465 509 514 501 522 520 

(54.7) (44.0) (40.5) (34.5) (37.3) (4 1 . 3 )  

Left 467 487 508 508 520 522 

(47.0) (43.6) (38 .8)  (50.3) (57.2) (42.1) 

The pattern of results is not consistent with accounts of onhographic pnming that 

depend on the subjects' ability to anticipate the position of the target's first letters. The 

pattern is consistent with-indeed it was predicted by-LEX. According to LEX, a 

reader first identifies the letters of a word and stores them in first-to-last order (see also 

Mewhon, 1974; Mewhon & Beal, 1977). First-to-last stmcture can only be determined 

after the characters have been identified; left-npht for English and right-left for Hebrew 

(see Butler, Tramer, & Mewhort, 1985). The list structure conbols retrieval of the target 

word's pronunciation from the lexicon. 



According to the theory, parafoveal orthographic priming occurs because the list 

denved from the target o v e d t e s  the list derived from the prime. If the two lists do not 

share the same first letters, the composite representation is noisy, and its effectiveness as 

a retrieval probe is reduced. As a result. naming the target is slow. By contrast, if the 

two lists share the same first letters, the composite list is clear and provides an effective 

retrieval probe for the target. 

Rayner et al. ( 1978; 1980) treat orthographic priming as a faciliatory phenornena; 

that is, the prime facilitates identification of the target's letters. By contrast. LEX treats 

orthographic priming as an interference phenornenon. Overiapping the first letters of the 

prime and target allows faster naming of the target than the no-overlap condition because 

overlappinp the first letters reduces the interference inherent in the control case. 

The difference between the account of parafoveal pnming proposed by Rayner et 

al. (1980) and LEX's account is analogous to the difference between early- and 

late-selection accounts of attention. in an early-selection account, attention operates on 

precategorical data to facil i tate the identification process. In late-selection accounts, 

attention operates on postcategorical data to select objects for f h h e r  processing. Rayner 

et al.'s account, like early-selection accounts of attention, claims that priming is facilatory 

in the sense that subjects use the first few letters of the prime to assist identification of the 

corresponding letters of the target By contrast, LEX claims that the apparent facilitation 

reflects reduced inhibition at a post-identification stage. 

The evidence i s  based on the manipulation of subjects' ability to anticipate the 

position of the One might object to my evidence for LEX's account of pnming on the 

grounds that 1 have not ruled out al1 possible ways that a subject might anticipate the 

position of the first letters of the target. 

1 made the Roman and Hebrew alphabets alike in terms of the basic features out 

of which they were constmcted. However, one could argue that subjects were biased to 

identify the letters on one side of the parafoveal string on the basis of the visual 

characteristics of the letten. To test the potential confound, I cornpared the visual 

similarity of the two alphabets. Each letter is represented as a matrix of pixels. To 

measure the visual similarity between any pair of leners, 1 assigned an inactive pixel a 

value of -1, and an active pixel a value of + 1.  I evaluated the similarity between any two 



letters by calcuiating the dot product of the vecton created by concatenating rows of the 

matrices representing the two letters. 1 scaled the dot product by dividing it by the 

number pixels pairs being compared to make it analogous to a Pearson's correlation 

coefficient. I calculated the scaled dot product for every letter with every other letter 

excluding itself. Roman characten had an average similarity value of .54 with each 

other. Hebrew characters' average similarity value to other Hebrew characters was .49. 

Most importantly , Hebrew characters' average si milanty to English characten (. 5 1 ) was 

almost equal to Hebrew characters' sirnilanty to each other. It is unlikely, thçn, that 

subjects were biased to identify letters on one side of the parafoveal display on the basis 

of visual characteristics of the letters. 

lnlplicariot~sfir Currerir Mo<l'rIs of Word Recognitio~~ 

LEX is unique in its use of a list structure as the input to the lexical access 

sy stem. The data structure 1 use solves a representational problem common to other 

models of word recognition. Current models have not attempted to include a 

psvchologically plausible representation for storing identified letters. 

Connectionist models of word identification, assume that al1 the letters of a word 

are processed simultaneously to derive a pronunciation. Consequently, connectionist 

models are forced to somehow represent each letter's position relative to the othen using 

wickelfeatures (Seidenberg & McClelland, 1989) or componential representations (Plaut, 

et al., 1996). Both representationai schemes are chosen as a convenience, not as 

psychologically plausible data stnictures. 

1 have provided a psychologically plausible data structure for identified 

characters. How would a connectionist model derive a pronunciation from leners stored 

in a list? The first challenge would be finding a way to represent a list within the nodes 

of a neural network. If a list can be represented in a connectionist model, perhaps one 

way to derive a pronunciation for a lener string would be to allow a network to operate 

sequentially through the list of letters. Clearly, this is an unamactive strategy for 

proponents of connectionist models- it is inconsistent with the assumption of parallel 

processing that they embody . 

The IAM (McClelland & Rurnelhart, 198 1) and, by inheritance, the DRC rnodel 

of word identification (Coltheart, Curtis, Atkins, & Haller, 1993), represent letter 



positions by storing characters in separate letter channels. The lener channels store 

ordinal position information without any cornmitment to a data structure for the letten. 

Mewhon and Johns (1988) have cnticised the use of letter channels claiming that, while 

die IAM represents space explicitly within a leaer channel, space is not represented 

between channels. If the organisation of the letters is not explicitly spatial, on what basis 

are identified letters positioned relative to each other? 

Paradoxically, a list stmcture, such as LEX prefers, would be ideal for a version 

of the dual-route model. The DRC's grapheme-to-phoneme conversion mechanism, the 

non-lexical route, operates in a left-to-right direction through the letters of the word. A 

list structure provides a natural guide for the non-lexical route. 

To sumrnarise, the data frorn the previous experiments suggest that readers order 

i dentified characters frorn b eginni ng-to-end pnor to lexical access. Current models 

represent the relative position of letters to one another in  a fashion that permits parallel 

access to lexical information. 1 take a different approach- 1 allow the organisation of 

the letters dictate how lexical access occurs. Hence, in LEX, lexical access begins at the 

first letter of a word, and teminates when the final letter has been retrieved from the 



Chapter 8 : General Discussion and Conclusions 

Comparison and Contrust tu Other Perspectives 

In this section, I will outline in more detail how my approach differs from other 

approaches and discuss some of the coinmonalties among the approaches. 

Scrial W. Parallei Processing . 

LEX's approach to reading is clearlv at odds with the traditional connectionist 

approach to rnodelling word identification. in connectionist models letters of a word are 

processed simultaneously Phonemes of a word are also delivered simultaneously . That 

is, processing is done in parallel. 1 agree that reading involves parallel processing-the 

letter identification system 1 use as LEX's front end (LEPS) identifies and localises the 

letters of a display in  parallel. However, the lexical access system expects a list of letters 

for a retrieval cue. If the list's structure is exploited dunng retrieval, lexical access is 

sequential. In this respect, LEX aligns itself with the dual-route approach to reading. 

LEX and the DRC operate from left to nght through the letters of a word. However, 

unlike the DRC, it is lexical access, not grapheme-to-phoneme conversion that is 

sequential in nature. 

Oilr vs. Tw o Routes ro Proriur~cratiorr. 

Like connectionist models, LEX reads words and nonwords using a single route 

to pronunciation; LEX reads novel stimuli by analob? to the words that it knows. It is 

worth noting however, that the analogies are built differently in the two classes of model. 

For example, LEX is sensitive to the consistency with which sound can be derived from a 

word's spelling for very different reasons than those offered by connectionist models. 

Connectionist models reproduce the naming advantage for regular words over irregular 

words because of the frequency with which letter patterns are mapped io sound patterns 

during training. LEX captures the advantage because of the frequency with which letters 

and phonemes CO-occur in lexical entries. LEX does not link letters, or letter clusters, to 

sound; hence, when it exhibits sensitivity to spelling-to-sound consistency, it is because, 



during sampling, it retrieves words from the lexicon that share the same letters but whose 

associated phonological patterns contain phonemes with more frequent pronunciations. 

Despite LEXs success with simulating word and nonword naming with a single 

route, 1 am not willing to daim that readers do not have a second route to pronunciation 

similar to the grapheme-to-phoneme route in the DRC. At issue is not whether readers 

have a nonlexical route, but whether readers always use it. In LEX's account, both words 

and nonwords are read as analogies to the words that are contained in the reader's 

lexicon-up until the last character, the space, has been found, LEX must often sample 

several candidates in the cohort of possible matches to the target word. If both words and 

nonwords can be read by analogy. there is no need to postulate a separate mechanism to 

read nonwords. It is plausible that a rule-based route that converts spelling to sound, if it 

exists, is necessary only when a word cannot be read by analogy . 

Siorit~g Muppings W. Storing Daia. 

Connectionist models are generally offered as neurologicall y inspired models of 

intelligent behaviour. I have tried to remain neutral with respect to claims about the 

extent to which LEX's architecture is neurological inspired LEX shares some sirnilarity 

to connectionist models of reading: it uses vectors to represent words, and it obtains 

information about a word by blending information across several pieces of data stored in 

the system's memory . 

Although LEX and a connectionist rnodel such as Seidenberg and McClelland 

(1989) blend information to identify a word, it is done very differently in  the two rnodels. 

Connectionist models of word identification store mappings between letters and sounds in 

the connections between layers of nodes. Because the rnappings link letters to sounds, 

connectionist models can use the information for that purpose only For example, 

Seidenberg and McClelland's mode! of reading can map letters to sounds, but it cannot, 

within the same network, use sounds as an input to get spelling information. By contrast, 

LEX stores words. Because LEX stores words, it can use the information contained in  

the lexicon for more than one purpose-it can retneve phonology from the lexicon when 

letters are used as a probe, or it can retrieve the spelling of a word when it is presented 

with a string of phonemes. 



Other Errrpirical Issues 

List-Structure Eflects in Wurd Ident~ification. 

None of the simulations I reported in Chapter 6 dealt with readers' apparent 

ability to readjust how they read letter strings strategically when the type of letter string 

can be anticipated. Several expenments have demonstrated that the speed and accuracy 

with which subjecü can read words or nonwords changes when they are mixed with other 

stimuli (e.g., Baluch & Besner. 1992; Marmurek & Kwantes, 1996; Monsell, Panerson, 

Graham, Hughes, & Milroy, 1992). For example, Monsell et al. showed that subjects 

could read irregular words more quickly when they were presented in pure lists of 

irregular words than when the words were presented in a list containing nonwords. They 

interpreted the difference as evidence for a dual-route reading system. Specifically, they 

suggested that the difference reflected a reader's ability to strategically attend to the 

output of one route to pronunciation over the other. 

I have not given LEX the ability to change strategies while reading because doing 

so requires that 1 build in extra mechanisms that a) tell the mode1 when it has made an 

error (so that it knows when it must be more careful on the next trial), and b) allows LEX 

to anticipate what kind of letter string it will be reading (so that it can choose the most 

efficient way to read them). 

One possibility for a strategic component for LEX c m  be found in recent work by 

Lupker, Brown, and Columbo (1997). Lupker et al. noted that, in expenments using the 

list stnicture manipulation, increased speed often cornes at the cost of accuracy. In fact, 

the conelation beween the increase in speed and the decrease in accuracy for pure over 

mixed lists of stimuli across the four expenments reported by Lupker et al. was -0.61 5 @ 

< 0 1 ). Speed-accuracy trade-offs are more consistent with a strategic change of response 

deadline than a strategic de-emphasis of one strategy for pronunciation over another. 

LEX could incorporate such a strategic component. The only point at which LEX may 

know it has made an error is during letter retrieval-sometimes LEX senles on the wrong 

letter during retneval from the lexicon. LEX has a parameter that controls how much the 

echo content is allowed to change over successive samples before retrieval begins on the 

next letter. Suppose that, over several words, letter retrieval during lexical access occurs 



without error. Every time a word is retrieved without failure, the parameter could be 

relaxed slightly so that each letters would be retrieved more quickly. At some point, the 

parameter would be so lax that the system would make an error retrieving the letter. At 

the point where retrieval fails, the parameter could be readjusted to make the critenon 

more stringent. If the criterion were adjusted dynarnically in this fashion, homogeneous 

words in a list would be read more quickly, but more prone to errors, than the sarne 

words in a list also containing other stimuli like nonwords. 

.A cquired Dyslexia 

It is fashionable to include a discussion of how a mode1 accounts for reading 

deficits associated with head trauma. 1 did not include simulation data for any of the 

acquired dyslexias in this thesis. instead, 1 will discuss briefly how LEX can account for 

three acquired dyslexias that are often taken to represent the evidence for different routes 

to pronunciation. Missing from the list of acquired dyslexias is deep dyslexia which is 

characterised by a reader's tendency to make semantic errors while reading ( e g  , reading 

nee as bush). LEX does not have a semantic system yet, hence 1 must forego discussion 

about how the model will account for it. 

Phor~o/oglcal &slexiu. Phonalogical dyslexia is characterised by a readef s 

dif iculty reading unfamiliar or new words (Funnell, 1983. Beauvois & Derouesne, 1970; 

Shallice & Wamngton, 1980; Patterson, 1982). Persons with this syndrome can read 

words quite easily, especially familiar words In the dual-route interpretation, 

phonological dyslexia represents selective damage to the GPC route. Plaut et al.3 (1996) 

interpretation placed the responsibility on the contribution of a semantic system in 

reading words. If the phonological pathway of a connectionist network is damaged, the 

model can enlist the aid of the semantic system to name words. Because neither 

nonwords nor new words have representations in the semantic system, nonwords cannot 

be named without great dificulty. 

LEX would exhibit the symptorns of phonological dyslexia if, afler it fails to 

retneve the correct letter from the lexicon, it could not properly readjust the cohort of 

candidate words to continue the search. Recall how LEX reads: As each letter is 

retrieved, only lexical entries that are consistent with the probe up to that point are 

available for sampling. Now, suppose LEX was reading the nonword burse. Up until the 



final e, the letter string could be a word, and when LEX tries to retrieve the final letter, i t  

will fail. When LEX is intact, the first letter is dropped froin the probe, allowing the 

remaining letters in the probe to resonate with the entries in the lexicon containing the 

letter combination, urs in the second, third, and fourth letter positions. Now, when LEX 

searches for the e, the search will likely be successful because it does so in a search space 

that includes words such as nurse, purse. and nrrse. On the other hand, if LEX lost the 

ability to readjust its search space, it could not read novel stimuli effectively. 

Surface dyslexia. Readers with surface dyslexia can read novel stimuli and 

reylar  words with ease relative to irregular words. Irregular words such as pint are often 

regularised; that is, pirit is pronounced to rhyme with mint (Marshall & Newcombe, 

1973). 

From the dual-route perspective, surface dy SI exia represenü selective darnage to 

the lexical route. Reading is mediated entirely by the undamaged nonlexical route and 

readers appear to "sound out" everything they read. Marcel (1980) and Henderson (1982) 

poirited out that such a syndrome is also consistent with a readers' inability to create 

accurate or appropriate analogies to words they know. From a connectionist perspective, 

Plaut et al. (1996) suggested, and provided simulation evidence, that surface dyslexia 

arises from damage to the semantic system. Without aid from semantics, the 

phonological pathway of their mode1 is responsible for generating a pronunciation. Plaut 

et a1.k notion that the semantic system is involved is corroborated by neuropsychological 

case studies of patients with certain types of demenria For patients with semantic or 

Alzheim er-type dementias, there i s an increase in regulansation errors associated with the 

progression of the disease. 

The other possibility offered by Plaut et al. was that surface dyslexia reflects 

damage to the connections between levels of units within the network. They 

demonstrated that, when the network was lesioned between the hidden and phonological 

units, its performance on word reading approached that of a patient with mild surface 

dy slexia. 

In t e n s  of LEX's mechanisms, surface dy slexia reflects a faulty letter retrieval 

process. Whenever letter retrieval fails, LEX must readjusts its search space to continue 

retrieval. If LEX is prone to making letter retneval errors, constant readjustment of the 



search space will have littie effect on nonword or regular word reading. On the other 

hand. retrieval failure will be highly detnmentai to reading irregular words; such words 

will often be regulansed. 

Word-jom dyslexicl . With word-form, or letter-by-letter, dyslexia, a reader 

appears to name each letter prior to naming the word. The syndrome has been interpreted 

as reflecting the reader's use of the spelling system to help name a word (Patterson & 

Kay, 1982; Shallice & Wamngton. 1980). 

LEX would have word-form dyslexia if the scanning mechanism that orders 

letters into a list was damaged. Recall that the scan provides LEX with a list of letters 

that is used for lexical access. From LEXs perspective, a person with word-form 

dyslexia has damaged the mechanism that orders the letters. To substitute for the scan, 

the reader sub-vocalises the letters to impose order on them pnor to lexical access As far 

as I know, LEX is the only mode1 that can account for, or even predicts, word-form 

dyslexia without the need for a separate spelling system 

Primit~g Effrcts 

LEX possesses two pre-lexical buffers that store letter infornation in different 

organisations. The character buffer (CB) stores identified characters in a spatial array. 

That is. the buffer represents leners' identity and location. The contents of the CB are 

sent to the temporal buffer (TB) by the scan where they are stored as a temporal array; 

the letters are stored in a beginning to end order and, 1 have argued, that it is the 

organisation of the contents in the TB that LEX expects in order to access the lexicon. 

With separate buffers capable of stonng information, LEX has two putative loci for 

orthographi cally based primi ng effects. 

I have not started simulation work on priming effects. Nevertheless, 1 can briefly 

discuss how LEX might accommodate masked orthographic pnming (e.g., Forster & 

Davis, 1984; Bodner & Masson, 1996) and review LEX's account of parafoveal priming 

(e.g., Rayner, McConkie, Erlich. 1978; Rayner, McConkie, & Zola, 1980). 

Masked Orthographie Primrtig or Form Primirig In one variation of the 

orthographic priming task, a reader is presented with a pattern mask (often a string of 

nonlinguistic characters like, &&&& ) that is fol\ owed by a b i e f  presentation of a letter 

string, the prime stimulus. Imrnediately following the prime stimulus' offset, a target 



word is presented which the reader must name aloud. n i e  speed with which a reader can 

name the target is affected by the onhographic similarity of the p ime stimulus to the 

target such that, naming latency shortens as the prime and target share more l e m s  in the 

same letter position. 

As long as the pnme and target stimuli share letters in the same position, target 

naming is facilitated. The only other boundary condition for the effect is that the prime 

stimulus' presentation must be too brief to allow the subject to identify it. Typically, the 

degree to which an orthographically similar prime facilitates target naming is 

independent of the target word's frequency-a pattern suggesting st~oongly that 

onhographic priming occurs at a pre-lexical stage of word identification (see Bodner & 

Masson, 1998 for futher evidence that onhographic priming is nonlexical in nature). 

1 place responsibility for onhographic priming at the level of LEX s character 

buffer This is the only pre-lexical buffer that stores letters spatially. At the level of the 

character buffer, when the letters of the prime and target coexist in the CB, and as long as 

they share letters in the same positions, target naming will be more rapid than when none 

of the letters of the stimuli overlap. 

Parafowal Primmg. Rayner, McConkie, and Zola (1980) demonstrated that, 

under some circumstances, a brief exposure to a pnme stimulus in the parafovea 

facilitates naming a foveally presented word. The faciiitation is referred to as parafoveal 

priming. Interestingly, facilitation only occurs if the pnme and target stimuli share their 

first letters. That is, the prirning is asymmetrical, presenting rrrid in the parafovea 

facilitates naming rent when it  is presented in the fovea, but there is no facilitation for 

r w t  when berit is the parafoveal stimulus Kayner et al. (see also Rayner, McConkie, & 

Erlich, 1978) suggested that the asymmetry occurs because the fint few letters of the 

prime stimulus are identified. When the target stimulus is presented, the identified 

characters may serve as a context for aiding word identification during the foveal 

presentation of the target, or may allow readers to focus their attention on the letters that 

have not yet been identified. 

1 showed in the previous chapter that the asymmetry in parafoveal primiog can 

also be explained by LEX. The phenornenon reported by Rayner et al. (1980) might 

reflect interference from the letters in the TB. Recall that, the TB stores letters in a 



beginning-to-end order. Hence, from the perspective of the TB, rend is similar to rent 

because they are the similar starting from the beginning of the letter strings. On the other 

hand, bent is dissimilar to rent because they differ starting at the first letter. Because of 

their relative similarities to the target word, rent should be narned more quickly when 

preceded by rend than when preceded by bent. 

According to LEX's account, the first letter in the TB must be relatively clear to 

serve as an adequate renieval cue. If the first letter of the probe is unclear because i t  

overlaps with the first lener of the phme, the letters of the cue must be reidentified. If 

the first lener is clear, retrieval çan begin At the point where a probe letter becornes 

unclear, LEX could use the context provided by the retrieved orthography so far to aid 

the re-identification of the remaining letters. 

Conclusions 

In this thesis, 1 introduced LEX, a mode1 of visual word identification with a 

full-scale lexicon, and few retrieval mechanisms. 1 demonstrated that LEX is able to 

reproduce several phenomena considered to be benchmarks for the validation of any 

mode1 of word identification. LEX's success derives from two sources. First, it treats 

reading as retrieval from rnemory, and second, it uses a full-scale lexicon. 

Rradirig as re trie val 

LEX trears reading differently from other models. Most models treat reading, and 

learning to read, as an operation by which letters (or letter groups) are translated to, or 

mapped onto, sounds. LEX does not map letters ont0 sounds. LEX treats the naming 

and lexical decision tasks as special instances of cued recall and recognition mernory 

tasks, respectively. Identified characters serve as a retrieval probe to get orthographic 

and phonological information from the lexicon. Hence, for LEX, any correlation 

between orthography and phonology that is reflected in the model's performance anses 

because orthographic and phonological information exist in the same memory trace. An 

example may help to clan@ the distinction. Consider the letter string ma. If LEX 

mapped letters to sounds, it might prcnounce the string as ah-ah-c~h. Instead, LEX 

pronounces ma as t-r-ih-p-uh-lay because it is the phonological pattern associated with 

aaa (1 have used the phoneme notation found in appendix A) . Ifreading is treated as a 



problem of memory retneval, one is forced to rethink other assumptions about word 

identification as well. 1 will discuss each of the assumptions in tum. 

Most models describe word identification in t ems  of the activation of units which 

can either represent whole words or parts of words. Reading is descnbed, in models such 

as the DRC and the connectionist rnodels, as the process by which information from an 

input level is fiitered through a senes of processors until the information activates 

processors at an output level. As 1 mentioned briefly in Chapter 1, such a perspective 

makes reading aiun to a perceptual process, and as such, it  precludes the need for 

mechanisms that store information. When we aeat reading as a problern of retneval from 

memory, the story changes drastically-suddenly, we require bufiers to store the reaieval 

cue and the infonnation that falls out of memory. 

Stonng a retrieval cue in a buffer introduces a new constraint on the reading 

system; the information contained in the retneval cue, in LEX's case, identified 

characters, must be structured. On the basis of previous work done on letter and word 

identification using tachistoscopic displays (Mewhort, 1974; Mewhon & Beal, 1977; 

Mewhon & Campbell, 198 1 ). 1 assume that the reading system expects a list of letters. 

That is, identified characters are encoded into a list pnor to lexical access. LEX uses the 

list structure to guide retrieval. Retrieval from the lexicon begins with the first letter in 

the list and terminates when the final lener has been found. The orthography that is 

retrieved from the lexicon acts as a control stnicture to guide retrieval by adjusting a 

cohort of candidate words on the basis of the infonnation that has been retrieved. 

1 am quite clearly attacking the problem of input and output representations 

differently from my cornpetitors. Typically, assumptions about how lexical access occurs 

guide the choice of input and output representation schernes for a mode\. For example, 

one who assumes that lexical access is performed in parallel chooses input and output 

representations that are amenable to para11 el processing . W i ckel features, lener c hannels, 

and componential representations are used by theorists because they are convenient 

strategies for representing an arrangement of characters that can be processed 

simultaneously . Despite the widespread use of such representations, littie effort is spent 

testing, or arguing for, their psychological reality . 1 have taken the opposite approach. 

First, 1 considered what type and fom of infonnation the lexical access system expects. 



On the basis of what the system expects, 1 theorised about how lexical access would use 

those data to make access to the lexicon. 

Model-six alid life-size lexioris 

L E X  possesses a life-size lexicon. Most models implement a lexicon of between 

3000 and 7000 words. While the size of a lexicon does not necessarily make one rnodel 

better than another. using a full-scale lexicon has two advantages over a small one. First. 

and most obviously, a life-size model represents a closer approximation to a human's 

knowledge of the language; and cornputing power is cheap enough that, with a littie data 

abstraction, full-scale lexicons are easily implemented in a computational model of 

reading. Second, only a full-scale lexicon gives the theonst hints about which 

rnechanisms are necessary and adequate for reading. 

My second point deserves expansion. By definition, a model is a scaled down 

version of a larger system. It is not at al1 surpnsing that theonsts build small-scale 

lexicons in their models Indeed, if the mechanisms that a theorist postulates are 

basically correct, the amount of lexical knowledge that the system possesses should be 

independent of how closely the rnodel represents the life-size system. On the other hand, 

small-scale models can lead researchers into postulating unnecessary mechanisms to 

account for a wider range of data. A good example of this danger is found in LEX's 

sensitivity to BOSSes and syllabic structure in word identification tasks. LEX does not 

represent BOSSes or syllables; its sensitivity to the structures cornes as a consequence of 

having a life-site lexicon. When a model possesses a realistic amount of knowledge 

about a language. the rnodel's performance reflects the smicture within the language. On 

the other hand, with a relatively small amount of lexical knowledge, a theonst is forced 

to give structures special status-either by explicitly representing them in the lexicon 

( e g ,  the BOSS) or by building mechanisms that can derive hem (cg., a parsing 

mechanism to denve syllables). 1 have leamed a lesson in theory building from building 

LEX; rnodels of reading should be built to scale with a minimal number of processing 

rnechanisms. Once the model is built, the theonst can count how many phenomena the 

model can reproduce without additional mechanisms. First detemine how many 

phenomena the model gets for free, and add processing mechanisms only when the 

model's performance has reached its limit. 
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Appendix A: Table of Phonernes Used by LEX 

The phoneme symbols in the appendix are as they appear in the Carnegie-Melon Pronunciation 
dictionary . The list was compiled by Jeny Quinn at Bell Northem Research. 

Example 
odd 
at 
hut 
ought 
c Ott' 

hide 
be 
cheese 
dee 
thee 
Ed 
hurt  
ate 
fee 
green 
he 
i t  
eat 
gee 
key 
lee 
me 
knee 

pi% 
oat 
t OY 

Pea 
read 
sea 
she 
tea 
th eta 
hood 
two 
vee 
we 
yield 
zee 
seizure 

Translation 
AA D 
A E T  
HHAHT 
A 0  T 
K .4W 
H H A Y D  
B IY 
CH IY Z 
D I l '  
DH IY 
EH D 
H H E R T  
EY T 
F IY 
G R I Y N  
HH IY 
M T  
IY T 
JI4 IY 
K 1Y 
L IY 
M IY 
N IY 
P IH NG 
O W T  
T OY 
P IY 
R IY D 
s IY 
SH IY 
T IY 
TH EY T AH 
HHUHD 
T UW 
v IY 
W IY 
Y I Y L D  
z IY 
S I Y Z H E R  




