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Abstract

In this thesis [ introduce LEX, a new model of visual word identification. The model is
built on three guiding assumptions. First, word identification is considered as a retrieval
operation whereby identified letters are used as a probe to retrieve information from
lexical memory. Second, phonological information about a word is associated with
orthographic information within the same memory trace. In other words, letters are not
treated as graphical representatons of sounds. Finaily, lexical access follows the order of
the retrieval probe's letters. Specifically, [ assume that the lexical access system requires
a list of letters, organised from left to right, as a retrieval probe. Lexical access follows
the organisation of the letters by retrieving a word starting with the first letter and
terminating at the last letter. I demonstrate that LEX is capable of explaining many
phenomena considered important to the validation of competing models. I also provide

empirical evidence for the requirement that the lexical access system expects a list of

letters to retrieve a word.
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Chapter 1: The Scope of the Problem

"Reading research" has many faces. Some study the most effective way to teach
children how to read (e.g., Adams, 1990). Others are interested in the processes involved
in comprehending text (e.g., Kintsch, 1998) or study the mechanisms controlling when
and where a reader’s eyes move across a page of text (e.g., Rayner & Pollatsek, 1989).
Finally. some reading researchers study the processes used to identify individual words
The processes used to identify individual words are the focus of the present work; in
particular, I will focus on how people name words and how they decide on a letter
string's lexical status.

The tasks

Students of word identification have used the naming and lexical decision tasks
almost exclusively in their expeniments. In a naming task, subjects are shown strings of
letters and asked to pronounce the letter string out loud as quickly and as accurately as
they can. Each string is either a word or pronounceable nonsense, that is, a nonword like
dorch. In alexical decision task, subjects are shown strings of letters, some words and
some nonwords, and asked to indicate whether or not the string is a word. Both tasks are
designed to measure how long it takes a person make access to a word in the mental
lexicon.

[n the naming task, researchers are interested in both the accuracy of the response
and the time it takes to initiate the pronunciation of the letter string. Early researchers
took the time to say a word as a measure of the time find the word's pronunciation in the
reader's mental lexicon. The time to read a nonword was thought to measure the time it
takes to "sound out" a string of letters.

The time to name a word is a potentially problematic measure of lexical access
time, however. Rayner and Pollatsek (1989) pointed out that the time it takes a person to
read a word aloud also reflects several processes that are unrelated to finding a word in
the lexicon. After a word has been found in the lexicon, a motor program for
pronouncing it must be found, sent to the articulators, and finally, executed. The steps in

pronouncing a word after it has been found take time, hence, response time in the naming



task may be contaminated by factors unrelated to lexical access. The second problem
with the naming task, according to Rayner and Pollatsek, is that familiar words are read
aloud about as well as words that are unknown to readers (e.g., nonwords). Part of
lexical access entails making access to its meaning. If readers can name words that they
know about as well as they can name words they do not know, the task may not provide a
fair measurement of the ime to make lexical access.

The lexical decision task may provide a more adequate measure of the time to
gain access to the lexicon because it requires subjects to decide whether a letter string is a
word. Presumably, if readers know a letter string is a word, they also know its meaning.
Further, the lexical decision task requires a simpler response—usually, subjects press one
button on a response key if the letter string is a word, and another if it is not. The lexical
decision task may, however, also be an imperfect task with which to measure lexical
access time. First, there is no guarantee that a reader knows the meaning of a word even
though she can identify a letter string as a word. Second, half of the stimuli used in the
lexical decision task are nonwords, and the time required to decide on whether a letter
string is a word depends on how word-like the nonwords are (e.g., Andrews, 1989). For
example, deciding on the lexicality of a letter string is easier when the nonwords are
strings of consonants (e.g., drtw) than when they contain letter combinations found in
words (e.g., drom). If decision time for words is sensitive to the construction of the
nonword materials, lexical decision times might not be any more accurate as measures of
lexical access than latencies in the naming task.

Despite their shortcomings, the naming and lexical decision tasks are widely used
in word identification experiments. In most experiments, psychologists often vary the
class of word or nonword and gauge performance across the classes of stimuli. Any
regularities in performance across the classes are taken to reflect storage and processing
mechanisms that are common to all readers. For example, in both the naming and the
lexical decision tasks, readers respond more quickly and accurately to words that occur
frequently in text than words that occur relatively infrequently (e.g., Baron & Strawson,
1976). Frequency varies widely across words in text; for example, the occurs over
69,000 times per million words of text according to Kucera and Francis (1967) word

norms, whereas apt occurs about once every million words of text. Any model with



hopes of becoming the generally accepted theory of word identification must be able to
account for such regularities in reading behaviour.
Motivation for the thesis

Prior to around 1980, research in word identification and memory were closely
aligned in that both fields used the same metaphor to describe how a subject gets
information out of memory or the lexicon. Access to an item in memory or a word was
described in terms of a "look-up" or search operation.

Around 1980, a split occurred between reading research and memory research.
The split was brought on by the invention of a new class of memory models, distributed
memory models (e.g., Hintzman, 1984; Murdock, 1982; Metcalfe-Eich, 1982).
Distnibuted models abandoned the idea of search for an item in memory in favour of the
notion that an item is retrieved from memory by blending information in the memory
system to create a facsimile of the probe.

While distributed models of memory have become, and still are, the dominant
form of simulation model for theories of memory, most models of word identification
have retained the notion that access to information in the lexicon is essentially a search
operation. My thesis represents an attempt to reunify theories of word identification and
theonies of memory by building a model of word identification that borrows from a
well-known distributed model of human memory (Hintzman's, 1984, Minerva2 memory
model).

Guiding assumptions in theories of word identification.

Current theonies of word identification are based on three guiding assumptions.
First, identifying a word is treated as the operation by which a word's address is found.
That is, the lexicon is treated as a content addressable system. Second, word
identification is treated as an extension of perceptual classification. The input stimuli
(letters) are passed through a series of filters that transform the letters into sounds or into
units of representation that correspond to entire word entries. Finally, theories of word
identification treat letters as graphical representations of sounds. As such, current theory
treats word identification as the operation by which sounds, or phonemes, are derived

from the letters they represent. In this thesis, I introduce a model that eschews all three



assumptions and demonstrate that it is capable of reproducing several phenomena
considered important in the word identification literature .

Organisation of the thesis

In this thesis, I introduce a new model of word identification to explain

performance in both the naming and the lexical decision tasks. The organisation of the
tnesis is as follows. [ will first discuss current models of word identification. [ will then
introduce a new way to treat word identification. I will argue that word identification is a
special case of memory retrieval that requires specialised data storage and processing. [
will also empirically test one of the model's assumptions. Finally, I will demonstrate that
a very simple model of memory with few processing mechanisms and a life-size lexicon

can capture a large number of empinical phenomena in the word-identfication literature.



Chapter 2 : The Interactive-Activation Model of Word

Identification

Current models of word identification have a common ancestry in the
interactive-activation model (LAM) of word identification (McClelland & Rumelhart,
1981; Rumelhart & McClelland, 1982).

Basic Structure

McClelland and Rumelhart (1981; Rumelhart & McClelland, 1982) proposed that
word identification could be understood in terms of a hierarchical network of detectors.
A graphical representation of the IAM is shown in Figure 2.1. The IAM uses what is
called a localist representation in that single detectors, or nodes, represent entire entities
such as letters or words.

At the lowest level of the hierarchy, detectors register the visual features of the

display  The system is tuned to detect 14 features. Features are defined in terms of

horizontal, vertical, and diagonal line segments.

Word Nodes (1,179)

Figure 2.1 Basic architecture of the |AM (Arrows denote excitatory connections and
solid circies denote inhibitory connections. The number of nodes in each part of the
model is in parentheses).



Feature detection occurs separately and simultaneously in each of four letter
positions, or letter channels, in the visual display. That is, there is an array of 14 feature
detectors for each letter position. Once the features in each letter position are detected,
their activation spreads automatically to the letter nodes. A complete set of 26 letter
nodes, one for each letter of the alphabet, is connected to each letter channe!. Depending
on which line segments, or features, are activated by the display, a letter node is activated
in each letter position. Letter nodes are mutually inhibitory—as a letter node becomes
activated, the other letters in the letter channel are inhibited.

Activated letter detectors automatically activate consistent word nodes. Hence, a
detector that represents a 7 in the first letter channel will activate word nodes for words
with an imitial 7 and will inhibit word nodes that represent words without an initial T
Like the letter nodes, word nodes are mutually inhibitory; activated word nodes inhibit all
other word nodes.

Interconnections

Every node is connected to every other node within the same layer As well,
every node is connected to every node in its neighbouring layer. For example, every
letter node is connected to every other letter node within a letter channel and connected to
every word node.

Node Activation

Letter and word nodes are assumed to possess a resting level of activation. In the
model's quiescent state, the resting level of activation for any node is determined by
frequency of usage. For example, a word node representing a high-frequency word such
as the would possess a higher resting activation than a low-frequency word like apr.
During processing, however, a node's activation is determined by the impact that
neighbouring nodes have upon it. The impact of neighbouring nodes on the activation of
any one node (n,) at time ¢, is expressed as the net input to the node from all its

neighbouring nodes. The equation is given by

",(r) = %a‘/e}(t) - %Ylk“‘(’)



Where e and i represent excitatory and inhibitory connections, respectively. a andy
represent the connection weights between neighbouring nodes. The end result of the

equation is a change in the resting value of node / at time ¢ as a function of the excitatory
and inhibitory connections of neighbouring nodes.
When the net activation to a node is excitatory, the node activation is prevented

from exceeding a maximum activation of 1.0 by scaling the node's activation using the

formula
() =n(1 -a, @)

When the net activation to a node is inhibitory, its activation is prevented from exceeding

a minimum activation of -0.2 using the formula
nl(t) =n (@, (1) +0.2;

Using the above formulae, the IAM updates the activation of word and letter
nodes over successive processing cycles. On each cycle, letter nodes that have been
activated by the features registered from the display decrease the resting activation of the
other letter nodes within the letter channel. Letter nodes also push the resting level of the
word nodes above or below their resting levels as the letter nodes' activation is passed to
the word nodes. The connection between a letter node and a word node is excitatory if
the word contains a letter in the same ordinal position as one of the letter channels. For
example, a letter T in the fourth letter channel will push the resting activation of the word
node for cart above its resting value. The opposite occurs for the word node for the word
cars. Because word nodes are mutually inhibitory, as a word node's activation increases,
it does so against a background of inhibition from the other word nodes that try to push
its activation back down to its resting levels.

As word nodes compete with one another, they aiso pass their activations back
down to the letter nodes. A word node has an excitatory connection back to a letter node

if the two share a letter in the same ordinal position. The connection is inhibitory when



they do not. The updating of the letter nodes by the word nodes at time ¢ signals the end
of one processing cycle.

Word identification occurs over several processing cycles. McClelland and
Rumelhart (1981) calculated the new activation of any node at time t+1 as a function of
the net influence of neighbouring nodes, n'(t), and a rate of the activation's decay that

occurs between cycles (8). They express the activation a node a at time 1+1 as:
a,(t+ A1 =a, -8, -r)+nl1)

where r is the resting activation of the node.

If a word node exists that is consistent with the letters in the letter channels, the
resting activation of the word node will gradually rise over the processing cycles. As the
node's activation rises toward threshold, the activation of the other word nodes are
pushed down towards the minimum activation. Word identification has occurred when
only one word node's activation has reached threshold.

Problems with the IAM
The separation of identity and location information.

The [AM performs letter identification independently in each letter channel. The
letter channels represent the ordinal spacing of characters in the display. Done in this
way, a letter's identity is tied to its channel, that is, letter identities can not migrate across
channels. Several studies, using the bar-probe task (Averbach & Coriel, 1961) however,
have demonstrated that letter identity information is stored independently from letter
location information; letter identities appear to migrate across the space defined by the
display.

In one vanation of the bar-probe task, a letter string masked immediately
following a brief (a duration less than 200 ms) display. After a delay (between 20 and
200 ms), an arrow is placed under one letter position in the array. The subject is required
to report the letter at the position of the probe As the delay between the mask and probe
increases, subjects’ accuracy for letter report decreases. Of vital importance is the types
of errors subjects make. Subjects make predominantly location errors (Mewhort,

Campbell, Marchetti, & Campbell, 1981). That is, they report a letter from the display,



but one from a location other than the probed location. Clearly, identity and location
information are stored separately because the two kind of information are not lost

simultaneously. Identity and location are tied in the IAM—location errors and identity

errors are not separable.

Feedback from word representations to the letter level

Mewhort and Johns (1988) evaluated the IAM's account of the word superiority
effect (WSE), the target phenomenon for the IAM. Made popular by Reicher (1969), the
WSE refers to the finding that, using brief displays, a letter is more easily identified when
itis presented in a word than when it is presented in the context of a pseudoword or
alone  To account for the effect, the [AM places responsibility on the word nodes'
feedback to the letter nodes. When the characters of a letter string match those of a word
stored among the word nodes, the word node increases the activation level of the
consistent letter nodes thus making the letter easier to identify when it is in the context of
a word than other contexts. Such feedback is less strong when the letters form a
nonword; hence letter activations are not as drastically increased by word activations
when letter identification occurs in the context ot a nenword

Mewhort and Johns (1988) chalienged the notion that the WSE occurs because of
feedback to the letter nodes from the activated word nodes. The IAM's word nodes are
activated automatically when letter nodes are activated. Feedback to the letter nodes also
occurs automatically. Hence, word node activation and feedback to the letter nodes will
occur automatically yielding a WSE as long as subjects can identify letters. However,
Mewhort and Johns (Expeniments 3) failed to produce a WSE when the letters of a word
were transformed (e.g., upside down). Even when letter identificatior. performance was
equated for upnght and transformed letters in the control condition (identifying letters in
a transformed pseudoword), only upnright letters yielded a WSE. Letter node
re-activation, if it occurs, 1s not automatic.

The representation of space within and benveen letter channels.

The IAM has an inconsistent representation of space. Within a letter channel,
space is assumed explicitly—letters within each channel are defined by the spatial
arrangement of lines that make up the characters. The [AM is inconsistentin its

representation of space because it does not represent space benveen letter channels. As a
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result, although the IAM assumes that a vertical bar at the left of a letter channel is a
different feature than the same bar at the right of the channel, the model has not defined
space well enough to distinguish TRAP from T R A P. The point is important because
letter spacing provides a boundary condition on the WSE, the target phenomenon for the
model (Marchett & Mewhort, 1986). In addition, letter spacing controls the familiarity
effect in tachistoscopic whole-report (Campbell & Mewhort, 1980) and the familiarity
effect predicts word identification (Mewhort & Beal, 1977).
An improvement to the IAM — BLIRNET

Mozer (1987; 1991) proposed a model, BLIRNET, as an improvement to the
IAM. BLIRNET was able to identify words in arbitrary positions on an artificial retina.
Because the model could identify a word in any retinal location, it overcame an important
limitation of the IJAM's letter-channel representation scheme. For example, word dog
would be encoded as _dog or dog _in the four letter channels of the IAM (the _denotes a
word boundary). The two words are the same, but because they are offset by one
character, the IAM treats the two words as though they were different because dog and
dog_ have none of the same letters in the same letter channel. BLIRNET overcomes this
limitation by using a representational scheme that maintains the relative position of letters
in the visual display. By passing retinal information through five additional layers of
nodes that are not sensitive to retinal position, BLIRNET can identify the word, dog
regardless of where on it is positioned on its artificial retina.

Despite BLIRNET's improvement over the IAM, and the criticisms raised above,
the [AM remains an influential model of word identification. In fact, as I will discuss
shortly, the IAM, and not BLIRNET, is the model! that has been incorporated in the

recent computational version of Coltheart's (1978, Coltheart, Curtis, Atkins, & Haller,
1993) dual-route model of word identification.
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Chapter 3: Current Theories

In this chapter I introduce connectionist models of word identification and the
dual-route theory of word identification. The connectionist models I will discuss in this
chapter have abandoned the localist representation scheme used by the IAM in favour of
what is called a distributed representation. Recall that the IAM uses single nodes to
represent features, letters. and whole words. More recent connectionist models have

opted to represent the words across several nodes.

Input Layer  Hidden Layer OQutput Layer

Figure 3.1 A generic three-layer artificial neural network

A Generic Neural Network
An example of a generic connectionist, or neural network, model is shown in
Figure 3.1. At the left of the figure, is a layer of nodes, labelled the input layer.
Information is presented to the model by "turning on" the appropriate nodes in the input
layer. For example, one stimulus can be represented by the vector, [0 010 1], and
another by the vector [0 1 1 0 0] where O represents a node in the row that is turned off,

and | represents a node that is tumed on. The middle layer of nodes, the hidden layer,
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integrates information from the input layer and passes it to the nodes of the next layer,
the output layer. The pattern of activity in the nodes at the output layer corresponds to the
response associated with the input pattem.

Notice that every node is connected to every node in the adjacent layer. Each
connection is weighted to represent the strength with which one node is connected to the
next. As well, each connection between nodes possesses a connection weight (a random
real number between 0 and 1), so that information that is integrated from the previous
level's nodes will either increase or decrease the receiving node's activation. To derive an
output pattern from an input pattern, the input nodes' activations are multiplied by the
weights connecting them to the hidden layer of nodes. The activations of the nodes at the
next layer, the hidden layer, are calculated as a function of the net activations from all
connection from the previous layer Finally, the activations of the nodes in the output
layer are calculated as a function of the net input to the output nodes from the hidden
nodes.

To work, a neural network must leamn to associate a stimulus (input pattern) to a
response (output pattern). For example, the network could leam to associate a spelling
pattern with a sound pattem. Learning is accomplished by adjusting the connection
weights among the nodes so that when the network is presented with an input pattern, the
appropriate output pattern emerges in the nodes of the output layer.

Leamning is accomplished over several repeated pairings of the input and output
patterns. One pairing of each of the input and output patterns is called an epoch. Prior to
leaming, the network's connection weights are set to random values. When the network
is presented with the first stimulus, the output it generates at the output layer is compared
to the correct response. The connection weights between nodes are adjusted, over several
epochs, to minimise the discrepancy between the network's output and the correct
response. Further, the degree to which the weights are adjusted is a function of how
discrepant the output and correct patterns are—this type of learning is generally referred
to as supervised learning. The network is said to have leamed an association between an

input and output pattern when the discrepancy reaches a predetermined, minimum level.
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The Seidenberg and McClelland (1989) model of word identification
The model of word identification proposed by Seidenberg and McClelland (1989)
is an example of a network similar to the one described above. The model has three
layers of nodes: an input layer, output layer, and an intervening or hidden layer. The
model's knowledge about orthography and phonology is represented in the connections

between an orthographic (input) and phonological (output) layer.

Orthographic Hidden Layer Phonological
Layer Layer

Figure 3.2 Outline of the architecture of Seidenberg and McClelland's (1989} model

Traiming operations.

To train the network on a set of words, Seidenberg and McClelland (1989) used a
supervised leaming algonthm called back-propogation (Rumelhan, Hinton, & Williams,
1986). At the beginning of training, a word's spelling is encoded into to the orthographic
nodes. The activation of the orthographic nodes spreads through the hidden nodes to the
nodes at the phonological layer. A hidden node's activation is a function of the weighted
sum of all the connections that terminate upon it. Seidenberg and McClelland calculate a

hidden node's activation using the formula
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where g is the activation of unit j and net,is the summed influence of node in the

orthographic layer, and is given by the formula

net, = Y, w,a, + bias
J

The bias term treated as an "extra weight or connection to the unit from a special unit that
always has an activation of 1" (Seidenberg & McClelland, 1989, p. 527). Once the
hidden nodes' activations are determined, they produce a feedback pattern oun the
orthographic units and a feedforward pattem on the phonological units using the same
formulae.

The orthographic and phonological patterns produced from the input are
compared to the activation of the correct response using the formula

E=3(t -a,)?
where £ is the measure of error, ¢ is the target activation of node /, and a is the activation
of the ith node in the feedback or feedforward pattern. Over several training cycles, the
connection weights in the network are adjusted to minimise £, or the degree to which the
output of the model mismatches the target orthography and phonology.
Representing orthography and phonology.

Representing orthographic and phonological information in the nodes presented a
special challenge for Seidenberg and McClelland (1989). Intuitively, one might construct
a network wherein 26 nodes, each corresponding to a letter of the alphabet, are used for
the orthographic nodes. Likewise, one could dedicate one node to each phoneme in the
language. Learning a word's pronunciation then, would simply be to associate letter
nodes with phoneme nodes. However, without reference to the spatial arrangement of the
letters, letter nodes for the word tap would be consistent with 1ap, pat, and apt. A similar
problem exists for phonemes without reference to their organisation.

Seidenberg and McClelland solved the relative position problem by making a set
of nodes collectively represent a tri-gram of letters or phonemes. Seidenberg and
McClelland referred to the letter tri-grams as "wickelgrams" and the phoneme tri-grams
as "wickelphones"; collectively referred to as "wickelfeatures" named in honour of

Wickelgren (1969), who proposed the representation scheme. Hence, the word tap, was
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presented to their model by activating the nodes corresponding to _7a, the nodes
corresponding to fap, and the nodes corresponding to ap_ (where _ represents a word
boundary).

Training regime.

Seidenberg and McClelland (1989) trained their model on every one-syllable
word in the Kucera and Francis (1967) words norms that had three or more letters. After
removing proper names, inflected forms of words, and abbreviations from the corpus,
they were left with 2,897 words with which to train the model.

On each training epoch, every word in the corpus had a chance to be selected
from the corpus. The probability a word was sampled from the corpus of words was a

function of its printed frequency as tabulated by the Kucera and Francis (1967) word

norms.

Simulating word recognition tasks.

To simulate word naming, wickelgrams appropnate to the orthography of a word
are activated in the orthographic nodes in the input layer by clamping the appropriate
nodes to an activation of 0.9. Nodes that were not relevant to the orthography were set to
an activation of 0.1. Activation from the orthographic layer spreads through the network
to the wickelphones represented in the phonological layer. Naming latency is estimated
as a function of the difference between the models response in the phonemic nodes at the
output layer and the correct response. Because response time generally increases with the
probability of making an error, Seidenberg and McClelland (1989) reasoned that
response latency could be estimated from the degree to which the model's output
mismatched the correct output. Seidenberg and McClelland assumed that high similarity
between the model's output and the correct response reflected a fast response time and
that low similarity reflected a long, error-prone, response.

The lexical decision task is simulated by comparing the wickelgrams at the input
level with an orthographic output. Similar to the naming task, latency in the lexical
decision is calculated as a function of the discrepancy between the input pattern and the

orthography that is retuned to the orthographic units.
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Problems with the Seidenberg and McClelland (1989) model.

Besner, McCann, Twilley, and Seergobin (1990) criticised Seidenberg and
McClelland's model on the grounds that, while the model seemed to perform well when
asked to read words, it did not read nonwords as well as humans. The failure of the
model to mimic nonword reading in humans led Besner et al. to conclude that a separate
mechanism, one which uses rules for spelling-to-sound translation, is necessary for
pronouncing nonwords.

Seidenberg and McClelland (1990) defended their model by claiming first, that
the model's performance is judged more harshly than human performance, and second,
that its inability to read nonwords well was a consequence of the small training set of
words of approximately 3000 one-syllable words.

Seidenberg and McClelland's (1990) defence of the model is not adequate. Their
model reads nonwords by using word knowledge to generalise to novel stimuli. They
were correct in their claim that the success with which the model can generalise depends
on how much knowledge it possesses. However, regardless of how many words the
model knows, because the model reads nonwords by generalising from words it knows,
the mode! will only be able to read nonwords that contain letter combinations present in
words. For example, there are no one-syllable words that contain the nje tri-gram in the
nonword jinje, hence it is a problematic letter string for the Seidenberg and McClelland
model. In sum, the model's difficulty with nonwords is not merely a function of a lack of
word knowledge; the difficulty is caused by the constraint that the structure of the
mappings between spelling and sound place on generalisation.

Naming latencies in the model are also denved inappropnately. Seidenberg and
McClelland (1989) derived a naming latency from the difference between the model's
response and the correct response. While there is a relationship between response time
and the probability of making an error, response latency is not necessarily a function of
the probability that a subject makes an error. Their method of deriving a response time
ensures that error response time are always slower than correct response times—an
observation that is not always made in data.

Finally, letters are encoded by Seidenberg and McClelland as a spatial

arrangement across a set of orthographic units. While there is nothing inherently wrong
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with supposing that spatally arranged letters are used as a data structure for finding a
word, the psychological reality of wickelgraphs and wickelphones is, as yet,
unestablished. Further, using wickelgraphs lends Seidenberg and McClelland's model to
the same criticism raised for the IAM. Space between letters is not represented, hence,
the model cannot use extra-letter information to derive a response.
The Plaut, Seidenberg, McClelland, & Patterson (1996)
model of word naming

The Seidenberg and McClelland (1989) model was recently improved upon by
Plaut, Seidenberg, McClelland, and Patterson (1996). The new version of the model did
two things that the original model could not. First, the model read words and nonwords

as well as humans can, and second, the model responded tc stimuli in real time.

Orthographic Hidden Layer Phonological
Layer Layer

Figure 3.3 Outline of the architecture of Plaut et al.'s (1996) model. Grouped nodes

represent nodes that are devoted to components of words (i.e., onset, vowel, and
coda).

Plaut et al. (1996) reiterated Seidenberg and McClelland's (1990) claim that the
small training corpus was, in part, responsible for the Seidenberg and McClelland (1989)

model's poor nonword reading performance. Plaut et al. also blamed the use of
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wickelfeatures as the other source of difficulty for nonword reading. They argued that,
the condensing of information using wickelfeatures comes at the cost of other useful
information. For example, consider the letter r in the words rag, grab, and hurt. Each r
must be represented in separate wickelgraphs; hence, the system loses ability to
generalise among the words even though they contain the same letters. Plaut et al.
referred to the loss of information as the dispersion problem. Their solution to the
dispersion problem, was to encode graphemes and phonemes as components of a word:
onset (the first grapheme or phoneme), vowel (the middle grapheme or phoneme) and
coda (the final grapheme or phoneme). Hence the word rag as an input would be
represented as the activation of nodes corresponding to the onset r, the vowel g, and the
coda g. Using the componential representation scheme, Plaut et al. (1996) demonstrated
that the Seidenberg and McClelland (1989) model could read nonwords as well as
humans.

The other problem was the fashion in which a response latency is generated by the
model Recall that Seidenberg and McClelland (1989) compared the discrepancy
between the pattern of activation at the phonological nodes and the correct response to
simulate naming time. Such an estimation of response time is necessary in feed-forward
networks such as Seidenberg and McClelland's because responses are generated by the
model in a single sweep through the system. Plaut et al.'s new model of word naming
using an architecture that allows responses to be generated in real time.

Response latency in the Plaut et al. model.

Unlike Seidenberg and McClelland's (1989) network, in which the nodes of each
layer were connected to every node of the next layer, the phonological nodes in Plaut et
al's model were connected to every other phonological node within the layer. As well,
phonological nodes were connected back to the nodes at the hidden layer (see Figure
3.3).

Response latency was calculated as the number of processing cycles the model
required to settle on a pronunciation for an input pattern. Because the nodes within the
phonological layer were connected to one another, when a phonological node is activated
by the presence of an orthographic pattern on the orthographic nodes, the nodes'

activations are squashed by the activations of neighbouring nodes. Activation from the
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phonological nodes is passed back to the nodes of the hidden layer from where it is
returned to the phonological layer. Response time was estimated as the number of times
the activations of the phonological nodes were updated before the change in their
activation reached a minimum. When the network finishes updating its connection
weights it is said to have settled on an attractor (hence the name, Attractor network).
Plaut et al 's attractor network version of Seidenberg and McClelland's model performed
as well as the original model when it read words and read nonwords about as well as
human subjects. As well, the settling imes of the network mapped closely onto the
latency estimates derived from the feed-forward version of the model.

Problems with the Plaut et al. (1996) model.

Plaut et al.'s (1996) model is clearly a better account of word naming than its
1989 ancestor. However, it is still not without its problems. Each of the model's
problems I will discuss stem from the representational scheme used to represent the
orthography and phonology of the printed word.

Unlike feed-forward networks, like Seidenberg and McClelland's (1989), attractor
networks do not generalise well to new stimuli. They depend on both a familiar input
and output. The componential representation (onset, vowel, and coda) used by Plaut et al.
solved the familiarity problem. While a letter string may be unfamiliar, the components
are likely to be familiar. The componential representation prevents the model from
making lexicalisation errors (e.g., responding with the phonological pattern of the word
porch when presented with the nonword dorch). Componential representation allows the
onsets, vowels, and codas of separate words to combine to form a response.

A word's orthography and phonology, are assumed to be parsed into onset, vowel,
and coda components. The parsing stage that divides a letter string into these components
is unspecified in the model. Plaut et al. (1996) finessed this criticism by claiming that,
with experience, readers gain knowledge about words that allows for a division among
word components.

By using the onset, vowel, coda representational scheme, Plaut et al. cannot
claim, as their 1989 counterpart could, that the model is developmental. In fact, itis
unclear what kind of reader the model is supposed simulate. Componential

representations are assumed to develop in skilled readers. But, if componential
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representations for words are responsible for the success of the model, how are words
represented in the reading systems of beginning readers who do not have enough
knowledge of the language to parse a word into its components? As a consequence of the
componential representation, when model learns a corpus of words, its learning progress
cannot can not be gauged as one would gauge a beginning reader. This is unfortunate,
connectionist models leam over time and are, therefore, good candidates as
developmental models.

Finally, the model is incapable of reading words that have more than the three
components. In fact, it is unclear how additional components would be represented.
Onset and coda components would remain unchanged, but several additional sets of
nodes would need to be created in order to represent the intermediate letters or
graphemes. Ultimately, a set of nodes for each letter or grapheme would need to be
used— a representational scheme similar to the use of letter channels in the IJAM.

The Dual-Route Cascade (DRC) Model

The DRC model (Coltheart, Curtis, Atkins, & Haller, 1993) postulates the
existence of two independent routes to pronunciation in word recognition (Figure 3.4).
The first route, sometimes called the lexical route, looks up a word directly from a mental
lexicon. The speed with which information can be accessed by the lexical route is a
function of the word's familiarity,; words that are highly frequent in text are looked up
more quickly than words that rare by companson. The second route, sometimes called
the nonlexical route, assembles a phonological code on the basis of rules governing
spelling-to-sound correspondence. The speed with which the nonlexical route can
translate a letter string into sounds depends on the length of the letter string. Letter

strings with more words take longer to translate.
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Figure 3.4. The dual-route cascade model of word identification (Arrows denote

excitatory connections and dots denote inhibitory connections).

The most cited evidence for two routes to pronunciation (besides the documented
cases of dyslexia that appear to affect one route or the other) is found in the interaction in
between a word's printed frequency and its compliance to the rules governing speiling to
sound translation (Seidenberg, Waters, Bames, & Tannenhaus, 1984). The interaction is
often referred to as the regularity by frequency mteraction. Words that violate the
spelling-to-sound rules of English (irregular words like wad), are named more slowly
than word that obey them, so called, regular words like bad. The latency disadvantage
for naming irregular words is attributed to conflicting evidence for two potential
pronunciations derived independently from the two routes. The disadvantage, however,
interacts with a word's printed frequency such that, it tends to occur mainly for words
that are relatively unfamiliar to the reader. Words that are highly familiar to the reader,
high-frequency words, are quickly processed by the lexical route without the need for
nonlexical involvement.

Further experimental evidence that is offered for a dual-route reading system is
found in experiments that examine the extent to which a reader can attend to one route
while ignoring the other (e.g., Baluch & Besner, 1991; Monsell et al, 1992; Lupker et

al., 1997). Monsell et al.'s subjects named exception words and nonwords (e.g., dorch)
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embedded in various list structures. When irregular words were presented in a list of
only irregular words, naming latency decreased compared to a list also containing
nonwords. Baluch and Besner reported similar results using Persian words. The pattern
of results was interpreted by both Monsell et al. and Baluch and Besner as evidence that
subjects can strategically ignore the nonlexical route when reading a pure list of irregular
words. Mixing the irregular words and nonwords together preclude subjects from relying
on one strategy for pronunciation. As a result, naming latencies for irregular words are
increased in mixed lists.

Finally, Coltheart and Rastle (1994) demonstrated that the naming advantage for
regular words over irregular words depends on the graphemic position at which the letter
string becomes irregular. They found a greater influence of irregularity on irregular
words whose irregularity was at the beginning of the word (e.g., chef) than words whose
irregularity was at the end of the word (e.g., glow). Coitheart and Rastle claimed that
when the irregulanty is positioned at the end of a word, the lexical route accumulates
most of the evidence for the correct pronunciation of the word before the nonlexical route
translates the final letters. The lexical and nonlexical routes work in tandem to derive a
response; hence, when the nonlexical route begins to translate the deviant phoneme, the
correct pronunciation has been largely retrieved. The opposite is true when the deviant
phoneme is positioned at the beginning of the word. When the irregularity is at the
beginning of a word, the nonlexical route provides early evidence for a pronunciation that
will conflict with the pronunciation derived by the lexical route.

Architecture and operations of the DRC

The lexical route. Coltheart et al. (1993) chose the IAM (McClelland &
Rumelhart, 1981; Rumelhart & McClelland, 1982) to serve as the lexical route and input
system for the DRC model. Like the IAM, input to the system is represented as a set of
features that feeds into letter channels. Coltheart and Rastie (1994) use eight channels
instead of the four used in the IAM. Like the IAM, the letter nodes activate word nodes.
The nodes containing the spelling of the stored words is collectively called the
orthographic lexicon. Each word node's resting activation level is a function of the
word's printed frequency—high-frequency words are more highly activated than

low-frequency words. Each word in the orthographic lexicon is connected to a node in a
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phonological output lexicon that represents the sound pattern for a word. Because the
orthographic and phonological representations, or nodes, are linked, the phonology of a
visually presented word is activated automatically when the word is looked up. When the
phonological pattern of the word has been activated, phoneme nodes at an output level
are activated where they await articulation.

The nonlexical route. The nonlexical route is a collection of rules used to
translate graphemes (letters or letter combinations) into sounds. Rather than building
grapheme-to-phoneme conversion (GPC) rules into the nonlexical route, Coltheart et al.
(1993) allowed the model to discover the rules on its own by exposing it to the spelling
and sound patterns of about 3000 words. Each rule derives a single sound from a
grapheme.

Each time a grapheme is coupled with a single sound, the model includes the
relationship in its rule base and updates its tabulated frequency. The rules are divided
into three general categories: beginning (B), end (E), and medial (M) rules: the first
grapheme of a word is translated to sound by a B rule, the last phoneme is derived by the
E rule, and the phonemes in between are generated by M rules.

Some of the GPC rules are context sensitive. For example, consider the words
ham and harm. The phoneme associated with a is different for each word, and the model
must decide which sound to associate with it. One strategy would be to choose the most
frequent grapheme-phoneme pair (in this case, a's sound in ham). Doing so, however,
would cause every word with the ar letter combination to be pronounced incorrectly.
Coltheart et al. (1993) pointed out that there are 60 instances of ar words in the training
corpus alone. The alternative strategy, was to allow the pronunciation of a to change
when it is followed by an r. Hence, some GPC rules are context sensitive in that
sometimes a letter's pronunciation depends on the letters also contained in the string.

Finally, Coltheart et al. (1993) allow the GPC route to consolidate rules. Recall
that GPC rules are categorised into beginning, end, and medial rules. The GPC route
allows any rule belonging to two categories to be included as an instance of the third.
For example, the grapheme oo can occur as an argument to a medial or end rule in
English words, for example, as in the words pool and igloo. The letter combination, oo

does not occur as an initial grapheme of any word in their training corpus. Consequently,
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a nonword such as oop cannot be translated by the nonlexical route unless oo is also
allowed to be a beginning rule. Consolidating rules, then, allows the GPC route to
translate letter strings containing a beginning letter combinations that did not occur
during training.

How does the nonlexical route use the GPC rules to derive a response?
Translation proceeds in a left-to-right direction starting with the largest multi-letter rule
that maps onto one phoneme (the largest grapheme is four letters in length). If no
applicable rule can be found, the last letter is dropped from consideration and the search
starts over again. The process continues until an applicable rule can be found. Once
found and executed, the process begins again for the untranslated portion of the letter
string.

Output of the DRC. At the output level of the model, the DRC has six phoneme
slots. Each slot represents one phoneme of the word being pronounced. Each slot
contains 44 phoneme nodes. Phonemes are activated one at time as the GPC rules
translate a letter string from left to ight. Phonemes are activated in parallel as the lexical
route cycles to look up the correct pronunciation. To pronounce a word, one phoneme in
each phoneme slot must exceed a criterion level of activation. The nodes within each slot

are mutually inhibitory, hence, two nodes competing for activation will slow the increase
in activation for the more active phoneme.

The tasks

The naming task. To name a word, the lexical and nonlexical route operate in
parallel to derive a response. Because the two route operate together, the output of both
routes simultaneously affect the activation of nodes in the phoneme system.

When the DRC names a regular word, the lexical and nonlexical route provide the
phoneme system with the same phonological information. When a word is irregular,
however, the lexical and nonlexical routes provide divergent evidence for a phoneme's
pronunciation. When the two routes yield different output, the phoneme corresponding
to the irregular phoneme in the phoneme system is prevented from reaching criterion.
The phonemic activation created by the lexical route is, of course, the correct response
When a phoneme's activation is held below its criterion value because of competition, the

DRC allows the lexical route to continue cycling to help all the phonemes reach criterion.



25

Hence, the naming disadvantage for irregular words reflects the additional work that the
lexical route must do to bring the correct phonemes to their criterial activation.

Sometimes the nonlexical route will bring the phonemes in each slot to their
critical activation before the lexical route has had much chance to influence phoneme
activation. When the nonlexical route brings all the phonemes to criterion prematurely,
the model makes a regularisation error, that is, it pronounces a word like wad to rhyme
with bad.

Nonwords are read easily by the DRC. When the model is presented with a list of
nonword, the GPC rules of the nonlexical route translate the letter string's spelling into
sound.

The lexical decision task. The DRC simulates the lexical decision task (deciding
whether a letter string is a word) by searching for a letter string in the orthographic
lexicon that matches the input letter sting. The search continues until the word's node
activation reaches threshold, or until a deadline has been met. If a word node reaches
threshold, the model responds, "yes" The time limit for the search, expressed in the IAM
component's cycles, is imposed on the model such that if no word node reaches the
critical activation level after the deadline, the model responds "no". The deadline for

search is adjusted from trial to tnal to ensure varnability on the finishing times for lexical

decisions.

Problems with the DRC

Dual-route theories of word identification hold a privileged spot in word
recognition research. In fact, competing models have done little more than show that
they are at least as good as the dual-route model. However, the DRC inherits a flaw from
the IAM By building the DRC around the IAM, the DRC inherits the [AM's flawed
representation of space.

To the further detnment of the dual-route model, the interaction between word
frequency and spelling-to-sound regulanty in the naming task can also be simulated by
connectionist models (e.g., Seidenberg & McClelland, 1989, Plaut, et al., 1996).
Connectionist models account for the interaction between a word's frequency and
phonological regularity using a single mechanism that translates spelling to sound.

The positional sensitivity of regularity effects documented by Coltheart and
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Rastle (1994) would appear problematic for connectionist models of word recognition—
how would a model that operates in parallel mimic sequential effects? Plaut et al. (1996)
claimed that the sensitivity to positional irregularity is likely due to the number of words
that share the irregularity at each of the positions. They claimed that more words share
the same letters with a regular pronunciation at the beginning of the word than at the end
of the word. As a demonstration, Plaut et al. showed that their connectionist model
yielded the same pattern of naming times as the DRC simulation.

The necessity of a GPC route is questionable. I concede that the nonlexical route
is likely essential for the beginning reader learning how to attach sounds to the letters of
novel words. However, the skilled reader has tens of thousands of words in her lexicon
from which to generate a viable pronunciation of a novel word or nonword. A new
word's pronunciation can be derived by analogy to words that the reader in already knows
(Glushko, 1979). The ability of generalising to new stimuli is a strength of the
connectionist models because they read both known and novel stimuli by analogy.

The final cnticism considers the relative time course required for direct retrieval
from the lexicon and the algonthmic translation of a stimulus to a response. Readingisa
rapid, highly-learned activity. Theories of automaticity suggest that the use of algorithms
to denve a response is generally required to process novel information. Once the input
and output are familiar, a response can retrieved from memory automatically (e.g.,
Logan, 1988). Considenng the skill that people have generalising to stimuli that are
similar to learned matenial, it seems unlikely that an algorithmic route to pronunciation is
an efficient strategy for a skilled reader. The criticism is especially salient given that the

DRC applies the GPC rules on a trial-and-error basis. Applying the GPC rules on a trial

and error basis should take a long time.
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Chapter 4 : A New Approach to Word Identification

In this section I will make three arguments. First, I will argue that word
identification or lexical access is more reasonably considered an example of retrieval
from memory rather than an operation of looking up a word in the mental lexicon. I will
also outline a computational model of memory based heavily on Minerva2 (Hintzman,
1984: 1988) that can be adapted to serve as a lexical memorv system Second, I will
argue that the research in tachistoscopic letter research provides evidence that a
non-spatial organisation of letters is required for lexical access. Finally, I will argue that
retrieval of a word from memory is constrained by the organisation of the data that is
used as a retrieval cue.

Word identification is a form of memory retrieval

The two principle tasks used by reading researchers, the naming and lexical
decision tasks, can be viewed as modifications of cued recall and recognition memory
tasks In cued recall, a subject might learn a list of associated items, for example, dog -
a, cat - g, etc. After leamning, a subject is shown one member of the pair as a retrieval
cue like dog, and asked to report its associate, a. Similarly, in the naming task, a printed
string of letters can be viewed as a cue for the recall of the word's associated phonology.
In the recognition memory task, a subject learns a list of items (usually words). After
learning, the subject is shown items one at a time and asked to respond "yes" if that item
was in the study set, and "no" if the item was not. In the same way for the lexical
decision task, the subject must decide whether a letter string is among the letter strings
stored in the reader's memory / lexicon. The only distinction between reading
experiments and typical memory experiments is the type of memory that the tasks
use—memory experiments test subjects' knowledge for what they remember; reading
experiments test subjects' knowledge for what they know

A memory retrieval approach to reading runs counter to one widely held
assumption regarding lexical access. In the IAM (Rumelhart & McClelland, 1981), and
DRC model of word identification (Coltheart et al., 1993), words are stored as

independent nodes that are activated when the appropriate feature and letter detectors



28

have been excited. Similarly in the connectionist models, nodes devoted to word
components are activated when the right input is presented to the models. Each class of
model treats the lexicon as a content addressable system. That is, lexical access involves
finding a stored word's address(es). By contrast, when reading is considered a problem
of memory retneval, lexical access involves asking the memory system to return
evidence that a particular word is in memory (c.f., Ratcliff, 1978). The distinction
between the two approaches is that by accumulating evidence for a word's presence in the
lexicon, the system is not obliged to actually find the word.

A strength of connectionist models is their ability to use stored information to
create a response to novel inputs. Responses to learned and novel stimuli are based on a
weighted combination of the neural connections representing the items that the system
has leamned. Put other way, responses are made by averaging the data contained in the
system. Data averaging is also a common method of retrieving information from
computational memory model such as Minerva2 (Hintzman, 1984). While I agree that
extracting information from memory is done by averaging the data in the system, a
memory retrieval account of lexical access differs from a connectionist account in one
important way. In a connectionist model, the data to be averaged are the mappings
between the input and output patterns it has learned. By contrast, a model like Minerva2
does not store mappings—it stores the input and output patterns in memory. Hence, a
retrieval account of word identification, while not entirely inconsistent with connectionist
notions of data averaging, assumes that the averaging is done on materials the model
knows, not on mapping relationships that have been learned.

Most importantly, treating reading as memory retrieval challenges current ideas
about what skilled reading actually is. Current models of word identification generally
assume that reading a word aloud requires deriving sounds from letters. That is, letters
are treated as graphic representations of sound patterns, and the reader must decode
letters into the sounds they represent. I argued earlier that the naming task is a special
example of the cued recall task; the letters of a word serve as a retrieval cue for the
phonology of the word What does this mean to the notion that a word's pronunciation is
derived from print? Recall the example I used above where, given the retrieval cue, dog,

the subject is required to report the associate, a . The response, a, cannot be derived from
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the cue. The a is retrieved from memory because, when the subject retrieves dog from
memory, its associated information is also retrieved. Both objects are part of the same
memory trace. Extending the idea to word identification, the phonology of a word is not
derived from the letters of the word. A word's orthography and phonology are simply
associated within one lexical entry. Reading a word aloud involves retrieving a match for
the cue (i.e., the letters) from memory. When the cue has been retrieved, so has its
associated information, (i.e., the word's phonology). In sum, we do not translate letters
into the sounds they represent (indeed, letters are not graphical representations of
sounds), phonological information falls out of memory when we retrieve a match to the
cue.

Starting with the notion that reading is a memory problem, [ used a global
memory model to serve as an architecture in constructing a working mode! of word
recognition. I chose to adopt a basic architecture similar to Hintzman's (1984, 1988)
Minerva2 global memory model.

A Simple Memory Model

[ can represent an experience or memory trace in 2 model as a vector of features.
In the example here, I will represent the features as random integers between -1, and +1.
A +1 may represent the presence of a feature, and -1 the absence of a feature. Traces are
stored separately to form a matrix. To retrieve information, a probe, also represented as a
vector of features, "resonates" with each memory trace. The similarity between the probe
and memory trace is calculated by the formula:

2. P T,

Where S is the similarity of trace / to the probe. N is the number of pairs of features
being compared. P, represents the jth feature of the probe, and 7, represents the jth
feature of the ith memory trace. Each trace is activated by or resonates with the probe as

non-linear function of its similarity. In Minerva2, for example, activation (4) of a trace
is measured as:
4,=5
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To retrieve an item from memory, the features of each trace are multiplied by its activation
and summed across traces using the formula:

E;j=2 AixT,,

The final formula yields a vector that is a noisy composite of the probe vector. Hintzman
(1984; 1988) refers to this composite vector as the echo content from memory (I will also

adopt the term echo content later to describe the output from the lexicon).

dog

-1+1-1-1 0 41 -1 41 A

cat

+1-1-1+1 -1-141 41 |R

e T B I e B A N I

Figure 4.1 Three paired associates stored as a matrix of binary features. The first four

teatures of a trace represent a word. The last four features represent its associated
letter.

A convenient property of the model is that a trace can be subdivided to represent
several dimensions of an item. For example, half of the features of a wace might represent
a word, and the other half may correspond to an associated letter. Subdividing a vector
allows the model to simulate cued recall. Consider the example where the model leamns

three associate pairs: dog - a, cat - r, ant - y. Each pair would be represented as a



representation of the items in matrix form. When the model is probed with a vector
containing the features of the word dog, it retrieves dog and its associate, a, by
calculating trace activation from the similarity of the probe to the corresponding features
of each trace. Each feature of the trace is multiplied by the trace's activation (Figure 4.2).
When the activated features of the traces are summed, a composite vector representing
DOG and A are contained in the echo content (Figure 4.3).

The model I describe in the chapter S uses an adaptation of the above model as a
lexical memory system. As in the paired associate learning example above, each memory
trace represents a word in memory Half of the features of each trace represent the
speliing or orthography of the word. The remaining features represent the word's
phonology. Presumably, we could further subdivide a word's vector representation to

include features relevant to the motor commands required to pronounce a word, or even a

100{-100100 -100 -100 100 -100 100 -100

-012(-012 012 012 -012 012 012 -012 -0 12

012{-012 012 -012 012 012 -012 -012 012

[ 1
aal 1 +1 -1 -1

Figure 4.2 The same items as in Figure 4.1 after they have been activated by the

features of the word dog as a probe. The numbers down the left side of the figure are
the activations of each trace.
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featural representation of meaning. In this thesis, however, we limit the lexicon's

information to orthography and phonology because the scope of the thesis does not

include an account of phenomena related to research in speech production or semantics.
Letters require encoding prior to lexical access

Current models of word recognition are mute with respect mechanisms involved
in letter encoding. In fact, letter encoding is a stage in the reading process that is rarely
considered. Much of the early work on letter encoding was done using tachistoscopic
letter identitication experiments. Out of this research, Mewhort and his associates (e.g.,
Mewhort, 1974; Mewhort & Campbell, 1981; Mewhort & Beal, 1977, Feldman-Stewart,
1992) proposed a theory for the initial stages of word recognition.

In their experiments (e.g., Mewhort & Comett, 1972) subjects were briefly shown
letter strings and asked to report as many letters as possible. Subjects typically showed a
strong familiarity effect such that they could report more letters from a display that
closely resembled a word (e.g., POLICKET) than one that did not (e.g., PRGEIDE).
Further, and most importantly, report typically followed a left to nght order Mewhort
(1974) postulated that the tendency towards a left-nght report was the result of a
mechanism, the scan, that loaded a short-term memory buffer with the letters of a string
in a beginning-to-end order.

To explore the notion of scanning, Mewhort (1974) used a sequential presentation
technique to gauge the familiarity effect and tendency for left-to-right report. Mewhort
presented eight-letter pseudowords, one letter at a ime, in either a left-to-right or
nght-to-left direction across the display screen and varied the intra-letter interval (ILI).
He also presented the pseudowords in forward (e.g., POLICKET) or reversed spelling
(e.g., TEKCILOP). When pseudowords were presented from left-to-right, subjects
reported the letters in a left to right order regardless of the ILI. When the pseudowords
were presented from right-to-left, subjects reported the letters from left-to-right at
extremely short [LIs, and at long ILI's, the order of report matched the order of arrival on
the display. The tamilianty effect also depended upon the direction of presentation and
ILI. Subjects showed a strong familianty effect for forward-printed pseudowords at all
ILI's when presented from left to right. When these pseudowords were presented from

right to left, however, there was a familianity effect at only the shortest ILI's. Reversed
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pseudowords exhibited a familiarity effect only when presented from right to left at the
longest ILI's. Taken together, the pattern suggested that the familiarity effect depended

on a beginning-to-end encoding, or ordenng, of the letters.

100{-100100 -100 -100 100 -1.00 100 -1.04

-012(.012 012 012 -012 012 012 -012 -012

0.12/-012 012 -012 012 012 -012 -012 012

AL N T O

-124124 -1.00-1.00 124 -1.00 0.76 -1.00

Echo Content

Figure 4.3 When features are summed across the activated traces, an echo content is
created.

When a sequential presentation is rapid (e.g., a 10 ms ILI), the scan can proceed
without disruption regardless of the direction of presentation; that is, all the letters are
scanned into the short-term memory buffer. When the transfer is disrupted by a slow
sequential presentation, the order of report is forced to reflect the order of ammval on the
display.

To corroborate the notion that scanning is an obligatory part of identifying a
word, Mewhort and Beal (1977) repeated Mewhort's (1974) sequential paradigm using
eight-letter words. They found that the probability of identifying a word in the task
mapped closely onto the size of the familiarity effect using pseudowords (n.b. Mewhort,

1974). In sum, word identification requires the ordering of the letters from beginning to

end.
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From these data, Mewhort and Campbell (1981) postulated a model for the initial
stages of word identification called the Dual-buffer Model. According to Mewhort &
Campbell (1981; see Feldman-Stewart, 1992 for a formal account) the raw features of
letters are stored in a feature buffer upon presentation of a string of letters. Letters are
identified in parallel from the features and stored as spatially arranged abstract forms in a
labile storage mechanism called the character buffer. From the character buffer, the scan
loads the letters into a temporal buffer where they can be rehearsed and/or chunked. The
order of enceding is determined by the direction in which a language is written. Hence,
encoding proceeds in a left to right direction for words made up of Roman characters,
and the opposite for the letters of a language, such as Hebrew, that is read from right to
left (Butler, Tramer, & Mewhort, 1985).

Ordering letters prior to lexical access solves a problem common to several
formal models of word recognition. As I discussed above, several models have difficulty
representing the spatial arrangement of the letters in a word (e.g., Coltheart et al., 1993,
McClelland & Rumelhart, 1981, Seidenberg & McClelland, 1989; Johnson & Pugh,
1994, Mozer, 1991). For example, consider a model wherein the word pat is represented
by the activation of nodes corresponding to the letters p, a, and . Without reference to
their spatial organisation, the letters are consistent with the spelling of the words pat, tap,
and apt. In the previous chapters, I outlined some solutions to this problem (i.e.,
wickelfeatures, componential representation, and letter channels). I also mentioned earlier
that there is no evidence for the psychological reality of any of these representation
schemes. It is therefore unclear whether they offer a reasonable solution to the problems
associated with representing spatial organisation within a letter string—especially when
successful word recognition depends on them. On the other hand, if letters are converted
into a list by the scan, space is not an issue.

A version of Mewhort's dual-buffer model, the Letter Processing System (LEPS),
was recently formalised by Feldman-Stewart (1992). LEPS, illustrated in Figure 4.4,
begins at an artificial retina and terminates at the level where identified characters are
stored in the character buffer. My model of lexical access uses LEPS as a front end. That
is, the output of LEPS is used as the input to my model. Using LEPS as a front end to

my model is desirable for two reasons. First, [ assume that research in psychology is
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cumulative; models of higher processes can be built on top of existing models of lower
processes. Second, because LEPS begins its processing at an artificial retina, adding a

retrieval system for lexical information provides a fairly complete account of lexical

access.

Character Buffer

Character Character
Locator Identifier

Feature Buffer

! !
Artificial Retina

Figure 4.4 Sketch of Feldman-Stewart's (1992) model of letter identification (LEPS)

Processes in letter encoding determine the mode of lexical access

[ use abstract letter identities as a retrieval cue or probe for the words stored in
memory. The notion that encoded letters are ordered raises an interesting issue for
retrieval. Current models of word identification are built on the premise that lexical
access is an example of parallel processing. In one sense of the term paralle! processing,
the models assume that the letters of a word are processed simultaneously during lexical
access. A model that embodies the assumption of paraliel processing must use an input
representation that is amenable to parallel processing. Hence, choosing wickelfeatures
(e.g., Seidenberg & McClelland, 1989), letter channels (e.g., McClelland & Rumelhart,
1981) or word components (Plaut et al., 1996) as input representations is a consequence

of the theoretical framework in which the model was constructed.
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I take a different view of model building as it relates to the choice of input
representation. Instead of choosing an input representation that is amenable to
assumptions about how lexical access occurs, I argue that one must choose a strategy for
lexical access that is amenable to the organisation of the letters that are used as an input.
When we have an idea of how identified letters are organised, we can begin to consider
how, given the organisation, information is extracted from the lexicon. Because we have
evidence that a list of letters is used for lexical access, I chose an retrieval method that
capitalises on the order of the letters within the list. Specifically, [ assume that lexical
access starts with the lefimost letter of the list and proceeds down the list until the last

letter has been retrieved from the lexicon.
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Chapter 5 : The Theory "LEX"

In what follows I describe the details of the model. Itis illustrated in Figure 5.1.
I treat word 1dentification as a three-stage process. At the first stage, the characters of the
display are identified. At the second stage, identified characters serve as a cue for the
retrieval of lexical information from lexical memory. The final stage constitutes the
generation of a response based on the information that has been retrieved When LEX
names a word, I assume that the quality of retrieved phonological information dictates
when articulation will begin. When LEX decides on the lexical status of a letter string in
the lexical decision task, the quality of the orthographic information retrieved from the
lexicon determines the speed of the response, and whether LEX will be biased to accept a

letter string as a word, or reject it as a nonword.
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Figure 5.1 . Basic architecture of LEX.

LEX embodies the second and third stages of the word identification process.

That is, letter identification has already occurred prior to the point at which LEX starts
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processing. For a detailed description of the model I have chosen as a letter identification
system, see Feldman-Stewart (1992).
An informal description of LEX

Before I give a detailed account of how LEX works, I will give a verbal
description of how LEX names words and makes lexical decisions. When a printed word
is presented to a reader, its letters are identified and stored as a spatial array in the
character buffer (Feldman-Stewart, 1992; Mewhort & Campbell, 1981). From the
character buffer, a scanning mechanism copies the contents of the character buffer into a
temporal buffer. The scan copies the letters one at a time beginning with the first letter.
The letters in the temporal buffer are stored as a temporal array, or a list, where they are
used as a cue for retrieving a word from the lexicon.

To retrieve a word, LEX uses the list structure to guide retrieval. That is,
retrieval begins with the first letter in the list. The first letter in the temporal buffer
resonates with, or activates, the orthography and phonology of all the words in the
lexicon to actuvate them. Because a word's orthography and phonology are part of the
same memory trace in LEX, both dimensions of the word resonate with the probe. If the
probe letter matches the first letter of a word in the lexicon, its activation is higher than if
the letters mismatch. The magnitude of the word's activation also depends on the printed
frequency of the word such that high-frequency words are more highly activated by the
probe than low-frequency words. Once all the words in the lexicon are activated, the
model can retrieve the information from the lexicon. One way to retrieve the information
would be to collapse across all the words in the lexicon to yield a composite, or facsimile,
of the target letter—the same retrieval operation I described in the section 4 Simple
Memory Model in Chapter 4 wherein an echo content is created. Unfortunately, a
retrieval method identical to the one described in Chapter 4 does not work. There are so
many words in the lexicon that if LEX collapses across all the traces to find the first
letter, all it retrieves is noise. The alternative is to implement the strategy embodied by
other models of memory retrieval (e.g., Ratcliff, 1978). Specifically, LEX accumulates

evidence for the target letter's presence in the lexicon over a series of time steps.
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At each time step, LEX samples a handful of words from the lexicon at random.
Each time a sample is taken, the echo content for the sample is copied into two buffers.
The part of the echo content corresponding to the orthographic information within the
sample is copied into an orthographic buffer, and the part corresponding to phonology is
copied into a phonological buffer. For each sample, LEX measures how much the
contents of the orthographic buffer have changed from the previous sample. When the
change between samples reaches a criterion minimum, the search for the target letter is
terminated.

If LEX finds the correct letter, it proceeds to retrieve the next one. After LEX
has retrieved the first letter, it knows two things: what letter the target word begins with,
and also what words the target cannot be. In other words, LEX uses both positive and
negative evidence to find a word. For example, if LEX retrieved the letter ¢ in the first
position, it knows that the target word cannot be the word apple, but could be any word
that starts with ¢. LEX uses negative evidence by adjusting its search space to include
only words whose spelling is consistent with the identified letters of the probe. In other
words, it adjusts a cohort of candidate matches to the probe. For example, after LEX
retrieves the ¢ of the word cat, it adjusts the cohort of candidate words to include only
words that begin with the letter c.

LEX continues sampling and adjusting the cohort until it has retrieved the final
character in the TB, the space character However, sometimes retrieval fails and LEX
settles on the wrong letter. Retrieval failure happens for two reasons: a letter may be
retrieved incorrectly, or a letter of the probe might belong to a word that LEX does not
know. In either case, LEX readjusts its search space and tries to retrieve the letter a
second time. To readjust the search space, LEX drops the first letter of the probe so that
it no longer resonates with the words in the lexicon. For example, if LEX failed to
correctly retrieve the letter ¢ of cay, it did so in a cohort containing only words that begin
with ca. Following the failure, LEX would release the letter ¢ from the probe leaving
only the letter a to resonate with the words in the lexicon. Now, LEX would search for
the letter ¢ in a cohort of words that have the letter a as a second character. LEX usually

requires only one cohort readjustment after a retrieval failure. However, if it does
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experience another failure, the next letter is dropped from the probe to further aid
retrieval.

After LEX finishes retrieving the last character (the space character), the
orthographic and phonological buffers contain features that correspond to the
orthography and phonology of the letter string, respectively. It is important to note that
retrieval is guided entirely by orthography—phonological information simply falls out of
the lexicon as orthographic information is retrieved. Phonology falls out because it is
part of the same memory trace as the orthography.

Once LEX has finished retrieving the letters, it can either name the word aloud or
decide on its lexical status. When LEX names a word, the time required to begin
pronunciation depends on how clear the phonemes in the phonological buffer are. If,
dunng sampling, the phonemes of many words with irrelevant phonemes are included in
the phonological buffer, the clarity of the phonology in the buffer is compromised. The
less clear the phonemes are, the longer it takes to initiate pronunciation. When LEX
makes a lexical decision, it evaluates how closely the contents of the orthographic buffer
match the probe letters in the temporal buffer. If the contents of the two buffers are
similar enough, LEX is biased to respond that the retrieved orthography is that of a word.
If the similanty between the two buffers is low (as is the case after retrieval failures)
LEX is biased to respond that the retrieved orthography is a nonword.

LEX's response time is calculated as the sum of two values. In the naming task, [
sum the number of time steps, or samples, required to retrieve the orthography and the
time required to initiate pronunciation. The time required to initiate pronunciation is
taken as the time required to build a motor program to pronounce the blurriest phoneme.
In the lexical decision task, I sum the number of required samples and the time it takes to
decide on the letter string's lexical status. The time required to make the decision is taken
as the finishing time of a standard two-choice evidence accumulation mechanism

(Ratcliff, 1978).

Formal description of LEX
Knowledge

Creating a model of skilled reading based on the principles outlined in the

previous chapter, required that I represent far more lexical knowledge than the few
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thousand words found in many current models. LEX knows the orthography and
phonology of about 103,000 types. I used the Carnegie-Melon Pronunciation Dictionary
(Weide, 1995) to serve as a lexicon. At first glance, 103,000 words might seem like too
much knowledge (many compact dictionaries have less than half that number of entries,
and, I imagine, few know the definitions of all the words contained in them). However,
like humans, LEX knows several first names, sumames, street names, profanities, and
expletives not found in a standard dictionary. Second, the model treats the affixed forms
of a word as separate entries. For example, the vanious forms of the word understand,
(i.e., misunderstand, understanding, understandable) are represented separately. Hence,
the large number of lexical entries in the model is not unrealistic.

Representation

The basic units of representation in LEX are letters and phonemes. Each of the
27 letters (the space character delineating the end of a word is treated as a letter) and 40
phonemes (the fortieth phoneme is a null phoneme which also serves as a word delimiter.
See appendix A for a listing of phonemes) are represented as a vector of 50 features.
Features are random integers of -1's and +1's sampled from a rectangular distribution.
LEX represents letters and phonemes as abstract identities in the sense that the features
do not correspond to physical characteristics of the characters or phonemes.

A word's spelling patterns is represented in LEX by concatenating the letter
vectors that spell the word. As well, the phonology of a word is created by concatenating
the appropriate phoneme vectors. Each word is stored separately and contained within a
1800-feature vector. The vector can handle a word that has up to 18 letters or phonemes.
The first 9500 features of the word vector store the word's orthography. I refer to this half
as the orthographic field of the word. The phonological field of the word, the final 900
features contains phonology of the word.

Each word is left-justified in its field. That is, the first letter and the first phoneme

are placed in the first position of their appropriate fields. The final character of every
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word is the space character, and the final phoneme of every word is the null phoneme.
To maintain equal dimensionality across all lexical entries, letter positions in the
orthographic field not containing a character are assigned vectors of zeros, and phoneme
positions in the phonological field not containing a phoneme are assigned a null phoneme
vector.

LEX is a multiple-trace model—the number of instances of a particular word in
its lexicon is a function of the frequency with which the word occurs in text. For
example, LEX has more instances of the word rhe in the lexicon than instances of the
word apt. [ truncate the natural logarithm of the sum of one and a word's frequency (as
tabulated by Kucera and Francis, 1967) as the number of instances for any word.
Storage Mechanisms

In addition to the lexicon, LEX has three short-term memory buffers, each of
which is represented as a 900-feature vector. The temporal buffer (TB) receives the
characters that have been scanned from the character buffer of the letter identification
module (Feldman-Stewart, 1992). Whereas the characters in the character buffer are
stored spatially, the characters in the temporal buffer are stored in a first-to-last order and
used as a retrieval cue, or probe, for retrieving a word from the lexicon. The
orthographic (OB) and phonological buffers (PB) store the orthographic and
phonological information that is retrieved from the lexicon.

Retrieving information from the lexicon

Activation. LEX's retrieval operations begin where Mewhort and Campbell's
(1981) dual-buffer model and LEPS (Feldman-Stewart, 1992) terminates. The output of
LEPS is a spatial array of letters stored in a character buffer. From the character buffer,
LEX scans the characters to the TB. The scan orders the characters from
beginning-to-end.

LEX uses the order of the letters to guide lexical search. That s, lexical access
begins with a search of the lexicon for a match to the first letter of the probe, and
terminates with the retrieval of the last letter (always a space character). Every lexical
entry is activated by the probe letter. The degree to which a lexical entry, L, is activated,
A, by the probe letter, P, is a function of the similarity between the lexical entry's

corresponding letter to the probe letter and its frequency. To get an activation value for a
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lexical entry, the measure of similarity is raised to the third power and multiplied by a
number that is a function of the word's printed frequency (F) according to the Kucera and
Francis (1967) word norms. Raising the similarity to the third power serves to accentuate

the degree to which the activation of similar and non-similar letters resonate with the

probe letter.

($s)

A, = 55— | xIn(1+P)

Where j indicates the jth feature of the letter's vector, and N indicates the number of
features in a letter.

Words containing the matching letter will be activated more highly than any other
lexical entry. Feature values of vectors for words not containing the matching letter are
pushed below a minimum value of 1. It is important to note, that a probe letter activates
whole words, not just the characters at the letter position at which it is searching. For
example, whole instances of the words car and core will be activated by the letter C when
1t is used to search for the first letter of the word cat.

Rerrieval. After the entries in the lexicon have been activated, LEX can begin
retrieving information. Retrieving information from the lexicon takes time. Following
random walk theory (e.g., Ratcliff, 1978), retrieval in LEX involves the gradual
accumulation of evidence for an item's presence in memory. Random walk theories
measures the accumulation of evidence over time. LEX uses a sampling method for
retrieval that is an instantiation of what random walk theories simulate. Retrieval in LEX
ts the gradual accumulation of evidence that the probe letter is present in memory. To
accumulate evidence, LEX repeatedly samples available lexical information against a
background of noise from words in the lexicon.

The probability of including any one word in a sample is a function of the word's

frequency. Specifically, the probability of sampling any word is given by the formula:
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Where In(1+F), is one plus the natural logarithm of word /s printed frequency as
calculated by Kucera and Francis (1967). The denominator of the equation is the sum of
In(1+FY) across all words in the lexicon that are available for sampling. On each sample,
or processing cycle, a composite vector, or echo content, is created from the words in the
sample. The echo content is created in the same way as [ described in Chapter 4. First,
the features of each word in the sample are weighted by their activations. The echo
content is created by summing corresponding features across the traces in the sample.
The first 900 features of the echo content are copied into the OB. The final 900 features

are copied into the PB. The formula for creating the echo content is

E =X A xL,

7=l

Where EJ is the jth feature of the echo content, 4, is the activation of the ith word, L, in
the sample. In the simulations to follow, I used a sample size of 100 items. Smaller
sample sizes tended to result in a speed-accuracy trade-off, and larger sample sizes
introduced too much noise to the echo content.

LEX stops sampling the lexicon for a match to the probe when it settles on a
letter. On each cycle during sampling, LEX calculates how much the contents of the OB
have changed from the previous cycle. The change is measured only for the features of
the OB that correspond to the position of the probe letter. For example, if LEX is
probing the lexicon with the first letter in the TB, the change in the features of the first
letter position in the OB is measured. LEX is considered to have settled on a letter when
the difference in the correlation, as measured by Pearson's r, between the OB's features
on cycle N and cycle N-1 reaches a minimum (a parameter of the model I set to 0.0008).

It is worth restating that the decision to stop sampling is made on the basis of how
a letter vector in the OB changes on successive cycles, not on how similar the cue letter
in the TB is to the echo content in the OB on successive cycles. LEX always settles on a

letter; whether the correct letter has been retrieved is determined after the system settles.



45

After LEX stops sampling, the features in the OB corresponding to the retrieved
letter are compared to the probe letter. LEX has settled on the correct letter if the
correlation between the features of the OB and TB is higher than the correlation between
the features of the OB and any other letter.

If LEX settles on the correct letter, the search space for the next probe letter is
redefined by excluding the words that failed to match the retrieved letter. For example,
finding an ¢ for the first letter precludes any words not starting with ¢ from the search
space when LEX searches for the next letter. The search space is consistently readjusted
untl the final character, always the space character, is retrieved. In other words, at each
letter, LEX defines a new cohort of candidate words

I borrowed the idea of reducing a cohort of candidate words from
Marslen-Wilson's (1984) model of auditory word identification. He proposed on-line
processing while listening to a spoken word. The processing narrows the range of
possible words in real time as phonemes are delivered to the listener. Hence, the listener
may know the meaning of the word before the utterance is complete. LEX performs a
similar operation on the letters of a visually presented word.

My retnieval method can be justified on two grounds. First, I use sampling during
retrieval to acknowledge that the adult's lexicon is large; so large that readers cannot
think about all the words they know simultarieously. Second, cohort reduction
acknowledges that the system can use both positive and negative evidence to identify a
word. Retnieval starts with a small amount of evidence about the word's identity, but the
same information provides strong evidence for what the word cannot be. If the first letter
retrieved from the system is ¢, for example, there are a large number of words consistent
with that fact. But, itis also clear that the target word cannot be the word apple or any
other word that does not start with c.

The use of negative evidence in recognition has recently been studied by Mewhort
and Johns (in press). They report several examples in which subjects use negative
evidence to drive a response in a recognition memory task. For example, test items that

contain a feature novel to the study set are easy to identify as new items in a recognition

memory task.
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When Retrieval Fails. When LEX retrieves the wrong letter it adjusts the cohort
to make re-identifying the missed letter easier. LEX adjusts the cohort by excluding the
first letter from the probe. When the first letter has been eliminated from the probe, the
letter no longer resonates with the words in the lexicon. Lexical entries that were
previously excluded from the cohort of candidate words become reinstated because they
share letters with the remaining letters in the OB. If retrieval fails again, the next letter in
the probe is eliminated. For example, suppose LEX mis-identified the ¢ of the word, carr
as an s, thatis, LEX settled on cars. In trying to find ¢, LEX used a search space
containing words with ¢, a, and r as the first letters. To try again on ¢, ¢ is dropped from
the letters of the probe. Now, any word with ar as the second and third characters are
contained within the search space. If LEX fails again, the a is dropped leaving only
words with an r in the third position.

When a letter is dropped from the probe, the letter in the corresponding position
in the OB is ignored when the echo content is copied into the OB. The OB is a
short-term memory buffer. Because the features of the first letter in the OB are no longer
being reinforced by retrieval, I assume that its features decay mildly over successive
samples. To simulate decay, I subtract a random value, taken from a rectangular
distribution ranging from 0 to 0.1, from each feature of the ignored letter in the OB.
However, the decay is mild, hence, there is no danger that the identity of the first letter
will be lost by the time LEX retrieves the final letter. Introducing decay to the unprobed
letters was also motivated by the finding that the word frequency effect in the lexical
decision tends to be larger than in the naming task. In LEX, retneval from the lexicon is
a common stage to both the naming and lexical decision tasks. Hence, for LEX, the
greater frequency effect in lexical decision reflects a difference in how much the
retrieved orthography of a high- or low-frequency word resembles the probe letters in the
temporal buffer. Whereas the retrieved orthography of a high-frequency word already
tends to resemble the probe letters more closely the retrieved orthography of a
low-frequency word does, the mild decay on the unprobed letters serves to accentuate the
difference.

Retrieval failure also forces LEX to adjust the how phonemes are copied into the

PB. If after adjusting the cohort, LEX continued to copy all the features of the echo
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content into the PB, phonemes in the beginning positions in the PB would be overwritten
by those from irrelevant words in the echo content. Instead, LEX treats the first phoneme
in the PB as correct and ignores the features corresponding to the first phoneme in the
echo content when it copies the echo content into the PB.

How does LEX know where to begin copying phonemes into the PB when
retrieval fails? There are two possibilities. If the second phoneme in the PB has near
perfect clarity, LEX continues copying phonemes at the second phoneme. If, on the
other hand, the second phoneme is not near perfect, LEX continues copying phonemes
from the echo content at the phoneme preceding the blurnest phoneme. Why the two
different strategies? The clanty of the phonemes after retrieval is higher when LEX
reads words than when it reads nonwords. Hence, if after retrieval failure, the second
phoneme is pristine, LEX has evidence that the letter string it is reading is a word and, as
such, producing a pronunciation by analogy from the second phoneme will yield an
accurate pronunciation. On the other hand, if the second phoneme is not near perfect,
LEX has some evidence that the letter string is a nonword. If LEX has some evidence
that the letter string is a nonword, new phonemes can be copied into the PB wherever the
clarity of the blurriest phoneme can be increased.

It should be clear at this point that, for LEX, lexical access is the search for a
letter sting's orthography in the lexicon. No currency is placed on the phonology of the
word dunng retrieval. Building a phonological representation necessary for naming a
word occurs as a corollary to finding the orthography—phonological information is
retrieved automatically when an activated word has been sampled. In short, phonological
information is retrieved from the lexicon because it is associated with orthographic
information; a notion clearly at odds with the popular idea that reading aloud involves
mapping letters or letter combinations to sounds. Ignoring phonological information
during word identification is also at odds with claims that phonological information is
used by the reader at an early stage in word identification (see Lukatela and Turvey,
1994a, 1994b). My position is that readers do not generally use phonclogical
information at the beginning stage of lexical access. However, because phonological

information is retrieved early, I believe a reader could exploit it.



48

Measuring the Time to Retrieve Information from the Lexicon

Retrieving information from the lexicon takes time. To measure lexical retrieval
time, I count the number of cycles it takes to retrieve all the letters from the lexicon.
After retrieval, LEX uses the retrieved information to generate a response.
Measuring the Time to Make a Response After Information Retrieval

Once lexical information has been retrieved from the lexicon, LEX can make a
response To perform the naming task, LEX uses the information contained in the PB.
In a lexical decision task, LEX bases its response on the information stored in the OB.

An account of the articulatory mechanisms involved in naming a word, and the
decision mechanisms involved in making a lexical decision is beyond the scope of this
thesis. To acknowledge the point and to simulate response time after retrieval from the
lexicon, the quality of the representation in the PB and OB determines the speed of the
response. When the information in the OB and PB is blurry, or unclear, LEX requires

more time to generate a response than when there is little ambiguity within the

information.
Simulating the Lexical Decision Task

In a lexical-decision task, subjects are asked to decide whether or not a letter
string is a word. [ assume, along with others (e.g., Andrews, 1989; Forster & Shen,
1996) that the lexical decision task requires a decision stage after lexical access. LEX
decides on the lexical status of a letter stnng by comparing the contents of the OB to the
TB. The comparison yields a simtlanty value that measures the quality of match between
the two buffers. If the match exceeds a criterion, LEX is biased to consider the retrieved
orthography to be that of a word; otherwise it is rejected as a nonword. Because the
lexicon contains only words, it less likely to obtain a good match to a nonword.

In the decision stage, LEX accumulates evidence for or against a string's lexical
status. Evidence for either response is calculated as the difference between a criterion
match and the match of a small sample of pairs of features from the two buffers. The
difference is summed over several iterations until a critenon amount of evidence is
accumulated. The accumulated evidence can be positive (where LEX decides that a letter

string is a word), or negative (where LEX decides that a letter string is a nonword).
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Figure 5.2 A diagram of the gradual accumulation of evidence over time in a

two-barrier random walk.

Because the decision mechanism ! have described is computationally expensive,
LEX uses a two-barrier evidence accumulation mechanism, the random walk (Ratcliff,
1978 Link, 1975; 1991; Link & Heath, 1975) to simulate decision time (DT) for the
lexical decision task. The random walk was designed to explain response time and
accuracy in a two-alternative, forced-choice task. The random walk is illustrated in
Figure 5.2. Random-walk theory postulates that, to make a two-alternative,
forced-choice decision, evidence for one response or the other must accumulate over
time. Accumulation continues until there is enough evidence to make a response. Using
the random walk as a decision mechanism is functionally equivalent to the method I
described above for LEX's decision stage, but it has one advantage. An analytic
expression is known for the random walk so that I can calculate the expected value of the
finishing time instead of implementing the full stochastic decision process.

The evidence for one response over the other is expressed as a signal, s. When s

is negative, it is evidence for one response, and evidence for the other response when s is
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positive. To accumulate evidence, the signal value is summed across subsequent time
slices, or steps. Accumulation continues until the evidence equals or surpasses a barrier
or threshold, T. Because the random walk simulates a two-choice decision, there are two
barriers, -T and +T, one corresponding to each decision.

Evidence accumulation is a noisy process—at each time step, it is accumulated
against a background of noise. The addition of noise at each step causes the accumulated
evidence to deviate randomly from a straight course to one of the two barriers.

Noise is introduced to s on each cycle by adding a gaussian deviate from a
distribution with a mean of 0 and a standard deviation of 6. Hence, at each step, the

amount of accumulated evidence can be calculated as:
E =FE. +5+N(0,G)

Where E, represents the accumulated evidence at time ¢, s corresponds to the signal value,
and M(0,5) corresponds to a random deviate sampled from a gaussian distribution with a

mean of O and a standard deviation of G.

Once a letter string's orthography has been retrieved from the lexicon, a signal for
a random walk is calculated as a function of the similarity between the letters used as a
probe and the retneved orthography. Similar to the technique used by Seidenberg and
McClelland (1989), LEX considers the retrieved orthography to be a word when the
correlation between the features of the OB and the TB exceeds a minimum, C. If the
value fails to reach the minimum, LEX considers the letter string to be a nonword.

To simulate the decision and its latency, [ calculate a signal for the random walk

by subtracting the value from C, i.e.,
s=r(OB,TB)-C

(where r is Pearson's product moment correlation). If the value exceeds C, the random
walk has a positive signal; that is, evidence that the letter string is a word. The signal is

negative when the value fails to reach C, and is taken as evidence that the letter string is a

nonword.
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The C parameter is LEX's only free parameter. I allow it to vary to acknowledge
that readers can adjust how carefully they decide on the lexical status of a letter string.
For example, consider how readers might change how they make lexical decisions when
the nonword foils in the lexical decision task are strings of random consonants, e.g., ghtk,
versus foils that closely resemble words, e.g., lave. When readers are presented with
nonword foils that do not resemble words, Andrew's (1989) demonstrated that decision
latencies decrease compared to the case where word-like foils were used. From LEX's
perspective, because a string of random consonants does not closely resemble any word
in the lexicon, the correlation between the contents of the OB after retrieval and the
contents of the TB will be low relative to the case wherein the nonword foils are very
word-like. [ assume that, when the decision about a letter string's lexical status is made
easier by using un-wordlike foils, the correlation between the contents of the OB and TB
does not need to be very high to correctly accept ietter strings as words. On the other
hand, when the nonword foils closely resemble words, the minimum similanty between
the two buffers must be higher. Hence, when the correlation is high for nonword foils,
LEX requires a higher more evidence to decide that the letter string is a word.

One barrier of LEX's random walk corresponds to a nonword response (set to -30
in LEX), and the other to a word response (set to +30). The gaussian distribution of
noise that [ used had a mean of 0 and a standard deviation of 0.5. Decision time (DT) is
measured as the number of steps the random walk takes to accumulate enough evidence
to cross one of the two bamiers.

In the simulations that I report in Chapter 6, I calculated the expected DT and
probability of an error for each trial from the signal values. Using expected values
instead of actually running a random walk has two advantages. First, direct calculation is
computationally cheaper than waiting for random waiks to finish. Second, the expected

DT is a less noisy estimate of finishing times. The expected DT for a signal value is

calculated by the formula:

E(DT) = £ x (1 =(2%pe)
Where p, is the probability of an error and is calculated as
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LEX's average response time (retrieval time + DT) across trials (MLDT), is calculated as

the mean of the expected DTs + letter retrieval time (LR7) weighted by their probability
of being correct,

EMLDT) = Z(E(DT):,-*L.RT,)X(l—pg),
E“"P!)l

Simulating the Naming Task.

In the naming task, subjects are shown a letter string and asked to pronounce it as
quickly as they can. LEX models the naming task by reading off the phonemes that are
copied into the PB during retrieval.

The phonemes in the PB are not generally pnistine following retrieval. Each
phoneme in the PB contains features irrelevant to the correct pronunciation. Irrelevant
features occur, of course, because irrelevant words were sampled during retrieval. [
assume that articulation begins after a pronunciation program has been created by the
reader. To create the program, the retrieved phonology must first be de-blurred sc that a
pristine copy of each phoneme can be used to create a pronunciation. I assume further,
that the time 1t takes to begin creating the pronunciation program depends on how long
the phonemes will take to de-blur.

I assume that the phonemes are deblurred in parallel. Hence, the time to it takes
to pronounce a word following retrieval depends on how long it takes to clean up the
blurmest (non-null) phoneme. De-blurnng occurs by first having the phonemes in the PB
act as a probe to activate a set of canonical phonemes. The activation (4) of a canonical

phoneme (c) is a function of its similarity to the phoneme in the probe (p). Specifically,

JZP.’XZC.’
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Following the activation of the canonical phonemes, a facsimile of the probe is created by

taking the weighted (8) sum across the features of the activated canonical phonemes

using the formula:
E =Y A xc,x0

Each facsimile is weighted (set to 0.01) so that the clean up process occurs
gradually over several cycies. The facsimiie is used as a probe to the canonical phoneme
set again to create another echo that is copied on top of the previous one. Each time the
echo is used as a probe, the activations of the canonical phonemes change such that the
phoneme most similar to the contents in the PB increases to approach 1 while the
activations of the others approach zero. The de-blurring process stops when the
activation of one of the phonemes in the canonical set reaches a criterion (set to 0.99). At
the point where the criterion is met, the canonical phoneme most similar to the contents
of the PB is the only one that is active; as well, the facsimile created from the canonical
set is a near perfect copy of the canonical form. The winning phoneme is used in the
creation of a motor program for pronunciation.

The de-blurming process is computationally expensive. Hence, [ simulated the
time required for de-blurning and articulatory program creation by using the clarity of the
phonemes in the PB as a signal to drive a single-barrier random walk (SBRW)
mechanism. To express the clarity of each phoneme in the PB, I measure the correlation
between its features in the PB and each possible phoneme. The phoneme to which the
features of the PB is most highly correlated is the phoneme that LEX will pronounce.
The magnitude of the correlation reflects the degree to which the features of irrelevant
phonemes are also present at that position. Hence, if a phoneme vector is most highly
correlated to the /ah/ sound, we know two things: First, we know which phoneme the
model is storing in that position, and second we can express the clarity of the phoneme as
a function of the magnitude of that correlation.

Like its two-barrier counterpart, a SBRW accumulates evidence over successive
time steps against a background of noise until it reaches a barrier. As well, noise during

evidence accumulation is acknowledged by adding a deviate from a normal distribution
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on each tme step (I used a distribution with a mean of 0 and a ¢ of 5 as a noise
distribution). Response time is measured as the number of steps required for the evidence
to reach the barrier (a parameter [ set to 300). Because there is only one barrier, the

SBRW does not make errors; it simply yields a latency estimate for a given signal value.
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Figure 5.3. Finishing times of the SBRW plotted against the finishing times for
de-blurring.

LEX has one SBRW attached to each phoneme in the PB. Each SBRW uses the
clarity of its phoneme to derive a signal to the walk. To calculate the signals, each

phoneme's clarity is raised to the 7th power. That is,

Where § is signal value for the jth SBRW, derived from the clarity ,C of the ith phoneme.
The clarity of the phonemes for words tends to range between 0.900 and 0.999, a
range generally too small for latencies from the evidence accumulator to exhibit strong

sensitivity to differences in phonemic clarity. The large exponent accentuates differences
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in clarity among the phonemes, making the SBRW, and of course, naming latency, more
sensitive to changes in clanty.

A SBRW for each phoneme is started simultaneously. Naming begins when the
PB's blurriest phoneme has been included in a program for articulation. Hence, naming
latency, following lexical retrieval, is taken as the finishing time of the slowest SBRW.

Unlike the calculations for DT for the lexical decision task, I do not calculate
expected values for naming latency. Instead, I run one SBRW using the signal derived
from the blurmest phoneme and take its finishing time as an estimate for naming latency
after lexical retrieval.

Mapping De-blurring time to the SBRW. Of course, using a SBRW to estimate
response preparation time after retrieval requires that I demonstrate that its finishing
times map closely on to the finishing times for the de-blurring mechanism. To
demonstrate that the SBRW is an useful tool in estimating response preparation time,
LEX named 11 words for which the phonemes in the PB varied in clarity. Figure 5.3
plots the finishing imes of the de-blurring mechanism for the words (measured in
number of samples of the canonical phoneme set) against the corresponding finishing
umes for the SBRW. A constant (300) was added to the de-blurring times to reflect the
time it takes to generate the articulation program after de-blurring. As is clear in the
figure, there is a very close relationship between the two.

Response Latency for a Trial

For LEX, there are two stages in word identification: letter retrieval, and response
generation/selection. Both stages take time. The retrieval stage is common to both the
naming task and the lexical decision. To estimate the response latency for a trial in
which LEX names a word, I sum the number of samples required to retrieve orthographic
information from the lexicon and the number of cycles it takes the SBRW to reach
threshold. To generate a response latency for a tnal in which LEX makes a lexical
decision, I sum the number of samples required to retrieve the word and the expected
finishing time of the two-barrier random walk.

Summary
In this chapter, I provided a detailed account of LEX, a model of visual word

identification. LEX retrieves words from the lexicon beginning at the first letter of a
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probe stimulus. As it retrieves each letter, LEX reduces its search space by creating a
cohort of candidate words. The process continues until the final letter (always a space
character) has been retrieved. Because the orthography and phonology of lexical items
are stored in single memory traces, as letters are retrieved out of the lexicon, so are
phonemes.

Response latency in LEX is estimated by summing two values: The number of
samples required to retneve lexical information, and the time to initiate a response. In
the lexical decision task, a two-barrier random walk simulates decision time. One barrier
of the random walk corresponds to a word response, and the other to a nonword response.
In the naming task, the finishing time of the slowest in a group of single-barrier random

walks is taken as an estimate of how the time required to build and begin the execution of

an articulation program.
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Chapter 6: Relating the Theory to Data

This chapter presents some tests of LEX using archival data. Before applying
LEX to individual experiments, there are several procedural consideration that deserve
comment. The first concerns the parameterisation of the model; A second concemns the
scope of the model.

The simulations will, except as noted, use the same parameters throughout The
archival data are based on experiments that manipulate classes of words without
retraining subjects. To be consistent with that strategy, it would be inappropriate to
adjust the parameter of the mode! to fit the data. Phenomena that emerge empirically by
changing classes of items should fall naturally out of the model.

The size of LEX's vocabulary, the familiarity of the words within it, and
processes that LEX uses to identify words are invariant across runs of the model.
Presumably, all three factors differ across readers. Because the three factors are fixed in
LEX, successive runs of the model are, in effect, data from the same subject. Because
retrieval is a stochastic process, there is variability across runs. That vanability
represents trial-to-trial variability for a single subject. The simulation data described here
were obtained by averaging across 16 independent runs of the model.

In the chapter, separate sections are devoted to each of several phenomena along
with a brief description of it. The description includes a simulation and explanation
derived from LEX. Where possible, the description also includes an account of how the
dual-route and connectionist models would explain the phenomenon.

One final point about the simulation data is worth making. The model has two
mechanisms contributing to response latency. To get a response time, [ sum the finishing
times for both mechanisms. Because the mechanisms are differentially affected by the
characteristics of words, the size of the main effects in graphs showing an interaction can
differ. Clearly, what must be done to the output of the model is a relative weighting of

the contributions of each mechanism to response latency .
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Overall Performance of LEX

In the sections to follow, I will demonstrate that LEX does a good job
reproducing the phenomena considered important by the reading literature. As a test of
LEX's ability to capture readers' response latencies for words in the naming and lexical
decision tasks, ! directly compared LEX's response imes to subjects' response times.

All the simulation data for the naming task were obtained from a frozen model.
That is, none of the parameters were changed across runs. I allowed one parameter, the
word criterion parameter, to vary across runs for the lexical decision task to reflect the
difficulty of the decision as a result of the structure of the nonword foils. Allowing the
one parameter to vary also brings the predicted error rates to a reasonable level. Figures
6.1 and 6.2 plot LEX's mean response latency against subjects’ mean response latency for
the words every cell across all the expenments in the simulations to follow. Figure 6.1
plots the relationship for naming latency, and Figure 6.2 plots it for lexical decision

latency. Asis clear in both figures, LEX's response times can be mapped onto human

response times.
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Figure 6.2 Mean lexical decision latencies from each cell of each experiment plotted

against LEX's mean naming latency for the same cells

The Word-Frequency Effect

Words that occur frequently in text are identified more quickly than words that
occur less frequently The frequency effect, as itis called, is one of the most widely cited
and replicated phenomenon in word-recognition research
The DRC's account

The DRC model (and by association, the IAM) explains the frequency effect in
terms of the activation of word nodes in the orthographic lexicon. The resting activation
of each word node in the orthographic lexicon is a function of the word's frequency in
pnnt. Nodes representing high-frequency words have a larger resting activation than
nodes for low-frequency words. To identify a word, the activation of a word node is
updated over successive processing cycles. On each cycle, the activation is increased for
words that are consistent with the target letter string. Word nodes are mutually
inhibitory, that is, as a node's activation increases, it inhibits other word nodes. Given

extended processing, the inhibition implies that only one word node will remain above
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threshold. Because high-frequency words have a high resting level of activation, they
require fewer processing cycles to reach threshold than nodes for low-frequency words.
The Connectionist’s account

Plaut et al. (1996) and Seidenberg and McClelland (1989) do not use word nodes
to represent word . Instead, word knowledge is confined to mappings between an input
(orthographic) and output (phonological) layer of nodes. In both models, the frequency
effect is explained in terms of the strength of the connections between the input and
output nodes.

During training, letter patterns are paired with sound patterns Each time a
particular letter pattern is paired with a sound pattern, the strength of the connections
between the nodes increases. High-frequency words are presented during training more
often so that a word's frequency in print is represented by greater training. Hence, the

connections that pair the spelling and sound of a high-frequency word are stronger than

those for a low-frequency word.

A production account

Balota and Chumbley (1985) provide a different kind of account. They argued
that lexical access is only partially responsible for the frequency effect in the naming
task. They claimed that the motor program required to pronounce a low-frequency word
takes longer to compile and execute than one for a high-frequency word. In support of
their argument, Balota and Chumbley showed subjects high- and low-frequency words
and required them name then aloud, but to wait until cued, a so-called delayed-naming
task. They vaned the delay between the words' onset and the cue randomly between
1000 and 2400 milliseconds (ms). Even long after lexical access would have taken place,
there was an advantage for high-frequency. Their results point to a pronunciation factor
that presumably contnbutes to the frequency effect. Neither the DRC nor the
connectionist models can accommodate Balota and Chumbley's data.

LEX's account
LEX uses word-frequency data at two points during retrieval. First, the probability
that a word is sampled from the lexicon depends on its frequency. Secondly, when the

similarity of the probe to the word in a sample is calculated, it is weighted by the word's
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frequency. For both reasons, retrieval for high-frequency words is faster than for low
frequency words. An example that illustrates LEX's frequency effect is illustrated is
Figure 6.3. For the simulation data shown in Figure 6.3, LEX retrieved the orthography
of the high-frequency words in a mean of 53 cycles. Low-frequency words, on the other
hand, took a mean of 124 cycles.

The naming task. Pronunciation begins when a motor program has been compiled
for the phonemes in the PB. Recall that motor program initiation time is based on the
clarity of the phonemes. Figure 6.6 shows the average blurmness of the blurriest phoneme
for high- and low frequency words. As is clear in the figure, the blurriest phonemes in
the PB for high-frequency words have higher clarity than those for low-frequency words.
A motor program to pronounce a low-frequency word will take longer to build and
execute for than for a high-frequency word. LEX's two loci for the word frequency
effect is an important and unique characteristic of the model. Because the phonemic
clanty serves as a locus for a naming advantage for high-frequency, LEX can explain the
advantage in a delayed-naming task.

The lexical decision task. To decide on the lexical status of a letter string, LEX
must decide if the retrieved orthography is similar enough to the probe letters to be called
aword. After retrieval, the orthographic representation of low-frequency words in the
OB is less similar to the probe (r = 965) than the OB's representation of high-frequency
words (r = .995). The difference in clarity occurs for three reasons. First, because the
system requires more samples to retrieve the orthography of low-frequency words, more
irrelevant letters are included in the featural representation stored in the OB. Second,
letter retrieval is more likely to fail when the system is retnieving the letters of a
low-frequency word. When letter retrieval fails, the cohort of candidate words is
adjusted. The adjustment a/so increases the number of irrelevant words from which the
system samples. Finally, I assume that when retrieval fails, the letters contained in the
echo that correspond to the positions of the already retrieved letters are not copied into
the OB. After a retrieval failure, I introduce a mild decay to the letters in the OB that
have already been retrieved. In sum, the frequency effect in the lexical decision task not
only reflects the time it takes to retrieve information from the lexicon, it also reflects how

well the retrieved information matches the probe.
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The Interaction Between Word Frequency and Spelling-to-Sound Regularity

In the naming task, words that violate spelling-to-sound correspondence rules
(i.e., irregular words such as WAD) take longer to name aloud than words that do not
(i.e., regular words such as BAD). This is only true, however, for low-frequency words.
Regular and irregular words are named with about the same latency when they are
high-frequency (Seidenberg, Waters, Barnes, & Tannenhaus, 1984; Taraban &
McCleliand, 1987).

Spelling-to-sound regularity affects response tme only when subjects are asked to
read words aloud. In the lexical decision task, subjects exhibit a reliable frequency
effect, but the words' regulanty has no effect on performance. The right panels of Figure
6.1 and 6.3 show the typical pattern of data for the naming task and LDT respectively.
The data are taken from mean latencies reported by Seidenberg er al. (1984).

The DRC's explanation

The Naming Task. The DRC interprets the interaction between word frequency
and regularity in terms of competition between the lexical and nonlexical routes. Recall
that the speed with which the nonlexical route can denve a pronunciation using its
grapheme-to-phoneme pronunciation rules is a function of the number of letters in the
string, the more letters there are to translate, the longer it will take to create a
pronunciation. The speed with which the lexical route activates a word node and its
pronunciation depends on it resting level of activation. When the model reads a word
aloud, the lexical and nonlexical routes operate simultaneously to derive a response.

The lexical and nonlexical activate phonemes in the phoneme slots at the output
level of the model to await pronunciation. When the DRC reads a low-frequency word,
the two routes derive a pronunciation at about the same speed. If the two routes derive
divergent pronunciations, i1.€., when the system is reading an irregular word, the DRC
must decide which of the two pronunciations is the correct one. The extra time required
to resolve the conflict caused by the divergent phonological codes causes low-frequency
irregular words to be named more slowly than low-frequency regular words. When the
DRC is reading a high-frequency word, the lexical route activates the phonological code

for a word much faster than the nonlexical route can derive it. Hence, at the level of the
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phoneme slots, there is no conflict between phonological codes to resolve and regularity
does no affect naming latency.

The Lexical Decision Task. In the lexical decision task, the DRC searches the
orthographic lexicon to see if the stimulus letter string is present. If it is present, the
model responds that the string is a word. If, after a predetermined deadline, the letter
string has not been found in the lexicon, the model considers the letter string to be
nonword. Because, deriving a phonological code is not required for the lexical decision
task, regulanty has no influence on the response.

The Connectionist’s Explanation

The Naming Task. Connectionist models learn words by associating letter clusters
with phoneme clusters over several training sessions. The speed with which the models
identify a word s a function of how many times the clusters were paired during training.
High frequency words are named more quickly than low frequency words because the
clusters in high-frequency words are associated more strongly than those in
low-frequency words.

A word's regulanty affects naming latency in the same fashion. Thereis a
quasi-regular mapping between letter clusters and phoneme clusters in English. Irregular
words exemplify situations in which a frequent mapping does not apply. For example,
the ave letter combination is most frequently associated with the phonemes in words such
as gave, save, rave, and cave. The combination ave is also associated with the phonemes
in have. Because the letter cluster is more frequently associated with the phoneme
clusters in regular words, naming an irregular word is more difficult to read than a
regular word.

The interaction between word frequency and regulanty in the naming task occurs
because of the relative frequency with which the letter clusters are associated with
phoneme clusters. The ave letter cluster is associated with more regular words than
irregular words, however, have is a high-frequency word that will be encountered by the
model many times during training. Hence, despite have's divergent mapping to
phonemes, the mapping is frequent, making it, and other high-frequency words,

insensitive to a word's regularity in the naming task.
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The Lexical Decision Task. To make a lexical decision, a Seidenberg and
McClelland's (1989) model uses a set of letter clusters as an input. The output is also set
of letter cluster nodes. If the input stimulus is a word, the two sets of letter clusters will
match closely. If the two sets of letter clusters are not similar enough for the model to
consider it a word, it is labelled a nonword.

Because the mapping between letter and phoneme clusters is irrelevant in the
lexical decision, irregular spelling to sound relationships do not affect response time.
Hence, while connectionist models show a string word frequency effect in the lexical
decision, the advantage for low-frequency regular words over low-frequency irregular

words is absent in the lexical decision task.
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Figure 6.3. Naming latencies for subjects (left panel) and LEX (right panel) for the
items used by Seidenberg et al. (1984)

A Simulation

In the simulations to follow, LEX named and made lexical decisions on the 52
words used by Seidenberg et al. (1984). LEX also named the 96 words used by Taraban
and McClelland (1987). There were four types of word in their lists: low-frequency
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regular, low-frequency irregular, high-frequency regular, and high-frequency irregular.

The proportion of error for each simulation is shown in Table 6.1.
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Figure 6.4. Naming latencies for subjects (left panel) and LEX (right panel) for the

items used by Taraban and McClelland (1987)

The right panels of Figures 6.3 and 6.4 show LEX's mean naming times, in

cycles, for each type of word in Seidenberg et al.'s (1984) and Taraban and McClelland's

(1987) experiments. The left panels of Figures 6.3 and 6.4 show the accompanying

latency data from subjects. As is clear in the figures,

LEX replicates the naming

advantage for regular words over irregular words when they are low frequency.

High-frequency words exhibit no naming advantage for regular words over irregular

words.

The right panel of Figure 6.5 shows LEX's mean response times for lexical

decisions to the words used by Seidenberg et al. (1984). The left panel contains subjects’

data for the same words. In both panels, there is a clear advantage for high-frequency

words over low-frequency words, but no advantage for regular words over irregular

words.
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Table 6.1

Proportion of errors for regular and irregular words in each simulation (Name = naming
task, LDT = lexical decision task)

Word Frequency
Expenment Low High
Seidenberg et al. (1984), Name
Regular 0
Irregular 0.1
Seidenberg et al. (1984), LDT
Regular 0.1
Irregular 0.03
Taraban & McClelland (1987)
Regular 0 0
Irregular 0.01 0.01

Why does it work?
[ will consider the naming and lexical decision tasks separately

The Naming Task Recall that, after LEX retrieves the letters of a word, the clanty
of the phonemes retrieved from the lexicon dictates how quickly pronunciation will
begin. In the nrevious section, I explained why LEX is able to capture the advantage for
high-frequency words over low-frequency words—word frequency affects both the

number of samples required to retrieve a word from the lexicon, and the clanty of the

phonemes that are retrieved.

The naming advantage for low-frequency regular words over low-frequency
irregular words occurs because of the difference in clarity between the phonemes of the
two types of words. The clanty of the phoneme responsible for the spelling-to-sound
irregularity tends to be much lower than its corresponding phoneme in a yoked regular
word, and the other phonemes of the word (see Figure 6.6). Figure 6.7 shows the clarity
values for each phoneme in the words pint and mint. Notice that the clarity of the second
phoneme of pint is much lower than that for its corresponding phoneme in mint. The
decrease in clarity occurs for two reasons. First, an i following a p is most frequently

pronounced as /i/ as in pin, picture, pit, pill, etc.
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Figure 6.5 Lexical decision latencies for subjects (left panel) and LEX (right panel) for

the items used by Seidenberg et al. (1984).

Hence, when the second phoneme is switched to the /I/ of pint, the features of /i/, already
in position from previous samples, interfere with those of the /// phoneme. The second
reason for the decreased clanty of the second phoneme occurs when LEX must restart its
search for a letter after access has failed. Recall that, when LEX is forced to restart its
search, a pronunciation is built as an analogy to other words whose spelling are consistent
with the target starting at the second letter. Pinris the only four-letter word with the in¢
letter string that does not rhyme with minr. Hence, a pronunciation derived by analogy
will cause the clanty of the second phoneme to suffer leading to increased naming time,
and possible mispronunciations of the word.

When LEX retrieves a high-frequency word, however, its phonemes tend to be
quite clear. The increased clarity associated with high-frequency words is the result of
the high resting level of excitation that high-frequency words possess. When LEX
retrieves the phonemes of a high-frequency word, inconsistent phonemes from

low-frequency words will have littie impact on the clanity of the output relative to the
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Figure 6.6. Average clarity of the blurriest phonemes for each type of word in

Seidenberg et al.'s materials.
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Figure 6.7. Clarity of the phonemes for the words pint and mint
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large impact that the phonemes from high-frequency words will have on the clarity of the
phonological representation—the influence of phonemes from high-frequency words far
outweighs any impact that inconsistent phonemes may have on the output.

My account of the interaction between word frequency and regularity isin a
strange position with respect to where it differs from the DRC and connectionist
accounts. The DRC postulates two strategies for pronunciation; my account, like the
connectionist account requires only one. The connectionist account considers word
frequency and regulanity effects in the naming task as the same effect, i.e., regularity
effects are frequency effects. My account, like the DRC, places responsibility for
frequency and regularity effects on separate mechanisms

The Lexical Decision Task. In the lexical decision task, the clarity of
phonological information is irrelevant to the response that LEX makes. Instead , LEX
retrieves the letters from the lexicon using the target letters as a retrieval probe. Once the
letters have been retrieved, LEX decides if the retrieved letters are a good match to the
target. The extent to which the retrieved letters are a good match to the probe letters is a
match of the orthographic clarity of the retrieved letter string. Phonological irregularity
does not affect the clarity of the retrieved orthography, hence, it has no effect on response
time in he lexical decision task.

My account of the lexical decision differs greatly from the DRC account. The
DRC searches the lexicon for a word's address until a deadline has been met. If a word
has not been found by the deadline, the DRC considers the input to be a nonword. By
contrast, LEX does not look for words; it retrnieves information from the lexicon and
decides if that information is good enough to be considered as belonging to a word.

The connectionist account of Plaut et al. (1996) did not make lexical decisions.
Hence, my discussion of the connectionist account of the lexical decision task will be
limited to the model by Seidenberg and McClelland (1989). My account is similar to
Seidenberg and McClelland's account in that the decision as to whether a letter string is a
word is based on how well the system can reproduce a facsimile of the original letter
string. The decision has nothing to do with finding the target word in the iexicon.

The connectionist account and my account differ in that LEX treats the similarity

of the probe letters to the retrieved orthography as part of the processing required for the
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lexical decision task. Absent from Seidenberg and McClelland's model is a process by
which creating the facsimile takes time. The lexical decision is a two-stage process in
LEX. First, A facsimile of the original letter stning is created over successive samples of
lexical information. After retrieval, LEX decides whether the facsimile is word-like
enough to be considered a word.

Positionally Sensitive Regularity Effects in Word Naming

Coltheart and Rastle (1994) demonstrated an important constraint on the naming
advantage tor low-trequency regular words over low-trequency irregular words: The
influence of irregularity on naming latency decreases as the position of the irregular
phoneme, counting from left to nght, nears the end of a word.

The DRC's Explanation

Coltheart and Rastle (1994) reported the positional dependence of the naming
advantage for low-frequency regular words over low-frequency irregular words as
evidence for the necessity for the DRC's grapheme-to-phoneme conversion route during
reading aloud. They proposed that the decreasing naming advantage for regular words
reflects a decrease in the conflict between the outputs of the lexical and nonlexical routes
as the irregular phoneme position nears the end of a letter string.

Recall that the lexical and nonlexical routes operate simultaneously to derive a
pronunciation for a letter stnng. Translating graphemes to phonemes via the nonlexical
route takes time. If the irregular phoneme is positioned near the end of a word such as
memoir, the lexical route will sometimes have enough time to activate the correct
pronunciation before the irregular phoneme is translated—effectively avoiding a conflict
between the outputs of the two routes. On the other hand, if the irregular phoneme is
positioned at the beginning of a word such as chic, conflict between the two routes is
unavoidable; the nonlexical route will decide on a different pronunciation for the first
grapheme before the lexical route is able to look up the correct pronunciation.

The Connectionist's Explanation

A massively parallel account of regulanity effects in word naming does not predict
that the position of an irregular phoneme will affect on the magnitude of the naming
advantage for regular words over irregular words. Plaut et al. (1996) offered other

interpretations of Coltheart and Rastle's (1994) result.
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First, Plaut et al. (1996) argued that the position of a word's regularity may be
confounded with the degree to which words had a consistent pronunciation. For
example, the ch in the word chic is highly inconsistent because the /sh/ phoneme is found
in only five out of 63 monosyliabic words that start with ch. A word like tomb, on the
other hand, is only moderately inconsistent: tomb has one orthographically similar word

that shares the same body, womb, and only two that do not (comb, and bomb).

Naming latency (cycles)
5

L]
chel tomb glow
Word

Figure 6.8 LEX's naming latencies for the same three words used in Coltheart et al.'s
(1993) and Plaut et al.'s (1996) simulation.

Plaut et al. (1996) also objected to defining irregularity in terms of GPC rules.
The DRC considers the letter combination, age, of bandage, and the ive of festive as
irregular. Plaut et al. pointed out that most two-syllable words with age or ive endings
are not pronounced with a long vowel. Itis questionable, therefore, whether such words
can be considered irregular.

Finally, Plaut et al. (1996) addressed the possibility that Coitheart and Rastle's
effect was genuine. Plaut et al. speculated that the phenomenon might not be inconsistent

with a parallel account of word naming if the time required to initiate articulation
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depends on properties of the initial phonemes after parallel generation of the

phonological code.
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Figure 6.9. Average clarity of the blurriest phoneme for each word (the average number

of samples from the lexicon required to retrieve the letters are above each word)

A Simulation

Considering the criticisms that Plaut et al. (1996) raise regarding Coltheart and
Rastle's (1994) items, [ was hesitant to use the same words in a simulation. Basically, if
the position of irregularity is confounded with the number of words that share a similar
spelling, simulating Coltheart and Rastle's results using their words does nothing to
provide evidence for a sequential operation during reading,

Instead, LEX read the same words as the DRC and Plaut et al.'s (1996) models
read in their simulations. LEX read the words chef, tomb, and glow 16 times. The word
chefis irregular at the first phoneme, fomb at the second, and glow at the third. LEX
made four pronunciation errors by regulansing the pronunciation of chef As is clearin
Figure 6.8, LEX shows the same pattern of naming times as the DRC and Plaut et al 's
connectionist account; as the position of the irregular phoneme nears the end of a word,

there is a decrease in the degree to which the irregularity affects naming latency.
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Why does it work?

Recall that, after LEX retrieves a letter, it reduces the cohort of candidate words
to include only those words that contain matches to the retrieved letters. Hence, at each
cohort, LEX is more likely to sample a word from the lexicon that contains the target
pronunciation for the irregular phoneme. In addition, because LEX only samples words
from a cohort of candidate matches to the target, phonemes at the beginning of the
retrieved word are reinforced on each sample.

Consider the case wherein LEX reads a word like glow whose irregularity is
positioned at the final phoneme. By the time LEX reaches the letters roughly
corresponding to the irregular phoneme, LEX has aimost narrowed in on the
pronunciation of the word. That is, there are few words left in the cohort after retneving
glo from the lexicon. Because there is little competition from other words in the lexicon
containing the same letters and divergent pronunciations, there is little effect of
irregularity on words whose regulanty is positioned at the end of the word.

Now consider what happens when LEX reads a word such as chef. Until LEX
reaches the tinal letter, the dominant pronunciation for the first phoneme comes from
words such as chief, chore, choir, and chord. Itis the retrieval of the final letter that
changes the first phoneme to the /sh/ sound. Even though the first phoneme changes to
the /sh/ sound, it does so against a background of evidence for the alternative
pronunciations for ch.

To illustrate the point, Figure 6.9 shows the clarity of the irregular phoneme of
each word LEX read (for each word, the irregular phoneme was the blurriest one). The
number of cycles required to retrieve the orthography from memory is listed above each
word in the figure. Asis clear in the figure, the time it took to retrieve the word from
memory was fairly constant across the words. Consistent with decreased phonological
competition as a consequence for cohort reduction, there is monotonic increase in clarity
as the irregular phoneme approaches the end of the word.

LEX's account shares some similarity to both Plaut et al's (1996) explanation and
the DRC account for the phenomenon. Consistent with Plaut et al., LEX is sensitive to
the position of the irregular phoneme because fewer words contain competing phonemes

as the phoneme's position nears the end of a word. Plaut et al. postulated that the reduced
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competition is a property of the way Englich words are constructed. By contrast, LEX
reduces the number of words with competing phonemes through cohort reduction.

The DRC account treats the effect as a reflection of the relative ime-course for
the lexical and nonlexical routes. If the irregular phonemes is positioned near the end of
a word, the lexical route will likely have had enough time to look up the correct
pronunciation before the nonlexical route reaches the critical graphemes. In a similar
fashion, LEX is more likely to have already narrowed-in on the target word when the
irregular phoneme is positioned near the end than when its position is at the beginning.
Sequential processing is responsible for the effect in both LEX and the DRC. The
obvious point of departure from Coltheart and Rastle's (1994) DRC account and LEX's is
the number of routes required to produce it. In LEX, the effect occurs because of how
information from the lexicon is retrieved.

Neighbourhood Density Effects in Word Identification Tasks

A word's neighbours (or neighbourhood) are the words that can be created by
changing one letter in any letter position (Landauer & Streeter, 1973). For example, the
neighbours of cart are dart, part, mart, wart, curt, cast, cars, card, care, and carp. Word
identification is generally faster in the lexical decision and naming tasks when a word has
many neighbours (a high-N word, or a word with a high neighbourhood density) than
when it has few neighbours (a low-N word, or low neighbourhood density). There are
two potential loci for a latency advantage tor high-N words.

To some extent, the advantage for high-N words in the lexical decision task is
intuitive—a word with many neighbours resembles many words and is therefore more
word-like than a word with few neighbours. The notion that word-likeness is a critical
factor affecting identification is corroborated by the finding that nonwords with many
neighbours, i.e., word-like nonwords, are more difficult to classify as nonwords in the
lexical decision task than nonwords with few or no neighbours (Coltheart, Davelaar,
Besner, & Johnason, 1977; Forster & Shen, 1996).

A latency advantage for high-N words in the naming task is less intuitive. Ifa
word is similar to many words that the reader knows, word identification should be more
difficult. Specifically, the reader should be more inclined to misidentify the target word

as one of its neighbours when the word has many neighbours than when it has few. If,
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however, a large neighbourhood size speeds up lexical access, there should be a both the
naming and lexical decision tasks because the lexical access stage is common to both.

Andrews (1989, 1992) examined the effect of neighbourhood density on word
identification to determine the stage at which neighbourhood size exerts its influence.
She reasoned that, if a decision stage after lexical access is responsible for neighbourhood
density effects in the lexical decision, making the decision component easy should
attenuate or eliminate the effect. To test the notion, Andrews (1989, Experiment 2)
changed the nonword foils in the lexical decision task to illegal letter strings, e.g., tfrk.
[llegal letter strings should make the decision stage of the lexical decision task easy
because non-wordlike foils would be easily distinguishable from words. She found that,
while illegal foils decreased lexical decision latency and increased accuracy, the latency
advantage for high-N words over low-N words persisted (in fact, it increased slightly). A
pattern suggesting that neighbourhood density effects reflect differences in lexical access
times for high- and low-N words.

Andrews (1989, see also Sears, Hino, & Lupker, 1995, Experiment 3a fora
replication} also noted that neighbourhood density affects performance only for
low-frequency words. Her interpretation for the difference between high- and
low-frequency words was couched in term of the operations of the IAM. Because the
IAM was adopted as the lexical route in the DRC, I will defer discussion of the
explanation to the next section.

The DRC's Explanation

Coltheart and Rastle (1994) simulated the effect of neighbourhood density in the
lexical decision task using the DRC. Unfortunately, they did not include simulations that
examined the neighbourhood density's effect on performance in the naming task. Hence,
we will limit our discussion of the DRC account of neighbourhood density effects to data
collected using the lexical decision task.

Andrews (1989, see also Coltheart & Rastle, 1995; Coltheart, et al.,, 1993) placed
responsibility for the effect of neighbourhood density in the lexical decision task and its
interaction with a word's frequency on the feedback between the word and letter nodes of
the IAM. When the IAM is presented with a low frequency word, activation from the

letter nodes is passed up to the word nodes. Word nodes that are consistent with the
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activated letter nodes are excited. Low-frequency word nodes have a low resting
activation level, hence, lexical access is unlikely to occur the first time the word nodes
are activated (Remember, lexical access occurs over several processing cycles). Because
the IAM postulates mutual inhibition between word nodes, one would expect that many
neighbours would inhibit identification of a target word. However, Andrew's postulated
that, when the model is presented with a low frequency word, activated word nodes
increase the activation of consistent letter nodes Because the model is interactive, letter
node activation is sent back to the word nodes strengthening the activation of the target
word's node. The more word nodes feeding back to the letter nodes, the more activation
is passed back to the word nodes from the word nodes causing the facilitatory effect of
neighbourhood density on word identification.

High-frequency word nodes have high resting activation levels relative to
low-frequency words. When the IAM is presented with a high-frequency word, lexical
access occurs with little aid from reciprocal feedback between the letter and word nodes.
That is, the target word's node reaches its threshold before it can gain much benefit from
the interactive activation between the letter and word nodes. In sum, neighbourhood
density effects reflect the extent to which similar words in the lexicon can increase the
target word's activation.

For the same reason that words with many neighbours are easier to detect than
ones with few neighbours, nonwords with many neighbours are harder to detect than
nonwords with few neighbours. A nonword that is similar to many words is very
"word-like" relative to a nonword that shares little similanty with words the reader
knows. A nonword's letters activate words that are consistent with the letters of the target
word. As word entries are activated over several cycles, they feed their activation back to
the letters, which in tum, further activate the consistent words. Hence, the more words in
the lexicon that share letters with the nonword, the more the nonword appears like a word
for the DRC, and the harder it is to label a nonword.

The Connectionist's Explanation
The recent model by Plaut et al. (1996) does not include a discussion of

neighbourhood effect in word identification; hence, I will forego speculating how their
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model might simulate them. Seidenberg and McClelland (1989) gave neighbourhood
effects some treatment in their model so I will focus instead on their account instead.
Seidenberg and McClelland (1989) limited their discussion of neighbourhood
density effects to a simulation of the advantage for high-N words over low-N words in
the naming task. Recall that, during training, Seidenberg and McClelland's model was
presented with components of words in the form of wickelfeatures. Words with many
neighbours necessarily share wickelfeatures. For example, the wickelgraphs, ART, and
RT_ are contained in many of the neighbours of cart (dart, part, mar:, tart).
Connectionist models are able simulate neighbourhood effects because of the frequency
with which letter and phoneme combinations are paired during training. The components
of words with many neighbours are more frequently presented to the model during
training than the components of words with few neighbours. Because the components of
high-N words are more highly leamed than those of low-N words, words with a large
neighbourhood density are identified more quickly than words with a small

neighbourhood density.
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Figure 6.10 Subject and simulation data for Andrew's (1989) Experiment 1
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Simulations

The DRC and connectionist explanations for neighbourhood density effects in
word identification are incomplete because neither camp simulated both the lexical
decision and naming tasks together. In the simulations to follow, LEX named and made
lexical decisions to high- and low-frequency words that had either large or small
neighbourhoods. In the first three simulations, I used Andrews' (1989) words. The
words comprising the factorial combination of high or low word frequency and large or
small neighbourhood density. In the last simulation, LEX made lexical decisions on both
words and nonwords that varied in neighbourhood density. The items for the final
simulation were taken from Coltheart, Davelaar, Jonnasson and Besner (1977). LEX's
error rates for Andrews' materials are shown in Table 6.2. LEX's Error rates for the
matenals used by Coltheart et al. are shown in Table 6.3

Table 6.2

Proportion of Error Trial in LEX's Simulation of Andrews' (1989) Experiments

Word Frequency

Experiment Low High
Exp 1
Large N 0
Small N 0.05
Exp 2
Large N
Small N
Exp 3
Large N 0 0
Small N 0.04 0

Simulations | and 2 To simulate the increased ease with which a lexical decision
can be made when illegal nonwords are used as foils, I adjusted LEX's word criterion
parameter. Recall that, after retrieval, LEX uses the similarity (as measured by Pearson's
correlation coefficient) between the probe letters and the retrieved orthography to derive

a signal value for a two-barrier random walk decision mechanism. The signal is
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calculated as the difference between the cormrelation and the word criterion. The word
criterion denotes the minimum correlation required for LEX to consider a letter string a
word. For example, with the word criterion set to 0.85, a correlation of 0.80 would yield
a signal value of -0.0S, corresponding to evidence that the retneved orthography is not a

word. A correlation of 0.90 is yields a positive signal (0.05) and is taken as evidence that

the retrieved orthography has lexical status.
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Figure 6.11 Subject and simulation data for Andrew's (1989) Experiment 2

I assume that LEX, and readers, relax the word criterion when all the foils are
illegal nonwords. Hence, to simulate Andrews' (1989, Experiment 1) experiment
wherein legal nonwords were used as foils, the word criterion was set to 0.90. I dropped
the criterion to 0.88 in the second simulation to reflect the increased ease with which the
system can make the decision when the foils are illegal letter strings (Andrews,
Experiment 2).

The left panels of Figures 6.10, 6.11, and 6.12 summanise the data reported by
Andrews (1989). Figures 6.8 and 6.9 shows summary data from the lexical decision task
when legal and illegal nonwords are used as foils, respectively. Figure 6.12 contains

Andrews' data from the naming task. The right panels of Figures 6.10,6.11 and 6.12
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summarise data from LEX's performance in the same tasks. As is clear in the figures,
LEX replicates the patterns reported by Andrews (1989) for both the naming a lexical
decision tasks. Low-frequency words exhibit a strong advantage for words with
high-density neighbourhoods over low-density neighbourhoods. There is no effect of
neighbourhood density for high-frequency words.

Simulation 3 As mentioned above, nonwords exhibit a pattern of performance
that is the opposite to words. Nonwords with many neighbours take longer to classify as
nonwords than words with few neighbours (Andrews, 1989, Coltheart, Davelaar, Besner,
& Johnasson, 1977, Forster & Shen, 1996, Sears, et al, 1995). Put simply, nonwords that
are similar to many words are more "word-like" than nonwords that are similar to few
words. Coltheart et al. (1977) included the word and nonword stimuli in their article

introducing the effect, so LEX made lexical decisions on their items.
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Figure 6.12 Subject and simulation data for Andrew's (1988) Experiment 3
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Table 6.3

LEX's error rates in the lexical decision for the Coltheart et al.’s (1977) materials

Neighbourhood Size

Matenals Small Large
Words 0.12 0.06
Nonwords 0.25 0.17

There is one peculiarity about the data reported by Coltheart et al. (1977). They
reported an inhibitory effect of neighbourhood density on lexical decision latencies for
nonwords, and a null effect of neighbourhood density on word identification latencies.
The left panel of Figure 6.13 mean the latency data reported by Coltheart et al. (1977).
The right panel contains mean latencies from LEX. As s clear in the figure. LEX
reproduces the inhibitory effect of neighbourhood density on decision times for

nonwords, and the null effect of neighbourhood density on decision times for words.
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Figure 6.13 Subject and simulation data for Coltheart et al. (1977), Experiment 2
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Why does it work?

Consistent with Andrews (1989) and Balota and Chumbley (1984; 1985), LEX
treats lexical decision as a two-stage processes. During the first stage, information is
retrieved from lexical memory. Once information has been retrieved, the lexical decision
is made by a decision mechanism that decides whether the retrieved orthography is a
word. LEX also treats the naming task as a two-stage process—the task is performed by

a set of mechanisms that are sensitive to the clanity of the phonemes that have fallen out

of lexical memory during lexical access.
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Figure 6.14 Mean number of samples required to retrieve the orthography of the words
used by Andrews (1989)

Andrews (1989), Experiments | & 2 : Lexical Decision. When Andrews (1989)
used illegal letter strings as nonword foils in the lexical decision task (Experiment 2), the
effect of neighbourhood density did not change. Andrews (1989) argued, therefore, that
neighbourhood effects occur during lexical access. Presumably, if the effect occurred at
the decision stage, the neighbourhood effect should disappear because subjects would

base the decision on the legality of the letter string. Placing the locus of neighbourhood
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effects during lexical access is also consistent with the similar pattern of performance in
the naming task—both tasks involve the lexical access stage. Forster and Shen (1996)
countered Andrews' argument by demonstrating an absence of neighbourhood density
words effects in a semantic decision task. Presumably, a semantic decision also requires
lexical access. Hence, if Andrews' analysis is correct, neighbourhood density should
affect semantic decisions as well. Forster and Shen argued therefore, that neighbourhood
density affects performance at the decision stage of processing.

LEX is sensitive to neighbourhood density for the reasons offered by Forster and
Shen,; that is, the effect occurs during the decision stage. Recall that sometimes LEX
fails to retrieve the correct letter from the lexicon (especially when the word is
low-frequency). When the failure occurs, LEX readjusts its search space and continues
retrieving the remaining letters. If the target word has many neighbours, there are more
words with letter information that is consistent with the probe in the cohort than when the
arget has few neighbours. As shown in Figure 6.14, however, neighbourhood density,
has little impact on the number of samples required to retrieve the lexical information
from memory. Rather, because low-N words share fewer letters in the same position
with other words in the lexicon, the clanty of the representation the OB is
compromised. Asis clear in figure 6.15, there is a clear difference between the average
OB's clarity for the large- and small-N words when the words are low-frequency, but
little corresponding difference for high-frequency words. Because high-frequency words
are generally retrieved without failure, the clanty of the orthography in the OB is not as
affected by repeated retrieval of irrelevant words. Consequently, high-frequency words
do not exhibit sensitivity to neighbourhood density.

It is easy to understand why Andrews (1989) placed responsibility for
neighbourhood density effect at the lexical access stage. By using illegal nonword foils,
she correctly assumed that the decision stage was made easier. However, making the
decision stage easier does not eliminate decision—the task requires it. [ made the
decision stage easier by decreasing LEX's word criterion. The decrease reflects a reader's
strategic adjustment of how word-like a letter string must be to be considered a word. If

the nonwords look much like words, the reader must be cautious not to make an error,
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and the criterion must be high. If, on the other hand, all the nonword foils are consonant
strings, the reader can afford to be more lax. Decreasing the word criterion to a
magnitude that still allows high accuracy increases the signal value to the decision
mechanism yielding two results: faster response latencies and decreased errors. Because
the decrease does not eliminate the contribution of the decision stage to the response, the
latency advantage for high-N words persists when the word criterion is lowered.

Andrews (1989) Experiment 3: The Naming Task LEX's sensitivity to
neighbourhood density in the naming task also reflects the clanty of the information that
is retrieved from lexical memory. Specifically, the clarity of the phonemes for low-N
words is lower than that of high-N words causing longer naming latencies for low-N
words (see Figure 6.16). The explanation for the latency advantage for high-N words
over low-N words in the naming task is similar to LEX's explanation for the lexical
decision task.

As mentioned earlier, following retrieval, the phonemes of high-frequency words
tend to have almost perfect clarity for two reasons: (1) letter retneval rarely fails and (2)
the phonemes of words are weighted by their frequency during retneval. The weighting
causing the phonemes of high-frequency words to have a large impact on the phonemes
in the PB Because the phonemes are almost at ceiling, there is little effect of
neighbourhood density on naming latency when the words are high-frequency

When the words are low-frequency, however, LEX is more likely to expenence
failures during retrieval. Because LEX must adjust the cohort to aid identifying the
missed letter, phonemes from several irrelevant words are included in the new cohort,
and of course, each sample of words from lexical memory. If the word has many
neighbours, many of the neighbours will also be included in the new cohort. A word's
neighbours tend to have many phonemes in common as well as letters; hence, as is shown
in Figure 6.16, the increased clarity of the features in the OB is paralleled by an increase
in the clarity of the phonemes in the PB.

Coltheart et al. (1977). Coltheart et al. demonstrated a latency advantage for
low-N nonwords over high-N nonwords in the lexical decision task. They found no
effect of neighbourhood density for lexical decisions made to words. Andrews (1989)

pointed out that the words they used were generally high-frequency. Because the latency
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advantage for high-N words is limited to low-frequency words, it is not surprising that
they failed to find an effect. For the same reason, LEX also failed to find an effect of
neighbourhood density using their words.

Because LEX is retrieving the letters of a nonword, retrieval failure is
inevitable—at some point, LEX will reach the letter that defines the letter string as a
nonword. When the cohort is adjusted, many of a nonword's neighbours will be included
in the cohort of potential matches. As with words, if the nonword has many neighbours
the clarity of the letters in the OB will be higher than if the nonword has few neighbours.

The higher the clanty of the OB, the more wordlike the features of the OB are
considered to be. Hence, as the clanty increases, the signal to the random walk
decreases. In this simulation, the word criterion was setto 0.89. The average clarity of
the OB for low-N and high-N nonwords was 76 and 78 respectively. Using the clarities
to derive signals for the random walk (clarity - word cnterion), low-N nonwords had a
mean signal of -0.13, and high-N nonwords had a signal of -0.11.

In sum, the lexical status of a high-N nonwords takes longer to decide than the
status of a low-N nonword because the former nonword 1s more wordlike than the latter.

Basic Orthographic Syllable Structure (BOSS) Effects in Lexical Decision

Taft (1979, 1986, Taft & Forster, 1976) theorised that reading a word requires
matching a word's first orthographically and morphologically defined syllable with a
sensory match in the lexicon. Taft referred to the first syllable as the BOSS, an acronym
for Basic Orthographic Syllable Structure. To read the word blenush, for example, the
BOSS, blem is matched to its sensory representation in the lexicon, and subsequently, it
is paired with ish to form blemish. To demonstrate the importance of the BOSS as an
anchor for accessing a word, Taft and Forster (1976, see also Taft, 1986) examined
lexical decision performance for three types of nonwords: nonwords that were BOSSes of
words, for example, blem of the word, blemish, nonwords that formed the beginning of
words, but were not BOSSes, for example, roun of the word round, and nonwords that

did not form the beginning of any word, for example, vuth.
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Figure 6.17 Subject and simulation data for lexical decision |atencies for Taft and
Forster's (1976) nonwords

Taft and Forster (1976, and also Taft, 1986) showed that BOSS nonwords took
longer to reject in the lexical decision task than either nonwords that formed the
beginning of a word or nonwords that did not form the beginning of a word. They
interpreted the pattern of decision latencies as reflecting thic special status of the BOSS's
in the lexicon. Their analysis makes sense; if a nonword is a BOSS of a word it is
represented in the lexicon. Ifitis represented in the lexicon, itis very wordlike and
should be difficult to reject in a lexical decision task. The left panel of Figure 6.17
contains the mean lexical decision latencies reported by Taft and Forster (1976).

A simulation

The right panel of Figure 6.17 shows LEX's lexical decision latencies for Taft and
Forster's nonwords. LEX replicates the basic pattern ot data reported by Taft and
Forster; BOSS nonwords take longer to classify than non-BOSS nonwords. LEX's error

rates for BOSS nonwords, non-BOSS nonwords, and non-part nonwords were 0.26, 0.19,

and 0.10 respectively.
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Figure 6.18 Letter retrieval time and orthographic clarity of the OB for each class of

nonword using Taft and Forster's (1976) nonwords

Why does it work?

In contrast to Taft's (1979; 1986; Taft & Forster, 1976) theory of lexical access,
LEX does not explicitly represent any orthographic structures within words. LEX's
sensitivity to the BOSS reflects the scale of its lexicon. When a lexicon is made to scale,
what looks like sensitivity to structure may simply reflect sensitivity to redundancy in the
language. To illustrate the point, I tabulated how many words in LEX's lexicon
contained Taft and Forster's nonwords as beginnings. Across nonwords in each category,
there are, on average, 13 words in LEX's lexicon that start with Taft and Forster's
BOSSes, 7 words that start with their non-BOSS nonwords, and 3 words that start with
their non-part nonwords (some of Taft and Forster's non-part nonwords were
misclassified. For example, pren forms the beginning of the word prenatal). Clearly,
BOSS nonwords are more wordlike that non-BOSS nonwords, which are in tum more
wordlike than non-part nonwords.

Figure 6.18 plots the average clarity of the OB for each type of nonword. As the

Figure shows, as a nonword becomes less word-like, the degree to which the retrieved
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letters match the probe letters decreases. The less a letter string resembles a word, the
faster, and more accurately, LEX can correctly respond to it. In sum, LEX's performance
is sensitive to redundancy in the language that is correlated to the BOSS, not the BOSS
itself.
Reading Multi-Syllabic Words

Almost every simulation model of word identification limits its lexical knowledge
to one-syllable words (for an exception, see Anns, etal., 1999). Why are multi-syllabic
words so often excluded? There are two possible reasons. Perhaps, theorists are unsure
how to implement a parsing mechanism that can divide a word into its constituent
syllables. Indeed, syllables appear to be important structures for lexical access. Some
models of letter encoding (e.g., Mewhort and Campbell, 1981, Spoehr and Smith, 1973)
have even postulated that the syllable is the functional unit for lexical access. The other
reason may be that the representation scheme used by many models for encoding words
would have to change drastically to accommodate polysyllabic words. For example, a
back-propogation network model that uses Wickelfeatures to represent orthography and
phonology at its input and output layers could not uniquely represent words like banana,
nussissippi, and chihuahua; their representations as wickelfeatures are indistinguishable
from hana, missippi, and chihua. In a like fashion, the vowel, onset, and coda
component scheme chosen Plaut et al. (1996) would require change to accommodate
several more components of words. As the number of components grows, eventually
Plaut et al's model would be forced into using the letter channel representation scheme
used by the DRC and IAM. To its credit, because the DRC uses letter channels to
represent the spatial arrangement of letters in a display, it can represent the letters of long
multi-syllabic words. Coltheart and Rastle (1994) reported that the DRC can represent
words up to nine letters in length However, because the DRC uses the IAM's letter
channel representation, it inherits the earlier mentioned problems associated with an

inconsistent representation of space between letters.
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Figure 6.19 Subject and simulation data for Jared and Seidenberg's (1990) six-letter
words in the naming task

Jared and Seidenberg (1990, Experiment 3) demonstrated readers' sensitivity to
syllabic structure in word naming; multi-syllabic words take longer to pronounce than
monosyllabic words. They also noted that the effect is more pronounced when the words
are low-frequency than high-frequency. Clearly, the attenuation of a naming advantage
for one-syllable high-frequency words over two-syllable high-frequency words is
problematic for Spoehr and Smith's (1973) and Mewhort and Campbell's (1981)
hypothesis that reading involves an obligatory parsing stage prior to lexical access.

Jared and Seidenberg (1990) suggested that readers' sensitivity to syllabic
structure could reflect a correlation between orthographic and phonological information
contained in the words a reader knows. In essence, they proposed that readers are not
sensitive to syllables per se; they are sensitive to lexical knowledge that is correlated to
syllables. They further reasoned that a model that stores little more than information
correlating orthography and phonology (for example, Seidenberg and McClelland's,

1989, connectionist account) should be able to reproduce the pattern of naming data.
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In the simulation that follows, we offer a confirmation of Jared and Seidenberg's
(1990) speculation that a "model lacking an explicit level of syllabic representation of

syllabification rules" (p. 103) can demonstrate sensitivity to the number of syllables in a
naming task.

A Simulation

LEX named the 60 six-letter words used by Jared and Seidenberg (1990). Half of
the words were monosyllabic, and the other half were bisyllabic Half of the words were
low-frequency and half were high-frequency words

The mean latency data for the six-letter words reported by Jared and Seidenberg
(1990) are shown in the left panel of Figure 6.19. LEX made no pronunciation errors.
There is a clear naming latency advantage for monosyllabic words over bisyllabic words
when the words are low-frequency, but not when the words are high-frequency. LEX's
mean naming latencies for the same stimuli are shown in the right panel of Figure 6.19; a
clear replication of the basic interaction reported by Jared and Seidenberg.

Why does it work?

The clarity of the information in LEX's phonological buffer dictates how long it
will take to begin pronunciation after retrieval. Pronunciation begins when an articulatory
code for the blurriest phoneme has been prepared. As shown in Figure 6.20 the average
phonemic blurriness of bisyllabic words tends 1o be greater than that of monosyllabic
words, but only when the words are low-frequency

The inconsistency with which vowels are often pronounced in English is
responsible for LEX's ability to reproduce the phenomenon. When LEX reads a word,
the vowels are often the blurnest of the retrieved phonemes; hence, the clarity of the
vowels often determines naming latency. Figure 6.21 plots the average clarity of each
phoneme for low-frequency, one and two-syllable words. The phonemes of two-syllable
words are more blurry than those of one-syllable words. The noise associated with
two-syllable words occurs because a two-syllable word generally has a vowel near the

end of the word; a one-syllable word's vowel tends to be near the beginning of the word.
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As LEX builds the information in the orthographic and phonological buffers by sampling
lexical information, words that are inconsistent with the probe are eliminated through
cohort reduction. Only lexical entries that are consistent with the probe so far are
available for sampling. Consequently, the letters and phonemes that have been retrieved
are reinforced. Because initial letters and phonemes are reinforced more often than the
final ones, a vowel positioned near the end of a word tends to be more blurry than one
near the beginning.
The Orthographic Uniqueness Point Effect

The uniqueness point (UP) is a characteristic of a word made popular by
Marslen-Wilson's (1984) tests of his cohort model of auditory word identification. A
word's UP is the phoneme, in the stream of phonemes that make up a word, that
differentiates a word from all other words that the listener knows. When subjects are
asked to decide on the lexical status of a word that is presented auditorially it is
recognised as a word more quickly when it has an early UP than when the UP comes late
in the stream of phonemes.

Radeau, Morais, Mousty, Searens, and Bertelson (1992) reasoned that, if reading
a word required left-to-right processing through the letters of a word, readers should be
sensitive to the uniqueness point (UP) of the printed word as well. Radeau et al. had
subjects read words known to yield the UP in the auditory lexical decision task (Radeau,
Mousty, & Serens, 1989). They found no evidence that a word's UP affected
identification latency in either a2 naming task or a gender classification task (French
nouns were used in their expeniments). On the basis of their null result, they concluded
that reading words was an example of parallel processing.

Kwantes and Mewhort (1999) suggested that Radeau et al.'s (1992) use of the UP
did not provide a fair test of sequential processing in a reading task because the UP is a
phonological characteristic of a word. Kwantes and Mewhort selected 100 seven-letter
words and classified them on the basis of their orthographic uniqueness point (QOUP).
The OUP was defined as the letter position, reading from left to right, that differentiates a
word from all other words the reader may know.

In two experiments, Kwantes and Mewhort (1999) found that naming latency was

shorter for words that had their QOUPs after the third letter than words that had OUPs after
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the sixth or seventh letter position. A pattern pointing to a sequential operation at some
point during reading. The naming advantage for early-OUP words disappeared when
they were named in a delayed-naming task; suggesting that the mechanisms responsible

for production are not solely responsible for the effect.

Kwantas & Mewhort { 1999)
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Figure 6.22 Subject and simulation data for the words used by Kwantes and Mewhort
(1999)

A Simulation

For this simulation, LEX named the words used by Kwantes and Mewhort (1999).
LEX erred on four trials when it read words with early-OUP words and 16 trials when it
read late-OUP words. The left panel of Figure 6.22 shows mean naming latency for
subjects. The right panel contains mean naming latencies from LEX. As s clearin
Figure 6.22, LEX captures the naming advantage for early-OUP words.
Why does it work?

The latency advantage for words with an early OUP is a novel prediction from
LEX. As LEX retrieves each letter from the lexicon, a cohort of candidate matches to the

target is adjusted to include only the word that are consistent with the target so far. At
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some point during retrieval, there will be only few words in the cohort that are consistent
with the target. In the case of an early-OUP word, such as biplane, the retrieval of the
letter / at the fourth position differentiates biplane from all other words in the lexicon. In
the case of a word such as curtail, a late-OUP word, LEX is uncertain about the identity
if the word untl it retrteves the final letter. Until LEX retrieves the /, the word could be
curtain. The naming advantage for early-OUP words reflects the speed with which LEX
can retrieve the remaining letters after the OUP of a word has been reached.

LEX required 158 and 272 samples from the lexicon to retrieve the letters of
early- and late-OUP words, respectively. In addition to a greater number of samples
required to retrieve the letters of late-OUP words, the phonemes of late-OUP words in
the PB were also more blurry (.78) than the phonemes for early-OUP words (.84).
Because of cohort reduction, by the ime LEX reaches the letter corresponding to the
OUP, only one word is available for sampling. With only one word available for
sampling, the remaining letters are retrieved quickly from the lexicon. Cohort reduction
is also responsible for the greater clarity associated with the phonemes of early-OUP
words. When the QUP has been reached early in retrieval, the phonemes of only one
word are being copied into the PB. When a word has an early OUP, its phonemes in the
PB of the word are reinforced by many more sample than the phonemes retneved for a
word that is uniquely defined near the end of the letter string.

Reading Nonwords

Thus far, [ have demonstrated that LEX and readers are sensitive to the same
characteristics of words in two reading tasks. An important additional test of whether
LEX's mechanisms are also present in readers is how closely its performance on novel
stimuli parallels readers' performance. In order to match theory and data, three
conditions must be met: first, LEX must generate plausible pronunciations for nonwords
about as often as readers do (or at least as good as competing models). Second, LEX's
performance must be sensitive to the same characteristics of nonwords that readers are.
Third, there is often more than one way to pronounce a nonword which makes unclear
what the correct pronunciation of a novel word should be. If, however, readers are

biased to produce one pronunciation for a nonword over other pronunciations, the model
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should also be biased to make the same pronunciations. Finally, LEX should reflect any
varability in readers' pronunciation of nonwords.

There are two ways in which a reader might read nonwords: by analogy to words
she knows or by implementing an algorithm that translates spelling to sound. The two
strategies for deriving a pronunciation are at the heart of the debate between proponents
of connectionist and dual-route models of reading aloud. Recall that the dual-route
model's nonlexical route uses grapheme-to-phoneme conversion rules to derive a
pronunciation for nonwords. Connectionist models such as those by Seidenberg and
McClelland (1989) and Plaut et al. (1996) read nonwords (and words, for that matter) by
analogy.

Andrews and Scarratt (1998) examined how nonwords that could be read by
analogy would be pronounced by readers. They divided the nonwords into four
categories of body The body refers to the letter cluster following the first letter or
grapheme in a monosyllabic word. For example, inch is the body of the word pinch.
First, Regular Consistent Body (RCB) nonwords contain word bodies whose
pronunciation does not vary across words containing the body. For example, the body,
mch, possesses a pronunciation that is invariant across words containing it. Second, their
subjects read nonwords with Inconsistent Bodies (IB), that is, nonwords with bodies that
had more than one common pronunciation. For example, ead, has two common
pronunciations such as in the words head and bead.  The final type of nonwords had
bodies for which there was no regular analogy (NRA). That is, the body of the nonword
is always pronounced irregularly when it appears in words. They used two such types
of nonword: NRA-M nonwords had many neighbouring words sharing the same body
and irregular pronunciation, for exampie, the ight of yight is found in several words:
fight, flight, sight, might, right, light, night, and tight. In every instance of a word
containing the ight letter combination, the / is a long vowel, and the g is unpronounced.
NRA-U nonwords were nonwords for which the word body was irregular, but unique to
only one word, for example, sign is the only word containing the body ign.

Because all of Andrews and Scarratt's (1998) nonwords could be read by analogy
to words, they provided a fair test to determine which class of model, dual-route or

connectionist, predicts pronunciations that are common to readers. Because connectionist
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models read nonwords as analogies to words that they know, they are biased to yield
pronunciations corresponding to the most frequent pronunciation of the word bodies
stored in the model. For example, the body of the nonword /inth would be pronounced
to rhyme with ninth by connectionist models because it is the only pronunciation
associated with the body, inth. On the other hand, the DRC translates letter strings into
phonemes starting from the leftmost letter to the ending letter. Because the letter i is not

followed by an e at the end of the nonword, the DRC's appropriate GPC rule will give it a

short vowel pronunciation.
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Figure 6.23 Subject and simulation data for Andrews and Scarratt's (1998) nonwords

The DRC predicts that nonwords will be generally be regularised regardless of the
frequency of the pronunciations of the nonwords' bodies. On the other hand,
connectionist models will regularise the pronunciations of nonwords whose bodies are
most commonly found in regular word. Nonwords with bodies most commonly

associated with exceptional pronunciations will be pronounced consistent with irregular

words.



98

Instead of discussing Andrews and Scarratt's (1998) results first, and follow the
discussion with a simulation, I will describe their results concurrently with the results of a
simulation. Andrews and Scarratt had subjects name two lists of 64 nonwords. LEX
named only the nonwords from one of the lists (list b) because the two lists were
composed largely of nonwords with the same bodies. LEX named each nonword 16
tmes and produced plausible pronunciations for 96% of the trials. Andrews and Scarratt
had three measures of reading performance: naming latency, the likelihood that a
nonword's pronunciation would be regulanised, and uncertainty about the nonwords
pronunciation. [ will discuss each measure of reading performance separately.

Nanmung Latency

Andrews And Scarratt (1998) noted that nonwords without regular analogies
(NRA nonwords) took longer to name that nonwords that had regular analogy bodies
(RB). The left panel of Figure 6.23 plots subjects' mean naming latencies for the two
types of nonwords. The right panel corresponds to LEX's naming latencies for the same
nonwords. As is clear in the right panel, LEX replicates the basic pattemn reported by

Andrews and Scarratt.
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Figure 6.24 Subject and simulation naming latencies for nonwords that yielded one and
two pronunciations
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Andrews and Scarratt (1998; see also Seidenberg, Plaut, Patterson, McClelland, &
McRae, 1995) also noted that nonwords with one pronunciation across subjects were
named faster than nonwords that were given two pronunciations. Their data are
summarised in the left panel of Figure 6.24. The right panel of the figure contains LEX's
mean naming latencies for nonwords to which it gave one or two pronunciations across
runs of the model. As is clearly shown in the figure, it also took LEX longer to name

nonwords for which it settled on one of two pronunciations than nonwords that were

given a single pronunciation.
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Figure 6.25 Average number of samples required to retrieve each class of nonword

and the average phonemic clarity of each class of nonword

Why does it work?

Mean letter retrieval times are illustrated in Figure 6.25. Nonwords that
contained regular or inconsistent bodies, contained letter sequences that were common in
many words. Half of the NRA nonwords, however, contained bodies that appear in few
very few words. Hence, when LEX read NRA nonwords it took longer to retrieve their

letters than the letters of nonwords containing bodies of several words.
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The mean clanty of the blurriest phonemes for each class of nonwords are also
shown in Figure 6.25. Because half of the NRA nonwords had only one word-body
neighbour, the letters of NRA nonword were difficult to find in the lexicon. When
nonwords are harder to find in the lexicon, LEX requires to take more samples to retrieve
the letters than when the letters are easy to find. The more samples LEX is forced to take
from the lexicon, the more irrelevant phonological information is copied into the PB.

Irrelevant phonological information compromises the clanity of the PB, which in tumn,

increases naming latency.

Regularisation of Nonword Pronunciation

Andrews and Scarratt (1998) noted that nonword pronunciations tended to be
consistent with that of a regular word than an irregular pronunciation; even when the only
other words containing the same body were irregular. For example, the letter i of the
nonword /inth was pronounced as a short vowel rather than rhyming with the word ninth,
the only word containing the inthbody The tendency to regularise nonwords is
problematic for strict analogy based models of word and nonword naming. The nonword
linith would consistently be pronounced to thyme with ninth by a connectionist model
because it is the only pronunciation associated with the body inth pronunciation during
training. On the other hand, the DRC reads nonwords using its GPC rules. According to
the rules, the / of the letter combination, inth should be pronounced with a short vowel
because there is no ¢ at the end of the string to modify the /.

Andrews and Scarratt (1998) compared readers' and the DRC's tendency to
regularise nonword pronunciations. Andrews and Scarratt divided their nonwords into
seven categories corresponding to how often they were regularised by subjects: 100% of
the time, 90-99%, 60-89%, 40-59%, 20-39%, 10-19%, and 0-9%. The open squares of
Figure 6 26 shows the average regularisations produced by the DRC for the same
nonwords. As is clear in the figure, the DRC generally overestimates the how many
nonwords will be regularised By comparison, the solid circles of the figure correspond
to the average number of LEX's regulansations for the same nonwords. Note the clear
correspondence between subjects' and LEX's tendency to regulanise nonwords. In sum,
LEX regularises nonword pronunciations about as often as readers do, and predicts which

nonwords will be regularised better than the DRC.
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Figure 6.26 A comparison of LEX's and the DRC's tendency to regularise groups of
nonwords

While Andrews and Scarratt (1998) did not include a simulation from a
connectionist model, it is easy to anticipate how such a model would handle their stimuli.
Connectionist models create analogous pronunciations for nonwords from the overlap
among nodes at the orthographic and phonological levels. For example, in Seidenberg
and McClelland's (1989) model, the pronunciation of a nonword such as pask would be
derived from a blend of connections between orthographic and phonological nodes that
come from words that contain the right wickelfeatures. Specifically, the wickelfeatures
used to pronounce pask would come from an "average" of words such as (with the
wickelfeature in parentheses), part (_PA), past (PAS), task (ASK) and wisk (SK_).
Likewise, Plaut et al.'s (1996) improvement to Seidenberg and McClelland's (1989)
model creates pronunciations for nonwords from the overlap among word components.
Hence, the nonword pask is pronounced from an average of words such as (with the
components in parentheses), pick (P onset), past (P onset and A vowel), fask (A vowel
and SK coda), and wisk (SK coda). Using the componential or wickelfeature scheme, the

pronunciation of any letter is directly proportional to the frequency with which itis
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paired with a particular phoneme. Hence, while the number of nonwords with regular
analogy bodies will be accurately regularised, connectionist model will underestimate the

degree to which nonwords with NRA bodies will be regularised.
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Figure 6.27 Pronunciation uncertainty for each class of nonword
Why does it work?

Like connectionist models, LEX is an analogy-based model. LEX is superior to
connectionist models and the DRC in estimating the extent to which nonwords are
regularised because LEX does not map letters to phonemes. Instead, the analogy is built
from the leftmost to the rightmost letter. By building the pronunciation from left to right,
the phonemes at the beginning of the word are determined early and are quite clear. LEX
copies phonemes into the PB at a position corresponding to the blurriest phoneme.

Because the clarity of an early phoneme, like the ea of kead, is high, it is unlikely to be

overwritten by the analogy.

Pronunciation Uncertainty

Nonwords can often have more than one acceptable pronunciation. For example,

the nonword, kead could be acceptably pronounced to rhyme with head or bead. As a
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final test of how nonword are read by subjects, Andrews and Scarratt (1998) measured
the uncertainty with which subjects generated pronunciations for their nonwords.
Uncertainty reflects two aspects of pronunciation: the number of pronunciations
generated by a nonword, and the degree to which subjects are biased to yield some
pronunciations over others. To measure uncertainty, Andrews and Scarratt adopted an
uncertainty measure used by Trneman, Mullenix, Bijeljac and Richmond-Welty (1995)
where uncertainty (H) is expressed as, H =L plog,p. Where pis the probability of each
pronunciation in a sample of correct pronunciations

Andrews and Scarratt (1998) noted that pronunciation uncertainty for nonwords
paralleled naming latency. Pronunciation uncertainty was higher for nonwords for which
their bodies had no regular analogies than nonwords that had regular analogies. The left
panel Figure 6.27 plots H for each type of nonword. The panel on the right plots LEX's
pronunciation uncertainty for the same classes of nonwords. LEX clearly replicates the
basic pattern of pronunciation uncertainty documented by Andrews and Scarratt.

Why does it work?

Because NRA nonwords contain bodies that have no regular analogies, LEX was
sometimes biased to pronounce the nonwords consistent with their irregular word
neighbours. In other words, sometimes, /inth was pronounced to rhyme with ninth.
Whether LEX pronounces the nonword consistent with an irregular word depends
entirely on which phoneme LEX begins copying phonemes after retrieval failure. If,
after retrieval failure, the second phoneme in the PB is near perfectly clear, or the
blurriest phoneme happens to be the one following the first phoneme of the nonword's
body, LEX will pronounce the nonword consistent with an irregular pronunciation. On
the other hand, when nonwords have regular analogies, there is often only one
pronunciation for the nonword regardless of which phoneme in the PB is the blurnest. In
sum, LEX's ability to replicate the pronunciation uncertainty reported by Andrews and
Scarratt reflects the fact that nonwords with regular analogy bodies often have only one

plausible pronunciation, and nonwords without regular analogy bodies often have more

than one.
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Chapter 7: A test of LEX's letter encoding assumption

In this chapter, I test LEX's most important assumption; that the reading system
expects a list of letters as a retnieval probe for information stored in the lexicon. As |
mentioned above, current models of word identification choose input representations for
their models that are amenable to the assumption that the letters of a word are processed
in parallel. I have built LEX on a different principle; to allow the organisation of the
letters guide retrieval. To test the assumption that the reading system requires a list of
letters, I used a parafoveal priming technique developed by Rayner and his associates
(e.g., Rayner, McConkie, & Erlich, 1978; Rayner, McConkie, & Zola, 1980).

Parafoveal Priming

Imagine fixating a dot in the middle of a display monitor. While you are holding
fixation, a letter stnng (the prime stimulus) is shown briefly in the parafovea at a position
to the left or the nght of fixation. Shortly thereafter, the dot is replaced by a word (the
target). Your task i1s to name the target as quickly as possible If the target and prime
share the first few letters, you will be able to name the target more quickly than if they do
not share the first few letters. The advantage in naming time is known as parafoveal
orthographic priming.

Rayner and his associates have used the priming paradigm to study the nature of
the information that readers extract from parafoveal text (e.g., Rayner, et al, 1980; see
also Rayner, et al., 1978). According to Rayner and his associates, neither semantic nor
morphological overlap yields priming (see also Lima, 1987, Lima & Inhoff, 1985,
Rayner & Morris, 1992). Although there is evidence that limited phonological
information can be obtained during a parafoveal preview (Pollatsek, Lesch, Morris, &
Rayner, 1992), priming is largely controlled by the orthographic similarity of the target
and prime stimuli. That is, the target stimulus is facilitated when it shares letters with the
prime stimulus.

Two details of the overlap are of particular interest. Firstly, facilitation is
equivalent when the two stimuli are printed in different cases; we conclude that data

obtained from both the target and the prime must be represented at an abstract,
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non-iconic, level. Secondly, priming is asymmetrical in the sense that it occurs only
when the pnme shares the first letters with the target. Hence, bend will prime the target
bent, but rent will not. The asymmetry is the point of interest for this chapter.

Rayner et al. (1980) proposed a preliminary letter-identification hypothesis to
explain the asymmetry for primes that share letters with the target. The hypothesis
suggests that readers identify the prime stimulus’ first few letters. If its letters match the
first letters of the target, identification of the prime's letters establish a context that assists
the identification of the remaining letters of the target. Alternately, having identified the
first letters, readers may be able to focus attention on the letters that have not yet been
identified.

The asymmetry in parafoveal priming can also be interpreted in terms of
assumptions required by LEX. LEX postulates that identified characters, represented as
abstract letter identities, are ordered in a list. The list serves as a retrieval probe to gain
access to lexical memory, and the list's structure is used to guide the retrieval process
(Mewhort, Kwantes, & Feldman-Stewart, 1997, see also Mewhort, 1974, Mewhort &
Beal, 1977). Specifically, retrieval begins at the first letter in the list and terminates
when a match for the last letter has been found.

How does LEX handle parafoveal priming” I postulate that the letters of the
prime stimuius ordered in a list and stored in LEX temporal buffer (TB). When the
target is displayed, its characters are identified and copied on top of the list in the TB that
stored the prime's letters. Note that letters of the target and prnime are identified
independently, a point consistent with the fact that mismatching the case of the prime and
target does not affect the amount of priming. If the letters of the target and prime match,
the composite formed by copying one onto the other will be clear; if the letters mismatch,
the composite will be noisy.

The composite formed by overprinting letters from the target and prime serves as
a retrieval probe to the lexicon. Retrieval starts with the first letter of the list and will be
hampered if the composite is noisy. If the noise is toward the end of the list, as in the
case when bend is used as a prime for bent, the retrieval system can use the context
provided by the partially retrieved word to aid re-identification the mismatched letters.

By contrast, if the noise is toward the beginning of the list, as is the case when rent or
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xpjk is used as a prime for bent, retrieval cannot start until the letters of the target have
been re-identified.

The beginning letters of the target and prime are always on the same side of the
character string, the left side in English. Hence, it is unclear whether the benefit
provided by bend as a prime for bent reflects the fact that subjects are biased to identify
letters from the left side or the fact that subjects process identified letters in left-to-right
order. On the first view, the position of the first letters is known as a reading habit
without reference to the stimulus, but on the second, it is a consequence of processing.
To disunguish the two possibilities, I need to separate spatial bias from temporal ordering
when defining the first letters of a word.

To separate spatial from the temporal prionty, [ used English-Hebrew bilingual
readers. The beginning of an English word is on the left side, whereas the beginning of a
Hebrew word is on the right side. If an English-Hebrew bilingual is shown words from
both languages in random order, a spatial bias to identify letters from one side would fail,
and pnming should be attenuated or disappear. If subjects identify the letters and then
order them so that the first letter is from the language-appropnate side, priming should
occur as usual; that is, priming should occur in English when the target and prime match
on the left, whereas pnming should occur in Hebrew when they match on the right.

[ report two experiments in this chapter: In the first, I replicated the basic
phenomenon—the asymmetry discussed above. In the second, I eliminated a confound
between spatial position and the beginning ot a word by using bilingual English-Hebrew
readers naming words of both languages. If naming Hebrew and English words is fastest
when preceded by primes that share the first letters, pnming must occur because the
letters of the prime are ordered by the reader

Experiment 1

The first experiment was conducted to ensure that I could replicate the studies of
Rayner and his associates (e.g., Rayner et al., 1980). On each trial, subjects were given a
parafoveal preview of a letter string followed by a word (the target) presented foveally. I
varied the prime's similarity to the target by changing its letters to create nonwords that

contained three, one, or none of the letters of the target. In addition, I used the target

itself as a prime.
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Two types of nonwords were created so that common letters with the target were
at the beginning or end of the prime. Hence, a target such as bent could be primed with
bent, benk, barp, zent, lort, and xpjk.

[ used nonword primes for two reasons. Firstly, orthographic priming from a
parafoveal preview occurs prelexically ; hence, a nonword functions as an adequate
prime (Rayner, etal. 1978). Secondly, by using nonwords, I could set the frequency of
the prime at zero.

Following the Rayner et al. (1980) study, I anticipated two results. Firstly, primes
sharing all or the first three letters with the target should speed naming the target relative
to primes that share no letters with the target. Secondly, primes sharing only final letters
should not speed target naming.

Rayner et al. (1980) found no reliable piming when the only the first letter was
common to both the prime and target. If the first letter of the target and prime match, our
account of the asymmetry in parafoveal pnming anticipates that the match should provide
enough context to yield a modest pnming effect. The discrepancy can be explained in
terms of the power of Rayner et al 's expenments. Their experiments included a
maximum of five subjects and, hence, may have lacked the power to detect a naming
advantage for targets preceded by a first-letter prime. By using a larger number of
subjects in our experiment, I expect to find a priming effect using first-letter primes.
Method

Subjects. Twelve students enrolled in introductory psychology at Queen's
University served as subjects for the experiment. All subjects had normal or
corrected-to-normal vision, and all had English as a first language.

Materials and apparatus. Two lists of twelve four-letter target words were
constructed. Each word had a printed frequency between 2 and 10 occurrences per
miilion words of text (Kucera & Francis, 1967). For each word, five nonwords were
constructed: one sharing the first three letters with the word, one sharing the first letter of
the word, one sharing the last three letters with the word, and one sharing the last letter of
the word. A control with no overlap with the target was constructed using consonants
(cf., Rayner et al., 1980).
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Items were presented on an [BM compatible PC equipped with an SVGA
monitor. Subjects responded to stimuli by speaking into a head mounted microphone that
triggered a response switch. The timing and screen control routines were taken from
Heathcote (1988). Subjects sat 1.2 meters from the computer's monitor in a darkened
room. Stimuli were presented in white letters on a dark background and subtended a
visual angle of 1.19°.

Procedure. Each trial started with a fixation dot presented at the centre of the
computer's monitor. After 1200 ms, a prime was presented for 184 ms to either the left
or the nght side of the dot. Seventeen ms after the prime's offset, a target word was
presented foveally; it remained until the subject named it. The space between the dot and
the first letter of the pnme to the nght of fixation subtended a visual angle of 2°. The
space between the dot and the last letter of the prime to the left subtended the same visual
angle.

The subjects were required to name the target presented in the middle of the
screen as quickly and accurately as possible. They were informed that the targets would
be preceded by a letter string and that the string would be shown so briefly that they
would be unable to shift they eyes to it. Instead, they were required to hold fixation at
the dot. Subjects were cautioned to avoid making sounds that would trigger the
voice-operated response key.

Table 7.1

Mean Naming Latency (in ms) for Targets in Each Priming Condition in Experiment 1
(Standard Deviations are Shown in Parentheses)

Prime letters in common with target

Side of fixation  All 3 left I left 3 nght I night  noletters

Right 468 486 498 508 516 510
(583) (62.6) (70.0) (60.7)  (75.9)  (803)

Left 470 491 489 502 500 498
(550) (63.9) (60.8) (723) (708)  (76.8)
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Figure 7.1 Magnitude of the priming effect for each overlap condition relative to the
control condition

After each trial, the experimenter scored the trial (correct or incorrect) and typed
the decision into the computer The fixauon dot signalling the next tnal re-appeared
immediately after the trial had been scored.

Subjects performed 20 practice tnais prior to reading the words of each list. After
the practice trials, which subjects read each list of words twelve times.

Design. Each subject named 24 words in each of 12 priming conditions for a total
of 288 trials. On separate trials, a target was preceded by itself, and by each of the five
nonwords that had been constructed for the word. Primes were presented once to the left
side of fixation and once to right of fixation.

The 288 experimental trials were divided into 24 blocks of twelve trials. Within
each block, a target was presented once. As well, within each block, each of the twelve
priming conditions was represented once. Item order was randomised for each block, and

the order of the priming conditions was counterbalanced across blocks. After each block

of 12 trials, subjects were given an opportunity to rest.
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Results and Discussion

There were only six trials (out of the total 3456) on which subjects misnamed the
target word. I focus, therefore, on naming latency.

Mean naming latency for correct trials is shown in Table 7.1 as a function of
priming condition. Naming latency was independent of the position of the prime relative
to the fixation point; when the prime was to the right (shown in the top row of the table),
naming latency was 496 ms and when it was to the left (shown in the third row of the
table), naming latency was 492, F(1, 11)=2.0, .15 <p < 20. The position factor did not
interact with prime type, F(5, 55) = 1.5, .2 <p < .25. Because the position of the prime
relative to the fixation did not affect performance, we collapsed across that factor in the
subsequent analyses.

Figure 7.1 shows the magnitude, in ms, of the priming effect for each condition
relative to the no-overlap control. To calculate the priming effect, we subtracted each
subject's mean naming latency for the zero overlap condition from the scores for the
remaining five conditions.

As is clear in Figure 7.1, only prime stimuli sharing the left-most letters with the
target word decreased naming latency for the target word. Using the target as a pnme
stimulus yielded larger priming than any other condition, /{1, 11) =33 .31, p < .001.
Priming occurred when the letters on the left of the prime overiapped the cornesponding
letters in the target but not when the letters on the nght overlapped the target, /(1, 11) =
47.10, p < .001. There was no reliable difference between the one-letter and three-letter
overlap conditions, F(1, 11)< 1.

Recall that Rayner et al. (1980) found priming only when at least the first two
letters overlapped. My results show the same trend—greater priming with three-letters
overlap than with one-letter overlap—but the advantage for three-letters over one-letter
overlap was not reliable. The difference between our results and those of Rayner et al.
can be understood in terms of the statistical power of the two experiments.

The experiment confirms the asymmetry in parafoveal priming reported by
Rayner et al. (1978, 1980): orthographic priming occurs only when the prime share the
first letters of the target. The question remains, however, why it occurs. Rayneretal.'s

account postulates that subjects identify the first letters of the prime, information that
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they use when naming the target. The account works only if the subjects can anticipate
where the first letters are positioned.
Experiment 2

Experniment 2 was conducted to demonstrate orthographic parafoveal priming
under circumstances that do not allow the subjects to anticipate the position of the first
letters of a word. When subjects cannot anticipate the position of the first letters, under
Rayner et al.'s (1980) account, priming should be attenuated, or disappear. By contrast,
LEX postulates that subjects identify the letters and then order them. Priming reflects the
clarity of a composite formed by overwriting the characters of the prime by the characters
of the target. Because ordenng is performed after the letters have been identified,
however, subjects do not need to anucipate the position of the first letters. Hence, even
under circumstances that do not allow the subject to anticipate the position of the first
letters, LEX predicts that priming will occur provided that the prime and target share the
first letters.

To deny subjects the ability to anticipate the position of the first letters of a word,
we asked bilingual Hebrew-English readers to name both Hebrew and English words.
English is read from left to right, whereas Hebrew is read from right to left. By mixed
the languages randomly across trials, we ensured that subjects could not anticipate the
position of the first letters of the prime.

Method

Subjects. Four Israeli students and three native Canadian Hebrew-English
bilingual students at Queen's University (5 undergraduate, 2 graduate) served as subjects.
Subjects were paid $7 for their participation. All had normal, or corrected-to-normal
vision. All subjects reported reading both languages for recreation on a regular basis.

Materials. The stimuli were 48 four-letter words, 24 in English and 24 in
Hebrew. Word frequency for the English words was held between 18 and 25 occurrences
per million, according to the Kucera and Francis (1967) norms. The frequency of the
English words was higher here than in Experiment 1 to ensure that the subjects would be
familiar with the items. Frequency norms are not available for Hebrew words; a

Professor of Jewish Studies at Queen's University verified that the Hebrew words would

be familiar to Israeli readers.
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As in the first experiment, each word served as a prime stimulus for itself as a
target. As well, five nonwords were created to serve as primes. The nonwords shared

zero, one or three letters with the target. Two of the nonwords shared the target's first

letters, and two shared the target's last letters.
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Figure 7.2 Magnitude of the priming effect in both languages for targets preceded by
prime stimuli overlapping on the left or right letters

I created fonts for the alphabets of both languages so that the letters were defined
using the same basic components (vertical, diagonal, and horizontal lines). Lines were
two pixels in thickness. The characters were defined within a matrix of 23 by 15 pixels.
Characters within each letter string were separated by 7 pixels. The stimuli subtended the
same visual angles used in Expenment 1. The hardware and timing routines were the
same as those used in Expenment 1.

Procedure. Prior to the experiment, subjects were shown each word and asked to
name it aloud. They were also asked to indicate whether any of the words were
unfamiliar. Subjects reported that all of the words were familiar. With the exception of

the preview of the targets, the procedure was identical to that of Experiment 1.
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Design. Each subject named 48 words in each of 12 priming conditions for a total
of 576 trials. On separate trials, a target was preceded by itself, and by each of the five
nonwords that had been constructed for the word. Primes were presented once to the left
side of fixation and once to right of fixation.

The 576 expenmental trials were divided into 24 blocks of 24 trials. Within each
block, a target was presented once; half the targets were English words and half were
Hebrew words. Within each block, each of the twelve priming conditions was
represented twice. Item order was
randomised for each block, and the order of the priming conditions was counterbalanced
across blocks. After each block of 24 trials, subjects were given an opportunity to rest.

To make it easier to read the Hebrew targets, they were pointed (i.e., optional
vowel markings were included). To avoid confounding the size of the prime's characters
with language, I did not include the vowel markings when Hebrew letters were used as a
prime simulus. All seven subjects reported, however, that they ignored the vowels
when they named the Hebrew words.

Results and Discussion

As in Expenment 1, subjects made few errors, they mispronounced the target item
on only thirteen of the 2304 tnals (S Hebrew and 7 English trials). I focus, therefore, on
naming latency.

Mean naming latency for correct trials is shown in Table 7.2 as a function of
priming condition and language. Naming latency was independent of the position of the
prime relative to the fixation point: When the prime was to the left, naming latency was
525 ms, and when it was to the right, the corresponding latency was 523 ms, F(1, 11) <
1. The position variable did not interact with prime type, F(5,30)=2.7, .15 <p< .20,
or with language, F(1, 6) < 1. Because the position relative to the fixation did not affect
performance, subsequent analyses collapsed across that factor.

As in Experiment |, I analysed the magnitude of the priming effect across
conditions. As before, I subtracted each subject's mean naming latency for the zero
overlap condition from the mean latency for the five priming conditions, but I made the

calculation separately for each language.
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The chief data of main interest concemn the size of the priming effect as a
function of the type of prime and the language of the target. As shown in Figure 7.2,
naming an English target was facilitated only when the target and pnme shared the left
letters, i.e., the first letters. Similarly, naming a Hebrew word was facilitated only when
the target and prime shared the right letters, F(1, 6) = 18.05, p < .01.

In addition to the interaction between the prime and language documented in
Figure 7.2, naming latency for the target decreased as overlap between of the target and
prime increased; that is, the advantage for targets preceded by primes containing all the
letter target's letters (58 ms) was greater than the advantage for targets preceded by
primes containing fewer of the target's letters (14 ms), F(1, 6)=43.5,p< 0S. In
particular, a prime that shared three letters with the target shortened naming more (21
ms) than primes that shared only one letter (6 ms), F(1, 6) = 16.4, p < 05. Hence, using
only seven subjects, a number close to the number of subjects tested by Rayner et al.
(1978, 1980), the present results, like Rayner et al.'s, indicate that the target and prime
must overlap more than one letter to obtain pnming.

The results provide a clear confirmation of the prediction derived from LEX:
Even when subjects cannot anticipate the position of the first letters of the prime
stimulus, naming the target was facilitated only when the prime shared the first letters
with the target. Because the subject could not anticipate the position of the first letters
without identifying the letters of the pime, priming cannot reflect a bias to identify the
first letters. If one assumes that subjects identify the characters and then order them, the
priming data can be understood in terms of interference that occurs when the first letters
of the target and prime mismatch.

General Discussion

In two experiments, I have confirmed that the naming latency for a target word is
shortened by a parafoveal prime only if the prime overlaps the first letters of the target.
Experiment 1 allowed subjects to anticipate the position of the target's first letters and
replicated the asymmetry reported by Rayner et al. (1978; 1980). In Experiment 2,1
denied subjects the ability to anticipate the position of the first letters and showed that the

asymmetry persists.



Table 7.2

Mean Target Naming Latencies (in ms) for Each Priming Condition in Experiment 2
(Standard Deviations shown in parentheses)

Prime letters in common with target

Language Same 3left 1left 3 nght 1nrght noletters
Hebrew  Side ott ”
fixation
Right 502 558 562 526 554 570
(77.2) (72.6) (738) (744) (855) (813)
Left 504 548 556 3536 549 555
(69.0) (740) (754) (712) (74.5) (84.2)
English  Side of
fixation
Right 465 509 514 501 522 520
(54.7) (44.0) (40.5) (345) (373) (413)
Left 467 487 508 508 520 522
(47.0) (43.6) (388) (503) (57.2) (42.1)
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The pattern of results is not consistent with accounts of orthographic priming that

depend on the subjects' ability to anticipate the position of the target's first letters. The

pattern is consistent with—indeed it was predicted by—LEX. According to LEX, a

reader first identifies the letters of a word and stores them in first-to-last order (see also

Mewhort, 1974; Mewhort & Beal, 1977). First-to-last structure can only be determined

after the characters have been identified; left-right for English and right-left for Hebrew

(see Butler, Tramer, & Mewhort, 1985). The list structure controlis retrieval of the target

word's pronunciation from the lexicon.
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According to the theory, parafoveal orthographic priming occurs because the list
denved from the target overwrites the list derived from the prime. If the two lists do not
share the same first letters, the composite representation is noisy, and its effectiveness as
a retrieval probe is reduced. As a result, naming the target is slow. By contrast, if the
two lists share the same first letters, the composite list is clear and provides an effective
retrieval probe for the target.

Rayner et al. (1978; 1980) treat orthographic priming as a faciliatory phenomena,
that is, the prime facilitates identification of the target's letters. By contrast, LEX treats
orthographic priming as an interference phenomenon. Overlapping the first letters of the
prime and target allows faster naming of the target than the no-overlap condition because
overlapping the first letters reduces the interference inherent in the control case.

The difference between the account of parafoveal priming proposed by Rayner et
al. (1980) and LEX's account is analogous to the difference between early- and
late-selection accounts of attention. In an early-selection account, attention operates on
precategorical data to facilitate the identification process. In late-selection accounts,
attention operates on postcategorical data to select objects for further processing. Rayner
etal's account, like early-selection accounts of attention, claims that priming is facilatory
in the sense that subjects use the first few letters of the prime to assist identification of the
corresponding letters of the target. By contrast, LEX claims that the apparent facilitation
reflects reduced inhibition at a post-identification stage.

The evidence is based on the manipulation of subjects' ability to anticipate the
position of the One might object to my evidence for LEX's account of priming on the
grounds that I have not ruled out all possible ways that a subject might anticipate the
position of the first letters of the target.

I made the Roman and Hebrew alphabets alike in terms of the basic features out
of which they were constructed. However, one could argue that subjects were biased to
identify the letters on one side of the parafoveal string on the basis of the visual
characteristics of the letters. To test the potential confound, I compared the visual
similarity of the two alphabets. Each letter is represented as a matrix of pixels. To
measure the visual similanty between any pair of letters, [ assigned an inactive pixel a

value of -1, and an active pixel a value of +1. [ evaluated the similarity between any two
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letters by calculating the dot product of the vectors created by concatenating rows of the
matrices representing the two letters. I scaled the dot product by dividing it by the
number pixels pairs being compared to make it analogous to a Pearson's correlation
coefficient. I calculated the scaled dot product for every letter with every other letter
excluding itself. Roman characters had an average similarity value of .54 with each
other. Hebrew characters' average similarity value to other Hebrew characters was .49.
Most importantly, Hebrew characters' average similarity to English characters (.51) was
almost equal to Hebrew characters' similanty to each other. It is unlikely, then, that

subjects were biased to identify letters on one side of the parafoveal display on the basis

of visual charactenstics of the letters.
Implications for Current Models of Word Recognition

LEX is unique in its use of a list structure as the input to the lexical access
system. The data structure I use solves a representational problem common to other
models of word recognition. Current models have not attempted to include a
psvchologically plausible representation for storing identified letters.

Connectionist models of word 1dentification, assume that all the letters of a word
are processed simultaneously to derive a pronunciation. Consequently, connectionist
models are forced to somehow represent each letter's position relative to the others using
wickelfeatures (Seidenberg & McClelland, 1989) or componential representations (Plaut,
et al, 1996). Both representauonal schemes are chosen as a convenience, not as
psychologically plausible data structures.

I have provided a psychologically plausible data structure for identified
characters. How would a connectionist model derive a pronunciation from letters stored
in a list? The first challenge would be finding a way to represent a list within the nodes
of a neural network. If a list can be represented in a connectionist model, perhaps one
way to derive a pronunciation for a letter string would be to allow a network to operate
sequentially through the list of letters. Clearly, this is an unattractive strategy for
proponents of connectionist models— it is inconsistent with the assumption of parallel
processing that they embody.

The IAM (McClelland & Rumelhart, 1981) and, by inheritance, the DRC model
of word identification (Coltheart, Curtis, Atkins, & Haller, 1993), represent letter
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positions by storing characters in separate letter channels. The letter channels store
ordinal position information without any commitment to a data structure for the letters.
Mewhort and Johns (1988) have criticised the use of letter channels claiming that, while
the JAM represents space explicitly within a letter channel, space is not represented
between channels. If the organisation of the letters is not explicitly spatial, on what basis
are identified letters positioned relative to each other?

Paradoxically, a list structure, such as LEX prefers, would be ideal for a version
of the dual-route model. The DRC's grapheme-to-phoneme conversion mechanism, the
non-lexical route, operates in a left-to-right direction through the letters of the word. A
list structure provides a natural guide for the non-lexical route.

To summarnise, the data from the previous experiments suggest that readers order
identified characters from beginning-to-end prior to lexical access. Current models
represent the relative position of letters to one another in a fashion that permits parallel
access to lexical information. [ take a different approach— I allow the organisation of
the letters dictate how lexical access occurs. Hence, in LEX, lexical access begins at the

first letter of a word, and terminates when the final letter has been retrieved from the

lexicon.
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Chapter 8 : General Discussion and Conclusions

Comparison and Contrast to Other Perspectives

In this section, I will outline in more detail how my approach differs from other
approaches and discuss some of the commonalties among the approaches.
Serial vs. Parallel Processing.

LEX's approach to reading is clearly at odds with the traditional connectionist
approach to modelling word identification. In connectionist models letters of a word are
processed simultaneously. Phonemes of a word are also delivered simultaneously. That
is, processing is done in parallel. Iagree that reading involves parallel processing—the
letter identification system I use as LEX's front end (LEPS) identifies and localises the
letters of a display in parallel. However, the lexical access system expects a list of letters
for a retrieval cue. If the list's structure is exploited duning retrieval, lexical access is
sequential. In this respect, LEX aligns itself with the dual-route approach to reading.
LEX and the DRC operate from left to right through the letters of a word. However,

unlike the DRC, it is lexical access, not grapheme-to-phoneme conversion that is

sequential in nature.
One vs. Two Routes to Pronunciation.

Like connectionist models, LEX reads words and nonwords using a single route
to pronunciation; LEX reads novel stimuli by analogy to the words that it knows. Itis
worth noting however, that the analogies are built differently in the two classes of model.
For example, LEX is sensitive to the consistency with which sound can be derived from a
word's spelling for very different reasons than those offered by connectionist models.
Connectionist models reproduce the naming advantage for regular words over irregular
words because of the frequency with which letter patterns are mapped to sound patterns
during training. LEX captures the advantage because of the frequency with which letters
and phonemes co-occur in lexical entries. LEX does not link letters, or letter clusters, to

sound; hence, when it exhibits sensitivity to spelling-to-sound consistency, it is because,
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during sampling, it retrieves words from the lexicon that share the same letters but whose
associated phonological patterns contain phonemes with more frequent pronunciations.

Despite LEX's success with simulating word and nonword naming with a single
route, I am not willing to claim that readers do not have a second route to pronunciation
similar to the grapheme-to-phoneme route in the DRC. At issue is not whether readers
have a nonlexical route, but whether readers always use it. In LEX's account, both words
and nonwords are read as analogies to the words that are contained in the reader's
lexicon—up until the last character, the space, has been found, LEX must often sample
several candidates in the cohort of possible matches to the target word. If both words and
nonwords can be read by analogy, there is no need to postulate a separate mechanism to
read nonwords. It is plausible that a rule-based route that converts spelling to sound, if it
exists, is necessary only when a word cannot be read by analogy.

Storing Mappings vs. Storing Data.

Connectionist models are generally offered as neurologically inspired models of
intelligent behaviour. 1have tned to remain neutral with respect to claims about the
extent to which LEX's architecture is neurological inspired. LEX shares some similarity
to connectionist models of reading: it uses vectors to represent words, and it obtains
information about a word by blending information across several pieces of data stored in
the system's memory.

Although LEX and a connectionist model such as Seidenberg and McClelland
(1989) blend information to identify a word, it is done very differently in the two models.
Connectionist models of word identification store mappings between letters and sounds in
the connections between layers of nodes. Because the mappings link letters to sounds,
connectionist models can use the information for that purpose only.  For example,
Seidenberg and McClelland's mode! of reading can map letters to sounds, but it cannot,
within the same network, use sounds as an input to get spelling information. By contrast,
LEX stores words. Because LEX stores words, it can use the information contained in
the lexicon for more than one purpose—it can retrieve phonology from the lexicon when

letters are used as a probe, or it can retrieve the spelling of 2 word when it is presented

with a string of phonemes.
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Other Empirical Issues
List-Structure Effects in Word Identification.

None of the simulations I reported in Chapter 6 dealt with readers' apparent
ability to readjust how they read letter strings strategically when the type of letter string
can be anticipated. Several experiments have demonstrated that the speed and accuracy
with which subjects can read words or nonwords changes when they are mixed with other
stimuli (e.g., Baluch & Besner, 1992; Marmurek & Kwantes, 1996, Monsell, Patterson,
Graham, Hughes, & Milroy, 1992). For example, Monsell et al. showed that subjects
could read irregular words more quickly when they were presented in pure lists of
irregular words than when the words were presented in a list containing nonwords. They
interpreted the difference as evidence for a dual-route reading system. Specifically, they
suggested that the difference reflected a reader's ability to strategically attend to the
output of one route to pronunciation over the other.

I have not given LEX the ability to change strategies while reading because doing
so requires that I build in extra mechanisms that a) tell the model when it has made an
error (so that it knows when it must be more careful on the next tnal), and b) allows LEX
to anticipate what kind of letter stnng it will be reading (so that it can choose the most
efficient way to read them).

One possibility for a strategic component for LEX can be found in recent work by
Lupker, Brown, and Columbo (1997). Lupker et al. noted that, in experiments using the
list structure manipulation, increased speed often comes at the cost of accuracy. In fact,
the correlation between the increase in speed and the decrease in accuracy for pure over
mixed lists of stimuli across the four experiments reported by Lupker et al. was -0.615 (p
< .01). Speed-accuracy trade-offs are more consistent with a strategic change of response
deadline than a strategic de-emphasis of one strategy for pronunciation over another.
LEX could incorporate such a strategic component. The only point at which LEX may
know it has made an error is during letter retrieval—sometimes LEX settles on the wrong
letter during retrieval from the lexicon. LEX has a parameter that controls how much the
echo content is allowed to change over successive samples before retrieval begins on the

next letter. Suppose that, over several words, letter retrieval during lexical access occurs
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without error. Every time a word is retrieved without failure, the parameter could be
relaxed slightly so that each letters would be retrieved more quickly. At some point, the
parameter would be so lax that the system would make an error retrieving the letter. At
the point where retrieval fails, the parameter could be readjusted to make the criterion
more stringent. If the criteion were adjusted dynamically in this fashion, homogeneous
words in a list would be read more quickly, but more prone to errors, than the same
words in a list also containing other stimuli like nonwords.

Acquired Dyslexia

It is fashionable to include a discussion of how a model accounts for reading
deficits associated with head trauma. [ did not include simulation data for any of the
acquired dyslexias in this thesis. Instead, I will discuss briefly how LEX can account for
three acquired dyslexias that are often taken to represent the evidence for different routes
to pronunciation. Missing from the list of acquired dyslexias is deep dyslexia which is
characterised by a reader's tendency to make semantic errors while reading (e.g., reading
tree as bush). LEX does not have a semantic system yet, hence I must forego discussion
about how the model will account for it.

Phonological dyslexia. Phonological dyslexia is characterised by a reader's
difficulty reading unfamiliar or new words (Funnell, 1983, Beauvois & Derouesne, 1979,
Shallice & Warrington, 1980, Patterson, 1982). Persons with this syndrome can read
words quite easily, especially familiar words In the dual-route interpretation,
phonological dyslexia represents selective damage to the GPC route. Plaut et al's (1996)
interpretation placed the responsibility on the contribution of a semantic system in
reading words. If the phonological pathway of a connectionist network is damaged, the
model can enlist the aid of the semantic system to name words. Because neither
nonwords nor new words have representations in the semantic system, nonwords cannot
be named without great difficulty.

LEX would exhibit the symptoms of phonological dyslexia if, after it fails to
retrieve the correct letter from the lexicon, it could not properly readjust the cohort of
candidate words to continue the search. Recall how LEX reads: As each letter is
retrieved, only lexical entries that are consistent with the probe up to that point are

available for sampling. Now, suppose LEX was reading the nonword burse. Up until the
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final e, the letter string could be a word, and when LEX tries to retrieve the final letter, it
will fail. When LEX is intact, the first letter is dropped from the probe, allowing the
remaining letters in the probe to resonate with the entries in the lexicon containing the
letter combination, urs in the second, third, and fourth letter positions. Now, when LEX
searches for the e, the search will likely be successful because it does so in a search space
that includes words such as nurse, purse, and curse. On the other hand, if LEX lost the
ability to readjust its search space, it could not read novel stimuli effectively.

Surface dyslexia. Readers with surface dyslexia can read novel stimuli and
regular words with ease relative to irregular words. Irregular words such as pint are often
regularised; that is, pint is pronounced to rhyme with mint (Marshall & Newcombe,
1973).

From the dual-route perspective, surface dyslexia represents selective damage to
the lexical route. Reading is mediated entirely by the undamaged nonlexical route and
readers appear to "sound out" everything they read. Marcel (1980) and Henderson (1982)
pointed out that such a syndrome is also consistent with a readers' inability to create
accurate or appropriate analogies to words they know. From a connectionist perspective,
Plaut et al. (1996) suggested, and provided simulation evidence, that surface dyslexia
arises from damage to the semantic system. Without aid from semantics, the
phonological pathway of their model is responsible for generating a pronunciation. Plaut
et al.'s notion that the semantic system is involved is corroborated by neuropsychological
case studies of patients with certain types of dementia. For patients with semantic or
Alzheimer-type dementias, there is an increase in regularisation errors associated with the
progression of the disease.

The other possibility offered by Plaut et al. was that surface dyslexia reflects
damage to the connections between levels of units within the network. They
demonstrated that, when the network was lesioned between the hidden and phonological
units, its performance on word reading approached that of a patient with mild surface
dyslexia.

In terms of LEX's mechanisms, surface dyslexia reflects a faulty letter retrieval
process. Whenever letter retrieval fails, LEX must readjusts its search space to continue

retrieval. If LEX is prone to making letter retrieval errors, constant readjustment of the
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search space will have little effect on nonword or regular word reading. On the other
hand, retrieval failure will be highly detrimentai to reading irregular words; such words
will often be regulansed.

Word-form dyslexia. With word-form, or letter-by-letter, dyslexia, a reader
appears to name each letter prior to naming the word. The syndrome has been interpreted
as reflecting the reader's use of the spelling system to help name a word (Patterson &
Kay, 1982; Shallice & Warrington, 1980).

LEX would have word-form dyslexia if the scanning mechanism that orders
letters into a list was damaged. Recall that the scan provides LEX with a list of letters
that 1s used for lexical access. From LEX's perspective, a person with word-form
dyslexia has damaged the mechanism that orders the letters. To substitute for the scan,
the reader sub-vocalises the letters to impose order on them prior to lexical access. As far
as [ know, LEX is the only model that can account for, or even predicts, word-form
dyslexia without the need for a separate spelling system.

Prinung Effects

LEX possesses two pre-lexical buffers that store letter information in different
organisations. The character buffer (CB) stores identified characters in a spatial array.
That is, the buffer represents letters' identity and location. The contents of the CB are
sent to the temporal buffer (TB) by the scan where they are stored as a temporal array,
the letters are stored in a beginning to end order and, I have argued, that itis the
organisation of the contents in the TB that LEX expects in order to access the lexicon.
With separate buffers capable of storing information, LEX has two putative loci for
orthographically based priming effects.

I have not started simulation work on priming effects. Nevertheless, I can briefly
discuss how LEX might accommodate masked orthographic priming (e.g., Forster &
Davis, 1984; Bodner & Masson, 1996) and review LEX's account of parafoveal pnming
(e.g., Rayner, McConkie, Erlich, 1978; Rayner, McConkie, & Zola, 1980).

Masked Orthographic Priming or Form Priming. In one variation of the
orthographic priming task, a reader is presented with a pattern mask (often a string of
nonlinguistic characters like, &&&& ) that is followed by a brief presentation of a letter

string, the prime stimulus. Immediately following the prime stimulus' offset, a target
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word is presented which the reader must name aloud. The speed with which a reader can
name the target is affected by the orthographic similarity of the prime stimulus to the
target such that, naming latency shortens as the prime and target share more letters in the
same letter position.

As long as the prime and target simuli share letters in the same position, target
naming is facilitated. The only other boundary condition for the effect is that the prime
stimulus' presentation must be too brief to allow the subject to identify it. Typically, the
degree to which an orthographically similar pnme facilitates target naming is
independent of the target word's frequency —a pattern suggesting strongly that
orthographic priming occurs at a pre-lexical stage of word identification (see Bodner &
Masson, 1998 for futher evidence that orthographic priming is nonlexical in nature).

I place responsibility for orthographic priming at the level of LEX's character
buffer. This is the only pre-lexical buffer that stores letters spatially. At the level of the
character buffer, when the letters of the pnme and target coexist in the CB, and as long as
they share letters in the same positions, target naming will be more rapid than when none
of the letters of the stimuli overlap.

Parafoveal Priming. Rayner, McConkie, and Zola (1980) demonstrated that,
under some circumstances, a brief exposure to a prime stimulus in the parafovea
facilitates naming a foveally presented word. The facilitation 1s referred to as parafoveal
priming. Interestingly, facilitation only occurs if the prime and target stimuli share their
first letters. That is, the priming is asymmetrical, presenting rend in the parafovea
facilitates naming rens when it is presented in the fovea, but there is no facilitation for
rent when bent is the parafoveal stimulus. Rayner et al. (see also Rayner, McConkie, &
Erlich, 1978) suggested that the asymmetry occurs because the first few letters of the
prime stimulus are identified. When the target stimulus is presented, the identified
characters may serve as a context for aiding word identification during the foveal
presentation of the target, or may ailow readers to focus their attention on the letters that
have not yet been identified.

I showed in the previous chapter that the asymmetry in parafoveal priming can
also be explained by LEX. The phenomenon reported by Rayner et al. (1980) might

reflect interference from the letters in the TB. Recall that, the TB stores letters in a
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beginning-to-end order. Hence, from the perspective of the TB, rend is similar to rent
because they are the similar starting from the beginning of the letter strings. On the other
hand, bent is dissimilar to rent because they differ starting at the first letter. Because of
their relative similarities to the target word, rent should be named more quickly when
preceded by rend than when preceded by bent.

According to LEX's account, the first letter in the TB must be relatively clear to
serve as an adequate retrieval cue. If the first letter of the probe is unclear because it
overlaps with the first letter of the prime, the letters of the cue must be reidentified. If
the first letter is clear, retneval can begin. At the point where a probe letter becomes
unclear, LEX could use the context provided by the retrieved orthography so far to aid
the re-identification of the remaining letters.

Conclusions

In this thesis, [ introduced LEX, a model of visual word identification with a
full-scale lexicon, and few retrieval mechanisms. | demonstrated that LEX is able to
reproduce several phenomena considered to be benchmarks for the validation of any
model of word identification. LEX's success derives from two sources. First, it treats
reading as retrieval from memory, and second, it uses a full-scale lexicon.

Reading as retrieval

LEX treats reading differently from other models. Most models treat reading, and
learning to read, as an operation by which letters (or letter groups) are translated to, or
mapped onto, sounds. LEX does not map letters onto sounds. LEX treats the naming
and lexical decision tasks as special instances of cued recall and recognition memory
tasks, respectively. Identified characters serve as a retneval probe to get orthographic
and phonological information from the lexicon. Hence, for LEX, any correlation
between orthography and phonology that is reflected in the model's performance arises
because orthographic and phonological information exist in the same memory trace. An
example may help to clarify the distinction. Consider the letter string aaa. If LEX
mapped letters to sounds, it might prenounce the string as ah-ah-ah. Instead, LEX
pronounces aaa as t-r-ih-p-uh-{-ay because it is the phonological pattern associated with

aaa (I have used the phoneme notation found in appendix A) . If reading is treated as a
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problem of memory retrieval, one is forced to rethink other assumptions about word
identification as well. I will discuss each of the assumptions in tumn.

Most models describe word identification in terms of the activation of units which
can either represent whole words or parts of words. Reading is described, in models such
as the DRC and the connectionist models, as the process by which information from an
input level is filtered through a series of processors until the information activates
processors at an output level. As I mentioned briefly in Chapter 1, such a perspective
makes reading akin to a perceptual process, and as such, it precludes the need for
mechanisms that store information. When we treat reading as a problem of retrieval from
memory, the story changes drastically—suddenly, we require buffers to store the retrieval
cue and the information that falls out of memory.

Storing a retrieval cue in a buffer introduces a new constraint on the reading
system; the information contained in the retnieval cue, in LEX's case, identified
characters, must be structured. On the basis of previous work done on letter and word
identification using tachistoscopic displays (Mewhort, 1974, Mewhort & Beal, 1977,
Mewhort & Campbell, 1981), I assume that the reading system expects a list of letters.
That is, identified characters are encoded into a list prior to lexical access. LEX uses the
list structure to guide retrieval. Retrieval trom the lexicon begins with the first letter in
the list and terminates when the final letter has been found. The orthography that is
retrieved from the lexicon acts as a control structure to guide retrieval by adjusting a
cohort of candidate words on the basis of the information that has been retrieved.

I am quite clearly attacking the problem of input and output representations
differently from my competitors. Typically, assumptions about how lexical arcess occurs
guide the choice of input and output representation schemes for a model. For example,
one who assumes that lexical access is performed in parallel chooses input and output
representations that are amenable to parallel processing. Wickelfeatures, letter channels,
and componential representations are used by theonists because they are convenient
strategies for representing an arrangement of characters that can be processed
simultaneously. Despite the widespread use of such representations, little effort is spent
testing, or arguing for, their psychological reality. Ihave taken the opposite approach.

First, I considered what type and form of information the lexical access system expects.
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On the basis of what the system expects, I theorised about how lexical access would use
those data to make access to the lexicon.
Model-size and life-size lexions

LEX possesses a life-size lexicon. Most models implement a lexicon of between
3000 and 7000 words. While the size of a lexicon does not necessarily make one model
better than another, using a full-scale lexicon has two advantages over a small one. First,
and most obviously, a life-size model represents a closer approximation to a human's
knowledge of the language; and computing power is cheap enough that, with a little data
abstraction, full-scale lexicons are easily implemented in a computational model of
reading. Second, only a full-scale lexicon gives the theorist hints about which
mechanisms are necessary and adequate for reading.

My second point deserves expansion. By definition, a model is a scaled down
version of a larger system. It is not at all surprising that theorists build small-scale
lexicons in their models. Indeed, if the mechanisms that a theonist postulates are
basically correct, the amount of lexical knowledge that the system possesses should be
independent of how closely the model represents the life-size system. On the other hand,
small-scale models can lead researchers into postulating unnecessary mechanisms to
account for a wider range of data. A good example of this danger is found in LEX's
sensitivity to BOSSes and syllabic structure in word identification tasks. LEX does not
represent BOSSes or syllables:; its sensitivity to the structures comes as a consequence of
having a life-size lexicon. When a model possesses a realistic amount of knowledge
about a language, the model's performance reflects the structure within the language. On
the other hand, with a relatively small amount of lexical knowledge, a theorist is forced
to give structures special status—either by explicitly representing them in the lexicon
(e.g., the BOSS) or by building mechanisms that can derive them (e.g., a parsing
mechanism to derive syllables). I have learned a lesson in theory building from building
LEX; models of reading should be built to scale with a minimal number of processing
mechanisms. Once the model is built, the theorist can count how many phenomena the
model can reproduce without additional mechanisms. First determine how many

phenomena the model gets for free, and add processing mechanisms only when the

model's performance has reached its limit.
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Appendix A: Table of Phonemes Used by LEX
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The phoneme symbols in the appendix are as they appear in the Carnegie-Melon Pronunciation

dictionary. The list was compiled by Jerry Quinn at Bell Northern Research.

Phoneme
AA
AE
AH
AO
AW
AY
B
CH
D
DH

EH
ER
EY
F
G
HH
IH
IY
JH
K
L
M
N
NG
ow
oY
P
R
S
SH
T
TH
UH
uw
Vv
W
Y
Y4
ZH

Example
odd
at

hut
ought
cCow
hide
be
cheese
dee
thee
Ed
hurt
ate
fee
green
he

it

eat
gee
key
lee
me
knee
ping
oat
toy
pea
read
sea
she
tea
theta
hood
two
vee
we
yield
zee
seizure

Translation
AAD
AET
HHAHT
AOT

K AW
HH AYD
BIY
CHIY Z
DIY
DHIY
EHD
HHERT
EYT
FIY
GRIYN
HHIY
IHT
IYT
JHIY
K1Y
LIY
MIY
NIY
PIH NG
OWT
TOY
PIY
RIYD
STY
SHIY
TIY
THEY T AH
HH UHD
TUW
VIY
wWIY
YIYLD
Z1Y
SIYZHER





